WO2010095477A1 - 内燃機関の気筒吸入空気量算出装置 - Google Patents
内燃機関の気筒吸入空気量算出装置 Download PDFInfo
- Publication number
- WO2010095477A1 WO2010095477A1 PCT/JP2010/050359 JP2010050359W WO2010095477A1 WO 2010095477 A1 WO2010095477 A1 WO 2010095477A1 JP 2010050359 W JP2010050359 W JP 2010050359W WO 2010095477 A1 WO2010095477 A1 WO 2010095477A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intake air
- air amount
- cylinder intake
- cylinder
- flow rate
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0402—Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
Definitions
- a volume efficiency equivalent value indicating the volume efficiency of the engine is calculated, and a cylinder intake air amount is calculated using a current calculated value and a previous calculated value of the volume efficiency equivalent value, and a detected fresh air amount.
- the device is shown.
- the volume efficiency equivalent value is calculated according to the coefficient f (Ne) corresponding to the engine speed, the coefficient G (Regr) corresponding to the exhaust gas recirculation rate, the intake pressure, and the atmospheric pressure.
- JP-A-7-259630 Japanese Patent No. 4120524
- the charging efficiency is calculated by searching a map set according to the engine speed and the intake pressure, and therefore man-hours are required to set the map in advance. Further, in an engine equipped with a valve mechanism that changes the operating characteristics (lift amount, opening / closing valve timing) of the intake valve (and exhaust valve), a plurality of maps are provided according to the operating characteristics of the intake valve (and exhaust valve). It is necessary, and the map setting man-hour becomes enormous. Further, in order to cope with an operation state different from the engine operation state at the time of map setting, correction of the map search value (for example, correction by the above-described air-fuel ratio learning value) is necessary.
- the map search value for example, correction by the above-described air-fuel ratio learning value
- the coefficient f (Ne) and the coefficient G (Regr) are calculated using a preset table. If the value is reached, it cannot be handled (or a separate correction is required). Further, it is necessary to calculate the exhaust gas recirculation rate, and there is a problem that the arithmetic processing becomes complicated.
- the present invention has been made in consideration of the above-mentioned points, and can calculate the cylinder intake air amount without using a map or a table, and is always accurate without being affected by changes in engine characteristics over time. It is an object of the present invention to provide a cylinder intake air amount calculation device capable of obtaining an intake air amount.
- the invention according to claim 1 is a cylinder intake air amount calculation device for an internal combustion engine that calculates a cylinder intake air amount (GAIRCYLN) that is a fresh air amount taken into a cylinder of the internal combustion engine.
- An intake air flow rate acquisition means for acquiring an intake air flow rate (GAIR, HGAIR) which is a flow rate of fresh air passing through the intake passage of the engine, an intake pressure detection means for detecting an intake pressure (PBA) of the engine, An intake air temperature detecting means for detecting an intake air temperature (TA) that is the temperature of air sucked into the engine, and a theoretical cylinder intake air amount (GIAIRSTD) is calculated based on the intake pressure (PBA) and the intake air temperature (TA).
- GAIRCYLN cylinder intake air amount calculation device for an internal combustion engine that calculates a cylinder intake air amount (GAIRCYLN) that is a fresh air amount taken into a cylinder of the internal combustion engine.
- An intake air flow rate acquisition means for acquiring an intake air
- the theoretical cylinder intake air amount calculating means and the previous calculated value (GAIRCYLN (k-1)) of the cylinder intake air amount are divided by the theoretical cylinder intake air amount (GIAIRSTD).
- the theoretical cylinder intake air amount is calculated based on the intake pressure and the intake temperature, and the volume efficiency is calculated by dividing the previous calculated value of the cylinder intake air amount by the theoretical cylinder intake air amount.
- the cylinder intake air amount is calculated using the previous calculated values of the intake air flow rate and the cylinder intake air amount. Therefore, the cylinder intake air amount can be calculated without using a map or a table, and the volumetric efficiency is updated using the detection parameter, so that the cylinder intake is always accurate without being affected by changes in engine characteristics over time. The amount of air can be obtained.
- the intake air flow rate acquisition means preferably detects the intake air flow rate (GAIR) using an intake air flow rate sensor (13).
- the cylinder intake air amount is calculated using the intake air flow rate detected using the intake air flow rate sensor.
- the intake air flow rate can be estimated using the intake pressure and the opening of the throttle valve.
- a cylinder intake air amount that does not include an estimation error can be obtained.
- the intake air flow rate acquisition means may estimate the intake air flow rate (HGAIR) based on the opening (TH) of the throttle valve of the engine and the intake pressure (PBA).
- the cylinder intake air amount is calculated using the intake air flow rate estimated based on the opening degree of the throttle valve and the intake pressure of the engine, so that it is not necessary to provide an intake air flow rate sensor, and the cost is reduced. Can be reduced.
- the influence of detection delay is small compared to the case of using an intake air amount sensor, and an accurate cylinder intake air amount can be obtained.
- the intake air flow sensor in combination, it is possible to compensate for the detection delay of the intake air flow sensor in a transient operation state. In that case, the failure of the intake air flow rate sensor can be detected, and the reliability of the intake air flow rate applied to the cylinder intake air amount can be improved.
- the volumetric efficiency calculating means uses the cylinder intake air amount calculated by the cylinder intake air amount calculating means as the previous calculated value (GAIRCYLN (i-1)), and uses at least the volume efficiency ( ⁇ v (i)). It is preferable that the cylinder intake air amount calculating unit updates the cylinder intake air amount (GAIRCYLN (i)) at least once using the updated volumetric efficiency ( ⁇ v (i)).
- the cylinder intake air amount calculated by the cylinder intake air amount calculating means is used as the previous calculated value, the volume efficiency is updated at least once, and the cylinder intake air amount is further updated using the updated volume efficiency. Is updated at least once, so that more accurate (close to true value) volumetric efficiency and cylinder intake air amount can be obtained in transient engine operating conditions.
- volumetric efficiency calculating means and the cylinder intake air amount calculating means execute the update of the volumetric efficiency and the update of the cylinder intake air amount a predetermined number of times (iMAX), respectively.
- the volumetric efficiency calculating means and the cylinder intake air amount calculating means respectively update the volumetric efficiency and update the cylinder intake air amount, with the difference (D ⁇ v) between the previous value and the updated value of the volumetric efficiency being the first.
- the process may be executed until it becomes smaller than a predetermined amount (D ⁇ vL) or until the difference (DGACCN) between the previous value and the updated value of the cylinder intake air amount becomes smaller than a second predetermined amount (DGACNL).
- the difference between the previous value of the volumetric efficiency and the updated value is smaller than the first predetermined amount, or the difference between the previous value of the cylinder intake air amount and the updated value is the second predetermined amount. Since the volume efficiency and the cylinder intake air amount are updated until it becomes smaller, the update calculation can be terminated at an appropriate time.
- FIG. 1 It is a figure which shows the structure of the internal combustion engine and its control apparatus concerning one Embodiment of this invention. It is a figure which shows typically the engine shown in FIG. It is a time chart which shows transition of the throttle valve passage air flow rate (GAIRTH) and the cylinder intake air amount (GAIRCYLN) when the throttle valve is opened. It is a block diagram which shows the structure of the module which calculates cylinder intake air amount (GAIRCYLN) (1st Embodiment). It is a block diagram which shows the structure of the module which calculates cylinder intake air amount (GAIRCYLN) (2nd Embodiment). It is a figure which shows the table used for calculation of an estimated intake air flow rate (HGAIR).
- GAIRTH throttle valve passage air flow rate
- GAIRCYLN cylinder intake air amount
- HGAIR estimated intake air flow rate
- FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention.
- An intake pressure sensor 8 for detecting the intake pressure PBA is attached downstream of the throttle valve 3.
- An engine cooling water temperature sensor 10 that detects the engine cooling water temperature TW is attached to the main body of the engine 1. The detection signals of these sensors 8 and 10 are supplied to the ECU 5.
- the ECU 5 is connected to a crank angle position sensor 11 that detects a rotation angle of a crankshaft (not shown) of the engine 1, and a signal corresponding to the rotation angle of the crankshaft is supplied to the ECU 5.
- the crank angle position sensor 11 is a cylinder discrimination sensor that outputs a pulse (hereinafter referred to as “CYL pulse”) at a predetermined crank angle position of a specific cylinder of the engine 1, and relates to a top dead center (TDC) at the start of the intake stroke of each cylinder.
- the ECU 5 includes an accelerator sensor 31 for detecting an accelerator pedal depression amount (hereinafter referred to as “accelerator pedal operation amount”) AP of a vehicle driven by the engine 1, and a traveling speed (vehicle speed) VP of the vehicle driven by the engine 1.
- a vehicle speed sensor 32 for detecting and an atmospheric pressure sensor 33 for detecting the atmospheric pressure PA are connected. Detection signals from these sensors are supplied to the ECU 5.
- the CPU of the ECU 5 controls the ignition timing, the opening degree of the throttle valve 3, the control of the amount of fuel supplied to the engine 1 (opening time of the fuel injection valve 6), and the intake valve according to the detection signal of the sensor. Perform operating phase control.
- FIG. 2 is a diagram schematically showing the engine 1, and shows an intake valve 21, an exhaust valve 22, and a cylinder 1a.
- the change amount DGAIRIN of the air amount in the throttle valve downstream portion 2a of the intake pipe 2 is given by the following equation (1).
- Vin is the volume of the throttle valve downstream portion 2a
- TAK is the intake air temperature TA converted to absolute temperature
- R is the gas constant
- DPBA is the amount of change in the intake pressure PBA (PBA (k) -PBA (k- 1)).
- K is a discretization time discretized in the TDC period.
- DGAIRIN Vin ⁇ DPBA / (R ⁇ TAK) (1)
- the cylinder intake air amount GAIRCYLN is given by the following equation (3).
- Vcyl is the cylinder volume
- ⁇ v is the volumetric efficiency.
- GAIRCYLN Vcyl ⁇ ⁇ v ⁇ PBA / (R ⁇ TAK) (3)
- the delay coefficient CGAIRCYLN is defined by the following equation (6)
- the equation (5) is expressed by the following equation (5a)
- the cylinder intake air amount GAIRCYLN is a first-order lag model with the throttle valve passage air flow rate GARITH as an input. It can be calculated using an equation.
- CGAIRCYLN Vcyl ⁇ ⁇ v / Vin (6)
- GAIRCYLN (k) (1-CGAIRCYLN) x GAIRCYLN (k-1) + CGAIRCYLN ⁇ GAIRTH (k) (5a)
- FIG. 3 is a graph showing changes in the throttle valve passing air flow rate GAIRTH (broken line) and the cylinder intake air amount GAIRCYLN (solid line) when the throttle valve 3 is suddenly opened, and can be approximated by the equation (5a). It is confirmed.
- the volumetric efficiency ⁇ v changes depending on the engine operating state (engine speed NE, intake pressure PBA), the operation phase of the intake valve, the exhaust gas recirculation rate, and the like.
- engine speed NE engine speed NE
- PBA intake pressure
- the operation phase of the intake valve the exhaust gas recirculation rate
- the arithmetic processing becomes complicated.
- the volume efficiency ⁇ v used for calculating the cylinder intake air amount GAIRCYLN (k) is calculated by the following equation (7).
- ⁇ v GAIRCYLN (k ⁇ 1) / GAIRSTD (k) (7)
- GAIRSTD (k) in equation (7) is the theoretical cylinder intake air amount calculated by equation (8) below.
- GAIRSTD (k) PBA (k) ⁇ Vcyl / (R ⁇ TAK) (8)
- FIG. 4 is a block diagram showing a configuration of a cylinder intake air amount calculation module for calculating the cylinder intake air amount GAIRCYLN by the above-described method.
- the function of this module is actually realized by arithmetic processing by the CPU of the ECU 5.
- the cylinder intake air amount calculation module shown in FIG. 4 includes a delay coefficient calculation unit 51, a conversion unit 52, and a cylinder intake air amount calculation unit 53.
- the delay coefficient calculation unit 51 calculates the delay coefficient CGAIRCYLN using the above equations (6) to (8).
- the conversion unit 52 applies the detected intake air flow rate GAIR [g / sec] and the engine speed NE to the following equation (9), and the throttle valve passing air flow rate GAIRTH [g / TDC] is calculated.
- KCV in equation (9) is a conversion coefficient.
- GAIRTH GAIR ⁇ KCV / NE (9)
- the cylinder intake air amount calculation unit 53 calculates the cylinder intake air amount GAIRCYLN using the above equation (5a).
- Formula (5a) is a recurrence formula
- Formula (7) for calculating the volumetric efficiency ⁇ v also uses the previous value of the cylinder intake air amount GAIRCYLN. Therefore, it is necessary to set the initial value GAIRCYLNINI of the cylinder intake air amount GAIRCYLN. is there.
- the initial value GAIRCYLNINI is set to the theoretical cylinder intake air amount GAIRSTD by the following equation (10). Therefore, the initial value of the volume efficiency ⁇ v is “1” (Formula (7)).
- the cylinder intake air amount GAIRCYLN can be calculated without using a map or a table, and the volumetric efficiency ⁇ v is updated using the equation (7), so that it is always not affected by changes in engine characteristics over time.
- An accurate cylinder intake air amount GAIRCYLN can be obtained.
- the intake air flow rate sensor 13 corresponds to intake air flow rate acquisition means
- the intake pressure sensor 8 and intake air temperature sensor 9 correspond to intake pressure detection means and intake air temperature detection means, respectively.
- the ECU 5 constitutes a theoretical cylinder intake air amount calculating means, a volumetric efficiency calculating means, and a cylinder intake air amount calculating means.
- a cylinder intake air amount calculation module shown in FIG. 5 is used instead of the cylinder intake air amount calculation module shown in FIG. Except for the points described below, the second embodiment is the same as the first embodiment.
- the intake air flow rate estimation unit 54 calculates an estimated intake air flow rate HGAIR, which is an estimated value of the intake air flow rate GAIR, according to the intake air temperature TA, the intake pressure PBA, the throttle valve opening TH, and the atmospheric pressure PA, using the following formula (11 ).
- KC is a conversion constant for setting the unit of flow rate to [g / sec]
- KTH (TH) is an opening area flow rate function calculated according to the throttle valve opening TH
- the value of the opening area flow rate function KTH (TH) is calculated using the KTH table shown in FIG. Further, the pressure specific flow rate function ⁇ is given by the following formula (12). “ ⁇ ” in the equation (12) is a specific heat ratio of air. However, when the air flow velocity exceeds the sound velocity, the pressure ratio flow function ⁇ takes a maximum value regardless of the pressure ratio. Therefore, in the actual calculation process, the value of the pressure ratio flow function ⁇ (RP) is also set in advance. RP) table (FIG. 6B) is used for calculation.
- the converter 52a applies the estimated intake air flow rate HGAIR [g / sec] and the engine speed NE to the following equation (9a) to calculate the estimated throttle valve passage air flow rate HGAIRTH [g / TDC].
- HGAIRTH HGAIR ⁇ KCV / NE (9a)
- the cylinder intake air amount calculation unit 53a calculates the cylinder intake air amount GAIRCYLN using the following equation (5b).
- GAIRCYLN (k) (1-CGAIRCYLN) x GAIRCYLN (k-1) + CGAIRCYLN ⁇ HGAIRTH (k)
- GAIRCYLN (k) (1-CGAIRCYLN) x GAIRCYLN (k-1) + CGAIRCYLN ⁇ HGAIRTH (k)
- the estimated intake air flow rate HGAIR is calculated based on the throttle valve opening TH and the intake pressure PBA, and the cylinder intake air amount GAIRCYLN is calculated using the estimated intake air flow rate HGAIR.
- the influence of detection delay is smaller than in the case where the intake air amount sensor 13 is used, and an accurate cylinder intake air amount GAIRCYLN is obtained.
- the intake air flow rate sensor 13 it is possible to compensate for the detection delay of the intake air flow rate sensor 13 in a transient operation state. In that case, failure of the intake air flow rate sensor 13 can be detected, and the reliability of the intake air flow rate GAIR applied to the cylinder intake air amount GAIRCYLN can be improved.
- a difference between the intake air flow rate GAIRTH detected by the intake air flow rate sensor 13 and the estimated intake air flow rate HGAIR is calculated as an estimation error DGAIRE, and the calculation in the estimated intake air flow rate calculation unit 54 is performed.
- the opening area flow rate function KTH applied to may be corrected so that the estimation error DGARE is “0”. Thereby, a more accurate estimated intake air flow rate HGAIR is obtained.
- the intake air flow rate estimation unit 54 in FIG. 5 corresponds to the intake air flow rate acquisition means.
- a more accurate cylinder can be obtained in the transient operation state of the engine by executing the calculation of the volume efficiency ⁇ v, the delay coefficient CGAIRCYLN, and the cylinder intake air amount GAIRCYLN at the discretization time k a plurality of times in the first embodiment.
- the intake air amount GAIRCYLN can be obtained.
- the second embodiment is the same as the first embodiment.
- FIG. 7 is a flowchart of the cylinder intake air amount calculation processing in the present embodiment. This processing is executed by the CPU of the ECU 5 every stroke (every time the crankshaft rotates 180 degrees in the case of a four-cylinder engine) in synchronization with the generation of the TDC pulse.
- step S11 the theoretical cylinder intake air amount GAIRSTD (k) is calculated from the equation (8).
- step S12 it is determined whether or not the initialization flag FINI is “1”. Immediately after the engine is started, the initialization flag FINI is “0”.
- step S13 the cylinder intake air amount GAIRCYLN (k) is set to the theoretical cylinder intake air amount GAIRSTD (k) and the volume efficiency ⁇ v ( Set k) to "1.0".
- step S14 the initialization flag FINI is set to “1” (step S14).
- step S13 When the initialization flag FINI is “1”, the process proceeds from step S13 to step SS15, and the index parameter i for counting the number of executions of the update operation is set to “0”.
- the index parameter i for counting the number of executions of the update operation is set to “0”.
- GAIRCYLN (i), ⁇ v (i), and CGAIRCYLN (i) with the index parameter i are referred to as an update cylinder intake air amount, an update volume efficiency, and an update delay coefficient, respectively.
- step S17 the index parameter i is incremented by “1”.
- step S19 the update delay coefficient CGAIRCYLN (i) is calculated by the following equation (6a).
- CGAIRCYLN (i) Vcyl ⁇ ⁇ v (i) / Vin (6a)
- step S20 the renewed cylinder intake air amount GAIRCYLN (i) is calculated by the following equation (5c).
- GAIRCYLN (i) (1-CGAIRCYLN (i)) x GAIRCYLN (i-1) + CGAIRCYLN (i) ⁇ GAIRTH (k) (5c)
- step S21 it is determined whether or not the index parameter i has reached the upper limit value iMAX.
- step S23 it is determined whether or not the volumetric efficiency change amount D ⁇ v is smaller than a predetermined threshold D ⁇ vL. If the answer is negative (NO), the process returns to step S17, and the updated volumetric efficiency ⁇ v (i ) And the calculation of the updated cylinder intake air amount GAIRCYLN (i) is executed again.
- step S21 or S23 If the answer to step S21 or S23 is affirmative (YES), the process proceeds to step S24, where the volumetric efficiency ⁇ v (k) and the cylinder intake air amount GAIRCYLN (k) at that time are updated volumetric efficiency ⁇ v (i) at that time, respectively. And the renewed cylinder intake air amount GAIRCYLN (i).
- FIG. 8 is a time chart for explaining the processing of FIG. 7, and shows transitions of the theoretical cylinder intake air amount GAIRSTD, the cylinder intake air amount GAIRCYLN, and the volumetric efficiency ⁇ v in a transient state in which the cylinder intake air amount GAIRCYLN increases.
- the broken line indicating the transition of the cylinder intake air amount GAIRCYLN and the volumetric efficiency ⁇ v corresponds to the calculation method of the first embodiment, and the solid line corresponds to the calculation method of the present embodiment.
- the update calculation is performed until the index parameter i becomes “3” at the time k, and the update calculation is similarly performed at the times (k + 1) and (k + 2) (not shown). ),
- the cylinder intake air amount GAIRCYLN reaching the steady state can be obtained at time (k + 2).
- step S11 in FIG. 7 corresponds to the theoretical cylinder intake air amount calculating means
- steps S12 to S24 correspond to the volumetric efficiency calculating means and cylinder intake air amount calculating means.
- step S23a it is determined whether or not the cylinder intake air amount change amount DGACN is smaller than a predetermined threshold value DGACN. If the answer is negative (NO), the process returns to step S17. If the answer is affirmative (YES), the process proceeds to step S24. .
- Steps S22 and S23 in FIG. 7 may be deleted, and if the answer to step S21 is negative (NO), the process may immediately return to step S17. In this modification, the update operation is always executed until the index parameter i reaches the upper limit value iMAX.
- FIG. 10 is a flowchart of the cylinder intake air amount calculation process in the present embodiment. Step S11a is added to the process of FIG. 7, and step S20 is changed to step S20a.
- step S11a calculation processing in the intake air flow rate estimation unit 54 and the conversion unit 52a of the second embodiment is executed to calculate an estimated throttle valve passage air flow rate HGAIRTH.
- step S20a the renewed cylinder intake air amount GAIRCYLN (i) is calculated by the following equation (5d).
- Expression (5d) is obtained by changing the throttle valve passing air flow rate GAIRTH in the expression (5c) to the estimated throttle valve passing air flow rate HGAIRTH.
- GAIRCYLN (i) (1-CGAIRCYLN (i)) x GAIRCYLN (i-1) + CGAIRCYLN (i) ⁇ HGAIRTH (k) (5d)
- the estimated intake air flow rate HGAIR is applied instead of the detected intake air flow rate GAIR, as described above, the influence of the detection delay of the intake air flow rate becomes small in the transient operation state of the engine. Compared to the third embodiment, a more accurate cylinder intake air amount GAIRCYLN can be obtained.
- steps S22 and S23 may be changed to steps S22a and S23a in the same manner as the process of FIG.
- steps S11a, S12 to S19, S20a, and S21 to S24 correspond to volumetric efficiency calculating means and cylinder intake air amount calculating means.
- the present invention is not limited to the above-described embodiment, and various modifications are possible.
- the theoretical cylinder intake air amount GAIRSTD is calculated using the equation (8), but may be calculated by a method described below.
- FIG. 11 is a diagram for explaining another method for calculating the theoretical cylinder intake air amount GAIRSTD, and shows the relationship between the intake pressure PBA and the cylinder intake air amount GAIRCYL under a condition where the engine speed NE is constant.
- PA0 in FIG. 11 is the atmospheric pressure in the reference state (for example, 101.3 kPa (760 mmHg)), and GAIRWOT has the intake pressure PBA equal to the reference atmospheric pressure PA0 and the actual intake air temperature is the reference temperature TA0 (for example, 25 ° C.). Is the actually measured cylinder intake air amount (hereinafter referred to as “maximum cylinder intake air amount”).
- the maximum cylinder intake air amount GAIRWOT is obtained by applying the intake air flow rate GAIR detected by the intake air flow rate sensor to the equation (9).
- FIG. 12 is a flowchart of processing for calculating the theoretical cylinder intake air amount GAIRSTD by the above-described method.
- step S31 the GAIRWOT table shown in FIG. 13A is retrieved according to the engine speed NE, and the maximum cylinder intake air amount GAIRWOT is calculated.
- step S32 the basic theoretical cylinder intake air amount GAIRSTDB is calculated by the above equation (21).
- step S33 a KTAGAIR table shown in FIG. 13B is searched according to the detected intake air temperature TA, and an intake air temperature correction coefficient KTAGAIR is calculated.
- the KTAGAIR table is set so that the intake air temperature correction coefficient KTAGAIR decreases as the intake air temperature TA increases.
- step S34 a KTWGAAIR table shown in FIG. 13C is retrieved according to the detected engine cooling water temperature TW, and a cooling water temperature correction coefficient KTWGAIR is calculated.
- the KTWGAAIR table is set so that the cooling water temperature correction coefficient KTWGAIR decreases as the cooling water temperature TW increases.
- step S35 the theoretical cylinder intake air amount GAIRSTD (k) is calculated by the following equation (22).
- GAIRSTD (k) GAIRSTDB ⁇ KTAGAIR ⁇ KTGWAIR (22)
- the calculation accuracy of the theoretical cylinder intake air amount GAIRSTD can be improved while suppressing an increase in the calculation amount as compared with the calculation according to the above-described equation (8).
- the estimated intake air flow rate HGAIR is calculated using the atmospheric pressure PA detected by the atmospheric pressure sensor 33.
- a known atmospheric pressure estimation method see, for example, US Pat. No. 6,016,460
- the estimated intake air flow rate HGAIR may be calculated using the estimated atmospheric pressure HPA calculated by using the estimated atmospheric pressure HPA.
- the present invention can also be applied to a diesel internal combustion engine.
- the present invention can also be applied to a marine vessel propulsion engine such as an outboard motor having a vertical crankshaft.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図であり、図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、吸気弁の作動位相を連続的に変更する弁作動特性可変機構40を備えている。
エンジン1の各気筒の点火プラグ12は、ECU5に接続されており、ECU5は点火プラグ12に点火信号を供給し、点火時期制御を行う。
DGAIRIN=Vin×DPBA/(R×TAK) (1)
DGAIRIN=GAIRTH(k)-GAIRCYLN(k-1) (2)
GAIRCYLN=Vcyl×ηv×PBA/(R×TAK) (3)
CGAIRCYLN=Vcyl×ηv/Vin (6)
GAIRCYLN(k)=
(1-CGAIRCYLN)×GAIRCYLN(k-1)
+CGAIRCYLN×GAIRTH(k) (5a)
ηv=GAIRCYLN(k-1)/GAIRSTD(k) (7)
式(7)のGAIRSTD(k)は下記式(8)により算出される理論気筒吸入空気量である。
GAIRSTD(k)=PBA(k)×Vcyl/(R×TAK) (8)
遅れ係数算出部51は、上記式(6)~(8)を用いて遅れ係数CGAIRCYLNを算出する。変換部52は、検出される吸入空気流量GAIR[g/sec]及びエンジン回転数NEを下記式(9)に適用し、1TDC期間当たりの吸入空気量であるスロットル弁通過空気流量GAIRTH[g/TDC]を算出する。式(9)のKCVは変換係数である。
GAIRTH=GAIR×KCV/NE (9)
GAIRCYLNINI=GAIRSTD
=PBA×Vcyl/(R×TAK) (10)
本実施形態は、図3に示す気筒吸入空気量算出モジュールに代えて、図5に示す気筒吸入空気量算出モジュールを用いるようにしたものである。以下に説明する点以外は、第1の実施形態と同一である。
HGAIRTH=HGAIR×KCV/NE (9a)
GAIRCYLN(k)=
(1-CGAIRCYLN)×GAIRCYLN(k-1)
+CGAIRCYLN×HGAIRTH(k) (5b)
本実施形態は、第1の実施形態において離散化時刻kにおける体積効率ηv、遅れ係数CGAIRCYLN、及び気筒吸入空気量GAIRCYLNの演算を複数回実行することにより、エンジンの過渡運転状態においてより正確な気筒吸入空気量GAIRCYLNを得られるようにしたものである。以下に説明する点以外は第1の実施形態と同一である。
ステップS11では、前記式(8)により理論気筒吸入空気量GAIRSTD(k)を算出する。ステップS12では、初期化フラグFINIが「1」であるか否かを判別する。エンジンの始動直後は、初期化フラグFINIは「0」であるので、ステップS13に進み、気筒吸入空気量GAIRCYLN(k)を理論気筒吸入空気量GAIRSTD(k)に設定するとともに、体積効率ηv(k)を「1.0」に設定する。次いで初期化フラグFINIを「1」に設定する(ステップS14)。
ηv(i)=GAIRCYLN(i-1)/GAIRSTD(k) (7a)
CGAIRCYLN(i)=Vcyl×ηv(i)/Vin (6a)
GAIRCYLN(i)=
(1-CGAIRCYLN(i))×GAIRCYLN(i-1)
+CGAIRCYLN(i)×GAIRTH(k) (5c)
Dηv=|ηv(i)-ηv(i-1)| (21)
図9は図7に示す処理の変形例を示すフローチャートである。図9の処理は、図7のステップS22及びS23をそれぞれステップS22a及びS23aに変えたものである。ステップS22aでは、下記式(22)により気筒吸入空気量変化量DGACNを算出する。
DGACN=|GAIRCYLN(i)-GAIRCYLN(i-1)|
(22)
図7のステップS22及びS23を削除し、ステップS21の答が否定(NO)であるときは直ちにステップS17に戻るようにしてもよい。この変形例では、更新演算は常にインデクスパラメータiが上限値iMAXに達するまで実行される。
本実施形態は、第2の実施形態に第3の実施形態と同様の更新演算を導入したものである。
図10は本実施形態における気筒吸入空気量算出処理のフローチャートであり、図7の処理にステップS11aを追加するとともに、ステップS20をステップS20aに変更したものである。
GAIRCYLN(i)=
(1-CGAIRCYLN(i))×GAIRCYLN(i-1)
+CGAIRCYLN(i)×HGAIRTH(k) (5d)
GAIRSTDB=GAIRWOT×PBA/PA0 (21)
ステップS31では、エンジン回転数NEに応じて図13(a)に示すGAIRWOTテーブルを検索し、最大気筒吸入空気量GAIRWOTを算出する。ステップS32では、上記式(21)により基本理論気筒吸入空気量GAIRSTDBを算出する。
GAIRSTD(k)=
GAIRSTDB×KTAGAIR×KTWGAIR (22)
1a 気筒
2 吸気管
3 スロットル弁
5 電子制御ユニット(理論気筒吸入空気量算出手段、体積効率算出手段、気筒吸入空気量算出手段)
8 吸気圧センサ(吸気圧検出手段)
9 吸気温センサ(吸気温検出手段)
13 吸入空気流量センサ(吸入空気流量取得手段)
Claims (14)
- 内燃機関の気筒に吸入される新気量である気筒吸入空気量を算出する、内燃機関の気筒吸入空気量算出装置において、
前記機関の吸気通路を通過する新気の流量である吸入空気流量を取得する吸入空気流量取得手段と、
前記機関の吸気圧を検出する吸気圧検出手段と、
前記機関に吸入される空気の温度である吸気温を検出する吸気温検出手段と、
前記吸気圧及び吸気温に基づいて理論気筒吸入空気量を算出する理論気筒吸入空気量算出手段と、
前記気筒吸入空気量の前回算出値を前記理論気筒吸入空気量で除算することにより前記機関の体積効率を算出する体積効率算出手段と、
前記体積効率、前記吸入空気流量、及び前記気筒吸入空気量の前回算出値を用いて、前記気筒吸入空気量を算出する気筒吸入空気量算出手段とを備えることを特徴とする内燃機関の気筒吸入空気量算出装置。 - 前記吸入空気流量取得手段は、吸入空気流量センサを用いて前記吸入空気流量を検出する請求項1の気筒吸入空気量算出装置。
- 前記吸入空気流量取得手段は、前記機関のスロットル弁の開度及び前記吸気圧に基づいて前記吸入空気流量を推定する請求項1の気筒吸入空気量算出装置。
- 前記体積効率算出手段は、前記気筒吸入空気量算出手段により算出された気筒吸入空気量を前記前回算出値として用いて、前記体積効率を少なくとも1回更新し、
前記気筒吸入空気量算出手段は、更新された体積効率を用いて前記気筒吸入空気量を少なくとも1回更新する請求項1から3の何れか1項の気筒吸入空気量算出装置。 - 前記体積効率算出手段及び気筒吸入空気量算出手段は、それぞれ前記体積効率の更新及び前記気筒吸入空気量の更新を所定回数実行する請求項4の気筒吸入空気量算出装置。
- 前記体積効率算出手段及び気筒吸入空気量算出手段は、それぞれ前記体積効率の更新及び前記気筒吸入空気量の更新を、前記体積効率の前回値と更新された値との差が第1所定量より小さくなるまで、または前記気筒吸入空気量の前回値と更新された値との差が第2所定量より小さくなるまで実行する請求項4の気筒吸入空気量算出装置。
- 前記体積効率算出手段及び気筒吸入空気量算出手段は、前記機関の始動直後においては、前記気筒吸入空気量の前回算出値として、前記理論気筒吸入空気量を用いる請求項1から6の何れか1項の気筒吸入空気量算出装置。
- 内燃機関の気筒に吸入される新気量である気筒吸入空気量を算出する、内燃機関の気筒吸入空気量算出方法において、
a)前記機関の吸気通路を通過する新気の流量である吸入空気流量を取得し、
b)前記機関の吸気圧を検出し、
c)前記機関に吸入される空気の温度である吸気温を検出し、
d)前記吸気圧及び吸気温に基づいて理論気筒吸入空気量を算出し、
e)前記気筒吸入空気量の前回算出値を前記理論気筒吸入空気量で除算することにより前記機関の体積効率を算出し、
f)前記体積効率、前記吸入空気流量、及び前記気筒吸入空気量の前回算出値を用いて、前記気筒吸入空気量を算出することを特徴とする内燃機関の気筒吸入空気量算出方法。 - 前記ステップa)では、吸入空気流量センサを用いて前記吸入空気流量が検出される請求項8の気筒吸入空気量算出方法。
- 前記ステップa)では、前記機関のスロットル弁の開度及び前記吸気圧に基づいて前記吸入空気流量が推定される請求項8の気筒吸入空気量算出方法。
- 前記ステップe)は、前記ステップf)で算出された気筒吸入空気量を前記前回算出値として用いて、前記体積効率を少なくとも1回更新するステップを含み、
前記ステップf)は、更新された体積効率を用いて前記気筒吸入空気量を少なくとも1回更新するステップを含む請求項8から10の何れか1項の気筒吸入空気量算出方法。 - 前記体積効率及び前記気筒吸入空気量はそれぞれ所定回数更新される請求項11の気筒吸入空気量算出方法。
- 前記体積効率及び前記気筒吸入空気量は、それぞれ前記体積効率の前回値と更新された値との差が第1所定量より小さくなるまで、または前記気筒吸入空気量の前回値と更新された値との差が第2所定量より小さくなるまで更新される請求項11の気筒吸入空気量算出方法。
- 前記機関の始動直後においては、前記気筒吸入空気量の前回算出値として、前記理論気筒吸入空気量が用いられる請求項8から13の何れか1項の気筒吸入空気量算出方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011500543A JP5118247B2 (ja) | 2009-02-17 | 2010-01-14 | 内燃機関の気筒吸入空気量算出装置 |
CN201080007967.2A CN102317606B (zh) | 2009-02-17 | 2010-01-14 | 内燃机的汽缸吸入空气量计算装置 |
US13/148,058 US8762078B2 (en) | 2009-02-17 | 2010-01-14 | Cylinder intake air amount calculating apparatus for internal combustion engine |
EP10743606.5A EP2378102B1 (en) | 2009-02-17 | 2010-01-14 | Device for calculating intake air volume in cylinder of internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009034473 | 2009-02-17 | ||
JP2009-034473 | 2009-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010095477A1 true WO2010095477A1 (ja) | 2010-08-26 |
Family
ID=42633764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050359 WO2010095477A1 (ja) | 2009-02-17 | 2010-01-14 | 内燃機関の気筒吸入空気量算出装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8762078B2 (ja) |
EP (1) | EP2378102B1 (ja) |
JP (1) | JP5118247B2 (ja) |
CN (1) | CN102317606B (ja) |
WO (1) | WO2010095477A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083771B2 (en) | 2019-03-29 | 2024-09-10 | Lg Chem, Ltd. | Optical laminate |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014083654A1 (ja) * | 2012-11-29 | 2014-06-05 | トヨタ自動車株式会社 | 過給機付きエンジンの制御装置 |
US9388787B2 (en) * | 2013-02-19 | 2016-07-12 | Southwest Research Institute | Methods, devices and systems for glow plug operation of a combustion engine |
DE102013224766A1 (de) * | 2013-12-03 | 2015-06-03 | Robert Bosch Gmbh | Verfahren und Messanordnung zur Bestimmung eines Frischluftmassenstromes |
US9689335B2 (en) * | 2015-04-27 | 2017-06-27 | Caterpillar Inc. | Engine mass air flow calculation method and system |
DE102015214179B3 (de) * | 2015-07-27 | 2016-08-18 | Mtu Friedrichshafen Gmbh | Verfahren zur Kompensation eines Ventildrifts einer Brennkraftmaschine |
CN112145325B (zh) * | 2019-06-28 | 2022-04-05 | 联合汽车电子有限公司 | 发动机进气系统管路诊断方法 |
CN113027617B (zh) * | 2019-12-25 | 2023-04-07 | 日立安斯泰莫汽车系统(苏州)有限公司 | 发动机扫气控制装置、系统、方法及计算机可读取介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07259630A (ja) | 1994-03-23 | 1995-10-09 | Toyota Motor Corp | 吸気管圧力による吸入空気量算出装置 |
US6016460A (en) | 1998-10-16 | 2000-01-18 | General Motors Corporation | Internal combustion engine control with model-based barometric pressure estimator |
JP2001003796A (ja) * | 1999-06-17 | 2001-01-09 | Nissan Motor Co Ltd | ディーゼルエンジンの制御装置 |
JP4120524B2 (ja) | 2003-08-04 | 2008-07-16 | 日産自動車株式会社 | エンジンの制御装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5039199A (en) | 1989-12-29 | 1991-08-13 | At&T Bell Laboratories | Lightwave transmission system having remotely pumped quasi-distributed amplifying fibers |
JP2755018B2 (ja) * | 1992-02-28 | 1998-05-20 | 三菱自動車工業株式会社 | 吸排気弁停止機構付きエンジンの吸気量算出装置 |
JP3494284B2 (ja) * | 1999-09-03 | 2004-02-09 | 本田技研工業株式会社 | 4ストロークサイクル内燃機関の吸気ポート構造 |
JP2002130042A (ja) * | 2000-10-19 | 2002-05-09 | Denso Corp | 内燃機関の筒内充填空気量検出装置 |
US6636796B2 (en) | 2001-01-25 | 2003-10-21 | Ford Global Technologies, Inc. | Method and system for engine air-charge estimation |
-
2010
- 2010-01-14 JP JP2011500543A patent/JP5118247B2/ja not_active Expired - Fee Related
- 2010-01-14 CN CN201080007967.2A patent/CN102317606B/zh not_active Expired - Fee Related
- 2010-01-14 EP EP10743606.5A patent/EP2378102B1/en not_active Not-in-force
- 2010-01-14 US US13/148,058 patent/US8762078B2/en not_active Expired - Fee Related
- 2010-01-14 WO PCT/JP2010/050359 patent/WO2010095477A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07259630A (ja) | 1994-03-23 | 1995-10-09 | Toyota Motor Corp | 吸気管圧力による吸入空気量算出装置 |
US6016460A (en) | 1998-10-16 | 2000-01-18 | General Motors Corporation | Internal combustion engine control with model-based barometric pressure estimator |
JP2001003796A (ja) * | 1999-06-17 | 2001-01-09 | Nissan Motor Co Ltd | ディーゼルエンジンの制御装置 |
JP4120524B2 (ja) | 2003-08-04 | 2008-07-16 | 日産自動車株式会社 | エンジンの制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2378102A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083771B2 (en) | 2019-03-29 | 2024-09-10 | Lg Chem, Ltd. | Optical laminate |
Also Published As
Publication number | Publication date |
---|---|
US8762078B2 (en) | 2014-06-24 |
JPWO2010095477A1 (ja) | 2012-08-23 |
CN102317606B (zh) | 2014-04-02 |
EP2378102B1 (en) | 2015-07-22 |
JP5118247B2 (ja) | 2013-01-16 |
CN102317606A (zh) | 2012-01-11 |
EP2378102A4 (en) | 2012-08-08 |
US20110295525A1 (en) | 2011-12-01 |
EP2378102A1 (en) | 2011-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5118247B2 (ja) | 内燃機関の気筒吸入空気量算出装置 | |
JP5291726B2 (ja) | 大気圧推定装置 | |
JP3980424B2 (ja) | 内燃機関の空燃比制御装置 | |
CN110645110B (zh) | 内燃机控制装置 | |
JP4862083B2 (ja) | 内燃機関の気筒吸入空気量算出装置 | |
JP5021045B2 (ja) | 大気圧推定装置 | |
JP5357852B2 (ja) | 内燃機関の制御装置 | |
US9644549B2 (en) | Control apparatus for internal combustion engine | |
JP2010242727A (ja) | 内燃機関の制御装置 | |
JP2009007940A (ja) | 内燃機関の筒内充填空気量演算装置 | |
JP2009002249A (ja) | 内燃機関のスロットル上流圧推定装置 | |
JP2012154289A (ja) | 内燃機関の制御装置 | |
JP5313847B2 (ja) | 内燃機関の空燃比制御装置 | |
JP6076280B2 (ja) | 内燃機関の制御装置 | |
JP2012154288A (ja) | 内燃機関の制御装置 | |
JP2011190781A (ja) | 内燃機関の気筒吸入空気量算出装置 | |
JP5189012B2 (ja) | 内燃機関の制御装置 | |
JP2002004928A (ja) | エンジン制御装置 | |
JP6662650B2 (ja) | 内燃機関の制御装置 | |
JP2010248949A (ja) | エンジンのシリンダ流入空気量計測装置を備えた燃料制御装置 | |
JP5844170B2 (ja) | 内燃機関の制御装置 | |
JP5149868B2 (ja) | 内燃機関の気筒吸入空気量算出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080007967.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10743606 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011500543 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010743606 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13148058 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |