WO2010090078A1 - 輻射量低減装置 - Google Patents

輻射量低減装置 Download PDF

Info

Publication number
WO2010090078A1
WO2010090078A1 PCT/JP2010/050695 JP2010050695W WO2010090078A1 WO 2010090078 A1 WO2010090078 A1 WO 2010090078A1 JP 2010050695 W JP2010050695 W JP 2010050695W WO 2010090078 A1 WO2010090078 A1 WO 2010090078A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
slits
radiation amount
amount reducing
slit
Prior art date
Application number
PCT/JP2010/050695
Other languages
English (en)
French (fr)
Inventor
幸憲 清田
賢生 杉田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN2010800057508A priority Critical patent/CN102301844A/zh
Priority to SG2011050689A priority patent/SG172962A1/en
Priority to BRPI1007480A priority patent/BRPI1007480A2/pt
Priority to EP10738416A priority patent/EP2395828A1/en
Priority to US13/143,154 priority patent/US20120024587A1/en
Priority to RU2011131249/07A priority patent/RU2011131249A/ru
Publication of WO2010090078A1 publication Critical patent/WO2010090078A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials

Definitions

  • the present invention relates to a radiation amount reducing device.
  • Patent Document 3 discloses a composite magnetic body that takes measures against radiation noise from cables and the like among EMI measures.
  • this method it is difficult to suppress conduction noise generated from the line pattern formed on the printed circuit board. Therefore, conductive noise that cannot be suppressed occurs due to fluctuations in the power supply voltage caused by the switching operation, and affects electronic devices, circuits, and the like.
  • Patent Document 4 discloses an electromagnetic wave shielding sheet that covers a radiation part that radiates electromagnetic waves. However, since this sheet has a complicated configuration, not only the manufacturing process is increased, but also the cost is increased because of the high cost.
  • the radiation prevention method has advantages and disadvantages, and it is possible to appropriately suppress radiation noise and conduction noise, and development of a prepared and inexpensive method is desired.
  • electronic circuits that are desired to reduce noise more and more due to higher frequencies and the like are becoming more complicated, and therefore, noise at various positions and frequencies is generated.
  • Such noise is not uniformized, the countermeasures by the shield case structure as described above are extremely complicated, and there is a limit to noise reduction by the shield case. Therefore, there is a need for a radiation prevention means that can effectively reduce radiation and is prepared and inexpensive.
  • the present invention has been made in view of the above problems, and an object of the present invention is to prepare noise (electromagnetic waves) radiated from an electromagnetic wave generation source such as an electronic circuit more effectively and It is an object of the present invention to provide a new and improved radiation amount reducing device that can be suppressed at low cost.
  • a metal plate capable of covering at least one entire surface of an electromagnetic wave generation source that radiates electromagnetic waves, A cover region that is set in the plane of the metal plate and covers the entire surface; A plurality of slits formed at least in the cover region and spaced apart from each other; Have Each of the plurality of slits A magnetic field generated between the electromagnetic wave generation source and the electromagnetic wave generation source on the outer periphery of the cover area is guided so that a circumferential current flowing in the circumferential direction surrounding the center of the cover area by the electromagnetic wave is guided to the central direction of the cover area.
  • the lead-in slit formed to extend toward the center of the cover region, From the end of the pull-in slit in the center direction of the cover region so as to guide the circumferential current guided by the pull-in slit between the other slits adjacent to each other on the one side in the cover region circumferential direction, A coupling slit extending in parallel with the other drawing slit on one side; A radiation amount reducing device is provided.
  • the slit is the N is a positive integer, may be 2 N present formed on the metal plate.
  • the plurality of slits may be arranged point-symmetrically with respect to the center of the cover area.
  • the cover area is the entire area of the metal plate,
  • the metal plate is formed with an uneven distance from the center to the outer periphery,
  • the strong magnetic field position may be an intermediate edge position between edge positions adjacent to each other on the outer periphery of the metal plate and having a longer center distance than other parts.
  • the metal plate is formed in a polygon having 2 M corners on the outer periphery, where M is a positive integer of 2 or more,
  • the strong magnetic field position may be an intermediate edge position between the corners.
  • the metal plate may be a regular polygon.
  • the strong magnetic field position may be a position on the outer periphery of the cover region corresponding to an intermediate edge position between corners on one surface of the electromagnetic wave generation source.
  • the cover area is the entire area of the metal plate,
  • the metal plate may be formed in a circular shape with a uniform distance from the center to the outer periphery.
  • noise electromagnetic wave
  • an electromagnetic wave generation source such as an electronic circuit
  • Radiation level reduction device A B area Ar cover area BA, BC, BB, BD Strong magnetic field position D Reception probe H Magnetic field I, I1, I2, I3, I4 Circumferential current R Noise source N Noise O Central part PA, PB, PC, PD Parallel position SA, SB, SC, SD slit SE, SF, SG, SH slit S1A, S1B, S1C, S1D Slit S1E, S1F, S1G, S1H Pull-in slit S2A, S2B, S2C, S2D Coupling slit S2E, S2F, S2G, S2H Coupling slit S3A, S3B, S3
  • the radiation amount reducing device can be used for various electromagnetic wave generation sources.
  • the electromagnetic wave generation source include various electronic elements such as a CPU (Central Processing Unit), an LSI (Large Scale Integration), a clock IC (Integrated Circuit), a peripheral semiconductor, a printed circuit board, a wiring, a coil, a resistor, and a capacitor.
  • a CPU Central Processing Unit
  • LSI Large Scale Integration
  • clock IC Integrated Circuit
  • peripheral semiconductor a printed circuit board
  • wiring a coil
  • resistor a resistor
  • capacitor a wide variety of electronic devices that are formed by combining them.
  • the application destination of this radiation amount reducing device is not limited to these examples of electromagnetic wave generation sources, and can be applied to various parts that emit electromagnetic waves.
  • the radiation amount reducing device is arranged in close contact with the electromagnetic wave generation source on the side where the electromagnetic wave radiated by the electromagnetic wave generation source is not desired to be propagated, or arranged in the vicinity thereof.
  • the radiation amount reducing device may be disposed far from the electromagnetic wave generation source, but in consideration of the shielding or attenuation efficiency of the electromagnetic wave, the spatial efficiency of the entire device, etc., it may be disposed on the side of the electromagnetic wave generation source. desirable.
  • the following description will be given in the following order.
  • Radiation amount reduction device according to related technology 2.
  • Radiation amount reducing apparatus according to first embodiment 2-1.
  • FIG. 10 is an explanatory diagram for explaining a radiation amount reducing device according to the related art.
  • FIG. 10 shows an example in which the metal plate 90 is used as an electromagnetic wave shielding shield, that is, a radiation amount reducing device 900 according to related technology.
  • the metal plate 90 shown in FIG. 10 has conductivity and is disposed so as to cover an electromagnetic wave generation source (hereinafter also referred to as “noise generation source R”).
  • an electromagnetic wave generation source hereinafter also referred to as “noise generation source R”.
  • the back surface (back side of the paper surface) of the metal plate 90 shown in FIG. 10 is approximately the same as the outer shape on the metal plate 90 forming surface (the outer shape on the xy plane) or slightly more than that. It is assumed that a noise source R having a small size is arranged.
  • the electromagnetic wave (noise) emitted from the noise generation source R is reflected by the radiation amount reducing apparatus 900 according to the related art.
  • the energy is not attenuated but is radiated from the outer periphery and the surface of the radiation amount reducing apparatus 900 according to the related art and the noise generation source R.
  • Such a phenomenon is also referred to herein as “secondary radiation”, and the electromagnetic waves radiated secondarily are also referred to herein as “noise N”.
  • the strong noise N in the secondary radiation is roughly divided into two types.
  • the first type of noise N is the main noise and is radiation using the metal plate 90 as a patch antenna. This noise N is emitted mainly from the surface of the metal plate 90 to the opposite side of the noise generation source R.
  • the second type of noise N has an opening formed by the edge of the metal plate 90 and the GND (ground) surface in the substrate on which the noise generation source R is arranged, as if it were a capacitance antenna. It is emitted by operating as follows.
  • FIG. 10 shows a position where the generated electric field is strong (referred to as “strong electric field position”).
  • strong electric field position As shown in FIG. 10, the strong electric field positions VA to VD are generated at the four corners of the metal plate 90, and the strong electric field position VO is generated at the center of the metal plate 90. This strong electric field position is determined by at least one of the shape of the metal plate 90 and the shape of the noise source R.
  • the circumferential current I flows on the outer periphery so as to surround the central portion O of the metal plate 90 and becomes smaller toward the central portion O.
  • a magnetic field is generated at the upper and lower portions of the metal plate 90.
  • the magnetic field generated in the lower portion of the metal plate 90 is generated as if it were a standing wave, as in the case of the strong electric field position of the electric field.
  • FIG. 10 shows the position where the generated magnetic field is strong (referred to as “strong magnetic field position”).
  • the strong magnetic field positions BA to BD are generated at the center of the four sides of the metal plate 90. In other words, the strong magnetic field positions BA to BD are generated between the strong electric field positions VA to VD.
  • the electric field and magnetic field generated in the lower part of the metal plate 90 operate in the same manner as the electric field and magnetic field generated by the capacitive antenna between the GND in the substrate and the metal plate 90, respectively.
  • the electric field and magnetic field generate noise N through the opening between the GND in the substrate and the metal plate 90 (second type noise N, which may not be strictly secondary radiation).
  • the magnetic field generated in the upper part of the metal plate 90 by the circumferential current I generates an electric field in a chain and generates noise N (first type of noise N).
  • the electromagnetic wave radiated by the noise generation source R is simply scattered in the xy plane direction (second type noise N), or the metal plate 90 Radiation from the surface again (first noise N).
  • the inventor of the present invention who has conducted intensive research on the noise N and the like of the radiation amount reducing apparatus 900 according to the related art clarifies the generation mechanism of the noise N as described above, and further reduces the noise N. As a result of this research and development, the present invention was completed. Hereinafter, each embodiment of the present invention will be described. However, the generation mechanism of the noise N described here does not limit the noise N, and the radiation amount reducing device according to each embodiment of the present invention can also generate a radiation amount of noise other than the above two types of noise N. It goes without saying that can be reduced.
  • FIGS. 1A and 1B are explanatory diagrams for explaining the configuration of the radiation amount reducing device according to the first embodiment of the present invention.
  • the radiation amount reducing device 100 is roughly divided into a metal plate 10 and slits SA to SD.
  • the metal plate 10 described below is formed in a shape that covers the upper surface of the noise generation source R, and the radiation amount reducing device 100 is disposed in the vicinity of the upper surface side of the noise generation source R.
  • the shape of the metal plate 10, the arrangement position of the radiation amount reducing device 100, and the like can be appropriately changed according to the noise generation source R and the direction in which the radiation amount is desired to be reduced.
  • the metal plate 10 is made of a conductive material and has a cover surface that can cover at least the entire upper surface (an example of one surface) of a noise source R (an example of an electromagnetic wave source) that radiates electromagnetic waves.
  • a noise source R an example of an electromagnetic wave source
  • the entire metal plate 10 according to the present embodiment is formed as a cover surface.
  • the cover surface of the metal plate 10 does not have to be the entire region of the metal plate 10, and can be a partial region of the metal plate 10. That is, if the metal plate 10 has a surface (cover surface) corresponding to the entire upper surface of the noise source R, it can be formed in various shapes.
  • the region of the metal plate 10 serving as the cover surface is also referred to as “cover region Ar”.
  • the cover area Ar corresponds to the entire area of the metal plate 10.
  • the area of the metal plate 10 is 1 to 1.5 times the area of the upper surface of the noise source R covered by the metal plate 10, more preferably 1 It is desirable to be formed in a range of 25 to 1.5 times.
  • the metal plate 10 may be formed larger than the upper surface of the noise source R.
  • the metal plate 10 is formed in a square shape corresponding to the shape of the upper surface of the noise source R.
  • the metal plate 10 does not necessarily correspond to the shape of the upper surface of the noise source R, and does not need to be square.
  • the metal plate 10 is desirably formed in the following order. Square ⁇ Regular Polygon>Polygon>Ellipse> Circle
  • the metal plate 10 may have, for example, a shape with a non-uniform center distance other than the shape given in this example.
  • the cover area Ar is an area that is set in the plane of the metal plate 10 and covers the entire top surface of the noise source R. As described above, in this embodiment, the cover area Ar is set over the entire area of the metal plate 10.
  • the slits SA to SD are formed in a band shape at least in the cover region Ar.
  • the slits SA to SD can be formed, for example, by cutting a part of the metal plate 10 into a strip shape (also referred to as a groove) or by forming the metal plate 10 itself excluding the slits SA to SD.
  • the slits SA to SD are formed toward the central portion O and formed in a cross-like shape as a whole.
  • the slits adjacent to each other in the circumferential direction of the metal plate 10 are formed. Are not connected to each other and are separated. Accordingly, the metal plate pieces 11 to 12 that are artificially partitioned by the slits SA to SD are connected to each other via the central portion O to form the metal plate 10.
  • the number of the slits SA to SD is not limited to four, and may be a plurality. However, it is desirable that 2N slits SA to SD are formed on the metal plate 10 where N is a positive integer.
  • the slits SA to SD are arranged point-symmetrically with respect to the central portion O of the cover region Ar (that is, the metal plate 10) as shown in FIG. 1A.
  • the slits SA to SD are formed in the same shape. Therefore, first, the shape of each slit will be described taking the slit SA as an example.
  • the slit SA is roughly divided into a drawing slit S1A and a coupling slit S2A.
  • the lead-in slit S1A extends from the strong magnetic field position BA on the outer periphery of the cover area Ar toward the central portion O of the cover area Ar.
  • the drawing slit S ⁇ b> 1 ⁇ / b> A is formed from the end of the metal plate 10.
  • the strong magnetic field position BA on the outer periphery of the cover area Ar is generated at the edge position (end part) in the middle of the four corners (corner part, strong electric field position) of the cover area Ar as shown in FIG.
  • the slit S1A extends from the edge position toward the central portion O in a band shape.
  • the drawing slit S1A is formed in a straight line from the corner toward the central portion O, but the drawing slit S1A may be curved.
  • the drawing slit S1A is formed in a straight line as in this embodiment, the drawing effect of the circumferential current I by the drawing slit S1A can be improved, and the radiation amount can be reduced.
  • the coupling slit S2A is formed to extend in parallel with another slit SB (or slit SD) on one side in the circumferential direction of the cover region Ar from the end portion in the central portion O direction of the cover region Ar in the drawing slit S1A. More specifically, in the present embodiment, the coupling slit S2A extends in parallel with the drawing slit S1B of the other slit SB.
  • the coupling slit S2A is shown extended to the right (counterclockwise) of the drawing slit S1A in the circumferential direction of the cover region Ar. Accordingly, the other drawing slits S1B to S1D are also formed to extend to the right (counterclockwise) at the end in the central portion O direction. However, on the contrary, the coupling slits S2A to S2D may be formed to extend to the left (clockwise) of the respective drawing slits in the circumferential direction of the cover region Ar.
  • the coupling slit S2A is formed in parallel with the drawing slit S1B among other adjacent slits SB, and is formed at a predetermined interval from the drawing slit S1B. And it is desirable that the coupling slit S2A is formed shorter than the lined drawing slits S1B and is not formed up to the end of the cover region Ar. However, it is desirable that the coupling slit S2A is formed in a band shape with the same width as or similar to the drawing slit S1A.
  • the coupling slit S2A exhibits a coupling effect of coupling the circumferential current I guided by the drawing slit S1A to the circumferential current I guided by the drawing slit S1B by guiding the circumferential current I guided substantially parallel to the aligned drawing slit S1B. .
  • each of the slits SA to SD is formed in a substantially L shape, and the L shaped slits SA to SD are formed to extend from the middle edge position of the four corners of the metal plate 10.
  • the slits SA to SD divide the metal plate 10 into four metal plate pieces 11 to 14 in a substantially cross shape.
  • the substantially L-shaped slits SA to SD are separated from each other, and the metal plate pieces 11 to 14 forming the metal plate 10 are connected to each other at the central portion O.
  • the slits SA to SD are formed from the strong magnetic field positions BA to BD toward the central portion O as described above.
  • the strong magnetic field positions BA to BD will be described.
  • the strong magnetic field positions BA to BD are places where a magnetic field is generated between the strong magnetic field positions BA to BD and the noise generating source R due to the electromagnetic wave generated by the noise generating source R, and the magnetic field is larger than other parts.
  • the strong electric field positions VA to VD correspond to locations where the spatial impedance between the metal plate 10 and the noise source R is low.
  • the strong magnetic field positions BA to BD correspond to intermediate positions of the strong electric field positions VA to VD on the outer periphery of the cover area Ar (in this embodiment, the edge position of the metal plate 10).
  • the metal plate 10 is formed in a polygon (square) that is the same as or covering the noise generation source R.
  • the corner of the metal plate 10 Spatial impedance is lower than other parts. Therefore, the four corners of the metal plate 10 are the strong electric field positions VA to VD, and the middle edge positions of the four corners of the metal plate 10 are the strong magnetic field positions BA to BD. Therefore, in the radiation amount reducing apparatus 100 according to the present embodiment, the slits SA to SD are formed from the middle edge positions of these four corners.
  • the strong electric field position is an edge position (end) where the center distance of the metal plate 10 from the central portion O to the outer periphery is uneven as compared with other portions.
  • the strong magnetic field position is an intermediate edge position (end) of the edge position. More specifically, the strong electric field position is a corner (corner) when the metal plate 10 is polygonal, and when the metal plate 10 is square as in the present embodiment, FIG. It becomes the four corners shown in.
  • the strong magnetic field position is the midpoint of each side when the metal plate 10 is polygonal, and the four sides shown in FIG. 1A when the metal plate 10 is square as in the present embodiment. It becomes each middle point.
  • the strong electric field positions VA to VD are the corners on the upper surface of the noise source R.
  • the strong magnetic field positions BA to BD are positions on the outer periphery of the cover area Ar corresponding to the middle edge positions between the corners on the upper surface of the noise source R, that is, the middle of the strong electric field positions VA to VD. become. Therefore, in such a case, the slits SA to SB are formed from a strong magnetic field position corresponding to an intermediate position between corners on the upper surface of the noise source R.
  • FIGS. 2A to 3B are explanatory views for explaining an operation example of the radiation amount reducing device according to the present embodiment.
  • the radiation amount reducing device 100 has a plurality of slits SA to SD formed from the strong magnetic field positions BA to BD as described above.
  • the drawing slits S1A to S1D are formed from the strong magnetic field positions BA to BD, respectively.
  • the strong magnetic field positions BA to BD are positions where the magnetic field is stronger than other parts, and the drawing slits S1A to S1D are formed in the strong magnetic field positions BA to BD, so that the drawing slits S1A to S1D are in the middle.
  • FIG. 2A schematically shows the magnetic field H as a magnetic current.
  • the radiation magnetic field component of the electromagnetic wave generated by the noise generation source R is coupled to the drawing slits S1A to S1D at the strong magnetic field positions BA to BD to excite the magnetic field H.
  • the magnetic field H is guided to the central portion O side of the cover region Ar along the drawing slits S1A to S1D in a state where it is coupled to the drawing slits S1A to S1D.
  • the circumferential current I is divided by the drawing slits S1A to S1D, and the magnetic field H is coupled to the drawing slits S1A to S1D. As shown in FIG. Led. As shown in FIG.
  • the circumferential current I guided to the central portion O side by the drawing slits S1A to S1D is guided to other slits adjacent to each other on one side in the circumferential direction by the coupling slits S2A to S2D. It is burned. Accordingly, the circumferential current I flows through the ridges of the slits SA to SD.
  • the circumferential current I flowing through the flanges of the slits SA to SD is in reverse phase with the circumferential current I guided by the adjacent slits, as shown in FIG. 2B. Therefore, in the regions A and B where the two slits SA to SD are parallel, the circumferential currents I having the opposite phases cancel each other. That is, the circumferential current I is offset and attenuated in the two regions A and B when one slit is seen. As a result, the radiation amount reducing apparatus 100 according to the present embodiment can reduce noise N such as secondary radiation.
  • the radiated magnetic field component that generates the magnetic field H by being coupled to the slits SA to SD is guided along the slits SA to SD from the strong magnetic field positions BA to BD as described above. Further, each of the slits SA to SD generates not only the radiated magnetic field component from the strong magnetic field positions BA to BD but also the radiated magnetic field component at other locations to generate the magnetic field H.
  • the magnetic fields H generated in the slits SA to SD are reversed in phase as shown in FIG. 3B at the parallel positions PA to PD shown in FIG. 3A, and cancel each other out. Accordingly, the noise N of the secondary radiation due to the magnetic field H generated in each of the slits SA to SD also cancels out in the opposite phase in the parallel positions PA to PD, and the noise N is further reduced.
  • each of the slits SA to SD is formed point-symmetrically in this embodiment, so that opposing slits SA to SD (slit SA and slit SC or slit SB and slit SD) are formed.
  • the noises N to be generated are in the opposite phase with substantially the same amplitude. As a result, the noise N of the secondary radiation component cancels each other even if it is radiated.
  • the secondary radiation component radiated from the parallel position PA cancels out in phase opposite to the secondary radiation component radiated from the parallel position PC, and is radiated from the parallel position PB.
  • the radiation component cancels out in phase with the secondary radiation component radiated from the parallel position PD. Therefore, the noise N is further reduced.
  • the radiation amount reducing device 100 has the slits SA to SD, thereby exhibiting a circumferential current attenuation effect, a radiation magnetic field component attenuation effect, a residual secondary radiation component reduction effect, and the like.
  • the radiation amount reducing device 100 is not limited to these actions, and there is an action that is not listed here, which may reduce the noise N. Is not to deny.
  • FIGS. 4 to 6 are explanatory diagrams for describing examples of the radiation amount reducing device according to the present embodiment.
  • Example of radiation reduction device> In measuring the radiation amount reducing effect of the radiation amount reducing apparatus according to the present embodiment, a measuring apparatus simulating a printed circuit board as shown in FIG. 4 was prepared. More specifically, the vinyl film T2 is disposed on the lower surface of the measurement target X, and the vinyl film T2 is disposed on the support plate T1 so as to close the opening of the support plate T1. Then, an electromagnetic wave was generated while changing the frequency from the noise generation source R, and the noise N (electric field distribution) radiated from the measurement target X was measured by the reception probe D 50 mm away from the measurement target X.
  • the noise N electric field distribution
  • the radiation amount reducing device 900 according to the related art that does not have a slit and the radiation amount reducing devices 101 and 102 according to the present embodiment are prepared and arranged at the position of the measurement target X. Then, the radiation amount of the noise N was measured by the measuring device.
  • the radiation amount reducing devices 101 and 102 according to the present embodiment are formed by changing the sizes of the slits SA to SD as shown in FIG. 5A. That is, for the metal plate 10, a copper plate having a thickness of 0.09 mm was formed into a 40 mm ⁇ 40 mm square, and slits SA to SD having a slit width of 0.8 mm were formed on the metal plate 10.
  • the material of the metal plate 10 is not particularly limited as long as it has conductivity. Even if other materials are used, the same result as described below can be obtained.
  • the length of the drawing slits S1A to S1D of the radiation amount reducing device 101 was 18 mm, and the length of the coupling slits S2A to S2D was 11 mm.
  • the lengths of the drawing slits S1A to S1D of the radiation amount reducing device 102 are 17.5 mm, and the lengths of the coupling slits S2A to S2D are 11 mm.
  • the slit interval (that is, the interval between adjacent slits) at the parallel positions PA to PD was set to 0.6 mm.
  • the angle between the drawing slits S1A to S1D and the coupling slits S2A to S2D in each of the slits SA to SD was 90 °.
  • the slits SA to SD have a shape that is rotated by 90 ° with respect to the center portion O of the cover area Ar (that is, the metal plate 10) with respect to each other (that is, 90 ° four-fold symmetry), and is generally substantially as a whole. Formed in a cross shape.
  • the radiation amount reducing device 900 uses the same metal plate 90 as the metal plate 10.
  • FIG. 5B shows a measurement result obtained by standardizing the measurement signal I101 for the radiation amount reducing apparatus 101 according to the present embodiment as 0 dB for the measurement signal I900 for the radiation amount reducing apparatus 900 according to the related art.
  • FIG. 5C shows a result of normalizing the simulation results C101 and C102 for the radiation amount reducing apparatuses 101 and 102 to 0 dB using the electromagnetic field simulator, and the simulation result C900 for the radiation amount reducing apparatus 900 according to the related art. .
  • the radiation amount reducing apparatuses 101 and 102 according to the present embodiment are related technologies. It is considered that the amount of noise N is deteriorated as compared with the radiation amount reducing apparatus 900 according to FIG. Therefore, in general, the measurement signals I101 and I102 by the radiation amount reducing devices 101 and 102 are expected to be higher than the measurement signal I900 for the radiation amount reducing device 900 according to the related art.
  • the radiation amount reducing apparatuses 101 and 102 according to the present embodiment have secondary radiation components ( Noise N) can be greatly reduced. This is because the radiation amount reducing devices 101 and 102 incorporate the radiation component into the slits SA to SD and cancel each other by using the plurality of slits SA to SD to cancel each other. This is because it can be reduced.
  • radiation amount reducing devices 103 to 107 (not shown) according to the present embodiment, in which the dimensions of the slits SA to SD were appropriately changed in the same metal plate 10, were prepared, and the same measurement as described above was performed.
  • the radiation amount reducing device 103 sets the slit width to 1.0 mm, the lengths of the drawing slits S1A to S1D to 17 mm, the length of the coupling slits S2A to S2D to 15 mm, and the slit interval at the parallel positions PA to PD.
  • the radiation amount reducing device 104 has a slit width of 1.2 mm, a length of the drawing slits S1A to S1D is 18.5 mm, a length of the coupling slits S2A to S2D is 15 mm, and a slit at the parallel positions PA to PD.
  • the interval was 0.6 mm.
  • the radiation amount reducing device 105 sets the slit width to 0.6 mm, the lengths of the drawing slits S1A to S1D to 17 mm, the length of the coupling slits S2A to S2D to 11 mm, and the slit interval at the parallel positions PA to PD. 0.4 mm. Further, the radiation amount reducing device 106 sets the slit width to 0.8 mm, the lengths of the drawing slits S1A to S1D to 17 mm, the length of the coupling slits S2A to S2D to 13 mm, and the slit interval at the parallel positions PA to PD. 0.2 mm.
  • the radiation amount reducing device 107 sets the slit width to 1.4 mm, the lengths of the drawing slits S1A to S1D to 18 mm, the length of the coupling slits S2A to S2D to 12 mm, and the slit interval at the parallel positions PA to PD. It was set to 0.5 mm.
  • FIG. 6 shows measurement results obtained by standardizing the measurement signals I103 to I107 for the radiation amount reducing devices 103 to 107 as 0 dB for the measurement signal I900 for the radiation amount reducing device 900 according to the related art.
  • the radiation amount reducing devices 103 to 107 according to the present embodiment reliably combine the radiation components between the slits SA to SD and perform secondary radiation. It shows that (Noise N) reduction effect can be exhibited.
  • FIGS. 7A to 7F are explanatory diagrams for explaining an implementation example of the radiation amount reducing apparatus according to the present embodiment.
  • the radiation amount reducing apparatus 100 according to the first embodiment of the present invention can be formed with a very simple configuration in which the slits SA to SD are formed in the metal plate 10 as described above.
  • the radiation amount reducing device 100 does not need to be grounded, there is no particular limitation on the arrangement position, and it is only necessary to arrange it in the vicinity of the noise generation source R, so various mountings are possible. Therefore, some examples of mounting the radiation amount reducing device 100 will be described below.
  • FIG. 7A shows a case where the radiation amount reducing apparatus 100 according to the present embodiment is directly printed on the upper surface of the noise source R. At this time, it is also possible to embed the radiation amount reducing device 100 not inside the noise source R but inside the noise source R. By directly printing on the noise source R in this way, the radiation amount reducing device 100 can be easily configured, and the amount of noise N emitted to one side of the noise source R can be greatly reduced. Is possible. At this time, it is desirable to form an insulating protective layer of, for example, about 0.05 mm between the noise source R and the radiation amount reducing device 100.
  • the noise generation source R is caused by an adhesive 31 (a seal with an adhesive or the like may be used).
  • an adhesive 31 a seal with an adhesive or the like may be used.
  • the radiation amount reducing device 100 is fixed to the upper surface of the is shown. In this case, it is desirable to use an insulating material for the adhesive 31 or the like.
  • FIG. 7C shows a case where the radiation amount reducing device 100 according to the present embodiment is fixed to the shield case 23.
  • the noise generation source R is disposed on the substrate 22 and is covered with the shield cases 21 and 23.
  • the radiation amount reducing device 100 is fixed inside the position of the upper shield case 23 facing the noise generation source R by an adhesive, a seal (not shown), or the like.
  • the radiation amount reducing device 100 may be fixed above the shield case 23.
  • the radiation amount reducing device 100 is not limited in the arrangement position, it can be arranged in any manner in the vicinity of the noise source R.
  • the fixing means is not particularly limited, the radiation amount reducing device 100 can be easily arranged.
  • FIG. 7D shows a case where the radiation amount reducing device 100 according to the present embodiment is formed as a part of the shield case 23.
  • the portion of the shield case 23 that covers the noise generation source R is the metal plate 10
  • the position of the metal plate 10 that faces the noise generation source R is the cover region Ar.
  • slits SA to SD are formed in the cover region Ar.
  • the radiation amount reducing device 100 according to the present embodiment can be formed simply by forming the slits SA to SD in the shield case 23.
  • the radiation amount reducing device 100 according to the present embodiment is formed directly on the shield case 23 as in the fourth mounting example, and the metal plate 10 is significantly larger than the cover region Ar that covers the noise generation source R. Indicates a large case.
  • the cover region Ar and the metal plate 10 do not coincide with each other as in the fourth mounting example, the outer periphery (corner) of the cover region Ar corresponding to an intermediate edge position between the corners on the upper surface of the noise source R is obtained.
  • the strong magnetic field positions BA to BD are formed, and the slits SA to SD are formed from the strong magnetic field positions BA to BD.
  • the radiation amount reducing device 100 according to the present embodiment is directly formed on the shield case 23.
  • the cover region Ar covering the noise generation source R is almost the same as the metal plate 10.
  • the corner of the metal plate 10 becomes the corner of the cover area Ar and also the strong magnetic field positions BA to BD. Therefore, the slits SA to SD are formed from an intermediate edge position between the corners of the metal plate 10.
  • the slits SA to SD are extended to a side surface different from the metal plate 10 in the shield case 23 as shown in FIG. 7F. Is desirable.
  • the slits SA to SD in FIG. 7E extend beyond the cover region Ar to the end of the metal plate 10 or in the vicinity thereof, so that the circumferential current I is more effectively centered. It is also possible to lead to part O.
  • the mounting example of the radiation amount reducing apparatus 100 according to the first embodiment of the present invention has been described above.
  • the mounting example described here is merely an example, and the application destination of the radiation amount reducing apparatus 100 is not limited to this mounting example.
  • the radiation amount reducing device 100 can be formed with a very simple configuration, and since there is no restriction on the arrangement position, it goes without saying that various other implementations are possible.
  • FIGS. 8A to 8E are explanatory diagrams for explaining a modification of the radiation amount reducing apparatus according to the present embodiment.
  • the radiation amount reducing device 100 has a plurality of slits SA to SD, thereby exhibiting a circumferential current attenuation effect, a radiation magnetic field component attenuation effect, a residual secondary radiation component attenuation effect, and the like.
  • the noise N can be reduced.
  • the circumferential current attenuation action and the radiation magnetic field component attenuation action cause the circumferential current I or the magnetic field H whose phase is adjacent to each other to be opposite to each other. Demonstrated by pulling in the direction.
  • two or more slits may be formed.
  • the remaining secondary radiation component attenuation action is exhibited by the noises N generated from the slits SA to SD being in reverse phase with substantially the same amplitude.
  • N is a positive integer in terms of phase.
  • the plurality of slits be formed point-symmetrically with respect to the central portion O of the cover region Ar. That is, if the number and arrangement position of the slits are described together, it is desirable that 2N slits are formed and 2N times symmetrical with respect to the central portion O of the cover region Ar.
  • the circumferential current attenuation effect even when a plurality of slits other than 2N are formed, it is possible to exhibit the circumferential current attenuation effect, the radiation magnetic field component attenuation effect, and the like.
  • the circumferential current attenuation action, the radiation magnetic field component attenuation action, the residual secondary radiation component attenuation action, etc. are exhibited.
  • the central portion O of the cover area Ar may be an intersection of diagonal lines of each corner of the metal plate 10 or the center of gravity of the metal plate 10.
  • the slit is formed from the strong magnetic field position of the cover area Ar toward the central portion O as described above.
  • the metal plate 10 is significantly larger than the cover area Ar (for example, 1.5 times or more)
  • the position of the strong magnetic field is between the corners on the upper surface of the noise source R as shown in FIGS. 7D and 7E. This is a position on the outer periphery of the cover area Ar corresponding to the middle edge position.
  • the strong magnetic field position corresponds to an intermediate edge position between the corners of the metal plate 10.
  • the metal plate 10 is preferably formed of M polygon having 2 M number of corners in the outer periphery as a positive integer of 2 or more. Accordingly, it is desirable that the metal plate 10 be formed in, for example, a 4 ⁇ 8 ⁇ 16 ⁇ 32 square or the like in order to sufficiently exhibit the residual secondary radiation component attenuation effect.
  • the metal plate 10 is preferably a regular polygon, as is the case where the slits SA to SD are preferably formed symmetrically four times.
  • FIGS. 8C and 8D An example in which the metal plate 10 is formed in a regular polygon is shown in FIGS. 8C and 8D.
  • the metal plate 10 is formed in a regular octagon.
  • eight slits SA to SH are formed eight times symmetrically so as to satisfy the above relationship.
  • the four slits SA to SD can be formed four times symmetrically.
  • the strong magnetic field positions BA and BC are The center distance is an intermediate edge position between edge positions that is longer than other parts. Therefore, in this case, as shown in FIG. 8E, a plurality of slits SA and SC are formed from the strong magnetic field positions BA and BC as the edge positions.
  • the strong magnetic field positions BA and BC are the top surfaces of the noise source R as in FIG. It becomes a position on the outer periphery of the cover area Ar (that is, the metal plate 10) corresponding to the middle edge position between the corners. Accordingly, in this case, as shown in FIG. 8F, a plurality of slits SA to SD are formed from the strong magnetic field positions BA to BD.
  • the radiation amount reducing device 100 according to the first embodiment of the present invention has been described above. According to the radiation amount reducing device 100, by simply loading the noise generation source R on the upper surface, it is possible to act to divide and cancel the radiation noise component generated at the upper portion of the portion. Therefore, it is possible to effectively suppress the electromagnetic wave generated from the noise generation source R while reducing the generation of noise N such as secondary radiation. At this time, the canceled electromagnetic wave energy is absorbed as heat.
  • the radiation amount reducing device 100 can be easily arranged by an adhesive or a seal, it is not necessary to perform an operation that reduces the assembly work efficiency, such as a screwing operation. It can be easily arranged. In addition, since the radiation amount reducing device 100 can be formed with a simple structure, a significant reduction in manufacturing cost can be expected.
  • the radiation amount reducing device 100 since the radiation amount reducing device 100 does not need to be grounded, it can be loaded freely without being restricted by the arrangement position. Accordingly, it is possible to appropriately arrange the radiation amount reducing device 100 in the vicinity of a plurality of noise generation sources R where it is desired to reduce electromagnetic waves, and it is possible to appropriately reduce noise even when the noise generation sources are diversified. It is. Needless to say, it is also possible to ground the shield case or the like.
  • the circumferential current I is drawn to the central portion O by the drawing slits S1A to S1D, and the circumferential currents I flowing through the adjacent slits SA to SD are directly canceled by the coupling slits S2A to S2D.
  • the case of making it explained was explained.
  • the effect of drawing in and canceling the circumferential current I can be indirectly exerted through auxiliary coupling slits S11 to S14 instead of the coupling slits S2A to S2D.
  • auxiliary slits S3A to S3D and auxiliary slits S4A are provided on both sides of the coupling slits S2A to S2D.
  • ⁇ S4D can also be provided.
  • the circumferential current I flows around the auxiliary slit after being guided to the central portion O side by the drawing slits S1A to S1D, and the circumferential current I can be reduced.
  • the circumferential currents I and the like are offset. desirable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

【課題】電子回路等の電磁波発生源から輻射されるノイズ(電磁波)を、より効果的に、用意かつ安価に抑制することができる輻射量低減装置を提供すること。 【解決手段】この輻射量低減装置100は、電磁波発生源Rの少なくとも一面全体を覆うことが可能な金属板10の面内に設定されたカバー領域Arにおいて帯状に形成され、相互に離隔した複数のスリットSA~SDを有し、複数のスリットSA~SDそれぞれは、強磁界位置BA~BDから、カバー領域の中央Oに向けて延長形成された引込スリットS1A~S1Dと、引込スリットにおけるカバー領域中央方向の端部から、他のスリットと平行に並んで延長形成された結合スリットS2A~S2Dと、を有する。

Description

輻射量低減装置
 本発明は、輻射量低減装置に関する。
 近年、テレビ・コンピュータ・カメラ・携帯電話をはじめとする電子機器の進歩とともに、機器内部に使用されている例えばCPU・LSI・クロックIC・周辺半導体等の高密度化、高集積化及びプリント配線の高密度化が進んでいる。そして、これらの電子部品等で取り扱われる周波数の成分も高周波化されている。
 これに伴い、電子部品から発生する輻射ノイズ(電磁波)及びプリント基板に形成されているラインパターンから発生する伝導ノイズ(電磁波)による、人体への影響・誤動作・機能不全・特性劣化などが問題となってきている。このためEMC(Electro-Magnetic Compatibility)・EMI(Electro-Magnetic Interference)・EMS(Electro-Magnetic Susceptibility)対策がさらに求められてきている。
特開平7-212079号公報 特開平11-3549669号公報 特開平9-312489号公報 特開2007-95971号公報
 一般的に電子機器において不要電波を低減するための手段として、シールドケースによって、電子機器から輻射される不要電波や不要ノイズを抑制する機構が主流である。
 これは、導電性を有する金属板をシールド板として用い、基板から発生した輻射ノイズを反射させて封じ込める方式である(上記特許文献1参照。)。この方式は、放射ノイズの漏洩に効果はあるが、多種のIC等の部品やパターンからの放射ノイズがシールドケースにより反射され、散乱した放射ノイズ同士の電磁波干渉を助長してしまう恐れがある。更に、放射ノイズ等の電磁波の輻射を低減させるために、このシールドケース構造は複雑化しており、結果製造コストの増加に繋がっているのが実情である(上記特許文献2参照。)。
 このようなシールドケース等を使用した場合、筐体を構成しているカバーとシールドケースとの間の接合には、ネジ止め、板バネ、ガスケットなどが用いられている。
 ネジ止めによる接合の場合は、煩雑なネジ止め作業が必要であり、シールド効果を高める為にカバーとシールドケースとの間のネジの設置箇所を増やす必要がある。よって、ネジ止め作業が増え、組み立て作業効率を著しく低下させてしまっている。
 板バネを用いた場合は、板バネ自体の作成作業が相当かかり、取り付け工数の大きな増大となりコストの増加になってしまっている。
 導電性金属粉を添加させたガスケット、絶縁性軟磁性体を有した物の場合は、ガスケット、シート自体が高価であるとともに、取り付け構造に制約を受け、使用箇所が大きく限定されてしまう。
 また、上記特許文献3には、EMI対策のうち、ケーブル等からの放射ノイズを対象に対策を行う複合磁性体が開示されている。しかし、この方式では、プリント基板に形成されているラインパターンから発生する伝導ノイズを抑制することは難しい。よって、抑制しきれない導電ノイズが、スイッチング動作による電源電圧変動等により発生し、電子機器、回路等に影響を与えてしまう。
 また、上記特許文献4には、電磁波を輻射する輻射部を覆う電磁波遮断シートが開示されている。しかし、このシートは、複雑な構成を有するため製造工程が増大するばかりか、高価であるため製品の製造コストを増加させる恐れがある。
 このように輻射防止方法には、一長一短有り、適切に輻射ノイズや伝導ノイズを抑えることが可能で、用意かつ安価な方法の開発が望まれている。これに対して、上述のように高周波化等によりますますノイズの低減が望まれる電子回路は複雑化しているため、様々な位置及び周波数のノイズが発生している。このようなノイズは均一化されておらず、上記のようなシールドケース構造等による対策は複雑を極めてしまっており、かつ、シールドケースによるノイズ低減にも限界がある。よって、輻射低減を効果的に行え、用意かつ安価な輻射防止手段が希求されている。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、電子回路等の電磁波発生源から輻射されるノイズ(電磁波)を、より効果的に、用意かつ安価に抑制することが可能な、新規かつ改良された輻射量低減装置を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、電磁波を輻射する電磁波発生源の少なくとも一面全体を覆うことが可能な金属板と、
 上記金属板の面内に設定され上記一面全体を覆うカバー領域と、
 少なくとも上記カバー領域において帯状に形成され、相互に離隔した複数のスリットと、
を有し、
 上記複数のスリットそれぞれは、
 上記電磁波により上記カバー領域の中央を取囲む周方向に流れる周状電流を上記カバー領域中央方向に導くように、上記カバー領域の外周において上記電磁波により上記電磁波発生源との間に生じる磁界が他の位置よりも強くなる強磁界位置それぞれから、上記カバー領域の中央に向けて延長形成された引込スリットと、
 上記引込スリットが導いた周状電流を、上記カバー領域周方向一側で相隣接した他の上記スリットとの間へと導くように、上記引込スリットにおける上記カバー領域中央方向の端部から、上記一側の他の上記引込スリットと平行に並んで延長形成された結合スリットと、
を有する、輻射量低減装置が提供される。
 また、上記スリットは、Nを正の整数として、上記金属板上に2本形成されてもよい。
 また、上記複数のスリットは、相互に上記カバー領域中央を基準として点対称に配置されてもよい。
 また、上記カバー領域は、上記金属板全域であり、
 上記金属板は、中央から外周までの距離が不均一に形成され、
 上記強磁界位置は、上記金属板外周で相隣接し上記中心距離が他の部位に比べて長いエッジ位置間の中間のエッジ位置であってもよい。
 また、上記金属板は、Mを2以上の正の整数として、外周にコーナを2個有する多角形に形成され、
 上記強磁界位置は、上記コーナ間の中間のエッジ位置であってもよい。
 また、上記金属板は、正多角形であってもよい。
 また、上記強磁界位置は、上記電磁波発生源の一面におけるコーナ間の中間のエッジ位置に対応する、上記カバー領域外周上の位置であってもよい。
 また、上記カバー領域は、上記金属板全域であり、
 上記金属板は、中央から外周までの距離が均一である円状に形成されてもよい。
 以上説明したように本発明によれば、電子回路等の電磁波発生源から輻射されるノイズ(電磁波)を、より効果的に、用意かつ安価に抑制することができる。
本発明の第1実施形態に係る輻射量低減装置の構成について説明するための説明図である。 同実施形態に係る輻射量低減装置の構成について説明するための説明図である。 同実施形態に係る輻射量低減装置の作用例について説明するための説明図である。 同実施形態に係る輻射量低減装置の作用例について説明するための説明図である。 同実施形態に係る輻射量低減装置の作用例について説明するための説明図である。 同実施形態に係る輻射量低減装置の作用例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実施例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実施例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実施例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実施例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実施例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実装例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実装例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実装例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実装例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実装例について説明するための説明図である。 同実施形態に係る輻射量低減装置の実装例について説明するための説明図である。 同実施形態に係る輻射量低減装置の変更例について説明するための説明図である。 同実施形態に係る輻射量低減装置の変更例について説明するための説明図である。 同実施形態に係る輻射量低減装置の変更例について説明するための説明図である。 同実施形態に係る輻射量低減装置の変更例について説明するための説明図である。 同実施形態に係る輻射量低減装置の変更例について説明するための説明図である。 同実施形態に係る輻射量低減装置の変更例について説明するための説明図である。 同実施形態に係る輻射量低減装置の更なる変更例について説明するための説明図である。 同実施形態に係る輻射量低減装置の更なる変更例について説明するための説明図である。 関連技術に係る輻射量低減装置について説明するための説明図である。
 10,90  金属板
 11,12,13,14  金属板片
 15,16,17,18  金属板片
 21,23  シールドケース
 22  基板
 31  接着剤
 100,101,102,103,104,105  輻射量低減装置
 106,107,108,109,110,111  輻射量低減装置
 900  関連技術に係る輻射量低減装置
 A,B  領域
 Ar  カバー領域
 BA,BC,BB,BD     強磁界位置
 D  受信プローブ
 H  磁場
 I,I1,I2,I3,I4   周状電流
 R  ノイズ発生源
 N ノイズ
 O 中央部
 PA,PB,PC,PD     平行位置
 SA,SB,SC,SD  スリット
 SE,SF,SG,SH  スリット
 S1A,S1B,S1C,S1D  引込スリット
 S1E,S1F,S1G,S1H  引込スリット
 S2A,S2B,S2C,S2D  結合スリット
 S2E,S2F,S2G,S2H  結合スリット
 S3A,S3B,S3C,S3D  補助スリット
 S4A,S4B,S4C,S4D  補助スリット
 S11,S12,S13,S14  補助連結スリット
 T1  支持板
 T2  ビニール皮膜
 VA,VB,VC,VD,VO  強電界位置
 X   被測定対象
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、本発明の各実施形態に係る輻射量低減装置は、様々な電磁波発生源に対して使用することが可能である。電磁波発生源としては、例えば、CPU(Central Processing Unit)・LSI(Large Scale Integration)・クロックIC(Integrated Circuit)・周辺半導体・プリント基板・配線・コイル・抵抗・コンデンサなど様々な電子素子から、これらが組合わさって形成された電子機器まで多種多様である。この輻射量低減装置の適用先は、これら電磁波発生源の例に限定されず、電磁波を発する様々な部位に適用することができる。この際、輻射量低減装置は、電磁波発生源が輻射する電磁波を伝搬させたくない方向側の電磁波発生源に密着して配置されるかその近傍に配置される。もちろん、輻射量低減装置は、電磁波発生源の遠方に配置されても良いが、電磁波の遮蔽又は減衰効率や、装置全体の空間効率等を考慮すると、電磁波発生源の側に配置されることが望ましい。このような輻射量低減装置についての理解が容易になるように、以下では、次の順序で説明する。
 1.関連技術に係る輻射量低減装置
 2.第1実施形態に係る輻射量低減装置
  2-1.輻射量低減装置の構成
  2-2.輻射量低減装置の作用例
  2-3.輻射量低減装置の実施例
  2-4.輻射量低減装置の実装例
  2-5.輻射量低減装置の変更例
  2-5.輻射量低減装置の効果の例
 <1.関連技術に係る輻射量低減装置>
 まず、図10を参照しつつ、関連技術に係る輻射量低減装置について説明する。図10は、関連技術に係る輻射量低減装置について説明するための説明図である。
 図10では、金属板90を、電磁波の遮蔽シールド、つまり関連技術に係る輻射量低減装置900として使用した場合の例を示している。図10に示す金属板90は、導電性を有し、電磁波発生源(以下「ノイズ発生源R」とも言う。)を覆うように配置される。なお、図示してはいないが、図10に示す金属板90の裏面(紙面奥側)には、金属板90の形成面における外形(xy面における外形)と同程度か、それよりも一回り程度小さいノイズ発生源Rが配置されているものとする。
 ノイズ発生源Rから発せられた電磁波(ノイズ)は、関連技術に係る輻射量低減装置900において反射される。しかし、そのエネルギーは減衰せずに、関連技術に係る輻射量低減装置900の外周及び表面や、ノイズ発生源Rとの間から輻射されてしまう。このような現象をここでは「2次放射」ともいい、この2次放射された電磁波をここでは「ノイズN」ともいう。
 様々な回路がノイズ発生源Rとして電磁波を発生させ、関連技術に係る輻射量低減装置900から2次放射のノイズNが発せられてしまう。この2次放射のうち強いノイズNは、大きく分けて2種類に分かれる。1種類目のノイズNは、主たるノイズであり、金属板90をパッチアンテナとした放射である。このノイズNは、主に金属板90の表面からノイズ発生源Rの反対側に発せられる。一方、2種類目のノイズNは、金属板90のエッジ(端部)とノイズ発生源Rが配置された基板内のGND(接地)面とにより形成される開口が、あたかも静電容量アンテナのように動作することで発せられる。
 ここで本発明者らが鋭意研究を行った結果、明らかにした2次放射ノイズNの発生メカニズムについて簡単に説明する。
 関連技術に係る輻射量低減装置900の金属板90のようにノイズ発生源Rを覆う金属板90が配置されると、その金属板90の下部、つまり金属板90とノイズ発生源Rとの間には、電界があたかも定在波のように発生する。この発生した電界の強い位置(「強電界位置」という。)を図10に示す。図10に示すように、強電界位置VA~VDは、金属板90の四隅に発生し、かつ、強電界位置VOは、金属板90の中央に発生する。この強電界位置は、金属板90の形状、及び、ノイズ発生源Rの形状の少なくとも一方によって決定される。そして、強電界位置VA~VD,VOに擬似的な定在波の電界の腹が生じ、相隣接する強電界位置同士の電界の符合は互いに反転している。よって、この電界により、周状電流I(ここでは外周電流ともいう。)が流れる。
 この周状電流Iは、金属板90の中央部Oを取囲むように外周を流れ、中央部Oに向かうにつれて小さくなる。このような周状電流Iが流れることにより、金属板90の上部及び下部には、磁界が発生する。このうち、金属板90の下部に発生した磁界は、上記の電界の強電界位置と同様に、あたかも定在波のように発生する。この発生した磁界の強い位置(「強磁界位置」という。)を図10に示す。図10に示すように、強磁界位置BA~BDは、金属板90の四辺の中央に発生する。換言すれば、強磁界位置BA~BDは、強電界位置VA~VDの中間に生じることになる。
 そして、金属板90の下部に生じた電界及び磁界は、それぞれ基板内のGNDと金属板90との間で静電容量アンテナで発生する電界及び磁界と同様な動作をする。そして、この電界及び磁界は、基板内のGNDと金属板90と間の開口を介して、ノイズNを発生させる(2種類目のノイズN。厳密な2次放射でなくてもよい。)。一方、周状電流Iにより金属板90の上部に生じた磁界は、電界を連鎖的に発生して、ノイズNを発生させる(1種類目のノイズN。)。
 従って、単に金属板90で形成された関連技術に係る輻射量低減装置900では、ノイズ発生源Rが輻射した電磁波を、単にxy平面方向に散らすか(2種類目のノイズN)、金属板90の表面から再度輻射してしまう(1種類目のノイズN)。
 このような関連技術に係る輻射量低減装置900のノイズN等について鋭意研究を行った本発明の発明者は、上記のようなノイズNの発生メカニズムについて明らかにし、このノイズNを低減すべく更なる研究開発を行った結果、本発明を完成させた。以下、本発明の各実施形態について説明する。ただし、ここで説明したノイズNの発生メカニズムは、ノイズNを限定するものではなく、上記の2種類のノイズN以外のノイズの輻射量をも、本発明の各実施形態に係る輻射量低減装置は低減することができることは、言うまでもない。
 <2.第1実施形態に係る輻射量低減装置>
 まず、図1A及び図1Bを参照しつつ、本発明の第1実施形態に係る輻射量低減装置の構成について説明する。図1A及び図1Bは、本発明の第1実施形態に係る輻射量低減装置の構成について説明するための説明図である。
  <2-1.輻射量低減装置の構成>
 図1Aに示すように、本実施形態に係る輻射量低減装置100は、大きく分けて、金属板10と、スリットSA~SDとを有する。
 なお、本実施形態では、図1Bに示すように、説明の便宜上、輻射量低減装置100が、ノイズ発生源Rの上方に輻射される電磁波の輻射量を低減する場合について説明する。そのため、以下で説明する金属板10は、ノイズ発生源Rの上面を覆う形状に形成され、この輻射量低減装置100は、ノイズ発生源Rの上面側近傍に配置される。ただし、金属板10の形状及び輻射量低減装置100の配置位置等は、ノイズ発生源R及び輻射量を低減させたい方向等に応じて、適宜変更可能である。
 金属板10は、導電性の材料で形成され、電磁波を輻射するノイズ発生源R(電磁波発生源の一例)の少なくとも上面(一面の一例)全体を覆うことが可能なカバー面を有する。図1Bに示すように、本実施形態に係る金属板10は、その全体が、カバー面として形成されている。しかしながら、この金属板10のカバー面は、金属板10の全域である必要はなく、金属板10の一部の領域であることも可能である。つまり、金属板10は、ノイズ発生源Rの上面全体に対応する面(カバー面)を有すれば、様々な形状に形成することが可能である。このカバー面となる金属板10の領域を「カバー領域Ar」とも言う。
 つまり、本実施形態では、カバー領域Arが金属板10の全域に相当する。このようにカバー領域Arが金属板10の全域に相当する場合、金属板10の面積は、その金属板10が覆うノイズ発生源Rの上面の面積の1~1.5倍、より好ましくは1.25~1.5倍に形成されることが望ましい。しかしながら、金属板10は、ノイズ発生源Rの上面より更に大きく形成されてもよい。
 なお、本実施形態では、金属板10が、ノイズ発生源Rの上面の形状に対応して正方形に形成されている場合を例示している。しかしながら、金属板10は、必ずしもノイズ発生源Rの上面の形状に対応する必要はなく、また、正方形である必要もない。ただし、輻射量低減装置100の輻射量低減効果等を向上させるためには、金属板10は、以下の順序で形成されることが望ましい。
 正方形≧正多角形>多角形>楕円>円
 しかしながら、この例に挙げた形状以外にも、金属板10は、例えば、中心距離が不均一な形状であってもよい。
 カバー領域Arは、金属板10の面内に設定され、上記のノイズ発生源Rの上面全体を覆う領域である。なお、上述のように、本実施形態では、カバー領域Arが金属板10の全域に設定される。
 スリットSA~SDは、少なくともカバー領域Arにおいて帯状に形成される。このスリットSA~SDは、例えば、金属板10の一部を帯状(溝ともいう。)に切り取ったり、金属板10自体をスリットSA~SDを除いて形成することにより、形成可能である。なお、このスリットSA~SDは、図1Aに示すように、中央部Oに向けて形成され、全体として十字のような形状に形成されているが、金属板10の周方向で隣接するスリット同士は、互いに連結しておらず離隔している。従って、スリットSA~SDにより擬似的に区画された金属板片11~12は、互いに中央部Oを介して連結されており、金属板10を形成している。
 本実施形態では、このスリットSA~SDは、図1Aに示すように、4本形成される。しかしながら、このスリットSA~SDの本数は4本に限定されるものではなく、複数本であればよい。ただし、このスリットSA~SDは、Nを正の整数として、金属板10上に2本形成されることが望ましい。
 本実施形態に係るスリットSA~SDは、図1Aに示すようにカバー領域Ar(つまり金属板10)の中央部Oを基準として、点対称に配置される。そして、各スリットSA~SDは、同様な形状で形成される。そこで、まず、スリットSAを例に各スリットの形状について説明する。
 図1Aに示すように、スリットSAは、大きく分けて、引込スリットS1Aと、結合スリットS2Aとを有する。
 引込スリットS1Aは、カバー領域Arの外周における上記強磁界位置BAから、カバー領域Arの中央部Oに向けて延長形成される。本実施形態では、カバー領域Arと金属板10の全体とが一致するため、引込スリットS1Aは、金属板10の端部から形成される。また、カバー領域Arの外周の強磁界位置BAは、図10で示したようにカバー領域Arの四つのコーナ(角部、強電界位置)の中間のエッジ位置(端部)に生じるため、引込スリットS1Aは、このエッジ位置から中央部Oに向けて帯状に延長形成される。
 なお、本実施形態において、この引込スリットS1Aは、コーナから中央部Oに向けて帯状に一直線に形成されるが、この引込スリットS1Aは、湾曲していてよい。しかしながら、本実施形態のように引込スリットS1Aが一直線に形成される場合、引込スリットS1Aによる周状電流Iの引込効果が向上し、輻射量の低減効果を増すことが可能である。
 結合スリットS2Aは、引込スリットS1Aにおけるカバー領域Arの中央部O方向の端部から、カバー領域Arの周方向一側の他のスリットSB(又はスリットSD)と平行に並んで延長形成される。より具体的には、本実施形態では、結合スリットS2Aは、他のスリットSBの引込スリットS1Bと平行に並んで延長形成される。
 本実施形態では、この結合スリットS2Aが、カバー領域Arの周方向における引込スリットS1Aの右方(反時計回り)に延長形成された場合を示している。従って、他の引込スリットS1B~S1Dも、中央部O方向の端部において右方(反時計回り)に、各結合スリットS2B~S2Dが延長形成される。ただし、結合スリットS2A~S2Dは、これとは逆に、カバー領域Arの周方向における各引込スリットの左方(時計回り)に延長形成されてもよい。
 また、本実施形態に係る結合スリットS2Aは、隣接する他のスリットSBのうち、引込スリットS1Bと平行に形成され、かつ、この引込スリットS1Bとは所定の間隔をあけて形成される。そして、結合スリットS2Aは、並んだ引込スリットS1Bよりも短く形成され、カバー領域Arの端部までは形成されないことが望ましい。ただし、結合スリットS2Aは、上記引込スリットS1Aと同一又は近似する幅で帯状に形成されることが望ましい。
 この結合スリットS2Aは、引込スリットS1Aが導いた周状電流Iを、並んだ引込スリットS1Bと略平行に導くことにより、その引込スリットS1Bが導いた周状電流Iと結合させる結合効果を発揮する。
 ここで説明した引込スリットS1A及び結合スリットS2Aは、それぞれスリットSAに対応するが、他のスリットSB~SDも同様に、引込スリットS1B~S1Dと結合スリットS2B~S2Dを1ずつ有する。換言すれば、各スリットSA~SDは、それぞれ略L字状に形成され、そのL字状のスリットSA~SDが金属板10の4つのコーナの中間のエッジ位置から延長形成される。結果として、スリットSA~SDは、金属板10を、略十字状に4つの金属板片11~14に区画する。ただし、略L字状のスリットSA~SDは、相互に離隔しており、金属板10を形成する金属板片11~14は、中央部Oで相互に連結されている。
  (強電界位置について)
 なお、このスリットSA~SDは、上述のように、それぞれ強磁界位置BA~BDから中央部O方向に向けて形成される。この強磁界位置BA~BDについて説明する。
 上述のように、強磁界位置BA~BDは、ノイズ発生源Rが発生する電磁波により、そのノイズ発生源Rとの間に磁界が生じ、その磁界が他の部位に比べて大きい個所である。他方、強電界位置VA~VDは、金属板10とノイズ発生源Rとの間の空間インピーダンスが低い個所に相当する。これに対して、強磁界位置BA~BDは、カバー領域Arの外周における強電界位置VA~VDの中間位置(本実施形態では金属板10のエッジ位置)に相当する。本実施形態に係る輻射量低減装置100では、金属板10がノイズ発生源Rと同程度かそれを覆う程度の多角形(正方形)で形成されているが、この場合、金属板10のコーナの空間インピーダンスが他の部位に比べて低くなる。よって、金属板10の4つのコーナが強電界位置VA~VDとなり、金属板10の4つのコーナの中間のエッジ位置が強磁界位置BA~BDとなる。そこで、本実施形態に係る輻射量低減装置100では、この4つのコーナの中間のエッジ位置からスリットSA~SDをそれぞれ形成している。なお、この強磁界位置BA~BDは、上述の通り、金属板10の形状やノイズ発生源Rの形状等によって異なるため、スリットSA~SDが形成される位置も、金属板10の形状やノイズ発生源Rの形状等によって変更されうる。強電界位置は、金属板10が中央部Oから外周までの中心距離が不均一に形成される場合、その中心距離が他の部位に比べて長いエッジ位置(端部)となる。そして、強磁界位置は、そのエッジ位置の中間のエッジ位置(端部)となる。より具体的には、強電界位置は、金属板10が多角形である場合には、そのコーナ(角部)となり、本実施形態のように金属板10が正方形である場合には、図1Aに示す4つのコーナとなる。従って、強磁界位置は、金属板10が多角形である場合には、各辺の中点となり、本実施形態のように金属板10が正方形である場合には、図1Aに示す4つの辺の各中点となる。一方、金属板10がこのようなコーナを有さない場合、及び、金属板10がカバー領域Arよりも大幅に大きい場合には、強電界位置VA~VDは、ノイズ発生源Rの上面のコーナに対応する、カバー領域Arの外周上の位置になる。そして、この場合、強磁界位置BA~BDは、強電界位置VA~VDの中間、つまり、ノイズ発生源Rの上面のコーナ間の中間のエッジ位置に対応する、カバー領域Arの外周上の位置になる。従って、このような場合には、スリットSA~SBは、ノイズ発生源Rの上面のコーナ間の中間位置に対応する強磁界位置から形成される。
 以上、本発明の第1実施形態に係る輻射量低減装置100の構成について説明した。
 次に、図2A~図3Bを参照しつつ、本発明の第1実施形態に係る輻射量低減装置の作用例について説明する。図2A~図3Bは、本実施形態に係る輻射量低減装置の作用例について説明するための説明図である。
 <2-2.輻射量低減装置の作用例>
  (2-2-1.周状電流減衰作用)
 まず、ノイズNの主要な発生源である周状電流Iの減衰作用について説明する。
 周状電流Iは、図10で説明したように、ノイズ発生源Rが発生した電磁波により、金属板10とノイズ発生源Rとの間に定在波のような電界及び磁界が発生し、その電界及び磁界により、カバー領域Arの中央部Oを取囲むような周状に流れる。そして、この周状電流Iが2次放射等のノイズNの主要な発生原因となる。
 一方、本実施形態に係る輻射量低減装置100は、上述の通り、強磁界位置BA~BDから形成された複数のスリットSA~SDを有する。このスリットSA~SDのうち、引込スリットS1A~S1Dそれぞれは、強磁界位置BA~BDから形成されている。強磁界位置BA~BDは、磁界が他の部位よりも強い位置であり、かつ、この強磁界位置BA~BDに引込スリットS1A~S1Dが形成されることにより、引込スリットS1A~S1Dの淵中には、図2Aに示すように磁場Hが生じる。図2Aではこの磁場Hを磁流として模式的に示している。換言すれば、ノイズ発生源Rが発生した電磁波の放射磁界成分が、この引込スリットS1A~S1Dに強磁界位置BA~BDで結合して、磁場Hを励振させる。そして、この磁場Hは、引込スリットS1A~S1Dに結合された状態で、引込スリットS1A~S1Dに沿ってカバー領域Arの中央部O側へと導かれる。一方、周状電流Iは、引込スリットS1A~S1Dにより分断され、かつ、磁場Hが引込スリットS1A~S1Dに結合することに伴い、図2Aに示すように、磁場Hと共に中央部O側へと導かれる。引込スリットS1A~S1Dにより中央部O側に導かれた周状電流Iは、図2Bに示すように、結合スリットS2A~S2Dにより、周方向一側で相隣接した他のスリットとの間に導かれる。従って、各スリットSA~SDの淵部には、周状電流Iが流れる。
 この各スリットSA~SDの淵部に流れる周状電流Iは、図2Bに示すように、相隣接するスリットが導く周状電流Iと逆相となる。従って、2のスリットSA~SDが平行となる領域A及び領域Bにおいて、逆相となった周状電流Iが互いに打ち消しあう。つまり、周状電流Iは、1のスリットを見れば、2の領域A,Bにおいて相殺されて、減衰される。その結果、本実施形態に係る輻射量低減装置100は、2次放射等のノイズNを低減することができる。
  (2-2-2.放射磁界成分減衰作用)
 一方、各スリットSA~SDに結合して磁場Hを発生させる放射磁界成分は、上述の通り、強磁界位置BA~BDから各スリットSA~SDに沿って導かれる。また、各スリットSA~SDは、強磁界位置BA~BDからの放射磁界成分だけでなく、他の個所でも放射磁界成分を結合させ、磁場Hを生じさせる。各スリットSA~SDに生じた磁場Hは、図3Aに示す平行位置PA~PDにおいて、図3Bに示すように逆相となり、やはり互いに打ち消しあう。従って、このスリットSA~SDそれぞれに生じる磁場Hによる2次放射のノイズNも、平行位置PA~PD内で逆相となり打ち消しあい、ノイズNは更に低減される。
  (2-2-3.残存2次放射成分減衰作用)
 更に、上記周状電流減衰作用及び放射磁界成分減衰作用によっても、なお残存する2次放射成分が生じうる。しかしながら、図3Aに示すように、各スリットSA~SDは、本実施形態では点対称に形成されるため、対向するスリットSA~SD(スリットSAとスリットSC、又は、スリットSBとスリットSD)が発生させるノイズN同士は、ほぼ同振幅で逆相となる。その結果、2次放射成分のノイズNは、仮に輻射されたとしても、互いに打ち消しあう。より具体的には、例えば、平行位置PAから輻射される2次放射成分は、平行位置PCから輻射される2次放射成分と逆相となって打ち消しあい、平行位置PBから輻射される2次放射成分は、平行位置PDから輻射される2次放射成分と逆相となって打ち消しあう。よって、ノイズNは更に低減される。
 このように、本実施形態に係る輻射量低減装置100は、上記スリットSA~SDを有することにより、周状電流減衰作用、放射磁界成分減衰作用及び残存2次放射成分低減作用等を発揮することにより、ノイズNの輻射量を低減することが可能である。ただし、このような作用はあくまで例であり、輻射量低減装置100は、これらの作用に限定されるものではなく、ここに挙げなかった作用が存在し、それによりノイズNが低減される可能性を否定するものではない。
 以上、本発明の第1実施形態に係る輻射量低減装置100の作用例について説明した。
 次に、図4~図6を参照しつつ、本発明の第1実施形態に係る輻射量低減装置の実施例について説明する。図4~図6は、本実施形態に係る輻射量低減装置の実施例について説明するための説明図である。
 <2-3.輻射量低減装置の実施例>
 本実施形態に係る輻射量低減装置による輻射量低減効果を測定するにあたり、図4に示すようなプリント基板を模した測定装置を用意した。より具体的には、被測定対象Xの下面にビニール皮膜T2を配置し、そのビニール皮膜T2を、支持板T1の開口部を塞ぐように支持板T1上に配置した。そして、ノイズ発生源Rから周波数を変更しつつ電磁波を発生させ、被測定対象Xから放射されるノイズN(電界分布)を、被測定対象Xから50mm離れた受信プローブDにより測定した。
 そして、図5Aに示すように、スリットを有さない関連技術に係る輻射量低減装置900と、本実施形態に係る輻射量低減装置101,102とを用意し、被測定対象Xの位置に配置して、上記測定装置によりノイズNの輻射量を測定した。
 なお、本実施形態に係る輻射量低減装置101,102は、図5Aに示すようにスリットSA~SDのサイズを変更して形成した。つまり、金属板10は、厚さ0.09mmの銅板を40mm×40mmの正方形に形成し、その金属板10にスリット幅0.8mmのスリットSA~SDを形成した。ただし、金属板10の材質は、導電性を有していれば、特に限定されるものではなく、他の材質であっても以下で説明するのと同様の結果が得られる。
 この際、輻射量低減装置101の引込スリットS1A~S1Dの長さは、18mmとし、結合スリットS2A~S2Dの長さは、11mmとした。一方、輻射量低減装置102の引込スリットS1A~S1Dの長さは、17.5mmとし、結合スリットS2A~S2Dの長さは、11mmとした。そして、平行位置PA~PDにおけるスリット間隔(つまり相隣接するスリット間の間隔)は、0.6mmとした。なお、各スリットSA~SDにおける引込スリットS1A~S1Dと結合スリットS2A~S2Dとの間の角度は90°とした。そして、スリットSA~SDは、相互にカバー領域Ar(つまり金属板10)の中央部Oを基準として90°回転させたような形状を有し(つまり90°の4回対称)、全体として略十字状に形成した。一方、関連技術に係る輻射量低減装置900は、上記金属板10と同様の金属板90を使用した。
 図5Bに、本実施形態に係る輻射量低減装置101に対する測定信号I101を、関連技術に係る輻射量低減装置900に対する測定信号I900を0dBとして規格化した測定結果を示す。一方、図5Cに、電磁界シミュレータを用いて、輻射量低減装置101,102に対するシミュレーション結果C101,C102を、関連技術に係る輻射量低減装置900に対するシミュレーション結果C900を0dBとして規格化した結果を示す。
 一般には、金属板10にスリットSA~SDが開口している分、そこから漏れた電磁波が2次放射成分に加算されるため、本実施形態に係る輻射量低減装置101,102は、関連技術に係る輻射量低減装置900に比べて、ノイズNの量が悪化すると考えられる。従って、一般的には、輻射量低減装置101,102による測定信号I101,I102は、関連技術に係る輻射量低減装置900に対する測定信号I900よりも高くなると予想される。
 しかしながら、本実施形態に係る輻射量低減装置101,102は、図5Bだけでなく、図5Cからも見て取れるように、上記の予想に反して、広範囲な電磁波の周波数帯域において、2次放射成分(ノイズN)を大幅に低減することが可能である。これは、輻射量低減装置101,102が、スリットSA~SD内に放射成分を取込み、しかも複数のスリットSA~SDを用いて、相互干渉させて相殺することにより、2次放射分を大幅に低減させることができることに寄るものである。
 また、上記同様の金属板10においてスリットSA~SDの寸法を適宜変更した、本実施形態に係る輻射量低減装置103~107(図示せず)を用意して、上記同様の測定を行った。
 この際、輻射量低減装置103は、スリット幅を1.0mmとし、引込スリットS1A~S1Dの長さを17mmとし、結合スリットS2A~S2Dの長さを15mmとし、平行位置PA~PDにおけるスリット間隔を0.4mmとした。また、輻射量低減装置104は、スリット幅を1.2mmとし、引込スリットS1A~S1Dの長さを18.5mmとし、結合スリットS2A~S2Dの長さを15mmとし、平行位置PA~PDにおけるスリット間隔を0.6mmとした。また、輻射量低減装置105は、スリット幅を0.6mmとし、引込スリットS1A~S1Dの長さを17mmとし、結合スリットS2A~S2Dの長さを11mmとし、平行位置PA~PDにおけるスリット間隔を0.4mmとした。また、輻射量低減装置106は、スリット幅を0.8mmとし、引込スリットS1A~S1Dの長さを17mmとし、結合スリットS2A~S2Dの長さを13mmとし、平行位置PA~PDにおけるスリット間隔を0.2mmとした。また、輻射量低減装置107は、スリット幅を1.4mmとし、引込スリットS1A~S1Dの長さを18mmとし、結合スリットS2A~S2Dの長さを12mmとし、平行位置PA~PDにおけるスリット間隔を0.5mmとした。
 図6に、この輻射量低減装置103~107に対する測定信号I103~I107を、関連技術に係る輻射量低減装置900に対する測定信号I900を0dBとして規格化した測定結果を示す。
 図6の測定結果も、スリットSA~SDの寸法が異なる場合でも、本実施形態に係る輻射量低減装置103~107が、スリットSA~SD同士が確実に放射成分を結合させて、2次放射(ノイズN)低減効果を発揮できることを示している。
 以上、本発明の第1実施形態に係る輻射量低減装置の実施例について説明した。
 次に、図7A~図7Fを参照しつつ、本発明の第1実施形態に係る輻射量低減装置の実装例について説明する。図7A~図7Fは、本実施形態に係る輻射量低減装置の実装例について説明するための説明図である。
  <2-4.輻射量低減装置の実装例>
 本発明の第1実施形態に係る輻射量低減装置100は、上述の通り、金属板10にスリットSA~SDが形成された非常に簡単な構成で形成可能である。特にこの際、輻射量低減装置100は、接地する必要すらないため、特に配置位置に制限はなく、かつ、ノイズ発生源Rの近傍に配置するだけでよいため、様々な実装が可能である。そこで、以下では、輻射量低減装置100の実装例の幾つかについて説明する。
   (2-4-1.第1実装例)
 図7Aに、本実施形態に係る輻射量低減装置100を、ノイズ発生源Rの上面に直接プリントした場合を示す。この際、ノイズ発生源Rの上面ではなく、ノイズ発生源Rの内部に輻射量低減装置100を埋め込むことも可能である。このようにノイズ発生源Rに直接プリントすることにより、輻射量低減装置100を容易に構成することができ、かつ、ノイズ発生源Rの一面側に対するノイズNの輻射量を大幅に低減することが可能である。なお、この際、ノイズ発生源Rと輻射量低減装置100との間には、例えば0.05mm程度の絶縁保護層が形成されることが望ましい。
   (2-4-2.第2実装例)
 図7Bに、上記第1実装例と同様にノイズ発生源Rと一体に形成する輻射量低減装置100の実装例として、接着剤31(接着剤付きシール等でもよい。)により、ノイズ発生源Rの上面に輻射量低減装置100を固定した場合を示す。この場合、接着剤31等に絶縁性の素材を使用することが望ましい。
   (2-4-2.第3実装例)
 図7Cに、本実施形態に係る輻射量低減装置100を、シールドケース23に固定する場合を示す。ノイズ発生源Rは、基板22上に配置され、かつ、シールドケース21,23によって覆われる。そして、上方のシールドケース23のノイズ発生源Rと対向する位置の内部に、接着剤やシール(図示せず)等により、輻射量低減装置100が固定される。もちろん、輻射量低減装置100は、シールドケース23の上方に固定されてもよい。このように輻射量低減装置100は、配置位置に制限がないため、ノイズ発生源Rの近傍に如何様にも配置することが可能である。また、接地等の必要もなく、固定手段も特に問わないため、輻射量低減装置100は、容易に配置することが可能である。
   (2-4-2.第4実装例)
 図7Dに、本実施形態に係る輻射量低減装置100を、シールドケース23の一部として形成する場合を示す。この場合、シールドケース23のノイズ発生源Rを覆う部位が、金属板10となり、その金属板10のノイズ発生源Rと対向する位置がカバー領域Arとなる。そして、このカバー領域Arに、スリットSA~SDが形成されることになる。この場合、単にシールドケース23にスリットSA~SDを形成するだけで、本実施形態に係る輻射量低減装置100を形成することができる。
   (2-4-2.第5実装例)
 図7Eに、上記第4実装例と同様に本実施形態に係る輻射量低減装置100がシールドケース23に直接形成され、かつ、ノイズ発生源Rを覆うカバー領域Arよりも金属板10が大幅に大きい場合を示す。この場合、上記第4実装例と同様に、カバー領域Arと金属板10が一致しないため、ノイズ発生源Rの上面のコーナ間の中間のエッジ位置に相当するカバー領域Arの外周(コーナ)が強磁界位置BA~BDとなり、スリットSA~SDは、この強磁界位置BA~BDから形成される。
   (2-4-2.第6実装例)
 図7Fに、本実施形態に係る輻射量低減装置100が、シールドケース23に直接形成されるが、上記第5実装例とは異なり、ノイズ発生源Rを覆うカバー領域Arが金属板10とほぼ同程度である場合を示す。この場合、金属板10のコーナがカバー領域Arのコーナとなり、かつ、強磁界位置BA~BDともなる。よって、スリットSA~SDは、この金属板10のコーナ間の中間のエッジ位置から形成される。この際、より効果的に周状電流Iを中央部Oに導くために、スリットSA~SDは、図7Fに示すように、シールドケース23における金属板10と異なる側面にまで延長形成されることが望ましい。なお、同様のことが第5実装例の場合にも言える。よって、第5実装例において、図7EのスリットSA~SDが、カバー領域Arを越えて金属板10の端部又はその近傍にまで延長されることにより、周状電流Iをより効果的に中央部Oに導くことも可能である。
 以上、本発明の第1実施形態に係る輻射量低減装置100の実装例について説明した。ただし、ここで説明した実装例は、あくまで一例であり、この実装例に輻射量低減装置100の適用先が限定されるものではない。上述の通り、輻射量低減装置100は、非常に単純な構成で形成でき、かつ、配置位置に制限もないため、その他様々な実装が可能であることは言うまでもない。
  <2-5.輻射量低減装置の変更例>
 次に、図8A~図8Eを参照しつつ、本発明の第1実施形態に係る輻射量低減装置100の変更例について説明する。図8A~図8Eは、本実施形態に係る輻射量低減装置の変更例について説明するための説明図である。
   (2-5-1.スリット本数及び配置位置(点対称))
 上述の通り、本実施形態に係る輻射量低減装置100は、複数のスリットSA~SDを有することにより、周状電流減衰作用・放射磁界成分減衰作用・残存2次放射成分減衰作用等を発揮することにより、ノイズNを低減することを可能にしている。一方、周状電流減衰作用及び放射磁界成分減衰作用は、図2A、図2B及び図3Bで説明したように、相隣接するスリット同士が互いに逆相の周状電流I又は磁場Hを中央部O方向へと引き込むことにより、発揮される。この周状電流減衰作用及び放射磁界成分減衰作用を発揮するためには、スリットは、2以上形成されればよい。
 しかしながら、残存2次放射成分減衰作用は、図3Aで説明したように、各スリットSA~SDから発生されるノイズN同士がほぼ同振幅で逆相となることにより、発揮される。このためには位相の関係上、スリットの本数は、Nを正の整数として2本形成されることが望ましい。また、逆相のノイズNの振幅を等しくして相殺効果を更に高めるためには、複数のスリットは、カバー領域Arの中央部Oを基準として、点対称に形成されることが望ましい。つまり、スリットの本数と配置位置を併せて説明すれば、スリットは、2本形成されカバー領域Arの中央部Oを基準として、2回対称に形成されることが望ましい。
 なお、スリットの本数がN=2の場合と、Nが2超過の場合とでは、周状電流減衰作用・放射磁界成分減衰作用・残存2次放射成分減衰作用等は、同程度発揮される。よって、スリットの本数が多くなれば、その分スリット形成工程が増え、かつ、輻射量低減装置100の機械的強度が減少することを考慮に入れれば、スリットの本数は、N=2、つまり4本が望ましい。また、各スリットが点対称で形成されることを考慮に入れれば、図8Aに示すように長方形の金属板10にスリットSA~SDを形成することも可能である。しかし、相殺させる周状電流I同士の量、磁場H同士の振幅、逆相のノイズNの振幅等を等しくして、等方的に相殺効果を発揮するためには、図1Aに示す本実施形態のような4回対称のスリットSA~SDを形成することが望ましい。
 しかしながら、スリットが2本以外の複数本形成される場合であっても、上記周状電流減衰作用・放射磁界成分減衰作用等を発揮することは可能である。そして、図8Bに示すように、仮に複数のスリットが点対称で形成されない場合であっても、周状電流減衰作用・放射磁界成分減衰作用・残存2次放射成分減衰作用等を発揮することは可能であることを付言しておく。なお、この場合、カバー領域Arの中央部Oは、金属板10の各コーナの対角線の交点や金属板10の重心位置であってもよい。
   (2-5-2.金属板の形状)
 一方、スリットは上述の通りカバー領域Arの強磁界位置から中央部Oに向けて形成される。この際、金属板10がカバー領域Arよりも大幅に大きければ(例えば1.5倍以上)、図7D及び図7Eに示したように、強磁界位置は、ノイズ発生源Rの上面のコーナ間の中間のエッジ位置に対応する、カバー領域Arの外周上の位置となる。しかしながら、カバー領域Arが金属板10のほぼ全域の場合には、強磁界位置は、金属板10のコーナ間の中間のエッジ位置に相当する。
 一方、上述のように、残存2次放射成分減衰作用を十分に発揮させるためには、位相の関係上、スリットの本数は、Nを正の整数として2本形成されることが望ましい。従って、このスリットが形成される強磁界位置も、同程度の数であることが望ましい。そのためには、金属板10は、Mを2以上の正の整数として外周にコーナを2個有する多角形に形成されることが望ましい。従って、残存2次放射成分減衰作用を十分に発揮するために、金属板10は、例えば、4・8・16・32角形等に形成されることが望ましい。また、逆相のノイズNの振幅を等しくして相殺効果を更に高めるために、スリットが点対称で形成されることが望ましいのと同様に、金属板も点対称で形成されることが望ましい。更に、等方的に相殺効果を発揮するために、スリットSA~SDが4回対称で形成されるのが望ましいのと同様に、金属板10は、正多角形であることが望ましい。
 この金属板10が正多角形で形成される場合の例を、図8C及び図8Dに示す。図8C及び図8Dでは、金属板10は正八角形に形成される。そして、図8Cでは、上記の関係を満たすように、スリットSA~SHは、8回対称で8本形成される。しかしながら、スリットの本数は、金属板10の角数と一致する必要ない無いため、図8Dに示すように、4本のスリットSA~SDを4回対称で形成することも可能である。
 なお、図8Eに示す楕円等のように、金属板10が、コーナがないが、中央部Oから外周までの中心距離が不均一な形状に形成される場合、強磁界位置BA,BCは、その中心距離が他の部位に比べて長いエッジ位置間の中間のエッジ位置となる。従って、この場合、図8Eに示すように、このエッジ位置である強磁界位置BA,BCから、複数のスリットSA,SCが形成される。
 更に、図8Fに示す円等のように、金属板10が、このようなエッジ位置もなく形成される場合、強磁界位置BA,BCは、図7E等と同様に、ノイズ発生源Rの上面のコーナ間の中間のエッジ位置に対応するカバー領域Ar(つまり金属板10)の外周上の位置となる。従って、この場合、図8Fに示すように、この強磁界位置BA~BDから、複数のスリットSA~SDが形成される。
  <2-6.輻射量低減装置の効果の例>
 以上、本発明の第1実施形態に係る輻射量低減装置100について説明した。
 この輻射量低減装置100によれば、単にノイズ発生源Rの上面に装荷することにより、その部位の上部に発生した放射ノイズ成分を分割し相殺するように作用することができる。従って、ノイズ発生源Rから発生する電磁波を、2次放射等のノイズNの発生を低減しつつ、効果的に抑制することが可能である。なお、この際、相殺された電磁波エネルギーは、熱として吸収されることになる。
 また、この輻射量低減装置100は、接着剤やシールなどにより簡単に配置することが可能であるため、螺子止め作業など、組み立て作業効率を低下させてしまうような作業をする必要がないため、容易に配置することが可能である。また、輻射量低減装置100は、簡単な構造で形成可能であるため、製造コストも大幅な減少が期待できる。
 更に、上述の通り、輻射量低減装置100は、接地する必要すらないため、配置位置に制約を受けず自在に装荷することができる。従って、電磁波を低減させたい複数のノイズ発生源Rの近傍に適宜輻射量低減装置100を配置することが可能であり、ノイズ発生源が多種多様化した状態でも適切にノイズを低減することが可能である。なお、もちろんシールドケース等に接地して使用することも可能であることは言うまでもない。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されないことは言うまでもない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、引込スリットS1A~S1Dにより周状電流Iを中央部O側に引き込み、結合スリットS2A~S2Dにより、相隣接するスリットSA~SDを流れる周状電流I同士などを直接相殺させる場合について説明した。しかしながら、この周状電流Iを引込んで相殺させる効果を、図9Aに示すように、結合スリットS2A~S2Dの代りに補助連結スリットS11~S14を介して間接的に発揮させることも可能である。しかしながら、この場合、周状電流減衰作用だけでなく、放射磁界成分減衰作用及び残存2次放射成分減衰作用等も、上記第1実施形態に比べれば低く抑えられるため、上記第1実施形態のように周状電流I同士などを直接相殺させる構成にすることが望ましい。
 また、各スリットSA~SD単体で周状電流I等の低減効果を発揮させるためには、図9Bに示すように、結合スリットS2A~S2Dの両脇に、補助スリットS3A~S3D及び補助スリットS4A~S4Dを設けることも可能である。この場合、周状電流Iは、引込スリットS1A~S1Dにより中央部O側に導かれた後、補助スリットの周りを流れることになり、周状電流Iを減少させることが可能である。しかしながら、この場合、周状電流減衰作用及び放射磁界成分減衰作用等を十分に発揮することは難しく、やはり、上記第1実施形態のように周状電流I同士などを相殺させる構成にすることが望ましい。

Claims (8)

  1.  電磁波を輻射する電磁波発生源の少なくとも一面全体を覆うことが可能な金属板と、
     前記金属板の面内に設定され前記一面全体を覆うカバー領域と、
     少なくとも前記カバー領域において帯状に形成され、相互に離隔した複数のスリットと、
    を有し、
     前記複数のスリットそれぞれは、
     前記電磁波により前記カバー領域の中央を取囲む周方向に流れる周状電流を前記カバー領域中央方向に導くように、前記カバー領域の外周において前記電磁波により前記電磁波発生源との間に生じる磁界が他の位置よりも強くなる強磁界位置それぞれから、前記カバー領域の中央に向けて延長形成された引込スリットと、
     前記引込スリットが導いた周状電流を、前記カバー領域周方向一側で相隣接した他の前記スリットとの間へと導くように、前記引込スリットにおける前記カバー領域中央方向の端部から、前記一側の他の前記引込スリットと平行に並んで延長形成された結合スリットと、
    を有する、輻射量低減装置。
  2.  前記スリットは、Nを正の整数として、前記金属板上に2本形成される、請求項1に記載の輻射量低減装置。
  3.  前記複数のスリットは、相互に前記カバー領域中央を基準として点対称に配置される、請求項2に記載の輻射量低減装置。
  4.  前記カバー領域は、前記金属板全域であり、
     前記金属板は、中央から外周までの距離が不均一に形成され、
     前記強磁界位置は、前記金属板外周で相隣接し前記中心距離が他の部位に比べて長いエッジ位置間の中間のエッジ位置である、請求項1のいずれかに記載の輻射量低減装置。
  5.  前記金属板は、Mを2以上の正の整数として、外周にコーナを2個有する多角形に形成され、
     前記強磁界位置は、前記コーナ間の中間のエッジ位置である、請求項4に記載の輻射量低減装置。
  6.  前記金属板は、正多角形である、請求項5に記載の輻射量低減装置。
  7.  前記強磁界位置は、前記電磁波発生源の一面におけるコーナ間の中間のエッジ位置に対応する、前記カバー領域外周上の位置である、請求項1のいずれかに記載の輻射量低減装置。
  8.  前記カバー領域は、前記金属板全域であり、
     前記金属板は、中央から外周までの距離が均一である円状に形成される、請求項7に記載の輻射量低減装置。
PCT/JP2010/050695 2009-02-03 2010-01-21 輻射量低減装置 WO2010090078A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2010800057508A CN102301844A (zh) 2009-02-03 2010-01-21 辐射量减低装置
SG2011050689A SG172962A1 (en) 2009-02-03 2010-01-21 Apparatus for reducing radiation quantity
BRPI1007480A BRPI1007480A2 (pt) 2009-02-03 2010-01-21 dispositivo de redução de gradu de radiação
EP10738416A EP2395828A1 (en) 2009-02-03 2010-01-21 Apparatus for reducing radiation quantity
US13/143,154 US20120024587A1 (en) 2009-02-03 2010-01-21 Radiation amount reducing device
RU2011131249/07A RU2011131249A (ru) 2009-02-03 2010-01-21 Устройство для уменьшения величины излучения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009022801A JP2010182743A (ja) 2009-02-03 2009-02-03 輻射量低減装置
JP2009-022801 2009-02-03

Publications (1)

Publication Number Publication Date
WO2010090078A1 true WO2010090078A1 (ja) 2010-08-12

Family

ID=42541982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050695 WO2010090078A1 (ja) 2009-02-03 2010-01-21 輻射量低減装置

Country Status (10)

Country Link
US (1) US20120024587A1 (ja)
EP (1) EP2395828A1 (ja)
JP (1) JP2010182743A (ja)
KR (1) KR20110111425A (ja)
CN (1) CN102301844A (ja)
BR (1) BRPI1007480A2 (ja)
RU (1) RU2011131249A (ja)
SG (1) SG172962A1 (ja)
TW (1) TW201043130A (ja)
WO (1) WO2010090078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748775A (zh) * 2011-09-28 2014-04-23 日产自动车株式会社 电力变换装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115117B2 (en) * 2009-06-22 2012-02-14 General Electric Company System and method of forming isolated conformal shielding areas
US10673269B2 (en) 2015-07-20 2020-06-02 Amosense Co., Ltd. Magnetic field shielding unit
KR102406262B1 (ko) * 2015-07-20 2022-06-10 주식회사 아모센스 무선충전용 차폐유닛
US10931152B2 (en) 2015-07-20 2021-02-23 Amosense Co., Ltd. Method of manufacturing magnetic field shielding sheet and magnetic field shielding sheet formed thereby
JP2018032943A (ja) * 2016-08-23 2018-03-01 株式会社デンソーテン 送信装置および送信装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106398U (ja) * 1983-12-22 1985-07-19 凸版印刷株式会社 電磁波シ−ルド効果を有する筐体
JP2000216586A (ja) * 1999-01-26 2000-08-04 Hitachi Ltd 多層プリント回路基板
JP2004297031A (ja) * 2003-02-07 2004-10-21 Ricoh Co Ltd 電磁妨害波低減方法および筐体構造
WO2007046527A1 (ja) * 2005-10-21 2007-04-26 Nitta Corporation 通信改善用シート体ならびにそれを備えるアンテナ装置および電子情報伝達装置
JP2007266509A (ja) * 2006-03-29 2007-10-11 Fujitsu Ltd 電波吸収体
WO2009128467A1 (ja) * 2008-04-17 2009-10-22 株式会社ジュース 電磁波吸収体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT389053B (de) * 1986-02-17 1989-10-10 Andrae Franz Einrichtung zur abschirmung gegen ein elektromagnetisches feld
DE19747562C2 (de) * 1997-10-28 2000-09-28 Siemens Ag Verfahren und Anordnung zum Steuern der Ausbreitung von Magnetfeldern durch elektrodynamische/-magnetische Wandler, insbesondere in Telekommunikationsgeräten
JP2004297763A (ja) * 2003-03-07 2004-10-21 Hitachi Ltd 周波数選択性シールド構造体とそれを有する電子機器
JP4436334B2 (ja) * 2006-03-02 2010-03-24 パナソニック株式会社 シールド基板、半導体パッケージ、及び半導体装置
TWM318903U (en) * 2007-04-03 2007-09-11 Chin-Fu Horng Electromagnetic shielding device
US8013258B2 (en) * 2008-06-11 2011-09-06 Mediatek Inc. Shielding device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106398U (ja) * 1983-12-22 1985-07-19 凸版印刷株式会社 電磁波シ−ルド効果を有する筐体
JP2000216586A (ja) * 1999-01-26 2000-08-04 Hitachi Ltd 多層プリント回路基板
JP2004297031A (ja) * 2003-02-07 2004-10-21 Ricoh Co Ltd 電磁妨害波低減方法および筐体構造
WO2007046527A1 (ja) * 2005-10-21 2007-04-26 Nitta Corporation 通信改善用シート体ならびにそれを備えるアンテナ装置および電子情報伝達装置
JP2007266509A (ja) * 2006-03-29 2007-10-11 Fujitsu Ltd 電波吸収体
WO2009128467A1 (ja) * 2008-04-17 2009-10-22 株式会社ジュース 電磁波吸収体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748775A (zh) * 2011-09-28 2014-04-23 日产自动车株式会社 电力变换装置
CN103748775B (zh) * 2011-09-28 2017-03-08 日产自动车株式会社 电力变换装置

Also Published As

Publication number Publication date
CN102301844A (zh) 2011-12-28
BRPI1007480A2 (pt) 2016-02-16
JP2010182743A (ja) 2010-08-19
SG172962A1 (en) 2011-08-29
TW201043130A (en) 2010-12-01
KR20110111425A (ko) 2011-10-11
EP2395828A1 (en) 2011-12-14
RU2011131249A (ru) 2013-02-10
US20120024587A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
TWI672092B (zh) 電子裝置及電磁干擾抑制體的配置方法、與通信裝置
WO2010090078A1 (ja) 輻射量低減装置
US20050276027A1 (en) Electronic device for shielding EMI
WO2015122203A1 (ja) プリント基板
US20130027255A1 (en) Radio apparatus
US20220287183A1 (en) Flexible circuit board assembly, display assembly and display device
JP4655156B2 (ja) 輻射量低減装置
TW202011794A (zh) 電子機器
JP5333017B2 (ja) 電子機器とそのプリント配線板
JP2007214443A (ja) 筐体および電子機器
CN103415136A (zh) 一种抗电磁干扰的电路板
JP2012129495A (ja) 通信機器のプリント回路基板の接地構造
CN220830640U (zh) 一种麦拉及电子设备
KR20080012527A (ko) 그물망 그라운드 동박층의 연성회로기판
JP2008141096A (ja) プリント配線板
JP2010232473A (ja) 電子装置搭載機器及び電子装置搭載機器のノイズ低減方法
Lienig et al. Electromagnetic compatibility (EMC)
JP4249061B2 (ja) 高周波モジュール
JP2003069271A (ja) 複層シールド構造及び電子機器
JP5398888B2 (ja) 電子機器
JP5068441B2 (ja) 電子回路基板
KR200215068Y1 (ko) 영상 평면을 이용한 전자파 차폐 회로
KR0185905B1 (ko) 전자회로의 노이즈방지용 구조물
JP2004221602A (ja) Emi対策部品及びそれを備えた能動素子
JPWO2018179799A1 (ja) 電子制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005750.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13143154

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117017555

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011131249

Country of ref document: RU

Ref document number: 2010738416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5738/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007480

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007480

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110728