WO2010090059A1 - マニピュレータ - Google Patents

マニピュレータ Download PDF

Info

Publication number
WO2010090059A1
WO2010090059A1 PCT/JP2010/050342 JP2010050342W WO2010090059A1 WO 2010090059 A1 WO2010090059 A1 WO 2010090059A1 JP 2010050342 W JP2010050342 W JP 2010050342W WO 2010090059 A1 WO2010090059 A1 WO 2010090059A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
unit
value
load
gear
Prior art date
Application number
PCT/JP2010/050342
Other languages
English (en)
French (fr)
Inventor
河合 利昌
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2010524289A priority Critical patent/JP4642938B2/ja
Priority to EP10738398.6A priority patent/EP2394799B1/en
Priority to US12/828,709 priority patent/US8214083B2/en
Publication of WO2010090059A1 publication Critical patent/WO2010090059A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0052Constructional details of control elements, e.g. handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/0016Holding or positioning arrangements using motor drive units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/742Joysticks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20323Robotic arm including flaccid drive element

Definitions

  • the present invention relates to a manipulator that performs bending operation of a bending portion.
  • the insertion portion becomes thicker or the sensor has a structure that is resistant to cleaning and disinfection. To increase costs.
  • a disturbance observer that calculates a disturbance (a component excluding the driving force generated by the motor itself) from the rotation speed of the motor output shaft or the like by a software calculation process without providing a sensor.
  • the technology is described in Japanese Patent Application Laid-Open No. 2007-185355.
  • the load value of the motor can be calculated as the estimated disturbance value without using a sensor, and the cost increase can be eliminated.
  • a reduction gear is used so that a load can be driven sufficiently.
  • the present invention has been made in view of the above-described points, and an object thereof is to provide a manipulator capable of accurately calculating and notifying a load estimated by a disturbance observer method or the like.
  • a manipulator includes a motor having a rotating shaft that rotates in response to a drive command signal; A speed reducer coupled to the rotating shaft; A detector for detecting an operating state of the motor; A tubular body having a movable body driven by the motor via the speed reducer; A storage unit for preliminarily storing periodic correction information in association with information on meshing positions of gears constituting the speed reducer; A load calculation unit that performs arithmetic processing on the drive command signal supplied to the motor and detection information of the detection unit, and further calculates a load acting on the motor as an estimated value using the correction information; A notification unit for notifying the calculation result of the load calculation unit; It is characterized by having.
  • a manipulator includes a motor having a rotating shaft that rotates in accordance with a drive command signal; A speed reducer coupled to the rotating shaft; A detection unit for detecting operating states of the motor and the speed reducer; A tubular body having a movable body driven by the motor via the speed reducer; A load calculation unit that performs arithmetic processing on the driving command signal supplied to the motor and detection information of the detection unit, and calculates a load acting on the reduction gear as an estimated value; A notification unit for notifying the calculation result of the load calculation unit; It is characterized by having.
  • FIG. 1 is an overall configuration diagram of an endoscope system including a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a motor unit provided in the endoscope of FIG.
  • FIG. 3 is a signal flow diagram of a motor drive system in the motor unit.
  • FIG. 4 is a block diagram showing the principle of load calculation by a disturbance observer used in this embodiment.
  • FIG. 5A is a front view showing a configuration example of a planetary gear used in the motor unit according to the present embodiment.
  • FIG. 5B is a perspective view illustrating a configuration example of a planetary gear used in the motor unit according to the present embodiment.
  • FIG. 6 is a simplified diagram of FIG.
  • FIG. 7 is an explanatory view showing an example of an engaged state in FIG. FIG.
  • FIG. 8 shows a schematic model.
  • FIG. 9 is a block diagram illustrating a configuration for calculating a disturbance estimated value using the disturbance observer method according to the first embodiment.
  • FIG. 10A is an explanatory diagram showing an observer output value with respect to a gear meshing position.
  • FIG. 10B is an explanatory diagram showing information on the correlation between the gear position stored in advance in the lookup table of the correction unit and the observer output value.
  • FIG. 10C is an explanatory diagram showing a corrected disturbance torque estimated value obtained by correcting the observer output value using the information of FIG. 10B.
  • FIG. 10D is an explanatory diagram for calculating an observer correction output value.
  • FIG. 10E is a diagram simply showing the time-series data of FIG. 10A.
  • FIG. 10E is a diagram simply showing the time-series data of FIG. 10A.
  • FIG. 10F is a block diagram illustrating a configuration for calculating a disturbance estimated value using a disturbance observer method according to a modification of the first embodiment.
  • FIG. 11 is a block diagram illustrating a configuration of a motor unit according to the second embodiment of the present invention.
  • FIG. 12 is a block diagram illustrating a configuration for calculating a disturbance estimated value using a disturbance observer method according to the second embodiment.
  • FIG. 13A is an operation explanatory diagram of the second embodiment.
  • FIG. 13B is a diagram showing an example in which the observer output value varies with respect to the disturbance torque.
  • FIG. 14 is a block diagram showing the configuration of the motor unit according to the third embodiment of the present invention.
  • FIG. 15 is a block diagram illustrating a configuration for calculating a disturbance estimated value using a disturbance observer method according to the third embodiment.
  • FIG. 16 is a diagram illustrating a relationship between a characteristic example of an observer output value observed with respect to a meshing position in a static state and an average value of peak and valley values of the observer output value.
  • FIG. 17 is an operation explanatory diagram of the third embodiment.
  • FIG. 18 is a block diagram illustrating a configuration for calculating a disturbance estimated value using a disturbance observer method according to a modification of the third embodiment.
  • FIG. 19 is a diagram for explaining the operation of the modification.
  • the block diagram which shows the structure of the outline of the motor drive system in Example 4 of this invention.
  • FIG. 10 is a block diagram showing a configuration of a motor drive system including a gear disturbance observer in the fourth embodiment.
  • the block diagram which shows the relationship between a real system and a virtual model.
  • the block diagram which shows the structure of the motor drive system containing the state estimation observer etc. in Example 5 of this invention.
  • FIG. 10 is a block diagram showing a configuration of a motor drive system including a state estimation observer and the like in a modification of the fifth embodiment.
  • an endoscope system 1 including Example 1 of the present invention includes an endoscope 2 inserted into a subject, a control device 3 to which the endoscope 2 is connected, An operation command unit 4 that is connected to the control device 3 and performs a bending command operation, and an endoscope monitor 5 that is connected to the control device 3 and displays an endoscopic image or the like.
  • the endoscope 2 includes an elongated and tube-shaped insertion portion 6 to be inserted into a subject, an operation portion 7 provided at the rear end of the insertion portion 6, and a universal extending from the operation portion 7.
  • the connector 9 at the end of the universal cable 8 is detachably connected to the connector receiver of the control device 3.
  • the insertion portion 6 includes a distal end portion 11 provided at the distal end thereof, a bendable bending portion 12 provided at the rear end of the distal end portion 11, and a front end of the operation portion 7 from the rear end of the bending portion 12. And a flexible portion 13 having a long length and flexibility.
  • the distal end portion 11 is provided with an illumination window (not shown) for emitting illumination light, and an observation window adjacent to the illumination window, and an objective lens 14 is attached to the observation window.
  • the objective lens 14 forms an optical image of the observation target site in the subject illuminated with the illumination light.
  • a charge-coupled device (abbreviated as CCD) 15 is disposed at the imaging position of the objective lens 14, and an imaging unit for imaging an observation target site in the subject is formed.
  • the CCD 15 is connected to a video signal generation unit 16 provided in the control device 3 outside the endoscope 2 through a signal line.
  • the video signal generation unit 16 drives the CCD 15, performs signal processing on the imaging signal photoelectrically converted by the CCD 15, generates a video signal, and outputs the video signal to the endoscope monitor 5 via the monitor cable 17.
  • the endoscope monitor 5 displays an endoscope image corresponding to the optical image formed on the imaging surface of the CCD 15 on the endoscope image display unit 5a.
  • the bending portion 12 is formed by connecting a plurality of substantially annular bending pieces 18, 18,..., 18 as movable bodies so as to be rotatable (rotatable) in the longitudinal direction. ing.
  • the pivot part connected so that rotation is possible is provided in the position corresponding to the bending part 12 up and down, and right and left.
  • the bending wire 19 which transmits the driving force which curves the bending piece 18, 18, ..., 18 of the bending part 12 along the inner wall corresponding to the bending direction of the bending part 12, for example. , 19 are inserted.
  • the rear ends of the pair of bending wires 19, 19 are arranged in the operation unit 7 and are suspended by a sprocket 22 in the motor unit 21 that forms the manipulator of the first embodiment.
  • the manipulator mainly includes a motor unit 21, bending wires 19 and 19, and a bending portion 12.
  • the display monitor 5 is a component that displays a load value. Therefore, the endoscope system 1 of FIG. 1 can be regarded as one configuration example of a manipulator.
  • the sprocket 22 is rotationally driven by a motor 23 (see FIG. 2) in the motor unit 21 to pull one of the pair of bending wires 19 and 19 suspended from the sprocket 22 and relax the other.
  • the bending pieces 18, 18,..., 18 as the movable body of the bending portion 12 are bent in the direction of the pulled bending wire 19.
  • the sprocket 22, the motor 23, etc. also show what drives a curve in the up-down direction, for example, when making it curve also in the left-right direction, the thing of the same structure is provided.
  • the motor unit 21 includes a large-scale integrated circuit unit (abbreviated as an LSI unit) 24 having a function of a load calculation unit 72 (to be described later) that performs calculation processing for calculating the load of the motor 23.
  • the LSI unit 24 includes the universal cable 8 It connects with the control part 25 in the control apparatus 3 via the cable penetrated inside.
  • the operation command unit 4 is detachably connected to the control device 3 via a control command unit cable (abbreviated as an operation cable) 26 at a connector 27 at the end of the operation cable 26.
  • the operation command unit 4 is provided with, for example, a joystick 4a that performs an operation command for a bending direction and a bending amount in accordance with the tilt direction and tilt angle (tilt amount).
  • the base end side of the joystick 4a is supported in a tiltable manner, and a sensor 4b such as a potentiometer for detecting the tilting direction and tilting angle of the joystick 4a is provided.
  • the sensor 4b transmits (outputs) the detected value as a command signal from the operation command unit 4 to the control unit 25 via the operation cable 26.
  • the control unit 25 transmits (outputs) the command signal to the LSI unit 24 in the motor unit 21 via the cable in the universal cable 8.
  • the LSI unit 24 supplies a command value as a drive command signal for rotationally driving the motor 23 to the motor 23 by the command signal, and detects a current value, position information, and the like when the motor 23 is rotationally driven. Feedback control is performed so as to match the command value.
  • the bending portion 12 when the bending portion 12 is driven to bend by the motor 23 via the bending wires 19, 19, the amount of tension that becomes a load when the bending wires 19, 19 are pulled is measured by a sensor such as a strain sensor. Can be detected. However, if such a sensor is provided, the insertion portion becomes thick.Therefore, in this embodiment, a sensor is not provided, and a disturbance estimation calculation means such as software is used by using a disturbance observer method as described below. To calculate the load or load value. Also, the calculated load value is output to the control unit 25, and the control unit 25 outputs the input load value to the video signal generation unit 16.
  • the video signal generation unit 16 superimposes the input load value information, for example, on the video signal and outputs it to the endoscope monitor 5, and the calculated load value is displayed on the load value display unit 5 b in the endoscope monitor 5. Is displayed. In other words, a notification unit that visually notifies the load value is formed.
  • the notification unit that notifies the calculated load value is not limited to the notification by display, and presents a haptic sensation corresponding to the calculated load value from the control unit 25 to the operation command unit 4.
  • a motor may be provided on the rotary shaft of the joystick 4a, and the motor may be driven with a reaction force amount corresponding to the calculated load value, or a vibration motor or the like may be disposed in the operation command unit 4 to load the vibration motor. You may make it notify by vibrating according to.
  • the calculated load value is directly calculated as a torque value acting on the motor shaft of the motor 23. However, the calculated load value is appropriately scale-converted to an amount suitable for the bending drive of the bending portion 12 and notified. Also good. FIG.
  • the motor unit 21 shows a detailed configuration of the motor unit 21.
  • the motor unit 21 is provided with a power connector 31a, a bending control unit connector 31b, and an imaging unit connector 31c to which end portions of a cable (not shown) inserted through the universal cable 8 are connected.
  • a power connector 31 a connected to a cable that supplies power from the control device 3 supplies drive power to the control power circuit 32 and the drive power circuit 33 in the LSI unit 24.
  • the control power supply circuit 32 generates control power, and supplies the generated control power to a communication system block 34 in the LSI unit 24, an FPGA (Field Programmable Gate Array) block 36 via a DC / DC converter 35, and the like. To do.
  • the control power supply includes a feedback signal input unit (abbreviated as F / B signal in FIG. 2) 37, an analog input signal input unit (abbreviated as AI signal in FIG. 2) 38, and a digital input signal input unit (DI in FIG. 2). (Abbreviated as signal) 39 and also supplied to an encoder 41 and a potentiometer 42 outside the LSI unit 24.
  • the DC / DC converter 35 generates a high-voltage DC from a direct-current DC power supply, and supplies the high-voltage DC power supply to an FPGA block 36 as an LSI that requires and can be programmed.
  • the drive power supply circuit 33 generates drive power and supplies the drive power to the motor driver 43 (which rotates the motor 23 according to a command value as a drive command signal).
  • the communication system block 34 connected to the bending control unit connector 31b forms an interface for performing bidirectional communication between the control unit 25 and the FPGA block 36 in FIG.
  • a command signal generated by the operation command unit 4 is transmitted from the control unit 25 to the FPGA block 36 via the communication system block 34, and the FPGA block 36 receives a command value from the command signal to the motor 23 via the motor driver 43.
  • the load value calculated by the FPGA block 36 is transmitted to the control unit 25 via the communication system block 34. Then, as described above, the load value is notified by display.
  • the imaging unit connector 31c is connected to the CCD 15 via a signal line.
  • the imaging unit connector 31c may be formed separately from the motor unit 21.
  • the motor 23 that is rotationally driven by the motor driver 43 is mechanically engaged with the sprocket 22 via a planetary gear reduction mechanism 44.
  • a drive gear 45 is directly connected to the motor shaft (rotary shaft) of the motor 23, and the drive gear 45 is a gear connected to the rotary shaft of the sprocket 22 via a clutch 46. 47 is engaged.
  • a switch 48 for turning on / off the clutch 46 is engaged (disengaged) and engaged (engaged connection state).
  • the ON / OFF signal of the switch 48 is input to the FPGA block 36 through the digital input signal input unit 39 as a digital input signal.
  • the potentiometer 42 connected to the rotation shaft of the gear 47 detects the rotational position of the gear 47, and the position information is input to the FPGA block 36 via the analog input signal input unit 38 as an analog input signal. That is, the potentiometer 42 forms a position (information) detection unit for the gear 47 constituting the speed reducer.
  • the rotation position (rotation position) of the motor 23 is detected by the encoder 41 connected to the motor shaft (that is, the rotation shaft).
  • the position information detected by the encoder 41 is input as a feedback signal to the FPGA block 36 via the feedback signal input unit 37.
  • the encoder 41 forms a detection unit for the rotational position of the drive gear 45 connected to the motor shaft.
  • the value of the current flowing through the motor 23 is input to the FPGA block 36 via the analog input signal input unit 38 as an analog input signal.
  • the means for detecting the value of the current flowing through the encoder 41 and the motor 23 forms a detection unit that detects the rotational position, rotational speed, etc. of the motor 23 as the operating state of the motor 23.
  • the FPGA block 36 forms a manipulator that controls the bending of the bending portion 12 as a tubular body having a movable body by rotating the motor 23 via a motor driver 43 based on a command signal based on a user operation command.
  • the FPGA block 36 estimates the load value to the motor 23 as a disturbance estimated value (estimated value) using a disturbance observer technique, and calculates the load value with high accuracy.
  • a storage unit 36b that stores (stores) periodic correction information that depends on the meshing positions of the gears constituting the reduction gear. More specific description will be given later with reference to FIG. 9 (LUT 73).
  • FIG. 3 shows a signal flow diagram of the motor drive system by the FPGA block 36. As shown in FIG. 3, the command value based on the command signal from the operation command unit 4 is input to the position control block 51 of the FPGA block 36 as a difference value obtained by subtracting the position information from the position information detecting means of the motor 23. .
  • the position control block 51 outputs a position command generated from the difference value to the speed control block 52.
  • the speed control block 52 also receives speed information obtained by differentiating position information with a differential element.
  • the speed control block 52 outputs a speed command generated from the position command and speed information to the current control block 54.
  • the current control block 54 also receives a current value flowing through the motor 23.
  • the current control block 54 supplies a current command generated from the speed command and the current value to the motor 23 as drive power.
  • the motor 23 is rotationally driven toward the target position in response to the current command, and position information at that time is fed back to the motor drive control system.
  • the motor 23 is actually connected with a load so as to bend the bending portion 12 via the planetary gear speed reduction mechanism 44.
  • this load is regarded as a disturbance load and its estimated value (load value).
  • a disturbance observer method is used to calculate
  • the distal end portion 11 of the bending portion may hit the body wall or the like and deviate from the normal load state.
  • This embodiment improves the estimation accuracy of the load value calculated by the disturbance observer method, thereby determining a state deviating from the normal bending drive control state in addition to the normal bending drive control state. It has a configuration with.
  • FIG. 4 is a block diagram for explaining the principle of estimating the load value by the disturbance observer.
  • a torque command value u proportional to the current value is applied to the motor 23 (armature thereof) by a current command from the motor driver 43.
  • a torque corresponding to the torque command value u acts on the motor shaft.
  • this motor torque constant Kt is used, u ⁇ Kt torque acts on the motor shaft.
  • the motor 23 is driven at a rotational speed (rotational speed) corresponding to the motor inertia moment J with respect to the torque applied to the motor shaft.
  • rotation speed is calculated by 1 / (J ⁇ s) (that is, an integral operation), and the motor position is calculated by the integral operation (1 / s).
  • a load is applied to the motor shaft via the planetary gear speed reduction mechanism 44. Therefore, the torque of the disturbance load d acts on the motor shaft to reflect the load.
  • a physical model block or an arithmetic processing block that approximates (or simulates) the components of the motor 23 in terms of software or arithmetic processing means. are placed in parallel.
  • the physical model block 56 is composed of calculation elements that calculate the disturbance load d. That is, in the motor model block A, the disturbance load d is input to the addition point, but in the physical model block 56, the subtraction block 59 is configured to calculate and output the disturbance load d. Therefore, the torque command value u is input to the first calculation block 57 of the designed motor torque constant Ktn (approximate the motor torque constant Kt) in the physical model block 56. Further, the output information of the second calculation block 58 (the calculation of Jn ⁇ s when the Laplace operator s is used) that reversely calculates the torque applied to the motor shaft from the information on the rotation speed (rotation speed) of the motor 23 is obtained.
  • the calculation output of one calculation block 57 is subtracted by the subtraction block 59 to calculate the estimated disturbance value da as a value of the disturbance load d applied to the motor shaft.
  • Jn represents a designed motor inertia moment that approximates the motor inertia moment J of the motor 23. If the disturbance estimated value da is calculated as the observer output value using the disturbance observer method of FIG. 4, the disturbance estimated value da is influenced by the planetary gear reduction mechanism 44 connected to the motor shaft.
  • FIG. 5A shows a perspective view from the front of one planetary gear 44a forming this planetary gear reduction mechanism 44
  • FIG. 5B shows a perspective view thereof.
  • the planetary gear 44a is fixed on the outside and has a gear formed on the inner peripheral surface. Therefore, an internal gear (also referred to as an outer ring gear) 61, a sun gear 62 disposed at the center of the internal gear 61, Three planetary gears 63, 63, 63 that revolve while rotating around the sun gear 62, and an arm 64 that rotatably holds the planetary gears 63, 63, 63, respectively.
  • an internal gear also referred to as an outer ring gear
  • Three planetary gears 63, 63, 63 that revolve while rotating around the sun gear 62
  • an arm 64 that rotatably holds the planetary gears 63, 63, 63, respectively.
  • a planet gear reduction mechanism 44 that generates a torque capable of sufficiently bending the bending portion 12 is formed by connecting a plurality of planet gears 44a as a main component. If this planetary gear reduction mechanism 44 is simplified and approximated, it can be represented by two gears 66a and 66b rotating in opposite directions as shown in FIG. Note that the two gears 66a and 66b show the drive gear 45 and the gear 47 of FIG. 2 as simple mechanism models. In this case, for example, three states are generated as shown in FIG. 7 as the meshing state of the two gears 66a and 66b. Specifically, the first edge in which the rear edge of the gear piece involved in meshing in the gear 66a shown in the left side of FIG.
  • the gears 66a and 66b are not in an ideal state in which the two gears are completely meshed with each other, but in a state where the gears are loose and loose.
  • the state of the other gear is uniquely determined.
  • a driving force transmission mechanism having a backlash as schematically shown in FIG. 7 is obtained.
  • the simplified gears 66a and 66b are schematically modeled in a dynamic analogy as shown in FIG. 6, they can be approximated by a model as shown in FIG. As shown in FIG.
  • the gear 66 c having the moment of inertia Jp connected to the motor shaft of the motor 23 is approximated by a model in which the gear 66 d having the moment of inertia is connected via the friction pad 67 and the spring damper 68.
  • the gears constituting the planetary gear reduction mechanism 44 are Since each is formed with a predetermined number of gears, it exhibits periodic characteristics.
  • the observed observer output value changes depending on the meshing position of the drive gear 45 and the gear 47 in FIG. 2 (FIG. 10A shows the observer for each load value (different load value) with respect to the meshing position. Examples of output values are shown).
  • the disturbance observer method shown in FIG. 4 is used. As shown in FIG.
  • FIG. 9 shows a configuration of a load calculation unit 72 that calculates a load as a disturbance estimated value using the disturbance observer method in the present embodiment.
  • a load calculation unit 72 having a function of further inputting the estimated disturbance value da to the correction unit 71 and correcting by the correction unit 71 is formed.
  • the configuration shown in FIG. 4 is disclosed by a conventional example of Japanese Patent Laid-Open No. 2007-185355.
  • the estimated disturbance da has a low accuracy due to the rattling between the gears constituting the reduction gear and the meshing position between the gears.
  • the present embodiment includes a correction unit 71 that corrects rattling between gears constituting the speed reducer and performs correction using correction information that reflects characteristics of the meshing position between the gears. ing.
  • the correction unit 71 receives the observer output value before correction output from the subtraction block 59, that is, the disturbance estimated value da as input, and periodically corrects the corrected disturbance estimation, for example, a sinusoidal data value.
  • a look-up table (abbreviated as LUT) 73 that is output as a value db, and a position data generator 74 that generates position data Pd corresponding to the position information of the meshing position between the drive gear 45 and the gear 47 and outputs the position data to the LUT 73.
  • LUT look-up table
  • the position data generator 74 detects the output value of the encoder 41 that detects the position of the drive gear 45 (connected to the motor shaft from the rotational position information of the motor 23) and the position information of the gear 47 in FIG.
  • position data Pd of the meshing position between the two gears 45 and 47 is generated.
  • the correlation amount between the observer output value periodically fluctuating as shown in FIG. 10A and the meshing position between the gears constituting the speed reducer is examined in advance, and as a result, the high correlation amount is improved.
  • Data values of periodic correction information that can be approximated are stored in association with the position data Pd of the meshing position.
  • the LUT 73 reduces the influence of rattling between the gears constituting the speed reducer by inputting both data da and Pd, and has a substantially periodic characteristic depending on the meshing position between the drive gear 45 and the gear 47.
  • the corrected estimated disturbance value db with the variation reduced (that is, with high accuracy) is output.
  • This embodiment having such a configuration has the following operation.
  • the observer output value (disturbance estimated value da) calculated by the disturbance observer method shown in FIG. 4 has a periodic characteristic depending on the rattling between the gears and the meshing position between the gears as shown in FIG. 10A. As shown, it fluctuates.
  • FIG. 10A shows an example of characteristics of a plurality of output values when corresponding to different meshing positions.
  • the correction unit 71 detects the meshing position between the gears, and approximately reflects the characteristic that changes depending on the detected meshing position. Read periodic output data (previously stored in the LUT 73).
  • the correlation between the gear position and the observer output value da is stored in advance.
  • the relationship between the gear meshing rotation amount (meshing position) and the observer output value da is assigned as a cosine function look-up table. This is because, if the time series data of the observer output value da is replaced with a cos function, it is possible to extract what portion the observer output value da indicates in the time series data if the position information is known.
  • the observer output value da at point A in FIG. 10D is detected.
  • the observer output value da for A is output as a value obtained by multiplying the amplitude ⁇ / 2 by cos (pos), where the true torque value is the reference value.
  • the offset amount ⁇ exists, by adding that amount, it is possible to extract the estimated torque value db, that is, the estimated disturbance value db as the corrected observer output value.
  • the estimated disturbance value db that is the true torque of the torque is extracted.
  • the observer output value da is input to the LUT 73. However, the observer output value da is not input to the LUT 73.
  • the configuration may be such that the value db is generated.
  • FIG. 10E shows the time series data of FIG. 10A in a simplified manner.
  • the peak value and the offset value of the observer output value tend to differ depending on the applied torque value.
  • the amplitude of the time series data of the gear rotation amount-observer output value da increases, and the offset amount increases.
  • an observer correction value that is a function of ⁇ (obs) with an amplitude and ⁇ (obs) with an offset amount and an observer output
  • a value derived by the following function is set in LUT 73. Detection is also possible.
  • Observer correction output value 1 / ( ⁇ (obs) ⁇ cos (posA) / 2) x Observer output value + ⁇ (obs)
  • the disturbance estimated value db that is actually accurately approximated by reflecting the periodic characteristics depending on the meshing position is obtained. It can be calculated as an output value.
  • a trigonometric function using a cosine is used, but a trigonometric function using a sine may be used.
  • the tension state at the time of bending drive control can be calculated with relatively high accuracy, it is not necessary to provide a sensor in the insertion portion 6. For this reason, the endoscope 2 having the small-diameter insertion portion 6 can be realized, and the endoscopic examination work by inserting the insertion portion 6 into the body cavity becomes easy. For this reason, the manipulator which can implement
  • the calculation result of the estimated load value calculated by the load calculation unit can be notified to a user such as an operator. Further, the determination result C of the determination unit 75 can confirm the possibility of the normal bending drive control state, thereby improving the operability when performing an endoscopic examination by the operator.
  • the surgeon observes the endoscopic image in a state of observing the endoscopic image. The calculation result can be confirmed.
  • FIG. 10F is provided with a load determination unit 75 in the configuration of the first embodiment of FIG.
  • the disturbance estimated value db output from the correction unit 71 is in a normal bending drive control state (abbreviated as a normal state), or the distal end portion 11 contacts the body wall and the bending is restricted.
  • the determination part 75 which determines whether it is the restricted state is provided.
  • the determination unit 75 is in a normal state (within the range) in which the estimated load value corresponds to a command value (drive command signal) based on the operation command unit 4, or an external force that deviates from the normal state is applied. It is determined whether the external force acting state (regulated state) is being performed.
  • the determination unit 75 includes a window type comparator 76 to which the disturbance estimation unit db from the correction unit 71 is input, and a reference disturbance estimation value dnor in a normal state corresponding to the command value u, for example. And a second LUT 77 for outputting to the comparator 76. Since the window type comparator 76 compares two pieces of data to be compared (here, the disturbance observer output db and the reference disturbance estimated value dnor) as time series data, the window type comparator 76 can determine whether or not the two pieces of data all match. Rather, it is a correlation filter for determining whether there is a correlation between two data series.
  • the second LUT 77 for example, information on a reference disturbance estimated value dnor in a normal state corresponding to the command value u is stored in advance. Note that data other than the data of the command value u and information of the reference disturbance estimated value dnor may be stored in association with each other.
  • the comparator 76 constituting the determination unit 75 determines that the estimated disturbance value db calculated by the correction unit 71 deviates by more than the allowable value from the reference estimated disturbance value dnor estimated in the normal state. Outputs the information of the determination result C to the control unit 25 via the communication system block 34.
  • control unit 25 Upon receiving this determination result C, the control unit 25 outputs the determination result information to the video signal generation unit 16 so that, for example, the information on the determination result C is also displayed on the load value display unit 5b. Then, the determination result information is notified to the user, for example, by display.
  • the load value display unit 5b In (2) a display or notification is made that there is a possibility that the bending is restricted (the bending portion 12 or the tip portion 11 is in contact with the body wall or the like).
  • the disturbance observer output db can be output to the force sense presentation means as it is, and the load applied to the endoscope can be presented.
  • FIG. 11 shows the configuration of the motor unit according to the second embodiment of the present invention
  • FIG. 12 shows the configuration of a load calculation unit that calculates a disturbance estimated value using the method of disturbance observer
  • FIG. 13A describes the operation according to this embodiment.
  • FIG. 13B shows a diagram of the relationship of the observer output with respect to the actual load torque.
  • the disturbance observer output varies with respect to the applied disturbance torque, and has a stepped waveform. This is because the influence of static friction is dominant.
  • a present Example reduces the influence by the static friction between the gears which comprise a reduction gear in Example 1.
  • the FPGA block 36 has a dither signal generator 36c that generates a dither signal as a vibration signal having an amplitude that eliminates static friction. Have. Then, the FPGA block 36 outputs this dither signal to the motor driver 43. Therefore, when an instruction signal for outputting the command value u is output from the FPGA block 36 to the motor driver 43, the dither signal is output in a superimposed state. That is, when the command value u is applied to the motor 23 via the motor driver 43, the dither signal is already applied in a superimposed manner (as a vibration signal component).
  • the dither signal may be always applied to the motor driver 43. Alternatively, it may be limited to a period during which the bending portion 12 in a state where the drive gear 45 and the gear 47 are connected can be bent (specifically, the ON / OFF of the switch 48 corresponding to the OFF / ON of the clutch 46). (The dither signal application ON / OFF may be linked with the signal). Other configurations are the same as those in the first embodiment.
  • FIG. 12 illustrates a configuration of the load calculation unit 72 according to the present embodiment. The portion of the load calculation unit 72 has the same configuration as that of FIG. However, the command value u applied to the motor 23 is configured to be applied with the dither signal Sd superimposed as shown in FIG. Next, the operation of this embodiment will be described.
  • the drive between the gears constituting the planetary gear speed reduction mechanism 44 is performed in a static state and a moving state.
  • the value of the coefficient of friction is different.
  • the observer output value as the estimated disturbance estimated value is affected by whether the gear when it is actually driven is in a static friction state or a dynamic friction state, and its accuracy is lowered.
  • a schematic characteristic example in which the accuracy of the actually observed observer output value decreases is shown by a two-dot chain line in FIG.
  • the observer output actually observed in that case is not 1: 1, and has a characteristic with a wide or discontinuous relationship. . For this reason, also when estimating an observer output value, the precision falls.
  • a dither signal Sd as a vibration signal is applied to the motor 23 so as to maintain a dynamic friction state (in other words, to eliminate the static friction state). It is configured to do. For this reason, for example, in a state where the surgeon can bend with the clutch 46 connected, the driving gear 45 and the gear 47 are applied with, for example, a small amplitude vibrational torque, and the dynamic friction state. Is maintained. Therefore, as shown in the schematic characteristic diagram shown by the solid line in FIG. 13A, the influence due to static friction is eliminated, and it is possible to improve (ideally) a characteristic corresponding to one-to-one in the case of only the dynamic friction state.
  • the bending portion 12 When the bending portion 12 is actually driven, at least the dynamic friction state can be maintained, so that it is possible to acquire a highly accurate estimated disturbance value db that eliminates the influence of static friction.
  • the gears constituting the speed reducer are driven in a dynamic friction state, so that it is possible to eliminate the influence of static friction.
  • the other effects are the same as those of the first embodiment.
  • FIG. 14 shows the configuration of the motor unit according to the third embodiment
  • FIG. 15 shows the configuration of the load calculation unit in the embodiment
  • FIG. 16 shows a characteristic example of the observer output value observed with respect to the meshing position in the static state.
  • the motor unit 21 ⁇ / b> C according to the present embodiment includes a dither signal generator 36 c as a vibration signal generator in the first embodiment as in the second embodiment.
  • the FPGA block 36 includes an adjustment unit (or setting unit) 36d so as to output the dither signal Sd whose amplitude is adjusted as described below.
  • the estimated disturbance value is accurately calculated during a drive stop or static period in which the command value u is not applied to the motor 23.
  • FIG. 15 shows a configuration of the load calculation unit 72C in the present embodiment.
  • a moving average filter 81 for calculating the moving average from the output of the correction unit 71 described in the first embodiment is provided, and the average estimated value output from the moving average filter 81 is used as the disturbance estimated value.
  • a load calculation unit 72C for dc is formed.
  • this embodiment can also be applied to a configuration in which the output of the subtraction block 59 is input to the moving average filter 81 without passing through the correction unit 71, as indicated by the dotted line in FIG.
  • Other configurations are the same as those in the first embodiment.
  • the operation of this embodiment will be described.
  • FIG. 10A described above when the load value by the disturbance observer is calculated, the observed observer output value has periodicity due to the rattling or meshing position of the gear. I explained that it was going to be violent.
  • the average of the observed peak and valley of the observer output value when torque is applied in the static state the value is an actual temporal average in the case of the fluctuation as shown in FIG. Generally proportional to the value.
  • the dither signal Sd ′ in a static state where no command is issued (that is, the motor 23 is not driven), the dither signal Sd ′ is used as the observer output value between its peaks and valleys as shown in FIG. Application is made so as to come and go (however, the amplitude is maintained so as not to move the load side and the static state is maintained), and a temporal average value in that case is calculated to calculate a disturbance estimated value.
  • the dither signal Sd ′ shown in FIG. 15 indicates that it is applied to the motor 23 (a period during which the command value u is not output) so as to reciprocate the peaks and valleys indicated by dots.
  • the dither signal Sd ′ is applied to the motor 23 so as to change its amplitude so that the load (endoscope drive unit) does not move,
  • the moving average filter 81 averages the output value with respect to the observer output value at that time.
  • FIG. 17 shows the processing contents of the moving average filter 81 and its operation explanatory diagram.
  • the dither signal Sd ′ is applied to the motor 23 at a cycle of reciprocating the peak and valley of the observer output value.
  • the estimated disturbance value (observer output value) output from the correction unit 71 is input to the moving average filter 81 shown on the right side of FIG.
  • the moving average filter 81 uses a disturbance estimated value db (output from the correction unit 71) as an input signal, shifts it by a predetermined sample period, and adds each of a plurality of n sampled values.
  • Addition is performed by the unit ⁇ , and the added value is divided by a plurality of n as the number of samples, and the average estimated value is output as the output value of the moving average filter 81 as the disturbance estimated value dc.
  • 1 / z in FIG. 17 indicates a symbol for delaying the input signal by one sample time. Then, an average estimated value for a plurality of n sample periods is shifted in time for each sample period and output.
  • the product of the interval of one sample period and a plurality of n is set to substantially coincide with the period of the peaks and valleys.
  • the load value in that case can be accurately calculated.
  • the present invention is not limited to the case where the average value is calculated with the period of the observer output value, and may be averaged at an appropriate time.
  • a configuration in which the second embodiment and the third embodiment are combined may be adopted. For example, in a static state where the command value u is not output, the bending portion 9 is controlled to be driven as in the third embodiment, and during the period in which the command value u is output, the bending drive control is performed as in the second embodiment. You may make it switch. Next, a modification of this embodiment will be described.
  • FIG. 18 shows a block diagram of the load calculation unit 72D in the modification.
  • a position estimation circuit 85 that estimates a phase position in a cycle of peaks and valleys from intermediate data (for example, an adder) in the moving average filter 81, and this position estimation circuit
  • An amplitude control circuit 86 for controlling the amplitude of the dither signal by the output of 85 is provided. Then, the amplitude command signal from the amplitude control circuit 86 is applied to the amplitude variable dither signal generation circuit 87, and the amplitude of the dither signal in the vicinity of the extreme values of the peaks and valleys is controlled to be smaller (than the period other than the extreme values). To do.
  • the amplitude variable dither signal generation circuit 87 variably controls the amplitude of the dither signal according to the amplitude command signal.
  • a variable amplitude dither signal generation circuit 87 may be provided in the load calculation unit 72C.
  • FIG. 19 shows an example of an amplitude command signal from the amplitude control circuit 86 according to this modification.
  • the amplitude command signal has a minimum amplitude in the vicinity of the phase position where the observer output value is an extreme value (by the position signal estimated by the position estimation circuit 85), and an amplitude close to the maximum between them. It becomes a substantially pulse-like waveform. Therefore, for example, the minimum necessary dither signal amplitude can be applied by setting to drive an arbitrary half cycle of the substantially pulse waveform while detecting the approximately pulse waveform.
  • ⁇ Driving near the extreme value is suppressed by variably controlling the amplitude of the dither signal using such an amplitude command signal.
  • FIG. 20 shows a schematic configuration of a motor drive system in Embodiment 4 of the present invention
  • FIG. 21 shows a configuration of a motor drive system including a gear disturbance observer.
  • the planetary gear speed reduction mechanism 44 as a speed reducer is connected to the motor 23 and used.
  • Friction, the amount of lost motion (dead zone), etc. are accompanied between the plurality of gears constituting such a planetary gear speed reduction mechanism 44.
  • the motor model block A (for example, see FIG. 4) in which the influence of friction or the like enters is employed, and the (motor) physical model block 56 by software corresponding to the motor model block A is used. Further, the estimated disturbance value is calculated by correcting with periodic correction information related to the meshing position by the gear.
  • the reaction from the endoscope side as the disturbance load d is applied to the motor side through the gear.
  • the reaction is measured on the motor side, so that the correction is performed, etc. The effect of gear was reduced.
  • the present embodiment uses a reduction gear together with a motor or a model of a gear portion constituting the reduction gear, and more accurately reflects the substance so that a disturbance load d is applied to the gear portion.
  • Model is used. And it is set as the structure which can calculate a highly accurate disturbance estimated value, without using the periodic correction information relevant to the gear meshing position in the Example mentioned above.
  • a motor model block and a gear model block in which a gear unit such as a planetary gear reduction mechanism 44 connected to the motor model block is modeled so as to include the effects of friction, lost motion amount (dead zone), and the like.
  • the disturbance load d is also applied to the gear model block side (a configuration that reflects the substance more faithfully).
  • a gear physical model (specifically, a gear disturbance observer as a load calculation unit) corresponding to the gear model block is formed, and the influence of friction or the like is reduced by this gear physical model, and the disturbance load d is accurately detected.
  • the configuration is estimated.
  • the configuration of the endoscope system and the motor unit according to the present embodiment are basically the same as those shown in FIGS.
  • the configuration of the motor unit drive system in FIG. 2 is composed of a motor drive unit 92 (including the motor unit 91) and a gear unit 93 ′ as schematically shown in FIG.
  • Jm, J L respectively motor inertia (inertial moment), representing the gear inertia in consideration of the load.
  • r, D, K, ⁇ , F L is the gear ratio respectively, viscosity constant, elastic constant, the motor drive torque becomes gear static friction constant.
  • FIG. 20 shows a block diagram of the actual motor drive unit 92 and the gear unit 93 'based on the equations of motion (1) and (2).
  • a disturbance estimated value can be calculated as shown in FIG.
  • the estimated disturbance value can be calculated with high accuracy by using the position information of the gear 47 detected by the potentiometer 42 (see FIG. 2) in the gear section 93 ′.
  • the 20 includes a motor unit 91 and a motor drive unit unit 94 that drives and controls the motor unit 91.
  • This motor drive unit 94 has basically the same configuration as the component block (that is, the position control block 51, the speed control block 52, the differential element 53, and the current control block 54) of the signal flow diagram shown in FIG. It is.
  • the motor unit 91 is basically the same as the motor model block A shown in FIG. In FIG. 4, the motor model block A is defined with a configuration that does not include the integral operator (1 / s) that outputs the position information, whereas in the present embodiment, the configuration that uses the position information The motor unit 91 is defined including this integral operator.
  • the simplified model configuration is such that the disturbance load d is input into the motor unit 91, whereas in the present embodiment, the disturbance load d is (as a gear model block).
  • the model structure is more realistic so that it is input to the gear section 93 'side.
  • the motor inertia (moment of inertia) of the motor was mainly considered up to the third embodiment described above, the motor inertia was represented by J. However, in this embodiment and later, the motor inertia is also considered, so the motor inertia is also taken into account. Is represented by Jm, and the gear inertia is represented by Jg.
  • FIG. 20 shows a configuration including an actual gear model portion and a portion calculated by software by the FPGA block 36 (specifically, the reaction portion described above) as the gear portion 93 ′.
  • the FPGA block 36 includes the motor drive unit 94 shown in FIG. 20, the gear reaction portion, and the gear disturbance observer 95.
  • the motor position information of the motor unit 91 is fed back to the addition point a1, subtracted from the command value, and input to the calculation element of the position control block 51.
  • the gear position information of the gear unit 93 is further input to the addition point a1, and the motor drive is controlled by the deviation value subtracted from the command value.
  • a motor drive system that can reduce an error using the gear position information of the potentiometer 42 (see FIG. 2) that detects the position information of the gear 47 is used, and the estimated disturbance value is calculated by this structure. To do. As described above, since the gear position information by the potentiometer 42 is used, even if a simplified configuration of the gear disturbance observer 95 itself as the load calculating unit is employed, the gear disturbance estimated value can be calculated with high accuracy.
  • the motor position information of the motor unit 91 is subtracted from the position information of the gear 47 at the addition point a3 through the gear ratio calculation element. Then, the disturbance load d is added at the addition point a4 via the dead zone (DZ) such as backlash and backlash, and the gear stiffness calculation element, and the signal value calculated for static and dynamic friction is subtracted from the speed information. Is done.
  • DZ dead zone
  • the signal value added at the addition point a4 is fed back to and subtracted from the addition point a2 as described above, and the integration element (1 / (Jg ⁇ s)) using the gear inertia Jg and the integration element (1 / It becomes the gear position information detected by the potentiometer 42 through s).
  • the gear position information is input to the differential operation element (du / dt) of the gear disturbance observer 95. Then, in the gear disturbance observer 95, the estimated disturbance value is calculated by performing the same calculation process (however, the motor is replaced with a gear) as described in FIG.
  • the gear position information is obtained by calculating the gear speed information by the differential operation element, and further adding the value obtained by performing the inverse operation (Jg ⁇ s) of (1 / (Jg ⁇ s)) on the gear section 93 side to the addition point a5. input.
  • a torque considering the gear rigidity (Kg) is subtracted from this input value to the value including the dead zone (DZ) (similar to the gear section 93 side) and calculated from the disturbance output terminal.
  • the estimated disturbance value is output.
  • the gear inertia Jg and the gear rigidity Kg in the gear disturbance observer 95 are design values (nominal values).
  • the calculated disturbance estimated value is transmitted to the control unit 25 via the communication system block 34 as described in the first embodiment, and is notified by display on the endoscope monitor 5 or the like.
  • the gear position information detected by the potentiometer 42 is fed back to the command value to the motor 23 and the position information is used positively. It is possible to cancel or reduce the effects of friction and dead zone elements.
  • the load such as the tension amount acting on the endoscope can be accurately calculated without using a sensor.
  • Embodiment 5 of the present invention will be described with reference to FIGS.
  • the disturbance load d is considered in the gear portion as in the fourth embodiment, and the concept of a state estimation observer is further introduced to calculate the estimated disturbance value in the same manner.
  • the state estimation observer is to estimate the state quantity of the real system from the input and output information of the real system using a virtual model that simulates the real system.
  • A, B, C, and D are coefficient matrices that determine the dynamics of the system. The parameters are the same in the real system and the virtual model, and the state variables x and xm are different from the outputs y and ym.
  • the error e converges to A ⁇ L ⁇ C.
  • the convergence time is determined by the AL / C value, so if the L value is set so that the error e converges as much as possible, the state quantity of the real system and the state quantity of the virtual model will match in real time. That is, the value of the real system can be estimated from the value of the virtual model.
  • FIG. 23 shows a configuration of a motor drive system in which an actual system including a gear unit in this embodiment and an observer serving as a virtual model simulating the actual system are constructed.
  • the portion denoted by reference numeral 97 in FIG. 23 matches the entire configuration of FIG.
  • the part denoted by reference numeral 98 in 97 corresponds to the actual system.
  • a virtual model system 99 that simulates (simulates) the real system 98 and a state estimation observer 100 that estimates the state quantity by combining both systems are provided in the FPGA block 36.
  • the virtual model system 99 is simulated to be the same components as the real system 98.
  • addition points a1 to a4 in the real system 98 are indicated by addition points a1 ′ to a4 ′ in the virtual model system 99.
  • a torque estimation observer 95 ′ corresponding to the gear disturbance observer 95 of the above-described fourth embodiment is additionally formed, and the torque estimation observer 95 ′ does not require the use of a sensor, and the disturbance. Output the estimated value.
  • gear position information in the actual system 98 is used, but in this embodiment, gear position information in the virtual model system 99 is used.
  • the configuration in terms of arithmetic processing by software is the same for both.
  • FIG. 24 shows the configuration of the virtual model system 99 including the torque estimation observer 95 ′ in FIG. 23 and the state estimation observer 100 portion.
  • the signal value that has passed through the current control block 54 (gain) in the real system 98 is input to the addition point a2 ′ via the addition point a6 and added.
  • the addition point 26 subtracts the output signal value of the state estimation observer 100.
  • the state estimation observer 100 has three gains L1, L2, and L3.
  • the gain L1 is obtained by subtracting the motor position information of the real system 98 from the motor position information of the virtual model system 99 via the addition point a7. A signal is input. Further, the gear position information and gear speed information of the virtual model system 99 are input to the gains L2 and L3, respectively.
  • the output signal values of the gains L1, L2, and L3 are added at the addition point a8 and output to the addition point a6 of the virtual model system 99.
  • a state estimation observer 100 that simulates the behavior of the gear from the current (command) value (which drives the motor in the FPGA block 36) and the motor position information is formed. Further, a torque estimation observer 95 ′ for calculating a disturbance estimated value is formed for the virtual model system 99 as in the case of the gear disturbance observer 95. Then, an estimated disturbance value is calculated by the torque estimation observer 95 '.
  • the state estimation observer 100 is short. It is possible to converge to the state of the real system 98 in time.
  • the estimated disturbance value of the gear is calculated in a portion closer to the gear portion side where the external force actually acts than in the case of the torque detection on the motor side, so that the accuracy is high without using a sensor. An estimated disturbance value can be obtained.
  • the state estimation observer 100 by configuring the state estimation observer 100 to form a loop that feeds back a plurality of information in the virtual model system 99, the response speed when the real system 96 is accurately simulated can be improved.
  • the calculated load value or the like can be notified to a user such as an operator by displaying or the like.
  • FIG. 25 is a glock diagram of a motor unit drive system according to a modification of the fifth embodiment.
  • the motor position information (information of the encoder attached to the motor shaft in the actual system 98) is used.
  • the gear position information is used.
  • the position information of the potentiometer 42 is used.
  • a signal obtained by subtracting the gear position information of the real system 98 (the output of the potentiometer 42) from the gear position information of the virtual model system 99 by the addition point a7 is input to the gain L1.
  • the gear speed information and the gear position information in the virtual model system 99 are input to the gains L2 and L3, respectively.
  • the manipulator has been described as an example in the case where the bending portion as a tubular body in which a plurality of bending pieces are rotatably connected as a movable body is controlled, but the present invention is limited to this.
  • the present invention can be widely applied to a case where a tubular body having a movable body is driven by a motor.
  • the load value is accurately estimated by using the disturbance observer method without the need for a tension detection sensor that acts on the motor load.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 マニピュレータは、駆動用指令信号に応じて回転する回転軸を備えたモータ(23)と、回転軸に連結された減速機(44)と、モータの動作状態を検出する検出部(41)と、モータ(23)により減速機(44)を介して駆動される可動体(22)を有する管体と、減速機(44)を構成するギアの噛合位置の情報に関連つけて周期的な補正情報を予め記憶する記憶部(36b)と、モータ(23)ヘ供給される駆動用指令信号と検出部(41)の検出情報に対する演算処理を行い、更に補正情報を用いてモータに作用する負荷を推定値として算出する負荷算出部(36a)と、負荷算出部(36a)の算出結果を告知する告知部と、を有する。

Description

マニピュレータ
 本発明は、湾曲部の湾曲操縦等を行うマニピュレータに関する。
 一般に、モータを駆動手段として用いた各種の電気機器が広く用いられるようになっている。また、医療機器としての例えば内視鏡においては、体腔内に挿入される挿入部に設けられた湾曲部を手動で湾曲駆動する手動方式の他に、操作性を向上するためにモータを駆動手段に用いた電動方式の内視鏡も実用化されている。 
 このようにモータにより負荷を駆動する場合、モータの動作状態を検出する検出手段と共に、負荷の状態を検出するために通常センサが用いられる。例えば内視鏡の場合、湾曲部を駆動するために湾曲部に働く張力を検出するセンサを挿入部内に設けると、挿入部が太くなってしまったり、センサを洗浄や消毒に対する耐性を有する構造にする等が必要になり、コストアップする。
 このため、センサを設けることなく、モータの出力軸の回転速度等からモータの出力軸にかかる外乱(モータ自身が発生する駆動力を除いた成分)をソフトウェア的な演算処理により算出する外乱オブザーバという技術が特開2007-185355号公報に記載されている。 
 このように外乱オブザーバによる手法を採用することにより、センサを用いることなくモータの負荷値を外乱推定値として算出することができ、コストアップなどを解消できる。 
 なお、モータにより湾曲部等の負荷側を駆動する場合、負荷を十分に駆動できるように減速機が使用される。
 しかしながら、上記特開2007-185355号公報の従来例においては、湾曲部をモータにより湾曲動作させるときに、モータに連結された減速機内のギアの噛み合い(噛合)のガタつきや噛合位置に依存して、推定される外乱推定値としてのオブザーバ出力値が変動してしまう。 
 また、従来例においては、算出結果をユーザに告知することが出来なかった。 
 本発明は上述した点に鑑みてなされたもので、外乱オブザーバの手法等により推定される負荷を精度良く算出することができ、かつ告知することができるマニピュレータを提供することを目的とする。
 本発明の一形態に係るマニピュレータは、駆動用指令信号に応じて回転する回転軸を備えたモータと、
 前記回転軸に連結された減速機と、
 前記モータの動作状態を検出する検出部と、
 前記モータにより前記減速機を介して駆動される可動体を有する管体と、
 前記減速機を構成するギアの噛合位置の情報に関連つけて周期的な補正情報を予め記憶する記憶部と、
 前記モータヘ供給される前記駆動用指令信号と前記検出部の検出情報に対する演算処理を行い、更に前記補正情報を用いて前記モータに作用する負荷を推定値として算出する負荷算出部と、
 前記負荷算出部の算出結果を告知する告知部と、
を有することを特徴とする。
 本発明の他の一形態に係るマニピュレータは、駆動用指令信号に応じて回転する回転軸を備えたモータと、
 前記回転軸に連結された減速機と、
 前記モータ及び前記減速機の動作状態を検出する検出部と、
 前記モータにより前記減速機を介して駆動される可動体を有する管体と、
 前記モータヘ供給される前記駆動用指令信号と前記検出部の検出情報に対する演算処理を行い、前記減速機に作用する負荷を推定値として算出する負荷算出部と、
 前記負荷算出部の算出結果を告知する告知部と、
を有することを特徴とする。
図1は本発明の実施例1を備えた内視鏡システムの全体構成図。 図2は図1の内視鏡内に設けられたモータユニットの構成を示すブロック図。 図3はモータユニットにおけるモータ駆動系のシグナルフロー図。 図4は本実施例に用いられる外乱オブザーバによる負荷算出の原理を示すブロック線図。 図5Aは本実施例に係るモータユニットに用いられている遊星ギヤの構成例を示す正面図。 図5Bは本実施例に係るモータユニットに用いられている遊星ギヤの構成例を示す斜視図。 図6は図5を簡略化して示す図。 図7は図6における係合状態の例を示す説明図。 図8は模式モデルを示す図。 図9は実施例1における外乱オブザーバの手法を用いて外乱推定値を算出する構成を示すブロック図。 図10Aはギアの噛合位置に対するオブザーバ出力値を示す説明図。 図10Bは補正部のルックアップテーブルに予め格納されたギア位置とオブザーバ出力値との相関の情報を示す説明図。 図10Cは図10Bの情報を用いてオブザーバ出力値を補正した補正後の外乱トルク推定値を示す説明図。 図10Dはオブザーバ補正出力値を算出する説明図。 図10Eは図10Aの時系列データを簡易的に示す図。 図10Fは実施例1の変形例における外乱オブザーバの手法を用いて外乱推定値を算出する構成を示すブロック図。 図11は本発明の実施例2のモータユニットの構成を示すブロック図。 図12は実施例2における外乱オブザーバの手法を用いて外乱推定値を算出する構成を示すブロック図。 図13Aは実施例2の動作説明図。 図13Bは外乱トルクに対するオブザーバ出力値がばらつく例を示す図。 図14は本発明の実施例3のモータユニットの構成を示すブロック図。 図15は実施例3における外乱オブザーバの手法を用いて外乱推定値を算出する構成を示すブロック図。 図16は静状態における噛合位置に対して観測されるオブザーバ出力値の特性例と、オブザーバ出力値の山と谷の値の平均値との関係を示す図。 図17は実施例3の動作説明図。 図18は実施例3の変形例における外乱オブザーバの手法を用いて外乱推定値を算出する構成を示すブロック図。 図19は変形例の動作説明図。 本発明の実施例4におけるモータ駆動系の概略の構成を示すブロック線図。 実施例4におけるギア外乱オブザーバを含むモータ駆動系の構成を示すブロック線図。 実システムと仮想モデルとの関係を示すブロック線図。 本発明の実施例5における状態推定オブザーバ等を含むモータ駆動系の構成を示すブロック線図。 図23における状態推定オブザーバ及びトルク推定オブザーバを含む仮想モデルシステム部分の構成を示すブロック線図。 実施例5の変形例における状態推定オブザーバ等を含むモータ駆動系の構成を示すブロック線図。
 以下、図面を参照して本発明の実施例を説明する。 
 図1に示すように本発明の実施例1を備えた内視鏡システム1は、被検体内に挿入される内視鏡2と、この内視鏡2が接続される制御装置3と、この制御装置3に接続され、湾曲の指令操作を行う操作司令部4と、制御装置3と接続され、内視鏡画像等の表示を行う内視鏡モニタ5とを有する。 
 内視鏡2は、被検体内に挿入される細長で円管形状の挿入部6と、この挿入部6の後端に設けられた操作部7と、この操作部7から延出されたユニバーサルケーブル8とを有し、このユニバーサルケーブル8の端部のコネクタ9は、制御装置3のコネクタ受けに着脱自在に接続される。 
 また、挿入部6は、その先端に設けられた先端部11と、この先端部11の後端に設けられた湾曲自在の湾曲部12と、この湾曲部12の後端から操作部7の前端に至る長尺で可撓性を有する可撓部13とを有する。
 先端部11には、照明光を出射する図示しない照明窓と、この照明窓に隣接して観察窓とが設けられており、観察窓には対物レンズ14が取り付けられている。そして、この対物レンズ14は、照明光で照明された被検体内の観察対象部位の光学像を結像する。 
 この対物レンズ14の結像位置には、例えば電荷結合素子(CCDと略記)15が配置され、被検体内の観察対象部位を撮像する撮像部が形成されている。このCCD15は信号線を介して、内視鏡2の外部の制御装置3内に設けられた映像信号生成部16と接続される。 
 映像信号生成部16は、CCD15を駆動すると共に、CCD15により光電変換された撮像信号に対する信号処理を行い、映像信号を生成して、モニタケーブル17を介して内視鏡モニタ5に出力する。内視鏡モニタ5は、CCD15の撮像面に結像された光学像に対応する内視鏡画像を内視鏡画像表示部5aに表示する。
 上記湾曲部12は、可動体としての複数の略円環形状の湾曲駒18、18,…、18がその長手方向に回動(回転)自在に連結されて円管形状の管体が形成されている。なお、回動自在に連結する枢支部は、湾曲部12の上下や、左右に対応する位置に設けられている。 
 また、挿入部6内には、湾曲部12の例えば上下の湾曲方向に対応する内壁に沿って、湾曲部12の湾曲駒18、18,…、18を湾曲させる駆動力を伝達する湾曲ワイヤ19、19が挿通されている。 
 なお、図1等においては、簡単化のため例えば上下湾曲用の対となる湾曲ワイヤ19,19のみが示しているが、左右方向にも湾曲させる場合には、同様に対となる湾曲ワイヤ19、19が左右方向に沿って挿通される。対となる湾曲ワイヤ19、19の先端は最先端の湾曲駒18或いは先端部11に固着されている。
 また、対となる湾曲ワイヤ19、19の後端は、操作部7内に配置され、実施例1のマニピュレータを形成するモータユニット21内のスプロケット22に懸架されている。なお、このマニピュレータは、主にモータユニット21、湾曲ワイヤ19,19及び湾曲部12とより構成される。本実施例においては、図1に示すように表示モニタ5は、負荷値を表示する構成要素となるため、図1の内視鏡システム1がマニピュレータの1つの構成例と見なすこともできる。 
 上記スプロケット22を、モータユニット21内のモータ23(図2参照)により回転駆動することによって、スプロケット22に懸架された対の湾曲ワイヤ19、19の一方を牽引し、他方を弛緩させる。そして、牽引された湾曲ワイヤ19の方向に湾曲部12の可動体としての湾曲駒18、18,…、18は湾曲される。 
 なお、スプロケット22,モータ23等も例えば上下方向に湾曲駆動するものを示しているが、左右方向にも湾曲させる場合には同様の構成のものを備える。
 また、後述するようにモータ23による回転駆動力は、減速機を形成する遊星ギア減速機構44を介してスプロケット22に伝達される。このため、遊星ギア減速機構44におけるギア間の噛合ガタ等の影響が発生するが、モータユニット21は、その影響を低減して湾曲部12を湾曲駆動制御する構成となる。 
 このモータユニット21は、モータ23の負荷算出の演算処理を行う後述の負荷算出部72の機能を備えた大規模集積回路部(LSI部と略記)24を備え、このLSI部24はユニバーサルケーブル8内を挿通されるケーブルを介して制御装置3内の制御部25に接続される。 
 また、操作司令部4は操作司令部ケーブル(操作ケーブルと略記)26を介して、この操作ケーブル26の端部のコネクタ27が制御装置3に着脱自在に接続される。
 操作司令部4には、湾曲方向及び湾曲量の操作指令をその傾動方向及び傾動角度(傾動量)で行う、例えばジョイスティック4aが設けてある。このジョイスティック4aの基端側は傾動自在に支持され、またジョイスティック4aの傾動方向及び傾動角度を検出するポテンショメータ等のセンサ4bが設けられている。 
 そして、このセンサ4bは検出値を操作司令部4による指令信号として操作ケーブル26を介して制御部25に伝達(出力)する。 
 制御部25は、操作司令部4からの指令信号を受けると、ユニバーサルケーブル8内のケーブルを介してモータユニット21内のLSI部24に指令信号を伝達(出力)する。 
 そして、このLSI部24は、指令信号によりモータ23を回転駆動する駆動指令信号としての指令値をモータ23に供給し、このモータ23を回転駆動した際の電流値や位置情報等を検出部(後述するエンコーダ41等)により取り込み、指令値に一致するようにフィードバック制御を行う。
 この場合、湾曲部12が湾曲ワイヤ19,19を介してモータ23によって、湾曲駆動される場合、湾曲ワイヤ19,19を牽引する際の負荷となる張力(テンション)量を歪みセンサ等のセンサにより検出することができる。しかし、そのようなセンサを設けると挿入部が太くなってしまうため、本実施例においてはセンサを設けないで、以下に説明するように外乱オブザーバの手法を用いてソフトウェア的な外乱推定算出手段を用いて負荷或いは負荷値を算出する。 
 また、算出された負荷値は、制御部25に出力され、この制御部25は入力された負荷値を映像信号生成部16に出力する。映像信号生成部16は、入力された負荷値の情報を例えば映像信号に重畳して内視鏡モニタ5に出力し、内視鏡モニタ5における負荷値表示部5bには算出された負荷値が表示される。つまり負荷値を視覚的に告知する告知部が形成されている。
 なお、算出された負荷値を告知する告知部は、表示による告知の場合に限らず、制御部25から操作司令部4に算出された負荷値に相当する力覚感覚の提示を行うようにしても良い。例えば、ジョイスティック4aの回転軸にモータを設け、算出された負荷値に応じた反作用力量でモータを駆動しても良いし、操作司令部4に振動モータ等を配置してこの振動モータを負荷値に応じて振動させる等で告知を行うようにしても良い。また、算出された負荷値は、直接的にはモータ23のモータ軸に働くトルク値として算出されるが、湾曲部12の湾曲駆動等に適した量に適宜スケール変換して告知するようにしても良い。 図2はモータユニット21の詳細な構成を示す。 
 このモータユニット21は、ユニバーサルケーブル8内を挿通された図示しないケーブルの端部が接続される電源コネクタ31a、湾曲制御部コネクタ31b、及び撮像部コネクタ31cが設けられている。 
 制御装置3から電源を供給するケーブルと接続された電源コネクタ31aは、LSI部24内の制御電源回路32と駆動電源回路33とにそれぞれ駆動電源を供給する。
 制御電源回路32は、制御電源を生成し、生成された制御電源をLSI部24内の通信系ブロック34と、DC/DCコンバータ35を介してのFPGA(Field Programmable Gate Array)ブロック36等に供給する。 
 また、この制御電源は、フィードバック信号入力部(図2ではF/B信号と略記)37,アナログインプット信号入力部(図2ではAI信号と略記)38,デジタルインプット信号入力部(図2ではDI信号と略記)39に供給されると共に、LSI部24の外部のエンコーダ41及びポテンショメータ42にも供給される。 
 なお、DC/DCコンバータ35は、直流のDC電源から高圧のDCを生成し、高圧のDC電源を必要とし、プログラムすることが可能なLSIとしてのFPGAブロック36に供給する。
 また、駆動電源回路33は、駆動電源を生成して、この駆動電源を(モータ23を駆動指令信号としての指令値により回転する)モータドライバ43に供給する。 
 また、湾曲制御部コネクタ31bに接続される通信系ブロック34は、図1の制御部25とFPGAブロック36間での双方向の通信を行うインタフェースを形成している。例えば操作司令部4で生成された指令信号は、制御部25から通信系ブロック34を介してFPGAブロック36に伝達され、FPGAブロック36はこの指令信号からモータドライバ43を介してモータ23に指令値を供給する。 
 また、FPGAブロック36により算出された負荷値は、通信系ブロック34を介して制御部25に伝達される。そして、上述したように負荷値が表示により告知される。 
 また、撮像部コネクタ31cは、信号線を介してCCD15と接続されている。なお、この撮像部コネクタ31cは、モータユニット21と別体に形成しても良い。
 上記モータドライバ43により回転駆動されるモータ23は、遊星ギア減速機構44を介してスプロケット22とメカニカルに係合している。 
 この遊星ギア減速機構44においては、モータ23のモータ軸(回転軸)には駆動ギア45が直接的に連結され、この駆動ギア45はクラッチ46を介してスプロケット22の回転軸に連結されたギア47と噛合している。そして、このクラッチ46のON/OFFを行うスイッチ48により噛合離脱(遮断)と、噛合状態(噛合連結状態)となる。 
 このスイッチ48のON/OFF信号は、デジタルインプット信号としてデジタルインプット信号入力部39を経てFPGAブロック36に入力される。 
 また、ギア47の回転軸に連結されたポテンショメータ42は、このギア47の回転位置を検出し、その位置情報はアナログインプット信号としてアナログインプット信号入力部38を経てFPGAブロック36に入力される。つまり、ポテンショメータ42は、減速機を構成するギア47の位置(情報)検出部を形成する。
 また、モータ23の回転位置(回動位置)は、そのモータ軸(つまり、回転軸)に連結されたエンコーダ41により検出される。そして、このエンコーダ41により検出された位置情報は、フィードバック信号としてフィードバック信号入力部37を経てFPGAブロック36に入力される。なお、エンコーダ41は、モータ軸に連結された駆動ギア45の回転位置の検出部を形成する。
 また、モータ23に流れる電流値は、アナログインプット信号としてアナログインプット信号入力部38を経てFPGAブロック36に入力される。
 上記エンコーダ41とモータ23に流れる電流値の検出手段は、モータ23の動作状態としてのモータ23の回転位置、回転速度等を検出する検出部を形成する。 
 FPGAブロック36は、ユーザの操作指令による指令信号に基づき、モータドライバ43を介してモータ23を回転駆動させ、可動体を有する管体としての湾曲部12の湾曲制御するマニピュレータを形成する。
 この場合、FPGAブロック36は、モータ23への負荷値を外乱オブザーバの手法を用いて外乱推定値(推定値)として推定(算出)する推定部36aと、その負荷値の算出を精度良く行うため、減速機を構成するギアの噛合位置に依存する周期的な補正情報を予め記憶(格納)する記憶部36bとを備えている。より具体的には図9(のLUT73)を参照して後述する。
 図3はこのFPGAブロック36によるモータ駆動系のシグナルフロー図を示す。図3に示すように操作司令部4からの指令信号に基づく指令値は、モータ23の位置情報検出手段からの位置情報が減算された差分値がFPGAブロック36の位置制御ブロック51に入力される。 
 位置制御ブロック51は、差分値から生成した位置指令を、速度制御ブロック52に出力する。この速度制御ブロック52には、位置情報を微分要素で微分生成した速度情報も入力される。この速度制御ブロック52は、位置指令と速度情報から生成した速度指令を電流制御ブロック54に出力する。
 この電流制御ブロック54には、モータ23に流れる電流値も入力される。そして、この電流制御ブロック54は、速度指令及び電流値から生成した電流指令をモータ23に駆動電力として供給する。 
 モータ23は、電流指令に応じて目標位置に向けて回転駆動し、その際の位置情報等がモータ駆動制御系にフィードバックされる。 
 この場合、モータ23は、実際には遊星ギア減速機構44を経て湾曲部12を湾曲するように負荷が連結されており、本実施例においてはこの負荷を外乱負荷としてその推定値(負荷値)を算出する外乱オブザーバの手法を採用する。 
 この場合、通常の湾曲駆動制御状態の他に、湾曲部の先端部11が体壁等にあたり、通常の負荷の状態から逸脱する場合もあり得る。
 本実施例は、外乱オブザーバの手法により算出する負荷値の推定精度を向上することにより、通常の湾曲駆動制御状態の場合の他に、通常の湾曲駆動制御状態から逸脱した状態を判定する判定機能を備えた構成にしている。
 本実施例においては、モータ23に対する外部の負荷を外乱負荷と見なして、その値を算出し、その算出結果に応じて、挿入部6の挿入状態に対応した適切な湾曲駆動制御を行う湾曲駆動制御のマニピュレータを形成する。これにより、センサを用いる事無く適切な湾曲駆動制御を行えるようにしている。 
 図4は、上記外乱オブザーバにより負荷値を推定する原理説明のブロック線図を示す。図4における点線で示すモータモデルブロックAに対して、モータドライバ43からの電流指令により、その電流値に比例したトルクの指令値uがモータ23(の電機子)に印加される。 
 そして、モータ軸にはトルクの指令値uに応じたトルクが作用する。この場合、ラプラス演算子sを用いた場合には、このモータトルク定数Ktとすると、u・Ktのトルクがモータ軸に作用する。
 そして、このモータ23は、モータ軸にかかるそのトルクに対してモータ慣性モーメントJに応じた回転数(回転Speed)で駆動される。ラプラス演算子sを用いた場合には1/(J・s)で演算(つまり積分演算)した回転数となり、さらにその積分演算(1/s)によりモータ位置が算出される。 
 実際のモータ23の場合、遊星ギア減速機構44を介して、モータ軸には負荷がかかるので、それを反映するようにモータ軸に外乱負荷dのトルクが作用する。 
 そして、このモータモデルブロックAに対して2点鎖線56で示すように、そのモータ23の構成要素を、ソフトウェア的に或いは演算処理手段によって近似(又は模擬)する物理モデルブロック(或いは演算処理ブロック)を並列に配置する。
 但し、この物理モデルブロック56は、外乱負荷dを算出するような演算要素で構成される。つまり、モータモデルブロックAにおいては加算点に外乱負荷dが入力されるが、物理モデルブロック56においては、減算ブロック59が外乱負荷dを推定して出力するような演算ブロックとする。そのため、トルクの指令値uを、この物理モデルブロック56内の(モータトルク定数Ktを近似した)設計モータトルク定数Ktnの第1演算ブロック57に入力する。 
 また、モータ23の回転数(回転Speed)の情報からモータ軸にかかるトルクを逆演算する第2演算ブロック58(ラプラス演算子sを用いた場合にはJn・sの演算)の出力情報から第1演算ブロック57の演算出力を減算ブロック59で減算してモータ軸にかかる外乱負荷dの値を推定した外乱推定値daとして算出する。なお、Jnは、モータ23のモータ慣性モーメントJを近似した設計モータ慣性モーメントを表す。 
 図4の外乱オブザーバの手法を用いてオブザーバ出力値として外乱推定値daを算出すると、その外乱推定値daは、モータ軸に遊星ギア減速機構44が連結されているため、その影響を受ける。
 図5Aはこの遊星ギア減速機構44を形成する1つの遊星ギア44aの正面からの透視図を示し、図5Bはその斜視図を示す。 
 遊星ギア44aは、外側が固定され、内周面にギアが形成されているので内歯ギア(外輪ギアともいう)61と、この内歯ギア61の中心に配置される太陽ギア62と、この太陽ギア62を中心として自転しつつ、公転する3つの遊星ギア63、63,63と、これら遊星ギア63、63,63をそれぞれ回転自在に保持するアーム64とを備える。 
 図5Bに示しように太陽ギア62に固着された入力側の回転軸65aによる回転を、遊星ギア63、63,63を保持したアーム64の中心に取り付けられた出力側の回転軸65bに減速して、そのトルクを同軸的に伝達する。
 本実施例においては、この遊星ギア44aを主体としたものを複数個連結して、湾曲部12を十分に湾曲駆動することが可能なトルクを発生する遊星ギア減速機構44を形成している。 
 この遊星ギア減速機構44を簡略化して近似すると、図6のように互いに逆方向に回転する2つのギア66a、66bで表すことができる。 
 なお、この2つのギア66a、66bは、図2の駆動ギア45とギア47を簡易的な機構モデルとして示したものである。 
 この場合、2つのギア66a、66bの噛合状態として、図7に示すように例えば3つの状態が発生する。 
 具体的には、図7の左側に示すギア66aにおける噛合に関与するギア片の(ある回転方向に関する)後縁に、他方のギア66bにおける噛合に関与するギア片の前縁が接触した第1の状態と、図7の中央に示すように両ギア片の噛合状態が外れた第2の状態と、図7の右側に示すように両ギア66a,66bにおけるぞれぞれ2つのギア片同士が互いに接触した第3の状態が発生する。
 換言すると、両ギア66a、66bは、完全に両者が噛合した理想的な状態ではなく、噛合が外れたガタ付きのある状態が発生する。完全に噛合した状態では、両ギア66a、66bにおける一方の状態が決まると、他方のギアの状態が一意に決定される。しかし、本実施例のような遊星ギア減速機構44の場合には、図7でその概略を示したようなガタ付きを持った駆動力伝達機構となってしまう。 
 そして、図6にように簡略化したギア66a、66bをダイナミカルアナロジー的に模式化すると、図8のようなモデルで近似することができる。 
 図8に示すようにモータ23のモータ軸に連結された慣性モーメントがJpのギア66cが、摩擦パッド67とバネ・ダンパ68を介して慣性モーメントがJqのギア66dと連結したモデルで近似する。
 後述するように、遊星ギア減速機構44の場合には、ギア間のがたつきが存在しても、遊星ギア減速機構44を回転させた場合には、遊星ギア減速機構44を構成するギアはそれぞれ所定のギア数で形成されているため、周期的な特性を示す。 
 また、実際には、図2の駆動ギア45とギア47との噛合位置によって、観測されるオブザーバ出力値が変化する(図10Aに、噛合位置に対する負荷値毎(異なる負荷値)の場合のオブザーバ出力値の例を示す)。 
 そして、本実施例は、図4に示した外乱オブザーバの手法を用い、図9に示すように減速機としての遊星ギア減速機構44におけるギア間のがたつきとギアの噛合位置に起因する外乱推定値(推定値)の精度低下を低減、つまり精度の高い外乱推定値を算出可能とする補正部71を設けている。図9は、本実施例における外乱オブザーバの手法を用いて外乱推定値としての負荷を算出する負荷算出部72の構成を示す。
 図9に示すように本実施例においては、図4に示す構成において、外乱推定値daをさらに補正部71に入力し、補正部71により補正する機能を備えた負荷算出部72を形成している。 
 図4に示す構成は、特開2007-185355号公報の従来例により開示されている。この従来例の場合には減速機を構成するギア間のがたつきとギア間の噛合位置により精度の低い外乱推定値daとなってしまっていた。これに対して、本実施例は、減速機を構成するギア間のがたつきに対する補正を行うと共に、ギア間の噛合位置に対する特性を反映する補正情報を用いて補正を行う補正部71を備えている。 
 この補正部71は、減算ブロック59から出力される補正前のオブザーバ出力値、つまり外乱推定値daを入力として、周期的な補正情報、ここでは例えば正弦波状のデータ値を、補正された外乱推定値dbとして出力するルックアップテーブル(LUTと略記)73と、駆動ギア45とギア47間の噛合位置の位置情報に相当する位置データPdを発生してLUT73に出力する位置データ発生部74とを有する。
 位置データ発生部74は、図2の(モータ23の回転位置情報から、このモータ軸に連結された)駆動ギア45の位置を検出するエンコーダ41の出力値と、ギア47の位置情報を検出するポテンショメータ42の出力値とが入力されることにより、両ギア45,47間の噛合位置の位置データPdを発生する。 
 また、LUT73には、図10Aに示す周期的に乱高下するオブザーバ出力値と、減速機を構成するギア間の噛合位置との関係の相関量を予め調べ、その結果、その高い相関量を良好に近似することができる周期的な補正情報のデータ値が、噛合位置の位置データPdと関連付けて格納されている。
 従って、LUT73は、両データda、Pdの入力により、減速機を構成するギア間のがたつきの影響を低減すると共に、駆動ギア45とギア47間の噛合位置に依存した略周期的な特性を反映してバラツキが低減された(つまり精度の高い)補正された外乱推定値dbを出力する。 
 このような構成による本実施例は次のような作用を有する。図4に示した外乱オブザーバの手法により算出されるオブザーバ出力値(外乱推定値da)は、図10Aのように、ギア間のがたつきとギア間の噛合位置とにより、周期的な特性を示すが、乱高下する。 
 なお、図10Aは、異なる噛合位置に相当する場合の複数の出力値の特性例を示している。
 これに対して、本実施例は、図9で示したように補正部71において、ギア間の噛合位置を検出して、その検出された噛合位置に依存して変化する特性を近似的に反映する(予めLUT73に格納された)周期的な出力データを読み出す。
 LUT73には図10Bで示した様に、予めギア位置とオブザーバ出力値daとの相関を記憶しておく。具体的には、図10Cの通りギア噛合回転量(噛合位置)とオブザーバ出力値daの関係をcos関数のルックアップテーブルとして割り当てる。これは、オブザーバ出力値daの時系列データをcos関数で置き換えたとすると、位置の情報がわかれば時系列データにおいてオブザーバ出力値daがどの部分を示しているかが抽出できるためである。
 例えば、図10D中のA点の部分のオブザーバ出力値daを検知したとする。Aのオブザーバ出力値daはトルク真値を基準値とすると、振幅α/2にcos(pos)を乗じた値として出力される。実際には、オフセット量βが存在するので、その分を加える事でトルク真値、すなわち補正されたオブザーバ出力値としての外乱推定値dbの抽出が実現できる。
 したがって、Aで出力されたオブザーバ出力値daを下記の数式でオブザーバ補正出力値を算出することでトルクの真値トルクとなる外乱推定値dbが抽出される。
 オブザーバ補正出力値 =1/(α・cos(posA)/2) x オブザーバ出力値 + β
この算出式を用いて予めLUT73にオブザーバ出力値に対するオブザーバ補正出力値を設定しておくことでトルク真値となる外乱推定値dbを抽出できる。
 なお、図9においては、オブザーバ出力値daをLUT73に入力する構成にしているが、オブザーバ出力値daをLUT73に入力しないで、ブザーバ出力値daをLUT73の補正情報で減算または加算して外乱推定値dbを生成する構成にしても良い。
 ところで、図10Aの様に、実際には外乱トルクとしては一定のトルクのみならず様々なトルク量が印加される。図10Aの時系列データを簡易的に示したのが図10Eである。図10Eに示す通り印加されるトルク値に応じて、オブザーバ出力値の波高値およびオフセット値が異なる傾向がある。概して、印加されるトルクが大きくなればギア回転量-オブザーバ出力値daの時系列データは振幅が大きくなり、かつ、オフセット量が大きくなる。このため、振幅をα(obs)、オフセット量をβ(obs)とオブザーバ出力の関数としたオブザーバ補正値を下記の関数で導出された値をLUT73に設定しておくことで任意の外乱量の検知も可能となる。
 オブザーバ補正出力値 =1/(α(obs)・cos(posA)/2) x オブザーバ出力値 + β(obs)
 以上の様に、ギアの噛合位置の情報を用いてオブザーバ出力値daを補正することにより、噛合位置に依存した周期的な特性を反映して、実際に精度良く近似する外乱推定値dbをオブザーバ出力値として算出することができる。 
 また、本実施例では余弦による三角関数を用いたが、正弦による三角関数を採用しても良い。
 このように本実施例によれば、湾曲駆動制御の際のテンション状態を比較的精度よく算出できるので、挿入部6内にセンサを設けることを必要としない。このため、細径の挿入部6の内視鏡2を実現でき、体腔内への挿入部6の挿入等による内視鏡検査の作業が容易となる。このため、挿入などの操作性を向上した電動湾曲制御装置や電動湾曲内視鏡装置を実現できるマニピュレータを提供できる。 
 また、負荷算出部により算出した負荷の推定値の算出結果を術者等の使用者に告知することができる。また、判定部75の判定結果Cにより、通常の湾曲駆動制御状態か否かの可能性を確認することができ、術者による内視鏡検査を行う際の操作性を向上できる。
 また、内視鏡画像を表示する表示手段としての内視鏡モニタ5上に負荷の推定値の算出結果を表示するようにしているので、術者は内視鏡画像を観察する状態で負荷の算出結果を確認することができる。
(実施例1の変形例)
また、図9に示す実施例1の変形例として、図10Fの通りの構成とすることで、負荷の判定を行うことも可能となる。
 図10Fは、図9の実施例1の構成において負荷判定部75を設けている。図10Fの変形例は、補正部71から出力される外乱推定値dbが、通常の湾曲駆動制御状態(通常状態と略記)にあるか、先端部11が体壁に接触して湾曲が規制された規制状態であるか否かの判定を行う判定部75を備えている。換言すると、この判定部75は、負荷の推定値が操作司令部4に基づく指令値(駆動指令信号)に対応した通常状態(の範囲内)であるか、この通常状態から逸脱した外力が作用している外力作用状態(規制状態)であるかの判定を行う。
 この判定部75は、補正部71からの外乱推定部dbが入力されるウインドウ型比較器76と、例えば指令値uのデータが入力されることにより対応する通常状態での基準の外乱推定値dnorを比較器76に出力する第2のLUT77とを備えている。ウインドウ型比較器76は、2つの比較するデータ(ここでは、外乱オブザーバ出力db及び基準の外乱推定値dnor)を時系列データとして比較するため、2つのデータが全て一致するするかどうかで判断せず、2つのデータ系列に相関があるかないかを判断するための相関フィルタとなっている。
 第2のLUT77には、例えば指令値uのデータに関連付けて対応する通常状態での基準の外乱推定値dnorの情報が予め格納されている。なお、指令値uのデータ以外のデータと基準の外乱推定値dnorの情報とを関連付けて格納するようにしても良い。 
 そして、判定部75を構成する比較器76は、補正部71により算出された外乱推定値dbが通常状態で推定される基準の外乱推定値dnorから許容される値以上、逸脱している場合には、その判定結果Cの情報を通信系ブロック34を介して制御部25に出力する。 
 制御部25は、この判定結果Cを受けて、例えば負荷値表示部5bに、判定結果Cの情報も表示するように判定結果情報を映像信号生成部16に出力する。そして、判定結果情報をユーザに例えば表示により告知する。
 例えば、補正部71により算出された外乱推定値dbが通常状態で推定される基準の外乱推定値dnorから許容される値以上に大きいと判定した判定結果Cの場合には、負荷値表示部5bにおいて、(湾曲部12或いは先端部11が体壁等に接触して)湾曲が規制された状態の可能性ありの表示又は告知を行う。 
この結果、力覚提示への情報提供の手段として構成することもできる。併せて、外乱オブザーバ出力dbをそのまま力覚提示手段に情報を出し、内視鏡にかかる負荷を提示させることも可能である。
 (実施例2)
 次に図11から図13Bを参照して本発明の実施例2を説明する。図11は本発明の実施例2におけるモータユニットの構成を示し、図12は外乱オブザーバの手法を用いて外乱推定値を算出する負荷算出部の構成を示し、図13Aは本実施例による動作説明図を示し、図13Bは実際に負荷トルクに対するオブザーバ出力の関係の図を示す。
 図13Bに示す通り、印加する外乱トルクに対して外乱オブザーバ出力にばらつきがあり、しかも、段階的な波形となっている。これは静摩擦の影響が支配的であるためである。
このため、本実施例は、実施例1において、減速機を構成するギア間の静摩擦による影響を低減する。
 図11に示すように本実施例におけるモータユニット21Bは、図2のモータユニット21において、例えばFPGAブロック36は、静摩擦を解消する振幅の振動信号としてのディザー信号を発生するディザー信号発生部36cを有する。 
 そして、FPGAブロック36は、このディザー信号をモータドライバ43に出力する。このため、FPGAブロック36からモータドライバ43に、指令値uを出力させる指示信号が出力される時には、このディザー信号が重畳された状態で出力される。つまり、モータ23には、モータドライバ43を介して指令値uが印加される場合には、既にディザー信号が(振動信号成分として)重畳して印加される状態となるようにしている。
 なお、このディザー信号を、常時、モータドライバ43に印加するようにしても良い。或いは、駆動ギア45とギア47とが連結された状態の湾曲部12が湾曲可能となる期間に限定しても良い(具体的にはクラッチ46のOFF/ONに相当するスイッチ48のON/OFF信号によりディザー信号の印加のON/OFFを連動させても良い)。 
 その他の構成は、実施例1の場合と同様である。図12は、本実施例に係る負荷算出部72の構成を示す。この負荷算出部72の部分は、実施例1における図9と同じ構成である。 
 但し、モータ23に印加される指令値uは、この図12に示すようにディザー信号Sdが重畳されて印加される構成となっている。 
 次に本実施例の動作を説明する。
 モータ23により減速機としての遊星ギア減速機構44を介して湾曲部12の湾曲駆動制御を行う場合、遊星ギア減速機構44を構成するギア間が静状態の場合と動状態の場合とで、駆動した時の摩擦係数の値が異なる。 
 このため、算出される外乱推定値としてのオブザーバ出力値が、実際に駆動した時のギアが静摩擦状態か動摩擦状態か否かの影響を受けてその精度が低下する。実際に観測されるオブザーバ出力値の精度が低下する概略の特性例を図13の2点鎖線で示す。 
 静摩擦による影響により、例えば指示値としてのギア出力軸トルクに対し、その場合に実際に観測されるオブザーバ出力は1対1とならず、幅を持った或いは不連続な関係の特性になってしまう。このため、オブザーバ出力値を推定する場合にも、その精度が低下する。
 これに対して、本実施例においては、少なくとも湾曲部12を駆動する場合には、動摩擦状態を維持する(換言すると静摩擦状態を解消する)ように振動信号としてのディザー信号Sdをモータ23に印加する構成にしている。 
 このため、例えば術者がクラッチ46を連結状態にして湾曲を行うことが可能な状態においては、駆動ギア45とギア47とには、例えば小さな振幅の振動的なトルクが印加されて、動摩擦状態が維持される。 
 従って、図13Aの実線で示す概略の特性図のように、静摩擦による影響が解消され、動摩擦状態のみとの場合の(理想的には)1対1に対応した特性に改善できる。そして、実際に湾曲部12を駆動する場合には、少なくとも動摩擦状態に維持できるので、静摩擦による影響を解消した精度の高い外乱推定値dbを取得できる。 
 このように本実施例によれば、少なくとも湾曲駆動する場合には、減速機を構成するギア間を動摩擦状態で駆動するようにしているので、静摩擦の影響を受けることを解消でき、実施例1の効果の他に、より精度の高い負荷値の算出が可能となる。その他、実施例1と同様の効果を有する。
 (実施例3)
 次に図14から図17を参照して本発明の実施例3を説明する。図14は、実施例3に係るモータユニットの構成を示し、図15は実施例における負荷算出部の構成を示し、図16は静状態における噛合位置に対して観測されるオブザーバ出力値の特性例と、オブザーバ出力値の山と谷の値の平均値との関係を示し、図17は実施例3の動作説明図を示す。 
 図14に示すように本実施例に係るモータユニット21Cは、実施例1において、実施例2のように振動信号の発生手段としてのディザー信号発生部36cを有する。本実施例においては、以下に説明するように振幅が調整されたディザー信号Sdとして出力するようにFPGAブロック36は、その調整部(或いは設定部)36dを備えている。また、本実施例は、モータ23に指令値uを印加しない駆動停止或いは静状態の期間において、外乱推定値を精度良く算出するものである。 
 図15は、本実施例における負荷算出部72Cの構成を示す。 
 また、本実施例においては、実施例1で説明した補正部71の出力から、その移動平均を算出する移動平均フィルタ81を設け、この移動平均フィルタ81から出力される平均推定値を外乱推定値dcとする負荷算出部72Cを形成している。
 なお、本実施例は、図15の点線で示すように、減算ブロック59の出力を、補正部71を通さないで移動平均フィルタ81に入力する構成の場合にも適用することができる。その他は、実施例1と同様の構成である。次に本実施例の動作を説明する。 
 上述した図10(A)において、外乱オブザーバによる負荷値を算出する場合には、観測されるオブザーバ出力値は、ギアのがたつきや噛合位置のために、周期性を有するが、その値が乱高下することを説明した。 
 これに対して、その静状態でトルク加重した際の観測されるオブザーバ出力値の山と谷の平均を行うと、その値は図16に示すようにその乱高下する場合における実際の時間的な平均値と概ね比例関係となる。
 従って、本実施例においては、指令が出されていない(つまりモータ23が駆動されていない)静状態において、ディザー信号Sd′を、図17に示すようにオブザーバ出力値がその山と谷間を行ったり来たりするように印加(但し、負荷側を動かさない程度の振幅に維持して静状態を維持)して、その場合の時間的な平均値を算出して外乱推定値を算出する。 
 図15中に示すディザー信号Sd′は、ドットで示す山と谷を往復させる如くにモータ23に(指令値uが出力されていない期間)印加されることを示している。 
 このように、指令値uが出されていない停止した状態において、ディザー信号Sd′を、負荷(内視鏡駆動部)が動かさない程度で、その振幅を変化させるようにモータ23に印加し、その時のオブザーバ出力値に対して移動平均フィルタ81によりその出力値の時間平均化を行う。
 図17は移動平均フィルタ81の処理内容とその動作説明図を示す。
 図17の左側に示すように、モータ23にはディザー信号Sd′が、オブザーバ出力値の山と谷を往復させる周期で印加される。その場合に、補正部71から出力される外乱推定値(オブザーバ出力値)は、図17の右側に示す移動平均フィルタ81に入力される。この移動平均フィルタ81は、吹き出しの枠内に示すように(補正部71から出力される)外乱推定値dbを入力信号として、所定のサンプル期間ずつずらして、複数n個サンプリングした各値を加算器Σにより加算(積算)し、その加算した値をサンプル数となる複数nで除算して平均推定値を移動平均フィルタ81の出力値を外乱推定値dcとして出力する。 
 なお、図17中における1/zは、入力信号を1サンプル時間、遅らせる記号を示す。そして、複数n個のサンプル期間による平均推定値を1サンプル期間毎に時間的に移動して出力する。
 この場合、1サンプル期間の間隔と、複数nとの積が山と谷の周期に略一致するように設定されている。 
 このようにすることにより、指令値uが出力されていない静状態においても、その場合の負荷値を精度良く算出することができる。 
 なお、オブザーバ出力値の周期で平均値を算出する場合に限定されるものでなく、適宜の時間で平均化しても良い。 
 また、実施例2と実施例3とを組み合わせるような構成にしても良い。例えば、指令値uが出力されていない静状態においては、実施例3のように湾曲部9を湾曲駆動制御し、指令値uが出力される期間においては実施例2のように湾曲駆動制御を切り替えるようにしても良い。 
 次に本実施例の変形例を説明する。図18は変形例における負荷算出部72Dのブロック図を示す。
 本変形例は、図15の構成において、移動平均フィルタ81における途中のデータ(例えば加算器)から山と谷の周期におけるその周期における位相位置の推定を行う位置推定回路85と、この位置推定回路85の出力によりディザー信号の振幅を制御する振幅制御回路86とを設けている。 
 そして、この振幅制御回路86からの振幅指令信号を振幅可変ディザー信号発生回路87に印加し、山と谷の極値付近におけるディザー信号の振幅を(極値以外の期間よりも)小さく様に制御する。 
 本変形例においては、このように、振幅可変ディザー信号発生回路87は、振幅指令信号により、そのディザー信号の振幅が可変制御される。
 なお、負荷算出部72C内に振幅可変ディザー信号発生回路87を設けるようにしても良い。その他の構成は、実施例3と同様である。 
 図19は本変形例による振幅制御回路86からの振幅指令信号の例を示す。図19に示すように振幅指令信号は、(位置推定回路85による推定された位置信号により)オブザーバ出力値が極値となる位相位置付近でその振幅が最小となり、それらの間では最大に近い振幅となる略パルス状の波形となっている。したがって、例えば、略パルス波形を検出しながら、略パルス波形の任意の半サイクル分を駆動する様に設定する事で必要最低限のディザー信号振幅を印加する事ができる。
 このような振幅指令信号により、ディザー信号の振幅を可変制御することにより、極値付近での駆動を抑制する。
 また、2つの極値を経過した1周期後には、駆動方向を反対方向に変更するため、このように極値付近での駆動を最小値に抑制すると、駆動方向の変更を円滑に行うことが可能になると共に、ギアを駆動した場合に発生する音を低減することもできる。その他、実施例1と同様の効果を有する。 
(実施例4)
 次に図20及び図21を参照して本発明の実施例4を説明する。図20は本発明の実施例4におけるモータ駆動系の概略の構成を示し、図21は、ギア外乱オブザーバを含むモータ駆動系の構成を示す。 
 上述したようにモータ23には減速機としての例えば遊星ギア減速機構44が連結して使用される。このような遊星ギア減速機構44を構成する複数のギア間には摩擦、ロストモーション量(不感帯)等が伴う。そして、上述した実施例においては、摩擦等の影響が入ったモータモデルブロックA(例えば図4参照)を採用し、そのモータモデルブロックAに対応するソフトウェアによる(モータ)物理モデルブロック56を用い、さらにギアによる噛合位置に関連する周期的な補正情報で、補正する等して外乱推定値を算出する構成にしていた。
 外乱負荷dとしての内視鏡側からの反作用はギアを介してモータ側に印加されるが、上述した実施例においてはその反作用をモータ側で計測していたので、その補正を行う等してギアによる影響を低減していた。
 これに対して、本実施例は、モータと共に減速機、又はこの減速機を構成するギア部のモデルを用いると共に、外乱負荷dがギア部に印加されるように、その実体をより忠実に反映したモデルを用いる。そして、上述した実施例におけるギアの噛合位置に関連する周期的な補正情報を用いることなく、精度の高い外乱推定値を算出することができる構成にする。
 このため、本実施例は、モータモデルブロックと、これに連結された遊星ギア減速機構44等のギア部を摩擦、ロストモーション量(不感帯)等の影響を含むようにモデル化したギアモデルブロックを形成すると共に、外乱負荷dもギアモデルブロック側に印加されるように(実体をより忠実に反映する構成に)する。
 そして、ギアモデルブロックに対応するギア物理モデル(具体的には負荷算出部としてのギア外乱オブザーバ)を形成して、このギア物理モデルにより、摩擦等の影響を低減して外乱負荷dを精度良く、推定する構成にしている。
 本実施例に係る内視鏡システムの構成及びモータユニットは、基本的には図1及び図2の構成と同じである。但し、図2におけるモータユニット駆動系の構成を図20にその概略を示すように(モータ部91を含む)モータ駆動部92と、ギア部93′とからなる構成としている。
 図8に示すようにモータ23にギアが連結されたギアモデルに対する以下の(1)、(2)の運動方程式であらわされることができる。
 Jm・(d2θm/dt2)+r・D・{(r・(dθm/dt)-(dθL/dt)}+r・K・(rθm-θL)=τ    (1)
 JL・(d2θL/dt2)+FL・(dθL/dt)+r・D・{r・(dθm/dt)-(dθL/dt)}+K・(rθm-θL)=0 (2)
 なお、(1)、(2)におけるθm、θLは、それぞれモータ軸、ギア軸の角度を表す。Jm、JL は、それぞれモータイナーシャ(慣性モーメント)、負荷を考慮したギアイナーシャを表す。また、r、D、K、τ、Fは、それぞれギア比、粘性定数、弾性定数、モータ駆動トルク、ギア静摩擦定数となる。
上記(1)、(2)の運動方程式をもとに、実際のモータ駆動部92及びギア部93’をブロック線図で表したものが図20となる。
 そして、図20のモータ駆動部92とギア部93′に対して、ギア外乱(推定)オブザーバ95を追加することにより、図21に示すように外乱推定値を算出可能な構成にしている。また、この場合、ギア部93′におけるポテンショメータ42(図2参照)により検出されるギア47の位置情報を利用することにより、高精度で外乱推定値を算出可能にしている。
 なお、図20におけるモータ駆動部92は、モータ部91と、このモータ部91を駆動制御するモータ駆動ユニット部94とからなる。
 このモータ駆動ユニット部94は、図4に示したシグナルフロー図の構成要素ブロック(つまり、位置制御ブロック51、速度制御ブロック52,微分要素53,電流制御ブロック54)と、基本的には同じ構成である。
 また、モータ部91も、基本的には図4に示したモータモデルブロックAと同じである。図4においては、位置情報を出力する積分演算子(1/s)を含めない構成でモータモデルブロックAを定義していたのに対して、本実施例においては位置情報を利用する構成から、この積分演算子を含めてモータ部91と定義している。
 また、図4においては、モータ部91内に外乱負荷dが入力されるような単純化したモデル構成であったのに対して、本実施例においては外乱負荷dが(ギアモデルブロックとしての)ギア部93′側に入力されるように、より現実に近いモデル構成にしている。
 このため、トルク定数Ktを通した加え合わせ点(加算点)への信号入力が図4と図20においては異なっている。
 図20におけるこの加算点a2には、ギア部93′のギア位置情報に対するギア剛性(Gear stiffness)、ギア比(Gear Ratio)の反作用を考慮した信号値が加算され、さらに(ギア部93′の)ギア軸にかかる外乱負荷dが加えられる加算点a4で加算された信号値が減算される。
 なお、上述した実施例3までは、主にモータのイナーシャ(慣性モーメント)を考慮していたので、モータイナーシャをJで表していたが、本実施例以降ではギアイナーシャも考慮するため、モータイナーシャをJmで、ギアイナーシャをJgで表している。
 図20においては、ギア部93′として、実際のギアモデル部分と、FPGAブロック36によるソフトウェアで演算される部分(具体的には上述した反作用の部分)を含めた構成で示している。
 これに対して、ギア外乱オブザーバ95を追加した図21のモータ駆動系のより詳細な構成においては、実際のギアモデル部分を符号93で示し、FPGAブロック36によりソフトウェアによる演算で処理される部分を符号96(36)で示している。
 つまり、FPGAブロック36は、図20で示したモータ駆動ユニット部94と、ギア反作用の部分と、ギア外乱オブザーバ95とを含む構成となる。
 図20及び図21において、モータ部91のモータ位置情報は、加算点a1にフィードバックされ、指令値から減算されて位置制御ブロック51の演算要素に入力される。
 また、図21に示す構成においては、この加算点a1に、さらにギア部93のギア位置情報が入力され、指令値から減算された偏差値でモータ駆動の制御を行う構成にしている。
 つまり、本実施例においては、ギア47の位置情報を検出するポテンショメータ42(図2参照)のギア位置情報を用いた誤差を低減できるモータ駆動系の構成にして、この構成により外乱推定値を算出する。このようにポテンショメータ42によるギア位置情報を利用するため、負荷算出部としてのギア外乱オブザーバ95自体の構成を単純化したものを採用した場合でも、精度良くギア外乱推定値の算出を可能にする。
 また、モータ部91のモータ位置情報は、ギア比の演算要素を経て加算点a3において、ギア47の位置情報が減算される。そして、バックラッシュ、ガタ等の不感帯(DZ)、ギア剛性の演算要素を経て加算点a4において外乱負荷dが加算されると共に、速度情報に静的及び動的摩擦の演算された信号値が減算される。
 この加算点a4で加算された信号値は、上述ように加算点a2にフィードバックされて減算されると共に、ギアイナーシャJgを用いた積分要素(1/(Jg・s))、積分要素(1/s)を経てポテンショメータ42により検出されるギア位置情報となる。
 このギア位置情報は、ギア外乱オブザーバ95の微分演算要素(du/dt)に入力される。そして、このギア外乱オブザーバ95において、図4で説明した場合と同様の演算処理(但し、モータをギアで置換)を行うことにより、外乱推定値を算出する。
 つまりギア位置情報は、微分演算要素によりギア速度情報が算出され、さらにギア部93側の(1/(Jg・s))の逆演算(Jg・s)が施された値を加算点a5に入力する。この加算点において、この入力値から、不感帯(DZ)が入った値に対して(ギア部93側と同様に)ギア剛性(Kg)を考慮したトルクを減算して外乱出力端子から、算出された外乱推定値を出力する。 
 なお、ギア外乱オブザーバ95におけるギアイナーシャJg、ギア剛性Kgは、設計値(公称値)である。
 また、算出された外乱推定値は、実施例1で説明したように通信系ブロック34を介して制御部25に伝達され、内視鏡モニタ5での表示等により告知される。
 このように本実施例においては、ポテンショメータ42により検出されたギア位置情報をモータ23への指令値にフィードバックして、その位置情報を陽に利用する構成にしているので、ギア部93でのギア間の摩擦、不感帯要素の影響を相殺ないしは低減できる。
 また、ギア部93に働く外乱トルクをギア部93において直接検知する構成にしているので、内視鏡に働くテンション量等の負荷をセンサを用いること無く、精度良く算出することができる。
 また、算出された負荷値等を表示等により、術者等の使用者に告知することができる。
(実施例5) 
 次に図22から図24を参照して本発明の実施例5を説明する。本実施例は、実施例4と同様に外乱負荷dをギア部において考慮する構成にすると共に、さらに状態推定オブザーバの概念を導入して、同様に外乱推定値を算出する。
 このため、まず状態推定オブザーバの概念を説明する。この状態推定オブザーバにおいては、実システムの入力と出力の情報から、実システムを模擬する仮想モデルを用いて、実システムの状態量を推定することにある。
 実システム、仮想モデルに対する状態方程式は、各々以下の(3)、(4)式のようになる。
 実システム:dx/dt=A・x+B・u  y=C・x+D・u  (3)
 仮想モデル:dxm/dt=A・xm+B・u ym=C・xm+D・u (4)
 ここで、A,B,C,Dは、システムのダイナミクスを決定する係数行列で、実システムと仮想モデルでは各パラメータは同一で、状態変数x,xmと出力y,ymは異なる。
 さて、実システムと仮想モデルの偏差e=xm-xとした場合、
 de/dt=dxm/dt-dx/dt
    =A・xm-A・x=A・(xm-x)=A・e (5)
 となり、Aが安定なら収束するので、実システムと仮想モデルの間にフィードバック機構を持たせることにより状態量の収束時間を制御可能である。実システムと仮想モデルの状態との誤差ができるだけ早く収束するように、出力偏差をモデルにフィードバックした場合には、下記式の通りとなる。ただし、Lはフィードバックゲインとする。
 dxm/dt=A・xm+B・u-L・(ym-y)
    =A・xm+B・u-L(C・xm+D・u-y)
    =(A-L・C)xm+B・u-L・Du+L・y (6)
となる。偏差eの時間変化は、 
 de/dt=dxm/dt-dx/dt
    =(A-L・C)xm+B・u-L・D・u+L・(C・x+D・u)-(A・x+B・u)
    =(A-L・C)(xm-x)
    =(A-L・C)e        (7)
 となる。誤差eは、A-L・Cに収束する。
 この様に、A-L・Cの値によって収束時間が決まるため、出来るだけ誤差eが収束するようにLの値を設定すれば、実時間で実システムの状態量と仮想モデルの状態量が一致する、すなわち仮想モデルの値から実システムの値を推定出来るという事になる。
 フィードバックした両システムの関係をブロック線図で示すと図22のようになる。
 さて、本実施例におけるギア部を含めた実システムと、それを模擬した仮想モデルとなるオブザーバを構築したモータ駆動系の構成を図23に示す。図23の構成は、この図23における符号97で示す部分が図20の構成全体と一致する。この図23においては、97中における符号98で示す部分が実システムに相当する。
 そして、本実施例においては、FPGAブロック36内に、この実システム98を模擬(シミュレート)する仮想モデルシステム99と、両システムを結合して状態量を推定する状態推定オブザーバ100とを設ける。
 つまり、図23においては、実システム98を除く全てがFPGA36内に構成される(なお、より厳密には、図23における実システム98における反作用部分は、実際にはFPGAブロック36により演算される)。
 図23に示すように仮想モデルシステム99は、実システム98と同じ構成要素となるようにシミュレートする。
 なお、図23において、便宜上、実システム98における加算点a1~a4を、仮想モデルシステム99においては、加算点a1′~a4′にて示す。
 また、仮想モデルシステム99においては、上述した実施例4のギア外乱オブザーバ95に相当するトルク推定オブザーバ95′が追加して形成され、トルク推定オブザーバ95′は、センサを用いることを不要として、外乱推定値を出力する。
 なお、実施例4におけるギア外乱オブザーバ95においては、実システム98における例えばギア位置情報を用いていたが、本実施例においては仮想モデルシステム99中におけるギア位置情報を用いる。ソフトウェアによる演算処理上の構成は、両者で同じである。
 図24は、図23におけるトルク推定オブザーバ95′を含む仮想モデルシステム99と、状態推定オブザーバ100部分の構成を示す。
 仮想モデルシステム99においては、実システム98における電流制御ブロック54(ゲイン)を通した信号値が加算点a6を経て加算点a2′に入力され、加算される。この場合、加算点26は、状態推定オブザーバ100の出力信号値を減算する。
 また、状態推定オブザーバ100は、3つのゲインL1,L2,L3を有し、ゲインL1には、加算点a7を介して仮想モデルシステム99のモータ位置情報から実システム98のモータ位置情報を減算した信号が入力される。また、ゲインL2、L3には仮想モデルシステム99のギア位置情報とギア速度情報とがそれぞれ入力される。
 そして、ゲインL1,L2,L3の出力信号値は、加算点a8で加算されて、仮想モデルシステム99の加算点a6に出力される。
 図24に示すように(FPGAブロック36内ではモータを駆動する)電流(指令)値と、モータ位置情報からギアの挙動をシミュレートする状態推定オブザーバ100が形成されている。また、仮想モデルシステム99に対して、ギア外乱オブザーバ95の場合と同様に外乱推定値を算出するためのトルク推定オブザーバ95′が形成されている。そして、このトルク推定オブザーバ95′により、外乱推定値を算出する。
 上記のように、状態推定オブザーバ100においてはゲインL2,L3により仮想モデルシステム99のギア位置情報及びギア速度情報をフィードバックすることにより、仮想モデルシステム99により、実システム98をシミュレートした場合、短時間で実システム98の状態に収束させることができるようにしている。
 本実施例によれば、モータ側でのトルク検知の場合よりも、実際に外力が作用するギア部側に近い部分でギアの外乱推定値を算出するため、センサを用いること無く、精度の高い外乱推定値を得ることができる。
  また、状態推定オブザーバ100において仮想モデルシステム99における複数の情報をフィードバックするループを形成する構成とすることにより、実システム96を精度良くシミュレートする場合の応答速度を向上できる。また、算出された負荷値等を表示等により、術者等の使用者に告知することができる。
 (実施例5の変形例)
 図25は、実施例5の変形例のモータユニット駆動系のグロック線図を示す。
 図23に示した実施例5における状態推定オブザーバ100においては、モータ位置情報(実システム98においてはモータ軸に取り付けられたエンコーダの情報)を用いていたが、本変形例においては、ギア位置情報(実システム98ではポテンショメータ42の位置情報)を利用する構成にしている。
 このため、図25の構成においては、仮想モデルシステム99のギア位置情報から実システム98のギア位置情報(ポテンショメータ42の出力)が加算点a7により減算された信号がゲインL1に入力される。
 また、本変形例では、ゲインL2、L3には仮想モデルシステム99におけるギア速度情報とギア位置情報がそれぞれ入力される。
 その他の構成は図23と同様である。
 本変形例によれば、ギア位置情報を用いているので、精度の高い外乱推定値を算出することができる。なお、図23の構成の場合には、ポテンショメータ42を有しない構成の場合にも広く適用でき、かつ従来例よりも精度の高い外乱推定値を算出することができる。
 また、上述した実施例等を部分的に組み合わせる等して異なる実施例等を形成しても良い。 
 なお、上述の説明では、マニピュレータとして、可動体として複数の湾曲駒を回転自在に連結した管体としての湾曲部を湾曲駆動制御する場合の例で説明したが、本発明はこれに限定されるものでなく、モータにより可動体を備えた管体を駆動する場合に広く適用することができる。
 モータの負荷に働く張力検出のセンサを必要としないで、外乱オブザーバの手法を用いることにより精度良く負荷値を推定する。

本出願は、2009年2月3日に日本国に出願された特願2009-23032号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されるものとする。

Claims (21)

  1.  駆動用指令信号に応じて回転する回転軸を備えたモータと、
     前記回転軸に連結された減速機と、
     前記モータの動作状態を検出する検出部と、
     前記モータにより前記減速機を介して駆動される可動体を有する管体と、
     前記減速機を構成する複数のギアの噛合位置の情報に関連つけた周期的特性の補正情報を予め記憶する記憶部と、
     前記モータヘ供給される前記駆動用指令信号と前記検出部の検出情報に対する演算処理を行い、更に前記補正情報を用いて前記モータに作用する負荷を推定値として算出する負荷算出部と、
     前記負荷算出部の算出結果を告知する告知部と、
     を有することを特徴とするマニピュレータ。
  2.  前記管体は、体腔内に挿入される内視鏡挿入部の先端側に、該内視鏡挿入部の長手方向に前記可動体を形成する複数の湾曲駒を回転自在に連結し、前記モータの回転によりワイヤを牽引して前駆複数の湾曲駒を湾曲する湾曲部により形成されることを特徴とする請求項1に記載のマニピュレータ。
  3.  前記負荷算出部は、前記モータヘ供給される前記駆動用指令信号と前記検出部の検出情報に対する演算処理を行い、前記モータに作用する負荷を推定する負荷推定部と、前記負荷推定部により推定された負荷推定値に対して、前記複数のギアの噛合のがたつきのために変動する前記負荷推定値を周期的特性の前記補正情報で補正して前記推定値を出力する補正部とからなることを特徴とする請求項1に記載のマニピュレータ。
  4.  前記補正部は、前記複数のギア間の噛合位置の位置情報としての噛合位置情報によって、前記記憶部に記憶された前記補正情報を読み出し、前記負荷推定値を該補正情報で補正して前記推定値を出力することを特徴とする請求項3に記載のマニピュレータ。
  5.  前記記憶部は、前記複数のギア間の噛合位置の位置情報としての噛合位置情報を記憶する噛合位置記憶部と、予め前記負荷推定値を前記噛合位置情報に関係付けて十分に補正可能とすることが調べられた情報を前記補正情報として記憶する補正情報記憶部とを有することを特徴とする請求項4に記載のマニピュレータ。
  6.  さらに、前記推定値が、前記駆動用指令信号に対応した第1の状態に属するか、該第1の状態から逸脱した外力が作用している第2の状態であるか否かを判定する判定部を有することを特徴とする請求項4に記載のマニピュレータ。
  7.  前記判定部は、前記駆動用指令信号に予め関連付けた基準の情報と、前記推定値とが許容される値以上に逸脱しているか否かを比較器により比較することを特徴とする請求項6に記載のマニピュレータ。 
  8.  前記告知部は、前記内視鏡挿入部の先端部に設けられた撮像素子により撮像された画像の映像信号に、前記負荷算出結果を表示する信号を重畳して内視鏡画像表示部に出力することを特徴とする請求項2に記載のマニピュレータ。
  9.  さらに、前記駆動用指令信号を前記モータに供給する場合には、前記減速機を構成する複数のギアの静摩擦状態を解消する振幅の振動信号成分を前記モータヘ重畳して印加する振動信号発生部を有することを特徴とする請求項1に記載のマニピュレータ。
  10.  さらに、前記駆動用指令信号を前記モータに供給する場合には、前記減速機を構成する複数のギアの静摩擦状態を解消する振幅の振動信号成分を前記モータヘ重畳して印加する振動信号発生部を有することを特徴とする請求項2に記載のマニピュレータ。
  11.  さらに、前記駆動用指令信号を前記モータに供給する場合には、前記減速機を構成する複数のギアの静摩擦状態を解消する振幅の振動信号成分を前記モータヘ重畳して印加する振動信号発生部を有することを特徴とする請求項3に記載のマニピュレータ。
  12.  前記駆動用指令信号を前記モータに供給しない期間に、前記モータに振動信号を、前記管体を可動させない程度の振幅で供給すると共に、前記負荷算出部の出力値の時間的な平均値を算出する平均値算出部を有することを特徴とする請求項1に記載のマニピュレータ。
  13.  前記駆動用指令信号を前記モータに供給しない期間に、前記モータに振動信号を、前記管体を可動させない程度の振幅で供給すると共に、前記負荷算出部の出力値の時間的な平均値を算出する平均値算出部を有することを特徴とする請求項2に記載のマニピュレータ。
  14.  前記駆動用指令信号を前記モータに供給しない期間に、前記モータに振動信号を、前記管体を可動させない程度の振幅で供給すると共に、前記負荷算出部の出力値の時間的な平均値を算出する平均値算出部を有することを特徴とする請求項3に記載のマニピュレータ。
  15.  前記負荷算出部の出力値が略極値付近で小さくなるように前記振動信号の振幅を可変制御する振幅制御部を有することを特徴とする請求項9に記載のマニピュレータ。
  16.  前記負荷算出部の出力値が略極値付近で小さくなるように前記振動信号の振幅を可変制御する振幅制御部を有することを特徴とする請求項10に記載のマニピュレータ。
  17.  前記検出部は、前記モータの動作状態として、前記モータの回転位置と回転速度とを検出して前記検出情報として出力することを特徴とする請求項1に記載のマニピュレータ。
  18.  駆動用指令信号に応じて回転する回転軸を備えたモータと、
     前記回転軸に連結された減速機と、
     前記モータ及び前記減速機の動作状態を検出する検出部と、
     前記モータにより前記減速機を介して駆動される可動体を有する管体と、
     前記モータヘ供給される前記駆動用指令信号と前記検出部の検出情報に対する演算処理を行い、前記減速機に作用する負荷を推定値として算出する負荷算出部と、
     前記負荷算出部の算出結果を告知する告知部と、
     を有することを特徴とするマニピュレータ。
  19.  前記減速機を構成する複数のギアの位置情報を検出する位置情報検出部を有し、前記駆動用指令信号から前記ギアの位置信号を減算した減算値で前記モータを駆動する構成にして、前記負荷算出部は前記負荷を推定値として算出することを特徴とする請求項16に記載のマニピュレータ。
  20.  前記モータ及び前記減速機を含む実体モデルシステムを模擬する仮想モデルシステムを設け、前記実体モデルシステム側の前記減速機に作用する負荷を、前記仮想モデルシステム側に設けた前記負荷算出部により算出することを特徴とする請求項18に記載のマニピュレータ。
  21.  前記管体は、体腔内に挿入される内視鏡挿入部の先端側に、該内視鏡挿入部の長手方向に前記可動体を形成する複数の湾曲駒を回転自在に連結し、前記モータの回転によりワイヤを牽引して前駆複数の湾曲駒を湾曲する湾曲部により形成されることを特徴とする請求項18に記載のマニピュレータ。
PCT/JP2010/050342 2009-02-03 2010-01-14 マニピュレータ WO2010090059A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010524289A JP4642938B2 (ja) 2009-02-03 2010-01-14 マニピュレータ
EP10738398.6A EP2394799B1 (en) 2009-02-03 2010-01-14 Manipulator
US12/828,709 US8214083B2 (en) 2009-02-03 2010-07-01 Manipulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023032 2009-02-03
JP2009-023032 2009-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/828,709 Continuation US8214083B2 (en) 2009-02-03 2010-07-01 Manipulator

Publications (1)

Publication Number Publication Date
WO2010090059A1 true WO2010090059A1 (ja) 2010-08-12

Family

ID=42541966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050342 WO2010090059A1 (ja) 2009-02-03 2010-01-14 マニピュレータ

Country Status (4)

Country Link
US (1) US8214083B2 (ja)
EP (1) EP2394799B1 (ja)
JP (1) JP4642938B2 (ja)
WO (1) WO2010090059A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043347A (ja) * 2010-08-23 2012-03-01 Ricoh Co Ltd 歯車設計支援方法、歯車設計支援プログラムを記録した記録媒体及び歯車設計支援装置
WO2013187011A1 (en) * 2012-06-15 2013-12-19 Canon Kabushiki Kaisha Medical manipulator and medical imaging system with the medical manipulator
WO2014123066A1 (ja) * 2013-02-05 2014-08-14 オリンパスメディカルシステムズ株式会社 電動内視鏡
WO2015125376A1 (ja) * 2014-02-19 2015-08-27 オリンパス株式会社 表示装置
WO2017122322A1 (ja) * 2016-01-14 2017-07-20 オリンパス株式会社 医療用マニピュレータシステム
WO2018229926A1 (ja) * 2017-06-15 2018-12-20 オリンパス株式会社 医療用マニピュレータ
WO2021006038A1 (ja) * 2019-07-08 2021-01-14 アズビル株式会社 トルク補償装置及びトルク補償方法
JP2021502264A (ja) * 2017-12-11 2021-01-28 バーブ サージカル インコーポレイテッドVerb Surgical Inc. ロボットアーム用のアクティブバック駆動
US11141230B2 (en) 2017-12-11 2021-10-12 Verb Surgical Inc. Active backdriving for a robotic arm

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157063B2 (ja) * 2012-05-31 2017-07-05 キヤノン株式会社 医療器具
DE102012220493A1 (de) * 2012-11-09 2014-05-15 Robert Bosch Gmbh Teilnehmerstation zum Anschluss an eine Busleitung und Verfahren zur Kompensation einer Störung aufgrund eines CAN-Bussystems in einem Empfangssignal
EP3096672B1 (en) * 2014-01-24 2022-07-20 Koninklijke Philips N.V. Sensorless force control for transesophageal echocardiography probe
WO2016009711A1 (ja) 2014-07-16 2016-01-21 オリンパス株式会社 挿入装置
JP6219868B2 (ja) * 2015-03-10 2017-10-25 ファナック株式会社 溶接ワイヤの送給性を監視する溶接ロボット
WO2016199305A1 (ja) * 2015-06-12 2016-12-15 オリンパス株式会社 可撓管挿入装置
JP6576118B2 (ja) * 2015-06-25 2019-09-18 キヤノン株式会社 駆動制御装置及びそれを有するレンズ装置、撮影システム
JP6506232B2 (ja) * 2016-10-04 2019-04-24 ファナック株式会社 モータ制御装置、モータ制御方法、及びモータ制御プログラム
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US11458641B2 (en) 2018-05-23 2022-10-04 General Electric Company Robotic arm assembly construction
KR102143070B1 (ko) * 2018-09-20 2020-08-10 연세대학교 산학협력단 내시경 수술장치
CN109445274B (zh) * 2018-10-25 2021-08-27 清华大学深圳研究生院 一种柔性空间机械臂振动控制方法及系统
US20220176558A1 (en) * 2020-12-07 2022-06-09 Sarcos Corp. Redundant Control Policies for Safe Operation of an Exoskeleton
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286759A (ja) * 1995-04-14 1996-11-01 Fanuc Ltd 静摩擦を補償するロボット駆動制御方法
JPH10243676A (ja) * 1997-02-21 1998-09-11 Matsushita Electric Ind Co Ltd 制御装置および制御方法
JP2003256004A (ja) * 2002-02-27 2003-09-10 Honda Motor Co Ltd プラントの制御装置
JP2005100145A (ja) * 2003-09-25 2005-04-14 Kobe Steel Ltd 衝突検知方法及び衝突検知装置
JP2006055927A (ja) * 2004-08-18 2006-03-02 Sharp Corp 関節駆動装置および関節駆動装置の制御方法
JP2007185355A (ja) 2006-01-13 2007-07-26 Olympus Medical Systems Corp 電動湾曲内視鏡
JP2009023032A (ja) 2007-07-18 2009-02-05 Kojima Press Co Ltd 筒部内周部切削加工用被加工物保持装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225951A (ja) * 1998-02-17 1999-08-24 Olympus Optical Co Ltd 内視鏡用処置具
US6540670B1 (en) * 1999-03-19 2003-04-01 Olympus Optical Co., Ltd. Endoscope system
US6610007B2 (en) * 2000-04-03 2003-08-26 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
JP4686049B2 (ja) 2001-04-24 2011-05-18 オリンパス株式会社 電動湾曲内視鏡の湾曲機構
JP4532188B2 (ja) * 2003-06-30 2010-08-25 カール−ツアイス−スチフツング 負荷回転モーメントを補償する手段を有する、殊に医療用光学器具のための保持装置
EP1972257B1 (en) 2006-01-13 2015-07-15 Olympus Medical Systems Corp. Electric bending endoscope
US7967813B2 (en) * 2006-06-13 2011-06-28 Intuitive Surgical Operations, Inc. Surgical instrument control and actuation
WO2008093689A1 (ja) * 2007-01-31 2008-08-07 Namiki Seimitsu Houseki Kabushiki Kaisha モータ及びそのモータを備えた内視鏡プローブ
US8945148B2 (en) * 2007-06-13 2015-02-03 Intuitive Surgical Operations, Inc. Surgical system instrument manipulator
JP5331507B2 (ja) * 2009-02-18 2013-10-30 富士フイルム株式会社 内視鏡
JP5559996B2 (ja) * 2009-07-13 2014-07-23 富士フイルム株式会社 内視鏡装置及び内視鏡システム並びに内視鏡装置の作動方法
US8668638B2 (en) * 2010-02-11 2014-03-11 Intuitive Surgical Operations, Inc. Method and system for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286759A (ja) * 1995-04-14 1996-11-01 Fanuc Ltd 静摩擦を補償するロボット駆動制御方法
JPH10243676A (ja) * 1997-02-21 1998-09-11 Matsushita Electric Ind Co Ltd 制御装置および制御方法
JP2003256004A (ja) * 2002-02-27 2003-09-10 Honda Motor Co Ltd プラントの制御装置
JP2005100145A (ja) * 2003-09-25 2005-04-14 Kobe Steel Ltd 衝突検知方法及び衝突検知装置
JP2006055927A (ja) * 2004-08-18 2006-03-02 Sharp Corp 関節駆動装置および関節駆動装置の制御方法
JP2007185355A (ja) 2006-01-13 2007-07-26 Olympus Medical Systems Corp 電動湾曲内視鏡
JP2009023032A (ja) 2007-07-18 2009-02-05 Kojima Press Co Ltd 筒部内周部切削加工用被加工物保持装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2394799A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043347A (ja) * 2010-08-23 2012-03-01 Ricoh Co Ltd 歯車設計支援方法、歯車設計支援プログラムを記録した記録媒体及び歯車設計支援装置
WO2013187011A1 (en) * 2012-06-15 2013-12-19 Canon Kabushiki Kaisha Medical manipulator and medical imaging system with the medical manipulator
US9459613B2 (en) 2013-02-05 2016-10-04 Olympus Corporation Electric endoscope
WO2014123066A1 (ja) * 2013-02-05 2014-08-14 オリンパスメディカルシステムズ株式会社 電動内視鏡
JP5702026B2 (ja) * 2013-02-05 2015-04-15 オリンパスメディカルシステムズ株式会社 電動内視鏡
JPWO2014123066A1 (ja) * 2013-02-05 2017-02-02 オリンパスメディカルシステムズ株式会社 電動内視鏡
JPWO2015125376A1 (ja) * 2014-02-19 2017-03-30 オリンパス株式会社 表示装置
JP5905171B2 (ja) * 2014-02-19 2016-04-20 オリンパス株式会社 表示装置
WO2015125376A1 (ja) * 2014-02-19 2015-08-27 オリンパス株式会社 表示装置
US10004382B2 (en) 2014-02-19 2018-06-26 Olympus Corporation Display apparatus
WO2017122322A1 (ja) * 2016-01-14 2017-07-20 オリンパス株式会社 医療用マニピュレータシステム
JPWO2017122322A1 (ja) * 2016-01-14 2018-11-29 オリンパス株式会社 医療用マニピュレータシステムおよび医療用マニピュレータシステムの作動方法
US10959787B2 (en) 2016-01-14 2021-03-30 Olympus Corporation Medical manipulator system
WO2018229926A1 (ja) * 2017-06-15 2018-12-20 オリンパス株式会社 医療用マニピュレータ
JP2021502264A (ja) * 2017-12-11 2021-01-28 バーブ サージカル インコーポレイテッドVerb Surgical Inc. ロボットアーム用のアクティブバック駆動
US11141230B2 (en) 2017-12-11 2021-10-12 Verb Surgical Inc. Active backdriving for a robotic arm
JP7047091B2 (ja) 2017-12-11 2022-04-04 バーブ サージカル インコーポレイテッド ロボットアーム用のアクティブバック駆動
US11678943B2 (en) 2017-12-11 2023-06-20 Verb Surgical Inc. Active backdriving for a robotic arm
WO2021006038A1 (ja) * 2019-07-08 2021-01-14 アズビル株式会社 トルク補償装置及びトルク補償方法

Also Published As

Publication number Publication date
US8214083B2 (en) 2012-07-03
EP2394799A4 (en) 2014-01-01
JP4642938B2 (ja) 2011-03-02
EP2394799B1 (en) 2016-08-31
JPWO2010090059A1 (ja) 2012-08-09
EP2394799A1 (en) 2011-12-14
US20110015786A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP4642938B2 (ja) マニピュレータ
US10213094B2 (en) Slack correction mechanism, manipulator, and manipulator system
US8597178B2 (en) Active drive type medical apparatus and drive control method
JP5137540B2 (ja) 内視鏡システム
JP5165162B2 (ja) 内視鏡
JP2002264048A (ja) 被牽引機構の位置決め制御装置
JP5139194B2 (ja) 能動医療機器システム
JP5500844B2 (ja) 内視鏡
EP2064984B1 (en) Therapeutic device system and manipulator system
EP2092874B1 (en) Manipulator operation system
JP4782894B2 (ja) 医療用制御装置
JP4757838B2 (ja) 被牽引機構の位置決め制御装置
JP5559996B2 (ja) 内視鏡装置及び内視鏡システム並びに内視鏡装置の作動方法
EP1972249A1 (en) Electrically bent endoscope device
US9459613B2 (en) Electric endoscope
JP2006288751A (ja) 電動湾曲内視鏡装置
JP5841366B2 (ja) 医療装置
WO2023090204A1 (ja) 制御システム、制御装置及びアクチュエータ
JP2002315719A (ja) 電動湾曲内視鏡の湾曲駆動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010524289

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738398

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010738398

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010738398

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE