WO2010084778A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2010084778A1
WO2010084778A1 PCT/JP2010/000404 JP2010000404W WO2010084778A1 WO 2010084778 A1 WO2010084778 A1 WO 2010084778A1 JP 2010000404 W JP2010000404 W JP 2010000404W WO 2010084778 A1 WO2010084778 A1 WO 2010084778A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
plasma
storage unit
plasma processing
Prior art date
Application number
PCT/JP2010/000404
Other languages
English (en)
French (fr)
Inventor
野々村勝
土師宏
有田潔
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080005409.2A priority Critical patent/CN102293064B/zh
Priority to US13/145,960 priority patent/US8450933B2/en
Publication of WO2010084778A1 publication Critical patent/WO2010084778A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a plasma processing apparatus for plasma processing a processing object such as a substrate.
  • Plasma processing is known as a surface treatment method such as cleaning and etching of a processing object such as a substrate on which electronic components are mounted.
  • a substrate to be processed is placed in a vacuum chamber that forms a processing chamber, plasma discharge is generated in the processing chamber, and ions and electrons generated as a result are allowed to act on the surface of the substrate.
  • Surface treatment is performed.
  • the plasma is generated correctly according to the discharge conditions set in advance according to the processing purpose.
  • Various means and methods are used for the purpose of monitoring the occurrence state (see Patent Documents 1 to 3).
  • Patent Document 1 a discharge detection sensor equipped with a probe electrode for detecting a potential is attached to a vacuum chamber provided with a processing chamber, and by detecting a potential change induced in response to a change in plasma on the probe electrode, The presence or absence of abnormal discharge in the processing chamber is detected.
  • Japanese Patent Laid-Open No. 2004-228561 identifies the occurrence of an abnormal discharge and the generation position by imaging the inside of a reaction chamber with a camera and detecting light emission due to the abnormal discharge. Further, Patent Document 3 monitors the plasma process by detecting plasma light in the plasma chamber using an image sensor such as a CCD.
  • an object of the present invention is to provide a plasma processing apparatus capable of acquiring useful data for investigating the cause of abnormal discharge in plasma processing and ensuring traceability.
  • the plasma processing apparatus of the present invention applies a high-frequency voltage by introducing a plasma generating gas into the processing chamber in a state where the processing chamber is decompressed, and forming a processing chamber capable of accommodating a processing object.
  • a plasma processing execution unit that excites the plasma generating gas to execute plasma processing of the processing object accommodated in the processing chamber, and a plasma processing that includes discharge state detection means that detects abnormal discharge in the processing chamber
  • An apparatus a window portion provided in the vacuum chamber, a camera that images the inside of the vacuum chamber through the window portion and outputs moving image data, and a moving image data output from the camera is stored.
  • a first storage unit a second storage unit that stores the moving image data extracted from the first storage unit, and the moving image data extracted from the first storage unit
  • Image data extraction means for performing processing to be stored in the second storage unit, wherein the image data extraction unit extracts moving image data indicating the occurrence of abnormal discharge from the first storage unit.
  • the occurrence of abnormal discharge when the discharge state detection means that detects abnormal discharge in the processing chamber detects abnormal discharge Is stored, and when plasma processing is completed without detecting abnormal discharge, moving image data or still image data at a specific time is stored to investigate the cause of abnormal discharge in plasma processing. It is possible to acquire useful data and ensure traceability.
  • FIG. 1 is a cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention. It is operation
  • movement explanatory drawing of the plasma processing apparatus of one embodiment of this invention (a) is explanatory drawing which shows the state which the cover part raised, (b) is explanatory drawing which shows the state which the cover part fell.
  • BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing of the discharge detection sensor used for the plasma processing apparatus of one embodiment of this invention.
  • the block diagram which shows the structure and function of the control part of the plasma processing apparatus of one embodiment of this invention.
  • the time chart which shows operation
  • the flowchart which shows the data recording process in the plasma processing apparatus of one embodiment of this invention. It is a structure explanatory view of the history data file output by the plasma processing apparatus of one embodiment of the present invention, (a) is the explanatory view showing the contents of the production history file, (b) shows the contents of the plasma monitor file Explanatory drawing, (c) is explanatory drawing which shows the content of the electric potential change file. It is function explanatory drawing of the file output part in the plasma processing apparatus of one embodiment of this invention, (a) is explanatory drawing which showed the file output screen, (b) is explanatory drawing which showed the electric potential change data output screen.
  • FIG. 1 is a cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention
  • FIGS. 2A and 2B are explanatory views of the operation of the plasma processing apparatus according to an embodiment of the present invention
  • FIG. FIG. 4 is a block diagram showing the configuration and functions of the control unit of the plasma processing apparatus according to the embodiment of the present invention
  • FIG. 5A is a diagram illustrating the configuration of the discharge detection sensor used in the plasma processing apparatus according to the embodiment.
  • FIGS. 6A and 6B are functional explanatory views of a discharge state detection unit in the plasma processing apparatus according to the embodiment of the present invention.
  • FIG. 6 is an explanatory view of image data extraction processing in the plasma processing apparatus of the embodiment of the present invention.
  • FIG. 7 (a) and 7 (b) are explanatory diagrams showing the configuration and operation of the plasma processing apparatus according to the embodiment of the present invention.
  • FIG. 8 is a time showing the operation and processing of the plasma processing apparatus according to the embodiment of the present invention.
  • FIG. 9 shows an embodiment of the present invention.
  • FIG. 10A, FIG. 10B and FIG. 10C are diagrams illustrating the configuration of a history data file output by the plasma processing apparatus according to the embodiment of the present invention.
  • FIGS. 11A and 11B are functional explanatory diagrams of the file output unit in the plasma processing apparatus according to the embodiment of the present invention.
  • the vacuum chamber 3 is comprised by arrange
  • FIG. 2B when the lid portion 2 is lowered (arrow b) and is in contact with the upper surface of the base portion 1 via the seal member 4, the vacuum chamber 3 is closed and the base portion 1 is closed.
  • the closed space surrounded by the lid portion 2 forms a processing chamber 3a for accommodating a processing object and performing plasma processing.
  • An electrode portion 5 is disposed in the processing chamber 3a, and the electrode portion 5 is attached to an opening portion 1a provided in the base portion 1 via an insulating member 6 from below.
  • An insulator 7 is mounted on the upper surface of the electrode unit 5. As shown in FIG. 2 (a), the substrate 9, which is the object to be processed, is loaded into the substrate while being guided by the guide members 8 at both side ends. The rear end portion is pushed by the arm 30 and is carried into the upper surface of the insulator 7 from the substrate carrying-in direction (arrow a direction).
  • a vent valve 12, a pressure gauge 15, a gas supply valve 13, and a vacuum valve 14 are connected to the opening 1 b provided in the base portion 1 through a pipe line 11. Further, the gas supply valve 13 and the vacuum valve 14 are connected to a gas supply unit 16 and a vacuum pump 17, respectively.
  • the vacuum valve 14 and the vacuum pump 17 constitute a vacuum exhaust unit that exhausts the inside of the processing chamber 3a. Further, by opening the gas supply valve 13, a gas for generating plasma is supplied from the gas supply unit 16 into the processing chamber 3a.
  • the gas supply unit 16 has a built-in flow rate adjustment function, and can supply an arbitrary supply amount of plasma generating gas into the processing chamber 3a. Then, by opening the vent valve 12, the atmosphere is introduced into the processing chamber 3a when the vacuum is broken.
  • a high frequency power supply unit 19 is electrically connected to the electrode unit 5 through a matching unit 18.
  • a high frequency voltage is applied between the electrode unit 5 and the lid unit 2 grounded to the ground unit 10. Applied.
  • plasma generating gas is excited in the processing chamber 3a to generate plasma.
  • the matching unit 18 has a function of matching the impedance of the high-frequency power supply unit 19 with the plasma discharge circuit that generates plasma discharge in the processing chamber 3a.
  • the electrode section 5, the matching unit 18, and the high frequency power supply section 19 serve as plasma generating means for generating plasma by exciting the plasma generating gas.
  • the vacuum exhaust section, the gas supply section 16, the electrode section 5, the high frequency power supply section 19, the matching unit 18, and the apparatus control section 40 that controls these sections are included in the processing chamber 3a by these sections.
  • the plasma processing execution part which performs the plasma processing of the process target accommodated in this is comprised.
  • a circular window portion 2a for visually recognizing the inside of the processing chamber 3a from the outside is provided on the side surface of the lid portion 2 constituting the vacuum chamber 3.
  • a discharge detection sensor 23 including a dielectric member 21 and a probe electrode unit 22 is fixed to the window portion 2 a from the outside of the lid portion 2 by a support member 24.
  • a camera 26 is disposed outside the probe electrode unit 22 while being held by the lid portion 2 by a support bracket 25. As shown in FIG. 2B, in the state where the lid 2 is lowered and the processing chamber 3a is formed, the camera 26 images the inside of the processing chamber 3a through the window 2a, and digitally captures the imaging result. Output as converted video data.
  • the camera 26 includes an LED illumination unit 26a. When the LED illumination unit 26a is turned on, the camera 26 can take an image while illuminating the processing chamber 3a and no plasma is generated in the processing chamber 3a. Even in the state, the state in the processing chamber 3a can be acquired as image information.
  • a dielectric member 21 made of optically transparent glass is attached to the window 2a provided on the lid 2. Inside the processing chamber 3a, plasma is generated between the electrode portion 5 and the lid portion 2, and the dielectric member 21 has one surface facing the plasma generated in the processing chamber 3a in a posture facing the vacuum chamber 3. Is attached to a window portion 2a provided in the window.
  • the probe electrode unit 22 is mounted on the other surface of the dielectric member 21, that is, the surface facing the outside of the vacuum chamber 3.
  • the probe electrode unit 22 is an integral part in which the probe electrode 22b is formed on one surface of the glass plate 22a and the shield electrode 22c is formed on the other surface, and the probe electrode unit 22 is attached to the dielectric member 21 and discharged.
  • the probe electrode 22 b is supported on the lid 2 by a support member 24 made of a conductive metal with the probe electrode 22 b in close contact with the outer surface of the dielectric member 21.
  • the probe electrode 22b is connected to the control unit 20 through the detection lead wire 22d.
  • the probe electrode 22b is connected to the plasma via the dielectric member 21 and the sheath S that is a space charge layer formed at the interface between the plasma P and the dielectric member 21. It will be in the state electrically connected with P. That is, as shown in FIG. 3, an electric circuit is formed in which a capacitor C1 formed by the dielectric member 21, a capacitor C2 having a capacity corresponding to the sheath S, and a resistor R included in the plasma P are connected in series. A potential corresponding to the state of the plasma P is induced in the electrode 22b.
  • the potential of the probe electrode 22b is guided to the control unit 20 by the detection lead wire 22d, and a signal of potential change corresponding to the state of the plasma P is supplied to the discharge state detection unit 34 (FIG. 4). ) To determine the discharge state.
  • the state of the plasma P inside the processing chamber 3a changes.
  • This change is detected as a change in the potential of the probe electrode 22b because it changes the impedance of the circuit described above.
  • This potential change is detected with extremely high sensitivity, and it has a feature that it can accurately detect even a weak fluctuation that could hardly be detected by a conventional method.
  • the shield electrode 22c has a function of electrically shielding the outer surface side of the probe electrode 22b, and the electric charge generated in the shield electrode 22c is released to the grounded lid portion 2 through the conductive support member 24. Thereby, the noise with respect to the electric potential change induced by the probe electrode 22b is reduced.
  • the probe electrode 22b and the shield electrode 22c are both formed by coating the surface of the glass plate 22a with a transparent conductive material such as ITO (Indium Tin Oxide).
  • a transparent conductive material such as ITO (Indium Tin Oxide).
  • the plasma processing apparatus includes a control unit 20 that performs overall operation control.
  • the control unit 20 controls the vent valve 12, the gas supply valve 13, the vacuum valve 14, the pressure gauge 15, the gas supply unit 16, the vacuum pump 17, and the high frequency power supply unit 19, thereby performing each operation necessary for plasma processing. Is done. Further, the control unit 20 receives moving image data captured by the camera 26. Further, the control unit 20 includes machine output data output from the pressure gauge 15, gas supply unit 16, vacuum pump 17, matching unit 18, and high-frequency power supply unit 19 that constitute the plasma processing execution unit, that is, each of these units is subjected to plasma processing. Data indicating an operation state when the vehicle is actually operated for execution is received.
  • a display unit 27, a removable storage device 28, and an operation / input unit 29 are connected to the control unit 20.
  • the operation / input unit 29 performs various operation inputs and data inputs during execution of the plasma processing operation.
  • the display unit 27 displays an operation screen at the time of input by the operation / input unit 29 and displays data stored in each storage unit in the control unit 20.
  • the removable storage device 28 is a detachable storage medium such as a USB memory, and stores moving image data captured by the camera 26, discharge state detection history data detected by the discharge detection sensor 23, and the like.
  • the control unit 20 includes an A / D conversion unit 31, a potential change storage unit 32, a moving image storage unit 33, a discharge state detection unit 34, a data recording unit 35, a date / time data generation unit 36, a work information storage unit 37, and an operation condition parameter storage.
  • Unit 38 auxiliary storage unit 39, device control unit 40, history information storage unit 41, and file output unit 42.
  • the apparatus control unit 40 performs control processing for controlling the above-described plasma processing execution unit to execute the plasma processing operation.
  • Other components are traceability data in which a production history indicating individual processing histories of the substrate 9 that has been subjected to plasma processing by the plasma processing apparatus, and a discharge state detection history in the processing chamber 3a are converted into data in a predetermined format. It relates to the function to create.
  • the inside of the processing chamber 3a is photographed by the potential change data indicating the potential change output from the discharge detection sensor 23, the detection data and determination data output from the discharge state detection unit 34, and the camera 26.
  • the image data, the matching unit 18, the pressure gauge 15, and the machine output data output from the gas supply unit 16 are used as the history target data.
  • the data recording unit 35 associates the history target data with work information for specifying individual substrates 9 that are workpieces to be processed, operating condition parameters that are plasma processing execution conditions, and the like via the date / time data.
  • the history information storage unit 41 is configured to record as history data. Then, the history data stored in the history information storage unit 41 is edited by the file output unit 42 according to a predetermined format, whereby a plurality of types of history files having different usage purposes are created and output to the outside.
  • the A / D conversion unit 31 A / D converts analog signals output from the probe electrode 22b, the matching unit 18, the pressure gauge 15, and the gas supply unit 16.
  • the potential change data accompanying the change in the plasma state after being output from the probe electrode 22b and A / D converted is stored in the potential change storage unit 32, and the moving image data output from the camera 26 is stored in the moving image storage unit 33. Is done.
  • the moving image storage unit 33 corresponds to a first storage unit that stores moving image data output from the camera 26, and the potential change storage unit 32 stores third data of potential change received from the probe electrode 22 b that is a transparent electrode. Corresponds to the storage section.
  • Both the potential change storage unit 32 and the moving image storage unit 33 have a predetermined storage capacity. These have a storage capacity capable of storing moving image data and potential change data for at least one plasma treatment. Data stored in the potential change storage unit 32 and the moving image storage unit 33 is replaced with new data from the oldest in time series. By designating a specific time point in this time series, potential change data and moving image data corresponding to the time point can be specified.
  • the discharge state detection unit 34 is a plasma monitor that monitors the discharge state in the processing chamber 3a, detects the discharge state in the processing chamber 3a based on the potential change data stored in the potential change storage unit 32, and Based on this detection data, it has the function of performing pass / fail judgments on the discharge state, such as whether or not abnormal discharge has occurred, for each substrate 9 that is the object to be processed.
  • Abnormal discharge causes a quality defect due to thermal damage of the substrate 9, so that the occurrence itself is prevented as much as possible, and if the occurrence is confirmed, the substrate 9 that is the processing target at the time of occurrence is identified and a defective product is identified. Need to be eliminated as. Furthermore, it is necessary to record the occurrence history of abnormal discharge so that a retrospective follow-up survey from the subsequent process becomes possible.
  • the discharge state detector 34 has a function of monitoring the discharge state for such a purpose.
  • the discharge state detection unit 34 includes a discharge state analysis unit 34a, a discharge state determination unit 34b, and a detection condition parameter storage unit 34c.
  • the discharge state analysis unit 34a performs a process for obtaining a numerical value necessary for pass / fail determination by the discharge state determination unit 34b from potential change data recorded in the potential change storage unit 32.
  • the detection condition parameter storage unit 34c stores a determination threshold value that is referred to by the discharge state analysis unit 34a and a numerical value that is a determination criterion that is referred to when abnormal discharge is determined by the discharge state determination unit 34b.
  • the processing function of the discharge state analysis unit 34a will be described.
  • FIG. 5B shows the waveform of potential change data output from the probe electrode 22b of the discharge detection sensor 23 and stored in the potential change storage unit 32 during operation of the plasma processing apparatus.
  • the determination threshold value V1 (+) is set to the + side under the detection conditions in which the determination threshold value V1 (+) is set on the positive voltage side and the determination threshold value V2 ( ⁇ ) is set on the negative voltage side.
  • a waveform W1 having a pattern exceeding the determination threshold value V2 ( ⁇ ) to the ⁇ side and a waveform W2 having a pattern exceeding the determination threshold value V2 ( ⁇ ) to the ⁇ side is shown.
  • Various waveforms corresponding to the state of the plasma discharge are detected, including waveforms associated with abnormal discharge such as discharge. Since each of these waveforms has a characteristic waveform pattern, it is possible to identify which waveform pattern the detected waveform pattern belongs to, and at what timing the waveform of the identified specific pattern belongs. It is possible to determine whether the discharge state in the processing chamber 3a is good or not by detecting whether it has occurred at a certain frequency.
  • the discharge state analysis unit 34a analyzes the potential change data, the number of times the determination threshold values V1 (+) and V2 ( ⁇ ) are exceeded, the number of times the waveforms W1 and W2 are generated, the generation timing, and the generation frequency (per unit time).
  • the numerical value necessary for determining the discharge state such as the number of occurrences of This numerical value is output as detection data (A).
  • the discharge state determination unit 34b determines whether or not the abnormal discharge has occurred or the maintenance time has come by determining whether or not the numerical value obtained by the discharge state analysis unit 34a satisfies a predetermined condition.
  • the determination data (B) is “Success” when abnormal discharge does not occur until the plasma processing of the substrate 9 is completed, and “Error” when abnormal discharge is detected during the plasma processing. Output as.
  • This determination data is data indicating the determination result of the discharge state.
  • the determination of the discharge state is performed for each substrate 9 on which the plasma treatment has been performed. Thereby, it is possible to determine whether or not each substrate 9 to be processed by the plasma processing apparatus is a non-defective product that has been subjected to plasma processing in a normal discharge state. Both the detection data (A) from the discharge state analysis unit 34 a and the determination data (B) from the discharge state determination unit 34 b are output to the data recording unit 35.
  • the discharge state detector 34 and the probe electrode 22b which is a transparent electrode provided on the other surface of the probe electrode unit 22, the A / D converter 31 connected to the probe electrode 22b, the potential change memory
  • the unit 32 constitutes a discharge state detection means 70 that detects the occurrence of abnormal discharge in the processing chamber 3a.
  • the data recording unit 35 records the history target data acquired from the probe electrode 22b, the camera 26, the gas supply unit 16, the pressure gauge 15, the matching unit 18, and the discharge state detection unit 34 in the history information storage unit 41. Has the function to perform. First, the data recording unit 35 stores history data as plasma monitor detection data including the detection data (A) by the discharge state analysis unit 34a, the determination data (B) by the discharge state determination unit 34b, and the detection condition parameter (C). Processing to be recorded in the unit 41 is performed.
  • the data recording unit 35 further includes a potential change data extraction unit 35a, an image data extraction unit 35b, and a temporary storage unit 35c as internal functions.
  • the potential change data extraction unit 35a extracts data indicating abnormal discharge as a potential change from the potential change storage unit 32 (potential change data extraction processing), and records history data as abnormal discharge history data. 41 (potential change data recording process).
  • the range of data to be extracted may include at least a time zone including the occurrence time of abnormal discharge, and in this embodiment, a time zone from the occurrence of abnormal discharge to the detection time point at which the discharge state detection unit 34 detects abnormal discharge.
  • the data corresponding to (potential change data indicating the occurrence of abnormal discharge) is to be extracted.
  • the potential change data extraction unit 35a stores at least potential change data indicating the occurrence state of the abnormal discharge in the third storage unit. Is read from the potential change storage unit 32, and stored in the history information storage unit 41, which is the fourth storage unit, as potential change data 41a.
  • the image data extraction unit 35b extracts moving image data indicating the occurrence state of the abnormal discharge from the moving image storage unit 33 (image data extraction processing), and visually detects the abnormal discharge. Is recorded in the history information storage section 41 as history data that can be grasped (moving image data recording processing).
  • This image data extraction process will be described with reference to FIG.
  • an arrow * 1 indicates that the discharge state detection unit 34 performs abnormal discharge in the process of starting the plasma discharge in the processing chamber 3a after the vacuum chamber 3 is closed and imaging by the camera 26 is started. The detection time point at which is detected is shown. The actual abnormal discharge occurs at a time earlier than the detection time point * 1 by the delay (time lag) due to the processing of the discharge state detection unit 34.
  • Causes of abnormal discharge in plasma processing include warpage deformation of the substrate 9 to be processed, movement of the substrate 9 in the plasma processing process, and degassing in which organic substances and moisture contained in the substrate 9 are discharged as a gas.
  • a phenomenon, foreign matter accumulation on the guide member 8 that guides the substrate 9, and the like can be mentioned.
  • the substrate 9 is warped or moved, a gap is generated between the substrate 9 and the insulator 7, and abnormal discharge occurs in the gap.
  • the pressure is locally increased on the surface of the substrate 9 due to the degassing phenomenon, abnormal discharge is locally generated in this range, and abnormal discharge is also generated by accumulating charges in the accumulated foreign matter.
  • the processing chamber at the time of occurrence of abnormal discharge It is sufficient if there is moving image data obtained by photographing the inside of 3a, that is, moving image data indicating the occurrence of abnormal discharge. Therefore, in this case, the image data extraction unit 35b goes back by a predetermined retroactive time tb1 based on at least the detection time point * 1 when the abnormal discharge is detected as a range that reliably includes the moving image data indicating the occurrence of abnormal discharge.
  • the moving image data corresponding to the time zone T1 from the retroactive time point * 2 to the detection time point * 1 is extracted from the moving image storage unit 33 that is the first storage unit, and the moving image data is stored in the history information storage unit 41 that is the second storage unit.
  • a process of storing as data (at the time of abnormality) 41b is performed.
  • the retroactive time tb1 is at least 1 second or more, preferably 3 seconds or more, and may be at most up to the plasma generation time. Note that “time zone T1 from retroactive time point * 2 to detection time point * 1” means a time zone that does not include detection time point * 1.
  • the image data extraction unit 35b is a first storage unit that stores at least the moving image data corresponding to the time zone T2 from the first moving image extraction start time point * 3 to the detection time point * 1 at or before the plasma generation time point.
  • a process of extracting from the moving image storage unit 33 and storing it as moving image data (abnormal) 41b in the history information storage unit 41 as the second storage unit is performed.
  • time zone T2 from the first moving image extraction start time point * 3 to the detection time point * 1 means a time zone that does not include the detection time point * 1.
  • the substrate carrying-in operation is performed in order to confirm whether or not an event that causes an abnormal discharge such as a displacement of the substrate 9 has already occurred before the plasma treatment is started.
  • Recorded video data is required.
  • the image data extraction unit 35b extracts the moving image data corresponding to the time zone T3 from the second moving image extraction start time point * 4 to the detection time point * 1 from the moving image storage unit 33 that is the first storage unit.
  • the history information storage unit 41 which is the second storage unit, performs processing to store the video data (at the time of abnormality) 41b.
  • time zone T3 from the second moving image extraction start time point * 4 to the detection time point * 1 means a time zone that does not include the detection time point * 1.
  • an operator sets in advance which time zone the moving image data extracted from the first storage unit and stored in the second storage unit is associated with.
  • the image data extraction process described later is executed by the image data extraction unit 35b.
  • the vacuum chamber 3 may be replaced with a vacuum chamber 3A having a configuration as shown in FIGS. 7 (a) and 7 (b).
  • the vacuum chamber 3A is composed of a single sealed container 50, and the interior of the container 50 includes a processing chamber 50a for performing plasma processing on the substrate 9 as an object.
  • a lower electrode 51 provided with a mounting portion 51a for mounting the substrate 9 to be processed and an upper electrode 52 facing the upper side of the lower electrode 51 are disposed.
  • an opening 50b for loading and unloading the substrate 9 is provided on the mounting portion 51a.
  • the opening 50b can be opened and closed by an opening / closing mechanism 53.
  • the substrate transport mechanism 54 that holds the substrate 9 by suction from the upper surface side by the suction holding unit 55 with the opening 50b open is horizontally lowered through the opening 50b.
  • the substrate 9 is placed on the placement portion 51a.
  • a window 50c similar to the window 2a in FIG. 1 is provided in accordance with the height position of the placement portion 51a.
  • a camera 26 similar to that shown in FIG. 1 is mounted on the outside. In the substrate carrying-in operation in which the substrate 9 is carried into the container 50 by the substrate carrying mechanism 54, by operating the camera 26, it is possible to photograph the state of carrying in the substrate 9 and output moving image data.
  • FIG. 7B shows a state in which the substrate transport mechanism 54 is retracted and the opening 50b is closed after the substrate 9 is carried into the container 50.
  • the plasma processing for the substrate 9 is performed in this state, and the state of the substrate 9 in the plasma processing process can be photographed by operating the camera 26 in this state. That is, in the vacuum chamber 3A shown in FIGS. 7A and 7B, a single camera 26 images the state of the substrate 9 and outputs moving image data in both the plasma processing process and the substrate loading operation. It is possible.
  • the discharge state detecting means for detecting the abnormal discharge in the processing chamber detects the abnormal discharge
  • the abnormal discharge of the abnormal discharge such as the plasma generation time or the loading start time for starting the operation of loading the substrate 9 into the vacuum chamber 3 is performed.
  • a quality defect due to abnormal discharge occurs by storing moving image data corresponding to the extraction target time zone set including the retroactive time point and the abnormal discharge detection time point that is a predetermined time after the detection time point It is possible to visually grasp the situation when the abnormal discharge occurs. Thereby, useful data for investigating the cause of abnormal discharge in plasma processing can be acquired.
  • the image data extraction unit 35b A process of extracting a history image for verifying that the plasma processing has been executed on the substrate 9 in a normal discharge state is performed.
  • the history image an image (moving image or still image) taken at a time when plasma is most stable is preferably an image suitable for representing the discharge state in the processing. Therefore, the specific time when the plasma is estimated to be stable is selected in advance, and the moving image data at this specific time is acquired afterwards from the moving image storage unit 33.
  • the present embodiment as shown in FIG.
  • the image data (moving image data or still image data) corresponding to the image acquisition time * 5 set immediately before the processing end time t3 when the plasma processing is stopped is used as the history image.
  • the still image data is derived from the moving image data stored in the moving image storage unit 33, and is data for one frame (one frame) of the moving image data.
  • the image data extraction unit 35b converts the moving image data or still image data at a specific time in the imaging time zone of the camera 26 into the moving image that is the first storage unit.
  • a process of extracting from the storage unit 33 and storing it as history image data 41d in the history information storage unit 41 as the second storage unit is performed.
  • the moving image or still image acquired here is included in production history information to be described later.
  • the history image data 41d acquired as the history image may be a moving image or a still image. If it is a moving picture, a few seconds at most is sufficient, but if you want to save storage capacity, a still picture is good.
  • the temporary storage unit 35 c provided in the data recording unit 35 temporarily stores the machine output data output from the matching unit 18, the pressure gauge 15, and the gas supply unit 16 and the date / time data output from the date / time data generation unit 36. It has a function to hold.
  • the temporary storage unit 35c has a storage capacity capable of storing machine output data for at least one cycle of plasma processing.
  • the date / time data generation unit 36 has a built-in timer, and outputs date / time data specifying the time point to the data recording unit 35 based on the date / time data request signal from the data recording unit 35.
  • the date and time data output here is data that can specify detailed timing including date and hour, minute, and second, and events that occur instantaneously such as abnormal discharge can be individually specified via these date and time data. ing.
  • the output date / time data is temporarily stored in the temporary storage unit 35c and linked to the machine output data and the potential change data stored in the potential change storage unit 32 and the moving image data stored in the moving image storage unit 33.
  • the work information storage unit 37 stores work information, that is, data specifying the type of the substrate 9 to be processed and a file name that defines the operating condition parameters applied to the type. These pieces of work information are read by the data recording unit 35, and are recorded in the history information storage unit 41 as processed work information 41j together with object specifying data for individually specifying the substrate 9 after processing.
  • the object specifying data includes magazine specifying data for specifying a magazine for storing the processed substrate 9, and storage stage numbers indicating storage positions in the individual magazines. These object specifying data are used to count a counter value (storage position (number of stages) in the magazine) that is referred to when the apparatus control unit 40 controls the operation of the substrate recovery mechanism that stores the substrate 9 after plasma processing in the magazine. ) And the like.
  • the object specifying data is read from the apparatus control unit 40 by the data recording unit 35 and stored in the history information recording unit 41 as processed work information 41j. Therefore, the device control unit 40 functions as an object specifying data output unit that outputs object specifying data for specifying the processing object.
  • the operating condition parameter storage unit 38 stores the operating condition parameter set for the substrate 9 as the operating condition of each unit constituting the plasma processing execution unit.
  • operating condition parameters the high-frequency power output of the high-frequency power supply unit 19, the supply flow rate of the plasma generating gas supplied by the gas supply unit 16, the processing time for performing the plasma processing, and the processing pressure indicating the degree of vacuum in the processing chamber 3a Etc. are included.
  • the operation condition parameter read by the data recording unit 35 is recorded in the history information storage unit 41 as an operation condition parameter 41h indicating an operation condition actually applied to each substrate 9 to be recorded.
  • the auxiliary storage unit 39 temporarily stores data when it is necessary to hold data during processing by the control unit 20.
  • the apparatus control unit 40 controls the process operation of the plasma processing performed by the above-described plasma processing execution unit.
  • a control command based on the operation parameters stored in the operation condition parameter storage unit 38 is output by the apparatus control unit 40 to the plasma processing execution unit configured as described above, and each unit constituting the plasma processing execution unit Operates according to these control commands.
  • the machine output data is output as a signal indicating the respective operation states from the matching unit 18, the pressure gauge 15, and the gas supply unit 16 in an actual operation state. 9 is recorded as a processing history.
  • the machine output data becomes a numerical value within the assumption when the abnormal discharge does not occur, but becomes a numerical value greatly deviated from the assumption when the abnormal discharge occurs. Therefore, by referring to the machine output data in addition to the determination data indicating the determination result in the discharge state detection unit 34, it is possible to more objectively show the proof that the plasma processing has been performed normally.
  • the gas supply unit 16 outputs a flow rate signal indicating the flow rate value of the plasma generating gas.
  • the pressure gauge 15 outputs a vacuum level signal indicating the vacuum level in the processing chamber 3a.
  • the matching unit 18 outputs an RF incident signal, an RF reflected signal, a LOAD signal, a VDC signal, and a PHASE signal.
  • the PF incident signal is a signal indicating the value of the power that has traveled in the high-frequency circuit among the power output from the high-frequency power supply unit 19 for generating plasma
  • the RF reflection signal is the high-frequency signal among the output power. It is a signal which shows the value of the electric power reflected by the impedance change of the circuit.
  • the LOAD signal and PHASE signal are setting instruction values of the impedance matching variable capacitor built in the matching unit 18, and are indicated by a ratio (0 to 100%) of the distance between the electrode plates to the distance variable allowance in this state.
  • the VDC signal indicates a self-bias voltage, that is, a voltage value at which the interelectrode voltage is biased to the negative side when plasma discharge occurs.
  • Such machine output data is performed by outputting a machine output data read command indicating that the preset read timing has been reached in the plasma processing execution process from the apparatus control unit 40.
  • the data recording unit 35 receives the machine output data output from the matching unit 18, the pressure gauge 15, and the gas supply unit 16 and the date / time data output from the date / time data generation unit 36.
  • the data is stored in the temporary storage unit 35c, and the machine output data and the date / time data are associated with each other and recorded as the machine output data 41c in the history information storage unit 41.
  • the data recording unit 35 records the potential change data, moving image data (at the time of abnormality), machine output data, history image data, detection data, and determination data in the history information storage unit 41.
  • the date and time data generated by the above is linked to the potential change data 41a, the moving image data (at the time of abnormality) 41b, and the history image data 41d and recorded.
  • the potential change data 41a, the moving image data (at the time of abnormality) 41b, and the history image data 41d can be associated through the common date and time data. That is, the moving image data (abnormality) 41b and history image data 41d stored in the second storage unit and the potential change data 41a stored in the fourth storage unit include date / time data as connection information for associating the two. Is included.
  • processed work information 41j In the history information recorded in the history information storage unit 41, processed work information 41j, operating condition parameters 41h, machine output data 41c, determination data 41f, and history image data 41d attached when the determination result is good determination are:
  • the operation condition parameters set as conditions and the machine output data output from the plasma processing execution unit as data indicating the actual operation state are included.
  • the potential change data 41a, the moving image data (at the time of abnormality) 41b, the detection data 41e, and the detection condition parameter 41g correspond to discharge state detection history information indicating a discharge state detection history by the discharge state detection unit 34.
  • these discharge state detection history information is included in a discharge state detection history file to be described later and output only when a negative determination is made in the discharge state determination. ing.
  • FIG. 8 and FIG. 9 show the data recording process in which the production history information and the discharge state detection history information are extracted by the data recording unit 35 and recorded in the history information storage unit 41 in the execution process of the plasma processing. The description will be given with reference.
  • This data recording process is executed for each substrate 9 which is a processing target.
  • FIG. 8 when a work operation for plasma processing is started at timing t0, first, a substrate carrying-in for carrying the substrate 9 to be processed into the processing chamber 3a is executed. That is, as shown in FIG. 2A, the rear end portion of the substrate 9 supplied from the upstream side (arrow a) is pushed by the substrate carry-in arm 30, and the electrode portion 5 is guided while the substrate 9 is guided by the guide member 8. It is carried on the upper surface of the insulator 7.
  • the lid portion 2 When the substrate 9 is placed at the processing position on the insulator 7, as shown in FIG. 2B, the lid portion 2 is lowered (arrow b) and brought into contact with the base portion 1, and the vacuum chamber 3 is placed. Close. As a result, the camera 26 provided in the lid 2 can take a picture of the inside of the processing chamber 3a, and shooting for acquiring moving image data as history information is started. In the case where the vacuum chamber 3A as shown in FIGS. 7A and 7B is provided, the photographing by the camera 26 can be started from the loading start time when the substrate loading is started.
  • the vacuum pump 17 is operated to start evacuation of the processing chamber 3a.
  • the gas supply unit 16 is operated to supply the plasma generating gas into the processing chamber 3a, and then at a timing t2 when the gas flow rate becomes a specified amount.
  • the high frequency power supply unit 19 is operated to apply a high frequency voltage to the electrode unit 5 to start plasma discharge in the processing chamber 3a. Thereby, the plasma processing for the substrate 9 is executed.
  • the vacuum exhaust, the gas supply, and the application of the high frequency voltage are stopped, and the photographing by the camera 26 is finished at the same time.
  • the vent valve 12 is opened, the processing chamber 3a is opened to the atmosphere.
  • the substrate unloading operation is started from the timing t4 when the release of the atmosphere is completed and the lid portion 2 is raised, and the substrate unloading is completed at the timing t5, whereby one cycle of the plasma processing is completed.
  • the data recording process is executed at the timing t2 in FIG. 8, that is, simultaneously with the start of the plasma discharge.
  • the data recording unit 35 holds the date / time data output from the date / time data generating unit 36 simultaneously with the start of plasma discharge in the temporary storage unit 35c (S1), and then from the gas supply unit 16, the pressure gauge 15, and the matching unit 18.
  • the output machine output data is read and stored in the temporary storage unit 35c (S2).
  • the data recording unit 35 confirms whether or not the abnormal discharge is detected by the discharge state detection unit 34 (S3). If no abnormal discharge is detected, the data recording unit 35 determines whether or not the plasma discharge is finished after a predetermined processing time is up (S6).
  • the data recording unit 35 repeatedly executes the processes (S1), (S2), and (S3). As described above, while the plasma processing is continued in a normal state, (S1) and (S2) are continuously executed by the data recording unit 35. As a result, the date and time data and the machine output data are stored in the temporary storage unit 35c. Are stored in time series.
  • the potential change data extraction process is executed by the potential change data extraction unit 35a (S4), and the image data extraction process is further executed by the image data extraction unit 35b (S4). S5).
  • the potential change data extraction unit 35a extracts potential change data for one cycle including potential change data indicating the occurrence of abnormal discharge from the potential change storage unit 32.
  • the extracted potential change data is temporarily held by the potential change data extraction unit 35a until it is stored in the history information storage unit 41 in the potential change data recording process.
  • moving image recording process moving image data corresponding to any one of time periods T1, T2, and T3 preset by the operator is extracted. Each time zone is set so that at least moving image data indicating the occurrence of abnormal discharge is included.
  • the extracted moving image data is temporarily held by the potential change data extracting unit 35b until it is stored in the history information storage unit 41 in the moving image data recording process.
  • a series of data recording processing for recording history information in the plasma processing process in the history information storage unit 41 is executed by the data recording unit 35.
  • the case where the end of the plasma processing is confirmed includes not only the case where the predetermined processing time is timed up and the normal end, but also an automatic stop when an abnormal discharge is detected or a manual operation by the operator. .
  • the data recording unit 35 executes a date / time data recording process (S7).
  • S7 a date / time data recording process
  • the date / time data held last is stored in the date / time data 41k of the history information recording unit 41.
  • the date / time data 41k of the history information recording unit 41 is used as the date / time when the plasma processing was performed when the plasma discharge was normally completed, and as the date / time when the abnormal discharge was detected when the abnormal discharge was detected.
  • the data recording unit 35 executes a machine output data recording process (S8), and executes an operating condition parameter recording process (S9).
  • the control unit 20 stores the machine output data at the timing [t3- ⁇ t] retroactively set from the timing t3 when the plasma discharge is stopped to the temporary storage unit 35c. And is stored in the machine output data 41 c of the history information recording unit 41.
  • the machine output data at the timing t3 is data indicating the operation status of the plasma processing execution unit after the plasma is extinguished, and cannot be used as traceability data. Because.
  • the machine output data is extracted from the temporary storage unit 35c and stored in the machine output data 41c of the history information recording unit 41 by going back to the timing when the plasma discharge is considered to be stable.
  • the time ⁇ t varies depending on the processing speed of the control unit, but is preferably set in the range of several tens of ms to several hundreds of ms.
  • the data recording unit 35 incorporates the date / time data recorded in (S7) into the machine output data as connection information and stores it in the machine output data 41c of the history information recording unit 41.
  • a method of incorporating the date / time data as connection information a method of using date / time data as a part of the file name may be used.
  • the data recording unit 35 reads the operation condition parameter stored in the operation condition parameter storage unit 38 and stores it in the operation condition parameter 41h of the history information storage unit 41.
  • the data recording unit 35 incorporates the date / time data recorded in (S7) into the operation condition parameter as connection information and stores it in the operation condition parameter 41h of the history information recording unit 41.
  • the data recording unit 35 executes plasma monitor detection data recording processing (S10).
  • the detection data (A), determination data (B), and detection condition parameter (C) read from the discharge state detection unit 34 by the plasma monitor detection data recording process are detected data 41e, determination data 41f, Each is stored in the detection condition parameter 41g.
  • the data recording unit 35 incorporates the date / time data recorded in (S7) as detection information, determination data, and detection condition parameters as connection information and stores them in the history information storage unit 41.
  • the data recording unit 35 executes a processed work information recording process (S11).
  • the data recording unit 35 receives workpiece information (information for specifying the type of the board 9 and a file name that defines operating condition parameters) from the workpiece information storage unit 37, and object specifying data for specifying each board from the device control unit.
  • the processed work information is created by reading and incorporating the date and time data of (S7) as connection information.
  • the data recording unit 35 stores the created processed work information in the processed work information 41j of the history information storage unit 41.
  • the data recording unit 35 confirms the result of the quality determination of the discharge state of the substrate 9 by the discharge state determination unit 34b (S12).
  • the result of pass / fail judgment is output as judgment data indicating either success / error (no), and if the judgment data is success, the data recording unit 35 indicates that the substrate 9 has been normally plasma processed.
  • a history image recording process for recording a history image for proving as a production history is executed (S13).
  • the history image data 41d is stored in the history information storage unit 41 by the data recording unit 35, and then the data recording process ends.
  • the data recording unit 35 incorporates the date / time data recorded in (S7) into the historical image data as the connection information and stores it in the historical information storage unit 41.
  • the data recording unit 35 executes the potential change data recording process (S14) and the moving image data recording process (S15), and then ends the data recording process.
  • the potential change data recording process the potential change data for one cycle held in the potential change data extraction unit 35 a is stored in the potential change data 41 a of the history information storage unit 41.
  • moving image data recording process moving image data including moving image data indicating the occurrence state of abnormal discharge held by the image data extraction unit 35b is stored in the moving image data (abnormal) 41b of the history information storage unit 41.
  • the date / time data of (S7) is incorporated as connection information by the potential change data extraction unit 35a.
  • the date / time data of (S7) is also incorporated into the moving image data stored in the history information storage unit 41 as connection information by the image data extraction unit 35b.
  • the data recording unit 35 stores the production history information and the discharge state detection history information regarding the substrate 9 in the history information storage unit 41 by executing the data recording process.
  • the data recording unit 35 stores the date / time data, machine output data, operation condition parameters, detection data, determination data, detection condition parameters, and processed work information as history information every time plasma processing for the processing object is completed.
  • storage part 41 is performed.
  • the data recording unit 35 executes a process of storing the history image data in the history information storage unit 41 when the plasma processing is normally completed, and the potential change data and the moving image data when the abnormal discharge occurs. . Since these data and the like stored in the history information storage unit 41 incorporate date and time data as connection information, it is possible to easily search and rearrange data related to the date and time data.
  • the file output unit 42 has a function of reading the production history information and the discharge state detection history information from the history information storage unit 41 and outputting them as a production history file and a discharge state detection history file.
  • the created history file is output to the removable storage device 28 and temporarily stored in the auxiliary storage unit 39 as necessary.
  • the file output unit 42 includes a production history file creation unit 42a, a plasma monitor file creation unit 42b, and a potential change file creation unit 42c that create files having different data contents depending on the purpose of use.
  • the production history file creation unit 42a, the plasma monitor file creation unit 42b, and the potential change file creation unit 42c are respectively the production history file 61, the plasma monitor file 62, and the potential change shown in FIGS. 10 (a), (b), and (c).
  • a file 63 is created.
  • the plasma monitor file 62 and the potential change file 63 are discharge state detection history files having discharge state detection history information indicating a discharge state detection history by the discharge state detection unit 34 as data contents.
  • the production history file 61 is a data file of production history information including the processing history of the plasma processing of the substrate 9 by the plasma processing execution unit provided in the plasma processing apparatus, and is used as traceability data in production management by the apparatus user.
  • the data structure is made so that it is possible.
  • the production history file 61 includes “magazine” 61a, “storage stage No” 61b, “result” 61c, “date / time” 61d, “setting program” 61e, and “operation condition parameter” 61f. , “Machine output data” 61g and “image” 61h, each row corresponds to one substrate 9 which is an individual processing object.
  • Magazine” 61a and “storage stage No” 61b are object specifying data for specifying the processing object after processing, and “magazine” 61a is data for specifying the magazine in which the substrate 9 after plasma processing is stored.
  • Storage stage No.” 61b indicates the number of the storage stage in the magazine in which the substrate 9 is stored.
  • “Result” 61c is determination data indicating the result of the quality determination of the discharge state of the substrate 9.
  • “Success” is output and abnormal discharge occurs. Is detected, “Error” and the contents of Error are output.
  • “Date / time” 61d is date / time data for specifying the date / time when the plasma processing was performed or the date / time when the abnormal discharge was detected.
  • the workpiece information of the substrate 9, that is, the data type that defines the workpiece type and the plasma processing conditions applied to the substrate 9 is output.
  • the “magazine” 61 a, “storage stage No” 61 b, “result” 61 c, “date / time” 61 d, and “setting program” 61 e are data corresponding to the processed work information 41 j recorded in the history information storage unit 41.
  • “Operating condition parameter” 61f and “machine output data” 61g are data corresponding to the operating condition parameter 41h and the machine output data 41c recorded in the history information storage unit 41, respectively.
  • image a history image (moving image or still image) for proving that the substrate 9 has been normally plasma-processed is output together with a data name for specifying this image.
  • the production history file 61 includes “machine output data” 61 g in addition to “result”. Even if the “result” indicating the presence or absence of abnormal discharge is “Success”, an erroneous result may be output due to factors such as a detection condition parameter setting error in the discharge state detection unit 34 or a failure of the probe electrode 22b. Sex cannot be excluded. However, by including the “machine output data” 61 g in addition to the “result” 61 c, “Success” is proved by the numerical value of the machine output data that the plasma processing execution unit has not performed an abnormal operation due to abnormal discharge. Accepted as a more credible result.
  • the “operation condition parameter” 61f is included in the production history file 61, there is also an advantage that it is easy to determine whether the machine output data indicates an operation at the time of abnormal discharge.
  • the production history file 61 in the present embodiment is configured as described above, the “operating condition parameter” 61f and the “image” 61h are not necessarily included in the production history file.
  • the plasma monitor file 62 is a data file obtained by converting data output from the discharge state detection unit 34, which is a plasma monitor, and is mainly intended to be referred to when a device manufacturer of a plasma processing apparatus deals with a device trouble.
  • the plasma monitor file 62 is composed of “date and time” 62a, “plasma monitor detection data” 62b, and “moving image” 62c, and one substrate 9 in which each row is an individual processing object. It corresponds to.
  • “Date and time” 62a is date and time data for specifying the date and time when the plasma processing was executed or the date and time when the abnormal discharge occurred.
  • “Plasma monitor detection data” 62b is discharge state detection history information from the discharge state detection unit 34 as data indicating the detection condition parameters set as detection conditions in the discharge state detection process and the analysis result of the potential change data. Detection data indicating the output detection result and determination data indicating the determination result are included.
  • the determination result is “Success”
  • “Plasma monitor detection data” 62b is output.
  • the determination result is “Error”
  • the moving image data (abnormal time) 41b recorded in the history information storage unit 41 is output to the “moving image” 62c together with the data name for identifying the moving image.
  • the potential change file 63 is a data file in which potential change data showing, as a waveform, a signal of potential change induced by abnormal discharge when abnormal discharge occurs in the processing chamber. Similarly, the potential change file 63 is created for the purpose of referring to the apparatus manufacturer of the plasma processing apparatus when dealing with an apparatus trouble. As shown in FIG. 10C, the potential change file 63 includes “date and time” 63a, “waveform data” 63b, and “moving image” 63c. “Date and time” 63a is date and time data for specifying the date and time when the abnormal discharge is detected.
  • the “waveform data” 63b is data indicating a waveform of a potential change read from the potential change storage unit 32 by the potential change data extraction unit 35a when an abnormal discharge is detected by the discharge state detection unit 34.
  • moving image data (at the time of abnormality) 41b recorded in the history information storage unit 41 corresponding to the waveform data is output together with a data name for identifying the moving image.
  • a data format can be selected according to the subject that refers to them.
  • a file format such as a csv file format that can be easily browsed by the apparatus user for production management is selected.
  • the device manufacturer accesses the device from a remote location at any time via the network and refers to these history files when necessary. Choose a file format that suits your needs. As a result, it is possible to manage a plurality of types of history files having different data properties as user-friendly and appropriately.
  • the file output unit 42 displays a file output screen 64 shown in FIG.
  • the file output unit 42 outputs the output file to the removable storage device 28 in response to an input from the operation button on the file output screen 64.
  • the file output screen 64 is provided with four operation buttons of “production history” 64a, “plasma monitor history” 64b, “potential change data” 64c, and “current data” 64d. By doing so, different combinations are output according to the purpose. That is, by operating the “production history” 64a, the end of the storage target period is designated in the period input field 64e, and a check mark is added to the check frame 64f as to whether or not image attachment is necessary. A prompt screen appears. Note that the start date of the storage period is automatically displayed according to the point in time. As a result of these inputs, the production history file 61 (FIG. 10A) corresponding to the designated storage target period is output to the removable storage device 28. This output operation is selected when the apparatus user outputs the production history file 61 as production management data.
  • the “plasma monitor history” 64b by operating the “plasma monitor history” 64b, the designation of the end of the storage target period is similarly input to the period input field 64g, and a check mark is added to the check frame 64h as to whether image attachment is necessary. A screen prompting you to do so is displayed.
  • the production history file 61 and the plasma monitor file 62 (FIG. 10B) corresponding to the designated storage target period are output to the removable storage device 28. This output operation is selected when a device manufacturer collates production history information with abnormal discharge detection history information and traces the cause of the trouble retroactively when trouble such as poor plasma processing quality occurs. .
  • the potential change data output screen 56 shown in FIG. 11B is displayed, and only the data determined to be necessary is selected from a large number of potential change data. It can be output. That is, on the potential change data output screen 56, a data display column 65a representing the waveform data already recorded in the history information storage unit 41 in a tabular format is displayed, and data assigned to these data in chronological order. Numbers 65b and data names 65c corresponding to these data numbers 65b (here, the abnormal discharge occurrence date and time are directly used as file names of the data) are listed. When outputting potential change data, data is first selected from a plurality of data listed in the data display column 65a based on the date and time of occurrence of abnormal discharge.
  • the production history file 61, the plasma monitor file 62, and the potential change file 63 created and output in this way all include connection information that associates each data constituting these history files through common date and time data. It has a data structure. For this reason, even when these are output as individual files, the data constituting these history files can be matched through common date and time data, and the cause analysis work can be properly performed when dealing with troubles. .
  • processing history information such as production history information and discharge state detection history information
  • processing history information such as production history information and discharge state detection history information
  • the production history file 61, the plasma monitor file 62, and the potential change file 63 include moving image and still image data. These pieces of image data may be excluded instead of essential components as history information and discharge state detection history information.
  • the plasma processing apparatus of the present invention has the effect of obtaining useful data for investigating the cause of abnormal discharge in plasma processing and ensuring traceability.
  • Plasma processing is performed using a substrate as a processing object. Useful in the field to do.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 プラズマ処理における異常放電の原因を究明するための有用なデータを取得するとともにトレーサビリティを確保することができるプラズマ処理装置であり、このプラズマ処理装置は、基板9を処理室3a内に収容してプラズマ処理を行うプラズマ処理装置において、処理室3a内の異常放電を検出する放電検出センサ23、処理室3a内を窓部2aを介して撮影して動画データを出力するカメラ26を備え、異常放電を検出した場合には異常放電の検出時点を含む時間帯に対応する動画データを記憶させ、異常放電を検出しない場合には正常な放電状態を示す動画または静止画のデータを、プラズマ処理が行われたことを示す正常履歴画像データとして記憶させる。これにより、異常放電の原因を究明するための有用なデータを取得するとともにトレーサビリティを確保することができる。

Description

プラズマ処理装置
 本発明は、基板などの処理対象物をプラズマ処理するプラズマ処理装置に関する。
 電子部品が実装される基板などの処理対象物のクリーニングやエッチングなどの表面処理方法として、プラズマ処理が知られている。プラズマ処理においては、処理対象の基板を処理室を形成する真空チャンバ内に載置し、処理室内でプラズマ放電を発生させ、この結果発生したイオンや電子を基板の表面に作用させることにより、所望の表面処理が行われる。このプラズマ処理を良好な処理品質で安定して行うためには、予め処理目的に則して設定された放電条件に応じてプラズマが正しく発生していることが前提となるため、従来よりプラズマの発生状態を監視することを目的として各種の手段・方法が用いられている(特許文献1~3参照)。
 特許文献1は、処理室が設けられた真空チャンバに電位検出用のプローブ電極を備えた放電検出センサを装着し、プローブ電極にプラズマの変化に応じて誘発される電位変化を検出することにより、処理室内における異常放電の有無を検出するようにしている。また特許文献2は、反応室の内部をカメラによって撮像し、異常放電による発光を検出することにより、異常放電が発生したことおよび発生位置を特定するものである。さらに特許文献3は、プラズマ室内部のプラズマ光をCCDなどのイメージセンサを用いて検出することにより、プラズマプロセスをモニタリングするようにしている。
日本国特開2001-319922号公報 日本国特開2003-318115号公報 日本国特開平11-67732号公報
 近年プラズマ処理が適用される電子部品製造分野では、高度な耐久性が求められる車載部品などの高品質部品について、従来と比較してより精細な品質管理が必要とされるようになっている。このためプラズマ処理のプロセスにおいても、単に異常放電の検出のみならず、異常発生の原因を究明して処理品質を安定させることが求められる。
 さらに、プラズマ処理のプロセスにおいても、処理対象物に対してプラズマ処理が適切になされたことを後工程や処理対象物を組み込んだ完成品から追跡調査可能な履歴を残すこと、いわゆるトレーサビリティの要求が高まってきているが、異常放電発生の有無の情報のみではプラズマ処理が正常になされたことの証明にはならず、プラズマ処理におけるトレーサビリティを確保する方策が望まれていた。
 しかしながら上述の各特許文献に示す先行技術においては、いずれも異常放電が発生していることを検出することは可能であるものの、異常発生の原因を究明するために有用なデータを提供するものではない。このため従来は異常の原因を究明しようとすれば、その異常を再現するために多大な手間と労力を費やしてテストを試行錯誤的に反復する必要があった。このような再現テストにおいても、プラズマの発生状態には多くの要素が複雑に関連しているため異常を厳密な意味で再現することはできず、異常発生の原因究明は極めて困難であった。
 そこで本発明は、プラズマ処理における異常放電の原因を究明するための有用なデータを取得するとともにトレーサビリティを確保することができるプラズマ処理装置を提供することを目的とする。
 本発明のプラズマ処理装置は、処理対象物を収容可能な処理室を形成する真空チャンバと、前記処理室を減圧した状態でこの処理室内にプラズマ発生用ガスを導入して高周波電圧を印加することにより前記プラズマ発生用ガスを励起させて前記処理室内に収容された処理対象物のプラズマ処理を実行するプラズマ処理実行部と、前記処理室内における異常放電を検出する放電状態検出手段を備えたプラズマ処理装置であって、前記真空チャンバに設けた窓部と、前記窓部を介して前記真空チャンバの内部を撮影して動画データを出力するカメラと、前記カメラから出力された動画データを記憶する第1の記憶部と、前記第1の記憶部から抽出された動画データを記憶する第2の記憶部と、前記第1の記憶部から前記動画データを抽出して前記第2の記憶部に記憶させる処理を行う画像データ抽出手段とを備え、前記画像データ抽出手段は、前記放電状態検出手段が異常放電の発生状況を示す動画データを前記第1の記憶部から抽出して前記第2の記憶部に記憶させ、異常放電を検出することなくプラズマ処理が終了した場合には、予め決められた特定時期の動画データもしくは前記第1の記憶部の動画データから派生する特定時期の静止画データを前記第1の記憶部から抽出して前記第2の記憶部に記憶させる。
 本発明によれば、処理対象物を処理室内に収容してプラズマ処理を行うプラズマ処理装置において、処理室内における異常放電を検出する放電状態検出手段が異常放電を検出した場合に異常放電の発生状況を示す動画データを記憶させ、異常放電を検出することなくプラズマ処理が終了した場合には特定時期の動画データもしくは静止画データを記憶させることにより、プラズマ処理における異常放電の原因を究明するための有用なデータを取得するとともにトレーサビリティを確保することができる。
本発明の一実施の形態のプラズマ処理装置の断面図。 本発明の一実施の形態のプラズマ処理装置の動作説明図であり、(a)は蓋部が上昇した状態を示す説明図、(b)は蓋部が下降した状態を示す説明図。 本発明の一実施の形態のプラズマ処理装置に用いられる放電検出センサの構成説明図。 本発明の一実施の形態のプラズマ処理装置の制御部の構成および機能を示すブロック図。 本発明の一実施の形態のプラズマ処理装置における放電状態検出部の機能説明図であり、(a)は放電状態検出部の構成を示す説明図、(b)はプラズマ処理装置の運転時に放電検出センサのプローブ電極から出力されて電位変化記憶部に記憶される電位変化のデータを波形として示したグラフ。 本発明の一実施の形態のプラズマ処理装置における画像データ抽出処理の説明図。 本発明の一実施の形態のプラズマ処理装置の構成および動作を示す説明図であり、(a)は開口部が開放した状態を示す説明図、(b)は開口部か閉止された状態を示す説明図。 本発明の一実施の形態のプラズマ処理装置の動作および処理を示すタイムチャート。 本発明の一実施の形態のプラズマ処理装置におけるデータ記録処理を示すフロー図。 本発明の一実施の形態のプラズマ処理装置によって出力される履歴データファイルの構成説明図であり、(a)は生産履歴ファイルの内容を示す説明図、(b)はプラズマモニタファイルの内容を示す説明図、(c)は電位変化ファイルの内容を示す説明図。 本発明の一実施の形態のプラズマ処理装置におけるファイル出力部の機能説明図であり、(a)はファイル出力画面を示した説明図、(b)は電位変化データ出力画面を示した説明図。
 図1は本発明の一実施の形態のプラズマ処理装置の断面図、図2(a)、(b)は本発明の一実施の形態のプラズマ処理装置の動作説明図、図3は本発明の一実施の形態のプラズマ処理装置に用いられる放電検出センサの構成説明図、図4は本発明の一実施の形態のプラズマ処理装置の制御部の構成および機能を示すブロック図、図5(a)、(b)は本発明の一実施の形態のプラズマ処理装置における放電状態検出部の機能説明図、図6は本発明の一実施の形態のプラズマ処理装置における画像データ抽出処理の説明図、図7(a)、(b)は本発明の一実施の形態のプラズマ処理装置の構成および動作を示す説明図、図8は本発明の一実施の形態のプラズマ処理装置の動作および処理を示すタイムチャート、図9は本発明の一実施の形態のプラズマ処理装置におけるデータ記録処理を示すフロー図、図10(a)、(b)、(c)は本発明の一実施の形態のプラズマ処理装置によって出力される履歴データファイルの構成説明図、図11(a)、(b)は本発明の一実施の形態のプラズマ処理装置におけるファイル出力部の機能説明図である。
 まず図1、図2(a)、(b)を参照してプラズマ処理装置の構造を説明する。図1、図2(a)、(b)において、真空チャンバ3は、水平なベース部1上に、蓋部2を昇降手段(図示省略)によって昇降自在に配設して構成されている。図2(b)に示すように、蓋部2が下降して(矢印b)、ベース部1の上面にシール部材4を介して当接した状態では真空チャンバ3は閉状態となり、ベース部1と蓋部2で囲まれる密閉空間は、処理対象物を収容しプラズマ処理を行う処理室3aを形成する。処理室3aには電極部5が配置されており、電極部5はベース部1に設けられた開口部1aに下方から絶縁部材6を介して装着されている。電極部5の上面には絶縁体7が装着されており、図2(a)に示すように、処理対象物である基板9はガイド部材8によって両側端部をガイドされた状態で、基板搬入アーム30によって後端部を押送されて基板搬入方向(矢印a方向)から絶縁体7の上面に搬入される。
 ベース部1に設けられた開孔1bには、管路11を介してベントバルブ12,圧力計15,ガス供給バルブ13および真空バルブ14が接続されている。さらにガス供給バルブ13、真空バルブ14はそれぞれガス供給部16、真空ポンプ17と接続されている。真空ポンプ17を駆動した状態で真空バルブ14を開にすることにより、処理室3a内が真空排気される。このときの真空度は、圧力計15によって検出される。真空バルブ14および真空ポンプ17は、処理室3a内を真空排気する真空排気部を構成する。またガス供給バルブ13を開状態にすることにより、ガス供給部16からプラズマ発生用ガスが処理室3a内に供給される。ガス供給部16は流量調整機能を内蔵しており、任意の供給量のプラズマ発生用ガスを処理室3a内に供給することができる。そしてベントバルブ12を開放にすることにより、真空破壊時に処理室3a内に大気が導入される。
 電極部5には整合器18を介して高周波電源部19が電気的に接続されている。処理室3a内を真空排気してプラズマ発生用ガスを供給した状態で高周波電源部19を駆動することにより、電極部5には接地部10に接地された蓋部2との間に高周波電圧が印加される。これにより処理室3a内においてプラズマ発生用ガスが励起されてプラズマが発生する。整合器18は、処理室3a内においてプラズマ放電を発生させるプラズマ放電回路と高周波電源部19のインピーダンスを整合させる機能を有している。本実施の形態においては電極部5、整合器18、高周波電源部19は、プラズマ発生用ガスを励起させてプラズマを発生させるプラズマ発生手段となっている。また上述構成の真空排気部と、ガス供給部16と、電極部5と、高周波電源部19と、整合器18と、これら各部を制御する装置制御部40とは、これら各部によって処理室3a内に収容された処理対象物のプラズマ処理を実行するプラズマ処理実行部を構成する。
 真空チャンバ3を構成する蓋部2の側面には、外部から処理室3aの内部を視認するための円形の窓部2aが設けられている。窓部2aには、誘電体部材21、プローブ電極ユニット22よりなる放電検出センサ23が、支持部材24によって蓋部2の外側から固定されている。さらにプローブ電極ユニット22の外側には、カメラ26が支持ブラケット25によって蓋部2に保持されて配設されている。図2(b)に示すように、蓋部2を下降させて処理室3aが形成された状態において、カメラ26は窓部2aを介して処理室3aの内部を撮像して、撮像結果をデジタル化された動画データとして出力する。これにより、処理室3a内で発生したプラズマの状態(異常放電の発生状況)を動画により視覚的に検出して記録することが可能となっている。カメラ26はLED照明部26aを備えており、LED照明部26aを点灯することにより処理室3a内に照明光を照射した状態で撮像することができ、処理室3a内でプラズマが発生していない状態においても、処理室3a内の状態を画像情報として取得することが可能となっている。
 ここで図3を参照して、放電検出センサ23の構成を説明する。蓋部2に設けられた窓部2aには、光学的に透明なガラスで製作された誘電体部材21が装着されている。処理室3aの内部では、電極部5と蓋部2との間にプラズマが発生しており、誘電体部材21は一方の面が処理室3a内に発生したプラズマに対向する姿勢で真空チャンバ3に設けられた窓部2aに装着されている。
 誘電体部材21の他方の面、すなわち真空チャンバ3の外側向の面には、プローブ電極ユニット22が装着されている。プローブ電極ユニット22は、ガラス板22aの一方の面にプローブ電極22bを形成し、他方の面にシールド電極22cを形成した一体部品であり、プローブ電極ユニット22を誘電体部材21に装着して放電検出センサ23を形成する際には、プローブ電極22bを誘電体部材21の外面に密着させた状態で、導電性金属よりなる支持部材24によって蓋部2に支持されている。プローブ電極22bは、検出導線22dを介して制御部20に接続されている。
 処理室3aの内部においてプラズマPが発生した状態では、プローブ電極22bは、誘電体部材21およびプラズマPと誘電体部材21との界面に形成される空間電荷層であるシースSを介して、プラズマPと電気的に接続された状態となる。すなわち、図3に示すように、誘電体部材21によって形成されるコンデンサC1およびシースSに相当する容量のコンデンサC2およびプラズマPの有する抵抗Rを直列に接続した電気的な回路が形成され、プローブ電極22bにはプラズマPの状態に応じた電位が誘起される。本実施の形態においては、プローブ電極22bの電位を検出導線22dによって制御部20に導き、プラズマPの状態に応じた電位変化の信号を制御部20に設けられた放電状態検出部34(図4)によって解析して放電状態の判定を行うようにしている。
 処理室3aの内部において、電極部5上に載置された基板9の周辺で異常放電が発生すると、処理室3a内部のプラズマPの状態が変動する。この変動は上述の回路のインピーダンスを変化させることから、プローブ電極22bの電位変化として検出される。この電位変化の検出は極めて高感度であり、従来方法ではほとんど検知し得なかったような微弱な変動でも正確に検出することができるという特徴を有している。シールド電極22cはプローブ電極22bの外面側を電気的にシールドする機能を有しており、シールド電極22cに生じた電荷は接地された蓋部2に導電性の支持部材24を介して逃がされる。これにより、プローブ電極22bに誘発される電位変化に対するノイズが低減される。
 本実施の形態においては、プローブ電極22b、シールド電極22cは、いずれもガラス板22aの表面にITO(Indium Tin Oxide)などの透明な導電性物質を膜状にコーティングすることにより形成される。これにより、放電検出センサ23を窓部2aに装着した状態において、蓋部2の外側から窓部2aを介して処理室3a内部をカメラ26によって撮像できるようになっている。すなわち、本実施の形態に示す放電検出センサ23においては、窓部2aは一方の面が処理室3a内に発生したプラズマに対向するように真空チャンバ3に装着された板状の誘電体部材21を有する構成となっており、誘電体部材21の他方の面に光学的に透明な導電性物質から成る透明電極であるプローブ電極22bを設けた構成となっている。このような構成により、処理室3aの内部を撮像するための窓部2aと、プラズマ放電状態を監視するためのプローブ電極22bとを兼用させることができる。
 プラズマ処理装置は全体の動作制御を行う制御部20を備えている。制御部20が、ベントバルブ12、ガス供給バルブ13,真空バルブ14,圧力計15,ガス供給部16、真空ポンプ17、高周波電源部19を制御することにより、プラズマ処理に必要な各動作が実行される。また制御部20は、カメラ26によって撮像された動画データを受信する。さらに、制御部20は、プラズマ処理実行部を構成する圧力計15、ガス供給部16、真空ポンプ17、整合器18、高周波電源部19から出力されるマシン出力データ、すなわちこれらの各部がプラズマ処理実行のために実際に運転された際の運転状態を示すデータを受信する。
 制御部20には表示部27、リムーバブル記憶装置28,操作・入力部29が接続されている。操作・入力部29はプラズマ処理動作実行時の各種操作入力やデータ入力を行う。表示部27は操作・入力部29による入力時の操作画面の表示の他、制御部20内の各記憶部に記憶されているデータ等の表示を行う。リムーバブル記憶装置28はUSBメモリなどの着脱式の記憶媒体であり、カメラ26によって撮像された動画データや放電検出センサ23によって検出された放電状態検出履歴データなどを記憶する。
 次に図4を参照して、制御部20の構成および機能を説明する。制御部20は、A/D変換部31、電位変化記憶部32、動画記憶部33、放電状態検出部34、データ記録部35、日時データ生成部36、ワーク情報記憶部37、運転条件パラメータ記憶部38、補助記憶部39、装置制御部40、履歴情報記憶部41、ファイル出力部42を備えている。
 制御部20の上記構成において、上述のプラズマ処理実行部を制御してプラズマ処理動作を実行させる制御処理は、装置制御部40によって行われる。その他の構成要素は、当該プラズマ処理装置によってプラズマ処理が実行された基板9の個々の処理履歴を示す生産履歴や、処理室3a内における放電状態の検出履歴などを所定様式でデータ化したトレーサビリティデータを作成する機能に関するものである。
 本実施の形態においては、前述の放電検出センサ23から出力される電位変化を示す電位変化データ、放電状態検出部34から出力される検出データ及び判定データ、カメラ26によって処理室3a内を撮影した画像データ、整合器18、圧力計15、ガス供給部16から出力されるマシン出力データなどを履歴対象データとしている。そしてこれらの履歴対象データを、日時データを介して、処理対象のワークである個々の基板9を特定するワーク情報、プラズマ処理の実行条件である運転条件パラメータ等と関連させて、データ記録部35によって履歴情報記憶部41に履歴データとして記録させる構成となっている。そして履歴情報記憶部41に記憶された履歴データをファイル出力部42が所定のフォーマットに従ってデータ編集することにより、それぞれ使用目的が異なる複数種類の履歴ファイルがトレーサビリティファイルとして作成され外部に出力される。
 以下、各部機能の詳細について説明する。A/D変換部31は、プローブ電極22b、整合器18、圧力計15、ガス供給部16から出力されるアナログ信号をA/D変換する。プローブ電極22bから出力されA/D変換された後のプラズマの状態の変化に伴う電位変化のデータは電位変化記憶部32に記憶され、カメラ26から出力された動画データは動画記憶部33に記憶される。動画記憶部33はカメラ26から出力された動画データを記憶する第1の記憶部に該当し、電位変化記憶部32は透明電極であるプローブ電極22bから受信した電位変化のデータを記憶する第3の記憶部に該当する。電位変化記憶部32、動画記憶部33はいずれも所定の記憶容量を有している。これらは最低でもプラズマ処理1回分の動画データや電位変化のデータを記憶可能な記憶容量を有している。電位変化記憶部32並びに動画記憶部33に記憶されるデータは時系列的に古い順から新しいデータに置き換えられる。そしてこの時系列における特定の時点が指定されることにより、その時点に対応した電位変化のデータ、動画データがそれぞれ特定できるようになっている。
 放電状態検出部34は処理室3a内における放電状態の監視を行うプラズマモニタであり、電位変化記憶部32に記憶された電位変化のデータに基づき、処理室3a内における放電状態を検出するとともに、この検出データに基づいて異常放電の発生有無などの放電状態の良否判定を処理対象物である基板9毎に行う機能を有している。異常放電は基板9の熱ダメージなどによる品質不良の原因となるため、発生そのものを極力防止するとともに発生が確認された場合にはその発生時点において処理対象となった基板9を特定して不良品として排除する必要がある。さらには異常放電の発生履歴を記録して、後工程からの遡及追跡調査が可能となるようにする必要がある。放電状態検出部34はこのような目的のために放電状態を監視する機能を有するものである。
 図5(a)、(b)を参照して、放電状態検出部34の構成および機能を説明する。図5(a)に示すように、放電状態検出部34は放電状態解析部34a、放電状態判定部34b、検出条件パラメータ記憶部34cより構成されている。放電状態解析部34aは、放電状態判定部34bによる良否判定に必要な数値を電位変化記憶部32に記録された電位変化のデータより得るための処理を行う。検出条件パラメータ記憶部34cには、放電状態解析部34aで参照する判定しきい値や放電状態判定部34bによる異常放電の判定で参照する判定基準となる数値が記憶されている。次に、放電状態解析部34aの処理機能について説明する。
 図5(b)は、プラズマ処理装置の運転時に放電検出センサ23のプローブ電極22bから出力されて電位変化記憶部32に記憶される電位変化のデータを波形として示したものである。ここでは、正電圧側に判定しきい値V1(+)が、負電圧側に判定しきい値V2(-)がそれぞれ設定された検出条件において、判定しきい値V1(+)を+側へ超えさらに判定しきい値V2(-)を-側へ超えるパターンの波形W1、判定しきい値V2(-)を-側へ超えるパターンの波形W2が検出された例を示している。
 プラズマ処理装置の運転時には、プラズマ放電が正常に開始したことを示す波形や、電極部5上に載置された基板9と電極部5との間に生じる不正常なアーク放電や不安定なグロー放電などの異常放電に伴う波形を含めて、プラズマ放電の状態に応じた各種の波形が検出される。これらの波形はそれぞれ特徴的な波形パターンを有しているため、検出された波形パターンがどの波形パターンに属しているかを識別し、また識別された特定パターンの波形がどのようなタイミングでどのような頻度で発生したかを検出することにより、処理室3a内における放電状態の良否を判定することができる。
 放電状態解析部34aは電位変化のデータを解析して、判定しきい値V1(+),V2(-)を超えた回数、波形W1,W2の発生回数、発生時期、発生頻度(単位時間当たりの発生回数)等の放電状態を判定するために必要な数値を得る。この数値は検出データ(A)として出力される。放電状態判定部34bは、放電状態解析部34aで得られた数値が所定の条件を満たすか否かを判断することで異常放電の有無やメンテナンス時期到来を判定する。そして、基板9のプラズマ処理が完了するまでに異常放電の発生がなかった場合には“Success”を、プラズマ処理の途中で異常放電が検出された場合には“Error”を判定データ(B)として出力する。この判定データは放電状態の判定結果を示すデータである。放電状態の判定はプラズマ処理が行われた個々の基板9毎に行われる。これにより、当該プラズマ処理装置の処理対象となった個々の基板9について、正常な放電状態でプラズマ処理が行われた良品であるか否かを判定することができる。放電状態解析部34aによる検出データ(A)および放電状態判定部34bによる判定データ(B)は、いずれもデータ記録部35に出力される。
 本実施の形態において、放電状態検出部34およびプローブ電極ユニット22の他方の面に設けられた透明電極であるプローブ電極22b、このプローブ電極22bに接続されたA/D変換部31、電位変化記憶部32は、処理室3a内における異常放電の発生を検出する放電状態検出手段70を構成する。
 次にデータ記録部35の構成および機能を説明する。データ記録部35は、プローブ電極22bやカメラ26、ガス供給部16、圧力計15、整合器18、さらには放電状態検出部34から取得した履歴対象データを履歴情報記憶部41に記録する処理を行う機能を有している。まず、データ記録部35は、上述の放電状態解析部34aによる検出データ(A)および放電状態判定部34bによる判定データ(B)、検出条件パラメータ(C)より成るプラズマモニタ検出データを履歴情報記憶部41に記録する処理を行う。さらにデータ記録部35は、内部機能として電位変化データ抽出部35a、画像データ抽出部35b、一時記憶部35cを備えている。
 電位変化データ抽出部35a(電位変化データ抽出手段)は、異常放電を電位変化で示すデータを電位変化記憶部32から抽出し(電位変化データ抽出処理)、異常放電の履歴データとして履歴情報記憶部41に記録する(電位変化データ記録処理)機能を有している。抽出するデータの範囲としては、少なくとも異常放電の発生時期を含む時間帯を含めばよく、本実施の形態では異常放電発生前から放電状態検出部34が異常放電を検出する検出時点までの時間帯に対応するデータ(異常放電の発生状況を示す電位変化データ)が抽出対象となる。すなわち電位変化データ抽出部35aは、放電状態検出部34が検出データ(A)によって異常放電の発生を検出した場合に、少なくともその異常放電の発生状況を示す電位変化のデータを第3の記憶部である電位変化記憶部32から読み取って、第4の記憶部である履歴情報記憶部41に電位変化データ41aとして記憶させる処理を行う。
 画像データ抽出部35b(画像データ抽出手段)は、異常放電が発生した場合にその異常放電の発生状況を示す動画データを動画記憶部33から抽出し(画像データ抽出処理)、異常放電を視覚的に把握可能な履歴データとして履歴情報記憶部41に記録する(動画データ記録処理)機能を有している。この画像データ抽出処理について、図6を参照して説明する。図6において、矢印*1は、真空チャンバ3を閉じてカメラ26による撮影を開始した後、処理室3a内でプラズマ放電を開始させてプラズマ処理を行う過程において、放電状態検出部34が異常放電を検出した検出時点を示している。実際の異常放電は、放電状態検出部34の処理による遅れ(タイムラグ)の分だけ検出時点*1よりも早い時期に発生している。
 プラズマ処理における異常放電の発生要因としては、処理対象の基板9の反り変形やプラズマ処理過程における基板9の移動、基板9中に含まれる有機物や水分が気体となって表面から排出される脱ガス現象、基板9をガイドするガイド部材8への異物堆積などが挙げられる。基板9の反りや移動が発生すると基板9と絶縁体7との間に隙間が生じ、この隙間において異常放電が発生する。また脱ガス現象によって基板9の表面において局部的に圧力が上昇するとこの範囲において局部的に異常放電が発生し、そして堆積した異物に電荷が蓄積されることによっても異常放電が生じる。
 このような異常放電の発生状況を、発生要因と関連づけるために必要とされる画像データとして、単に異常放電の有無や発生部位を特定するのみでよい場合には、異常放電の発生時点において処理室3a内を撮影した動画データ、すなわち異常放電の発生状況を示す動画データがあれば足りる。従ってこの場合には、画像データ抽出部35bは、異常放電の発生状況を示す動画データを確実に含む範囲として、少なくとも異常放電を検出した検出時点*1を基準に所定の遡及時間tb1だけ遡った遡及時点*2から検出時点*1までの時間帯T1に対応する動画データを、第1の記憶部である動画記憶部33から抽出して第2の記憶部である履歴情報記憶部41に動画データ(異常時)41bとして記憶させる処理を行う。遡及時間tb1としては少なくとも1秒以上、望ましくは3秒以上がよく、長くてもプラズマ発生時点までがよい。なお、「遡及時点*2から検出時点*1までの時間帯T1」は、検出時点*1を含まない時間帯を意味するものとする。
 これに対し、単に異常放電の発生部位を特定するのみでは発生要因の解明には情報不足で、基板の熱変形や脱ガス現象による局所的な圧力上昇等の異常放電の発生要因となる事象が異常放電発生前に生じていたかを確認するためにはプラズマ処理開始時点からの動画データが必要となる。すなわち画像データ抽出部35bは、少なくともプラズマ発生時点またはそれより前の第1の動画抽出開始時点*3から検出時点*1までの時間帯T2に対応する動画データを、第1の記憶部である動画記憶部33から抽出して第2の記憶部である履歴情報記憶部41に動画データ(異常時)41bとして記憶させる処理を行う。これにより、プラズマ処理実行過程で生じた発生要因と異常放電との関連を動画データによって確認することができる。なお、「第1の動画抽出開始時点*3から検出時点*1までの時間帯T2」は、検出時点*1を含まない時間帯を意味するものとする。
 さらに基板9が処理室3a内に搬入された状態において、既に基板9の位置ずれなど異常放電の発生要因となる事象がプラズマ処理開始前に生じていたかどうかを確認するためには基板搬入動作を記録した動画データが必要となる。この場合には、画像データ抽出部35bは第2の動画抽出開始時点*4から検出時点*1までの時間帯T3に対応する動画データを、第1の記憶部である動画記憶部33から抽出して第2の記憶部である履歴情報記憶部41に動画データ(異常時)41bとして記憶させる処理を行う。これにより、基板搬入時に生じた基板9の位置ずれや反り変形等の発生要因と異常放電との関連を動画データによって確認することができる。ここでも、「第2の動画抽出開始時点*4から検出時点*1までの時間帯T3」は、検出時点*1を含まない時間帯を意味するものとする。
 画像データ抽出部35bに対しては、第1の記憶部から抽出して第2の記憶部へ記憶する動画データをどの時間帯に対応させるかの設定が予めオペレーターによって為されており、その設定に従って後述する画像データ抽出処理が画像データ抽出部35bによって実行される。
 なお、図1、図2(a)、(b)に示すプラズマ処理装置においては、カメラ26は蓋部2に設けられて蓋部2とともに昇降することから、図2(a)に示す基板9の搬入動作において処理室3aの内部を撮影することができない。このため、上述のように搬入開始時点から撮影を行う必要がある場合には、蓋部2に設けられたカメラ26の他に、蓋部2を上昇させた状態においてベース部1や電極部5の上面を撮影可能な位置に専用のカメラを別途設ける必要がある。
 また、単一のカメラによって基板搬入動作を含めて撮影を行わせたい場合には、図7(a)、(b)に示すような構成の真空チャンバ3Aによって真空チャンバ3を置き換えればよい。図7(a)、(b)において、真空チャンバ3Aは、単一の密閉型の容器50より構成されており、容器50の内部は、基板9を対象としてプラズマ処理を実行する処理室50aとなっている、処理室50aには、処理対象の基板9を載置するための載置部51aが設けられた下部電極51および下部電極51の上方に対向した上部電極52が配置されている。
 容器50の側面には、載置部51a上に基板9を搬入・搬出するための開口部50bが設けられており、開口部50bは開閉機構53によって開閉自在となっている。図7(a)に示すように、開口部50bが開放した状態で、吸着保持部55によって基板9を上面側から吸着して保持した基板搬送機構54を水平方向から開口部50bを介して下部電極51の上方に進出させることにより、基板9は載置部51aに載置される。
 容器50において開口部50bと対向する反対側の側面には、図1における窓部2aと同様の窓部50cが、載置部51aの高さ位置に合わせて設けられており、開口部50bの外側には図1と同様のカメラ26が装着されている。基板搬送機構54によって基板9を容器50内に搬入する基板搬入動作において、カメラ26を作動させることにより、基板9の搬入の状態を撮影して動画データを出力させることができる。
 図7(b)は、基板9を容器50内に搬入した後に基板搬送機構54が退避し、開口部50bが閉止された状態を示している。基板9を対象とするプラズマ処理はこの状態で行われ、この状態でカメラ26を作動させることにより、プラズマ処理過程における基板9の状態を撮影することができる。すなわち、図7(a)、(b)に示す真空チャンバ3Aにおいては、単一のカメラ26によってプラズマ処理過程および基板搬入動作時の双方において、基板9の状態を撮像して動画データを出力させることが可能となっている。
 このように、処理室内における異常放電を検出する放電状態検出手段が異常放電を検出した場合に、プラズマ発生時点または基板9を真空チャンバ3へ搬入する動作を開始する搬入開始時点など、異常放電の検出時点から所定時間だけ遡った遡及時点および異常放電の検出時点を含んで設定される抽出対象時間帯に対応する動画データを記憶させることにより、異常放電に起因する品質不良が発生した場合にはその異常放電が発生したときの状況を視覚的に把握することが可能になる。これにより、プラズマ処理における異常放電の原因を究明するための有用なデータを取得することができる。
 なお上述の説明では、放電状態検出部34が異常放電を検出した場合の処理について説明したが、放電状態検出部34が異常放電を検出しなかった場合には、画像データ抽出部35bは、当該基板9について正常な放電状態でプラズマ処理が実行されたことを証明するための履歴画像を抽出する処理を行う。この履歴画像としては、プラズマが最も安定しやすい時期に撮影した画像(動画または静止画)を当該処理における放電状態を代表させるのに適した画像とするのが好ましい。従って、プラズマが安定していると推定される特定時期を予め選定しておき、この特定時期の動画データを動画記憶部33から事後的に抽出することにより取得される。本実施の形態では、図6に示すように、プラズマ処理が停止される処理終了時点t3の直前に設定された画像取得時期*5に対応する画像データ(動画データもしくは静止画データ)を履歴画像とする。静止画データは、動画記憶部33に記憶された動画データから派生するものであり、動画データの1フレーム(1コマ)分のデータである。
 放電状態検出部34が異常放電を検出しなかった場合には、画像データ抽出部35bは、カメラ26による撮像時間帯における特定時期の動画データもしくは静止画データを、第1の記憶部である動画記憶部33から抽出して、第2の記憶部である履歴情報記憶部41に履歴画像データ41dとして記憶させる処理を行う。ここで取得される動画または静止画は、後述する生産履歴情報に含められる。これにより、プラズマ処理のプロセスにおいて、基板9に対してプラズマ処理が適切になされたことを、後工程や基板9を組み込んだ完成品から遡って追跡調査することが可能となり、プラズマ処理におけるトレーサビリティを確保することができる。なお、履歴画像として取得する履歴画像データ41dとしては、動画あるいは静止画のいずれでもよい。動画であれば長くても数秒程度で十分であるが、記憶容量を節約したいのであれば静止画がよい。
 データ記録部35に設けられた一時記憶部35cは、整合器18、圧力計15、ガス供給部16から出力されるマシン出力データおよび日時データ生成部36から出力される日時データを一時的に記憶して保持する機能を有している。一時記憶部35cは、少なくともプラズマ処理の1サイクル分のマシン出力データを記憶可能な記憶容量を有する。日時データ生成部36は計時タイマを内蔵しており、データ記録部35からの日時データ要求信号に基づき、当該時点を特定する日時データをデータ記録部35に対して出力する。ここで出力される日時データは、日付および時分秒を含む細かいタイミングを特定可能なデータであり、異常放電など瞬時に発生する事象についてもこれらの日時データを介して個々に特定できるようになっている。出力された日時データは一時記憶部35cに一時的に記憶され、上述のマシン出力データおよび電位変化記憶部32に記憶された電位変化データおよび動画記憶部33に記憶された動画データとリンクされる。
 ワーク情報記憶部37はワーク情報、すなわち処理対象物である基板9の品種を特定するデータおよび当該品種について適用される運転条件パラメータを規定するファイル名を記憶する。これらのワーク情報はデータ記録部35によって読み取られ、処理後の基板9を個別に特定する対象物特定データと共に処理済ワーク情報41jとして履歴情報記憶部41に記録される。対象物特定データとしては、処理後の基板9を収納するマガジンを特定するマガジン特定データ、さらには個々のマガジンにおける収納位置を示す収納段番号などが含まれる。これらの対象物特定データは、プラズマ処理後の基板9をマガジンに収納する基板回収機構を装置制御部40が動作制御する際に参照するカウンターの値(マガジンにおける収納位置(段数)をカウントするためのカウント値)等から導出される。対象物特定データはデータ記録部35によって装置制御部40から読み取られて履歴情報記録部41に処理済ワーク情報41jとして記憶される。従って、装置制御部40は処理対象物を特定するための対象物特定データを出力する対象物特定データ出力部として機能する。
 運転条件パラメータ記憶部38は、プラズマ処理実行部を構成する各部の運転条件として当該基板9について設定された運転条件パラメータを記憶する。運転条件パラメータとしては、高周波電源部19の高周波電源出力、ガス供給部16によって供給されるプラズマ発生用ガスの供給流量、プラズマ処理を実行する処理時間、処理室3a内の真空度を示す処理圧力などが含まれる。データ記録部35によって読み取られた運転条件パラメータは、履歴記録対象となる各基板9に実際に適用された運転条件を示す運転条件パラメータ41hとして履歴情報記憶部41に記録される。補助記憶部39には、制御部20による処理に際してデータを保持することが必要な場合に、随時一時的に記憶される。装置制御部40は、前述のプラズマ処理実行部によるプラズマ処理のプロセス動作を制御する。
 プラズマ処理の実行に際しては、前述構成のプラズマ処理実行部には、装置制御部40によって運転条件パラメータ記憶部38に記憶された運転パラメータに基づく制御指令が出力され、プラズマ処理実行部を構成する各部はこれらの制御指令に従って作動する。マシン出力データは実際の運転状態において、整合器18、圧力計15、ガス供給部16からそれぞれの作動状態を示す信号として出力されるものであり、ここではこれらのマシン出力データを、個別の基板9の処理履歴として記録するようにしている。マシン出力データは、異常放電が発生しなかった場合は想定内の数値となるが異常放電が生じると想定から大きく外れた数値となる。従って、放電状態検出部34での判定結果を示す判定データに加えてこのマシン出力データを参照することで、プラズマ処理が正常に行われたことの証明をより客観的に示すことができる。
 このようなマシン出力データの具体例としては、以下のようなものがある。まず、ガス供給部16からは、プラズマ発生用ガスの流量値を示す流量信号が出力される。また、圧力計15からは処理室3a内の真空度を示す真空度信号出力される。整合器18からは、RF入射信号、RF反射信号、LOAD信号、VDC信号,PHASE信号が出力される。PF入射信号とは、プラズマ発生のために高周波電源部19から出力された電力のうち高周波回路内を進行した電力の値を示す信号であり、RF反射信号とは、出力された電力のうち高周波回路のインピーダンス変化で反射された電力の値を示す信号である。LOAD信号およびPHASE信号は、整合器18に内蔵されたインピーダンス整合用の可変コンデンサの設定指示値であり、当該状態における極板間距離の距離可変代に対する割合(0~100%)で示される。VDC信号は、セルフバイアス電圧、すなわちプラズマ放電発生時において電極間電圧が負側にバイアスされる電圧値を示すものである。
 このようなマシン出力データは、プラズマ処理実行過程において、予め設定された読み取りタイミングとなったことを示すマシン出力データ読み取り指令が、装置制御部40から出力されることにより行われる。このマシン出力データ読み取り指令が出力されることにより、データ記録部35は整合器18、圧力計15、ガス供給部16から出力されたマシン出力データおよび日時データ生成部36から出力された日時データを一時記憶部35cに保持し、マシン出力データと日時データとを関連づけて、履歴情報記憶部41にマシン出力データ41cとして記録する。
 また、データ記録部35は、電位変化データ、動画データ(異常時)、マシン出力データ、履歴画像データ、検出データ、判定データを履歴情報記憶部41に記録する際には、日時データ生成部36によって生成された日時データを電位変化データ41a、動画データ(異常時)41b、履歴画像データ41dとリンクさせた上で記録する。これにより、電位変化データ41aと動画データ(異常時)41b、履歴画像データ41dを、共通の日時データを介して関連づけることができる。すなわち第2の記憶部に記憶された動画データ(異常時)41b、履歴画像データ41dと第4の記憶部に記憶された電位変化データ41aには、両者を関連付けるための連結情報としての日時データが含まれた形態となっている。
 履歴情報記憶部41に記録される履歴情報において、処理済ワーク情報41j、運転条件パラメータ41h、マシン出力データ41c、判定データ41f、この判定結果が良判定の場合に添付される履歴画像データ41dは、プラズマ処理実行部による処理対象物のプラズマ処理の処理履歴を含む生産履歴情報に該当する。すなわち生産履歴情報は、処理対象物毎の放電状態の良否判定の結果と、処理実行日時および処理後の当該処理対象物を特定する対象物特定データと、プラズマ処理実行部を構成する各部の運転条件として設定された運転条件パラメータと、実際の運転状態を示すデータとしてプラズマ処理実行部から出力されるマシン出力データを含む形態となっている。
 また電位変化データ41a、動画データ(異常時)41bおよび検出データ41eと検出条件パラメータ41gは、放電状態検出部34による放電状態の検出履歴を示す放電状態検出履歴情報に該当する。なお後述するように、本実施の形態においては、放電状態の良否判定において否判定がなされた場合にのみ、これらの放電状態検出履歴情報を後述する放電状態検出履歴ファイルに含めて出力するようにしている。
 次にプラズマ処理の実行過程において、データ記録部35によって上述の生産履歴情報および放電状態検出履歴情報を抽出して履歴情報記憶部41に記録するデータ記録処理のプロセスについて、図8、図9を参照して説明する。このデータ記録処理は、処理対象物である個々の基板9について実行されるものである。
 図8において、タイミングt0にてプラズマ処理のための作業動作が開始されると、まず処理室3a内に処理対象の基板9を搬入する基板搬入が実行される。すなわち図2(a)に示すように、上流側(矢印a)から供給される基板9の後端部を基板搬入アーム30によって押送して、基板9をガイド部材8によってガイドしながら電極部5の絶縁体7の上面に搬入する。
 そして基板9が絶縁体7上の処理位置に載置されると、図2(b)に示すように、蓋部2を下降させて(矢印b)ベース部1に当接させ、真空チャンバ3を閉じる。これにより、蓋部2に設けられたカメラ26によって処理室3a内を撮影することが可能な状態となり、履歴情報としての動画データを取得するための撮影が開始される。なお、図7(a)、(b)に示すような真空チャンバ3Aを備えている場合には、基板搬入を開始する搬入開始時点からカメラ26による撮影を開始することができる。
 次いで真空チャンバ3が密閉されたタイミングt1にて、真空ポンプ17を作動させて処理室3a内の真空排気を開始する。処理室3a内が所定の真空度になったならば、ガス供給部16を作動させて処理室3a内にプラズマ発生用ガスを供給し、次いでガス流量が規定量になったタイミングt2にて、高周波電源部19を作動させ電極部5に高周波電圧を印加し処理室3a内においてプラズマ放電を開始させる。これにより、基板9を対象としたプラズマ処理が実行される。
 この後、所定の処理時間がタイムアップしたタイミングt3にて、真空排気、ガス供給および高周波電圧の印加が停止され、これとともにカメラ26による撮影が終了する。次いでプラズマ処理の停止を承けてベントバルブ12を開放することにより、処理室3aの大気開放が行われる。そして大気開放が完了して蓋部2が上昇したタイミングt4から基板搬出動作が開始され、タイミングt5にて基板搬出が終了することにより、プラズマ処理の1サイクルが完了する。
 上記プロセスにおいて、プラズマ処理が終了するタイミングt3の後、マシン出力データ記録、日時データ記録、プラズマ検出データ(検出データ,判定データ,検出条件パラメータ)記録、運転条件パラメータ記録、処理済ワーク情報記録、履歴画像記録の一連のデータ記録処理がデータ記録部35によって実行される。
 このデータ記録処理について、図9のフローを参照して説明する。データ記録処理は図8のタイミングt2、すなわちプラズマ放電の開始と同時に実行される。まずデータ記録部35は、プラズマ放電の開始と同時に日時データ生成部36から出力される日時データを一時記憶部35cに保持し(S1)、次いでガス供給部16、圧力計15、整合器18から出力されるマシン出力データを読み取って一時記憶部35cに保持する(S2)。(S2)の後、データ記録部35は、放電状態検出部34によって異常放電が検出されたか否かを確認する(S3)。異常放電が検出されていなければ、データ記録部35は所定の処理時間がタイムアップしてプラズマ放電が終了しているか否かを判断する(S6)。(S6)でプラズマ処理が継続中であると確認されたならば、データ記録部35は(S1),(S2),(S3)の処理を反復実行する。このように、プラズマ処理が正常な状態で継続する間は、データ記録部35によって(S1),(S2)が連続的に実行され、その結果、一時記憶部35cには日時データとマシン出力データが時系列的に記憶される。
 (S3)において異常放電が検出されている場合には、電位変化データ抽出処理が電位変化データ抽出部35aによって実行され(S4)、さらに画像データ抽出処理が画像データ抽出部35bによって実行される(S5)。電位変化データ抽出処理では、電位変化データ抽出部35aが電位変化記憶部32から異常放電の発生状況を示す電位変化データを含む1サイクル分の電位変化データを抽出する。抽出された電位変化データは、電位変化データ記録処理で履歴情報記憶部41に記憶されるまで電位変化データ抽出部35aによって一時的に保持される。動画記録処理では、オペレーターによって予め設定された時間帯、すなわちT1,T2,T3のいずれかに対応する動画データを抽出する。各時間帯は、少なくとも異常放電の発生状況を示す動画データが含まれるように設定される。抽出された動画データは、動画データ記録処理で履歴情報記憶部41に記憶されるまで電位変化データ抽出部35bによって一時的に保持される。
 (S6)においてプラズマ処理の終了が確認されたならば、当該プラズマ処理プロセスにおける履歴情報を、履歴情報記憶部41に記録する一連のデータ記録処理がデータ記録部35によって実行される。なお、プラズマ処理の終了が確認されるケースとしては、所定の処理時間がタイムアップして正常に終了する場合の他、異常放電を検出した場合の自動停止やオペレーターによる手動動作での停止がある。
 一連のデータ記録処理ではまず、データ記録部35は日時データ記録処理を実行する(S7)。この処理では、一時記録記憶部35cに保持された日時データのうち、最後に保持された日時データを履歴情報記録部41の日時データ41kに記憶する。これにより、履歴情報記録部41の日時データ41kは正常にプラズマ放電が終了した場合はそのプラズマ処理が行われた日時として、異常放電が検出された場合は異常放電を検出した日時として用いられる。
 次いで、データ記録部35はマシン出力データ記録処理を実行し(S8)、運転条件パラメータ記録処理を実行する(S9)。マシン出力データ記録処理では制御部20により、プラズマ放電が停止したタイミングt3から、任意に設定された時間Δtを遡ったタイミング[t3-Δt]におけるマシン出力データを一時記憶部35cに記憶されたデータの中から抽出して履歴情報記録部41のマシン出力データ41cに記憶する。タイミング[t3-Δt]におけるマシン出力データを記録する理由については、タイミングt3のマシン出力データはプラズマが消滅した後のプラズマ処理実行部の運転状況を示すデータであり、トレーサビリティ用のデータとして採用できないからである。そこで、プラズマ放電が安定していると思われるタイミングまで時間を遡ってマシン出力データを一時記憶部35cから抽出して履歴情報記録部41のマシン出力データ41cに記憶するようにしている。時間Δtは制御部の処理速度により異なるが、数十msから数百msの範囲で設定されるのが望ましい。また、データ記録部35は(S7)で記録した日時データを連結情報としてマシン出力データに組み込んで履歴情報記録部41のマシン出力データ41cに記憶する。日時データを連結情報として組み込む方法としては、ファイル名の一部に日時データを使用する方法でもよい。
 運転条件パラメータ記録処理では、データ記録部35は運転条件パラメータ記憶部38に記憶されている運転条件パラメータを読み取って履歴情報記憶部41の運転条件パラメータ41hに記憶する。また、データ記録部35は(S7)で記録した日時データを連結情報として運転条件パラメータに組み込んで履歴情報記録部41の運転条件パラメータ41hに記憶する。
 この後、データ記録部35はプラズマモニタ検出データ記録処理を実行する(S10)。プラズマモニタ検出データ記録処理により、放電状態検出部34から読み取られた検出データ(A)と判定データ(B)と検出条件パラメータ(C)は履歴情報記憶部41の検出データ41e,判定データ41f,検出条件パラメータ41gにそれぞれ記憶される。プラズマモニタ検出データ記録処理においても、データ記録部35は(S7)で記録した日時データを連結情報として検出データ,判定データ,検出条件パラメータ,に組み込んで履歴情報記憶部41に記憶する。
 その後、データ記録部35は処理済ワーク情報記録処理を実行する(S11)。データ記録部35は、ワーク情報記憶部37からワーク情報(基板9の品種を特定する情報と運転条件パラメータを規定するファイル名)を、装置制御部から個々の基板を特定する対象物特定データを読み取り、これらに(S7)の日時データを連結情報として組み込んだ処理済ワーク情報を作成する。データ記録部35は、作成した処理済ワーク情報を履歴情報記憶部41の処理済ワーク情報41jに記憶する。
 この後、データ記録部35は放電状態判定部34bによる当該基板9の放電状態の良否判定の結果を確認する(S12)。良否判定の結果は、Success(良)/Error(否)のいずれかを示す判定データで出力され、判定データがSuccessであれば、データ記録部35は当該基板9が正常にプラズマ処理されたことを証明するための履歴画像を生産履歴として記録する履歴画像記録処理を実行する(S13)。これにより、データ記録部35によって履歴画像データ41dが履歴情報記憶部41に記憶され、その後データ記録処理は終了する。ここでもデータ記録部35は(S7)で記録した日時データを連結情報として履歴画像データに組み込んで履歴情報記憶部41に記憶する。
 また(S12)にてErrorであれば、データ記録部35は電位変化データ記録処理(S14)と動画データ記録処理(S15)を実行し、その後データ記録処理を終了する。電位変化データ記録処理では、電位変化データ抽出部35aが保持している1サイクル分の電位変化データを履歴情報記憶部41の電位変化データ41aに記憶する。動画データ記録処理では、画像データ抽出部35bが保持している異常放電の発生状況を示す動画データを含む動画データを履歴情報記憶部41の動画データ(異常時)41bに記憶する。履歴情報記憶部41に記憶される電位変化データには電位変化データ抽出部35aによって(S7)の日時データが連結情報として組み込まれる。また、履歴情報記憶部41に記憶される動画データにも画像データ抽出部35bによって(S7)の日時データが連結情報として組み込まれる。
 以上の説明の通り、データ記録部35はデータ記録処理を実行することにより当該基板9に関する生産履歴情報および放電状態検出履歴情報を履歴情報記憶部41に記憶する。
 このように、データ記録部35は、処理対象物に対するプラズマ処理が終了する毎に、日時データ、マシン出力データ、運転条件パラメータ、検出データ、判定データ、検出条件パラメータ、処理済ワーク情報を履歴情報記憶部41に記憶する処理を実行する。これらに加え、データ記録部35は正常にプラズマ処理を終えた場合は履歴画像データを、異常放電が発生した場合には電位変化データと動画データを履歴情報記憶部41に記憶する処理を実行する。履歴情報記憶部41に記憶されるこれらのデータ等には連結情報としての日時データを組み込まれているので日時データを手がかりに関連するデータの検索や並び替え等を容易に行うことができる。
 ファイル出力部42は、履歴情報記憶部41から上述の生産履歴情報および放電状態検出履歴情報を読み出して、生産履歴ファイルおよび放電状態検出履歴ファイルとして出力する機能を有している。作成された履歴ファイルはリムーバブル記憶装置28に出力されるとともに、必要に応じて補助記憶部39に一時的に保存される。
 ファイル出力部42は、使用目的に応じてそれぞれ異なるデータ内容のファイルを作成する生産履歴ファイル作成部42a、プラズマモニタファイル作成部42b、電位変化ファイル作成部42cを備えている。生産履歴ファイル作成部42a、プラズマモニタファイル作成部42b、電位変化ファイル作成部42cは、それぞれ図10(a)、(b)、(c)に示す生産履歴ファイル61、プラズマモニタファイル62、電位変化ファイル63を作成する。プラズマモニタファイル62、電位変化ファイル63は、放電状態検出部34による放電状態の検出履歴を示す放電状態検出履歴情報をデータ内容とする放電状態検出履歴ファイルである。
 生産履歴ファイル61は当該プラズマ処理装置に備えられたプラズマ処理実行部による基板9のプラズマ処理の処理履歴を含む生産履歴情報をデータファイル化したものであり、装置ユーザが生産管理におけるトレーサビリティデータとして用いることができるようデータ構成がなされている。図10(a)に示すように、生産履歴ファイル61は、「マガジン」61a、「収納段No」61b、「結果」61c、「日時」61d、「設定プログラム」61e、「運転条件パラメータ」61f、「マシン出力データ」61g、「画像」61hの各データより構成され、各行が個別の処理対象物である1つの基板9に対応している。「マガジン」61a、「収納段No」61bは、処理後の当該処理対象物を特定する対象物特定データであり、「マガジン」61aはプラズマ処理後の基板9が収納されたマガジンを特定するデータを、「収納段No」61bはそのマガジンにおける当該基板9が収納されている収納段の番号をそれぞれ示す。
 「結果」61cは当該基板9についての放電状態の良否判定の結果を示す判定データであり、正常な放電状態でプラズマ処理が実行された場合には“Success”である旨が出力され、異常放電が検出された場合には“Error”である旨、およびErrorの内容が出力される。「日時」61dはプラズマ処理が実行された日時または異常放電を検出した日時を特定する日時データである。「設定プログラム」61eには当該基板9のワーク情報、すなわちワーク品種およびこの基板9について適用されたプラズマ処理条件を規定するデータファイル名が出力される。「マガジン」61a、「収納段No」61b、「結果」61c、「日時」61d、「設定プログラム」61eは、履歴情報記憶部41に記録された処理済ワーク情報41jに相当するデータである。「運転条件パラメータ」61f、「マシン出力データ」61gは、それぞれ履歴情報記憶部41に記録された運転条件パラメータ41h、マシン出力データ41cに相当するデータである。「画像」61hには、当該基板9が正常にプラズマ処理されたことを証明するための履歴画像(動画または静止画)が、この画像を特定するデータ名称とともに出力される。
 本発明では、生産履歴ファイル61が「結果」の他に、「マシン出力データ」61gを含むことに重要な意味がある。異常放電の有無を意味する「結果」が“Success”であっても、放電状態検出部34における検出条件パラメータの設定ミスやプローブ電極22bの故障などの要因で誤った結果を出力している可能性を排除できない。しかし「結果」61cに加え「マシン出力データ」61gを含めておくことにより、マシン出力データの数値でプラズマ処理実行部が異常放電による異常な動作を行っていなかったことの立証により“Success”はより信用できる結果として受け入れられる。
 また、生産履歴ファイル61に「運転条件パラメータ」61fがあることで、マシン出力データが異常放電時の動作を示すものかの判断を行いやすくなるというメリットもある。
 なお、本実施の形態における生産履歴ファイル61は上述の如く構成されているが、「運転条件パラメータ」61fと「画像」61hは、生産履歴ファイルに必ずしも含める必要はない。
 プラズマモニタファイル62は、プラズマモニタである放電状態検出部34から出力されるデータをデータファイル化したものであり、主にプラズマ処理装置の装置メーカが装置トラブルに対応する際に参照することを目的として作成される。図10(b)に示すように、プラズマモニタファイル62は、「日時」62a、「プラズマモニタ検出データ」62b、「動画」62cより構成され、各行が個別の処理対象物である1つの基板9に対応している。
 「日時」62aは、プラズマ処理が実行された日時または異常放電が発生した日時を特定する日時データである。「プラズマモニタ検出データ」62bは放電状態検出履歴情報であり、放電状態の検出処理過程における検出条件として設定された検出条件パラメータと、電位変化データの解析結果を示すデータとして放電状態検出部34から出力される検出結果を示す検出データと判定結果を示す判定データが含まれる。なお、判定結果が“Success”である場合には、当該基板9については「プラズマモニタ検出データ」62bの各項目についてデータを表示させる必要はなく、判定結果が“Error”である場合についてのみ、「プラズマモニタ検出データ」62bを出力させる。そして判定結果が“Error”である場合には、「動画」62cに、履歴情報記憶部41に記録された動画データ(異常時)41bが、この動画を特定するデータ名称とともに出力される。
 電位変化ファイル63は、前記処理室内で異常放電が発生した場合にその異常放電によって誘発される電位変化の信号を波形として示す電位変化データをデータファイル化したものである。電位変化ファイル63も同様にプラズマ処理装置の装置メーカが装置トラブルに対応する際に参照することを目的として作成される。図10(c)に示すように、電位変化ファイル63は「日時」63a、「波形データ」63b、「動画」63cより構成される。「日時」63aは、異常放電を検出した日時を特定する日時データである。「波形データ」63bは、放電状態検出部34によって異常放電が検出された場合に電位変化データ抽出部35aによって電位変化記憶部32から読み出された電位変化の波形を示すデータである。「動画」63cには、当該波形データに対応し履歴情報記憶部41に記録された動画データ(異常時)41bが、この動画を特定するデータ名称とともに出力される。
 なお、生産履歴ファイル61、プラズマモニタファイル62、電位変化ファイル63のファイル形式としては、これらを参照する主体に応じてデータ形式を選定することもできる。例えば生産履歴ファイル61については、csvファイル形式など装置ユーザが生産管理のために容易に閲覧することが可能なファイル形式を選定する。そしてプラズマモニタファイル62、電位変化ファイル63については、データ内容を秘匿可能としながら、装置メーカが必要なときにはネットワークを介して遠隔地からでも随時当該装置にアクセスして、これらの履歴ファイルを参照するのに適したファイル形式を選択する。これにより、内容とするデータの性質が異なる複数種類の履歴ファイルを、使い勝手よくかつ適正に管理することができる。
 ファイル出力部42は、表示部27に図11(a)に示すファイル出力画面64を表示する。ファイル出力部42はファイル出力画面64の操作ボタンからの入力に応じて出力したファイルをリムーバブル記憶装置28へ出力する。ファイル出力画面64には、「生産履歴」64a、「プラズマモニタ履歴」64b、「電位変化データ」64c、「現在のデータ」64dの4つの操作ボタンが設けられており、これらのいずれかを操作することにより、その目的に応じて異なった組み合わせで出力される。すなわち、「生産履歴」64aを操作することにより、期間入力欄64eに保存対象期間の終期の指定の入力を行うように、また画像添付の要否をチェック枠64fにチェックマークを付与するように促す画面が表示される。なお保存対象期間の開始日はその時点に応じて自動的に表示される。これらの入力がなされることによって、指定された保存対象期間に対応した生産履歴ファイル61(図10(a))が、リムーバブル記憶装置28に出力される。この出力操作は、装置ユーザが生産管理用のデータとしての生産履歴ファイル61を出力させる場合に選択されるものである。
 また「プラズマモニタ履歴」64bを操作することにより、同様に期間入力欄64gに保存対象期間の終期の指定の入力を行うように、また画像添付の要否をチェック枠64hにチェックマークを付与するように促す画面が表示される。これらの入力がなされることによって、指定された保存対象期間に対応した生産履歴ファイル61およびプラズマモニタファイル62(図10(b))が、リムーバブル記憶装置28に出力される。この出力操作は、プラズマ処理品質の不良などのトラブル発生時において、装置メーカが生産履歴情報と異常放電検出履歴情報とを突き合わせて、トラブルの原因を遡及追跡調査する場合に選択されるものである。
 そして「電位変化データ」64cを操作することにより、図11(b)に示す電位変化データ出力画面56が表示され、多数の電位変化データの中から、必要と判断されるデータのみを選択して出力できるようになっている。すなわち電位変化データ出力画面56には、既に履歴情報記憶部41に記録済みの波形データを表形式で表すデータ表示欄65aが表示されており、これらのデータに対して時系列順に付与されたデータ番号65bと、これらのデータ番号65bに対応するデータ名65c(ここでは異常放電発生日時をそのまま当該データのファイル名としている)とが列記されている。電位変化データを出力する際には、まずデータ表示欄65aに列記された複数のデータの中から、異常放電発生日時に基づいてデータを選択する。
 そして不要と判断したデータにカーソルを合わせ、「削除」65eを操作することにより、これら不要なデータが削除される。削除操作を取り消す場合には、「戻る」65dを操作する。データ数が多い場合には、「次ページ」65fを操作して次ページを表示させて同様の操作を行い、画像/動画添付の要否をチェック枠65gにチェックマークを付与することによって行った後、「実行」65hを操作することにより、選択された電位変化データがリムーバブル記憶装置28に出力される。この出力操作は、上述のトラブル発生時において、電位変化データを波形として視覚的に確認する必要があると判断する場合に選択されるものである。
 さらに「現在のデータ」64dを操作することにより、その時点で記録されている全ての履歴情報が生産履歴ファイル61、プラズマモニタファイル62、電位変化ファイル63の形式で出力され、リムーバブル記憶装置28に記憶される。これにより、取得された履歴データの散逸を防止することができる。
 このようにして作成・出力される生産履歴ファイル61、プラズマモニタファイル62、電位変化ファイル63は、いずれもこれらの履歴ファイルを構成する各データを共通の日時データを介して関連づける連結情報を含んだデータ構成となっている。このためこれらを個別のファイルとして出力させた場合にあっても、これらの履歴ファイルを構成する各データを共通の日時データを介して突き合わせ、トラブル対処時の要因解析作業を適正に行うことができる。
 このように、生産履歴情報や放電状態検出履歴情報などの処理履歴情報を個々の生産品について整備して、必要に応じて操作性よく出力させることが可能な構成とすることにより、個々の生産品の処理品質を保証するとともに、不具合発生時の後工程からの遡及調査が可能となり、プラズマ処理におけるトレーサビリティを確保することが可能となっている。
 なお本実施の形態においては、生産履歴ファイル61、プラズマモニタファイル62、電位変化ファイル63に動画や静止画のデータを含ませるようにしているが、これら動画や静止画などの画像データは、生産履歴情報や放電状態検出履歴情報として必須の構成要素ではなく、これらの画像データを除外するようにしてもよい。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年1月26日出願の日本特許出願(特願2009-013993)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のプラズマ処理装置は、プラズマ処理における異常放電の原因を究明するための有用なデータを取得するとともにトレーサビリティを確保することができるという効果を有し、基板などを処理対象物としてプラズマ処理を行う分野に有用である。
 2 蓋部
 2a 窓部
 3 真空チャンバ
 3a 処理室
 5 電極部
 9 基板
 15 圧力計
 16 ガス供給部
 17 真空ポンプ
 18 整合器
 19 高周波電源部
 21 誘電体部材
 22 プローブ電極ユニット
 22b プローブ電極
 23 放電検出センサ
 26 カメラ
 P プラズマ

Claims (2)

  1.  処理対象物を収容可能な処理室を形成する真空チャンバと、前記処理室を減圧した状態でこの処理室内にプラズマ発生用ガスを導入して高周波電圧を印加することにより前記プラズマ発生用ガスを励起させて前記処理室内に収容された処理対象物のプラズマ処理を実行するプラズマ処理実行部と、前記処理室内における異常放電を検出する放電状態検出手段を備えたプラズマ処理装置であって、
     前記真空チャンバに設けた窓部と、前記窓部を介して前記真空チャンバの内部を撮影して動画データを出力するカメラと、前記カメラから出力された動画データを記憶する第1の記憶部と、前記第1の記憶部から抽出された動画データを記憶する第2の記憶部と、前記第1の記憶部から前記動画データを抽出して前記第2の記憶部に記憶させる処理を行う画像データ抽出手段とを備え、
     前記画像データ抽出手段は、前記放電状態検出手段が異常放電を検出した場合には、少なくとも異常放電の発生状況を示す動画データを前記第1の記憶部から抽出して前記第2の記憶部に記憶させ、
     異常放電を検出することなくプラズマ処理が終了した場合には、予め決められた特定時期の動画データもしくは前記第1の記憶部の動画データから派生する特定時期の静止画データを前記第1の記憶部から抽出して前記第2の記憶部に記憶させることを特徴とするプラズマ処理装置。
  2.  前記窓部は、一方の面が前記処理室内に発生した前記プラズマに対向するように前記真空チャンバに装着された板状の誘電体部材であり、
     前記放電状態検出手段は、前記誘電体部材の他方の面に設けた透明電極と、前記透明電極に前記プラズマの変化に応じて誘発される電位変化を受信して異常放電の発生を検出する放電状態解析部を備えたことを特徴とする請求項1記載のプラズマ処理装置。
PCT/JP2010/000404 2009-01-26 2010-01-25 プラズマ処理装置 WO2010084778A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080005409.2A CN102293064B (zh) 2009-01-26 2010-01-25 等离子体处理装置
US13/145,960 US8450933B2 (en) 2009-01-26 2010-01-25 Plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009013993A JP5353266B2 (ja) 2009-01-26 2009-01-26 プラズマ処理装置
JP2009-013993 2009-01-26

Publications (1)

Publication Number Publication Date
WO2010084778A1 true WO2010084778A1 (ja) 2010-07-29

Family

ID=42355833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000404 WO2010084778A1 (ja) 2009-01-26 2010-01-25 プラズマ処理装置

Country Status (4)

Country Link
US (1) US8450933B2 (ja)
JP (1) JP5353266B2 (ja)
CN (1) CN102293064B (ja)
WO (1) WO2010084778A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8585862B2 (en) * 2007-08-21 2013-11-19 Panasonic Corporation Plasma processing device and plasma discharge state monitoring device
WO2016046886A1 (ja) * 2014-09-22 2016-03-31 株式会社日立国際電気 成膜装置、及び成膜方法
WO2019145990A1 (ja) * 2018-01-23 2019-08-01 株式会社Fuji プラズマ発生装置および情報処理方法
JP7311329B2 (ja) * 2019-07-02 2023-07-19 ファナック株式会社 推定装置およびシステム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177415A (ja) * 1987-01-17 1988-07-21 Yuasa Battery Co Ltd プラズマ反応監視装置
JPH02202019A (ja) * 1989-01-31 1990-08-10 Ando Electric Co Ltd 半導体結晶の液相成長法
JPH06282663A (ja) * 1993-03-26 1994-10-07 Shibaura Eng Works Co Ltd データ演算処理記録、検索、及び表示方法
JPH07234133A (ja) * 1994-02-23 1995-09-05 Toshiba Corp トレンドグラフ表示装置
JPH1154464A (ja) * 1997-07-29 1999-02-26 Matsushita Electric Ind Co Ltd 電子部品のプラズマクリーニング装置およびプラズマクリーニング方法
JP2001102196A (ja) * 1999-09-29 2001-04-13 Hitachi Kokusai Electric Inc プラズマ処理装置
JP2001319922A (ja) * 2000-05-10 2001-11-16 Nec Corp 異常放電検出装置および検出方法
JP2003173973A (ja) * 2001-12-04 2003-06-20 Hitachi High-Technologies Corp プラズマ処理装置及び処理方法
JP2003318115A (ja) * 2002-04-24 2003-11-07 Japan Science & Technology Corp 窓型プローブ、プラズマ監視装置、及び、プラズマ処理装置
JP2005197323A (ja) * 2003-12-26 2005-07-21 Canon System Solutions Inc プロセスと品質との関係についてのモデル作成装置及びモデル作成方法
JP2006277298A (ja) * 2005-03-29 2006-10-12 Tokyo Electron Ltd 基板処理装置、履歴情報記録方法、履歴情報記録プログラム及び履歴情報記録システム
JP2007305612A (ja) * 2006-05-08 2007-11-22 Tokyo Electron Ltd サーバ装置、およびプログラム
JP2008130755A (ja) * 2006-11-20 2008-06-05 Hitachi High-Technologies Corp 半導体製造装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167732A (ja) 1997-08-22 1999-03-09 Matsushita Electron Corp プラズマプロセスのモニタリング方法およびモニタリング装置
JP3689732B2 (ja) * 2001-12-05 2005-08-31 株式会社日立ハイテクノロジーズ プラズマ処理装置の監視装置
TW200300951A (en) * 2001-12-10 2003-06-16 Tokyo Electron Ltd Method and device for removing harmonics in semiconductor plasma processing systems
JP5404984B2 (ja) * 2003-04-24 2014-02-05 東京エレクトロン株式会社 プラズマモニタリング方法、プラズマモニタリング装置及びプラズマ処理装置
JP5028192B2 (ja) * 2007-09-05 2012-09-19 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ安定度判定方法
JP4983575B2 (ja) * 2007-11-30 2012-07-25 パナソニック株式会社 プラズマ処理装置およびプラズマ処理方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177415A (ja) * 1987-01-17 1988-07-21 Yuasa Battery Co Ltd プラズマ反応監視装置
JPH02202019A (ja) * 1989-01-31 1990-08-10 Ando Electric Co Ltd 半導体結晶の液相成長法
JPH06282663A (ja) * 1993-03-26 1994-10-07 Shibaura Eng Works Co Ltd データ演算処理記録、検索、及び表示方法
JPH07234133A (ja) * 1994-02-23 1995-09-05 Toshiba Corp トレンドグラフ表示装置
JPH1154464A (ja) * 1997-07-29 1999-02-26 Matsushita Electric Ind Co Ltd 電子部品のプラズマクリーニング装置およびプラズマクリーニング方法
JP2001102196A (ja) * 1999-09-29 2001-04-13 Hitachi Kokusai Electric Inc プラズマ処理装置
JP2001319922A (ja) * 2000-05-10 2001-11-16 Nec Corp 異常放電検出装置および検出方法
JP2003173973A (ja) * 2001-12-04 2003-06-20 Hitachi High-Technologies Corp プラズマ処理装置及び処理方法
JP2003318115A (ja) * 2002-04-24 2003-11-07 Japan Science & Technology Corp 窓型プローブ、プラズマ監視装置、及び、プラズマ処理装置
JP2005197323A (ja) * 2003-12-26 2005-07-21 Canon System Solutions Inc プロセスと品質との関係についてのモデル作成装置及びモデル作成方法
JP2006277298A (ja) * 2005-03-29 2006-10-12 Tokyo Electron Ltd 基板処理装置、履歴情報記録方法、履歴情報記録プログラム及び履歴情報記録システム
JP2007305612A (ja) * 2006-05-08 2007-11-22 Tokyo Electron Ltd サーバ装置、およびプログラム
JP2008130755A (ja) * 2006-11-20 2008-06-05 Hitachi High-Technologies Corp 半導体製造装置

Also Published As

Publication number Publication date
CN102293064B (zh) 2014-06-11
JP5353266B2 (ja) 2013-11-27
JP2010170928A (ja) 2010-08-05
US8450933B2 (en) 2013-05-28
CN102293064A (zh) 2011-12-21
US20110273094A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5353265B2 (ja) プラズマ処理装置
JP5942213B2 (ja) プラズマ処理装置
KR101142571B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP5353266B2 (ja) プラズマ処理装置
KR100724173B1 (ko) 기판 처리 장치의 복구 처리 방법 및 기판 처리 장치 및프로그램을 기록한 기록매체
US20110109530A1 (en) Plasma processing device and method of monitoring discharge state in plasma processing device
KR102243473B1 (ko) 기판 처리 장치, 장치 관리 컨트롤러, 프로그램 및 반도체 장치의 제조 방법
JP6768058B2 (ja) 基板処理装置、装置管理コントローラ及び半導体装置の製造方法並びにプログラム
JP2003108223A (ja) 真空装置の監視装置および監視方法
CN114946011A (zh) 处理装置、显示装置、半导体器件的制造方法及程序
JPH1183848A (ja) 検査装置
JP3858935B2 (ja) 監視方法および監視システム
JP3991959B2 (ja) 固体試料表面分析装置
JP3992066B2 (ja) 真空装置の監視装置および監視方法
JP2013003688A (ja) 不良要因検知装置および不良要因検知方法
CN108155112B (zh) 缺陷检测机台与smif的自锁系统及自锁方法
JP2000357719A (ja) 半導体基板の検査方法及びそれに用いる検査装置
TW201023286A (en) Portable wafer inspection system
JP2001084006A (ja) 半導体製造装置の制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005409.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13145960

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733385

Country of ref document: EP

Kind code of ref document: A1