WO2010087190A1 - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- WO2010087190A1 WO2010087190A1 PCT/JP2010/000521 JP2010000521W WO2010087190A1 WO 2010087190 A1 WO2010087190 A1 WO 2010087190A1 JP 2010000521 W JP2010000521 W JP 2010000521W WO 2010087190 A1 WO2010087190 A1 WO 2010087190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber layer
- tire
- tread rubber
- tread
- thickness
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0041—Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
- B60C11/005—Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0306—Patterns comprising block rows or discontinuous ribs
- B60C11/0309—Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/04—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
- B60C11/042—Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
- B60C2011/0025—Modulus or tan delta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
- B60C2011/0033—Thickness of the tread
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S152/00—Resilient tires and wheels
- Y10S152/905—Tread composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T152/00—Resilient tires and wheels
- Y10T152/10—Tires, resilient
- Y10T152/10495—Pneumatic tire or inner tube
Definitions
- the present invention relates to a pneumatic tire with improved uneven wear resistance performance of a tread.
- the rubber hardness (hardness) and hardness difference of each of the cap rubber layer and the base rubber layer are regulated, and the base rubber layer is disposed on both sides of the tire equatorial plane with a gap.
- the rubber thickness of the base rubber piece is increased from the inner side to the outer side in the tire width direction, and the increase in tread temperature is suppressed while maintaining high wear resistance.
- the base rubber layer is formed of a pair of base rubber pieces arranged on both sides of the tire equatorial plane with a discontinuity, the hard cap rubber layer is in contact with the belt.
- stress concentrates on the center portion due to wear of the shoulder portion, which may cause tread flaking.
- sufficient measures have not been taken against uneven wear of the tread.
- an object of the present invention is to provide a pneumatic tire that improves the uneven wear resistance of the tread while preventing the occurrence of tread baldness.
- the gist of the present invention is as follows. [1] In a tire having a carcass extending in a toroidal shape between a pair of bead cores and having a belt and a tread outside in the radial direction of the carcass, Forming the tread from a plurality of tread rubber layers; The dynamic elastic modulus of the outer tread rubber layer located on the outermost side in the tire radial direction is higher than the dynamic elastic modulus of the inner tread rubber layer located on the innermost side in the tire radial direction, The thickness of the inner tread rubber layer in the region including the tire equatorial plane is thinner than the thickness of the inner tread rubber layer at other positions.
- a pneumatic tire characterized by that.
- the thickness of the inner tread rubber layer at the inner end in the tire width direction is thinner than the thickness at other positions of the inner tread rubber layer,
- the tread half width is W
- the inner end in the tire width direction of the inner tread rubber layer is present at a position 0.2 W to 0.4 W away from the tire equatorial plane.
- the thickness of the inner tread rubber layer at the inner end in the tire width direction is thinner than the thickness at other positions of the inner tread rubber layer,
- the tread half width is W
- the inner end in the tire width direction of the inner tread rubber layer exists at a position 0.45 W to 0.75 W away from the tire equatorial plane.
- the flatness ratio is 55% or less
- the tire cross-sectional width is 350 mm or more
- the dynamic elastic modulus of the outer tread rubber layer is 8.0 MPa to 20 MPa
- the inner tread rubber layer has a dynamic elastic modulus of 1.0 MPa to 7.0 MPa;
- the pneumatic tire as described in any one of [1] to [6] above,
- the dynamic elastic modulus of the outer tread rubber layer is 1.5 times to 3.5 times the dynamic elastic modulus of the inner tread rubber layer at a temperature of 25 ° C., a frequency of 52 Hz, and a strain of 2%.
- the pneumatic tire according to any one of [1] to [7] above, wherein
- FIG. 1 is a cross-sectional view in the width direction of a tread half portion of a pneumatic tire according to a first embodiment of the present invention.
- the tire according to the present invention has a carcass 2 extending in a toroidal shape between a pair of bead cores as a skeleton, and includes a belt 4 and a tread 6 each including three belt layers in the illustrated example on the outer side in the radial direction of the carcass 2.
- the three belt layers 4a, 4b, and 4c are inclined belt layers that are arranged in order from the inner side in the tire radial direction. Many are covered with rubber.
- the tread 6 includes a plurality of tread rubber layers, in the illustrated example, a cap rubber layer 6C that is an outer tread rubber layer positioned on the outermost side in the tire radial direction, and a base rubber layer that is an inner tread rubber layer positioned on the innermost side in the tire radial direction.
- This is a so-called cap / base structure formed from two layers with 6B.
- the cap rubber layer 6C and the base rubber layer 6B are continuously arranged in the tire width direction.
- the tread 6 is formed of three or more tread rubber layers, the dynamic elastic modulus between the outermost tread rubber layer in the tire radial direction and the inner tread rubber layer in the innermost tire radial direction is defined, and the inner tread rubber is defined. Define the thickness of the layer.
- the case where the tread 6 is formed with two tread rubber layers will be described. Is not limited to this.
- the dynamic elastic modulus of the cap rubber layer 6C is higher than the dynamic elastic modulus of the base rubber layer 6B, and the thickness of the base rubber layer 6B in the region including the tire equatorial plane CL is other than that of the base rubber layer 6B. It is important that it is thinner than the thickness at the location. The reason for this will be described below.
- the “region including the tire equatorial plane CL (hereinafter referred to as the tread center portion)” refers to a region within W / 3 in the tire width direction centering on the tire equatorial plane CL (W: tire half-width).
- the “thickness at the tread center portion of the base rubber layer 6B” means the average thickness of the region of the base rubber layer 6B. In the second and third embodiments to be described later, when the base rubber layer 6B is disposed in the tread center portion, the “thickness of the base rubber layer 6B in the tread center portion” is the disposition. Means an average thickness in a certain range.
- a highly durable rubber is disposed on the road surface side of the tread 6 and a low heat generating rubber is disposed on the belt 4 side.
- the ground contact pressure of the tire is highest in the contact center portion, that is, the tread center portion, and decreases as it approaches the shoulder.
- the uneven contact pressure is uneven in the tread 6. Wear was occurring.
- the present invention increases the dynamic elastic modulus of the high durability rubber disposed on the outer side in the tire radial direction, reduces the dynamic elastic modulus of the low heat generating rubber disposed on the inner side in the tire radial direction, and sets the ratio of the low heat generating rubber to the tread.
- the thickness of the base rubber layer 6B gradually increases from the tire equatorial plane CL toward the tread ground contact E, and the boundary surface between the cap rubber layer 6C and the base rubber layer 6B is a groove disposed on the tread. It is preferable to incline radially outward as it goes from the inner side in the tire width direction to the outer side except for the groove width range.
- the thickness of the base rubber layer 6 ⁇ / b> B is maximized in the vicinity of the tread ground contact edge E, and may be decreased in a region outside the tread ground contact edge E in the tire width direction.
- “in the vicinity of the tread ground end E” means a range of ⁇ 3.0 cm centering on the normal line of the carcass 2 passing through the tread ground end E.
- the tread ground contact E is calculated under the maximum load and maximum air pressure (described in JATMA, TRA, and ETRTO) by assembling the tire on a regular rim.
- the dynamic elastic modulus of the cap rubber layer 6C is 8.0 MPa to 20.0 MPa
- the dynamic elastic modulus of the base rubber layer 6B is 1.0 MPa to The pressure is preferably 7.0 MPa.
- the dynamic elastic modulus of the cap rubber layer 6C is less than 8.0 MPa, the effect of reducing the wear of the tread 6 may not be sufficient.
- the dynamic elastic modulus of the cap rubber layer 6C exceeds 20.0 MPa The grip performance may not be sufficient.
- the dynamic elastic modulus of the base rubber layer 6B is less than 1.0 MPa, the steering stability performance may be deteriorated.
- the dynamic elastic modulus of the base rubber layer 6B is more than 7.0 MPa, the base rubber layer 6B There is a possibility that the dynamic elastic modulus is not sufficient and the contribution to the tread baldness performance is not sufficient.
- the dynamic elastic modulus (MPa) was measured with a spectrometer at a temperature of 25 ° C., a frequency of 52 Hz, and a strain of 2%.
- the thickness d1 of the base rubber layer 6B at the tire equatorial plane CL and the thickness d2 of the base rubber layer 6B at the position W / 3 from the tire equatorial plane CL The thickness d3 of the base rubber layer 6B at a position 2W / 3 from the tire equatorial plane CL, and the length d4 of the line segment passing through the tread grounding edge E and the normal line of the carcass 2 crossing the base rubber layer 6B. It is preferable that the following expressions (1) to (4) are satisfied.
- the thicknesses d1, d2, and d3 of the base rubber layer 6B are measured in the direction orthogonal to the tire rotation axis.
- the dynamic elastic modulus of the cap rubber layer 6C is preferably 1.5 to 3.5 times the dynamic elastic modulus of the base rubber layer 6B at a temperature of 25 ° C., a frequency of 52 Hz, and a strain of 2%. is there. This is because when the ratio of the dynamic elastic modulus is less than 1.5, the difference in the dynamic elastic modulus of the rubber is not sufficient, and the change in the dynamic elastic modulus in the cap base total may be insufficient. On the other hand, when the ratio of dynamic elastic moduli is more than 3.5, there is a risk that difficulty in production may occur.
- the base rubber layer 6B is not continuous in the tire width direction and is broken at the tire equatorial plane CL.
- the thickness of the base rubber layer 6B at the inner end portion in the tire width direction is thinner than the thickness at other positions of the base rubber layer 6B, and the inner end 6BE in the tire width direction of the base rubber layer 6B is 0. 0 from the tire equatorial plane CL. It exists at a position 2W to 0.4W away.
- the “end in the tire width direction of the base rubber layer 6B” refers to a region from the inner end 6BE in the tire width direction of the base rubber layer 6B to a position 0.1 W away from the outer side in the tire width direction.
- the “thickness at the inner end portion in the tire width direction of the layer 6B” means the average thickness of the region of the base rubber layer 6B.
- the tread shoulder portion refers to a region between the tread ground contact E and the first circumferential groove from the tread ground contact E toward the inside in the tire width direction.
- the inner end 6BE in the tire width direction of the base rubber layer 6B is present at a position away from the tire equatorial plane CL by less than 0.2 W, the tire productivity is reduced, but the effect of suppressing uneven wear of the tread shoulder portion is reduced. Is not enough.
- the tire width direction inner end 6BE is present at a position more than 0.4 away from the tire equatorial plane CL, the dynamic elastic modulus of the tread shoulder portion and the intermediate block portion becomes excessive, and uneven wear occurs in the intermediate block portion. May occur.
- the inner end 6BE in the tire width direction of the base rubber layer 6B is more preferably present at a position separated from the tire equatorial plane CL by more than 0.3 W and less than 0.4 W.
- FIG. 3 is a cross-sectional view in the width direction of a half portion of the pneumatic tire according to the third embodiment of the present invention.
- a tire having a flatness ratio of 55% or less and a tire cross-sectional width of 350 mm or more is assumed.
- the base rubber layer 6B is not continuous in the tire width direction and is interrupted on the tire equatorial plane CL.
- the inner end 6BE in the tire width direction of the base rubber layer 6B exists at a position separated from the tire equatorial plane CL by 0.45 W to 0.75 W.
- the thickness of the base rubber layer 6B gradually increases from the tire width direction inner end 6BE toward the tread ground contact end E.
- the effect that the base rubber layer 6B is interrupted at the tire equatorial plane CL and the reason for limiting the position of the inner end 6BE in the tire width direction of the base rubber layer 6B are the same as those of the second embodiment described above.
- the pneumatic tire of the present invention, the pneumatic tire of the conventional example, and the pneumatic tire of the comparative example were prototyped according to the specifications described later, and the uneven wear resistance performance, wear performance, and heat generation performance of the tread were measured.
- the tread is formed from one tread rubber layer.
- Inventive tires 1 to 17 and comparative tires both have a cap rubber layer 6C and a base rubber layer 6B continuous in the tire width direction.
- inventive tires 1 to 17 as shown in FIG. While the thickness of the rubber layer 6B is thin on the tire equatorial plane CL and thick on the shoulder side, the comparative example tire is provided with a base rubber layer 6B having a uniform thickness as shown in FIG.
- the base tire rubber layer 6 ⁇ / b> B is not disposed on the tire equatorial plane CL.
- the inner end 6BE in the tire width direction of the base rubber layer 6B exists at a position 1/3 W away from the tire equatorial plane CL. As shown in FIG.
- the base tire rubber layer 6 ⁇ / b> B is not disposed on the tire equatorial plane CL in the example tire 19. Further, the inner end 6BE in the tire width direction of the base rubber layer 6B is present at a position 0.6 W away from the tire equatorial plane CL.
- Table 1 shows the thicknesses d1 to d4 of the base rubber layer 6B of each test tire and the dynamic elastic modulus of each rubber layer.
- the measurement result of the wear amount difference is shown in FIG.
- the “regular internal pressure” refers to the air pressure corresponding to the maximum load capacity in the applicable size / ply rating, which is defined in JATMA YEAR BOOK issued in 2007 by the Japan Automobile Tire Association.
- the time degradation of the fracture energy increases as the rubber temperature increases.
- the above phenomenon due to temperature can be indirectly regarded as a creeping phenomenon (sagging) of rubber.
- the diameter growth amount after traveling a certain distance can be a substitute index for internal separation. Therefore, the heat generation performance can be evaluated by measuring the travel distance when the tire diameter is increased by 5% or more due to internal separation.
- the tread is composed of a plurality of tread rubber layers, and the dynamic elastic modulus of each tread rubber layer is defined to improve the uneven wear resistance, wear performance and heat generation performance of the tread. It became possible to provide.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
[1]1対のビードコア間でトロイド状に延びるカーカスを骨格とし、このカーカスの径方向外側に、ベルトおよびトレッドを具えるタイヤにおいて、
前記トレッドを複数のトレッドゴム層から形成し、
タイヤ径方向最外側に位置する外側トレッドゴム層の動的弾性率が、タイヤ径方向最内側に位置する内側トレッドゴム層の動的弾性率より高く、
前記内側トレッドゴム層のタイヤ赤道面を含む領域における厚さが、前記内側トレッドゴム層のその他の位置における厚さよりも薄い、
ことを特徴とする空気入りタイヤ。
トレッド半幅をWとしたとき、前記内側トレッドゴム層のタイヤ幅方向内側端は、タイヤ赤道面から0.2W~0.4W離れた位置に存在している、
ことを特徴とする上記[1]または[2]に記載の空気入りタイヤ。
トレッド半幅をWとしたとき、前記内側トレッドゴム層のタイヤ幅方向内側端は、タイヤ赤道面から0.45W~0.75W離れた位置に存在し、
偏平率が55%以下であり、
タイヤ断面幅が350mm以上である、
ことを特徴とする上記[2]に記載の空気入りタイヤ。
トレッド半幅をWとしたとき、タイヤ赤道面からW/3の位置における前記内側トレッドゴム層の厚さd2と、
タイヤ赤道面から2W/3の位置における前記内側トレッドゴム層の厚さd3と、
トレッド接地端を通る、前記カーカスの法線が前記内側トレッドゴム層を横切る線分の長さd4とが、下記(1)~(4)式を満足することを特徴とする上記[1]~[5]のいずれかに記載の空気入りタイヤ。
記
0≦d1≦0.4×d4 (1)
0≦d2≦0.4×d4 (2)
0.5×d4≦d3≦1.1×d4 (3)
3mm≦d4≦12mm (4)
前記内側トレッドゴム層の動的弾性率が1.0MPa~7.0MPaである、
ことを特徴とする上記[1]~[6]のいずれかに記載の空気入りタイヤ。
図1に本発明の第1実施例に係る空気入りタイヤのトレッド半部の幅方向断面図を示す。本発明のタイヤは、1対のビードコア間でトロイド状に延びるカーカス2を骨格とし、このカーカス2の径方向外側に、図示例では3層のベルト層からなるベルト4およびトレッド6を具える。この3層のベルト層4a、4b、4cは、タイヤ径方向内側から順に配置されている傾斜ベルト層であり、タイヤ赤道面CLに対して斜めに、かつ層間で互いに交差する向きに延びるコードの多数本をゴムで被覆したものである。
トレッド6を3層以上のトレッドゴム層で形成する場合、タイヤ径方向最外側の外側トレッドゴム層と、タイヤ径方向最内側の内側トレッドゴム層との動的弾性率を規定し、内側トレッドゴム層の厚さを規定する。なお、図1に示すように、トレッド6を2層のトレッドゴム層で形成することが好適であり、以下では、トレッド6を2層のトレッドゴム層で形成する場合について説明するが、本発明はこれに限定されない。
なお、「タイヤ赤道面CLを含む領域(以下、トレッドセンター部という)」とは、タイヤ赤道面CLを中心として、タイヤ幅方向にW/3以内の領域をいい(W:タイヤ半幅)、「ベースゴム層6Bのトレッドセンター部における厚さ」とは、ベースゴム層6Bの当該領域の平均厚さを意味するものとする。なお、後述する第2実施例および第3実施例において、トレッドセンター部にベースゴム層6Bが配置されている場合は、「ベースゴム層6Bのトレッドセンター部における厚さ」とは、その配置された範囲の平均厚さを意味する。
本発明は、タイヤ径方向外側に配置した高耐久ゴムの動的弾性率を増し、タイヤ径方向内側に配置した低発熱ゴムの動的弾性率を小さくした上で、低発熱ゴムの比率をトレッドセンター部からショルダーに近付くにつれて徐々に大きくすることによって、トレッド6の動的弾性率に幅方向分布が生じ、トレッド5の歪均一化に成功した。
さらに、トレッドショルダー部に軟らかく、かつ低発熱のゴムを配置することで、摩耗が進展しても接地圧は均一に保たれるのでベルト耐久性も向上する。
なお、図1に示すように、ベースゴム層6Bの厚さは、トレッド接地端E付近において最大となり、トレッド接地端E付近よりタイヤ幅方向外側の領域で減少しても良い。
なお、ここでいう、「トレッド接地端E付近」とは、トレッド接地端Eを通る、カーカス2の法線を中心に±3.0cmの範囲をいう。また、トレッド接地端Eは、タイヤを正規リムにリム組みし、最大荷重、最大空気圧下(JATMA、TRA、ETRTOに記載)において算出する。
キャップゴム層6Cの動的弾性率が8.0MPa未満の場合、トレッド6の摩耗を低減する効果が十分でないおそれがあり、一方、キャップゴム層6Cの動的弾性率が20.0MPa超の場合、グリップ性能が十分でないおそれがある。
ベースゴム層6Bの動的弾性率が1.0MPa未満の場合、操縦安定性能が悪化するおそれがあり、一方、ベースゴム層6Bの動的弾性率が7.0MPa超の場合、ベースゴム層6Bの動的弾性率が十分ではなく、トレッドもげ性能に対する寄与が十分でないおそれがある。
なお、動的弾性率(MPa)は、スペクトロメータで温度25℃、周波数52Hz、歪2%にて測定した。
なお、ベースゴム層6Bの各厚さd1、d2、d3は、タイヤ回転軸の直交方向に測定する。
記
0≦d1≦0.4×d4 (1)
0≦d2≦0.4×d4 (2)
0.5×d4≦d3≦1.1×d4 (3)
3mm≦d4≦12mm (4)
d1>0.4×d4、d2>0.4×d4、d3>1.1×d4の場合、均一摩耗効果が十分ではなく、d4>12mmの場合、摩耗後期にベースゴム層6Bが露出し、偏摩耗が発生するおそれがある。
d3<0.5×d4あるいはd4<3mmの場合、トレッドの発熱が大きく、ベルト耐久性やトレッドもげに対する耐久性が低いおそれがある。
なぜなら、動的弾性率の比が1.5未満の場合、ゴムの動的弾性率の差が十分ではなく、キャップベーストータルでの動的弾性率変化が不足するおそれがある。
一方、動的弾性率の比が3.5超の場合、製造面に困難が生ずるおそれがある。
上述した第1実施例と異なるのは、ベースゴム層6Bがタイヤ幅方向に連続せず、タイヤ赤道面CLにおいて途切れている点である。ベースゴム層6Bのタイヤ幅方向内側端部における厚さは、ベースゴム層6Bのその他の位置における厚さよりも薄く、ベースゴム層6Bのタイヤ幅方向内側端6BEは、タイヤ赤道面CLから0.2W~0.4W離れた位置に存在している。
なお、「ベースゴム層6Bのタイヤ幅方向端部」とは、ベースゴム層6Bのタイヤ幅方向内側端部6BEからタイヤ幅方向外側に0.1W離れた位置までの領域をいい、「ベースゴム層6Bのタイヤ幅方向内側端部における厚さ」とは、ベースゴム層6Bの当該領域の平均厚さを意味するものとする。
このように、ベースゴム層6Bをタイヤ赤道面CLに配置しないことによって、キャップゴム層6Cおよびベースゴム層6Bをを合わせたトレッド6全体として、トレッドセンター部とトレッドショルダー部における動的弾性率の差が大きくなり、トレッドショルダー部の偏摩耗を大幅に抑制することができる。このように、トレッドショルダー部の偏摩耗を大幅に抑制したため、トレッドの摩耗が進行した際でもトレッドもげのおそれはなくなる。
なお、トレッドショルダー部とは、トレッド接地端Eと、トレッド接地端Eからタイヤ幅方向内側に向かって1つ目の周方向溝との間の領域を指すものとする。
また、ベースゴム層6Bのタイヤ幅方向内側端6BEは、タイヤ赤道面CLから0.3W超0.4W未満離れた位置に存在していることがより好ましい。
ベースゴム層6Bがタイヤ赤道面CLにおいて途切れている効果および、ベースゴム層6Bのタイヤ幅方向内側端6BEの位置の限定理由は、上述した第2実施例のそれと同様である。
発明例タイヤ1~17および比較例タイヤは、ともに、キャップゴム層6Cとタイヤ幅方向に連続したベースゴム層6Bとを有するが、発明例タイヤ1~17では、図1に示すように、ベースゴム層6Bの厚さをタイヤ赤道面CLで薄く、ショルダー側で厚くしているのに対し、比較例タイヤでは、図4に示すように、均一厚のベースゴム層6Bを設けている。
発明例タイヤ18は、図2に示すように、タイヤ赤道面CLにベースゴム層6Bは配置されていない。また、ベースゴム層6Bのタイヤ幅方向内側端6BEは、タイヤ赤道面CLから1/3W離れた位置に存在している。
発明例タイヤ19は、図3に示すように、タイヤ赤道面CLにベースゴム層6Bは配置されていない。また、ベースゴム層6Bのタイヤ幅方向内側端6BEは、タイヤ赤道面CLから0.6W離れた位置に存在している。
表1に各供試タイヤのベースゴム層6Bの厚さd1~d4と、各ゴム層の動的弾性率を示す。
各供試タイヤ(発明例タイヤ1~18および比較例タイヤ:タイヤサイズ275/80R22.5、発明例タイヤ19:タイヤサイズ445/50R22.5)を7.50Jのリムに組み付けてタイヤ車輪とし、正規内圧を与えた後、ドラム試験機に装着し、試験速度を70km/hとして連続走行をさせ、トレッドの摩耗量を測定した。結果は、表1に、従来例タイヤの耐摩耗性能を100として指数で示す。数値が大きいほど耐摩耗性能が良化していることを示す。
また、従来例タイヤ、比較例タイヤおよび発明例タイヤ1に関しては、センターリブとショルダーリブとの摩耗量差を測定した。摩耗量差の測定結果を図5に示す。
なお、「正規内圧」とは、社団法人日本自動車タイヤ協会が2007年度に発行したJATMA YEAR BOOKにおいて定められた、適用サイズ・プライレーティングにおける最大負荷能力に対応する空気圧を指す。
各供試タイヤ(発明例タイヤ1~18および比較例タイヤ:タイヤサイズ275/80R22.5、発明例タイヤ19:タイヤサイズ445/50R22.5)を7.50Jのリムに組み付けてタイヤ車輪とし、正規内圧を与えた後、一定速度(65km/h)・ステップロード条件のドラム試験を実施し、内部セパレーションに起因してタイヤ径が5%以上増加したときの走行距離を測定した。結果は、表1に、従来例タイヤの発熱性能を100として指数で示す。数値が大きいほど発熱性能が良化していることを示す。
なお、ゴムの破壊エネルギーは、ゴムの温度が高いと大幅に低下する。また、破壊エネルギーの計時劣化は、ゴムの温度が高いと大きくなる。温度による上記現象は、間接的にゴムのクリープ現象(へたり)としてとらえることができる。タイヤの場合、ゴムのクリープは径成長に表れるので、一定距離走行後の径成長量は、内部セパレーションの代用指標となりうる。よって、内部セパレーションに起因してタイヤ径が5%以上増加したときの走行距離を測定することにより、発熱性能を評価することができる。
図5より、従来例タイヤでは、走行距離が4万kmのとき、摩耗量差が3.0mmとなり、計測を終了した。比較例タイヤでは、走行距離が4.8万kmのとき、摩耗量差が2.5mmとなり、計測を終了した。発明例タイヤ1では、走行距離が6.0万kmのとき、摩耗量差が0.5mm以下であった。
このように、発明例タイヤ1では、従来例タイヤおよび比較例タイヤに比べてトレッドゴムの動的弾性率がショルダーに近いほど低いので、耐偏摩耗性能が大きく改善されていることが分かった。
表1より、発明例タイヤおよび比較例タイヤでは、従来例タイヤに比べて路面側のトレッドゴムの動的弾性率が高いので耐摩耗性能が改善されていることが分かった。
さらに、発明例タイヤは、ベースゴム層の厚さを規定することにより、従来例タイヤに比べて低発熱性能を達成していることが分かった。
4 ベルト
4a、4b、4c 傾斜ベルト層
6 トレッド
6C キャップゴム層
6B ベースゴム層
Claims (8)
- 1対のビードコア間でトロイド状に延びるカーカスを骨格とし、このカーカスの径方向外側に、ベルトおよびトレッドを具えるタイヤにおいて、
前記トレッドを複数のトレッドゴム層から形成し、
タイヤ径方向最外側に位置する外側トレッドゴム層の動的弾性率が、タイヤ径方向最内側に位置する内側トレッドゴム層の動的弾性率より高く、
前記内側トレッドゴム層のタイヤ赤道面を含む領域における厚さが、前記内側トレッドゴム層のその他の位置における厚さよりも薄い、
ことを特徴とする空気入りタイヤ。 - 前記内側トレッドゴム層の厚さが、タイヤ赤道面からトレッド接地端に向かって漸増することを特徴とする請求項1に記載の空気入りタイヤ。
- 前記内側トレッドゴム層が、タイヤ幅方向に連続して配置されていることを特徴とする請求項1または2に記載の空気入りタイヤ。
- 前記内側トレッドゴム層のタイヤ幅方向内側端部における厚さが、前記内側トレッドゴム層のその他の位置における厚さよりも薄く、
トレッド半幅をWとしたとき、前記内側トレッドゴム層のタイヤ幅方向内側端は、タイヤ赤道面から0.2W~0.4W離れた位置に存在している、
ことを特徴とする請求項1または2に記載の空気入りタイヤ。 - 前記内側トレッドゴム層のタイヤ幅方向内側端部における厚さが、前記内側トレッドゴム層のその他の位置における厚さよりも薄く、
トレッド半幅をWとしたとき、前記内側トレッドゴム層のタイヤ幅方向内側端は、タイヤ赤道面から0.45W~0.75W離れた位置に存在し、
偏平率が55%以下であり、
タイヤ断面幅が350mm以上である、
ことを特徴とする請求項2に記載の空気入りタイヤ。 - 前記外側トレッドゴム層の動的弾性率が8.0MPa~20MPaであり、
前記内側トレッドゴム層の動的弾性率が1.0MPa~7.0MPaである、
ことを特徴とする請求項1~5のいずれかに記載の空気入りタイヤ。 - タイヤ赤道面における前記内側トレッドゴム層の厚さd1と、
トレッド半幅をWとしたとき、タイヤ赤道面からW/3の位置における前記内側トレッドゴム層の厚さd2と、
タイヤ赤道面から2W/3の位置における前記内側トレッドゴム層の厚さd3と、
トレッド接地端を通る、前記カーカスの法線が前記内側トレッドゴム層を横切る線分の長さd4とが、下記(1)~(4)式を満足することを特徴とする請求項1~6のいずれかに記載の空気入りタイヤ。
記
0≦d1≦0.4×d4 (1)
0≦d2≦0.4×d4 (2)
0.5×d4≦d3≦1.1×d4 (3)
3mm≦d4≦12mm (4) - 前記外側トレッドゴム層の動的弾性率が、温度25℃、周波数52Hz、歪2%時において、前記内側トレッドゴム層の動的弾性率の1.5倍以上3.5倍以下であることを特徴とする請求項1~7のいずれかに記載の空気入りタイヤ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10735662.8A EP2392479B1 (en) | 2009-01-29 | 2010-01-28 | Pneumatic tire |
CN201080014214.4A CN102365181B (zh) | 2009-01-29 | 2010-01-28 | 充气轮胎 |
BRPI1007486A BRPI1007486A2 (pt) | 2009-01-29 | 2010-01-28 | pneumático |
US13/146,866 US8869849B2 (en) | 2009-01-29 | 2010-01-28 | Pneumatic tire |
JP2010548434A JP5788677B2 (ja) | 2009-01-29 | 2010-01-28 | 空気入りタイヤ |
RU2011135790/11A RU2475369C1 (ru) | 2009-01-29 | 2010-01-28 | Пневматическая покрышка |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-018447 | 2009-01-29 | ||
JP2009018447 | 2009-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010087190A1 true WO2010087190A1 (ja) | 2010-08-05 |
Family
ID=42395454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000521 WO2010087190A1 (ja) | 2009-01-29 | 2010-01-28 | 空気入りタイヤ |
Country Status (7)
Country | Link |
---|---|
US (1) | US8869849B2 (ja) |
EP (1) | EP2392479B1 (ja) |
JP (1) | JP5788677B2 (ja) |
CN (1) | CN102365181B (ja) |
BR (1) | BRPI1007486A2 (ja) |
RU (1) | RU2475369C1 (ja) |
WO (1) | WO2010087190A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012111269A (ja) * | 2010-11-22 | 2012-06-14 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013043609A (ja) * | 2011-08-26 | 2013-03-04 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
EP2610076A1 (en) * | 2010-08-27 | 2013-07-03 | Bridgestone Corporation | Pneumatic tire for two-wheeled vehicle |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103935189A (zh) * | 2014-04-14 | 2014-07-23 | 江苏通用科技股份有限公司 | 适用于混合路况的轮胎胎面出型结构 |
JP2021510648A (ja) * | 2018-01-25 | 2021-04-30 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | 複数の材料を含有するトレッド副層を有するタイヤ |
JP7031397B2 (ja) * | 2018-03-16 | 2022-03-08 | 横浜ゴム株式会社 | ランフラットタイヤ |
FR3080797A1 (fr) * | 2018-05-04 | 2019-11-08 | Compagnie Generale Des Etablissements Michelin | Pneumatique presentant des proprietes d'usure et de resistance au roulement ameliorees |
JP7156149B2 (ja) * | 2019-04-15 | 2022-10-19 | 横浜ゴム株式会社 | 空気入りタイヤ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61229602A (ja) * | 1985-04-04 | 1986-10-13 | Ohtsu Tire & Rubber Co Ltd | 自動車用タイヤトレツド |
JP2000016020A (ja) * | 1998-07-01 | 2000-01-18 | Yokohama Rubber Co Ltd:The | 重荷重用空気入りラジアルタイヤ |
JP2001071708A (ja) * | 1999-09-02 | 2001-03-21 | Bridgestone Corp | 空気入りタイヤ |
JP2003127613A (ja) | 2001-10-25 | 2003-05-08 | Sumitomo Rubber Ind Ltd | 重荷重用ラジアルタイヤ |
EP1491368A2 (en) * | 2003-06-24 | 2004-12-29 | The Goodyear Tire & Rubber Company | Truck wire with cap/base construction tread |
JP2005035404A (ja) * | 2003-07-15 | 2005-02-10 | Sumitomo Rubber Ind Ltd | 重荷重用空気入りタイヤ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS577703A (en) * | 1980-06-17 | 1982-01-14 | Bridgestone Corp | Pneumatic radial tire with reduced rolling resistance |
JPS6056603A (ja) * | 1983-09-09 | 1985-04-02 | Bridgestone Corp | 外乱吸収性にすぐれるモ−タ−サイクル用タイヤ |
JPS60255505A (ja) * | 1984-05-31 | 1985-12-17 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JPH064363B2 (ja) * | 1987-08-20 | 1994-01-19 | 株式会社ブリヂストン | 建設車両用ラジアルタイヤ |
JP2889283B2 (ja) | 1989-08-24 | 1999-05-10 | 株式会社ブリヂストン | 高性能空気入りタイヤ |
JP3527673B2 (ja) * | 1999-12-29 | 2004-05-17 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP4523815B2 (ja) * | 2004-08-26 | 2010-08-11 | 住友ゴム工業株式会社 | 重荷重用空気入りタイヤ及びその製造方法 |
US7784510B2 (en) * | 2005-10-17 | 2010-08-31 | Sumitomo Rubber Industries, Ltd. | Heavy duty tire having cap and base rubber layers, belt cushion rubber and sidewall rubber |
JP4707105B2 (ja) | 2005-11-15 | 2011-06-22 | 株式会社ブリヂストン | 空気入りタイヤ |
JP5400610B2 (ja) * | 2007-05-16 | 2014-01-29 | 株式会社ブリヂストン | 空気入りタイヤ |
-
2010
- 2010-01-28 RU RU2011135790/11A patent/RU2475369C1/ru not_active IP Right Cessation
- 2010-01-28 WO PCT/JP2010/000521 patent/WO2010087190A1/ja active Application Filing
- 2010-01-28 US US13/146,866 patent/US8869849B2/en active Active
- 2010-01-28 EP EP10735662.8A patent/EP2392479B1/en not_active Not-in-force
- 2010-01-28 CN CN201080014214.4A patent/CN102365181B/zh not_active Expired - Fee Related
- 2010-01-28 JP JP2010548434A patent/JP5788677B2/ja not_active Expired - Fee Related
- 2010-01-28 BR BRPI1007486A patent/BRPI1007486A2/pt active Search and Examination
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61229602A (ja) * | 1985-04-04 | 1986-10-13 | Ohtsu Tire & Rubber Co Ltd | 自動車用タイヤトレツド |
JP2000016020A (ja) * | 1998-07-01 | 2000-01-18 | Yokohama Rubber Co Ltd:The | 重荷重用空気入りラジアルタイヤ |
JP2001071708A (ja) * | 1999-09-02 | 2001-03-21 | Bridgestone Corp | 空気入りタイヤ |
JP2003127613A (ja) | 2001-10-25 | 2003-05-08 | Sumitomo Rubber Ind Ltd | 重荷重用ラジアルタイヤ |
EP1491368A2 (en) * | 2003-06-24 | 2004-12-29 | The Goodyear Tire & Rubber Company | Truck wire with cap/base construction tread |
JP2005035404A (ja) * | 2003-07-15 | 2005-02-10 | Sumitomo Rubber Ind Ltd | 重荷重用空気入りタイヤ |
Non-Patent Citations (2)
Title |
---|
"JATMA YEAR BOOK", 2007, JAPAN AUTOMOBILE TYRE MANUFACTURES ASSOCIATION |
See also references of EP2392479A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2610076A1 (en) * | 2010-08-27 | 2013-07-03 | Bridgestone Corporation | Pneumatic tire for two-wheeled vehicle |
EP2610076A4 (en) * | 2010-08-27 | 2014-05-14 | Bridgestone Corp | AIR TIRES FOR A TWO-WHEELED VEHICLE |
US9333804B2 (en) | 2010-08-27 | 2016-05-10 | Bridgestone Corporation | Pneumatic tire for two-wheeled vehicle |
JP2012111269A (ja) * | 2010-11-22 | 2012-06-14 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2013043609A (ja) * | 2011-08-26 | 2013-03-04 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
Also Published As
Publication number | Publication date |
---|---|
US8869849B2 (en) | 2014-10-28 |
BRPI1007486A2 (pt) | 2016-02-16 |
EP2392479A4 (en) | 2013-08-14 |
JPWO2010087190A1 (ja) | 2012-08-02 |
RU2475369C1 (ru) | 2013-02-20 |
EP2392479B1 (en) | 2016-12-07 |
CN102365181B (zh) | 2014-05-21 |
JP5788677B2 (ja) | 2015-10-07 |
EP2392479A1 (en) | 2011-12-07 |
CN102365181A (zh) | 2012-02-29 |
US20110277899A1 (en) | 2011-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5788677B2 (ja) | 空気入りタイヤ | |
JP6111134B2 (ja) | 空気入りタイヤ | |
JP5369162B2 (ja) | 重荷重用タイヤ | |
US20140283965A1 (en) | Pneumatic tire | |
JP5045852B1 (ja) | 空気入りタイヤ | |
US10166819B2 (en) | Pneumatic tire | |
WO2013161296A1 (ja) | 空気入りタイヤ | |
US9162408B2 (en) | Tire for motorcycle and method of manufacturing the same | |
JP5519167B2 (ja) | 空気入りタイヤ | |
JP2006273248A (ja) | 二輪車用空気入りタイヤ | |
JP2011183994A (ja) | 空気入りタイヤ | |
JP2009262808A (ja) | 空気入りタイヤ | |
WO2014103064A1 (ja) | 空気入りタイヤ | |
US20160068018A1 (en) | Pneumatic Tire | |
JP3808778B2 (ja) | 重荷重用タイヤ | |
JP2007076594A (ja) | 空気入りタイヤ | |
JP2011255845A (ja) | 空気入りタイヤ | |
EP3888944A1 (en) | Pneumatic tire | |
JP2012180064A (ja) | 空気入りタイヤ | |
WO2016024390A1 (ja) | 空気入りタイヤ | |
WO2014103063A1 (ja) | 空気入りタイヤ | |
JP2016041549A (ja) | 空気入りタイヤ | |
JP6294791B2 (ja) | 空気入りタイヤ | |
JP2010254249A (ja) | 空気入りタイヤ | |
JPH05185809A (ja) | 空気入りラジアルタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080014214.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10735662 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010548434 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13146866 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010735662 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010735662 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011135790 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1007486 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1007486 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110728 |