WO2010090209A1 - Fft演算装置と電力演算方法 - Google Patents
Fft演算装置と電力演算方法 Download PDFInfo
- Publication number
- WO2010090209A1 WO2010090209A1 PCT/JP2010/051491 JP2010051491W WO2010090209A1 WO 2010090209 A1 WO2010090209 A1 WO 2010090209A1 JP 2010051491 W JP2010051491 W JP 2010051491W WO 2010090209 A1 WO2010090209 A1 WO 2010090209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- complex
- power
- inputs
- output
- fft
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
- G06F17/142—Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2649—Demodulators
- H04L27/265—Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
- H04L27/2651—Modification of fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators for performance improvement
Definitions
- the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2009-025309 (filed on Feb. 5, 2009), the entire description of which is incorporated herein by reference. Shall.
- the present invention relates to an FFT operation circuit and method, and more particularly, to an FFT operation circuit and method suitable for use in OFDM digital baseband processing.
- the received signal power (received signal strength) is calculated to measure the state of the received signal, and as a result, the parameters of the receiving circuit are adjusted, Control is performed such as adjusting the transmission power to an optimum value by feeding back the value to the transmission side.
- OFDM Orthogonal Frequency Division Multiplexing
- FFT Fast Fourier Transform
- A Power calculation is performed on the received signal before the FFT operation processing.
- B Power calculation is performed on the subcarrier signal after the FFT operation processing.
- (B) can calculate received power in a specific frequency range by designating a subcarrier signal to be subjected to power calculation. For this reason, for example, it is possible to use a technique such as calculating the received power of a frequency allocated exclusively for a specific use or calculating the frequency characteristics by comparing the power of each subcarrier.
- Patent Document 1 Japanese Patent Laid-Open No. 9-8765
- the center frequency is calculated by calculating the power for each subcarrier signal for the subcarrier signal obtained by performing the FFT operation, Discloses a configuration for performing frequency correction.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2002-2617257 compares the power of a specific subcarrier with respect to a subcarrier signal obtained by performing FFT calculation processing, and uses it for reception according to the comparison result.
- a configuration for selecting an antenna is disclosed.
- the power calculation circuit or DSP 702 calculates power from the output of the FFT calculator 701 and outputs it as received power.
- Patent Document 5 calculates a correlation value in the time direction between a received data signal and a replica of an SCH (Synchronization Channel) symbol sequence for all subcarriers. A configuration is disclosed in which a subcarrier to which an SCH is assigned is detected based on the correlation value obtained.
- SCH Synchronization Channel
- the first problem is that when an arithmetic circuit dedicated to power calculation is used for power calculation of the received signal after the FFT arithmetic processing, an area overhead is caused by the dedicated arithmetic circuit.
- the second problem is that when a processor such as a DSP is used to calculate the power of the received signal after the FFT operation processing, the processing delay due to the power calculation increases, and the delay time until the reception power value is reported increases. That is.
- an object of the present invention is to provide an FFT processing device that suppresses an increase in circuit area overhead and delay time for calculation processing of received power, and a communication device and method including the FFT processing device.
- the arithmetic unit switching detection unit for detecting that the complex multiplier is not used for the FFT (Fast Fourier Transform) butterfly operation, and the detection result of the arithmetic unit switching detection unit.
- a complex multiplier / power calculator for switching between complex multiplication and power calculation, and the complex multiplication / power calculator performs power calculation at a timing when complex multiplication is not performed in the butterfly calculation of the FFT calculation.
- An FFT arithmetic unit is provided.
- ADVANTAGE OF THE INVENTION According to this invention, the communication apparatus provided with the FFT arithmetic unit is provided.
- a timing at which a complex multiplication is not performed in a FFT (Fast Fourier Transform) butterfly operation is detected, and a power operation is performed using a complex multiplier at a timing at which no multiplication is performed in the FFT butterfly operation.
- a power calculation method is provided in which power calculation is performed simultaneously with FFT calculation.
- the present invention provides a butterfly computing unit that performs FFT computation processing, a means for detecting the final stage of the FFT computation processing, and a complex multiplication / power computation device capable of switching between complex multiplication and power computation.
- a butterfly computing unit that performs FFT computation processing
- a means for detecting the final stage of the FFT computation processing and a complex multiplication / power computation device capable of switching between complex multiplication and power computation.
- power calculation can be performed simultaneously with the final stage of FFT calculation (FIGS. 1 and 3).
- the normal butterfly calculation is performed at the normal stage of the FFT calculation as in the conventional FFT calculator, but the butterfly calculation is performed at the final stage.
- An unused complex multiplier is switched to a power calculator, and power calculation is performed while performing butterfly calculation of FFT calculation.
- the circuit area can be reduced as compared with the configuration using the power calculation dedicated circuit as shown in FIG. This is because a multiplier in the complex arithmetic unit used in the FFT calculation is used as the multiplier used in the power calculation, and it is not necessary to prepare a separate multiplier.
- the delay time due to the received power calculation is short. This is because the power calculation can be performed simultaneously with the FFT calculation, so that no time is required for the power calculation after the FFT calculation.
- FIG. 1 is a diagram showing a configuration of an FFT computing unit according to an embodiment of the present invention.
- butterfly computing unit 101 performs butterfly computation on input data (baseband data input) input from outside the FFT computing unit and rotor data sent from rotor table 102, The result is stored in the memory 103.
- the butterfly operation is performed on the data stored in the memory 103 and the rotor data in the previous stage, and the result is stored in the memory 103 again.
- the subcarrier data which is the result of performing the butterfly operation on the data stored in the memory 103 in the immediately preceding stage, is output to the outside of the FFT operator, and at the same time, the received power is calculated. The result is also output.
- FIG. 2 shows a typical configuration example of a butterfly computing unit as a comparative example.
- the complex adder 201 inputs two data a0 and a1 and outputs a result of complex addition a0 + a1 as b0.
- the complex subtractor 202 inputs the two data a0 and a1 and outputs the result a0-a1 after performing the complex subtraction.
- the complex multiplier 203 outputs the result (a0-a1) ⁇ W obtained by multiplying the rotor data W by a0-a1 as complex data b1.
- FIG. 3 is a diagram illustrating the configuration of the butterfly calculator included in the FFT calculator of the present embodiment.
- this butterfly calculator is (A) a complex adder 301 that inputs a0 and a1 and outputs a complex addition result a0 + a1; (B) a complex subtractor 302 that inputs a0 and a1 and outputs a complex subtraction result a0-a1; (C) an arithmetic unit switching timing detection block 304 for detecting that the complex multiplier is not used for the butterfly calculation; (D) based on a control signal (arithmetic unit switching signal) from the arithmetic unit switching timing detection block 304, a complex multiplication / power arithmetic unit 303 that performs switching between FFT complex multiplication and power calculation; (E) Based on the control signal (arithmetic unit switching signal) from the arithmetic unit switching timing detection block 304, the output of the complex adder 301 and the rotor data are selected, and the
- the complex multiplier / power calculator 303 switches between calculation of whether to perform complex multiplication of two input data a0 and a1 or power calculation according to the state of the control signal from the calculator switching timing detection block 304. Do.
- the selector 305 selects and outputs the rotor data W
- the complex multiplier / power calculator 303 performs an operation of complex multiplication (a0 ⁇ a1) ⁇ W
- the output (a0 + a1) of the complex adder 301 is output as b0.
- the complex multiplier is not used for the butterfly operation
- the selector 305 selects the output of the complex adder 301
- the output (a0 + a1) of the complex adder 301 is output as b0 as the butterfly calculation output of the final stage
- the output (a0-a1) of the complex subtracter 302 selected by the selector 306 is output as b1.
- FIG. 4 shows a butterfly computation flow graph of 8-point FFT computation.
- the lines meet at the intersection it means that data is added, and where there is a value under the line, it means that the data value is multiplied by that value.
- the input data and output data of the FFT operation are all complex numbers.
- FFT processing is normally performed by repeatedly performing butterfly computation according to such a butterfly computation flow graph. For example, in an 8-point FFT operation, four radix-2 butterfly operations are performed for three stages for one stage, and a total of twelve butterfly operations are performed.
- the operation is performed.
- the FFT operation has the property that complex multiplication is not performed in the final stage butterfly operation. Therefore, in the present invention, as shown in FIG. 6, the power is calculated using the complex multiplier used for the butterfly operation in the normal stage at the timing when the complex multiplication is not performed in the final stage of the FFT operation. Yes.
- FIG. 6A is a diagram for explaining the operation of the normal stage (stages other than the final stage) of the comparative example of FIG. 2 (normal FFT calculator) and the FFT calculator of this embodiment of FIG.
- FIGS. 6B and 6C are diagrams for explaining the operation of the final stage of the comparative example (ordinary FFT calculator) and the FFT calculator of this embodiment of FIG. The flow of the butterfly calculation in the normal stage in the butterfly calculator used in the FFT calculator will be described.
- the complex adder 301 performs complex addition of the two input data a0 and a1, and outputs the result data b0.
- the complex subtracter 302 performs complex subtraction of the two input data a0 and a1, and outputs the result data c0.
- the rotor data W passes through the selector 305 (selected by the selector 305) and is output as data c1.
- the data c0 and the data c1 are complex multiplied by the complex multiplication / power calculator 303, and the complex multiplication result becomes the data d, which is output as output data b1 through the selector 306.
- the arithmetic unit switching timing detection block 304 detects the arithmetic unit switching timing and switches the control signal. As a result, the selection of input data in the selector 305 and the selector 306 and the calculation of the complex multiplication / power arithmetic unit 303 are performed. The type of is switched.
- the complex adder 301 performs a complex addition of the two input data a0 and a1, and as a result, outputs the output data b0.
- the complex subtracter 302 performs complex subtraction of the two input data a0 and a1, and outputs complex subtraction result data c0.
- the complex subtraction result data c0 and data c1 are input to the complex multiplication / power calculator 303, the power values of the data c0 and data c1 are calculated, and the data obtained by concatenating these power values is the received power output data P0. , P1 is output.
- received power data is output simultaneously with the FFT result data.
- FIG. 8 shows a configuration example of the complex multiplier / power calculator 303 used as a part of the butterfly calculator of FIG.
- a complex multiplier / power calculator 303 switches input data between four multipliers 501, 502, 503, and 504, an adder / subtracter 505 that can switch between addition and subtraction, and an adder 506.
- a bit concatenation calculator 409 for generating complex data from the data is included.
- the selectors (510, 511, 512, 513) are selected by the calculator switching signal so that the 0-side input is selected, and the adder / subtracter 505 performs subtraction.
- the input data c0 is decomposed into a real part (r0.re) and an imaginary part (c0.im) by the bit extraction calculator 407
- the input data c1 is decomposed into a real part (r1.r) by the bit extraction calculator 408. re) and the imaginary part (c1.im).
- the real part (c0.re) of c0 and the real part (c1.re) of c1 are input to the multiplier 501, and the multiplier 501 outputs (c0.re) ⁇ (c1.re).
- the multiplier 502 receives the imaginary part (c0.im) of c0 and the imaginary part (c1.im) of c1, and the multiplier 502 outputs (c0.im) ⁇ (c1.im).
- the multiplier 503 receives the real part (c0.re) of c0 and the imaginary part (c1.im) of c1, and the multiplier 503 outputs (c0.re) ⁇ (c1.im).
- the imaginary part (c0.im) of c0 and the real part (c1.re) of c1 are input to the multiplier 504, and the multiplier 504 outputs (c0.im) ⁇ (c1.re).
- the calculation result (c0.re) ⁇ (c1.re) of the multiplier 501 and the calculation result (c0.im) ⁇ (c1.im) of the multiplier 502 are input to the adder / subtractor 505, and the multiplier 501
- the result (c0.re) ⁇ (c1.re) ⁇ (c0.im) ⁇ (c1.im) obtained by subtracting the operation result of the multiplier 502 from the operation result is the real part (d.re) of the output data.
- the operation result (c0.re) ⁇ (c1.im) of the multiplier 503 and the operation result (c0.im) ⁇ (c1.re) of the multiplier 504 are input to the adder 506, and
- the result (c0.re) ⁇ (c1.im) + (c0.im) ⁇ (c1.re) obtained by adding the operation result and the operation result of the multiplier 504 is the imaginary part (d.im) of the output data.
- the selector (510, 511, 512, 513) is selected to input one side by the calculator switching signal, and the adder / subtracter 505 is set to perform addition.
- the input data c0 is decomposed into a real part (r0.re) and an imaginary part (c0.im) by the bit extraction calculator 407.
- the input data c1 is decomposed by the bit extraction calculator 408 into a real part (r1.re) and an imaginary part (c1.im).
- the multiplier 501 receives the real part (c0.re) of c0 at both input ports, and the multiplier 501 outputs (c0.re) ⁇ (c0.re).
- the multiplier 502 receives the imaginary part (c0.im) of c0 at both input ports, and the multiplier 502 outputs (c0.im) ⁇ (c0.im).
- the multiplier 503 receives the imaginary part (c1.im) of c1 at both input ports, and the multiplier 503 outputs (c1.im) ⁇ (c1.im).
- the real part (c1.re) of c1 is input to both input ports to the multiplier 504, and the multiplier 504 outputs (c1.re) ⁇ (c1.re).
- the calculation result of the multiplier 501 and the calculation result of the multiplier 502 are input to the adder / subtracter 505, and the result of adding the calculation result of the multiplier 501 and the calculation result of the multiplier 502 (c0.re) ⁇ (c0.re ) + (C0.im) ⁇ (c0.im) is the real part (d.re) of the output data.
- the calculation result of the multiplier 503 and the calculation result of the multiplier 504 are input to the adder 506, and the result of adding the calculation result of the multiplier 503 and the calculation result of the multiplier 504 (c1.im) ⁇ (c1. im) + (c1.re) ⁇ (c1.re) is the imaginary part (d.im) of the output data.
- the real part (d.re) of the output data indicates the power of c0
- the imaginary part (d.im) of the output data indicates the power of c1.
- FIG. 7 is a diagram showing a configuration of a complex multiplier of a comparative example for comparison with the configuration of the multiplication / power calculator of FIG.
- the complex multiplier of the comparative example is not provided with the selector of FIG. 8, and an addition subtracter 501 is provided instead of the subtracter 406.
- FIG. 9 is a diagram showing the configuration of the butterfly computing unit according to the second embodiment of the present invention.
- this butterfly computing unit outputs the result of accumulating the power of the selected subcarrier signal, instead of outputting the received power of the subcarrier signal as it is.
- the received power is output to the output of the complex multiplication / power computing unit 603 at the final stage, similarly to the butterfly computing unit of FIG.
- the output received power is determined by the power addition target subcarrier selection block 607 as to whether or not it is a subcarrier for which power accumulation is performed, and the AND circuit 608 passes the power data of the subcarrier to be added as it is. Otherwise, it will be 0.
- the power data is input to the multi-input adder 609 together with the data stored in the register 610, and the addition result by the multi-input adder 609 is stored in the register 610.
- the block 304, the complex adder 301, the complex subtractor 302, the complex multiplier / power calculator 303, the selector 305, and the output data switching selector 306 are respectively described, and description thereof is omitted.
- the present invention is applied to a wireless device such as a mobile phone.
Landscapes
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Discrete Mathematics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Complex Calculations (AREA)
Abstract
Description
本発明は、日本国特許出願:特願2009-025309号(2009年2月5日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、FFT演算回路と方法に関し、特にOFDM方式のディジタルベースバンド処理に用いて好適なFFT演算回路と方法に関する。
(a)FFT演算処理前の受信信号に対して電力計算を行う、
(b)FFT演算処理後のサブキャリア信号に対して電力計算を行う、
の2通りの手法がある。
(A)a0とa1を入力し複素加算結果a0+a1を出力する複素加算器301と、
(B)a0とa1を入力し複素減算結果a0-a1を出力する複素減算器302と、
(C)バタフライ演算に複素乗算器が使用されていないタイミングであることを検知する演算器切り替えタイミング検知ブロック304と、
(D)演算器切り替えタイミング検知ブロック304からの制御信号(演算器切り替え信号)に基づき、FFTの複素乗算と電力演算の切り替えを行う複素乗算・電力演算器303と、
(E)演算器切り替えタイミング検知ブロック304からの制御信号(演算器切り替え信号)に基づき、複素加算器301の出力と回転子データを選択し複素乗算・電力演算器303の入力データの切り替えを行うセレクタ305と、
(F)演算器切り替えタイミング検知ブロック304からの制御信号(演算器切り替え信号)に基づき、複素減算器302の出力と複素乗算・電力演算器303の出力の切り替えを行う出力データ切り替え用セレクタ306と、
を備えている。
b0=a0+a1、
b1=(a0-a1)×Wk
というバタフライ演算が行われる。
b0=a0+a1、
b1=a0-a1
という演算が行われる。
102 回転子テーブル
103 メモリ
201 複素加算器
202 複素減算器
203 複素乗算器
301 複素加算器
302 複素減算器
303 複素乗算・電力演算器
304 演算器切り替えタイミング検知ブロック
305、306 セレクタ
401、402、403、404 乗算器
405 減算器
406 加算器
407、408 ビット抽出演算器
409 ビット連接演算器
501、502、503、504 乗算器
505 加算・減算器
506 加算器
507、508 ビット抽出演算器
509 ビット連接演算器
510、511、512、513 セレクタ
601 複素加算器
602 複素減算器
603 複素乗算・電力演算器
604 演算器切り替えタイミング検知ブロック
605、606 セレクタ
607 電力加算対象サブキャリア選択ブロック
608 AND回路
609 多入力加算器
610 レジスタ
701 FFT演算器
702 電力演算回路またはDSP
Claims (10)
- FFT(Fast Fourier Transform)演算のバタフライ演算に複素乗算器が使用されていないタイミングであることを検知する演算器切り替え検知部と、
前記演算器切り替え検知部での検知結果に基づき、複素乗算と電力演算とに演算を切り替える複素乗算・電力演算器と、
を備え、前記複素乗算・電力演算器は、FFT演算のバタフライ演算に複素乗算が行われないタイミングに電力演算を行う、FFT演算装置。 - 前記バタフライ演算に複素乗算が使用されていないタイミングは、FFT演算の最終ステージである、請求項1記載のFFT演算装置。
- 電力加算対象とするサブキャリアを選択する手段と、
電力加算対象となるサブキャリアの受信電力を累算する、加算器及びレジスタを備え、
電力加算を行うサブキャリアの受信電力の合計を出力する、請求項1又は2記載のFFT演算装置。 - 前記バタフライ演算を行うバタフライ演算器が、
第1、第の複素信号を入力し前記第1、第の複素信号の加算結果を出力する複素加算器と、
前記第1、第の複素信号を入力し前記第1の複素信号から前記第2の複素信号を減算した結果を出力する複素減算器と、
前記複素加算器の出力と回転子データを入力し、前記演算器切り替え検知部からの検知結果である制御信号に応じて一方を選択出力する第1のセレクタと、
前記複素減算器の出力と前記第1のセレクタの出力を入力し、前記演算器切り替え検知部からの前記制御信号に応じて、前記複素減算器からの出力に前記回転子データを乗算した値を出力する複素乗算器、又は、
前記複素加算器の出力と前記複素減算器の出力からそれぞれの電力を演算する電力演算器のいずれかに演算器の演算動作を行う複素乗算・電力演算器と、
前記複素減算器の出力と前記複素乗算・電力演算器の出力とを入力し、前記演算器切り替え検知部からの前記制御信号に応じて、一方を選択出力する第2のセレクタと、
を備えた請求項1又は2に記載のFFT演算装置。 - 加算器と、
前記加算器の出力を保持するレジスタと、
を備え、
前記加算器は前記複素乗算・電力演算器から出力と前記レジスタの値を加算し加算結果を前記レジスタに保持することで電力を累積加算する請求項4記載のFFT演算装置。 - 選択されたサブキャリアの電力を累積加算するように、前記複素乗算・電力演算器から出力と前記加算器の入力を制御する請求項5記載のFFT演算装置。
- 前記複素乗算・電力演算器が、
前記複素減算器の出力を入力し第1の実数部と第1の虚数部に分離する第1のビット抽出演算器と、
前記第1のセレクタの出力を入力し第2の実数部と第2の虚数部に分離する第2のビット抽出演算器と、
前記第1の実数部と前記第2の実数部を第1、第2の入力に入力し、前記演算器切り替え検知部からの前記制御信号に応じて、一方を選択出力する第1のセレクタと、
前記第2の虚数部と前記第1の虚数部を第1、第2の入力に入力し、前記演算器切り替え検知部からの前記制御信号に応じて、一方を選択出力する第2のセレクタと、
前記第1の実数部と前記第2の虚数部を第1、第2の入力に入力し、前記演算器切り替え検知部からの前記制御信号に応じて、一方を選択出力する第3のセレクタと、
前記第1の虚数部と前記第2の実数部を第1、第2の入力に入力し、前記演算器切り替え検知部からの前記制御信号に応じて、一方を選択出力する第4のセレクタと、
前記第1の実数部と前記第1のセレクタの出力を第1、第2の入力に入力し該第1、第2の入力の乗算結果を出力する第1の乗算器と、
前記第1の虚数部と前記第2のセレクタの出力を第1、第2の入力に入力し該第1、第2の入力の乗算結果を出力する第2の乗算器と、
前記第3のセレクタの出力と前記第2の虚数部を第1、第2の入力に入力し該第1、第2の入力の乗算結果を出力する第3の乗算器と、
前記第4のセレクタの出力と前記第2の実数部を第1、第2の入力に入力し該第1、第2の入力の乗算結果を出力する第4の乗算器と、
前記第1、第2の乗算器の出力を第1、第2の入力し前記演算器切り替え検知部からの前記制御信号に応じて該第1、第2の入力の加算結果又は該第1、第2の入力の減算結果を出力する加算・減算器と、
前記第3、第4の乗算器の出力を第1、第2の入力し該第1、第2の入力の加算結果を出力する加算器と、
前記加算・減算器の出力と前記加算器の出力を第1、第2の入力し該複数データを生成するビット連接演算器と、
を備えた請求項1記載のFFT演算装置。 - 請求項1乃至7のいずれか一項記載のFFT演算装置を備えた通信装置。
- FFT(Fast Fourier Transform)演算のバタフライ演算における複素乗算行われないタイミングを検出し、
FFT演算のバタフライ演算で乗算行われていないタイミングに複素乗算器を用いて電力演算を行うことで、FFT演算と同時に電力演算を行う、電力演算方法。 - 前記バタフライ演算に複素乗算が使用されていないタイミングは、FFT演算の最終ステージである、請求項9記載の電力演算方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10738540.3A EP2395689A4 (en) | 2009-02-05 | 2010-02-03 | TFR CALCULATION DEVICE AND POWER CALCULATING METHOD |
JP2010549488A JP5472123B2 (ja) | 2009-02-05 | 2010-02-03 | Fft演算装置と電力演算方法 |
US13/147,738 US8819096B2 (en) | 2009-02-05 | 2010-02-03 | FFT computing apparatus and power computing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-025309 | 2009-02-05 | ||
JP2009025309 | 2009-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010090209A1 true WO2010090209A1 (ja) | 2010-08-12 |
Family
ID=42542102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051491 WO2010090209A1 (ja) | 2009-02-05 | 2010-02-03 | Fft演算装置と電力演算方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8819096B2 (ja) |
EP (1) | EP2395689A4 (ja) |
JP (1) | JP5472123B2 (ja) |
WO (1) | WO2010090209A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11221397B2 (en) * | 2019-04-05 | 2022-01-11 | Texas Instruments Incorporated | Two-dimensional FFT computation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000231552A (ja) * | 1999-02-08 | 2000-08-22 | Nec Corp | 高速フーリエ変換方法 |
JP2002071723A (ja) * | 2000-08-30 | 2002-03-12 | Advantest Corp | インターリーブad変換方式波形ディジタイザ装置 |
JP2005260337A (ja) * | 2004-03-09 | 2005-09-22 | Renesas Technology Corp | 復調回路および無線通信システム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3079950B2 (ja) | 1995-06-20 | 2000-08-21 | 松下電器産業株式会社 | 直交周波数分割多重変調信号の受信装置及び伝送方法 |
JP2002261727A (ja) | 2001-03-01 | 2002-09-13 | Nippon Telegr & Teleph Corp <Ntt> | Ofdm信号伝送装置 |
JP2003016051A (ja) * | 2001-06-29 | 2003-01-17 | Nec Corp | 複素ベクトル演算プロセッサ |
JP4022546B2 (ja) * | 2002-06-27 | 2007-12-19 | サムスン エレクトロニクス カンパニー リミテッド | 高速フーリエ変換を用いた混合−基数方式の変調装置 |
JP4445814B2 (ja) | 2004-07-12 | 2010-04-07 | シャープ株式会社 | Ofdm復調装置 |
JP4612467B2 (ja) | 2005-05-18 | 2011-01-12 | パナソニック株式会社 | 基地局装置、移動局装置、およびセルサーチ方法 |
-
2010
- 2010-02-03 EP EP10738540.3A patent/EP2395689A4/en not_active Withdrawn
- 2010-02-03 US US13/147,738 patent/US8819096B2/en active Active
- 2010-02-03 JP JP2010549488A patent/JP5472123B2/ja active Active
- 2010-02-03 WO PCT/JP2010/051491 patent/WO2010090209A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000231552A (ja) * | 1999-02-08 | 2000-08-22 | Nec Corp | 高速フーリエ変換方法 |
JP2002071723A (ja) * | 2000-08-30 | 2002-03-12 | Advantest Corp | インターリーブad変換方式波形ディジタイザ装置 |
JP2005260337A (ja) * | 2004-03-09 | 2005-09-22 | Renesas Technology Corp | 復調回路および無線通信システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2395689A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP5472123B2 (ja) | 2014-04-16 |
EP2395689A1 (en) | 2011-12-14 |
US8819096B2 (en) | 2014-08-26 |
EP2395689A4 (en) | 2015-12-16 |
JPWO2010090209A1 (ja) | 2012-08-09 |
US20110289130A1 (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100491194B1 (ko) | 다중 캐리어 통신 시스템에서 피크 전력 감소를 위한시스템 및 방법 | |
JP4398791B2 (ja) | 送信機および送信制御方法 | |
JP4990964B2 (ja) | 受信器及び受信方法 | |
US9213679B2 (en) | Device with capability of processing FFT radix 2 butterfly operation and operation method thereof | |
US20030161278A1 (en) | Symbol data converting circuit | |
JP2007028054A (ja) | 干渉キャンセル装置および干渉キャンセル方法 | |
JP5472123B2 (ja) | Fft演算装置と電力演算方法 | |
JP4789749B2 (ja) | ピーク抑圧装置 | |
JP3668356B2 (ja) | 高速フーリエ変換演算回路 | |
JPWO2007040216A1 (ja) | 等化器を含む信号受信装置、端末装置、信号受信方法および信号受信プログラム | |
KR100688086B1 (ko) | 상관 계수의 대칭성을 이용한 상관 장치 및 그 방법 | |
CN103718525A (zh) | 一种削波方法、装置及系统 | |
KR20040048603A (ko) | 직교 주파수 분할 다중 수신 장치 | |
CN103488611B (zh) | 基于IEEE802.11.ad协议的FFT处理器 | |
KR20120109214A (ko) | Ofdm 시스템에서의 고속 푸리에 변환 프로세서 및 그 고속 푸리에 변환방법 | |
KR20090011398A (ko) | 4×4 다중입출력 직교주파수분할다중화 무선랜 시스템을위한 고속푸리에변환 방법 및 그 장치 | |
JPH10307811A (ja) | 演算装置および演算方法 | |
KR20040046478A (ko) | 메모리의 크기를 감소시킬 수 있는 고속 퓨리에 변환프로세서 | |
EP1011282B1 (en) | Base station apparatus and transmission branch selection method | |
JP5601330B2 (ja) | チャネル推定値補間回路及び方法 | |
CN112800387B (zh) | 基-6蝶形运算单元、方法、电子设备及存储介质 | |
JP4266200B2 (ja) | Ofdm復調装置 | |
CN109698801B (zh) | 信号插值运算系统、应用于lte频偏估计补偿的处理系统 | |
JP2000295194A (ja) | 受信装置 | |
KR101554667B1 (ko) | 고속 푸리에 변환 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10738540 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010549488 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13147738 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010738540 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010738540 Country of ref document: EP |