WO2010093026A1 - ろ過装置およびその製造方法 - Google Patents

ろ過装置およびその製造方法 Download PDF

Info

Publication number
WO2010093026A1
WO2010093026A1 PCT/JP2010/052105 JP2010052105W WO2010093026A1 WO 2010093026 A1 WO2010093026 A1 WO 2010093026A1 JP 2010052105 W JP2010052105 W JP 2010052105W WO 2010093026 A1 WO2010093026 A1 WO 2010093026A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
filtration
filter medium
filter
raw water
Prior art date
Application number
PCT/JP2010/052105
Other languages
English (en)
French (fr)
Inventor
井上敬道
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020117019035A priority Critical patent/KR101717307B1/ko
Priority to EP10741303.1A priority patent/EP2397209B1/en
Priority to US13/148,959 priority patent/US9050563B2/en
Priority to CN2010800079028A priority patent/CN102316953A/zh
Publication of WO2010093026A1 publication Critical patent/WO2010093026A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/42Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a filtration device used for water filtration in, for example, pools and hot springs and water filtration in seawater desalination plants.
  • sand filtration devices are used for circulating filtration of bathtubs and pool water.
  • a sand filter is made by, for example, layering a layer of sand on a layer of gravel and passing water through these layers to remove fine debris and suspended matters in the water. Therefore, there is a demerit that a large installation space is required.
  • membrane filtration devices that use membranes made of synthetic resin that can remove smaller particles.
  • the membrane filtration device is smaller than the sand filtration device and can be installed in a small space (for example, Patent Document 1).
  • the surface filter is a filter that captures foreign matters on the surface of the filter medium.
  • the surface filter is used for high-accuracy filtration that increases the amount of foreign matter collected while increasing the filtration surface area to reduce the filtration resistance.
  • the surface filter can be used repeatedly by backwashing, but the amount of foreign matter collected is small compared to the depth filter, so it is not suitable for filtering relatively dirty water, and it is also expensive. It will be limited.
  • Depth filter is a filter that traps foreign matter in the gaps between the filter media. Since the amount of foreign matter to be collected is large, it is also used for relatively dirty filtration. The depth filter is less expensive than the surface filter, but it captures foreign substances not by the surface of the filter medium but by the gaps between the filter medium, so it is harder to perform back-flow cleaning than the surface filter.
  • ultrafine particles caught in the gaps between the filter media during backwashing may accumulate in the filtered water immediately after resumption of filtration, and the filtered water may appear cloudy. These fine particles are smaller than the pore size of the depth filter, and even if they exist in the filtered water, there is no problem, but such turbidity may be a problem depending on the application.
  • Seawater desalination plants treat seawater with reverse osmosis membranes, etc., but sand filters are often installed as prefilters to remove various particulate matter present in seawater.
  • larvae such as planktons, algae, crustaceans, and shellfish that exist in seawater attach to the sand filter device, and the sand filter device may malfunction due to growth and reproduction.
  • the present invention has been made in view of the above problems, and includes a filtration unit that can suppress initial introduction costs and maintenance management costs to a low level, and provides a small-sized filtration device that can suppress turbidity of filtered water. It is aimed. Furthermore, it aims at providing the filtration apparatus which acts as a pre filter of a sand filtration apparatus as an alternative of a sand filtration apparatus, and can extend the lifetime of an apparatus.
  • a filtration device is a filtration device that includes a filter medium and a housing that accommodates the filter medium, and has a filtration unit that filters raw water.
  • the filter medium is a depth filter having a pore diameter of 1 to 25 ⁇ m, and further, a communication path for connecting a filtrate water path connected to the filtrate outlet and a discharge path connected to the outlet, and opening and closing the communication path And an opening / closing valve.
  • a gas or a liquid is used, preferably a gas, and more preferably an inert gas such as air or nitrogen. If the pore diameter is less than 1 ⁇ m, clogging occurs and pressure loss increases. Moreover, when the pore diameter exceeds 25 ⁇ m, suspended matters in the filtered water become conspicuous.
  • the pore diameter is defined as follows. Particles having a certain diameter, preferably spherical polystyrene or glass beads added at a rate of 10,000 / L in water, are applied to a depth filter (outer diameter 60 mm, inner diameter 30 mm, length 250 mm) at 25 ° C. and 1.0 m 3 / h. The number of particles that passed through the depth filter was measured with an optical counter, and the difference in the number of particles present in the liquid before and after the water flow was divided by the number of particles present in the liquid before the water flow. The obtained collection rate (R%) is measured for a plurality of particles, and the value of the diameter (S) of the particles at which R is 90 in the following approximate expression (1) is obtained based on the measured values.
  • m and a are constants determined by the properties of the depth filter. For example, when the diameter of the particles is 1 ⁇ m, the liquid added with spherical polystyrene fine particles (10,000 particles / L) is passed through a depth filter (outer diameter 60 mm, inner diameter 30 mm, length 250 mm) under the above conditions. Measurement is possible.
  • a depth filter having a pore diameter of 1 to 25 ⁇ m is used as the filter medium, so that the suspended matter with a conspicuous size can be sufficiently removed and the initial introduction cost can be reduced as compared with the case of using the surface filter. be able to.
  • the filtration performance of the filter medium can be recovered and used, so the frequency of replacement of the filter medium can be reduced, and maintenance costs can be reduced.
  • the open / close valve is provided immediately after the backwashing, the filtered water containing fine particles is discharged into the drainage passage and becomes cloudy. The filtered water can be prevented from flowing.
  • this filter when used as an alternative to a sand filter or as a pre-filter for a sand filter, it prevents the planktons present in the water from attaching to the sand filter and extends the life of the entire device. it can.
  • a secondary filtration unit that filters the filtered water filtered by the filtration unit again with a filter medium made of an ultrafiltration membrane or a reverse osmosis membrane.
  • the fluid supply port and the filtered water outlet are the same. According to this configuration, the fluid supply port and the filtered water outlet can be shared, and the configuration can be simplified.
  • the discharge port and the raw water supply port are preferably the same. According to this configuration, the configuration can be simplified by sharing the discharge port and the raw water supply port.
  • the method for producing filtered water according to the present invention comprises: opening the on-off valve in a state where supply of filtered water from the filter medium and supply of fluid to the filter medium are stopped, thereby passing the communication path and discharge through the filtration unit.
  • the raw water is supplied to the filtration unit and the filtered water is sent to the filtered water outlet.
  • FIG. 1 is a schematic system diagram of a filtered water production apparatus including a filtration unit according to the first embodiment of the present invention.
  • the filtered water production apparatus 1 includes a filtration pump 2 that takes in raw water RW, and a primary filtration unit 4 that filters the taken raw water RW.
  • a raw water passage 5 to which raw water RW is supplied by the filtration pump 2 a filtered water passage 8 for taking out filtered water FW from the primary filtration unit 4, and raw water RW in the primary filtration unit 4 will be described later.
  • a discharge passage 14 for discharging together with the compressed air A is connected, and a gas supply passage 12 for supplying the compressed air A to the primary filtration unit 4 is connected to the filtrate water passage 8. Furthermore, a communication passage 15 that connects both the filtrate passage 8 and the discharge passage 14 is connected.
  • Each passage 5, 8, 12, 14, 15 is formed by piping.
  • the primary filtration unit 4 houses a depth filter 10 that is a filter medium that forms a filtration membrane in a cylindrical housing 9.
  • the raw water passage 5 is connected to a first automatic on-off valve MV1 that functions as a raw water flow rate adjustment valve, and the filtrate water passage 8 is connected to a second automatic on-off valve MV2 that functions as a water supply valve for the filtrate FW.
  • a flow meter FI is provided in the filtered water passage 8 downstream of the second automatic opening / closing valve MV2.
  • a secondary filtration unit 26 having a hollow fiber membrane (not shown) having a pore diameter of 1 ⁇ m or less, which is an ultrafiltration membrane, is provided on the downstream side of the flow meter FI in the filtrate passage 8. The secondary filtration unit 26 purifies the treated water TW by filtering the filtered water FW with higher accuracy.
  • the filter medium is not limited to a hollow fiber membrane, and a known ultrafiltration membrane can be used.
  • a reverse osmosis membrane may be used instead of the ultrafiltration membrane.
  • a sterilizing agent may be added to the filtered water FW instead of the secondary filtration unit 26, and the secondary filtration unit 26 may be omitted.
  • the gas supply passage 12 is connected to a third automatic opening / closing valve MV3 that acts as a compressed air introduction valve, and the drain passage 14 is connected to a fourth automatic opening / closing valve MV4 that acts as a drainage valve.
  • a fifth automatic opening / closing valve MV5 that opens and closes the communication path 15 is connected to the communication path 15.
  • the communication passage 15 branches from the upstream side of the second automatic opening / closing valve MV2 in the filtered water passage 8 and is connected to the downstream side of the fourth automatic opening / closing valve MV4 in the drainage passage 14.
  • One end of the gas supply passage 12 is connected to an air compressor (not shown), and the other end is connected to the secondary side at the top of the primary filtration unit 4.
  • the drive of the filtration pump 2 and the first to fifth automatic opening / closing valves MV1 to MV5 is controlled by the controller 30. Further, the output of the flow meter FI is input to the controller 30.
  • an air drive valve, an electric valve, an electromagnetic valve, a manual valve that does not use a controller, or the like is used as each of the automatic opening / closing valves MV1 to MV5.
  • the configuration of the entire apparatus can be simplified.
  • the existing backwashing is performed by replacing the sand filtration device with the primary filtration unit 4 of the present invention.
  • the filtration device is replaced with the filtration unit 4 of the present invention, and the equipment for backwashing is introduced.
  • the present invention can be applied to an existing filtered water device by providing a communication passage that communicates with the existing filtered water device.
  • the depth filter 10 has a hollow cylindrical shape with one end opened and the other end closed with a closing member 13, and the opening end 10 a that is one end thereof is directed to the filtered water outlet 16.
  • the hollow portion 11 of the depth filter 10 is communicated with the filtered water outlet 16.
  • the depth filter 10 is also detachably housed in the housing 9 of the primary filtration unit 4 and is disposed such that the open end 10a is above the closed end 10b which is the other end.
  • the primary filtration unit 4 is arranged such that the longitudinal center line C of the depth filter 10 faces the vertical direction, but the primary filtration unit 4 is obliquely upward toward the filtrate outlet 16. You may arrange
  • the cylindrical housing 9 of the filtration unit 4 includes a lower end wall 9a, a peripheral wall 9b, and an upper end wall 9c.
  • a raw water supply port 18 connected to the raw water passage 5 and a discharge port 22 connected to the discharge passage 14 are formed in one end wall 9a of the housing 9, and a fluid supply connected to the fluid supply passage 12 in the other end wall 9c.
  • a filtrate outlet 16 connected to the mouth 24 and the filtrate passage 8 is formed. That is, the filtered water outlet 16 is disposed at the top of the housing 9.
  • the raw water supply port 18 and the discharge port 22 are the same, but may be provided separately.
  • the filtered water outlet 16 and the fluid supply port 24 may be the same.
  • An annular bottom plate 9d is provided below the fluid supply port 24 and the filtrate outlet 16 in the peripheral wall 9b of the housing 9 in the axial direction, and the open end 10a of the depth filter 10 is supported by the bottom plate 9d. That is, a space S is formed between the other end wall 9c and the bottom plate 9d in the housing 9, and the fluid supply port 24, the filtrate outlet 16 and the open end 10a of the depth filter 10 face the space S.
  • the hollow portion 11 of the depth filter 10 and the space S communicate with each other. That is, it arrange
  • the raw water supply port 18 and the discharge port 22 are provided on the primary side of the depth filter 10, and the filtered water outlet 16 is provided on the secondary side.
  • Depth filter 10 is an external pressure type cylindrical filter, and has a U-shaped longitudinal section.
  • Examples of the depth filter 10 include what is called a laminated type in which synthetic fibers or chemical fibers are welded / formed in the form of a web, non-woven fabric, paper, woven fabric or the like and processed into a cylindrical shape.
  • synthetic fiber polyolefin, polyester, heat-meltable polymer such as nylon or ethylene vinyl alcohol copolymer, or polymer such as polyvinyl alcohol or polyacrylonitrile can be used.
  • polyolefin and polyester, specifically, polypropylene are preferable from the viewpoint of liquid drainage at the time of filter replacement.
  • the filter preferably has a structure in which the fiber density and fineness are changed in the thickness direction, and the fiber density is low or the fineness is large on the outside (raw water inflow side) of the filter.
  • the depth filter 10 includes a so-called thread wound filter in which filaments and spun yarns are spirally wound, and a so-called resin molded type that is a resin molded body such as a sponge.
  • the pore size of the filtration membrane varies depending on the purpose of the equipment, but the lower limit is 1 ⁇ m or more. If the pore diameter is too small, clogging occurs and pressure loss increases.
  • the upper limit of the pore diameter is 25 ⁇ m. When the pore diameter exceeds 25 ⁇ m, suspended matters in the filtered water FW become conspicuous.
  • the upper limit of the pore diameter is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the depth filter 10 can be backwashed in the primary filtration unit 4 and can be used without increasing the differential pressure during filtration by recovering the filtration performance by backwashing.
  • the backwashing is performed by compressed air A supplied from the compressor (not shown) through the gas supply passage 12.
  • the fluid used for backwashing may be a gas other than air, such as nitrogen, or a liquid such as fresh water or filtered seawater.
  • the operation method of the ballast water production apparatus includes a water filling process, a filtration process, a pressurization process, and a backwash process, which are preparatory processes for filtration.
  • the filtration pump 2 When the filtered water production apparatus 1 is operated by operating a start button (not shown) installed in the controller 30, the filtration pump 2 is activated first, and the first automatic open / close valve MV1 and the fifth automatic open / close valve MV5 are opened. To enter the water filling process. In the water filling process, the second to fourth automatic open / close valves MV2 to MV4 are closed, and the supply of the filtrate FW from the depth filter 10 to the secondary filtration unit 26 and the supply of the compressed air A to the depth filter 10 are stopped. Then, the raw water RW flows through the discharge passage 14 through the primary filtration unit 4 and the communication passage 15 and is discharged to the outside, whereby the raw water passage 5 and the primary filtration unit 4 are vented and filled with water.
  • the fifth automatic open / close valve MV5 is closed, the second automatic open / close valve MV2 is opened, and the filtration process is started.
  • the raw water RW is supplied to the primary filtration unit 4 while the drainage from the depth filter 10 and the compressed air supply to the depth filter 10 are stopped, and the filtrate FW is sent to the filtrate passage 8.
  • the raw water RW passes through the filtration membrane of the depth filter 10 from the outside of the depth filter 10 and flows into the hollow portion 11, thereby removing foreign substances in the raw water RW and filtering.
  • the filtrate FW passes through the filtrate passage 8 and is supplied to the secondary filtration unit 26 and is filtered again to become treated water TW.
  • the filtered water pump 2 is stopped, the first and second automatic open / close valves MV1 and MV2 are closed, the third automatic open / close valve MV3 is opened, and the pressurization process is started.
  • the pressurizing step the compressed air A is allowed to flow to the primary filtration unit 4 in a state where supply of the filtered water FW from the depth filter 10 to the secondary filtration unit 26 and supply of the raw water RW to the depth filter 10 are stopped.
  • the primary filtration unit 4 By pressurizing the primary filtration unit 4 in this way, the filtered water FW is prevented from flowing back into the fluid supply passage 12 in the next backwashing step.
  • the fourth automatic opening / closing valve MV4 is opened and the back washing process is started.
  • the compressed air A is supplied to the hollow portion 11 of the depth filter 10 while the supply of the raw water RW to the primary filtration unit 4 and the supply of the filtrate FW to the secondary filtration unit 26 are stopped. Then, this compressed air A flows through the discharge passage 14. As a result, the compressed air A passes through the depth filter 10 in the opposite direction to the filtration step, and the foreign matter adhering to the depth filter 10 and the foreign matter accumulated in the housing 9 are led out of the primary filtration unit 4 and discharged. 14 to the outside.
  • the third and fourth automatic open / close valves MV3 and 4 are closed, the filtrate pump 2 is started, the first and fifth automatic open / close valves MV1 and 5 are opened, and the process returns to the water filling process.
  • the filtered water FW filtered by the depth filter 10 immediately after the backwashing may become turbid due to accumulation of ultrafine particles clogged in the gaps of the depth filter 10 during the backwashing. 14 is discharged to the outside. Thereafter, this loop is repeated.
  • the duration of the water filling process is variably set by a time device such as a timer. The set time varies depending on the size of the filtration equipment, but is, for example, about 5 seconds.
  • the pressurization is for a very short time, for example, about 3 seconds, and this is also variably set by a timing device such as a timer.
  • a timing device such as a timer.
  • the time of a filtration process and a backwash process changes with the water quality of raw
  • the transition from the filtration step to the pressurization step may be performed when the measured flow rate Q of the flow meter FI becomes smaller than a specified value.
  • the controller 30 constantly monitors the measured flow rate Q. If the measured flow rate Q exceeds the alarm value H1, an alarm such as a buzzer is issued to call attention. At this point, the filtration device 1 continues to operate. Further, when the measured flow rate Q increases and exceeds the emergency stop value H2, an alarm such as a bell is issued, and the filtration device 1 is urgently stopped. Specifically, the controller 30 stops the filtration pump 2 and closes all the automatic open / close valves MV1 to MV5.
  • the depth filter 10 having a pore diameter of 1 to 25 ⁇ m is used as the filter medium, it is possible to remove conspicuous suspended matters and to reduce initial introduction costs compared to the case of using a surface filter. it can. Moreover, since the filtration performance of the depth filter 10 can be recovered and used by performing the backwashing, the replacement frequency of the depth filter 10 can be reduced and the maintenance cost can be suppressed. Further, since the communication passage 15 that connects the filtrate water passage 8 and the discharge passage 14 and the fifth automatic opening / closing valve MV5 that opens and closes the communication passage 15 are provided, the filtrate FW in which very fine particles immediately after the backwashing are accumulated is collected. Can be discharged to the drainage passage 14, and the turbid filtered water RW can be prevented from being supplied.
  • the equipment can be further simplified.
  • the discharge port 22 and the raw water supply port 18 are the same, the discharge port 22 and the raw water supply port 18 can be made common to simplify the configuration.
  • the filtered water FW after backwashing is discharged through the communication passage 15 and the drainage passage 14 in the preparation step. FW does not become cloudy.
  • the depth filter 10 can collect the substance to be filtered in the entire thickness direction of the filter. There is no clogging for a long time.
  • a verification experiment was performed using the depth filter 10 in the present embodiment.
  • the raw water is seawater, and the supply pressure and flow rate of the raw water are 0.03 MPa and 0.037 m 3 / min, respectively.
  • Compressed air is used as the backwash fluid, and the supply pressure and flow rate of the compressed air are 0.13 MPa and 0.4 Nm 3 / min, respectively.
  • the depth filter used had a length of 25 cm and a pore size of 1 ⁇ m and 25 ⁇ m. Further, the axis of the depth filter was arranged to be inclined by 45 ° with respect to the horizontal plane.
  • Verification 1 Initial pressure loss Table 1 shows the pressures at the primary and secondary sides of the depth filter when raw water is supplied in depth filters with pore sizes of 0.5 ⁇ m, 1 ⁇ m and 25 ⁇ m when the raw water temperature is 25 ° C. It shows the difference. As apparent from Table 1, the pressure loss was small in the depth filters of 1 ⁇ m and 25 ⁇ m, but the pressure loss was extremely large in the depth filter of 0.5 ⁇ m, and almost no raw water flowed. Accordingly, the pore diameter of the depth filter is preferably 1 ⁇ m or more.
  • Verification 2 Backwashing effect Table 2 shows the state of the depth filter when the continuous filtration operation and the filtration operation / backwashing operation are alternately performed for each of the depth filters having a pore diameter of 1 ⁇ m and 25 ⁇ m. ).
  • the filtration operation and the backwash operation were alternately repeated every 5 minutes.
  • the differential pressure increased in about 2 hours for the 25 ⁇ m depth filter and in about 40 minutes for the 1 ⁇ m depth filter, and the depth filter was blocked.
  • the differential pressure did not increase after 5 hours of continuous operation, and the depth filter was not blocked.
  • Verification 3 Water quality of filtered water Table 3 shows the number of particles according to size (the number of particles in water) contained in 1 ml of raw water and filtered water and the removal rate in each of depth filters with pore diameters of 1 ⁇ m and 25 ⁇ m.
  • the denominator of each data represents the number of underwater particles in raw water
  • the numerator represents the number of underwater particles in filtered water
  • the numerical value in parentheses represents the removal rate.
  • the depth filter having a pore diameter of 25 ⁇ m 95% or more of particles having a particle diameter of 25 ⁇ m or more are removed, and approximately 88% of particles having a diameter of 10 ⁇ m or more are removed, and even 60% or more of particles having a diameter of 1 ⁇ m or more are removed.
  • a depth filter having a pore diameter of 1 ⁇ m Since most of the particles of 25 ⁇ m or more are removed, suspended matters in the filtered water are not noticeable. Further, in a depth filter having a pore diameter of 1 ⁇ m, 99% or more of particles having a particle diameter of 25 ⁇ m or more, about 94% of particles of 10 ⁇ m or more are removed, and 80% or more of particles having a diameter of 1 ⁇ m or more are removed.
  • the depth filter 10 used in the present embodiment has almost no pressure loss even if the hole diameter is 1 ⁇ m. Therefore, the projection area of the depth filter 10 is small, and the primary filtration unit 4 is An increase in size can be suppressed. Further, as can be seen from the result of verification 2, it can be used repeatedly by performing backwashing. Thereby, the lifetime is remarkably increased. Further, as can be seen from the result of the verification 3, 90% or more of particles having a pore diameter of 25 ⁇ m or more and 80% or more of particles having 10 ⁇ m or more are removed. Therefore, the hole diameter of the depth filter 10 can be set to 1 to 25 ⁇ m.
  • the present invention can be applied not only as a substitute for a sand filtration device but also as a substitute for a diatomaceous earth filter, a cartridge filter, a pleat filter, a micromesh filter, and the like.
  • Specific fields of use include, for example, pool water circulation filtration, bathtub water circulation filtration, seawater desalination plant, industrial water filtration, wastewater treatment filtration, oil filtration, fuel filtration, water and sewage water filtration or filtration in beverage manufacturing processes, etc. is there. Therefore, such a thing is also included in the scope of the present invention.
  • Filtration water production equipment 4 Primary filtration unit 8 Filtrated water passage 9 Case 10 Depth filter (filter material) 12 Gas supply passage 14 Discharge passage 15 Communication passage 16 Filtration water outlet 18 Raw water supply port 22 Discharge port 24 Gas supply port 26 Secondary filtration unit 38 Filter medium MV5 Fifth automatic opening / closing valve A Compressed air FW Filtration water RW Raw water

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)

Abstract

 デプスフィルタ10およびそれを収容する筐体9を含み、原水RWをろ過する一次ろ過ユニット4を有するろ過装置1であって、筐体9が、デプスフィルタ10に原水RWを供給する原水供給口18と、ろ過水の取出口16と、デプスフィルタ10に逆洗用の流体を供給する流体供給口24と、デプスフィルタ10を逆洗した流体Aおよび原水RWを排出する排出口22を有し、デプスフィルタ10を形成するろ過膜の孔径が1~25μmであり、さらに、ろ過水取出口16に接続されるろ過水通路8と排出口22に接続される排出通路14とを連通させる連通路15と、連通路15を開閉する第5自動開閉弁MV5を備えている。

Description

ろ過装置およびその製造方法 関連出願
 本出願は、2009年2月16日出願の特願2009-32872および2009年11月16日出願の特願2009-260648の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、例えばプールや温泉の水の循環ろ過や、海水淡水化プラントなどの水のろ過に用いるろ過装置に関するものである。
 一般に、浴槽やプール水の循環ろ過などでは、砂ろ過装置が用いられている。砂ろ過装置は、例えば、砂利を積んだ層の上に砂の層を重ねて造り、これらの層に水を通過させ、水中の細かいごみ、浮遊物等を取り除くものであるが、装置が大きいため広い設置スペースを要するというデメリットがある。
 また、砂ろ過装置以外に、より小さい粒子を取り除くことのできる合成樹脂でできた膜を使う膜ろ過装置がある。膜ろ過装置は、砂ろ過装置に比べて小型で、小さいスペースで装置を設置することができる(例えば、特許文献1)。
 海水の淡水化プラントなどでは、限外ろ過膜や逆浸透膜などが用いられているが、その前段階に砂ろ過装置が用いられることが多い。
特開2002-096064号公報
 膜ろ過装置に用いられるフィルタとして、サーフェスフィルタとデプスフィルタとがある。サーフェスフィルタはろ材表面で異物を捕捉するフィルタで、例えば、ろ過表面積を多くしてろ過抵抗を下げつつ異物の捕集量を多くした高精度ろ過に使用される。サーフェスフィルタは逆流洗浄を行うことで繰り返し使用できるが、デプスフィルタに比べて捕集する異物量が少ないから、比較的汚れの多い水のろ過には適さず、また高価でもあるので、その用途は限定されてしまう。
 デプスフィルタはろ材間の空隙で異物を捕捉するフィルタで、捕集する異物量が多いので、比較的汚れの多いろ過にも使用される。デプスフィルタはサーフェスフィルタに比べて安価であるが、ろ材の表面ではなくろ材間の空隙で異物を捕捉するので、サーフェスフィルタよりも逆流洗浄を行い難い。デプスフィルタを逆流洗浄後にろ過を行なうと、逆流洗浄中にろ材間の空隙に挟まった極微細な粒子が、ろ過再開直後のろ過水に集積し、ろ過水が濁ったように見えることがある。この微細な粒子は、デプスフィルタの孔径よりも小さなもので、ろ過水中に存在しても問題はないが、用途によってはこのような濁りが問題となる可能性がある。
 海水の淡水化プラントでは、逆浸透膜などによって海水を処理しているが、海水中に存在するさまざまな粒状物質を除去するためにプレフィルタとして砂ろ過装置を設置していることが多い。しかしながら、海水中に存在するプランクトン類、藻類や甲殻類、貝などの幼生が砂ろ過装置に取り付き、生長、繁殖することによって砂ろ過装置が機能不全に陥ることがある。
 本発明は、上記課題に鑑みてなされたもので、初期導入費用および維持管理費用を低く抑えることができるろ過ユニットを備え、小型でろ過水の濁りを抑えることのできるろ過装置を提供することを目的としている。さらに、砂ろ過装置の代替として、あるいは砂ろ過装置のプレフィルタとして作用し、装置の寿命を延ばすことができるろ過装置を提供することを目的としている。
 上記目的を達成するために、本発明に係るろ過装置は、ろ材およびそれを収容する筐体を含み、原水をろ過するろ過ユニットを有するろ過装置であって、前記筐体が、前記ろ材に原水を供給する原水供給口と、ろ過水の取出口と、前記ろ材に逆洗用の流体を供給する流体供給口と、前記ろ材を逆洗した流体および前記原水を排出する排出口を有し、前記ろ材が孔径1~25μmのデプスフィルタであり、さらに、前記ろ過水取出口に接続されるろ過水通路と前記排出口に接続される排出通路とを連通させる連通路と、この連通路を開閉する開閉弁とを備えている。逆洗用の流体としては、気体や液体が用いられ、好ましくは気体であり、より好ましくは、空気、窒素等の不活性ガスである。孔径が1μm未満であると目詰まりが発生し、圧力損失が大きくなる。また、孔径が25μmを越えると、ろ過水中の浮遊物が目立つようになる。
 孔径は、以下のように定義される。一定の直径を有する粒子、好ましくは球状ポリスチレンまたはガラスビーズを水中に10000個/L添加した液を、デプスフィルタ(外径60mm、内径30mm、長さ250mm)に25℃、1.0m/hの条件で通水させ、デプスフィルタを透過した粒子数を光学式カウンターで測定し、通水前後の液中に存在する粒子数の差を通水前の液に存在する粒子数で除して得られる捕集率(R%)を複数の粒子について測定し、その測定値を元にして下記の近似式(1)において、Rが90となる粒子の直径(S)の値を求め、これを孔径とする。
 R=100/(1-m×exp{-a×log(S)})  (1)
 ここで、m,aは、デプスフィルタの性状により決まる定数である。
 例えば、粒子の直径が1μmの場合は、球形ポリスチレン微粒子(10000個/L)を添加した液を、デプスフィルタ(外径60mm、内径30mm、長さ250mm)に上記の条件で通水させることで測定が可能である。
 この構成によれば、ろ材に孔径1~25μmのデプスフィルタを用いているので、目立つ大きさの浮遊物を十分取り除くことができるうえに、サーフェスフィルタを用いる場合に比べて、初期導入費用を抑えることができる。また、逆流洗浄を行うことで、ろ材のろ過性能を回復させて使用できるので、ろ材の交換頻度を少なくして、維持管理費用を抑えることができる。さらに、ろ過水通路と排出通路とを連通させる連通路と開閉弁を備えているので、逆流洗浄直後に開閉弁を開放することで、微細粒子が集積したろ過水が排水通路に排出され、濁ったろ過水が流れるのを防ぐことができる。また、このろ過装置を砂ろ過装置の代替として、あるいは砂ろ過装置のプレフィルタとして用いると、水中に存在するプランクトン類などが砂ろ過装置に取り付くのを防いで、装置全体の寿命を延ばすことができる。
 本発明において、さらに、前記ろ過ユニットによりろ過されたろ過水を、限外ろ過膜または逆浸透膜からなるろ材によって再度ろ過する二次ろ過ユニットを備えていることが好ましい。この構成によれば、一次ろ過ユニットと二次ろ過ユニットのろ材が、共通の逆流洗浄用流体で逆流洗浄されるので、設備を一層簡素化できる。さらに、限外ろ過膜または逆浸透膜からなるろ材の負荷を低減させ、高価なろ材の寿命を延ばすことができる。
 本発明において、前記流体供給口と前記ろ過水取出口とが同一であることが好ましい。この構成によれば、流体供給口とろ過水取出口とを共通化して、構成を簡略化することができる。
 本発明において、前記排出口と前記原水供給口とが同一であることが好ましい。この構成によれば、排出口と原水供給口とを共通化して、構成を簡略化することができる。
 本発明に係るろ過水の製造方法は、前記ろ材からのろ過水の供給およびろ材への流体の供給を停止した状態で前記開閉弁を開放することにより、前記ろ過ユニットを経て前記連通路および排出通路から流体を原水とともに排出する準備工程と、ろ材からの原水の排出とろ材への流体供給とを停止した状態で、ろ過ユニットに原水を供給して、ろ過水を前記ろ過水取出口に送るろ過工程と、ろ過水の供給を停止した状態で、ろ過水側からろ材へ流体を供給する逆洗工程とを備えている。
 この構成によれば、逆流洗浄を行うことで、ろ材のろ過性能を回復させて使用されるので、維持管理費用を抑えることができる。また、準備工程において逆流洗浄後のろ過水を連通路および排水通路を経由して排出しているので、逆流洗浄直後にろ過水が濁ることがない。
 この発明は、添付の図面を参考にした以下の好適な実施例の説明からより明瞭に理解されるであろう。しかしながら、実施例および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の第1実施形態に係るろ過水製造装置の系統図である。 同上装置のろ過ユニットの拡大断面図である。 同上装置の運転工程表である。
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は、本発明の第1実施形態に係るろ過ユニットを備えたろ過水製造装置の概略系統図である。ろ過水製造装置1は、原水RWを取り込むろ過ポンプ2と、取り込まれた原水RWをろ過する一次ろ過ユニット4とを備えている。一次ろ過ユニット4には、ろ過ポンプ2により原水RWが供給される原水通路5と、一次ろ過ユニット4からのろ過水FWを取り出すろ過水通路8と、一次ろ過ユニット4内の原水RWを後述する圧縮空気Aとともに排出する排出通路14とが接続され、ろ過水通路8には一次ろ過ユニット4へ圧縮空気Aを供給する気体供給通路12が接続されている。さらに、ろ過水通路8および排出通路14には、両者を連通させる連通路15が接続されている。各通路5,8,12,14,15は配管により形成されている。一次ろ過ユニット4は、筒形の筐体9内にろ過膜を形成するろ材であるデプスフィルタ10が収納されている。
 原水通路5には、原水流量の調整弁として機能する第1自動開閉弁MV1が接続され、ろ過水通路8には、ろ過水FWの送水弁として機能する第2自動開閉弁MV2が接続され、ろ過水通路8における第2自動開閉弁MV2の下流側に流量計FIが設けられている。さらに、ろ過水通路8における流量計FIの下流側には、限外ろ過膜である1μm以下の孔径を有する中空糸膜(図示せず)を有する二次ろ過ユニット26が設けられている。二次ろ過ユニット26は、ろ過水FWをさらに高精度にろ過して処理水TWを精製するもので、ろ材は中空糸膜に限定されず、公知の限外ろ過膜を使用できる。また、限外ろ過膜に代えて逆浸透膜を用いてもよい。さらに、ろ過装置の用途によっては、二次ろ過ユニット26に代えて、ろ過水FWに滅菌用の薬剤を投入してもよく、また、二次ろ過ユニット26を省略することもできる。
 気体供給通路12には圧縮空気導入弁として作用する第3自動開閉弁MV3が接続され、排水通路14には、排水弁として作用する第4自動開閉弁MV4が接続されている。連通路15には、この連通路15を開閉する第5自動開閉弁MV5が接続されている。連通路15は、ろ過水通路8における第2自動開閉弁MV2の上流側から分岐して、排水通路14における第4自動開閉弁MV4の下流側に接続されている。前記気体供給通路12の一端は図示しない空気圧縮機に接続されており、他端が一次ろ過ユニット4の上部の二次側に接続されている。ろ過ポンプ2および第1~5自動開閉弁MV1~MV5の駆動は、コントローラ30により制御されている。また、流量計FIの出力はコントローラ30に入力されている。各自動開閉弁MV1~5としては、エア駆動弁、電動弁、電磁弁あるいはコントローラを使用しない手動弁などが用いられる。
 二次ろ過ユニット26の中空糸膜を逆流洗浄する流体と、一次ろ過ユニット4のデプスフィルタ10を逆流洗浄する流体とを同一とすることで、装置全体の構成を簡略化することができる。また、既存の設備として、例えば、砂ろ過装置と逆流洗浄を行う二次ろ過ユニットとを有するろ過設備がある場合、砂ろ過装置を本発明の一次ろ過ユニット4と置き換えることで、既存の逆流洗浄用の流体を使用できる。二次ろ過ユニットを含んでいない既存のろ過装置に対しても、そのろ過装置を本発明のろ過ユニット4に交換し、逆流洗浄用の設備を導入したうえで、既存のろ過水通路と排水通路とを連通する連通路を設けることで、既存のろ過水装置にも本発明を適用できる。
 図2に示すように、デプスフィルタ10は、一端が開口し、他端が閉止部材13により閉塞された中空円筒状であり、その一端である開口端10aをろ過水取出口16に向けることにより、デプスフィルタ10の中空部11をろ過水取出口16に連通させている。原水RWは、デプスフィルタ10を径方向に通過する際に、フィルタ内部の空孔により異物が捕捉され、ろ過水FWが得られる。デプスフィルタ10はまた、一次ろ過ユニット4の筐体9内に着脱自在に収納されて、開口端10aが他端である閉止端10bよりも上になるように配置されている。本実施形態では、一次ろ過ユニット4は、デプスフィルタ10の長手方向の中心線Cが鉛直方向を向くように配置されているが、一次ろ過ユニット4がろ過水取出口16に向かって斜め上方へ傾斜するように配置してもよい。
 ろ過ユニット4の円筒状の筐体9は、下側の一端壁9aと、周壁9bと、上側の他端壁9cとからなっている。筐体9の一端壁9aに、原水通路5に接続される原水供給口18および排出通路14に接続される排出口22が形成され、他端壁9cに流体供給通路12に接続される流体供給口24およびろ過水通路8に接続されるろ過水取出口16が形成されている。つまり、ろ過水取出口16は、筐体9の最上部に配置されている。本実施形態では、原水供給口18と排出口22とが同一となっているが、別々に設けてもよい。また、ろ過水取出口16と流体供給口24を同一としてもよい。
 筐体9の周壁9bにおける流体供給口24およびろ過水取出口16よりも軸方向の下方に環状の底板9dが設けられ、デプスフィルタ10の開口端10aが該底板9dに支持されている。つまり、筐体9における他端壁9cと底板9dとの間には空間Sが形成され、この空間Sに流体供給口24、ろ過水取出口16およびデプスフィルタ10の開口端10aが臨んでおり、デプスフィルタ10の中空部11と空間Sが連通している。つまり、開口端10aが閉止端10bよりも上になるように配置されている。原水供給口18および排出口22は、デプスフィルタ10の一次側に設けられており、ろ過水取出口16は二次側に設けられている。
 デプスフィルタ10は外圧方式の円筒状フィルタであり、縦断面形状がコ字形である。該デプスフィルタ10は、例えば、合成繊維や化学繊維をウェブ、不織布、紙、織物等の形態にして溶着・成形等を行い、円筒状に加工した積層タイプと呼ばれるものが例示される。合成繊維としては、ポリオレフィン、ポリエステル、あるいはナイロンやエチレンビニルアルコール共重合体などの熱溶融性ポリマーまたはポリビニルアルコールやポリアクリロニトリルなどのポリマーを用いることができる。中でも、気体による逆流洗浄を行う場合、フィルタ交換時の液きり性の観点から、ポリオレフィンおよびポリエステル、具体的には、ポリプロピレンが好ましい。また、フィルタはその厚み方向において、繊維の密度や繊度を変更し、フィルタの外側(原水流入側)において、繊維密度が低い、あるいは繊度が大きい構造が好ましい。該デプスフィルタ10としては、他にも、フィラメントや紡績糸をスパイラル状に巻きつけた糸巻きフィルタと呼ばれるものや、スポンジのような樹脂成形体である樹脂成形タイプと呼ばれるものがある。
 ろ過膜の孔径は、設備の目的により異なるが、下限は1μm以上である。孔径が小さ過ぎると目詰まりが発生し、圧力損失が大きくなる。孔径の上限は、25μmである。孔径が25μmを越えると、ろ過水FW中の浮遊物が目立つようになる。孔径の上限は10μm以下が好ましく、5μm以下がさらに好ましい。
 デプスフィルタ10は当該一次ろ過ユニット4においては逆洗可能であり、逆洗によりろ過性能を回復させて、ろ過時の差圧が上昇することなく使用できる。本実施形態では、逆洗は、コンプレッサ(図示しない)から気体供給通路12を通って供給される圧縮空気Aにより行っている。逆洗に用いられる流体は空気以外の気体、例えば窒素等でもよく、また、真水、ろ過された海水等の液体でもよい。
 次に、図1および図3を用いて、ろ過水製造装置の運転方法、つまり、本実施形態に係るろ過ユニットによるろ過水製造方法について説明する。図3に示すように、バラスト水製造装置の運転方法は、ろ過の準備工程である充水工程、ろ過工程、加圧工程および逆洗工程からなる。
 コントローラ30に設置された始動ボタン(図示しない)を操作してろ過水製造装置1を作動させると、まずろ過ポンプ2が起動し、第1自動開閉弁MV1と第5自動開閉弁MV5とを開いて充水工程に入る。充水工程では、第2~4自動開閉弁MV2~4を閉じて、デプスフィルタ10から二次ろ過ユニット26へのろ過水FWの供給およびデプスフィルタ10への圧縮空気Aの供給を停止した状態で、一次ろ過ユニット4および連通路15を経て排出通路14に原水RWを流して、外部へ排出することにより、原水通路5および一次ろ過ユニット4のエア抜きおよび充水を行う。
 つづいて、第5自動開閉弁MV5を閉じ、第2自動開閉弁MV2を開いてろ過工程に入る。ろ過工程では、デプスフィルタ10からの排水とデプスフィルタ10への圧縮空気供給とを停止した状態で、一次ろ過ユニット4に原水RWを供給して、ろ過水FWをろ過水通路8に送る。このとき、原水RWはデプスフィルタ10の外側からデプスフィルタ10のろ過膜を通過して中空部11へ流入することにより、原水RW中の異物が除去されてろ過される。ろ過水FWはろ過水通路8を通って、二次ろ過ユニット26へ供給され、再度ろ過されて処理水TWとなる。
 次に、ろ過水ポンプ2を停止し、第1および2自動開閉弁MV1,2を閉じ、第3自動開閉弁MV3を開けて加圧工程に入る。加圧工程では、デプスフィルタ10から二次ろ過ユニット26へのろ過水FWの供給およびデプスフィルタ10への原水RWの供給を停止した状態で、圧縮空気Aを一次ろ過ユニット4に流す。こうして一次ろ過ユニット4を加圧することにより、次の逆洗工程においてろ過水FWが流体供給通路12に逆流してくるのを防ぐ。
 つづいて、第1、2自動開閉弁MV1、2を閉じたままで、第4自動開閉弁MV4を開けて逆洗工程に入る。逆洗工程では、一次ろ過ユニット4への原水RWの供給、および二次ろ過ユニット26へのろ過水FWの供給が停止されている状態で、デプスフィルタ10の中空部11へ圧縮空気Aを供給し、この圧縮空気Aを排出通路14に流す。これにより、圧縮空気Aがろ過工程とは逆方向にデプスフィルタ10を通過して、デプスフィルタ10に付着した異物および筐体9内に溜まった異物を一次ろ過ユニット4外へ導出させ、排出通路14から外部へ排出する。
 逆洗工程が完了すると、第3、4自動開閉弁MV3、4を閉めて、ろ過水ポンプ2を起動し、第1および5自動開閉弁MV1、5を開いて、充水工程に戻る。逆流洗浄直後のデプスフィルタ10でろ過されたろ過水FWは、逆流洗浄時にデプスフィルタ10の空隙に詰まった極微粒子が集積して濁ることがあるが、この濁った水は連通路15から排水通路14を通って外部へ排出される。以降このループが繰り返される。充水工程の継続時間は、タイマのような時限装置により可変設定される。設定時間はろ過設備の規模によって異なるが、例えば、5秒程度である。加圧はごく短時間、例えば3秒程度であり、これもタイマのような時限装置により可変設定される。ろ過工程および逆洗工程の時間は、原水の水質や設備の規模により異なるが、例えば、1分から5分程度で、これもタイマのような時限装置により可変設定される。ろ過工程から加圧工程への移行は、流量計FIの測定流量Qが規定値よりも小さくなった時点で行うようにしてもよい。
 ろ過工程中は、コントローラ30が常時測定流量Qを監視しており、測定流量Qが警報値H1を上回ると、例えばブザーのような警報を発し注意を促す。この時点ではろ過装置1は運転を継続する。さらに、測定流量Qが大きくなり非常停止値H2を上回ると、例えばベルのような警報を発し、ろ過装置1が緊急停止する。具体的には、コントローラ30がろ過ポンプ2を停止させ、すべての自動開閉弁MV1~5を閉止させる。
 上記構成において、ろ材に孔径1~25μmのデプスフィルタ10を用いているので、目立つ大きさの浮遊物を取り除くことができるうえに、サーフェスフィルタを用いる場合に比べて、初期導入費用を抑えることができる。また、逆流洗浄を行うことで、デプスフィルタ10のろ過性能を回復させて使用できるので、デプスフィルタ10の交換頻度を少なくして、維持管理費用を抑えることができる。さらに、ろ過水通路8と排出通路14とを連通させる連通路15とこの連通路15を開閉する第5自動開閉弁MV5を備えているので、逆流洗浄直後の極微細粒子が集積したろ過水FWが排水通路14に排出され、濁ったろ過水RWが供給されるのを防ぐことができる。
 また、一次ろ過ユニット4のデプスフィルタ10と二次ろ過ユニット26の中空糸膜が、共通の圧縮空気Aで逆流洗浄されるので、設備を一層簡素化できる。
 排出口22と原水供給口18とが同一であるので、排出口22と原水供給口18とを共通化して、構成を簡略化することができる。
 さらに、上記運転方法によれば、図3に示すように、準備工程において逆流洗浄後のろ過水FWを連通路15および排水通路14を経由して排出しているので、逆流洗浄直後にろ過水FWが濁ることがない。
 また、デプスフィルタ10は、被ろ過物質をフィルタの表面のみで捕集するサーフェスフィルタと異なり、フィルタの厚み方向全体で被ろ過物質を捕集することができるので、捕集量が多く、フィルタが長時間目詰まりを起こすことがない。
 本実施形態におけるデプスフィルタ10を用いて、検証実験を行った。原水は海水で、原水の供給圧力、流量は、それぞれ0.03MPa、0.037m/minである。逆洗用の流体には圧縮空気を用いて、圧縮空気の供給圧力、流量は、それぞれ0.13MPa、0.4Nm/minである。使用したデプスフィルタは、長さ25cmで、孔径は1μm,25μmとした。また、デプスフィルタの軸心を水平面に対して45°傾斜させて配置した。
 検証1:初期圧力損失
 表1は、原水温度が25℃のときの孔径0.5μm、1μmおよび25μmのデプスフィルタにおいて、原水を供給した際のデプスフィルタの一次側と二次側との圧力の差を示したものである。表1から明らかなように、1μmおよび25μmのデプスフィルタにおいては圧力損失が小さいが、0.5μmのデプスフィルタにおいては圧力損失が極めて大きく、ほとんど原水が流れなくなった。したがって、デプスフィルタの孔径は1μm以上であることが好ましい。
Figure JPOXMLDOC01-appb-T000001
 検証2:逆洗効果
 表2は、孔径1μmと25μmのデプスフィルタのそれぞれにおいて、連続ろ過運転した場合と、ろ過運転・逆洗運転を交互に行った場合のデプスフィルタの状態(差圧の状況)を示したものである。ろ過・逆洗の交互運転は、ろ過運転と逆洗運転を5分毎に交互に繰り返した。連続ろ過運転をした場合、25μmのデプスフィルタでは約2時間で、1μmのデプスフィルタでは約40分間で差圧が上昇し、デプスフィルタが閉塞した。ろ過・逆洗の交互運転では、1μm、25μmのどちらのデプスフィルタにおいても、5時間連続運転後も差圧の上昇はなく、デプスフィルタの閉塞はなかった。
Figure JPOXMLDOC01-appb-T000002
 検証3:ろ過水の水質
 表3は、孔径1μm、25μmのデプスフィルタそれぞれにおける、原水およびろ過水1ml中に含まれるサイズ別の粒子の数(水中パーティクル数)と、除去率を示している。各データの分母が原水における水中パーティクル数、分子がろ過水における水中パーティクル数を表し、括弧内の数値は除去率を表している。孔径が25μmのデプスフィルタでは、粒子径が25μm以上の粒子の95%以上、10μm以上の粒子の約88%が除去され、1μm以上の粒子でも60%以上が除去されている。25μm以上の粒子の大部分が除去されていることにより、ろ過水中の浮遊物が目立たない。さらに、孔径が1μmのデプスフィルタでは、粒子径が25μm以上の粒子の99%以上、10μm以上の粒子の約94%が除去され、1μm以上の粒子でも80%以上が除去されている。
Figure JPOXMLDOC01-appb-T000003
 検証1の結果から分かるように、本実施形態に使用するデプスフィルタ10は、孔径が1μmであっても圧力損失がほとんどないので、デプスフィルタ10の投影面積が少なくて済み、一次ろ過ユニット4が大型化するのを抑えることができる。また、検証2の結果から分かるように、逆洗を行うことで、繰り返し使用可能となる。これにより、寿命が格段に長くなる。さらに、検証3の結果から分かるように、孔径が25μmのもので、25μm以上の粒子の90%以上、10μm以上の粒子の80%以上を除去している。したがって、デプスフィルタ10の孔径は1~25μmとすることができる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、本発明は、砂ろ過装置の代替としてだけではなく、珪藻土ろ過代替、カートリッジフィルタ代替、プリーツフィルタ代替およびマイクロメッシュフィルタ代替等にも適用できる。具体的な使用分野としては、例えば、プール水循環ろ過、浴槽水循環ろ過、海水淡水化プラント、工業用水ろ過、廃水処理ろ過、油ろ過、燃料ろ過、上下水道水ろ過または飲料製造工程でのろ過等である。したがって、そのようなものも本発明の範囲内に含まれる。
1 ろ過水製造装置(ろ過システム)
4 一次ろ過ユニット
8 ろ過水通路
9 筐体
10 デプスフィルタ(ろ材)
12 気体供給通路
14 排出通路
15 連通路
16 ろ過水取出口
18 原水供給口
22 排出口
24 気体供給口
26 二次ろ過ユニット
38 ろ材
MV5 第5自動開閉弁
A 圧縮空気
FW ろ過水
RW 原水

Claims (5)

  1.  ろ材およびそれを収容する筐体を含み、原水をろ過するろ過ユニットを有するろ過装置であって、
     前記筐体が、前記ろ材に原水を供給する原水供給口と、ろ過水の取出口と、前記ろ材に逆洗用の流体を供給する流体供給口と、前記ろ材を逆洗した流体および前記原水を排出する排出口を有し、
     前記ろ材が孔径1~25μmのデプスフィルタであり、
     さらに、前記ろ過水取出口に接続されるろ過水通路と前記排出口に接続される排出通路とを連通させる連通路と、この連通路を開閉する開閉弁とを備えたろ過装置。
  2.  請求項1において、さらに、前記ろ過ユニットによりろ過されたろ過水を、限外ろ過膜または逆浸透膜からなるろ材によって再度ろ過する二次ろ過ユニットを備えたろ過装置。
  3.  請求項1において、前記流体供給口と前記ろ過水取出口とが同一であるろ過装置。
  4.  請求項1において、前記排出口と前記原水供給口とが同一であるろ過装置。
  5.  請求項1に記載のろ過装置を用いたろ過水製造方法であって、
     前記ろ材からのろ過水の供給およびろ材への流体の供給を停止した状態で前記開閉弁を開放することにより、前記ろ過ユニットを経て前記連通路および排出通路から流体を原水とともに排出する準備工程と、
     ろ材からの原水の排出とろ材への流体供給とを停止した状態で、ろ過ユニットに原水を供給して、ろ過水を前記ろ過水取出口に送るろ過工程と、
     ろ過水の供給を停止した状態で、ろ過水側からろ材へ流体を供給し、この流体を前記排出口から前記排出通路を経て排出する逆洗工程と、
     を備えたろ過水製造方法。
PCT/JP2010/052105 2009-02-16 2010-02-12 ろ過装置およびその製造方法 WO2010093026A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117019035A KR101717307B1 (ko) 2009-02-16 2010-02-12 여과 장치 및 그 제조 방법
EP10741303.1A EP2397209B1 (en) 2009-02-16 2010-02-12 Filtering device and method of operation
US13/148,959 US9050563B2 (en) 2009-02-16 2010-02-12 Filtering device and method of manufacturing same
CN2010800079028A CN102316953A (zh) 2009-02-16 2010-02-12 过滤装置及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009032872 2009-02-16
JP2009-032872 2009-02-16
JP2009260648A JP2010207800A (ja) 2009-02-16 2009-11-16 ろ過ユニットおよびこれを備えたろ過装置
JP2009-260648 2009-11-16

Publications (1)

Publication Number Publication Date
WO2010093026A1 true WO2010093026A1 (ja) 2010-08-19

Family

ID=42561866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052105 WO2010093026A1 (ja) 2009-02-16 2010-02-12 ろ過装置およびその製造方法

Country Status (7)

Country Link
US (1) US9050563B2 (ja)
EP (1) EP2397209B1 (ja)
JP (1) JP2010207800A (ja)
KR (1) KR101717307B1 (ja)
CN (1) CN102316953A (ja)
TW (1) TWI386249B (ja)
WO (1) WO2010093026A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10500527B2 (en) 2015-03-04 2019-12-10 Kuraray Co., Ltd. Ballast water production method and ballast water treatment system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207800A (ja) * 2009-02-16 2010-09-24 Kuraray Co Ltd ろ過ユニットおよびこれを備えたろ過装置
SG2014014120A (en) * 2011-09-15 2014-08-28 Toray Industries Freshwater production apparatus and method for producing freshwater
DK2800618T3 (en) 2012-01-04 2018-05-28 Univ North Carolina State ELASTOMES DEPTH FILTER
CN102949935A (zh) * 2012-07-12 2013-03-06 刘爱东 水质分流制纯水机
CN104743693A (zh) * 2013-12-27 2015-07-01 三菱丽阳株式会社 净水系统
JP6333097B2 (ja) * 2014-07-14 2018-05-30 東京都下水道サービス株式会社 流路洗浄装置を備えたフィルタ洗浄設備
CN105536341B (zh) * 2015-11-17 2017-10-13 内蒙古包钢钢联股份有限公司 反渗透水处理系统一次过滤器和二次过滤器反洗方法
US11767501B2 (en) 2016-05-09 2023-09-26 Global Algae Technology, LLC Biological and algae harvesting and cultivation systems and methods
EP3458182B1 (en) 2016-05-09 2021-11-10 Global Algae Technology, LLC Algae harvesting systems
CN109562965B (zh) 2016-08-05 2021-11-26 东丽株式会社 存储有分离膜组件的堵塞位置确定程序的计算机可读取记录介质、造水系统和造水方法
JP2019098271A (ja) * 2017-12-05 2019-06-24 オルガノ株式会社 クランプバンド、フィルタハウジングおよび濾過システム
US11261102B2 (en) * 2020-05-01 2022-03-01 Jacob H. Berg Reverse osmosis prefilter system
CN113230724A (zh) * 2021-06-22 2021-08-10 中联西北工程设计研究院有限公司 一种给排水用过滤系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096064A (ja) 2000-09-22 2002-04-02 Kuraray Co Ltd 貯水の循環浄化方法
WO2007097046A1 (ja) * 2006-02-24 2007-08-30 Ihi Compressor And Machinery Co., Ltd. シリコン粒子の処理方法及び装置
JP2007533429A (ja) * 2003-08-04 2007-11-22 スティーブン・エイチ・シュワルツコプフ 超浮揚性濾過粒子を有する液体濾過装置および方法
JP2007326065A (ja) * 2006-06-09 2007-12-20 Toray Ind Inc 浄水器
JP2009032872A (ja) 2007-07-26 2009-02-12 Sharp Corp 半導体装置の製造方法
JP2009260648A (ja) 2008-04-16 2009-11-05 Konica Minolta Business Technologies Inc 画像読取り装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024313A (ja) 1983-07-19 1985-02-07 Ishikawajima Harima Heavy Ind Co Ltd 溶鋼の精錬装置
JPS60124617A (ja) 1983-12-12 1985-07-03 Toshiba Corp 樹脂封止型発光装置
JPH0261407U (ja) 1988-10-24 1990-05-08
JPH0330806A (ja) 1989-06-27 1991-02-08 Nippon Paul Kk カートリッジ式フィルタによる活性炭濾過方法
JPH04305209A (ja) 1991-03-29 1992-10-28 Ishigaki Mech Ind Co ろ過濃縮装置
US5259954A (en) * 1991-12-16 1993-11-09 Sepratech, Inc. Portable intravenous solution preparation apparatus and method
JPH06142417A (ja) 1992-11-06 1994-05-24 Roki Techno:Kk プリーツ式フイルターカートリッジ
US5476591A (en) 1993-05-25 1995-12-19 Harrison Western Environmental Services, Inc. Liquid treatment system and method for operating the same
JPH07222988A (ja) * 1994-02-15 1995-08-22 Shikoku Chem Corp 汚水の処理方法
WO1996032183A1 (fr) * 1995-04-14 1996-10-17 Aquasource Procede pour faire fonctionner et controler un groupe de modules de membranes de filtration, et groupe de modules mettant en ×uvre le procede
WO1997010047A1 (en) * 1995-09-14 1997-03-20 Pall Corporation Method and device for removing iron from aqueous liquids
JP2779146B2 (ja) 1995-09-28 1998-07-23 壽工業株式会社 非常用浄水装置
JP2000117013A (ja) 1998-10-14 2000-04-25 Marusei Heavy Industry Works Ltd 海水等を濾過する超微細型フィルタ−
CN2431033Y (zh) * 1998-10-18 2001-05-23 杜焕强 供水过滤净水器
ATE260697T1 (de) * 1999-03-17 2004-03-15 Foster Miller Inc Sensible gele und verfahren zur ihrer verwendung
JP4053200B2 (ja) 1999-12-20 2008-02-27 神奈川機器工業株式会社 逆洗型ろ過機
NL1017681C2 (nl) * 2001-03-23 2002-10-10 Prime Water Systems Gmbh Filtersysteem.
JP2002355678A (ja) 2001-05-30 2002-12-10 Mishima Kosan Co Ltd 殺菌水の製造方法及び製造装置
US20030042201A1 (en) * 2001-06-19 2003-03-06 Sizelove Mark L. Medical grade water production system
DE10155591B4 (de) 2001-11-13 2004-05-06 Seitzschenk Filtersystems Gmbh Filtermodul und Verfahren zu dessen Herstellung
JP3857164B2 (ja) 2002-03-22 2006-12-13 日本碍子株式会社 フィルタの設置構造
DE60313451T2 (de) * 2002-05-14 2008-01-03 Merck & Co., Inc. Verfahren zur reinigung von adenovirus
US20040118780A1 (en) 2002-12-20 2004-06-24 Barnstead/Thermolyne Corporation Water purification system and method
JP2007522814A (ja) * 2004-02-23 2007-08-16 クルセル ホランド ベー ヴェー ウイルスの精製方法
JP2006082031A (ja) 2004-09-17 2006-03-30 Tokyo Metropolis Y形ストレーナ
PT1805211E (pt) * 2004-10-27 2009-06-01 Axellia Pharmaceuticals Aps Purificação de glicopéptidos
JP4723229B2 (ja) 2004-11-24 2011-07-13 武郎 吉田 濾過器
DE202005005118U1 (de) * 2005-03-29 2005-06-16 Bobak Wassertechnik Gmbh Festbettfilteranlage
WO2006108025A2 (en) * 2005-04-05 2006-10-12 Cargill, Incorporated System and method for removing contaminants from wastewater
JP4821361B2 (ja) 2006-02-20 2011-11-24 Jfeエンジニアリング株式会社 バラスト水処理方法
KR100963351B1 (ko) 2005-06-10 2010-06-14 제이에프이 엔지니어링 가부시키가이샤 밸러스트수 처리 장치 및 처리 방법
JP5203563B2 (ja) 2005-11-08 2013-06-05 株式会社東芝 膜ろ過システム
JP2007160242A (ja) * 2005-12-15 2007-06-28 Japan Organo Co Ltd バラスト水製造装置、これを搭載する船舶及びバラスト水の製造方法
JP2007284531A (ja) 2006-04-14 2007-11-01 Mitsubishi Chemicals Corp ポリ塩化ビニル樹脂溶解液からの不溶物の除去方法
CN101432057B (zh) 2006-05-02 2013-01-02 比吉尔·尼尔森 从大流量流动液体中分离和过滤颗粒及有机物的装置和方法
JP4706564B2 (ja) 2006-06-06 2011-06-22 東レ株式会社 浄水器
JP2007325994A (ja) 2006-06-06 2007-12-20 Kurita Water Ind Ltd 濾過装置
WO2007142068A1 (ja) 2006-06-07 2007-12-13 Kabushiki Kaisha Yaskawa Denki 船舶用バラスト水の浄化装置
WO2008038575A1 (fr) 2006-09-25 2008-04-03 Toray Industries, Inc. PROCÉDÉ DE FONCTIONNEMENT D'Une installation DE FILTRATION suR MEMBRANE D'OSMOSE INVERSE, ET installation DE FILTRATION sur MEMBRANE D'OSMOSE INVERSE
JP2008136886A (ja) 2006-11-29 2008-06-19 Mitsui Eng & Shipbuild Co Ltd 濾過装置の逆洗方法
JP4866221B2 (ja) 2006-12-07 2012-02-01 オルガノ株式会社 ろ過処理装置およびろ過処理方法
US20080257824A1 (en) 2007-04-23 2008-10-23 Square Peg Engineering, Llc Method and Apparatus for Water Purification and Regeneration of Micro-filtration Tubules
JP4877281B2 (ja) 2008-06-11 2012-02-15 Jfeエンジニアリング株式会社 バラスト水処理装置およびバラスト水処理方法
TWM345640U (en) 2008-07-15 2008-12-01 Shu-Heng Su Enclosure structure of seawater filtering device for vessels
ES2346398T3 (es) * 2008-11-11 2012-05-10 Emd Millipore Corporation Sistema y método de filtración de líquidos
JP2010207800A (ja) * 2009-02-16 2010-09-24 Kuraray Co Ltd ろ過ユニットおよびこれを備えたろ過装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096064A (ja) 2000-09-22 2002-04-02 Kuraray Co Ltd 貯水の循環浄化方法
JP2007533429A (ja) * 2003-08-04 2007-11-22 スティーブン・エイチ・シュワルツコプフ 超浮揚性濾過粒子を有する液体濾過装置および方法
WO2007097046A1 (ja) * 2006-02-24 2007-08-30 Ihi Compressor And Machinery Co., Ltd. シリコン粒子の処理方法及び装置
JP2007326065A (ja) * 2006-06-09 2007-12-20 Toray Ind Inc 浄水器
JP2009032872A (ja) 2007-07-26 2009-02-12 Sharp Corp 半導体装置の製造方法
JP2009260648A (ja) 2008-04-16 2009-11-05 Konica Minolta Business Technologies Inc 画像読取り装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397209A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10500527B2 (en) 2015-03-04 2019-12-10 Kuraray Co., Ltd. Ballast water production method and ballast water treatment system

Also Published As

Publication number Publication date
US9050563B2 (en) 2015-06-09
JP2010207800A (ja) 2010-09-24
KR20110126624A (ko) 2011-11-23
EP2397209B1 (en) 2016-04-20
US20110309038A1 (en) 2011-12-22
EP2397209A4 (en) 2013-10-30
TWI386249B (zh) 2013-02-21
CN102316953A (zh) 2012-01-11
EP2397209A1 (en) 2011-12-21
KR101717307B1 (ko) 2017-03-16
TW201039902A (en) 2010-11-16

Similar Documents

Publication Publication Date Title
WO2010093026A1 (ja) ろ過装置およびその製造方法
JP5723088B2 (ja) バラスト水製造装置
KR100600567B1 (ko) 섬유여과기 내에 침지식 분리막 모듈을 일체화한 수처리장치
JP6607319B2 (ja) 分離膜モジュールの詰まり箇所特定プログラムを記録したコンピュータ読み取り可能な記録媒体、造水システム及び造水方法
MXPA01004926A (es) Modulo y sistema de ultrafiltracion y microfiltracion.
JP2008055282A (ja) ろ過システム
JP2012176343A (ja) 膜濾過装置
JP5105036B2 (ja) 二元給配水システム
EP4154960A1 (en) Hybrid filter assembly
JP2017113735A (ja) 分離膜ろ過装置および浄水装置の運転方法
JP7426478B2 (ja) 選択型両端集水機能を有するフィルタ構造体およびこれを利用した濾過方法
JP5244672B2 (ja) 水処理システム、及び水処理方法
JP4454922B2 (ja) 中空糸型分離膜を用いた濾過装置の制御方法
KR101513249B1 (ko) 2단 역세공정을 이용한 가압식 분리막 모듈의 세정방법
JP2009024111A (ja) 選炭システム
CN221420914U (zh) 一种多级过滤系统及净水设备
WO2011019746A1 (en) Cleanable filtering device
KR20150001228U (ko) 정수기 필터
JP5968592B2 (ja) 浄水システムおよびその運転方法
JP5905905B2 (ja) デプスフィルタを用いた濾過ユニット、及びデプスフィルタを用いた濾過装置
KR20060010990A (ko) 한외여과막 모듈을 이용한 정수 장치 및 이를 이용한 정수방법
JPH1157704A (ja) 浄水装置
CN110282781A (zh) 一种防止净水器废水限流装置污堵的方法和净水机
CN115959723A (zh) 双过滤单元反冲洗过滤装置
JP2020131055A (ja) 水処理装置および水処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007902.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13148959

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010741303

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117019035

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE