WO2010095811A2 - 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법 - Google Patents

광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2010095811A2
WO2010095811A2 PCT/KR2009/007852 KR2009007852W WO2010095811A2 WO 2010095811 A2 WO2010095811 A2 WO 2010095811A2 KR 2009007852 W KR2009007852 W KR 2009007852W WO 2010095811 A2 WO2010095811 A2 WO 2010095811A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal layer
optical device
anodic oxide
oxide film
Prior art date
Application number
PCT/KR2009/007852
Other languages
English (en)
French (fr)
Other versions
WO2010095811A3 (ko
Inventor
남기명
Original Assignee
포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포인트엔지니어링 filed Critical 포인트엔지니어링
Priority to EP09840487A priority Critical patent/EP2400570A2/en
Priority to JP2011549055A priority patent/JP2012517697A/ja
Priority to US13/146,337 priority patent/US20110278624A1/en
Priority to CN2009801568141A priority patent/CN102318092A/zh
Publication of WO2010095811A2 publication Critical patent/WO2010095811A2/ko
Publication of WO2010095811A3 publication Critical patent/WO2010095811A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/183Components mounted in and supported by recessed areas of the printed circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Definitions

  • the present invention relates to a substrate for an optical device, an optical device package having the same, and a manufacturing method thereof.
  • An optical device converts electrical energy into light or converts light energy into electrical energy and has various sizes and shapes according to a purpose of use.
  • LEDs light emitting diodes
  • the LED is mounted on a printed circuit board and used as a single device or an array.
  • the LED has a high brightness and high energy efficiency, but has a problem of generating heat.
  • a heat sink is used under the LED package, or metal pads for heat conduction are formed on a printed circuit board.
  • the heat sink has the disadvantage of increasing the size of the LED package, and has the disadvantage of going through an additional process.
  • the metal pads of the printed circuit board is formed, there is a disadvantage that does not efficiently discharge heat generated from the LED to the outside.
  • Optical devices as well as LEDs often include a driving unit, and heat sinks and the like mentioned above are used to radiate heat generated from the driving unit to the outside, but the size and cost are increased.
  • An object of the present invention is to propose a substrate for an optical device having a high thermal conductivity by forming an anodic oxide film having no pores in a metal substrate, an optical device package having the same, and a manufacturing method thereof.
  • Another object of the present invention is to propose a substrate for an optical device, an optical device package having the same, and a manufacturing method thereof, which can control and form a thickness of an anodizing film through one or more anodizing processes.
  • Another object of the present invention is to propose a substrate for an optical device having improved light utilization efficiency, an optical device package having the same, and a method of manufacturing the same.
  • the metal substrate A first anodization film formed on a surface of the metal substrate to insulate the metal substrate; And first and second electrodes formed on the first anodic oxide film to be insulated from each other.
  • a metal substrate including a metal substrate, a first anodization film formed on a surface of the metal substrate to insulate the metal substrate, and first and second electrodes formed to be insulated from each other on the first anodization film.
  • a magnetic substrate An optical element disposed between the first and second electrodes; A first wire connecting the optical device and the first electrode; And a second wire connecting the optical device and the second electrode to each other.
  • an optical device package manufacturing method comprising a manufacturing method.
  • the present invention has the effect of efficiently dissipating heat generated in the optical device using a metal substrate.
  • the present invention has the effect of easily adjusting the thickness of the anodized film of the metal substrate.
  • reflection grooves are formed in the metal substrate to improve light utilization efficiency and facilitate alignment of the optical devices.
  • FIG. 1 is a plan view showing a light emitting diode package array according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II ′ of the light emitting diode package array shown in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along the line II ′ of the light emitting diode package array shown in FIG. 1.
  • 3 to 13 are cross-sectional views sequentially illustrating a method of manufacturing the light emitting diode package shown in FIG. 2 of the present invention.
  • FIG. 14 is a cross-sectional view showing a light emitting diode package according to a second embodiment of the present invention.
  • 15 to 20 are cross-sectional views sequentially illustrating a method of manufacturing a light emitting diode package shown in FIG. 14.
  • 21 is a sectional view showing a light emitting diode package according to a third embodiment of the present invention.
  • FIG. 22 is a cross-sectional view illustrating a light emitting diode package according to a fourth embodiment of the present invention.
  • FIG. 23 is a plan view illustrating a backlight unit having a light emitting diode package according to an embodiment of the present invention.
  • metal substrate 20 first anodic oxide film
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a plan view illustrating a light emitting diode package array according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along a line II ′ of the light emitting diode package array shown in FIG. 1.
  • a light emitting diode substrate and a light emitting diode package are described separately for convenience, but the light emitting diode package may include a light emitting diode substrate.
  • the light emitting diode package according to the present invention may include a light emitting diode substrate 400 and a light emitting diode 100.
  • the light emitting diode substrate 400 may include a metal substrate 10, a reflective groove 90, a first anodization film 20, a second anodic oxidation film 30, a photo solder resist pattern 55, and first to fifth materials. It may include four electrodes 70, 80, 71, and 81 and a partition wall 56.
  • the light emitting diodes 100 may include first and second wires 110 and 120 for applying a voltage, and the protective layer 130 and the protective cap 140 to protect the light emitting diodes 100. It may include.
  • the metal substrate 10 may be aluminum or an alloy substrate including aluminum.
  • the metal substrate 10 of the aluminum material has excellent thermal conductivity and has an advantage of easy processing.
  • the metal substrate 10 may include not only aluminum but also titanium, magnesium, zinc, niobium, or a alloy containing the same.
  • the reflective groove 90 is formed to be recessed into the metal substrate 10.
  • the reflective groove 90 reflects the light emitted from the light emitting diodes 100.
  • the reflective groove 90 may serve to guide the mounting of the light emitting diode 100.
  • the reflective groove 90 may include a lower surface 91 of the recessed bottom and a reflective surface 92 having an inclined cross section.
  • the reflective groove 90 may have an inclination angle ⁇ formed between the extension line of the lower surface and the reflective surface 92 at 20 to 70 °.
  • the reflecting surface 92 may be widened to increase the amount of light reflection, but the number of light emitting diodes 100 that may be disposed on the same size metal substrate 10 may be reduced.
  • the inclination angle ⁇ is 70 ° or more, the area of the reflective surface 92 may be reduced, thereby lowering the light reflection efficiency of the light emitting diode 100.
  • the reflective groove 90 may be formed to a depth d1 of 200 to 300 ⁇ m. However, the present invention is not limited thereto, and the reflective groove 90 may be formed to a different depth according to the shape of the light emitting diode 100. Further, the first and second anodic oxide films 20 and 30 formed in the region where the reflective groove 90 is to be formed may be formed to have different depths.
  • the reflective groove 90 may vary in size depending on the number, size, and shape of the light emitting diodes 100. As shown in FIG. 1, the reflective groove 90 has been described as an example in the form of a circle to increase the light reflection efficiency. However, the present invention is not limited thereto and may be formed in the shape of a polygon such as a quadrangle or a triangle.
  • the reflective groove 90 may be used as a means for facilitating alignment when a surface emitting laser or photodiode other than the light emitting diode 100 is mounted.
  • the shape of the reflecting groove 90 may be formed similarly to the shape of an optical device such as the light emitting diode 100 to be seated.
  • the first anodic oxide film 20 is formed through a method of anodizing the metal substrate 10.
  • the first anodic oxide film 20 may be formed on the entire surface of the metal substrate 10.
  • the first anodic oxide film 20 is formed such that there is no vacancy therein so that heat generated from the light emitting diodes 100 is easily conducted to the metal substrate 10.
  • the first anodic oxide film 20 insulates the metal substrate 10 from the first to fourth electrodes 70, 80, 71, and 81.
  • the first anodic oxide film 20 insulates the metal substrate 10 from the first to third metal layers 40, 50, and 60.
  • the first anodic oxide film 20 may include alumina (Al 2 O 3) formed by oxidizing aluminum. Since the first anodization layer 20 is formed of alumina (Al 2 O 3), the thermal conductivity is high, and thus heat generated from the light emitting diodes 100 may be easily transferred to the metal substrate 10.
  • the first anodic oxide film 20 may be formed to a thickness of 0.2 to 1.5 ⁇ m.
  • the second anodic oxide film 30 may be made of the same material as the first anodic oxide film 20 and may include alumina (Al 2 O 3) formed by an anodizing method in which the first anodic oxide film 20 is formed.
  • the second anodic oxide film 30 may be further formed when the thickness of the first anodic oxide film 20 is thin.
  • the anode oxide film is formed in two layers, but may be formed in three or more layers as necessary. Accordingly, the thickness of the anodic oxide film can be adjusted.
  • the first electrode 70 is formed on the second anodic oxide film 30.
  • the first electrode 70 may be formed of any one metal material of chromium, copper, silver, aluminum, gold, tungsten, and the like.
  • the first electrode 70 may be formed of an alloy including any one of metal materials such as chromium, copper, silver, aluminum, gold, and tungsten.
  • the first electrode 70 may be formed of a single layer or a double layer or more. As illustrated in FIG. 2, the first electrode 70 may have first to third metal layers 41, 51, and 61 stacked thereon.
  • the first electrode 70 is a first metal layer 41 formed of a metal material containing chromium on the second anodic oxide film 30, and a second metal layer 51 formed of a metal material containing copper on the first metal layer 41. ) And a third metal layer 61 formed of a metal material including silver on the second metal layer 51.
  • the first metal layer 41 is formed of a metal containing chromium which increases the affinity between the first electrode 70 and the second anodic oxide film 30, and is formed between the second anodic oxide film 30 and the second metal layer 51.
  • the second metal layer 51 may be formed of a metal material such as copper, copper-nickel, copper-nickel-gold, or the like.
  • the third metal layer 61 is electrically connected to the first wire 110 through soldering or the like.
  • the second electrode 80 is formed of the same metal material as the first electrode 70.
  • the second electrode 80 may include a first metal layer 42 formed of chromium or the like on a portion in contact with the second anodic oxide film 30, a second metal layer 52 formed of copper on the first metal layer 52, and a second portion of the second electrode 80.
  • the metal layer 52 may include a third metal layer 62 formed of silver.
  • the second metal layer 52 may be formed of a conductive material such as copper-nickel or copper-nickel-gold as well as copper.
  • the third metal layer 62 is formed of a conductive material such as silver.
  • the third metal layer 62 is electrically connected to the second wire 120.
  • the third electrode 71 is formed by stacking the first to third metal layers 41, 51, and 71.
  • the first and second metal layers are formed by extending the first and second metal layers 41 and 51 of the first electrode 70.
  • the third metal layer 71 may be formed of silver or a metal material containing silver. In this case, the third electrode 71 is electrically connected to the printed circuit board.
  • the fourth electrode 81 is formed by stacking the first to third metal layers 42, 52, and 81.
  • the first and second metal layers of the fourth electrode 81 are formed by extending the first and second metal layers 42 and 52 of the second electrode 80.
  • the third metal layer 81 may be formed of silver or a metal material containing silver. In this case, the fourth electrode 81 is electrically connected to the printed circuit board.
  • the first to fourth electrodes 70, 80, 71, and 81 of the present invention may be composed of only the first and second metal layers 41, 42, 51, and 52, respectively.
  • the photo solder resist pattern 55 is formed to surround side surfaces of the first to fourth electrodes 70, 80, 71, and 81 to be electrically insulated.
  • the photo solder resist pattern 55 may be formed not only on the first and second electrodes 80 but also in the remaining regions except for the region where the light emitting diodes 100 are formed.
  • the photo solder resist pattern 55 may be formed of a white material to reflect light emitted from the light emitting diodes 100.
  • the present invention may include first to third metal layers 40, 50, and 60 in a stacked manner in a region in which the reflective groove 90 is formed.
  • the first to third metal layers 40, 50, and 60 in the region in which the reflective groove 90 is formed may effectively conduct heat generated from the light emitting diodes 100 to the metal substrate 10.
  • the third metal layer 60 may be formed of silver or a metal material containing silver to increase light reflection efficiency.
  • the light emitting diodes 100 are seated in the reflecting grooves 90 and are adhered to the bottom surface of the light emitting diodes 100 using an adhesive or the like.
  • the first wire 110 is drawn out of the light emitting diode 100 and electrically connected to the first electrode 70.
  • the second wire 120 is drawn out of the light emitting diode 100 and electrically connected to the second electrode 80.
  • the first and second wires 110 and 120 supply a voltage supplied from each of the first and second electrodes 80 to the light emitting diode 100.
  • the light emitting diode package according to the present invention may further include a protective layer 130 and a protective cap 140 to protect the light emitting diodes 100.
  • the protective layer 130 may be formed of a mixture of phosphor and epoxy.
  • the protective layer 130 may fix the light emitting diodes 100.
  • the phosphor of the protective layer 130 may convert the light emitted from the light emitting diodes 100 in a specific color or wavelength into white light.
  • the phosphor may change the white light emitted from the light emitting diode 100 to a specific wavelength.
  • the protective cap 140 may be formed of a transparent material such as plastic on the outer side of the protective layer 130.
  • the light emitting diode package according to the present invention may further include a partition wall 56 for preventing the protective layer 130 inside the 500 from leaking to the outside.
  • the light emitting diode package according to the present invention includes the second metal layers 61 and 62 to prevent the growth or oxidation of copper used as the second metal layers 61 and 62 of the first and second electrodes 70 and 80, respectively. It may further include a conductive metal layer containing nickel or nickel on the upper).
  • the light emitting diode package to which the light emitting diode is bonded has been described, but an optical device such as a surface emitting laser or a photodiode may be used in addition to the light emitting diode.
  • 3 to 13 are cross-sectional views sequentially illustrating a method of manufacturing a light emitting diode package according to a first embodiment of the present invention.
  • the metal substrate 10 may be a single metal such as aluminum, titanium, magnesium, zinc, niobium, or an alloy including at least one of them.
  • the metal substrate 10 will be described using, for example, aluminum or an aluminum alloy having a heat transfer coefficient of 210 to 230 W / m ° K.
  • the reflective groove 90 may be formed to improve the reflection efficiency of the light emitted from the light emitting diodes 100.
  • the reflective groove 90 may be formed through a machining center lapping method. That is, the reflective groove 90 forms the metal substrate 10 to a depth of several tens to several hundred micrometers by using a machining center lapping method which is a precision micro lathe processing technology.
  • the reflective groove 90 may be formed through other metal forming processing technology in addition to the machining center lapping method.
  • the reflective groove 90 may include a reflective surface 92 having an inclination angle ⁇ from the lower surface 91 as shown in FIG. 3.
  • the reflective groove 90 may be formed such that the inclination angle ⁇ between the line extending from the lower surface 91 and the reflective surface 92 is 20 to 70 °.
  • the reflective groove 90 may have a larger area of the upper open area than that of the lower surface 91.
  • the depth d1 of the reflecting groove 90 may be formed to about 100 ⁇ 300 ⁇ m. However, the depth of the reflecting groove 90 is not limited thereto.
  • the reflective groove 90 may be formed in the number of MxN (M, N is a natural number) in the metal substrate 10.
  • Reflective groove 90 may be formed in a circular shape, as shown in FIG.
  • the present invention is not limited thereto and may be formed in the shape of a polygon such as a rectangle or a triangle.
  • the surface treatment step is a pretreatment step of forming a uniform anodization film.
  • a first anodic oxide film 20 is formed on the metal substrate 10.
  • the forming of the first anodization layer may include forming alumina (Al 2 O 3) on the surface of the metal substrate 10 by applying a voltage between the metal substrate 10 and the electrolyte while the metal substrate 10 is immersed in the electrolytic bath. Barrier Type Anodizing method is used.
  • a hole of alumina (Al2O3) is removed using a borate or tartarate bath method to form a 100% alumina (Al2O3) layer.
  • the metal substrate 10 is immersed in an electrolyte such as neutral boric acid, ammonium borate, tartrate, ammonium tetraborate, ammonium tartrate, and a voltage of 250 to 450 V is applied between the metal substrate 10 and the electrolyte.
  • an electrolyte such as neutral boric acid, ammonium borate, tartrate, ammonium tetraborate, ammonium tartrate, and a voltage of 250 to 450 V is applied between the metal substrate 10 and the electrolyte.
  • an electrolyte such as neutral boric acid, ammonium borate, tartrate, ammonium tetraborate, ammonium tartrate, and a voltage of 250 to 450 V is applied between the metal substrate 10 and the electrolyte.
  • the first anodic oxide film 20 may be formed to have a thickness of 0.2 to 1.5 ⁇ m.
  • a metal layer 25 is formed on the first anodic oxide film 20.
  • the metal layer 25 is formed on the first anodic oxide film 20 using a deposition method such as sputtering or chemical vapor deposition.
  • the metal layer 25 may be formed to a thickness of about 0.4 to 1.5 ⁇ m.
  • the metal layer 25 may be formed of a single metal such as aluminum, titanium, magnesium, zinc, niobium, or an alloy including the same. In the present invention, for example, it is easy to form an anodized film and uses aluminum or an aluminum alloy having high thermal conductivity.
  • alumina is formed on the metal layer 25 using the barrier type anodizing method, thereby forming a second anodic oxide film 30 as shown in FIG. 6.
  • the steps of forming the metal layer 25 shown in FIG. 5 and converting the metal layer 25 shown in FIG. 6 into the second anodic oxide film 30 are repeated.
  • the thickness of the oxide film can be adjusted thickly. That is, a metal layer may be formed on the second anodic oxide film 30, and the anodic oxide film may be further formed through an anodizing method.
  • the first metal layer 40 and the second metal layer 200 are continuously formed on the second anodic oxide film 30 by sputtering or chemical vapor deposition.
  • the first metal layer 40 may be chromium or an alloy containing chromium.
  • a metal other than chromium having high affinity with the second anodic oxide film 30 may be used.
  • the second metal layer 200 may be copper or an alloy including copper.
  • the second metal layer 200 may be formed of a material having high conductivity in addition to copper, and may be formed of a material capable of electrolytic plating later.
  • the photoresist pattern 210 shown in FIG. 8 is formed on the second metal layer 200.
  • the photo resist is formed on the second metal layer 200, and then the photoresist pattern 210 illustrated in FIG. 8 is formed through an exposure and development process.
  • the photoresist pattern 210 is formed to cover all regions except for the region where the reflective groove 90 is formed and the region where the first to fourth electrodes 70, 80, 71, and 81 are to be formed.
  • the metal pattern 220 is formed in the region exposed by the photoresist pattern 210. As shown in FIG. 9, the metal pattern 220 is formed in an exposed area due to the photoresist pattern using a metal capable of electroplating, for example, copper or an alloy including copper.
  • the metal pattern 220 may be formed by electroplating metals such as copper, copper-nickel, and copper-nickel-gold.
  • the second metal layer 230 shown in FIG. 10 is formed stepped.
  • a portion of the thickness of the stepped metal layer 230 may be removed through an etching process by changing the etching ratio of the stepped metal layer 230, and a part of the thick portion of the stepped metal layer 230 remains.
  • a part of the first metal layer 40 is etched and removed. That is, the exposed first metal layer 40 is removed due to the region where the stepped metal layer 230 is removed. Since the material of the stepped metal layer 230 and the first metal layer 40 are different metal materials, only an exposed region may be etched through a material capable of etching only the first metal layer 40.
  • the pattern illustrated in FIG. 11 may be formed using the etching process as described above.
  • a photo solder resist pattern 55 is formed.
  • the photo solder resist pattern 55 is formed through an exposure and development process using a mask after the photo solder resist is formed over the entire area. At this time, the photo solder resist pattern 55 is formed to be white to increase the reflectance of the light emitting diode.
  • the partition wall 56 is formed after forming the first to fourth electrodes 70, 80, 71, and 81 and the metal layer in the region where the optical device is to be seated. As shown in FIG. 12, the partition wall 56 is formed on the photo solder resist pattern 55 between the first and third electrodes 71 and between the second and fourth electrodes 81, respectively.
  • the partition wall 56 may be formed of a material having high reflectance. In addition, the partition wall 56 may be simultaneously formed of the same material when the photo solder resist is formed.
  • third metal layers 60, 61, and 62 are formed in regions exposed by the photo solder resist pattern 55.
  • the third metal layers 60, 61, and 62 may be formed using a conductive metal.
  • the third metal layers 60, 61, and 62 formed in the region where the light emitting diodes 100 are to be disposed, that is, the region where the reflective groove 90 is formed may use a conductive metal material having high reflectance.
  • the third metal layers 60, 61, and 62 may be formed of silver or a metal containing silver, and may be formed through an electroless plating method, a sputtering method, or the like.
  • a blocking metal layer may be further formed by using a metal such as nickel to prevent the growth of copper. have.
  • the light emitting diodes 100 are adhered to each other and the first and second wires 110 and 120 are connected to the first and second electrodes 80, respectively. Thereafter, the protective layer 130 is formed and the protective cap 140 is covered and finished.
  • the light emitting diode package is formed by cutting along the cutting line 600.
  • the light emitting diode substrate 400 may be cut and then bonded to the light emitting diode 100.
  • FIG. 14 is a cross-sectional view illustrating a light emitting diode package according to a second embodiment of the present invention.
  • FIG. 14 includes the same components except that the first and second metal layers 40 and 50 of the light emitting diode package shown in FIG. 2 are removed. In the following description, the description of the components duplicated with FIG. 2 will be omitted.
  • a light emitting diode package may include a light emitting diode substrate 400, a light emitting diode 100, a first wire 110, and a second wire 120. have.
  • the light emitting diode substrate 400 may include a metal substrate 10, a reflective groove 90, a first anodic oxide film 20, a second anodic oxide film 30, a photo solder resist pattern 55, and a first electrode. 70 to 4th electrodes 81 and the partition wall 56 may be included.
  • the metal substrate 10 may include aluminum, titanium, magnesium, zinc, niobium, or a alloy containing the same.
  • At least one reflective groove 90 may be formed on one side of the metal substrate 10.
  • the reflective groove 90 is formed to be concave inside the metal substrate 10.
  • the reflective groove 90 may be formed in a circular shape as shown in FIG. 1, but is not limited thereto.
  • the reflective groove 90 may be formed in a polygon such as a triangle or a quadrangle.
  • the reflective groove 90 may have an inclination angle ⁇ formed by an extension line of the reflective surface 92 and the lower surface 91 of 20 to 70 °.
  • the inclination angle ⁇ is less than 20 °, the reflecting surface 92 may be widened to increase the amount of light reflection, but the number of light emitting diodes 100 that may be formed on the metal substrate 10 having the same size may be reduced.
  • the inclination angle ⁇ is 70 ° or more, the area of the reflective surface 92 may be reduced, thereby lowering the light reflection efficiency of the light emitting diode.
  • the reflective groove 90 may be formed to a depth d1 of 200 to 300 ⁇ m. However, the present invention is not limited thereto, and the reflective groove 90 may be formed to a different depth according to the shape of the light emitting diode 100. Further, the first and second anodic oxide films 20 and 30 formed in the region where the reflective groove 90 is to be formed may be formed to have different depths.
  • the first anodic oxide film 20 is formed through a method of anodizing the metal substrate 10.
  • the first anodic oxide film 20 may be formed on the entire metal substrate 10.
  • the first anodic oxide film 20 is formed to be free of voids in order to increase thermal conduction to the metal substrate 10.
  • the first anodic oxide film 20 insulates the metal substrate 10 from the first to fourth electrodes 70, 80, 71, and 81.
  • the first anodic oxide film 20 may be formed to a thickness of 0.2 to 1.5 ⁇ m.
  • the second anodic oxide film 30 is formed on the first anodic oxide film 20.
  • the second anodic oxide film 30 may include alumina (Al 2 O 3), which is the same material as the first anodic oxide film 20.
  • the second anodic oxide film 30 may be formed to a thickness of 0.4 ⁇ 1.5 ⁇ m.
  • the first and second anodic oxide films 20 and 30 are formed.
  • the anodic oxide film formed on the second anodic oxide film 30 may be further included. Through this, the thickness of the anodic oxide film that insulates the metal substrate 10 may be adjusted.
  • the photo solder resist pattern 55 electrically insulates the first electrode 70 from the second electrode 80.
  • the photo solder resist pattern 55 may include all regions except for regions in which the first to fourth electrodes 70, 80, 71, and 81 are exposed to the outside, and regions in which the light emitting diodes 100 are seated. It can be formed in the area.
  • the first electrode 70 may be formed by stacking the first to third metal layers 41, 51, and 61.
  • the first metal layer 41 may be formed of a metal material including chromium or chromium having excellent affinity with the second anodic oxide film 30.
  • the second gold layer 51 may be formed of copper or a metal material including copper having excellent conductivity.
  • the third metal layer 61 may be formed of silver or a metal material including silver capable of electroless plating. The third metal layer 61 is exposed to the outside and electrically connected to the first wire 110.
  • the second electrode 80 may be formed of a metal material including chromium or chromium having excellent affinity with the second anodic oxide film 30.
  • the second metal layer 52 may be formed of copper or a metal material including copper having excellent conductivity.
  • the third metal layer 62 may be formed of silver or a metal material including silver capable of electroless plating. The third metal layer 62 is exposed to the outside and electrically connected to the second wire 120.
  • the third electrode 71 is formed on the region where the first and second metal layers 41 and 51 of the first electrode 70 extend.
  • the third electrode 71 is formed of the same material as the third metal layer 61 of the first electrode 70 through the same process.
  • the third electrode 71 may be connected to a printed circuit board (not shown). Accordingly, the third electrode 71 may apply the voltage applied through the printed circuit board to the first electrode 70.
  • the fourth electrode 81 is formed on the region where the first and second metal layers 42 and 52 of the second electrode 80 extend.
  • the third electrode 71 is formed of the same material as the third metal layer 62 of the second electrode 80 through the same process. In this case, the third electrode 71 may be connected to a printed circuit board (not shown). Accordingly, the third electrode 71 may apply the voltage applied through the printed circuit board to the second electrode 80.
  • the light emitting diodes 100 are bonded to a region where the reflecting grooves 90 are formed.
  • the light emitting diodes 100 may be formed on the third metal layer 60.
  • the third metal layer 60 is formed of a conductive material such as silver having high light reflectance.
  • the first wire 110 drawn from the light emitting diode 100 is electrically connected to the first electrode 70, and the second wire 120 is connected to the second electrode 80.
  • the present invention may further include a protective layer 130 on the upper portion of the light emitting diode 100 to protect the light emitting diode 100 from external factors.
  • the protective layer 130 uses a mixture of phosphor and epoxy.
  • the protective layer 130 may convert the light emitted from the light emitting diodes 100 into a white light by using phosphors.
  • the phosphor may convert the white light emitted from the light emitting diodes 100 into one of red, green, and blue to be emitted.
  • the light emitting diode package according to the present invention may further include a protective cap 140 formed of a material such as plastic of a transparent material outside the protective layer 130.
  • the light emitting diode package according to the present invention may further include a partition wall 56 for preventing the protective layer 130 from leaking to the outside when the protective layer 130 is formed.
  • the partition wall 56 may have a rectangular cross section.
  • the present invention is not limited thereto and may be formed in a triangular or trapezoidal shape to improve light reflectance.
  • 15 to 20 are cross-sectional views sequentially illustrating a method of manufacturing an optical device package according to a second exemplary embodiment of the present invention illustrated in FIG. 14.
  • Forming the reflective groove 90, the first anodic oxide film 20, the second anodic oxide film 30, the first metal layer 40, and the second metal layer 200 in the metal substrate 10 may be performed by the method of the present invention. It may be manufactured by the same process as FIGS. 3 to 7 described the optical device package manufacturing method according to an embodiment. Hereinafter, a process after the second metal layer is formed will be described in detail.
  • the reflective groove 90 is formed in the metal substrate 10. Subsequently, the metal substrate 10 is smoothly processed through a process such as lapping and polishing. Next, the surface of the metal substrate 10 is oxidized through a barrier type anodizing method to form the first anodic oxide film 20.
  • an aluminum layer is formed on the first anodic oxide film 20, and the second anodic oxide film 30 is formed again through a barrier type anodizing method.
  • the first metal layer 40 including chromium or the chromium-containing metal material and the second metal layer 200 including the copper or copper metal material 200 are continuously deposited by sputtering or chemical vapor deposition. do.
  • a photoresist pattern 210 is formed on the second metal layer 200.
  • the photoresist pattern 210 forms a photoresist pattern 210 illustrated in FIG. 15 through an exposure and development process after applying photoresist on the second metal layer 200.
  • the photoresist pattern 210 is formed by remaining photoresist in all regions except for regions in which the first to fourth electrodes 70, 80, 71, and 81 are to be formed.
  • the metal pattern 220 is formed on the second metal layer 200 exposed by the photoresist pattern 210. As shown in FIG. 16, the metal pattern 220 is formed of the same material as the second metal layer 200 by using an electroplating method.
  • the stepped metal layer 230 is formed as shown in FIG. 17.
  • the stepped metal layer 230 is removed using a wet etching method or a dry etching method to remove the metal layer having a thin thickness.
  • the remaining regions except for the regions where the first to fourth electrodes 70, 80, 71, and 81 are to be formed are removed.
  • the second metal layer 230 is removed by a wet etching method or a dry etching method to etch the first metal layer 40 in the exposed region.
  • a photo solder resist pattern 55 is formed.
  • the third metal layers 61 and 62 are formed of silver or a metal containing silver.
  • the partition wall 56 is formed.
  • the partition wall 56 may be formed before the third metal layers 61 and 62 are formed.
  • the light emitting diodes 100 are adhered to each other, the first wire 110 is connected to the first electrode 70 by soldering, or the like, and the second wire 120 is connected to the second electrode 80. Connect to Subsequently, the protective layer 130 and the protective cap 140 are formed.
  • FIG. 21 is a cross-sectional view of a light emitting diode package according to a third embodiment of the present invention.
  • the light emitting diode package illustrated in FIG. 21 includes the same components except that the reflective groove 90 is not formed in the light emitting diode package illustrated in FIG. 2.
  • the optical device package according to the third embodiment of the present invention includes a light emitting diode substrate and a light emitting diode (100).
  • a first anodic oxide film 20 may be formed on the metal substrate 10.
  • the method may further include a second anodic oxide film 30 formed on the first anodic oxide film 20.
  • the substrate for a light emitting diode includes first to fourth electrodes 70, 80, 71, and 81. Since the first to fourth electrodes 70, 80, 71, and 81 are the same as the first to fourth electrodes 70, 80, 71, and 81 shown in FIG. 2, redundant description thereof will be omitted.
  • the light emitting diode 100 is formed on the third metal layer 60, and the first wire 110 is connected to the first electrode 70 by soldering or the like.
  • the protective layer 130 is formed of a material in which a phosphor and an epoxy are mixed to cover the light emitting diodes 100, and includes a protective cap 140 formed on the protective layer 130.
  • the first and second metal layers 40 and 50 may be removed in the region where the light emitting diode 100 is to be seated.
  • the partition wall 56 formed in FIG. 2 may be further formed.
  • the optical device package manufacturing method according to the third embodiment of the present invention may be formed by the same method without going through the step of forming a reflective groove in the manufacturing method of the optical device package according to the first embodiment of the present invention.
  • FIG. 22 is a cross-sectional view illustrating an optical device package according to a fourth exemplary embodiment of the present invention.
  • FIG. 22 is a view illustrating a single light emitting diode package after the optical device package illustrated in FIG. 2 is cut along a cutting line.
  • a printed circuit board 270 is attached to the light emitting diode package illustrated in FIG. 2, and a reflective plate 280 is provided between the printed circuit board 270 and the protective cap 140. Same as except. Duplicate description of the same configuration will be omitted.
  • the reflector 280 may be formed of a metal or a nonmetallic material having high reflectance.
  • the reflective plate 280 may further include a reflective film coated with a non-metal material having a high reflectance.
  • the light emitting diode package of the present invention can be used as a backlight unit of a liquid crystal display device.
  • FIG. 23 is a plan view schematically illustrating a backlight unit using a light emitting diode package according to an embodiment of the present invention.
  • the backlight unit may include a light guide plate 800, a light emitting diode package 500, and a frame 700.
  • the light emitting diode package illustrated in FIG. 2 may be formed in a bar type.
  • the light guide plate 800 guides the light supplied from the light emitting diodes 100 and uniformly emits the light incident from the light emitting diodes 100 in the vertical direction.
  • the frame 700 is bonded to one side of the light emitting diode package 500.
  • heat generated from the light emitting diodes 100 is transferred to the light emitting diode substrate 400 and is emitted to the outside through the frame 700 connected thereto. Accordingly, even when the number of light emitting diodes 100 is used, heat is easily released to the outside.
  • the backlight unit in the form of a surface light source may be configured.
  • optical device substrate, the optical device package and the manufacturing method thereof according to an embodiment of the present invention may be used for indoor and outdoor lighting devices in addition to the backlight unit.
  • the present invention has the effect of efficiently dissipating heat generated in the optical device using a metal substrate.
  • the present invention has the effect of easily adjusting the thickness of the anodized film of the metal substrate.
  • reflection grooves are formed in the metal substrate to improve light utilization efficiency and facilitate alignment of the optical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법에 관한 것이다. 본 발명에 따른 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법은 금속 기판, 금속 기판의 표면에 형성되어 금속 기판을 절연시키는 제1 양극 산화막 및 제1 양극 산화막 위에 서로 절연되게 형성된 제1 및 제2 전극을 포함할 수 있다.

Description

광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법
본 발명은 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법 관한 것이다.
광소자는 전기 에너지를 빛으로 변환하거나, 빛 에너지를 전기에너지로 변환하는 소자로서 사용 목적에 따라 다양한 크기 및 모양을 갖는다.
최근, 광소자 중 발광다이오드(Light Emitting Diode; 이하, LED라 함)는 조명 분야, 디스플레이 분야 등에서 많이 사용되고 있다. LED는 인쇄회로기판에 실장 되며, 단일 소자 또는 어레이되어 사용된다. LED 휘도가 높고, 에너지 효율이 높은 장점이 있으나 발열이 많다는 문제가 있다.
발열 문제를 해결하기 위하여 종래의 경우에는 LED 패키지 하부에 히트 싱크를 사용하거나, 인쇄회로기판에 열전도를 위한 금속 패드들을 형성하여 사용하고 있다. 그러나 히트 싱크의 경우에는 LED 패키지의 크기가 커지는 단점이 있으며 추가 공정을 진행해야 하는 단점이 있다. 또한, 인쇄회로기판의 금속 패드들을 형성하여도 LED에서 발생되는 열을 외부로 효율적으로 방출하지 못하는 단점이 있다.
LED 뿐만 아니라 광소자들은 구동부를 포함하는 경우가 많으며, 구동부에서 발생되는 열을 외부로 방출하기 위하여 위에서 언급한 히트 싱크 등을 사용하고 있으나 크기가 커지며 비용이 추가되는 문제점이 있다.
본 발명의 목적은 금속 기판에 공공이 없는 양극 산화막이 형성되어 열전도도가 높은 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법을 제안하는 것이다.
본 발명의 다른 목적은 1회 이상의 애노다이징 공정을 통해 양극 산화막의 두께를 조절 형성할 수 있는 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법을 제안하는 것이다.
본 발명의 또 다른 목적은 광소자와 연결되는 전극 구조가 양극 산화막 위에 금속층이 적층된 형태로 형성된 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법을 제안하는 것이다.
본 발명의 또 다른 목적은 광이용 효율이 향상된 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법을 제안하는 것이다.
본 발명의 일 측면에 따르면, 금속 기판; 상기 금속 기판의 표면에 형성되어 상기 금속 기판을 절연시키는 제1 양극 산화막; 및 상기 제1 양극 산화막 위에 서로 절연되게 형성된 제1 및 제2 전극을 포함하는 광소자용 기판이 제공된다.
본 발명의 다른 측면에 의하면, 금속 기판, 상기 금속 기판의 표면에 형성되어 상기 금속 기판을 절연시키는 제1 양극 산화막 및 상기 제1 양극 산화막 위에 서로 절연되게 형성된 제1 및 제2 전극을 포함하는 광소자용 기판; 상기 제1 및 제2 전극 사이의 배치되는 광소자; 상기 광소자와 상기 제1 전극을 연결하는 제1 와이어; 및 상기 광소자와 상기 제2 전극을 연결하는 제2 와이어를 포함하는 광소자 패키지가 제공된다.
본 발명의 또 다른 측면에 의하면, (a) 금속 기판 표면에 상기 금속 기판을 절연시키는 제1 양극 산화막을 형성하는 단계; (b) 상기 제1 양극 산화막 위에 제2 양극 산화막을 형성하는 단계; (c) 상기 제1 양극 산화막 위에 제1 금속층을 형성하는 단계; (d) 상기 제1 금속층 위에 제2 금속층을 형성하는 단계; 및 (e) 상기 제1 및 제2 금속층을 식각하여 서로 마주하며 절연되도록 제1 및 제2 전극을 형성하는 단계를 포함하는 광소자용 기판 제조 방법 이 제공된다.
본 발명의 또 다른 측면에 의하면, (a) 금속 기판 표면에 상기 금속 기판을 절연 시키는 제1 양극 산화막을 형성하는 단계; (b) 상기 제1 양극 산화막 위에 제1 내지 제3 금속층 중 어느 하나의 금속층을 포함하며 서로 마주하며 절연되게 형성된 제1 및 제2 전극을 형성하는 단계; (c) 상기 제1 및 제2 전극 사이에 광소자를 배치하는 단계; 및 (d) 상기 광소자로부터 인출된 제1 와이어와 상기 제1 전극을 전기적으로 연결하고, 상기 광소자로부타 인출된 제2 와이어와 상기 제2 전극을 전기적으로 연결하는 단계를 포함하는 광소자 패키지 제조 방법 를 포함하는 광소자 패키지 제조 방법이 제공된다.
본 발명은 금속 기판을 사용하여 광소자에서 발생되는 열을 효율적으로 방출할 수 있는 효과가 있다.
또한, 본 발명은 금속 기판의 양극 산화막의 두께를 용이하게 조절할 수 있는 효과가 있다.
본 발명은 금속 기판에 반사홈을 형성하여 광이용 효율을 향상시키고, 광소자의 얼라인을 용이하게 할 수 있다.
도 1은 본 발명의 제1 실시 예에 따른 발광다이오드 패키지 어레이를 도시한 평면도.
도 2는 도 1에 도시된 발광다이오드 패키지 어레이의 I-I' 선을 따라 절단된 단면을 도시한 단면도.
도 3 내지 도 13은 본 발명의 도 2에 도시된 발광다이오드 패키지의 제조 방법을 순차적으로 도시한 단면도들.
도 14는 본 발명의 제2 실시 예에 따른 발광다이오드 패키지를 도시한 단면도.
도 15 내지 도 20은 도 14에 도시된 발광다이오드 패키지 제조 방법을 순차적으로 도시한 단면도들.
도 21은 본 발명의 제3 실시 예에 따른 발광다이오드 패키지를 도시한 단면도.
도 22는 본 발명의 제4 실시 예에 따른 발광다이오드 패키지를 도시한 단면도.
도 23은 본 발명의 실시 예에 따른 발광다이오드 패키지를 갖는 백라이트 유닛을 도시한 평면도.
<도면의 주요부분에 대한 부호의 설명>
10: 금속 기판 20: 제1 양극 산화막
30: 제2 양극 산화막 40: 제1 금속층
50: 제2 금속층 60: 제3 금속층
70: 제1 전극 71: 제3 전극
80: 제2 전극 81: 제4 전극
90: 반사홈 100: 발광다이오드
110: 제1 와이어 120: 제2 와이어
130: 보호층 140: 보호캡
400: 발광다이오드용 기판 500: 발광다이오드 패키지
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도면에 대한 상세한 설명을 하기에 앞서, 본 명세서에서의 구성부들에 대한 구분은 각 구성부가 담당하는 주기능별로 구분한 것에 불과함을 명확히 하고자 한다. 즉, 이하에서 설명할 2개 이상의 구성부가 하나의 구성부로 합쳐지거나 또는 하나의 구성부가 보다 세분화된 기능별로 2개 이상으로 분화되어 구비될 수도 있다. 그리고 이하에서 설명할 구성부 각각은 자신이 담당하는 주기능 이외에도 다른 구성부가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성부 각각이 담당하는 주기능 중 일부 기능이 다른 구성부에 의해 전담되어 수행될 수도 있음은 물론이다.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면 번호에 상관없이 동일한 수단에 대해서는 동일한 참조 번호를 사용하기로 한다.
도 1은 본 발명의 제1 실시 예에 따른 발광다이오드 패키지 어레이를 도시한 평면도이고, 도 2는 도 1에 도시된 발광다이오드 패키지 어레이의 I-I' 선을 따라 절단된 단면을 도시한 단면도이다. 본 발명에서는 편의상 발광다이오드용 기판과 발광다이오드 패키지를 구분하여 설명하고 있으나, 발광다이오드 패키지는 발광다이오드 기판을 포함할 수도 있다.
도 1 및 도 2를 참조하면, 본 발명에 따른 발광다이오드 패키지는 발광다이오드용 기판(400), 발광다이오드(100)를 포함할 수 있다. 여기서, 발광다이오드용 기판(400)은 금속 기판(10), 반사홈(90), 제1 양극 산화막(20), 제2 양극 산화막(30), 포토 솔더 레지스트 패턴(55), 제1 내지 제4 전극(70, 80, 71, 81) 및 격벽(56)을 포함할 수 있다. 또한, 발광다이오드(100)에 전압이 인가되도록 하는 제1 및 제2 와이어(110, 120)를 포함할 수 있으며, 발광다이오드(100)를 보호하는 보호층(130) 및 보호캡(140)을 포함할 수 있다.
구체적으로, 금속 기판(10)은 알루미늄 또는 알루미늄을 포함하는 합금 기판일 수 있다. 알루미늄 소재의 금속 기판(10)은 열 전도도가 우수하며, 가공이 용이한 장점이 있다. 그러나, 금속 기판(10)은 알루미늄뿐만 아니라, 티타늄, 마그네슘, 아연, 니오븀 또는 이를 포함하는 함금 등을 포함할 수 있다.
반사홈(90)은 금속 기판(10)의 내측으로 함몰되게 형성된다. 반사홈(90)은 발광다이오드(100)에서 방출되는 광을 반사시킨다. 또한, 반사홈(90)은 발광다이오드(100)의 안착이 용이하도록 안내하는 역할을 할 수 있다. 반사홈(90)은 함몰된 바닥의 하부면(91) 및 단면이 경사지게 형성된 반사면(92)을 포함할 수 있다.
반사홈(90)은 하부면의 연장선과 반사면(92)이 이루는 경사각(θ)이 20~70°로 형성될 수 있다.
경사각(θ)이 20°미만일 경우에는 반사면(92)이 넓어져 광의 반사량이 증가할 수 있으나 동일한 크기의 금속 기판(10)에 배치될 수 있는 발광다이오드(100)의 개수가 줄어들 수 있다. 또한, 경사각(θ)이 70°이상이면 반사면(92)의 면적이 줄어들어 발광다이오드(100)의 광반사 효율이 낮아질 수 있다.
반사홈(90)은 200 내지 300㎛의 깊이(d1)로 형성될 수 있다. 그러나 이에 한정되지 않고 반사홈(90)은 발광다이오드(100)의 형태에 따라 다른 깊이로 형성될 수 있다. 또한, 반사홈(90)이 형성될 영역에 형성되는 제1 및 제2 양극 산화막(20, 30)의 두께에 따라 다른 깊이로 형성될 수 있다.
반사홈(90)은 발광다이오드(100)의 개수, 크기 및 모양에 따라 크기가 달라질 수 있다. 반사홈(90)은 도 1에 도시된 바와 같이, 광반사 효율을 크게 하기 위하여 원형으로 형성된 예를 설명하고 있다. 그러나 이에 한정되지 않고, 사각형, 삼각형 등의 다각형의 모양으로 형성될 수도 있다.
반사홈(90)은 발광다이오드(100) 이외의 표면방출레이저 또는 포토다이오드 등이 안착될 경우에 얼라인을 용이하게 하기 위한 수단으로 사용될 수 있다. 반사홈(90)의 모양은 안착되는 발광다이오드(100) 등의 광소자 형태와 유사하게 형성될 수도 있다.
제1 양극 산화막(20)은 금속 기판(10)을 애노다이징(Anodizing)하는 방법을 통해 형성된다. 제1 양극 산화막(20)은 금속 기판(10)의 표면 전체에 형성될 수 있다. 제1 양극 산화막(20)은 발광다이오드(100)에서 발생된 열이 금속 기판(10)으로 용이하게 전도되도록 내부에 공공이 없도록 형성된다. 제1 양극 산화막(20)은 금속 기판(10)과 제1 내지 제4 전극(70, 80, 71, 81) 사이를 절연시킨다. 또한, 제1 양극 산화막(20)은 금속 기판(10)과 제1 내지 제3 금속층(40, 50, 60) 사이를 절연시킨다.
제1 양극 산화막(20)은 알루미늄이 산화되어 형성된 알루미나(Al2O3)를 포함할 수 있다. 제1 양극 산화막(20)이 알루미나(Al2O3)로 형성되어 열전도도가 높아 발광다이오드(100)에서 발생된 열을 금속 기판(10)으로 용이하게 전달할 수 있다.
제1 양극 산화막(20)은 0.2 내지 1.5㎛의 두께로 형성될 수 있다.
제2 양극 산화막(30)은 제1 양극 산화막(20)과 동일한 물질일 수 있으며 제1 양극 산화막(20)을 형성한 애노다이징 방법으로 형성된 알루미나(Al2O3)를 포함할 수 있다.
제2 양극 산화막(30)은 제1 양극 산화막(20)의 두께가 얇을 경우 추가로 형성할 수 있다.
본 발명의 실시 예에서는 양극 산화막이 2중으로 형성되었으나 필요에 따라 3중층 이상으로 형성될 수도 있다. 이에 따라, 양극 산화막의 두께를 조절할 수 있다.
제1 전극(70)은 제2 양극 산화막(30) 상부에 형성된다. 제1 전극(70)은 크롬, 구리, 은, 알루미늄, 금, 텅스텐 등의 금속 물질 중 어느 하나의 금속 물질로 형성될 수 있다. 제1 전극(70)은 크롬, 구리, 은, 알루미늄, 금, 텅스텐 등의 금속 물질 중 어느 하나를 포함하는 합금으로 형성될 수 있다. 또한, 제1 전극(70)은 단일층 또는 이중층 이상으로 형성될 수 있다. 제1 전극(70)은 도 2에 도시된 바와 같이, 제1 내지 제3 금속층(41, 51, 61)이 적층될 수 있다.
제1 전극(70)은 제2 양극 산화막(30) 위에 크롬을 포함하는 금속 물질로 형성된 제1 금속층(41), 제1 금속층(41) 위에 구리를 포함하는 금속 물질로 형성된 제2 금속층(51) 및 제2 금속층(51) 위에 은을 포함하는 금속 물질로 형성된 제3 금속층(61)을 포함할 수 있다.
제2 금속층(51)에 포함된 구리는 제2 양극 산화막(30)과 친화성이 약하다. 따라서, 제1 전극(70)과 제2 양극 산화막(30)의 친화력을 증가시키는 크롬을 포함하는 금속으로 제1 금속층(41)을 제2 양극 산화막(30)과 제2 금속층(51) 사이에 형성한다.
제2 금속층(51)은 구리, 구리-니켈, 구리-니켈-금 등의 금속 물질로 형성될 수 있다.
제3 금속층(61)은 솔더링 등의 방법을 통해 제1 와이어(110)와 전기적으로 연결된다.
제2 전극(80)은 제1 전극(70)과 동일한 금속 물질로 형성된다. 제2 전극(80)은 제2 양극 산화막(30)과 접촉하는 부분에 크롬 등으로 형성된 제1 금속층(42), 제1 금속층(52) 상부에 구리로 형성된 제2 금속층(52) 및 제2 금속층(52) 상부에 은으로 형성된 제3 금속층(62)을 포함할 수 있다.
제2 금속층(52)은 구리뿐만 아니라 구리-니켈, 구리-니켈-금 등의 도전성 물질로 형성될 수 있다.
제3 금속층(62)은 은 등의 도전성 물질로 형성된다. 제3 금속층(62)은 제2 와이어(120)와 전기적으로 연결된다.
제3 전극(71)은 제1 내지 제3 금속층(41, 51, 71)이 적층되어 형성된다. 여기서, 제1 및 제2 금속층은 제1 전극(70)의 제1 및 제2 금속층(41, 51)이 연장되어 형성된 것이다. 제3 금속층(71)은 은 또는 은을 포함하는 금속 물질로 형성될 수 있다. 이때, 제3 전극(71)은 인쇄회로기판과 전기적으로 연결된다.
제 4 전극(81)은 제1 내지 제3 금속층(42, 52, 81)이 적층되어 형성된다. 제4 전극(81)의 제1 및 제2 금속층은 제2 전극(80)의 제1 및 제2 금속층(42, 52)이 연장되어 형성된다. 제3 금속층(81)은 은 또는 은을 포함하는 금속 물질로 형성될 수 있다. 이때, 제4 전극(81)은 인쇄회로기판과 전기적으로 연결된다.
본 발명의 제1 내지 제4 전극(70, 80, 71, 81)은 각각에 형성된 제1 및 제2 금속층(41, 42, 51, 52)으로만 구성될 수도 있다.
포토 솔더 레지스트 패턴(55)은 제1 내지 제4 전극(70, 80, 71, 81)의 측면을 감싸게 형성되어 전기적으로 절연시킨다. 포토 솔더 레지스트 패턴(55)은 제1 및 제2 전극(80)의 상부뿐만 아니라 발광다이오드(100)가 형성되는 영역을 제외한 나머지 영역에 모두 형성될 수 있다. 포토 솔더 레지스트 패턴(55)은 발광다이오드(100)로부터 방출되는 광을 반사시키기 위하여 백색 물질로 형성될 수 있다.
본 발명은 반사홈(90)이 형성된 영역에 적층된 형태의 제1 내지 제3 금속층(40, 50, 60)을 포함할 수 있다. 반사홈(90)이 형성된 영역의 제1 내지 제3 금속층(40, 50, 60)은 발광다이오드(100)에서 발생된 열을 금속 기판(10)으로 효과적으로 전도할 수 있도록 한다. 또한, 제3 금속층(60)은 은 또는 은을 포함하는 금속 물질로 형성되어 광반사 효율을 높일 수 있다.
발광다이오드(100)는 반사홈(90)에 안착되어 하면은 접착제 등을 통해 접착된다.
제1 와이어(110)는 발광다이오드(100)로부터 인출되어 제1 전극(70)과 전기적으로 연결된다. 제2 와이어(120)는 발광다이오드(100)로부터 인출되어 제2 전극(80)과 전기적으로 연결된다. 제1 및 제2 와이어(110, 120)는 제1 및 제2 전극(80) 각각에서 공급되는 전압을 발광다이오드(100)에 공급한다.
본 발명에 따른 발광다이오드 패키지는 발광다이오드(100)를 보호하는 보호층(130) 및 보호캡(140)을 더 포함할 수 있다.
보호층(130)은 인광물질 및 에폭시가 혼합된 물질로 형성될 수 있다. 보호층(130)은 발광다이오드(100)를 고정시킬 수 있다. 여기서, 보호층(130)의 인광물질은 발광다이오드(100)로부터 특정 색 또는 파장으로 방출된 광을 백색광으로 변환하여 방출할 수 있다. 이와 반대로, 인광물질은 발광다이오드(100)로부터 방출된 백색광을 특정 파장으로 변활할 수도 있다.
보호캡(140)은 보호층(130) 외곽에 플라스틱 등의 투명 물질로 형성될 수 있다.
본 발명에 따른 발광다이오드 패키지는(500) 내부의 보호층(130)이 외부로 유출되는 것을 방지하는 격벽(56)을 더 포함할 수 있다.
본 발명에 따른 발광다이오드 패키지는 제1 및 제2 전극(70, 80) 각각의 제2 금속층(61, 62)으로 사용되는 구리의 성장 또는 산화를 방지하기 위하여 각각의 제2 금속층(61, 62) 상부에 니켈 또는 니켈을 포함하는 도전성 금속층을 더 포함할 수도 있다.
본 발명에서는 발광다이오드가 접착된 발광다이오드 패키지에 관하여 설명하였으나, 발광다이오드 이외에 표면방출레이저 또는 포토다이오드 등의 광소자가 사용될 수도 있다.
도 3 내지 도 13은 본 발명의 제1 실시 예에 따른 발광다이오드 패키지 제조 방법을 순차적으로 도시한 단면도이다.
도 3에 도시된 바와 같이, 금속 기판(10)에 일정한 간격으로 반사홈(90)을 형성한다. 여기서, 금속 기판(10)은 알루미늄, 티타늄, 마그네슘, 아연, 니오븀 등의 단일 금속 또는 이들 중 적어도 어느 하나를 포함하는 합금일 수 있다. 이하의 설명에서는 금속 기판(10)은 열전달 계수가 210~230 W/m°K인 알루미늄 또는 알루미늄 합금을 예를 들어 설명하기로 한다.
반사홈(90)은 발광다이오드(100)로부터 방출되는 광의 반사 효율을 향상시키기 위해 형성할 수 있다.
반사홈(90)은 머시닝 센터 래핑(MCT Rapping) 방법을 통해 형성할 수 있다. 즉, 반사홈(90)은 정밀 마이크로 선반 가공 기술인 머시닝 센터 래핑 방법을 이용하여 수십 내지 수백㎛의 깊이로 금속 기판(10)을 성형한다. 반사홈(90)은 머시닝 센터 래핑(MCT Rapping) 방법 이외에 다른 금속 성형 가공 기술을 통해 형성할 수 있다.
반사홈(90)은 도 3에 도시된 바와 같이 하부면(91)으로부터 경사각(θ)을 갖는 반사면(92)을 포함할 수 있다. 반사홈(90)은 하부면(91)으로부터 연장된 선과 반사면(92) 사이의 경사각(θ)이 20~70°가 되도록 형성될 수 있다. 반사홈(90)은 하부면(91)의 면적에 비해 상부의 개방된 영역의 면적이 더 넓게 형성될 수 있다. 반사홈(90)의 깊이(d1)은 100~300㎛ 정도로 형성될 수 있다. 그러나 반사홈(90)의 깊이는 이에 한정되지 않는다.
반사홈(90)은 금속 기판(10)에 MⅹN(M, N은 자연수)의 개수로 형성될 수 있다.
반사홈(90)은 도 1에 도시된 바와 같이, 원형으로 형성할 수 있다. 그러나 이에 한정되지 않고, 사각형, 삼각형 등의 다각형의 모양으로 형성할 수도 있다.
다음으로, 반사홈(90)이 형성된 금속 기판(10)의 표면을 래핑(Rapping), 폴리싱(Polishing), 버핑(Buffing) 등의 방법으로 매끄럽게 가공하는 표면 처리 공정을 수행한다. 표면 처리 공정은 균일한 양극 산화막을 형성하는 전처리 공정이다.
다음으로, 도 4에 도시된 바와 같이 금속 기판(10)에 제1 양극 산화막(20)을 형성한다. 제1 양극 산화막을 형성하는 단계는 금속 기판(10)을 전해 욕조에 담근 상태에서 금속 기판(10)과 전해액 사이에 전압을 인가하여 금속 기판(10)의 표면에 알루미나(Al2O3)를 형성하는 배리어 타입(Barrier Type) 애노다이징 방법을 사용한다.
이때, 제1 양극 산화막(20)을 형성하는 단계에서 붕산염(Borate) 또는 주석산염 배스(Tartrate Bath) 방법을 이용하여 알루미나(Al2O3)의 공공을 제거하여 100% 알루미나(Al2O3)층을 형성한다.
구체적으로 설명하면, 금속 기판(10)을 neutral boric acid, ammonium borate, tartrate, ammonium tetraborate, ammonium tartrate 등의 전해액에 담그고 금속 기판(10)과 전해액 사이에 250 내지 450V의 전압을 인가한다. 이때, 높은 전압이 인가되면 제1 양극 산화막(20)의 두께가 두꺼워 지며, 낮은 전압이 인가되면 제1 양극 산화막(20)의 두께가 얇아진다. 따라서, 전압 레벨을 조절하여 제1 양극 산화막(20)의 두께를 조절할 수 있다.
이때, 제1 양극 산화막(20)은 0.2 내지 1.5㎛의 두께가 되도록 형성할 수 있다.
다음으로 제1 양극 산화막(20) 위에 금속층(25)을 형성한다. 도 5에 도시된 바와 같이, 스퍼터링 또는 화학 기상 증착법 등의 증착 방법을 이용하여 제1 양극 산화막(20)위에 금속층(25)을 형성한다. 금속층(25)은 약 0.4 내지 1.5㎛의 두께로 형성될 수 있다.
금속층(25)은 알루미늄, 티타늄, 마그네슘, 아연, 니오븀 등의 단일 금속 또는 이를 포함하는 함금 등으로 형성될 수 있다. 본 발명에서는 양극 산화막 형성이 용이하며 열전도도가 높은 알루미늄 또는 알루미늄 합금을 사용한 것을 예를 들어 설명하지만 이에 한정되지 않는다.
이어서, 금속층(25)을 상기 배리어 타입(Barrier Type) 애노다이징 방법을 사용하여 알루미나를 형성함으로써, 도 6과 같은 제2 양극 산화막(30)을 형성한다.
여기서, 제2 양극 산화막(30)을 형성하기 위하여 도 5에 도시된 금속층(25) 형성 단계와 도 6에 도시된 금속층(25)을 제2 양극 산화막(30)으로 변환하는 단계를 반복하여 양극 산화막의 두께를 두껍게 조절할 수 있다. 즉, 제2 양극 산화막(30) 위에 금속층을 형성하고 이를 애노다이징 방법을 통해 양극 산화막을 더 형성시킬 수 있다.
다음으로, 도 7에 도시된 바와 같이 제2 양극 산화막(30) 위에 제1 금속층(40) 및 제2 금속층(200)을 스퍼터링 또는 화학 기상 증착법을 통해 연속적으로 형성한다. 제1 금속층(40)은 크롬 또는 크롬을 포함하는 합금일 수 있다. 제1 금속층(40)은 제2 양극 산화막(30)과 친화성이 높은 크롬 이외의 금속을 사용할 수도 있다.
제2 금속층(200)은 구리 또는 구리를 포함하는 합금일 수 있다. 제2 금속층(200)은 구리 이외에 도전성이 높은 물질로 형성될 수 있으며 추후 구리 전해 도금이 가능한 물질로 형성될 수 있다.
다음으로, 제2 금속층(200) 위에 도 8에 도시된 포토 레지스트 패턴(210)을 형성한다. 포토 레지스트 패턴(210)을 형성하는 단계에서는 제2 금속층(200) 위에 포토 레이스트를 형성한 후 노광 및 현상 공정을 통해 도 8에 도시된 포토 레지스트 패턴(210)을 형성한다.
포토 레지스트 패턴(210)은 반사홈(90)이 형성된 영역 및 제1 내지 제4 전극(70, 80, 71, 81)이 형성될 영역을 제외한 나머지 영역을 모두 덮도록 형성된다.
다음으로, 포토 레지스트 패턴(210)으로 인하여 노출된 영역에 금속 패턴(220)을 형성한다. 도 9에 도시된 바와 같이, 금속 패턴(220)은 전해 도금이 가능한 금속 예를 들면 구리 또는 구리를 포함하는 합금 등을 이용하여 포토 레지스트 패턴으로 인하여 노출된 영역에 형성된다. 금속 패턴(220)은 구리, 구리-니켈, 구리-니켈-금 등의 금속을 전해 도금하여 형성할 수 있다.
다음으로, 포토 레지스트 패턴(210)을 제거하면, 도 10에 도시된 제2 금속층(230)이 단차지게 형성된다. 단차진 금속층(230) 중 식각비를 달리여 두께가 얇은 부분을 식각 공정을 통해 제거하고, 단차진 금속층(230)의 두께가 두꺼운 부분의 일부가 남긴다. 이어서, 제1 금속층(40)의 일부를 식각하여 제거한다. 즉, 단차진 금속층(230)이 제거된 영역으로 인하여 노출된 제1 금속층(40)이 제거된다. 단차진 금속층(230)의 물질과 제1 금속층(40)이 서로 다른 금속 물질이므로 제1 금속층(40)만을 식각할 수 있는 물질을 통해 노출된 영역만 식각할 수 있다.
상기와 같은 식각 공정을 이용하여 도 11에 도시된 패턴을 형성할 수 있다.
다음으로, 도 12와 같이 포토 솔더 레지스트 패턴(55)을 형성한다. 포토 솔더 레지스트 패턴(55)은 전 영역에 포토 솔더 레지스트를 형성한 이후에 마스크를 이용한 노광 및 현상 공정을 통해 형성한다. 이때, 포토 솔더 레지스트 패턴(55)은 백색으로 형성되어 발광다이오드의 반사율을 높일 수 있도록 한다.
제1 내지 제4 전극(70, 80, 71, 81)과 광소자가 안착될 영역의 금속층을 모두 형성한 이후에 격벽(56)을 형성한다. 도 12에 도시된 바와 같이, 격벽(56)은 포토 솔더 레지스트 패턴(55)위에 제1 및 제3 전극(71) 사이 및 제2 및 제4 전극(81) 상이에 각각 형성된다. 격벽(56)은 반사율이 높은 물질로 형성될 수 있다. 또한, 격벽(56)은 포토 솔더 레지스트가 형성될 때 동일한 물질로 동시에 형성될 수도 있다.
이어서, 포토 솔더 레지스트 패턴(55)으로 인해 노출된 영역에 제3 금속층(60, 61, 62)을 형성한다. 제3 금속층(60, 61, 62)은 도전성 금속을 이용하여 형성할 수 있다. 특히, 발광다이오드(100)가 배치될 영역 즉, 반사홈(90)이 형성된 영역에 형성되는 제3 금속층(60, 61, 62)은 반사율이 높은 도전성 금속 물질을 사용할 수 있다. 예를 들면, 제3 금속층(60, 61, 62)은 은 또는 은을 포함하는 금속이 사용될 수 있으며 무전해 도금 방법, 스퍼터링 방법 등을 통해 형성할 수 있다.
여기서, 제3 금속층(60, 61, 62)이 형성되는 단계 이전에 제2 금속층(230)으로 구리를 사용한 경우에 구리의 성장을 막기 위하여 니켈 등의 금속을 이용하여 차단 금속층을 더 형성할 수도 있다.
이어서, 도 13에 도시된 바와 같이 발광다이오드(100)를 접착하고 제1 및 제2 와이어(110, 120) 각각과 제1 및 제2 전극(80)을 연결한다. 이후에, 보호층(130)을 형성하고 보호캡(140)을 덮어 마무리한다.
다음으로 절단선(600)을 따라 절단하여 발광다이오드 패키지를 형성한다. 이때, 발광다이오드용 기판(400)이 마련된 이후에 절단하고, 발광다이오드(100)를 접착할 수도 있다.
도 14는 본 발명의 제2 실시 예에 따른 발광다이오드 패키지를 도시한 단면도이다. 도 14는 도 2에 도시된 발광다이오드 패키지의 제1 및 제2 금속층(40, 50)이 제거된 것을 제외하고는 동일한 구성요소를 포함한다. 이하의 설명에서는 도 2와 중복된 구성요소에 대한 설명은 생략하기로 한다.
도 14를 참조하면, 본 발명의 제2 실시 예에 따른 발광다이오드 패키지는 발광다이오드용 기판(400), 발광다이오드(100), 제1 와이어(110) 및 제2 와이어(120)를 포함할 수 있다. 여기서, 발광다이오드용 기판(400)은 금속 기판(10), 반사홈(90), 제1 양극 산화막(20), 제2 양극 산화막(30), 포토 솔더 레지스트 패턴(55), 제1 전극(70) 내지 제4 전극(81) 및 격벽(56)을 포함할 수 있다.
구체적으로, 금속 기판(10)은 알루미늄, 티타늄, 마그네슘, 아연, 니오븀 또는 이를 포함하는 함금 등을 포함할 수 있다.
반사홈(90)은 금속 기판(10)의 일측면에 적어도 하나가 형성될 수 있다. 반사홈(90)은 금속 기판(10)의 내측으로 오목하게 형성된다. 반사홈(90)은 도 1에 도시된 바와 같이 원형으로 형성될 수 있으나 이에 한정되지 않고, 삼각형, 사각형 등의 다각형으로 형성될 수 있다.
반사홈(90)은 반사면(92)과 하부면(91)의 연장선이 이루는 경사각(θ)이 20~70°일 수 있다. 경사각(θ)이 20°미만일 경우에는 반사면(92)이 넓어져 광의 반사량이 증가할 수 있으나 동일한 크기의 금속 기판(10)에 형성될 수 있는 발광다이오드(100)의 개수가 줄어들 수 있다. 또한, 경사각(θ)이 70°이상이면 반사면(92)의 면적이 줄어들어 발광다이오드의 광 반사 효율이 낮아질 수 있다.
반사홈(90)은 200 내지 300㎛의 깊이(d1)로 형성될 수 있다. 그러나 이에 한정되지 않고 반사홈(90)은 발광다이오드(100)의 형태에 따라 다른 깊이로 형성될 수 있다. 또한, 반사홈(90)이 형성될 영역에 형성되는 제1 및 제2 양극 산화막(20, 30)의 두께에 따라 다른 깊이로 형성될 수 있다.
제1 양극 산화막(20)은 금속 기판(10)을 애노다이징(Anodizing)하는 방법을 통해 형성된다. 제1 양극 산화막(20)은 금속 기판(10)의 전체에 형성될 수 있다. 제1 양극 산화막(20)은 금속 기판(10)으로 열 전도를 높이기 위하여 공공이 없도록 형성된다. 제1 양극 산화막(20)은 금속 기판(10)과 제1 내지 제4 전극(70, 80, 71, 81) 사이를 절연시킨다. 제1 양극 산화막(20)은 0.2 내지 1.5㎛의 두께로 형성될 수 있다.
제2 양극 산화막(30)은 제1 양극 산화막(20) 위에 형성된다. 제2 양극 산화막(30)은 제1 양극 산화막(20)과 동일한 물질인 알루미나(Al2O3)를 포함할 수 있다. 제2 양극 산화막(30)은 0.4~1.5㎛의 두께로 형성될 수 있다.
본 발명에서는 제1 및 제2 양극 산화막(20, 30)이 형성된 것을 예를 들어 설명하고 있으나 제2 양극 산화막(30) 위에 형성된 양극 산화막을 더 포함할 수도 있다. 이를 통해, 금속 기판(10)을 절연시키는 양극 산화막의 두께를 조절할 수 있다.
포토 솔더 레지스트 패턴(55)은 제1 전극(70)과 제2 전극(80)을 전기적으로 절연시킨다. 또한, 포토 솔더 레지스트 패턴(55)은 도면에 도시되지는 않았으나 제1 내지 제4 전극(70, 80, 71, 81)이 외부로 노출되는 영역 및 발광다이오드(100)가 안착되는 영역을 제외한 전 영역에 형성될 수 있다.
제1 전극(70)은 제1 내지 제3 금속층(41, 51, 61)이 적층되어 형성될 수 있다. 제1 금속층(41)은 제2 양극 산화막(30)과 친화성이 우수한 크롬 또는 크롬을 포함하는 금속 물질로 형성될 수 있다. 제2 금소층(51)은 도전성이 우수한 구리 또는 구리를 포함하는 금속 물질로 형성될 수 있다. 제3 금속층(61)은 무전해 도금이 가능한 은 또는 은을 포함하는 금속 물질로 형성될 수 있다. 제3 금속층(61)은 외부로 노출되어 제1 와이어(110)와 전기적으로 연결된다.
제2 전극(80)은 제1 금속층(42)은 제2 양극 산화막(30)과 친화성이 우수한 크롬 또는 크롬을 포함하는 금속 물질로 형성될 수 있다. 제2 금속층(52)은 도전성이 우수한 구리 또는 구리를 포함하는 금속 물질로 형성될 수 있다. 제3 금속층(62)은 무전해 도금이 가능한 은 또는 은을 포함하는 금속 물질로 형성될 수 있다. 제3 금속층(62)은 외부로 노출되어 제2 와이어(120)와 전기적으로 연결된다.
제3 전극(71)은 제1 전극(70)의 제1 및 제2 금속층(41, 51)이 연장된 영역 위에 형성된다. 제3 전극(71)은 제1 전극(70)의 제3 금속층(61)과 동일한 물질로 동일한 공정을 통해 형성된다. 이때, 제3 전극(71)은 미도시된 인쇄회로기판과 연결될 수 있다. 이에 따라, 제3 전극(71)은 인쇄회로기판을 통해 인가된 전압을 제1 전극(70)에 인가할 수 있다.
제4 전극(81)은 제2 전극(80)의 제1 및 제2 금속층(42, 52)이 연장된 영역 위에 형성된다. 제3 전극(71)은 제2 전극(80)의 제3 금속층(62)과 동일한 물질로 동일한 공정을 통해 형성된다. 이때, 제3 전극(71)은 미도시된 인쇄회로기판과 연결될 수 있다. 이에 따라, 제3 전극(71)은 인쇄회로기판을 통해 인가된 전압을 제2 전극(80)에 인가할 수 있다.
발광다이오드(100)는 반사홈(90)이 형성된 영역에 접착된다. 이때, 발광다이오드(100)는 제3 금속층(60) 위에 형성될 수 있다. 제3 금속층(60)은 위에서 설명하지 않았으나, 광 반사율이 높은 은 등의 도전성 물질로 형성된다.
발광다이오드(100)로부터 인출된 제1 와이어(110)는 제1 전극(70)과 전기적으로 연결되며, 제2 와이어(120)는 제2 전극(80)과 연결된다.
본 발명은 발광다이오드(100)의 위쪽은 발광다이오드(100)를 외부 요인으로부터 보호하는 보호층(130)을 더 포함할 수 있다. 보호층(130)은 인광물질과 에폭시를 혼합한 물질을 사용한다. 보호층(130)은 인광물질을 사용하므로써 발광다이오드(100)에서 방출된 광을 특정 색상의 광을 백색광으로 변환할 수 있다. 또한, 인광물질은 발광다이오드(100)로부터 방출된 백색광을 적, 녹, 청색 중 어느 하나의 광으로 변환하여 방출되도록 할 수 있다.
본 발명에 따른 발광다이오드 패키지는 보호층(130) 외측에 투명 소재의 플라스틱 등의 재질로 형성된 보호캡(140)을 더 포함할 수 있다.
한편, 본 발명에 따른 발광다이오드 패키지는 보호층(130)을 형성할 때 보호층(130)이 외부로 유출되는 것을 방지하는 격벽(56)을 더 포함할 수 있다. 도 14에 도시된 바와 같이, 격벽(56)은 단면이 사각형으로 형성될 수 있다. 그러나 이에 한정되지 않으며 광 반사율을 향상시키기 위하여 삼각형 또는 사다리꼴 모양으로 형성될 수 있다.
도 15 내지 도 20은 도 14에 도시된 본 발명의 제2 실시 예에 따른 광소자 패키지 제조 방법을 순차적으로 도시한 단면도들이다.
금속 기판(10)에 반사홈(90), 제1 양극 산화막(20), 제2 양극 산화막(30), 제1 금속층(40) 및 제2 금속층(200)을 형성하는 단계는 본 발명의 제1 실시 예에 따른 광소자 패키지 제조 방법을 설명한 도3 내지 도 7과 동일한 공정으로 제조될 수 있다. 이하에서는 제2 금속층이 형성된 이후의 공정을 구체적으로 설명하기로 한다.
먼저, 금속 기판(10)에 반사홈(90)을 형성한다. 이어서, 금속 기판(10)을 래핑, 폴리싱 등의 공정을 통해 매끄럽게 가공한다. 다음으로, 배리어 타입 애노다이징 방법을 통해 금속 기판(10)의 표면을 산화시켜 제1 양극 산화막(20)을 형성한다.
다음으로, 제1 양극 산화막(20) 위에 알루미늄층을 형성하고 다시 배리어 타입 애노다이징 방법을 통해 제2 양극 산화막(30)을 형성한다.
이어서, 스퍼터링 또는 화학 기상 증착 방법 등을 통해 크롬 또는 크롬을 포함하는 금속 물질을 포함하는 제1 금속층(40)과, 구리 또는 구리를 포함하는 금속 물질을 포함하는 제2 금속층(200)을 연속 증착한다.
이어서, 제2 금속층(200) 위에 포토 레지스트 패턴(210)을 형성한다. 포토 레지스트 패턴(210)은 제2 금속층(200) 위에 포토 레지스트를 도포한 후 노광 및 현상 공정을 통해 도 15에 도시된 포토 레지스트 패턴(210)을 형성한다. 이때, 포토 레지스트 패턴(210)은 제1 내지 제4 전극(70, 80, 71, 81)이 형성될 영역을 제외한 전 영역에 포토 레지스트가 잔류하여 형성된다.
다음으로, 포토 레지스트 패턴(210)으로 노출된 제2 금속층(200) 위에 금속 패턴(220)을 형성한다. 도 16에 도시된 바와 같이, 금속 패턴(220)은 전해 도금 방법을 이용하여 제2 금속층(200)과 동일한 물질로 형성한다.
다음으로, 포토 레지스트 패턴(210)을 제거하면 도 17에 도시된 바와 같이 단차진 금속층(230)이 형성된다.
이어서, 단차진 금속층(230)을 습식 에칭 또는 건식 에칭 방법을 이용하여 두께가 얇은 영역의 금속층을 제거한다. 이때 제거되는 영역은 도 18에 도시된 바와 같이, 제1 내지 제4 전극(70, 80, 71, 81)이 형성될 영역을 제외한 나머지 영역이 제거된다. 이어서, 습식 에칭 또는 건식 에칭 방법을 통해 제2 금속층(230)이 제거되어 노출된 영역의 제1 금속층(40)을 식각한다.
다음으로, 도 19에 도시된 바와 같이 포토 솔더 레지스트 패턴(55)를 형성한다. 포토 솔더 레지스트 패턴(55)를 형성한 이후에 은 또는 은을 포함하는 금속으로 제3 금속층(61, 62)을 형성한다. 다음으로, 격벽(56)을 형성한다. 여기서, 제3 금속층(61, 62)을 형성하기 이전에 격벽(56)을 형성할 수도 있다.
다음으로, 도 20과 같이 발광다이오드(100)를 접착하고 제1 와이어(110)를 제1 전극(70)에 솔더링 등의 공정으로 연결하고, 제2 와이어(120)를 제2 전극(80)에 연결한다. 이어서, 보호층(130) 및 보호캡(140)을 형성한다.
도 21은 본 발명의 제3 실시 예에 따른 발광다이오드 패키지를 도시한 단면도이다. 도 21에 도시된 발광다이오드 패키지는 도 2에 도시된 발광다이오드 패키지에서 반사홈(90)이 형성되지 않는 것을 제외하고 동일한 구성요소를 구비한다.
구체적으로, 본 발명의 제3 실시 예에 따른 광소자 패키지는 발광다이오드용 기판 및 발광다이오드(100)를 포함한다. 발광다이오드용 기판은 금속 기판(10)에 제1 양극 산화막(20)이 형성될 수 있다. 또한, 제1 양극 산화막(20) 위에 형성된 제2 양극 산화막(30)을 더 포함할 수 있다.
발광다이오드용 기판은 제1 내지 제4 전극(70, 80, 71, 81)을 포함한다. 제1 내지 제4 전극(70, 80, 71, 81)은 도 2에 도시된 제1 내지 제4 전극(70, 80, 71, 81)과 동일하므로 중복되는 설명은 생략하기로 한다.
제3 금속층(60) 위에 발광다이오드(100)가 형성되며, 제1 와이어(110)는 제1 전극(70)과 솔더링 등의 방법으로 연결된다.
보호층(130)은 발광다이오드(100)를 덮도록 인광물질과 에폭시가 혼합된 물질로 형성되며, 보호층(130) 위에 형성된 보호캡(140)을 포함한다.
한편, 본 발명의 제3 실시 예에 따른 광소자 패키지는 발광다이오드(100)가 안착될 영역에 제1 및 제2 금속층(40, 50)이 제거될 수 있다. 또한, 도 2 에 형성된 격벽(56)이 더 형성될 수 있다.
본 발명의 제3 실시 예에 따른 광소자 패키지 제조 방법은 본 발명의 제1 실시 예에 따른 광소자 패키지의 제조 방법 중 반사홈을 형성하는 단계를 거치지 않고 동일한 방법으로 형성될 수 있다.
도 22는 본 발명의 제4 실시 예에 따른 광소자 패키지를 도시한 단면도이다. 도 22는 도 2 에 도시된 광소자 패키지가 절단선에 따라 절단된 이후 단일 발광다이오드 패키지를 도시한 도면이다. 도 22에 도시된 발광다이오드 패키지는 도 2에 도시된 발광다이오드 패키지에 인쇄회로기판(270)이 부착되고, 인쇄회로기판(270)과 보호캡(140) 사이에 반사판(280)을 구비한 것을 제외하고는 동일하다. 동일한 구성에 대한 중복된 설명은 생략하기로 한다.
반사판(280)은 반사율이 높은 금속 또는 비금속 물질로 형성될 수 있다. 또한, 반사판(280)은 비금속 물질에 반사율이 높은 물질로 코팅된 반사막을 더 포함할 수 있다.
본 발명의 발광다이오드 패키지는 액정 표시 장치의 백라이트 유닛으로 사용될 수 있다.
도 23은 본 발명의 실시 예에 따른 발광다이오드 패키지를 이용한 백라이트 유닛을 개략적으로 도시한 평면도이다.
도 23을 참조하면, 백라이트 유닛은 도광판(800), 발광다이오드 패키지(500) 및 프레임(700)을 포함할 수 있다.
발광다이오드 패키지(500)는 도 2에 도시된 발광다이오드 패키지가 바 타입(Bar Type)으로 형성될 수 있다.
도광판(800)은 발광다이오드(100)로부터 공급된 광을 안내하며 발광다이오드(100)로부터 입사된 광을 수직 방향으로 균일하게 방출한다.
프레임(700)은 발광다이오드 패키지(500)의 일측면과 접착된다.
백라이트 유닛은 발광다이오드(100)에서 발생된 열이 발광다이오드용 기판(400)으로 전달되며, 이와 연결된 프레임(700)을 통해 외부로 방출된다. 이에 따라, 발광다이오드(100)의 개수를 많이 사용하여도 열이 외부로 용이하게 방출된다.
도 23에서는 에지 타입 백라이트 유닛을 도시하였으나, 면광원 형태의 백라이트 유닛을 구성할 수도 있다.
또한, 본 발명의 실시 예에 따른 광소자용 기판, 광소자 패키지 및 이의 제조 방법은 상기 백라이트 유닛 이외에 실내, 실외의 조명장치에 사용될 수도 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명은 금속 기판을 사용하여 광소자에서 발생되는 열을 효율적으로 방출할 수 있는 효과가 있다.
또한, 본 발명은 금속 기판의 양극 산화막의 두께를 용이하게 조절할 수 있는 효과가 있다.
본 발명은 금속 기판에 반사홈을 형성하여 광이용 효율을 향상시키고, 광소자의 얼라인을 용이하게 할 수 있다.

Claims (22)

  1. 금속 기판;
    상기 금속 기판의 표면에 형성되어 상기 금속 기판을 절연시키는 제1 양극 산화막; 및
    상기 제1 양극 산화막 위에 서로 절연되게 형성된 제1 및 제2 전극을 포함하는 광소자용 기판.
  2. 제1 항에 있어서,
    상기 제1 양극 산화막 위에 형성된 제2 양극 산화막을 더 포함하는 광소자용 기판.
  3. 제 1 항에 있어서,
    상기 금속층은
    크롬 또는 크롬을 포함하는 합금으로 이루어진 제1 금속층; 및
    상기 제1 금속층 상부에 형성되며, 구리 또는 구리를 포함하는 금속 물질로 형성된 제2 금속층을 포함하는 광소자용 기판.
  4. 제 1 내지 제 3 항 중 어느 한 항에 있어서,
    상기 제1 및 제2 전극 사이에 상기 금속 기판이 함몰되어 형성된 홈을 더 포함하는 광소자용 기판.
  5. 제 4 항에 있어서,
    상기 홈이 형성된 영역에 은 또는 은을 포함하는 금속 물질로 형성된 제3 금속층을 더 포함하는 광소자용 기판.
  6. 금속 기판, 상기 금속 기판의 표면에 형성되어 상기 금속 기판을 절연시키는 제1 양극 산화막 및 상기 제1 양극 산화막 위에 서로 절연되게 형성된 제1 및 제2 전극을 포함하는 광소자용 기판;
    상기 제1 및 제2 전극 사이의 배치되는 광소자;
    상기 광소자와 상기 제1 전극을 연결하는 제1 와이어; 및
    상기 광소자와 상기 제2 전극을 연결하는 제2 와이어를 포함하는 광소자 패키지.
  7. 제 6 항에 있어서,
    상기 제1 양극 산화막 위에 형성된 제2 양극 산화막을 더 포함하는 광소자 패키지.
  8. 제 6 항에 있어서,
    상기 금속층은
    크롬 또는 크롬을 포함하는 합금으로 이루어진 제1 금속층;
    구리 또는 구리를 포함하는 도전성 물질로 형성된 제2 금속층; 및
    은 또는 은을 포함하는 도전성 물질로 형성된 제3 금속층 중 적어도 어느 하나의 금속층을 포함하는 광소자 패키지.
  9. 제 6 항에 있어서,
    상기 광소자가 배치되는 하부에 상기 제1 및 제2 전극과 절연되며, 은 또는 은을 포함하는 금속 물질로 형성된 제3 금속층을 포함하는 광소자 패키지.
  10. 제 6 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 금속 기판은
    상기 광소자가 배치된 영역이 함몰되어 형성된 반사홈을 더 포함하는 광소자 패키지.
  11. 제 10 항에 있어서,
    상기 광소자를 덮는 보호층 및 보호캡을 더 포함하되,
    상기 보호층은 상기 광소자로부터 방출된 광을 백색광으로 변환하는 인광물질을 포함하는 광소자 패키지.
  12. 제 11 항에 있어서,
    상기 보호층이 외부로 유출되는 것을 방지하는 격벽을 더 포함하는 광소자 패키지.
  13. (a) 금속 기판 표면에 상기 금속 기판을 절연시키는 제1 양극 산화막을 형성하는 단계;
    (b) 상기 제1 양극 산화막 위에 제2 양극 산화막을 형성하는 단계;
    (c) 상기 제1 양극 산화막 위에 제1 금속층을 형성하는 단계;
    (d) 상기 제1 금속층 위에 제2 금속층을 형성하는 단계; 및
    (e) 상기 제1 및 제2 금속층을 식각하여 서로 마주하며 절연되도록 제1 및 제2 전극을 형성하는 단계를 포함하는 광소자용 기판 제조 방법.
  14. 제 13 항에 있어서,
    상기 단계 (a)는
    상기 금속 기판을 붕산염 또는 주석산염 배스 방법을 통해 애노다이징 하여 상기 금속 기판 표면에 제1 양극 산화막을 형성하는 것을 특징으로 하는 광소자용 기판 제조 방법.
  15. 제 13 항에 있어서,
    상기 단계 (b)는
    상기 제1 양극 산화막 위에 금속층을 형성하는 단계; 및
    상기 금속층을 붕산염 또는 주석산염 배스 방법을 통해 애노다이징 하는 단계를 포함하는 광소자용 기판 제조 방법.
  16. 제 13 항에 있어서,
    상기 단계(c) 및 단계(d)는
    상기 제1 및 제2 금속층을 연속하여 증착하는 단계;
    상기 제2 금속층 위에 상기 제1 및 제2 전극이 형성될 영역의 포토 레지스트가 제거된 포토 레지스트 패턴을 형성하는 단계;
    상기 제2 금속층과 동일한 물질로 상기 제2 금속층이 노출된 영역에 도금하고 상기 포토 레지스트 패턴을 제거하여 제2 금속층을 단차지도록 형성하는 단계;
    상기 단차진 금속층을 제1 식각 공정을 통해 상기 단차지게 형성된 제2 금속층 중 두께가 두꺼운 영역의 제2 금속층을 남기고 나머지 영역의 제2 금속층을 제거하여 제1 금속층을 노출시키는 단계; 및
    제2 식각 공정을 통해 상기 노출된 제1 금속층을 식각하는 단계를 포함하는 광소자용 기판 제조 방법.
  17. 제 13 항에 있어서,
    상기 단계 (a) 이전에
    상기 제1 및 제2 전극 사이에 상기 금속 기판을 함몰시켜 홈을 형성하는 단계를 더 포함하는 광소자용 기판 제조 방법.
  18. 제 17 항에 있어서,
    상기 홈이 형성된 영역에 상기 제2 양극 산화막 또는 상기 제2 금속층 중 어느 하나 상부에 은 또는 은을 포함하는 제3 금속층을 형성하는 단계를 더 포함하는 광소자용 기판 제조 방법.
  19. (a) 금속 기판 표면에 상기 금속 기판을 절연 시키는 제1 양극 산화막을 형성하는 단계;
    (b) 상기 제1 양극 산화막 위에 제1 내지 제3 금속층 중 어느 하나의 금속층을 포함하며 서로 마주하며 절연되게 형성된 제1 및 제2 전극을 형성하는 단계;
    (c) 상기 제1 및 제2 전극 사이에 광소자를 배치하는 단계; 및
    (d) 상기 광소자로부터 인출된 제1 와이어와 상기 제1 전극을 전기적으로 연결하고, 상기 광소자로부타 인출된 제2 와이어와 상기 제2 전극을 전기적으로 연결하는 단계를 포함하는 광소자 패키지 제조 방법.
  20. 제 19 항에 있어서,
    상기 단계 (a) 이후에,
    상기 제1 양극 산화막 위에 제2 양극 산화막을 형성하는 단계를 포함하되,
    상기 제2 양극 산화막 형성 단계는
    상기 제2 양극 산화막 위에 금속 물질을 형성하는 단계;
    상기 금속 물질을 붕산염 또는 주석산염 배스 방법을 통해 애노다이징 하는 단계를 포함하는 광소자 패키지 제조 방법.
  21. 제 19 항에 있어서,
    상기 단계 (b)는
    상기 광소자가 배치될 영역에 상기 제1 내지 제3 금속층과 동일한 금속층 중 적어도 어느 하나의 금속층을 형성하는 단계를 더 포함하는 광소자 패키지 제조 방법.
  22. 제 19 내지 제 21 항 중 어느 한에 있어서,
    상기 단계 (a) 이전에
    상기 광소자가 배치될 영역에 상기 금속 기판이 함몰되어 형성된 반사홈을 형성하는 단계를 더 포함하는 광소자 패키지 제조 방법.
PCT/KR2009/007852 2009-02-17 2009-12-29 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법 WO2010095811A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09840487A EP2400570A2 (en) 2009-02-17 2009-12-29 Substrate for an optical device, an optical device package comprising the same and a production method for the same
JP2011549055A JP2012517697A (ja) 2009-02-17 2009-12-29 光素子用基板、これを有する光素子パッケージおよびその製造方法
US13/146,337 US20110278624A1 (en) 2009-02-17 2009-12-29 Substrate for an optical device, an optical device package comprising the same and a production method for the same
CN2009801568141A CN102318092A (zh) 2009-02-17 2009-12-29 用于光学器件的基板、包括该基板的光学器件封装及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0012728 2009-02-17
KR1020090012728A KR101077264B1 (ko) 2009-02-17 2009-02-17 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
WO2010095811A2 true WO2010095811A2 (ko) 2010-08-26
WO2010095811A3 WO2010095811A3 (ko) 2010-10-14

Family

ID=42634291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007852 WO2010095811A2 (ko) 2009-02-17 2009-12-29 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US20110278624A1 (ko)
EP (1) EP2400570A2 (ko)
JP (1) JP2012517697A (ko)
KR (1) KR101077264B1 (ko)
CN (1) CN102318092A (ko)
WO (1) WO2010095811A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220955A1 (en) * 2010-03-09 2011-09-15 Kyung Wook Park Light emitting device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121151B1 (ko) 2010-03-19 2012-03-20 주식회사 대원이노스트 Led 모듈 및 그 제조 방법
EP2584621A4 (en) * 2010-06-15 2015-12-16 Furukawa Electric Co Ltd PCB FOR AN OPTICAL SEMICONDUCTOR COMPONENT, METHOD FOR PRODUCING THE PCB FOR AN OPTICAL SEMICONDUCTOR COMPONENT AND OPTICAL SEMICONDUCTOR COMPONENT
DE102010026344A1 (de) * 2010-07-07 2012-01-12 Osram Opto Semiconductors Gmbh Leuchtdiode
US8878215B2 (en) 2011-06-22 2014-11-04 Lg Innotek Co., Ltd. Light emitting device module
KR101846356B1 (ko) * 2011-07-29 2018-04-09 엘지이노텍 주식회사 광소자 패키지 및 그 제조 방법
JP6096413B2 (ja) * 2012-01-25 2017-03-15 新光電気工業株式会社 配線基板、発光装置及び配線基板の製造方法
US20160260880A1 (en) * 2012-11-27 2016-09-08 Citizen Electronics Co., Ltd. Light-emitting device using mounting substrate
WO2014083714A1 (ja) 2012-11-27 2014-06-05 シチズン電子株式会社 実装基板及びこの実装基板を用いた発光装置
JP2014146652A (ja) * 2013-01-28 2014-08-14 Toppan Printing Co Ltd 配線基板およびその製造方法
DE102013111977A1 (de) * 2013-10-30 2015-04-30 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Anordnung mit mindestens einem solchen optoelektronischen Halbleiterchip
KR101537472B1 (ko) * 2014-03-20 2015-07-16 성균관대학교산학협력단 광원 모듈 및 그 제조방법과 상기 광원 모듈을 포함하는 광원 장치
JP6366337B2 (ja) 2014-04-23 2018-08-01 シチズン電子株式会社 Led発光装置及びその製造方法
JP6387677B2 (ja) * 2014-05-16 2018-09-12 日亜化学工業株式会社 発光装置及びその製造方法
JP2016184653A (ja) * 2015-03-26 2016-10-20 京セラ株式会社 発光素子収納用パッケージおよび発光装置
CN107924890A (zh) * 2015-08-06 2018-04-17 奥斯兰姆奥普托半导体有限责任公司 电子装置
JP2017123418A (ja) * 2016-01-08 2017-07-13 豊田合成株式会社 照明装置
DE102017115798A1 (de) * 2017-07-13 2019-01-17 Alanod Gmbh & Co. Kg Reflektierendes Verbundmaterial, insbesondere für oberflächenmontierte Bauelemente (SMD), und lichtemittierende Vorrichtung mit einem derartigen Verbundmaterial
JP6669197B2 (ja) * 2018-06-08 2020-03-18 日亜化学工業株式会社 発光装置及びその製造方法
KR20220130766A (ko) * 2020-02-26 2022-09-27 교세라 가부시키가이샤 전자 부품 탑재용 패키지 및 전자 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680841B2 (ja) * 1986-04-07 1994-10-12 株式会社小糸製作所 照明装置
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP2003016921A (ja) * 2000-09-20 2003-01-17 Canon Inc 構造体、電子放出素子、画像形成装置およびそれらの製造方法
JP2002329822A (ja) 2001-04-24 2002-11-15 Signality System Engineering Co Ltd 複合要素を有する金属基板
WO2003030274A1 (fr) * 2001-09-27 2003-04-10 Nichia Corporation Dispositif emetteur de lumiere et procede de fabrication associe
JP3801931B2 (ja) * 2002-03-05 2006-07-26 ローム株式会社 Ledチップを使用した発光装置の構造及び製造方法
US7183587B2 (en) * 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
US7323230B2 (en) * 2004-08-02 2008-01-29 Applied Materials, Inc. Coating for aluminum component
JP4389840B2 (ja) 2005-05-26 2009-12-24 パナソニック電工株式会社 半導体素子実装用回路基板の製造方法
KR100780196B1 (ko) * 2006-02-27 2007-11-27 삼성전기주식회사 발광다이오드 패키지, 발광다이오드 패키지용 회로기판 및그 제조방법
KR100764432B1 (ko) * 2006-04-05 2007-10-05 삼성전기주식회사 아노다이징 절연 층을 갖는 엘이디 패키지 및 그 제조방법
EP2041802B1 (en) * 2006-06-23 2013-11-13 LG Electronics Inc. Light emitting diode having vertical topology and method of making the same
KR100854328B1 (ko) * 2006-07-07 2008-08-28 엘지전자 주식회사 발광 소자 패키지 및 그 제조방법
KR100834136B1 (ko) * 2006-10-20 2008-06-02 주식회사 와이텔포토닉스 광소자 패키지 및 그 제조방법
US20080237621A1 (en) * 2007-03-30 2008-10-02 Sharp Kabushiki Kaisha Light emitting device and method of producing the same
KR100888228B1 (ko) * 2007-06-22 2009-03-12 (주)웨이브닉스이에스피 금속베이스 광소자 패키지 모듈 및 그 제조방법
JP4989614B2 (ja) * 2007-12-28 2012-08-01 サムソン エルイーディー カンパニーリミテッド. 高出力ledパッケージの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220955A1 (en) * 2010-03-09 2011-09-15 Kyung Wook Park Light emitting device
US8546835B2 (en) * 2010-03-09 2013-10-01 Lg Innotek Co., Ltd. Light emitting device

Also Published As

Publication number Publication date
KR101077264B1 (ko) 2011-10-27
EP2400570A2 (en) 2011-12-28
JP2012517697A (ja) 2012-08-02
CN102318092A (zh) 2012-01-11
WO2010095811A3 (ko) 2010-10-14
KR20100093681A (ko) 2010-08-26
US20110278624A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2010095811A2 (ko) 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법
WO2011122846A2 (ko) 광소자 디바이스 및 그 제조 방법
WO2018097447A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2012077884A1 (en) Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same
CN100539221C (zh) 半导体发光器件和半导体发光器件组装体
WO2009142391A2 (ko) 발광소자 패키지 및 그 제조방법
WO2013168949A1 (ko) 조명 장치
WO2013069878A1 (en) Optical sheet, display device and light emitting device having the same
WO2016204482A1 (ko) 복수의 파장변환부를 포함하는 발광 소자 및 그 제조 방법
WO2013151387A1 (ko) 반도체 소자 구조물을 제조하는 방법
WO2016148424A1 (ko) 금속 벌크를 포함하는 발광 소자
WO2011034259A1 (ko) 광소자 기판, 광소자 디바이스 및 그 제조 방법
WO2019039769A1 (ko) 분포 브래그 반사기를 가지는 발광 다이오드
WO2020004845A1 (ko) 마이크로 엘이디 칩들을 이용하는 플렉시블 조명 장치 및 디스플레이 패널
WO2016064216A1 (ko) 반도체 소자용 지지 기판, 이를 포함하는 반도체 장치 및 이를 제조하는 방법
WO2020241993A1 (ko) 수직형 발광 다이오드
WO2013024916A1 (ko) 파장변환형 발광다이오드 칩 및 그 제조방법
WO2014084645A1 (ko) 발광소자 패키지 및 이의 제작 방법
WO2014035087A1 (ko) 면 조명용 발광 모듈
WO2011122847A2 (ko) 광소자 모듈 및 그 제조 방법
WO2011115395A2 (ko) 광소자 디바이스 및 그 제조 방법
WO2013151391A1 (ko) 반도체 소자 구조물을 제조하는 방법 및 이를 이용한 반도체 소자 구조물
WO2011129615A2 (ko) 발광 모듈 및 발광 모듈의 제조 방법
WO2011136404A1 (ko) 광소자 패키지 모듈 및 그 제조방법
KR20100132479A (ko) 광소자용 기판, 이를 갖는 광소자 패키지 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156814.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840487

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13146337

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011549055

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009840487

Country of ref document: EP