WO2010082638A1 - Cu合金膜および表示デバイス - Google Patents

Cu合金膜および表示デバイス Download PDF

Info

Publication number
WO2010082638A1
WO2010082638A1 PCT/JP2010/050438 JP2010050438W WO2010082638A1 WO 2010082638 A1 WO2010082638 A1 WO 2010082638A1 JP 2010050438 W JP2010050438 W JP 2010050438W WO 2010082638 A1 WO2010082638 A1 WO 2010082638A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy film
underlayer
atomic
layer
oxygen
Prior art date
Application number
PCT/JP2010/050438
Other languages
English (en)
French (fr)
Inventor
大西 隆
後藤 裕史
富久 勝文
綾 三木
釘宮 敏洋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009008265A external-priority patent/JP2010165955A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN2010800035759A priority Critical patent/CN102246311A/zh
Publication of WO2010082638A1 publication Critical patent/WO2010082638A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53233Copper alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a Cu alloy film used for a display device such as a liquid crystal display or an organic EL display, and a display device including the Cu alloy film, and in particular, has excellent adhesion to a transparent substrate such as a glass substrate.
  • the present invention relates to a Cu alloy film, a Cu alloy film excellent in adhesion to a semiconductor layer of a thin film transistor, and a display device.
  • Al aluminum
  • Cu copper
  • Cu has a problem in that it has low adhesion to the glass substrate and peels off. Moreover, since the adhesiveness with a glass substrate is low, Cu has a problem that wet etching for processing into a wiring shape is difficult. Therefore, various techniques for improving the adhesion between Cu and the glass substrate have been proposed.
  • Cu has a problem in that it has low adhesion to a semiconductor layer (amorphous silicon or polycrystalline silicon) of a thin film transistor and peels off.
  • a semiconductor layer amorphous silicon or polycrystalline silicon
  • Cu diffuses in the semiconductor layer to form a reaction layer of the semiconductor layer and Cu, and this reaction layer portion forms a Cu layer.
  • the film peels off.
  • Cu has a problem that it is difficult to perform wet etching for processing into a wiring shape. Therefore, various techniques for improving the adhesion between Cu and the semiconductor layer have been proposed.
  • Patent Documents 1 to 3 disclose techniques for improving adhesion by interposing a refractory metal layer such as molybdenum (Mo) or chromium (Cr) between a Cu wiring and a glass substrate.
  • a refractory metal layer such as molybdenum (Mo) or chromium (Cr)
  • Mo molybdenum
  • Cr chromium
  • these techniques increase the number of steps for forming the refractory metal layer and increase the manufacturing cost of the display device.
  • different metals such as Cu and a refractory metal (Mo or the like) are laminated, there is a possibility that corrosion occurs at the interface between Cu and the refractory metal during wet etching.
  • the wiring cross section cannot be formed into a desired shape (for example, a shape having a taper angle of about 45 to 60 °). Furthermore, the electrical resistivity (12.9 ⁇ 10 ⁇ 6 ⁇ ⁇ cm) of a refractory metal such as Cr is higher than that of Cu, and signal delay and power loss due to wiring resistance are problematic.
  • Patent Document 4 discloses a technique in which nickel or a nickel alloy and a polymer resin film are interposed as an adhesion layer between a Cu wiring and a glass substrate.
  • this technique there is a possibility that the resin film deteriorates during the high-temperature annealing process at the time of manufacturing a display display (for example, a liquid crystal panel), and the adhesiveness decreases.
  • Patent Document 5 discloses a technique in which copper nitride is interposed as an adhesion layer between a Cu wiring and a glass substrate.
  • copper nitride itself is not a stable compound. Therefore, in this technique, N atoms are released as N 2 gas in a high-temperature annealing process at the time of manufacturing a display display (for example, a liquid crystal panel), so that there is a possibility that the wiring film is deteriorated and adhesion is lowered.
  • Patent Documents 6 and 7 are disclosed at substantially the same time by the same applicant.
  • Patent Document 6 discloses a technique for improving the adhesion of Cu wiring by containing Cu at least one selected from the group consisting of Zr or Zr and Mn, Zn and Sn in Cu wiring.
  • Patent Document 7 discloses that Cu wiring has at least one first additive metal selected from the group consisting of Hf, Ta, Nb, and Ti, and a second additive metal selected from the group consisting of Mn, Zn, and Sn.
  • Patent Document 8 a material comprising an oxygen-containing layer obtained by oxidizing an upper portion of a semiconductor layer and a pure Cu or Cu alloy film is used as a source / drain electrode wiring material, and the oxygen-containing layer is configured.
  • a thin film transistor substrate in which at least a part of oxygen is bonded to Si of a semiconductor layer, and the pure Cu or Cu alloy film is connected to the semiconductor layer through the oxygen-containing layer. It has been demonstrated that excellent TFT characteristics can be obtained even when the metal layer is omitted.
  • the present invention has been made paying attention to the above circumstances, and its purpose is to have high adhesion with a transparent substrate, low electrical resistivity, and excellent wet etching property, and further, the film thickness of the Cu alloy film. It is an object of the present invention to provide a Cu alloy film with less variation in thickness and excellent in film thickness controllability. Another object is a Cu alloy film for a display device that is in direct contact with a semiconductor layer of a thin film transistor, and has a high adhesion to the semiconductor layer, a low electrical resistivity, and an excellent wet etching property. Is to provide.
  • Cu alloy film for display device A Cu alloy film for a display device, wherein the Cu alloy film is an oxygen-containing alloy film that satisfies the following requirements (1) and (2).
  • the Cu alloy film comprises 0.10 atomic% in total of at least one element selected from the group consisting of Ni, Al, Zn, Mn, Fe, Ge, Hf, Nb, Mo, W, and Ca. More than 10 atomic%.
  • the Cu alloy film has an underlayer and an upper layer having different oxygen contents, The underlayer is in contact with the transparent substrate or the semiconductor layer, and the oxygen content of the underlayer is greater than the oxygen content of the upper layer.
  • the oxygen content of the underlayer is 0.1 atomic percent or more and 30 atomic percent or less, and the oxygen content of the upper layer is less than 0.1 atomic percent (including 0 atomic percent).
  • the element contained in the Cu alloy film is at least one selected from the group consisting of Ni, Al, Zn, Mn, Fe, Ge, Hf, Nb, Mo, and W.
  • the Cu alloy film according to [3] which is an element and contains a total of 0.10 atomic% to 5.0 atomic%.
  • the Cu alloy film has a first layer and a second layer in which at least one of the kind of element and the amount of the element is different, and The first layer is in contact with the transparent substrate or the semiconductor layer, and the content of the element defined in (1) included in the first layer is a layer above the first layer.
  • a display device comprising the Cu alloy film according to any one of [1] to [3].
  • the Cu alloy film for a display device in direct contact with the transparent substrate contains an appropriate alloy element, and the amount of oxygen in the underlayer directly in contact with the transparent substrate is greater than the amount of oxygen in the upper layer (preferably
  • the base layer contains a suitable amount of oxygen, and the upper layer on the base layer is substantially free of oxygen), so a high adhesion with a transparent substrate, low electrical resistivity, In addition, excellent wet etching properties can be obtained, and variations in film thickness distribution can be kept small. If such a Cu alloy film is used for a display device, the number of manufacturing steps and cost can be reduced.
  • the oxygen-containing Cu alloy film of the present invention is used for wirings and electrodes that are in direct contact with a transparent substrate, and is typically used for gate wirings and gate electrodes.
  • the Cu alloy film for a display device that is in direct contact with the semiconductor layer of the thin film transistor includes an appropriate alloy element
  • the base layer that is in direct contact with the semiconductor layer includes an appropriate amount of oxygen. Since the upper layer employs a laminated structure that does not substantially contain oxygen, high adhesion to the semiconductor layer, low electrical resistivity, and excellent wet etching properties can be obtained. According to such a Cu alloy film, according to the display device, the number of manufacturing steps and cost can be reduced.
  • the oxygen-containing Cu alloy film of the present invention is used for wirings and electrodes that are in direct contact with a semiconductor layer (amorphous silicon or polycrystalline silicon) of a thin film transistor, and is typically used for source-drain wirings and source-drain electrodes. .
  • FIG. 1 is a graph showing the relationship between the adhesion rate immediately after film formation and the content of adhesion improving elements (Ni, Al, Mn, Ca) in Example 1-2.
  • FIG. 2 is a graph showing the relationship between the adhesion rate immediately after film formation and the content of the adhesion improving element (W) in Example 1-2.
  • FIG. 3 is a graph showing the relationship between the adhesion rate immediately after film formation and the content of the adhesion improving element (Zn) in Example 1-2.
  • FIG. 4 is a graph showing the relationship between the adhesion rate after heat treatment and the content of adhesion improving elements (Ni, Al, Mn, Ca) in Example 1-2.
  • FIG. 5 is a graph showing the relationship between the adhesion rate after heat treatment and the content of the adhesion improving element (W) in Example 1-2.
  • FIG. 6 is a graph showing the relationship between the adhesion rate after heat treatment and the content of the adhesion improving element (Zn) in Example 1-2.
  • FIG. 7 is a graph showing the relationship between the adhesion rate immediately after film formation and the film thickness of the underlayer in Example 1-3.
  • FIG. 8 is a graph showing the relationship between the oxygen concentration in the argon gas and the adhesion rate when forming the Cu-2 atomic% Zn alloy film.
  • FIG. 9 is a graph showing the relationship between the oxygen concentration in the argon gas and the oxygen concentration in the underlayer when forming the Cu-2 atomic% Zn alloy underlayer.
  • the present inventors have a display device that has high adhesion to a transparent substrate or a semiconductor layer of a thin film transistor, low electrical resistivity, and excellent wet etching properties, and more preferably, the variation in the thickness of the Cu alloy film is small.
  • an oxygen-containing Cu alloy film containing an alloy element such as Ni the Cu alloy film is composed of an underlayer and an upper layer having different oxygen amounts, and (i) is in direct contact with the substrate or the semiconductor layer.
  • the underlayer contains a predetermined amount of oxygen, and (ii) the upper layer above the underlayer does not substantially contain oxygen and is at most less than the amount of oxygen contained in the underlayer.
  • a layer (underlayer) containing at least a predetermined amount of oxygen is formed at an interface where the transparent substrate or the semiconductor layer is in contact with the Cu alloy film (hereinafter sometimes referred to simply as an interface).
  • the interface is configured to contain an appropriate amount of a predetermined element.
  • alloy elements such as Ni used in the present invention may be collectively referred to as adhesion improving elements.
  • the present invention employs a laminated structure having different oxygen amounts, which has a relationship of underlying layer> upper layer with respect to the oxygen amount, thereby improving adhesion with the transparent substrate and reducing electrical resistance. To achieve both.
  • underlying layer means a layer in direct contact with the transparent substrate or the semiconductor layer
  • upper layer means a layer immediately above the underlayer.
  • the underlayer and the upper layer are distinguished by the difference in oxygen amount.
  • the amount of oxygen is preferably distinguished at a boundary of about 0.5 atomic%, and when the underlayer is in contact with the semiconductor layer, the amount of oxygen is preferably about 0.1. A distinction is made at 1 atomic%.
  • the underlayer When the underlayer is in contact with the transparent substrate, it preferably contains oxygen in the range of 0.5 atomic% to 30 atomic%, and when in contact with the semiconductor layer, oxygen is 0.1 atomic% to 30 atomic%. It is preferable to contain in the range below%.
  • the adhesion between the Cu alloy film and the transparent substrate when the underlayer is in contact with the transparent substrate, the adhesion between the Cu alloy film and the transparent substrate is improved by providing the underlayer containing 0.5 atomic% or more of oxygen. improves.
  • the adhesion between the Cu alloy film and the semiconductor layer is provided by providing the underlayer containing 0.1 atomic% or more of oxygen. Improves.
  • a strong bond (chemical bond) is formed between the substrate or semiconductor layer by interposing a base layer containing a predetermined amount of oxygen at the interface with the substrate or semiconductor layer. It is thought that the adhesion is improved.
  • the oxygen content of the underlayer is preferably 0.5 atomic% or more, more preferably 1 atomic% or more, and still more preferably Is 2 atomic% or more, most preferably 4 atomic% or more.
  • the oxygen content of the underlayer is preferably 0.1 atomic% or more, more preferably 0.5 atomic% or more, and further preferably 1.0 atomic% or more. .
  • the oxygen content becomes excessive and the adhesiveness is improved too much, a residue remains after wet etching and wet etching properties are deteriorated.
  • the oxygen content of the underlayer is preferably 30 atom% or less, more preferably 20 atoms in both cases where the underlayer is in contact with the transparent substrate and in contact with the semiconductor layer. % Or less, more preferably 15 atom% or less, further preferably 13.5 atom% or less, particularly preferably 10 atom% or less.
  • the oxygen content of the upper layer is preferably less than 0.5 atomic%.
  • the amount of oxygen contained in the upper layer is preferably as small as possible from the viewpoint of reducing electric resistance, and at the maximum, it does not exceed the lower limit (0.5 atomic%) of the amount of oxygen in the underlayer.
  • the more preferable oxygen content of the upper layer is 0.3 atomic% or less, more preferably 0.2 atomic% or less, and most preferably 0 atomic%. Further, when the underlayer is in contact with the semiconductor layer, the oxygen content of the upper layer is less than 0.1 atomic%.
  • the amount of oxygen contained in the upper layer is preferably as small as possible from the viewpoint of reducing electric resistance, and at the maximum, it does not exceed the lower limit (0.1 atomic%) of the amount of oxygen in the underlayer.
  • the preferred oxygen content of the upper layer is 0.05 atomic percent or less, more preferably 0.02 atomic percent or less, and most preferably 0 atomic percent.
  • the oxygen-containing Cu alloy film composed of such an underlayer and an upper layer has a depth direction concentration profile in which oxygen decreases from the underlayer toward the upper layer.
  • the oxygen-containing Cu alloy film of the present invention is preferably formed by a sputtering method, a layer having a different oxygen concentration profile in the depth direction can be easily obtained depending on the amount of oxygen introduced. is there.
  • it may have a concentration profile in which the amount of oxygen gradually decreases (including both continuous and discontinuous) from the interface between the transparent substrate or semiconductor layer and the Cu alloy film to the upper layer. The reverse is also acceptable.
  • the underlayer when the underlayer is in contact with the transparent substrate, the underlayer can include an embodiment in which the oxygen concentration profile in the depth direction is different within the range of “oxygen amount: 0.5 atomic% to 30 atomic%”.
  • the upper layer may include an embodiment in which the oxygen concentration profile in the depth direction is different within the range of “oxygen amount: less than 0.5 atomic%”.
  • the underlayer when the underlayer is in contact with the semiconductor layer, the underlayer can include an embodiment in which the oxygen concentration profile in the depth direction is different within the range of “oxygen amount: 0.1 atomic% or more and less than 30 atomic%”.
  • the upper layer may include an embodiment in which the oxygen concentration profile in the depth direction is different within the range of “oxygen amount: less than 0.1 atomic%”.
  • a preferable aspect of the present invention when the underlayer is in contact with the transparent substrate is included in the underlayer from the interface between the transparent substrate and the Cu alloy film to a position in the depth direction of about 10 nm toward the surface of the Cu alloy film.
  • the average oxygen content is 0.5 atomic percent or more and 30 atomic percent or less, and the average oxygen content contained in the upper layer is less than 0.5 atomic percent (including 0 atomic percent).
  • the oxygen concentration profile has a depth direction in which the oxygen content continuously decreases from the interface toward the upper layer.
  • the underlayer When the underlayer is in contact with the transparent substrate, another preferred embodiment of the present invention is that the underlayer extends from the interface between the transparent substrate and the Cu alloy film to a depth direction position of about 50 nm toward the surface of the Cu alloy film.
  • the average content of oxygen contained in the layer is 0.5 atomic percent or more and 30 atomic percent or less, and the average content of oxygen contained in the upper layer is less than 0.5 atomic percent (including 0 atomic percent). And having an oxygen concentration profile in the depth direction in which the oxygen content continuously decreases from the interface toward the upper layer.
  • a preferable aspect of the present invention when the underlayer is in contact with the semiconductor layer is included in the underlayer from the interface between the semiconductor layer and the Cu alloy film to a depth direction position of about 10 nm toward the surface of the Cu alloy film.
  • the average oxygen content is 0.1 atomic percent or more and 30 atomic percent or less, and the average oxygen content contained in the upper layer is less than 0.1 atomic percent (including 0 atomic percent).
  • the oxygen concentration profile has a depth direction in which the oxygen content continuously decreases from the interface toward the upper layer.
  • Another preferable aspect of the present invention in the case where the underlayer is in contact with the semiconductor layer is that the underlayer extends from the interface between the semiconductor layer and the Cu alloy film to a depth direction position of about 50 nm toward the surface of the Cu alloy film.
  • the average oxygen content is 0.1 atomic percent or more and 30 atomic percent or less, and the average oxygen content contained in the upper layer is less than 0.1 atomic percent (including 0 atomic percent). And having an oxygen concentration profile in the depth direction in which the oxygen content continuously decreases from the interface toward the upper layer.
  • the Cu alloy film of the present invention comprises a total of 0.10 at least one adhesion improving element selected from the group consisting of Ni, Al, Zn, Mn, Fe, Ge, Hf, Nb, Mo, W, and Ca. Containing at least 10% by atom and 10% by atom.
  • adhesion improving element selected from the group consisting of Ni, Al, Zn, Mn, Fe, Ge, Hf, Nb, Mo, W, and Ca. Containing at least 10% by atom and 10% by atom.
  • the content of the above elements in the Cu alloy film (a single amount when contained alone, and a total amount when containing two or more types). ) Is 0.10 atomic% or more.
  • the adhesion improving action is saturated (for example, see FIGS. 1 to 4 to be described later), so the upper limit is made 10 atomic%.
  • the upper limit of the content of the element is preferably 5% or less, more preferably 2% or less.
  • the content of the element is preferably determined from the viewpoint of a balance between high adhesion with the transparent substrate and low electrical resistivity, and may be 0.5% or less from the viewpoint of low electrical resistivity. Most preferred.
  • the upper limit of the content of the element is preferably 5.0 atomic% from the viewpoint of the electrical resistance of the Cu alloy film.
  • the above-mentioned element amount means an amount contained in the entire Cu alloy film.
  • the Cu alloy film of the present invention has an underlayer and an upper layer having different oxygen amounts, and the composition (type and / or content) of elements contained in each layer may be different. However, in any case, the total content of elements contained in the Cu alloy film (underlayer + upper layer) needs to be within the above range. In consideration of productivity and the like, it is preferable that the types of elements contained in the base layer and the upper layer are the same.
  • the preferable content of the alloy element may vary depending on the type of the alloy element. This is because the load (influence) on the electric resistance differs depending on the type of alloy element.
  • at least one element selected from the group consisting of Ni, Al, Zn, Mn, Fe, and Ca is 0.12 atom% or more and 0.4 atom in total % Or less, more preferably 0.15 atomic% or more and 0.3 atomic% or less in total.
  • the total of at least one element selected from the group consisting of Ge, Hf, Nb, Mo, and W is preferably 0.12 atomic% or more and 0.25 atomic% or less, more preferably the total.
  • At least one element selected from the group consisting of Ni, Al, Zn, Mn, and Fe is 0.15 atomic% or more and 4 atomic% or less in total. It is preferable that the total content is 0.2 atomic percent or more and 2 atomic percent or less.
  • the total of at least one element selected from the group consisting of Ge, Hf, Nb, Mo, and W is preferably 0.15 atomic% or more and 3 atomic% or less, more preferably 1 in total. Atom% or more and 2 atom% or less.
  • Said adhesive improvement element may be contained independently and may use 2 or more types together.
  • Ni, Al, Zn, Mn, Ge, and Ca are preferable among the above elements, and Ni, Al, Zn, Mn, and Ca are more preferable.
  • Ni, Al, Zn, Mn, and Ca are preferable among the above elements, and Ni, Al, Zn, and Mn are more preferable.
  • the present invention includes a Cu alloy film having layers having different element compositions (types and / or contents).
  • the content of an element contained in a layer in contact with a transparent substrate or a semiconductor layer is contained in a layer above the above layer (a layer having a different element composition (type and / or content))
  • a Cu alloy film having a content higher than the element content (including 0 atomic%) is included.
  • layers having different element compositions (types and / or contents) are classified into a first layer (a layer in contact with a transparent substrate or a semiconductor layer) and a second layer (a layer above the first layer).
  • the above aspect is expressed as a Cu alloy film in which the content of the element contained in the first layer is greater than the content of the element contained in the second layer (including 0 atomic%).
  • This upper layer may be pure Cu substantially free of alloying elements.
  • at least the vicinity of the interface with the transparent substrate or the semiconductor layer should positively contain the predetermined amount of the element.
  • at least the surface of the Cu alloy film has the above elements suppressed to a predetermined amount or less (including 0 atomic%, and thus including pure Cu).
  • the Cu alloy film of the above aspect is a preferable example for ensuring both of such “high adhesion to a transparent substrate or a semiconductor layer and reduction in electric resistance of the Cu alloy film”.
  • the specific content of each layer can be appropriately controlled within the range of the element amount of the entire Cu alloy film (0.10 atomic% or more and 10 atomic% or less).
  • the element amount of the entire Cu alloy film is in a more preferable range in order to realize high adhesion with the transparent substrate and reduction in electric resistance of the Cu alloy film.
  • the content of the elements contained in the layer in contact with the transparent substrate is 0.10 atomic% or more and 4.0 atomic% or less in total after controlling to 10 atomic% or more and 0.5 atomic% or less.
  • the upper layer be pure Cu.
  • the element amount of the entire Cu alloy film is in a more preferable range in order to achieve high adhesion with the semiconductor layer and reduction in electrical resistance of the Cu alloy film. It is controlled to 0.10 atomic% or more and 5.0 atomic% or less.
  • the upper layer be pure Cu.
  • the layer in which the elemental composition (type and / or content) is different from the layer in which the oxygen content is different may have the same position in the depth direction or may be different.
  • Table 2 of Examples described later specifically discloses examples of Cu alloy films having various element compositions (types and / or contents). For example, no. 36, the amount of element (here, Ni) contained in the layer from the interface to 50 nm is 2.0 atomic%, and the amount of element (here, Ni) contained in the upper layer is 0.3 atomic%. And a small Cu alloy film. Further, Tables 6 to 7 of Examples described later specifically disclose examples of Cu alloy films having various element compositions (types and / or contents). For example, No.
  • the amount of the element (here, Ni) contained in the layer from the interface to 50 nm is 2.2 atomic%
  • the amount of the element (here, Ni) contained in the upper layer is 0.3 atomic%.
  • a small Cu alloy film is a small Cu alloy film.
  • the kind of element of each layer may be the same or different.
  • the amount of the element (here, Al) contained in the layer from the interface to 50 nm is 2.0 atomic%
  • the amount of the element (here, Ni) contained in the upper layer is 0.4 atomic%.
  • a small Cu alloy film No. 44, the total amount of elements (here, Ni and Al) contained in the layer from the interface to 50 nm is 2.3 atomic%, and the amount of the element (here, Ni) contained in the layer above is 0.4%.
  • the Cu alloy film is as small as 4 atomic%. Any of these Cu alloy films are included as examples of the present invention.
  • Table 6 No.
  • the amount of the element (here, Al) contained in the layer from the interface to 50 nm is 2.1 atomic%, and the amount of the element (here, Ni) contained in the upper layer is 0.4 atomic%.
  • a small Cu alloy film No. 66, the total amount of elements (here, Ni and Al) contained in the layer from the interface to 50 nm is 1.9 atomic%, and the amount of the element (here, Ni) contained in the layer above it is 0.8.
  • the Cu alloy film is as small as 4 atomic%. Any of these Cu alloy films are included as examples of the present invention.
  • the Cu alloy film of the present invention contains the above-described adhesion improving element, and the balance is Cu and inevitable impurities.
  • the Cu alloy film of the present invention is used for wiring and electrodes that are in direct contact with a transparent substrate or a semiconductor layer of a thin film transistor, taking advantage of its characteristics.
  • the Cu alloy film is used as a gate electrode of a TFT having a bottom gate structure, for example.
  • the Cu alloy film of the present invention may be applied to the source electrode and / or drain electrode of the TFT and the signal line.
  • the characteristics such as oxidation resistance are obtained.
  • it is required to have excellent adhesion with an insulating film (SiN film).
  • the Cu alloy film of the present invention may be applied to the gate electrode and the signal line.
  • the adhesiveness with the transparent substrate is excellent.
  • a well-known alloy element that contributes to improving each of the above characteristics is added within a range that does not impair the function of the present invention, thereby forming a multi-element Cu alloy film. You can also.
  • the thickness of the underlayer is preferably 2 nm or more and less than 150 nm. If the underlying layer is too thin, good adhesion to the transparent substrate or the semiconductor layer may not be realized. On the other hand, if the underlayer is too thick, the electrical resistance of the Cu alloy film may increase. In addition, when the underlayer is in contact with the transparent substrate, the thickness variation due to the location (part) of the underlayer increases, and as a result, a uniform Cu alloy film may not be obtained.
  • the thickness of the base layer is 2 nm or more (when the base layer is in contact with the transparent substrate, preferably 10 nm or more, more preferably 30 nm or more; when the base layer is in contact with the semiconductor layer, preferably 5 nm or more, more preferably 10 nm or more) and less than 150 nm (when the underlayer is in contact with the transparent substrate, preferably 130 nm or less, more preferably 100 nm or less; when the underlayer is in contact with the semiconductor layer, preferably 130 nm or less, more preferably 100 nm or less). is there.
  • the thickness of the upper layer is appropriately determined in relation to the underlying layer. This is because if the underlying layer is too thick compared to the upper layer, the entire Cu alloy film may not be able to maintain a low electrical resistivity.
  • the ratio of the thickness of the upper layer to the thickness of the underlayer (that is, the thickness of the upper layer / the thickness of the underlayer) is preferably 2.5 or more, more preferably 4 or more, and further preferably 5 or more.
  • the ratio of the upper layer thickness / underlayer thickness is preferably 400 or less, more preferably 100 or less, and even more preferably 50 or less.
  • the Cu alloy film according to the present invention is generally preferably not less than 200 nm and not more than 700 nm, and more preferably not less than 250 nm and not more than 500 nm.
  • the Cu alloy film of the present invention is used, a display device having excellent characteristics due to high adhesion to a transparent substrate (particularly a glass substrate), low electrical resistivity, excellent wet etching property and excellent film thickness controllability. Can be manufactured efficiently. Furthermore, the Cu alloy film of the present invention not only excels in adhesion to a transparent substrate or a semiconductor layer, but also exhibits low contact resistance even when directly in contact with the transparent conductive film as described above, so that only as a gate wiring It can also be used for source / drain wiring. If all the gate wirings and source / drain wirings of the display device are made of the Cu alloy film of the present invention, a merit in the manufacturing process that the same sputtering target can be used is also obtained.
  • the above Cu alloy film is preferably formed by a sputtering method.
  • a sputtering method an inert gas such as Ar is introduced into a vacuum, a plasma discharge is formed between the substrate and a sputtering target (hereinafter sometimes referred to as a target), and Ar ionized by the plasma discharge is converted into the above-mentioned
  • a thin film is produced by colliding with a target and knocking out atoms of the target and depositing them on a substrate.
  • ion plating electron beam vapor deposition, or vacuum vapor deposition
  • any sputtering method such as a DC sputtering method, an RF sputtering method, a magnetron sputtering method, or a reactive sputtering method may be employed, and the formation conditions may be set as appropriate.
  • oxygen gas may be supplied at the time of film formation.
  • an oxygen gas supply source in addition to oxygen (O 2 ), an oxidizing gas containing oxygen atoms (for example, O 3 ) can be used.
  • a mixed gas obtained by adding oxygen to a process gas usually used in sputtering is used for forming the underlayer, and sputtering is performed using the process gas without adding oxygen when forming the upper layer.
  • a Cu alloy film having a base layer containing oxygen and an upper layer substantially free of oxygen is formed.
  • a rare gas for example, xenon gas or argon gas
  • argon gas is preferable. If the amount of oxygen gas in the process gas is changed at the time of forming the underlayer, a plurality of underlayers having different oxygen contents can be formed.
  • the above mixing ratio may be appropriately changed according to the amount of oxygen to be introduced.
  • the O 2 concentration in the process gas such as argon gas
  • the process gas is preferably 1% by volume to 50% by volume, and more preferably 20% by volume or less.
  • the ratio of oxygen gas in the process gas is about 2% by volume. It is preferable.
  • the composition of the Cu alloy film can be adjusted by adjusting the composition of the sputtering target.
  • the composition of the sputtering target may be adjusted by using a Cu alloy target having a different composition, or may be adjusted by chip-oning an alloy element metal on a pure Cu target.
  • a slight deviation may occur between the composition of the formed Cu alloy film and the composition of the sputtering target.
  • the deviation is within a few atomic percent. Therefore, if the composition of the sputtering target is controlled within a range of ⁇ 10 atomic% at the maximum, a Cu alloy film having a desired composition can be formed.
  • a plurality of underlayers or a plurality of upper layers having different alloy element contents can be formed by changing the sputtering target at the time of forming each of the underlayer Cu alloy film or the upper Cu alloy film. Also, by changing the sputtering target between the formation of the underlayer and the formation of the upper layer, a Cu alloy film having an underlayer and an upper layer having different alloy element contents can be formed. However, from the viewpoint of production efficiency, it is preferable to use the same sputtering target for the underlayer and the upper layer to form a Cu alloy film having an underlayer and an upper layer in which the ratio of alloy elements excluding oxygen is the same.
  • Example 1-1 (Sample preparation)
  • a pure Cu film or a Cu alloy film (hereinafter referred to as a Cu alloy film) may be represented on a glass substrate (Corning # 1737, diameter 100 mm ⁇ thickness 0.7 mm) by a DC magnetron sputtering method.
  • a sample having a thickness of 500 nm was prepared.
  • the Cu alloy film of this example is composed of a base layer and an upper layer (layers from the base layer to the surface of the Cu alloy film).
  • the amount of oxygen and the alloy composition contained in the base layer and the upper layer are as follows. As shown in Table 1 and Table 2. Of these, sample No. 1 in Table 1 was used.
  • Reference numerals 1 to 32 are examples in which the upper layer and the lower layer have the same alloy composition (type and content).
  • sample No. 33 to 44 are examples in which the alloy composition (type and / or content) of the upper layer and the underlayer is different.
  • the formation of the Cu alloy film was performed as follows using a sputtering apparatus (product name: HSR 542) manufactured by Shimadzu Corporation.
  • the composition of the Cu alloy film is as follows: (i) a Cu sputtering target is used for forming a pure Cu film, and (ii) a Cu alloy film containing various alloy elements is formed on the Cu sputtering target, It controlled using the sputtering target which installed the chip
  • the same sputtering target is used.
  • a predetermined film is used. Sputtering targets having different compositions were used so that
  • the oxygen content of the Cu alloy film was controlled by using a mixed gas of Ar and O 2 as a process gas in forming the underlayer and using only Ar gas in forming the upper layer.
  • the oxygen content in the underlayer was adjusted by changing the ratio of oxygen gas in the mixed gas. For example, when 5 atomic% of oxygen is contained in the underlayer, the ratio of O 2 in the process gas is set to 10% by volume.
  • the composition of the Cu alloy film formed as described above was confirmed by quantitative analysis using an ICP emission spectrometer (ICP emission spectrometer “ICP-8000 type” manufactured by Shimadzu Corporation).
  • O (Oxygen content of underlayer and upper layer) Each oxygen content contained in the underlayer and the upper layer was measured by analyzing by high frequency glow discharge optical emission spectrometry (GD-OES).
  • the O (oxygen) content of each of the underlayer and the upper layer described in Table 1 and Table 2 is included in the film thickness of each of the underlayer and the upper layer based on the depth direction concentration profile obtained by the above analysis. The average concentration content is calculated.
  • the oxygen content of the upper layer is less than 0.05 atomic% (see Tables 1 and 2) and is substantially free of oxygen.
  • Table 1 and Table 2 collectively show the composition of the Cu alloy film (the composition of the upper layer and the underlayer, the oxygen content, and the thickness).
  • a tape peel rate of less than 10% was judged as ⁇ , and a tape peel rate of 10% or more was judged as x.
  • film thickness controllability the variation in the thickness of the Cu alloy film (referred to as film thickness controllability) was measured as follows. First, after masking a part of the substrate using a Kapton tape (Sumitomo 3M 5412), a glass substrate is formed by the above-described method, and a Cu alloy film is formed on the glass substrate. A Cu alloy film having a portion that was not formed and a portion that was not formed was prepared. Next, the Kapton tape was peeled off, and a Cu alloy film in which a step was formed in the film was used as a sample for film thickness control measurement.
  • Kapton tape Kapton tape
  • the thickness d (nm) at a location 25 mm away from the center of the sample was measured with a stylus-type step gauge (“DEKTAK II” manufactured by VEECO).
  • Nos. 33 to 44 are Cu alloy films that satisfy all the requirements of the present invention, and in particular, the content of the adhesion improving element satisfies the preferable requirements of the present invention from the viewpoint of reducing electrical resistivity. It has excellent resistivity and wet etching properties, and also has good film thickness controllability. Of these, No. in Table 4. Nos. 33 to 44 are examples in which the alloy composition of the upper layer and the lower layer are different, and all satisfy the requirements of the present invention, so that desired characteristics were obtained.
  • No. Examples 1 to 4, 5, 8, 9, 12, 13, 16, and 32 are examples that do not satisfy any of the requirements defined in the present invention, or examples that do not satisfy the preferable requirements of the present invention.
  • Examples 1 to 4 are examples using pure Cu. Specifically, No. 1 which is a single layer pure Cu film. No. 1 has a peel rate of 100% and is inferior in adhesion to a glass substrate.
  • No. No. 2 is an example in which 5 atomic% of oxygen is contained in the underlayer, but since it does not contain a predetermined alloy element, it has poor adhesion to the glass substrate.
  • no. No. 4 is an example in which the base layer contains a large amount of oxygen at 40 atomic%, and because it does not contain a predetermined alloy element, No. 4 is used. In addition to an increase in the peeling rate compared to 2, wet etching properties and film thickness controllability also decreased.
  • No. 3 is inferior in wet etching property and film thickness controllability because it does not contain a predetermined alloy element.
  • No. No. 5 is an example in which the amount of Ni is small, and the adhesion to the glass substrate is poor.
  • no. No. 8 is an example with a large amount of Ni, and the electrical resistivity after the heat treatment was high.
  • No. No. 9 is an example in which the base layer is thin and has poor adhesion to the glass substrate.
  • no. No. 12 is an example in which the base layer is thick, and is inferior in electrical resistivity and film thickness controllability.
  • No. No. 13 is an example in which the oxygen content of the underlayer is low, and the adhesion to the glass substrate is poor.
  • no. No. 16 is an example in which the oxygen content of the underlayer is large, and is inferior in electrical resistivity, wet etching property and film thickness controllability.
  • No. 32 is an example containing Bi, which is an alloy element not specified in the present invention, and it contains a predetermined oxygen content in the underlayer, and the thickness thereof is appropriately controlled, but it adheres to the glass substrate. Performance, electrical resistivity, wet etching property, and film thickness controllability are all inferior.
  • Example 1-2 the effect of the type and amount of alloy elements in the underlayer on the adhesion is examined.
  • a sample of a Cu alloy film comprising a Cu alloy underlayer (film thickness: 50 nm) and a Cu alloy upper layer (film thickness: 250 nm) having the same composition as the underlayer in the same manner as in Example 1-1,
  • a sample of a pure Cu film having a film thickness of 300 nm was prepared.
  • the Cu alloy film was formed in the same manner as in Example 1-1, and a sputtering target in which a chip containing an element other than Cu (Ni, Al, Mn, W, Zn) was placed on a pure Cu sputtering target was used.
  • a sputtering target prepared by melting a Cu—Ca alloy having a predetermined composition was used.
  • the addition of oxygen to the Cu alloy film was performed by controlling the sputtering gas used during the film formation. More specifically, an Ar + 5 volume% O 2 mixed gas containing 5% by volume of O 2 in Ar was used for film formation of the underlayer part, and pure Ar gas was used for film formation of the upper layer part.
  • the mixing ratio of the Ar gas and O 2 gas is set at a partial pressure of Ar gas and O 2 gas partial pressure was controlled by adjusting these flow ratio.
  • Example 1-1 As a result of measuring the O 2 concentration in this example by high frequency glow discharge optical emission spectrometry (GD-OES) as in Example 1-1, the O 2 concentration in the upper layer was 0.02 atomic%. The O 2 concentration of the underlayer was 2.9 atomic%.
  • GD-OES high frequency glow discharge optical emission spectrometry
  • Adhesion was evaluated in the same manner as in Example 1-1 for a sample immediately after film formation (as-depo state) and a sample subjected to heat treatment at 350 ° C. for 30 minutes in a vacuum atmosphere after film formation. Note that the tape peeling angle was set to 90 ° only for Zn. The results are shown in FIGS. 1 to 3 (immediately after film formation) and FIGS. 4 to 6 (after heat treatment).
  • Example 1-3 the influence of the film thickness of the underlayer on the adhesion is examined.
  • Samples were prepared in the same manner as in Example 1-2 except that both the underlayer and the upper layer were made of Cu-2 atomic% Zn and the thickness of the underlayer was changed in the range of 10 to 200 nm.
  • pure Ar gas was also used for the formation of the underlayer, and a sample containing no oxygen in the underlayer was also produced.
  • the adhesion of the sample immediately after film formation was evaluated in the same manner as in Example 1-1. The results are shown in FIG. From FIG. 7, it was found that the adhesion tends to improve as the film thickness of the underlayer increases. Further, it was found that the effect of improving the adhesion is saturated when the film thickness is about 100 nm, and the adhesion hardly changes even when the film thickness is increased to 100 nm or more.
  • Example 1-4 the influence of the oxygen concentration in the process gas on the adhesion rate and the relationship between the oxygen concentration in the process gas and the oxygen concentration in the underlayer are examined.
  • the sample was prepared in the same manner as in Example 1-2, except that both the underlayer and the upper layer were made of Cu-2 atomic% Zn, and the O 2 concentration in Ar during the formation of the underlayer portion was changed. did.
  • Adhesion was evaluated in the same manner as in Example 1-1 on the sample immediately after film formation. Also, in each case of changing the O 2 concentration in the Ar during formation of the base layer portion, analyzed by high-frequency glow discharge optical emission spectroscopy O 2 concentration of the base layer in the same manner as in Example 1-1 did. The results are shown in FIGS. FIG.
  • Example 2-1 Sample preparation
  • samples having various pure Cu films or Cu alloy films (hereinafter sometimes represented by Cu alloy films) shown in Tables 5 to 7 on the semiconductor layer were produced.
  • the Cu alloy film of this example is 10 nm from the interface between the semiconductor layer and the Cu alloy film toward the surface of the Cu alloy film with the oxygen content ⁇ 0.1 atomic% as a boundary.
  • the upper layer the layer from the base layer to the surface of the Cu alloy film.
  • Tables 6 and 7 show examples in which the alloy composition (type and / or content) of the upper layer and the lower layer are different (except for No. 53 in Table 6), of which Table 7 is the upper layer or lower layer. This is an example in which the composition (type and / or content) of each layer of the formation is further different.
  • Table 7 shows the layer structure from the interface to the Cu alloy film surface from the rightmost column (underlayer) to the leftmost column (upper layer).
  • the detailed method for preparing the sample is as follows.
  • a semiconductor layer was formed on a glass substrate as follows. First, a silicon nitride film (SiN) having a thickness of about 200 nm is formed on a glass substrate (Corning Corp. # 1737, diameter 100 mm, thickness 0.7 mm) by plasma CVD using a cluster type CVD apparatus manufactured by ULVAC. The gate insulating film was formed. The film formation temperature in the plasma CVD method was about 350 ° C. Next, a low resistance amorphous silicon doped with a non-doped amorphous silicon film [a-Si (i)] having a thickness of about 200 nm and an impurity (P) having a thickness of about 40 nm by plasma CVD using the same CVD apparatus as described above. A film [a-Si (n)] was sequentially formed. This low-resistance amorphous silicon film [a-Si (n)] was formed by performing plasma CVD using SiH4 and PH3 as raw materials.
  • SiN silicon n
  • the composition of the Cu alloy film is as follows: (i) a Cu sputtering target is used for forming a pure Cu film, and (ii) a Cu alloy film containing various alloy elements is formed on the Cu sputtering target, It controlled using the sputtering target which installed the chip
  • the same sputtering target is used.
  • a predetermined film is used. Sputtering targets having different compositions were used so that
  • the oxygen content of the Cu alloy film was controlled by using a mixed gas of Ar and O 2 as a process gas in forming the underlayer and using only Ar gas in forming the upper layer.
  • the oxygen content in the underlayer was adjusted by changing the ratio of oxygen gas in the mixed gas. For example, when 5 atomic% of oxygen is contained in the underlayer, the ratio of O 2 in the process gas is set to 10% by volume.
  • the composition of the Cu alloy film formed as described above was confirmed by quantitative analysis using an ICP emission spectrometer (ICP emission spectrometer “ICP-8000 type” manufactured by Shimadzu Corporation).
  • O (Oxygen content of underlayer and upper layer) Each oxygen content contained in the underlayer and the upper layer was measured by analyzing by high frequency glow discharge emission spectrometry (GDOES).
  • the O (oxygen) contents of the underlayer and the upper layer described in Tables 5 to 7 are included in the respective film thicknesses of the underlayer and the upper layer based on the depth direction concentration profile obtained by the above analysis. The average concentration content is calculated.
  • the oxygen content of the upper layer is less than 0.05 atomic% (see Tables 5 to 7) and is substantially free of oxygen.
  • Tables 5 to 7 collectively show the composition of the Cu alloy film (the composition of the upper layer and the underlayer, the oxygen content, and the thickness).
  • the electrical resistivity is a value calculated by the following equation.
  • Electric resistivity ⁇ (sheet resistance value) / (film thickness)
  • sheet resistance value is a value measured by cutting the sample into a 2-inch size and measured by the four-end needle method
  • film thickness is a value measured as follows.
  • a portion of the glass substrate on which a Cu alloy film is formed by masking a partial region of the substrate with Kapton tape (5412 manufactured by Sumitomo 3M) and then performing film formation by the above method. And a Cu alloy film having a portion not formed.
  • the Kapton tape was peeled off, and a Cu alloy film in which a step was formed in the film was used as a sample for film thickness control measurement.
  • thickness d (nm) of the location 25mm away from the center (thickness 500nm) of the sample was measured with the stylus type step gauge ("DEKTAK II" made by VEECO).
  • No. Examples 1 to 3 are examples using pure Cu. Specifically, No. 1 which is a single layer pure Cu film. No. 1 has a peel rate of 100% and is inferior in adhesion to the semiconductor layer. No. No. 2 is an example in which 10 atomic% of oxygen is contained in the underlayer, but since it does not contain a predetermined alloy element, it has poor adhesion to the semiconductor layer. On the other hand, no. No. 3 is an example in which the base layer contains a large amount of oxygen at 33 atomic%, which is inferior in adhesiveness with the semiconductor layer and also has poor wet etching properties.
  • No. 4, 12, and 21 are examples in which the amount of Ni, the amount of Mn, and the amount of Al are small, respectively, and all have poor adhesion to the semiconductor layer.
  • no. Nos. 6, 15, and 24 are examples in which the amount of Ni, the amount of Mn, and the amount of Al are large, and the wet etching property was deteriorated.
  • No. 43 is an example containing Bi which is an alloying element not specified in the present invention, and the adhesion to the semiconductor layer is included even though the base layer contains a predetermined oxygen content and its thickness is also appropriately controlled. And inferior in wet etching.
  • No. 43 is an example in which the oxygen content of the underlayer is low, and the adhesion to the glass substrate is poor.
  • no. No. 16 is an example in which the oxygen content of the underlayer is large, and the wet etching property is inferior.
  • No. No. 53 is an example of a Cu-0.2 atomic% Ni single layer that does not have a base layer, and the adhesion to the semiconductor layer was lowered.
  • the Cu alloy film for a display device in direct contact with the transparent substrate contains an appropriate alloy element, and the amount of oxygen in the underlayer directly in contact with the transparent substrate is greater than the amount of oxygen in the upper layer (preferably
  • the base layer contains a suitable amount of oxygen, and the upper layer on the base layer is substantially free of oxygen), so a high adhesion with a transparent substrate, low electrical resistivity, In addition, excellent wet etching properties can be obtained, and variations in film thickness distribution can be kept small. If such a Cu alloy film is used for a display device, the number of manufacturing steps and cost can be reduced.
  • the oxygen-containing Cu alloy film of the present invention is used for wirings and electrodes that are in direct contact with a transparent substrate, and is typically used for gate wirings and gate electrodes.
  • the Cu alloy film for a display device that is in direct contact with the semiconductor layer of the thin film transistor includes an appropriate alloy element
  • the base layer that is in direct contact with the semiconductor layer includes an appropriate amount of oxygen. Since the upper layer employs a laminated structure that does not substantially contain oxygen, high adhesion to the semiconductor layer, low electrical resistivity, and excellent wet etching properties can be obtained. According to such a Cu alloy film, according to the display device, the number of manufacturing steps and cost can be reduced.
  • the oxygen-containing Cu alloy film of the present invention is used for wirings and electrodes that are in direct contact with a semiconductor layer (amorphous silicon or polycrystalline silicon) of a thin film transistor, and is typically used for source-drain wirings and source-drain electrodes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本発明は、透明基板又は半導体層との高い密着性、低い電気抵抗率、および優れたウェットエッチング性を示すCu合金膜を提供する。本発明は、表示デバイス用Cu合金膜であって、前記Cu合金膜は、下記(1)および(2)の要件を満足する酸素含有合金膜である表示デバイス用のCu合金膜である:(1)前記Cu合金膜は、Ni、Al、Zn、Mn、Fe、Ge、Hf、Nb、Mo、W、およびCaよりなる群から選ばれる少なくとも1種の元素を合計で0.10原子%以上10原子%以下含有する;(2)前記Cu合金膜は、酸素含有量が異なる下地層と上層を有し、前記下地層は前記透明基板又は半導体層と接触しており、前記下地層の酸素含有量が前記上層の酸素含有量よりも多い。

Description

Cu合金膜および表示デバイス
 本発明は、液晶ディスプレイや有機ELディスプレイ等の表示デバイスに用いられるCu合金膜および当該Cu合金膜を備えた表示デバイスに関し、詳細には、ガラス基板などの透明基板との密着性などに優れたCu合金膜、薄膜トランジスタの半導体層との密着性などに優れたCu合金膜および表示デバイスに関するものである。
 液晶ディスプレイに代表される表示デバイスの配線には、これまでアルミニウム(Al)合金膜が使用されている。しかし表示デバイスの大型化および高画質化が進むにつれて、配線抵抗が大きいことに起因する信号遅延および電力損失といった問題が顕在化している。そのため配線材料として、Alよりも低抵抗である銅(Cu)が注目されている。Alの電気抵抗率は2.5×10-6Ω・cmであるのに対し、Cuの電気抵抗率は1.6×10-6Ω・cmと低い。
 しかしCuは、ガラス基板との密着性が低く、剥離するという問題がある。またガラス基板との密着性が低いために、Cuは、配線形状に加工するためのウェットエッチングが困難であるという問題がある。そこでCuとガラス基板との密着性を向上させるための様々な技術が提案されている。
また、Cuは、薄膜トランジスタの半導体層(アモルファスシリコンまたは多結晶シリコン)との密着性が低く、剥離するという問題がある。例えば、基板の半導体層上にソース-ドレイン電極用配線としてCu配線膜を直接形成すると、半導体層中にCuが拡散して半導体層とCuとの反応層が形成され、この反応層部分からCu膜が剥離するという問題がある。また、Cuは、配線形状に加工するためのウェットエッチングが困難であるという問題がある。そこで、Cuと半導体層との密着性を向上させるための様々な技術が提案されている。
 例えば特許文献1~3は、Cu配線とガラス基板との間に、モリブデン(Mo)やクロム(Cr)などの高融点金属層を介在させて密着性の向上を図る技術を開示している。しかしこれらの技術では、高融点金属層を成膜する工程が増加し、表示デバイスの製造コストが増大する。さらにCuと高融点金属(Mo等)という異種金属を積層させるため、ウェットエッチングの際に、Cuと高融点金属との界面で腐食が生ずるおそれがある。またこれら異種金属ではエッチングレートに差が生じるため、配線断面を望ましい形状(例えばテーパー角が45~60°程度である形状)に形成できないという問題が生じ得る。さらに高融点金属、例えばCrの電気抵抗率(12.9×10-6Ω・cm)は、Cuのものよりも高く、配線抵抗による信号遅延や電力損失が問題となる。
 特許文献4は、Cu配線とガラス基板との間に、密着層としてニッケル又はニッケル合金と高分子系樹脂膜とを介在させる技術を開示している。しかしこの技術では、表示ディスプレイ(例えば液晶パネル)の製造時における高温アニール工程で樹脂膜が劣化し、密着性が低下するおそれがある。
 特許文献5は、Cu配線とガラス基板との間に、密着層として窒化銅を介在させる技術を開示している。しかし窒化銅自体は安定な化合物ではない。そのためこの技術では、表示ディスプレイ(例えば液晶パネル)の製造時における高温アニール工程でN原子がN2ガスとして放出されて、配線膜が劣化し、密着性が低下するおそれがある。
 特許文献6および7は、同一出願人によって略同時期に開示されたものである。このうち特許文献6は、Cu配線に、Zr、又はZrとMn、Zn及びSnよりなる群から選ばれる少なくとも1種とを含有させることによって、Cu配線の密着性を向上させる技術を開示している。特許文献7は、Cu配線に、Hf、Ta、Nb及びTiよりなる群から選ばれる少なくとも1種の第一の添加金属と、Mn、Zn及びSnよりなる群から選ばれる第二の添加金属とを、それぞれ、0.5原子%以上含有させることによってCu配線の密着性を向上させる技術を開示している。これらの特許文献には、必要に応じて、Cu配線をスパッタリングで成膜する際に、反応ガスである酸素ガスを供給しても良いことが記載されており、これにより、Cuの電気抵抗(比抵抗)を低減できたことを示す図が開示されている。しかし、酸素ガスとCu配線の密着性との関係は何も教示していない。
 特許文献8には、ソース-ドレイン電極用配線材料として、半導体層の上部を酸化処理して得られる酸素含有層と、純CuまたはCu合金膜とからなる材料を用い、上記酸素含有層を構成する酸素の少なくとも一部が半導体層のSiと結合し、前記純CuまたはCu合金膜は、前記酸素含有層を介して半導体層と接続している薄膜トランジスタ基板が開示されており、これにより、バリアメタル層を省略しても優れたTFT特性が得られることを実証されている。
日本国特開平7-66423号公報 日本国特開平8-8498号公報 日本国特開平8-138461号公報 日本国特開平10-186389号公報 日本国特開平10-133597号公報 日本国特開2008-112989号公報 日本国特開2008-124450号公報 日本国特開2009-4518号公報
 本発明は上記事情に着目してなされたものであって、その目的は、透明基板との高い密着性、低い電気抵抗率、および優れたウェットエッチング性を有し、更にCu合金膜の膜厚のバラツキが少なく、膜厚制御性に優れたCu合金膜を提供することにある。
 また、別の目的は、薄膜トランジスタの半導体層と直接接触する表示デバイス用Cu合金膜であって、当該半導体層との高い密着性、低い電気抵抗率、および優れたウェットエッチング性を有するCu合金膜を提供することにある。
 本発明の要旨を以下に示す。
[1] 表示デバイス用Cu合金膜であって、
 前記Cu合金膜が、下記(1)および(2)の要件を満足する酸素含有合金膜である表示デバイス用のCu合金膜。
 (1)前記Cu合金膜は、Ni、Al、Zn、Mn、Fe、Ge、Hf、Nb、Mo、W、およびCaよりなる群から選ばれる少なくとも1種の元素を合計で0.10原子%以上10原子%以下含有する。
 (2)前記Cu合金膜は、酸素含有量が異なる下地層と上層を有し、
 前記下地層は前記透明基板又は半導体層と接触しており、前記下地層の酸素含有量が前記上層の酸素含有量よりも多い。
[2]  前記下地層は透明基板と直接接触している[1]記載のCu合金膜。
[3]  前記下地層は半導体層と直接接触している[1]記載のCu合金膜。
[4]  前記(2)において、前記下地層の酸素含有量は0.5原子%以上30原子%以下であり、前記上層の酸素含有量は0.5原子%未満(0原子%を含む)である[2]に記載のCu合金膜。
[5] 前記(1)において、前記Cu合金膜に含有される元素は合計で0.10原子%以上0.5原子%以下である[2]に記載のCu合金膜。
[6] 前記(2)において、前記下地層の酸素含有量は0.1原子%以上30原子%以下であり、前記上層の酸素含有量は0.1原子%未満(0原子%を含む)である[3]に記載のCu合金膜。
[7] 前記(1)において、前記Cu合金膜に含有される元素は、Ni、Al、Zn、Mn、Fe、Ge、Hf、Nb、Mo、およびWよりなる群から選ばれる少なくとも1種の元素であって、合計で0.10原子%以上5.0原子%以下含有する[3]に記載のCu合金膜。
[8] 前記(2)において、前記Cu合金膜は、前記下地層から前記上層に向って酸素が減少する深さ方向濃度プロファイルを有する[1]~[3]の何れかに記載のCu合金膜。
[9] 前記(1)において、前記Cu合金膜は、元素の種類および元素の量のうち少なくとも一つが異なる第1層と第2層を有しており、
 前記第1層は、前記透明基板又は半導体層と接触しており、前記第1層に含まれる前記(1)で規定の元素の含有量は、前記第1層の上の層である前記第2層に含まれる前記(1)で規定の元素の含有量(0原子%を含む。)より多い[1]~[3]の何れかに記載のCu合金膜。
[10] 前記上層は純Cuである[1]~[3]の何れかに記載のCu合金膜。
[11] [1]~[3]の何れかに記載のCu合金膜を備える表示デバイス。
 本発明では、透明基板と直接接触する表示デバイス用Cu合金膜として、適切な合金元素を含み、且つ、透明基板と直接接触する下地層の酸素量は上層の酸素量よりも多くなる(好ましくは、下地層は適量の酸素を含み、下地層の上の上層は、酸素を実質的に含まない)ような積層構成を採用しているため、透明基板との高い密着性、低い電気抵抗率、および優れたウェットエッチング性が得られるほか、膜厚分布のバラツキも小さく抑えることができる。このようなCu合金膜を表示デバイスに用いれば、製造の工程数およびコストを低減できる。本発明の酸素含有Cu合金膜は、透明基板と直接接触する配線や電極に用いられ、代表的にはゲート配線やゲート電極用に用いられる。
 また、本発明では、薄膜トランジスタの半導体層と直接接触する表示デバイス用Cu合金膜として、適切な合金元素を含み、且つ、半導体層と直接接触する下地層は適量の酸素を含み、下地層の上の上層は、酸素を実質的に含まないような積層構成を採用しているため、半導体層との高い密着性、低い電気抵抗率、および優れたウェットエッチング性が得られる。このようなCu合金膜を表示デバイスによれば、製造の工程数およびコストを低減できる。本発明の酸素含有Cu合金膜は、薄膜トランジスタの半導体層(アモルファスシリコンまたは多結晶シリコン)と直接接触する配線や電極に用いられ、代表的にはソース-ドレイン配線やソース-ドレイン電極用に用いられる。
図1は、実施例1-2における成膜直後の密着率と、密着性向上元素(Ni、Al、Mn、Ca)の含有量の関係を示したグラフである。 図2は、実施例1-2における成膜直後の密着率と、密着性向上元素(W)の含有量の関係を示したグラフである。 図3は、実施例1-2における成膜直後の密着率と、密着性向上元素(Zn)の含有量の関係を示したグラフである。 図4は、実施例1-2における熱処理後の密着率と、密着性向上元素(Ni、Al、Mn、Ca)の含有量の関係を示したグラフである。 図5は、実施例1-2における熱処理後の密着率と、密着性向上元素(W)の含有量の関係を示したグラフである。 図6は、実施例1-2における熱処理後の密着率と、密着性向上元素(Zn)の含有量の関係を示したグラフである。 図7は、実施例1-3における成膜直後の密着率と、下地層の膜厚との関係を示したグラフである。 図8は、Cu-2原子%Zn合金膜成膜時のアルゴンガス中の酸素濃度と、密着率との関係を示したグラフである。 図9は、Cu-2原子%Zn合金下地層成膜時のアルゴンガス中の酸素濃度と該下地層中の酸素濃度との関係を示したグラフである。
 本発明者らは、透明基板又は薄膜トランジスタの半導体層との高い密着性、低い電気抵抗率、および優れたウェットエッチング性を有し、さらに好ましくは、Cu合金膜の膜厚のバラツキも小さい表示デバイス用Cu合金膜を提供するため、検討を重ねた。その結果、Niなどの合金元素を含む酸素含有Cu合金膜であって、上記Cu合金膜は、酸素量が異なる下地層と上層から構成されており、(i)基板又は半導体層と直接接触する下地層には所定量の酸素量を含み、且つ、(ii)下地層の上の上層は、酸素を実質的に含有せず、最大でも下地層に含まれる酸素量未満である積層構成を採用すれば、上記特性をすべて兼ね備えたCu合金膜が得られることを見出し、本発明を完成した。本発明によれば、透明基板又は半導体層とCu合金膜とが接触する界面(以下、単に界面と呼ぶ場合がある。)に、少なくとも所定の酸素量を含む層(下地層)が形成されており、また、上記界面は、所定の元素を適量含むように構成されている。その結果、下地層形成による密着性向上効果と、所定の元素添加による密着性向上効果とが相俟って、透明基板又は半導体層と下地層との界面に強固な化学的結合が形成されるため、優れた密着性が得られるのではないかと思料される。
 以下では、説明の便宜上、本発明に用いられるNiなどの合金元素を、まとめて密着性向上元素と呼ぶ場合がある。
 はじめに、本発明のCu合金膜を構成する下地層と上層について説明する。
 上述したように、本発明では酸素量に関し、下地層>上層の関係を有する、酸素量が異なる積層構成を採用しており、これにより、透明基板との密着性向上と、電気抵抗の低減との両立を図っている。
 本明細書において、「下地層」は、透明基板又は半導体層と直接接触する層を意味し、「上層」は、下地層の直上にある層を意味する。下地層と上層とは、酸素量の違いによって区別される。上記下地層が透明基板と接触する場合、好ましくは、酸素量が約0.5原子%を境にして区別され、上記下地層が半導体層と接触する場合、好ましくは、酸素量が約0.1原子%を境にして区別される。
 下地層は、透明基板と接触する場合、酸素を0.5原子%以上30原子%以下の範囲で含んでいることが好ましく、半導体層と接触する場合、酸素を0.1原子%以上30原子%以下の範囲で含んでいることが好ましい。後記する実施例に示すように、下地層が透明基板と接触する場合には、0.5原子%以上の酸素を含有する下地層を設けることによって、Cu合金膜と透明基板との密着性が向上する。同様に後記する実施例に示すように、下地層が半導体層と接触する場合には、0.1原子%以上の酸素を含有する下地層を設けることによって、Cu合金膜と半導体層との密着性が向上する。そのメカニズムは詳細には不明であるが、基板又は半導体層との界面に所定量の酸素を含む下地層が介在することによって基板又は半導体層との間に強固な結合(化学的結合)が形成され、密着性が向上するのではないかと考えられる。
 上記作用を充分に発揮させるために、下地層が透明基板と接触する場合、下地層の酸素含有量は、0.5原子%以上とすることが好ましく、より好ましくは1原子%以上、さらに好ましくは2原子%以上、最も好ましくは4原子%以上である。下地層が半導体層と接触する場合、下地層の酸素含有量は0.1原子%以上とすることが好ましく、より好ましくは0.5原子%以上、さらに好ましくは1.0原子%以上である。一方、酸素含有量が過剰になり、密着性が向上し過ぎると、ウェットエッチングを行なった後に残渣が残り、ウェットエッチング性が低下する。また下地層の酸素含有量が過剰になると、Cu合金膜全体の電気抵抗が向上する。さらに酸素含有量が過剰になると、Cu合金膜の膜厚を均一に制御することが困難になる(後記する実施例を参照)。これらの観点を勘案し、下地層の酸素含有量は、下地層が透明基板と接触する場合及び半導体層と接触する場合の両方において、30原子%以下とすることが好ましく、より好ましくは20原子%以下、さらに好ましくは15原子%以下、さらに好ましくは13.5原子%以下、特に好ましくは10原子%以下である。
 一方、下地層が透明基板と接触する場合、上層の酸素含有量は0.5原子%未満であることが好ましい。上層に含まれる酸素は、電気抵抗低減の観点から出来るだけ少ない方がよく、最大でも、下地層の酸素量の下限(0.5原子%)を超えないものとする。上層のより好ましい酸素含有量は0.3原子%以下であり、さらに好ましくは0.2原子%以下、最も好ましくは0原子%である。
 また、下地層が半導体層と接触する場合、上層の酸素含有量は0.1原子%未満である。上層に含まれる酸素は、電気抵抗低減の観点から出来るだけ少ない方がよく、最大でも、下地層の酸素量の下限(0.1原子%)を超えないものとする。上層の好ましい酸素含有量は0.05原子%以下であり、より好ましくは0.02原子%以下、最も好ましくは0原子%である。
 このような下地層と上層から構成される酸素含有Cu合金膜は、下地層から上層の方向に向って酸素が減少する深さ方向濃度プロファイルを有することが好ましい。後に詳しく説明するが、本発明の酸素含有Cu合金膜はスパッタリング法によって成膜されることが好ましいため、導入される酸素量によって深さ方向の酸素濃度プロファイルが異なる層が容易に得られるからである。例えば、透明基板又は半導体層とCu合金膜との界面から上層に向って酸素量が徐々に(連続的または不連続的の両方を含む)減少する濃度プロファイルを有していても良いし、その逆であっても構わない。すなわち、下地層が透明基板と接触する場合、上記下地層は、「酸素量:0.5原子%以上30原子%以下」の範囲内で、深さ方向の酸素濃度プロファイルが異なる態様を含み得るし、上記上層は、「酸素量:0.5原子%未満」の範囲内で、深さ方向の酸素濃度プロファイルが異なる態様を含み得る。また、下地層が半導体層と接触する場合、上記下地層は、「酸素量:0.1原子%以上30原子%未満」の範囲内で、深さ方向の酸素濃度プロファイルが異なる態様を含み得るし、上記上層は、「酸素量:0.1原子%未満」の範囲内で、深さ方向の酸素濃度プロファイルが異なる態様を含み得る。
 下地層が透明基板と接触する場合における、本発明の好ましい態様は、透明基板とCu合金膜との界面から、Cu合金膜の表面に向って約10nmの深さ方向位置までの下地層に含まれる酸素の平均含有量が0.5原子%以上30原子%以下であり、この下地層よりも上層に含まれる酸素の平均含有量が0.5原子%未満(0原子%を含む)であり、界面から上層に向って、酸素含有量が連続的に減少する深さ方向酸素濃度プロファイルを有するものである。
 下地層が透明基板と接触する場合における、本発明の他の好ましい態様は、透明基板とCu合金膜との界面から、Cu合金膜の表面に向って約50nmの深さ方向位置までの下地層に含まれる酸素の平均含有量が0.5原子%以上30原子%以下であり、この下地層よりも上層に含まれる酸素の平均含有量が0.5原子%未満(0原子%を含む)であり、界面から上層に向って、酸素含有量が連続的に減少する深さ方向酸素濃度プロファイルを有するものである。
 下地層が半導体層と接触する場合における、本発明の好ましい態様は、半導体層とCu合金膜との界面から、Cu合金膜の表面に向って約10nmの深さ方向位置までの下地層に含まれる酸素の平均含有量が0.1原子%以上30原子%以下であり、この下地層よりも上層に含まれる酸素の平均含有量が0.1原子%未満(0原子%を含む)であり、界面から上層に向って、酸素含有量が連続的に減少する深さ方向酸素濃度プロファイルを有するものである。
 下地層が半導体層と接触する場合における、本発明の他の好ましい態様は、半導体層とCu合金膜との界面から、Cu合金膜の表面に向って約50nmの深さ方向位置までの下地層に含まれる酸素の平均含有量が0.1原子%以上30原子%以下であり、この下地層よりも上層に含まれる酸素の平均含有量が0.1原子%未満(0原子%を含む)であり、界面から上層に向って、酸素含有量が連続的に減少する深さ方向酸素濃度プロファイルを有するものである。
 次に、本発明に係るCu合金膜の組成について説明する。
 本発明のCu合金膜は、Ni、Al、Zn、Mn、Fe、Ge、Hf、Nb、Mo、W、およびCaよりなる群から選ばれる少なくとも1種の密着性向上元素を合計で0.10原子%以上10原子%以下含有する。これらの元素は、透明基板又は半導体層と化学的な結合を形成し易い元素であり、前述した下地層の密着性向上作用と相俟って、Cu合金膜と透明基板又は半導体層との密着性が一層高められる。すなわち、上記の密着性向上元素を所定量添加すれば、Cu合金膜の結晶粒が微細化されるため、下地層の酸素導入による密着性向上作用が促進され、透明基板又は半導体層との界面に、益々強固な化学的結合が形成され易くなり、非常に高い密着性が得られると思料される。
 透明基板又は半導体層との高い密着性を実現するためには、Cu合金膜における上記元素の含有量(単独で含む場合は単独の量であり、2種以上を含む場合は合計量である。)は0.10原子%以上とする。ただし、上記元素の含有量が高くなりすぎても、上記密着性向上作用は飽和する(例えば、後記する図1~4を参照)ため、上限を10原子%とする。
 下地層が透明基板と接触する場合、上記元素の含有量の上限は、好ましくは5%以下、より好ましくは2%以下である。上記元素の含有量は、透明基板との高い密着性と、低い電気抵抗率とのバランスの観点から決定されることが好ましく、低い電気抵抗率の観点からは0.5%以下とすることが最も好ましい。
 下地層が半導体層と接触する場合、上記元素の含有量の上限は、Cu合金膜の電気抵抗の観点から、5.0原子%とすることが好ましい。
ここで、上記の元素量は、Cu合金膜全体に含まれる量を意味する。上述したように、本発明のCu合金膜は、酸素量が異なる下地層と上層を有しており、それぞれの層に含まれる元素の組成(種類及び/又は含有量)は異なっていても良いが、いずれにせよ、Cu合金膜(下地層+上層)に含まれる元素の含有量の合計は、上記範囲内であることが必要である。生産性などを考慮すれば、下地層と上層に含まれる元素の種類は同じであることが好ましい。
 上記合金元素の好ましい含有量は、厳密には、合金元素の種類によって異なり得る。合金元素の種類によって電気抵抗に対する負荷(影響)が異なるからである。
 下地層が透明基板と接触する場合、例えば、Ni、Al、Zn、Mn、Fe、およびCaよりなる群から選択される少なくとも1種の元素は、合計で0.12原子%以上0.4原子%以下であることが好ましく、より好ましくは合計で0.15原子%以上0.3原子%以下である。一方、Ge、Hf、Nb、Mo、およびWよりなる群から選択される少なくとも1種の元素は、合計で0.12原子%以上0.25原子%以下であることが好ましく、より好ましくは合計で0.15原子%以上0.2原子%以下である。
 下地層が半導体層と接触する場合、例えば、Ni、Al、Zn、Mn、およびFeよりなる群から選択される少なくとも1種の元素は、合計で0.15原子%以上4原子%以下であることが好ましく、より好ましくは合計で0.2原子%以上2原子%以下である。一方、Ge、Hf、Nb、Mo、およびWよりなる群から選択される少なくとも1種の元素は、合計で0.15原子%以上3原子%以下であることが好ましく、より好ましくは合計で1原子%以上2原子%以下である。
  上記の密着性向上元素は、単独で含有しても良いし、2種以上を併用しても構わない。
 下地層が透明基板と接触する場合、上記元素のうち好ましいのはNi、Al、Zn、Mn、Ge、およびCaであり、より好ましくはNi、Al、Zn、Mn、Caである。
 下地層が半導体層と接触する場合、上記元素のうち好ましいのはNi、Al、Zn、Mn、Geであり、より好ましくはNi、Al、Zn、Mnである。
 本発明には、元素の組成(種類及び/又は含有量)が異なる層を有するCu合金膜も包含される。このような態様として、例えば、透明基板又は半導体層と接触する層に含まれる元素の含有量が、上記層(元素の組成(種類及び/又は含有量)が異なる層)の上の層に含まれる元素の含有量(0原子%を含む。)よりも多いCu合金膜が挙げられる。なお、ここで、元素の組成(種類及び/又は含有量)が異なる層を、第1層(透明基板又は半導体層と接触する層)と第2層(前記第1層の上の層)と規定した場合、上記態様は、前記第1層に含まれる元素の含有量が、前記第2層に含まれる元素の含有量(0原子%を含む。)よりも多いCu合金膜と表わされる。この上の層は、合金元素を実質的に含まない純Cuであっても良い。上述したように、透明基板又は半導体層との良好な密着性を確保するためには、少なくとも、透明基板又は半導体層との界面近傍は所定量の上記元素を積極的に含有していることが好ましく、一方、低い電気抵抗を実現するためには、少なくとも、Cu合金膜の表面近傍は上記元素を所定量以下に抑制されている(0原子%を含み、よって、純Cuも含まれる。)ことが好ましく、上記態様のCu合金膜は、このような「透明基板又は半導体層との高い密着性およびCu合金膜の電気抵抗低減」を両方確保するための好ましい例である。各層の具体的な含有量は、Cu合金膜全体の元素量(0.10原子%以上10原子%以下)の範囲内で、適切に制御することができる。下地層が透明基板と接触する場合、透明基板との高い密着性およびCu合金膜の電気抵抗低減を実現するためには、例えば、Cu合金膜全体の元素量は、より好ましい範囲である0.10原子%以上0.5原子%以下に制御した上で、透明基板と接触する層に含まれる元素の含有量を合計で0.10原子%以上4.0原子%以下とすることが好ましい。さらに、Cu合金膜全体の電気抵抗率を低くする観点からは、更に上の層を純Cuとすることが好ましい。また、下地層が半導体層と接触する場合、半導体層との高い密着性およびCu合金膜の電気抵抗低減を実現するためには、例えば、Cu合金膜全体の元素量は、より好ましい範囲である0.10原子%以上5.0原子%以下に制御する。さらに、Cu合金膜全体の電気抵抗率を低くする観点からは、更に上の層を純Cuとすることが好ましい。ここで、元素組成(種類および/または含有量)が異なる層と、前述した酸素含有量が異なる層とは、深さ方向位置が一致していても良いし、異なっていても良い。
 例えば、後記する実施例の表2には、元素の組成(種類及び/又は含有量)が種々異なるCu合金膜の例を具体的に開示している。例えば、No.36は、界面から50nmまでの層に含まれる元素(ここではNi)の量が2.0原子%であり、その上の層に含まれる元素(ここではNi)の量が0.3原子%と少ないCu合金膜である。
 また、後記する実施例の表6~7には、元素の組成(種類及び/又は含有量)が種々異なるCu合金膜の例を具体的に開示している。例えば、表6のNo.56は、界面から50nmまでの層に含まれる元素(ここではNi)の量が2.2原子%であり、その上の層に含まれる元素(ここではNi)の量が0.3原子%と少ないCu合金膜である。
 なお、各層の元素の種類は同一でも異なっていても良い。例えば、上記表2のNo.43は、界面から50nmまでの層に含まれる元素(ここではAl)の量が2.0原子%であり、その上の層に含まれる元素(ここではNi)の量が0.4原子%と少ないCu合金膜である。また、No.44は、界面から50nmまでの層に含まれる元素(ここではNiおよびAl)の合計量が2.3原子%であり、その上の層に含まれる元素(ここではNi)の量が0.4原子%と少ないCu合金膜である。これらのいずれのCu合金膜も本発明例として包含される。
 また、表6のNo.65は、界面から50nmまでの層に含まれる元素(ここではAl)の量が2.1原子%であり、その上の層に含まれる元素(ここではNi)の量が0.4原子%と少ないCu合金膜である。また、No.66は、界面から50nmまでの層に含まれる元素(ここではNiおよびAl)の合計量が1.9原子%であり、その上の層に含まれる元素(ここではNi)の量が0.4原子%と少ないCu合金膜である。これらのいずれのCu合金膜も本発明例として包含される。
 本発明のCu合金膜は、上記の密着性向上元素を含み、残部:Cuおよび不可避不純物である。
 また、本発明の作用を損なわない範囲で、他の特性付与を目的として、その他の元素を添加することもできる。本発明のCu合金膜は、その特性を生かし、透明基板又は薄膜トランジスタの半導体層と直接接触する配線や電極用に用いられるが、上記Cu合金膜を、例えばボトムゲート型構造を有するTFTのゲート電極および走査線に適用する場合、その特性として、上記ガラス基板との密着性に加えて、耐酸化性(ITO膜とのコンタクト安定性)や耐食性に優れていることも求められる。また、電気抵抗をより低減させることが求められる場合もある。更に本発明のCu合金膜は、TFTのソース電極および/またはドレイン電極並びに信号線に適用しても良く、この場合には、上記耐酸化性(ITO膜とのコンタクト安定性)等の特性に加えて、絶縁膜(SiN膜)との密着性に優れていることも求められる。また、更に本発明のCu合金膜をゲート電極および信号線に適用しても良く、この場合には、透明基板との密着性に優れていることも求められる。これらの場合、上記の密着性向上元素に加えて、上記の各特性向上に寄与する周知の合金元素を、本発明の作用を損なわない範囲で添加して、多元系のCu合金膜とすることもできる。
 以上、本発明のCu合金膜を最も特徴付ける酸素含有量および組成について説明した。
 更に上記特性の更なる向上を目指して、以下のように制御することが好ましい。
 まず、下地層の厚さは、2nm以上150nm未満であることが好ましい。下地層が薄すぎると、透明基板又は半導体層との良好な密着性を実現できないおそれがある。一方、下地層が厚すぎると、Cu合金膜の電気抵抗が増大するおそれがある。また、下地層が透明基板と接触する場合、下地層の場所(部位)による厚さのバラツキが大きくなり、結果的に、均一なCu合金膜が得られなくなるおそれがある。そこで下地層の厚さは、2nm以上(下地層が透明基板と接触する場合、好ましくは10nm以上、より好ましくは30nm以上;下地層が半導体層と接触する場合、好ましくは5nm以上、より好ましくは10nm以上)、150nm未満(下地層が透明基板と接触する場合、好ましくは130nm以下、より好ましくは100nm以下;下地層が半導体層と接触する場合、好ましくは130nm以下、より好ましくは100nm以下)である。
 また、上層の厚さは、下地層との相対関係で適切に定めることが好ましい。上層に比べて下地層が厚すぎると、Cu合金膜全体で低い電気抵抗率を維持できないおそれがあるからである。上層の厚さと下地層の厚さとの比(即ち上層の厚さ/下地層の厚さ)は、好ましくは2.5以上、より好ましくは4以上、さらに好ましくは5以上である。一方、下地層に比べて上層が厚すぎると、充分な密着性を確保することが難しくなることがある。そこで上層の厚さ/下地層の厚さの比は、好ましくは400以下、より好ましくは100以下、さらに好ましくは50以下である。
 上記の下地層および上層の好ましい厚さを考慮すれば、本発明に係るCu合金膜は、おおむね、200nm以上700nm以下であることが好ましく、250nm以上500nm以下であることがより好ましい。
 本発明のCu合金膜を用いれば、透明基板(特にガラス基板)との高い密着性、低い電気抵抗率、優れたウェットエッチング性および優れた膜厚制御性のために、優れた特性の表示デバイスを効率よく製造できる。さらに本発明のCu合金膜は、透明基板又は半導体層との密着性等に優れるだけでなく、上述のように透明導電膜と直接接触しても低い接触抵抗を示すので、ゲート配線としてだけではなく、ソース・ドレイン配線にも使用できる。表示デバイスのゲート配線およびソース・ドレイン配線を全て本発明のCu合金膜で作製すれば、同じスパッタリングターゲットを用いて製造できるという製造工程上のメリットも得られる。
 上記のCu合金膜は、スパッタリング法により成膜することが好ましい。スパッタリング法とは、真空中にAr等の不活性ガスを導入し、基板とスパッタリングターゲット(以後、ターゲットという場合がある)との間でプラズマ放電を形成し、該プラズマ放電によりイオン化したArを上記ターゲットに衝突させて、該ターゲットの原子をたたき出し基板上に堆積させて薄膜を作製する方法である。イオンプレーティング法や電子ビーム蒸着法、真空蒸着法で形成された薄膜よりも、成分や膜厚の膜面内均一性に優れた薄膜を容易に形成でき、かつas-deposited状態で合金元素が均一に固溶した薄膜を形成できるため、高温耐酸化性を効果的に発現できる。スパッタリング法としては、例えばDCスパッタリング法、RFスパッタリング法、マグネトロンスパッタリング法、反応性スパッタリング法等のいずれのスパッタリング法を採用してもよく、その形成条件は、適宜設定すればよい。
 スパッタリング法を用いて下地層などに酸素を導入して所定の酸素含有Cu合金膜を成膜するためには、成膜時に、酸素ガスを供給すれば良い。酸素ガス供給源として、酸素(O2)のほか、酸素原子を含む酸化ガス(例えば、O3など)を用いることができる。具体的には、下地層の成膜時には、スパッタリング法に通常用いられるプロセスガスに酸素を添加した混合ガスを用い、上層の成膜時には、酸素を添加せずにプロセスガスを用いてスパッタリングを行えば、酸素を含有する下地層と酸素を実質的に含有しない上層とを有するCu合金膜が成膜される。上記プロセスガスとしては、代表的には希ガス(例えばキセノンガス、アルゴンガス)が挙げられ、好ましくはアルゴンガスである。下地層の成膜時にプロセスガス中の酸素ガス量を変化させれば、酸素含有量が異なる複数の下地層を形成できる。
 下地層中の酸素量は、プロセスガス中に占める酸素ガスの混合比率によって変化し得るため、導入したい酸素量に応じて、上記の混合比率を適宜適切に変えればよい。例えば、下地層を形成する際、プロセスガス(アルゴンガスなど)中のO2濃度は1体積%以上50体積%以下とすることが好ましく、20体積%以下とすることがより好ましい。また下地層中に1原子%の酸素を導入したい場合には、おおむね、その約2倍の酸素量をプロセスガス中に混合し、プロセスガス中に占める酸素ガスの比率を約2体積%とすることが好ましい。
 スパッタリング法では、スパッタリングターゲットとほぼ同じ組成のCu合金膜を成膜できる。そこでスパッタリングターゲットの組成を調整することによって、Cu合金膜の組成を調整できる。スパッタリングターゲットの組成は、異なる組成のCu合金ターゲットを用いて調整しても良いし、あるいは、純Cuターゲットに合金元素の金属をチップオンすることによって調整しても良い。
 なおスパッタリング法では、成膜したCu合金膜の組成とスパッタリングターゲットの組成との間でわずかにズレが生じることがある。しかしそのズレは概ね数原子%以内である。そこでスパッタリングターゲットの組成を最大でも±10原子%の範囲内で制御すれば、所望の組成のCu合金膜を成膜できる。
 下地層のCu合金膜または上層のCu合金膜の各成膜時にスパッタリングターゲットを変更することによって、合金元素の含有量が異なる複数の下地層または複数の上層を形成できる。また下地層の成膜時と上層の成膜時とでスパッタリングターゲットを変更することによって、合金元素の含有量が異なる下地層および上層を有したCu合金膜を形成できる。しかし生産効率の観点から、下地層と上層とで同じスパッタリングターゲットを用いて、酸素を除く合金元素の比率が同じである下地層および上層を有するCu合金膜を形成することが好ましい。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限されず、上記・下記の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1-1
 (試料の作製)
 本実施例では、DCマグネトロンスパッタリング法により、ガラス基板(コーニング社製 #1737、直径100mm×厚さ0.7mm)上に、純Cu膜またはCu合金膜(以下、Cu合金膜で代表させる場合がある。)を有する試料(膜厚500nm)を作製した。本実施例のCu合金膜は、下地層と、上層(上記下地層からCu合金膜の表面までの層)から構成されており、上記下地層および上層に含まれる酸素量および合金組成は、表1および表2に示すとおりである。このうち表1の試料No.1~32は、上層と下地層の合金組成(種類および含有量)が同じ例であり、組成(上層=下層)の欄には、Cu合金膜全体の組成を示している。例えば、表1中、No.5(上層=下層=Cu-0.05Ni)は、Cu合金膜全体に、Cu-0.05原子%Niが含まれているという意味である。一方、表2の試料No.33~44は、上層と下地層の合金組成(種類及び/又は含有量)が異なる例である。
 上記Cu合金膜の成膜は、島津製作所製スパッタリング装置(製品名:HSR 542)を使用し、以下のようにして行なった。
 まず、Cu合金膜の組成は、(i)純Cu膜の成膜にはCuスパッタリングターゲットを用い、(ii)種々の合金元素を含むCu合金膜の成膜には、Cuスパッタリングターゲット上に、Cu以外の元素を含むチップを設置したスパッタリングターゲットを用いて制御した。下地層および上層が同じ組成のCu合金膜を成膜する場合は同じスパッタリングターゲットを使用し、一方、下地層および上層の組成または含有量が異なるCu合金膜を成膜する場合は、所定の膜が得られるように異なる組成のスパッタリングターゲットを使用した。
 また、Cu合金膜の酸素含有量は、下地層の成膜ではArとO2との混合ガスをプロセスガスとして使用し、上層の成膜ではArガスのみを使用することによって制御した。下地層中の酸素含有量は、混合ガスに占める酸素ガスの比率を変えることによって調整した。例えば下地層に酸素を5原子%含有させる際には、プロセスガス中のO2の比率を10体積%とした。
 その他の成膜条件は、以下のとおりである。
  ・背圧:1.0×10-6Torr以下
  ・プロセスガス圧:2.0×10-3Torr
  ・プロセスガスの流量:30sccm
  ・スパッタパワー:3.2W/cm2
  ・極間距離:50mm
  ・基板温度:室温
  ・成膜温度:室温
 上記のようにして成膜されたCu合金膜の組成は、ICP発光分光分析装置(島津製作所製のICP発光分光分析装置「ICP-8000型」)を用い、定量分析して確認した。
 (下地層および上層の酸素含有量)
 下地層および上層に含まれる各酸素含有量は、高周波グロー放電発光分光分析(GD-OES)で分析することによって測定した。表1および表2に記載の下地層および上層のそれぞれのO(酸素)含有量は、上記分析によって得られた深さ方向濃度プロファイルを元に、下地層および上層のそれぞれの膜厚中に含まれる平均濃度含有量を算出したものである。本発明によれば、いずれの試料も、上層の酸素含有量は0.05原子%未満であり(表1および2を参照)、実質的に酸素を含んでいない。
 (上層および下地層の厚さ測定)
 Cu合金膜の上層および下地層の厚さは、Cuの膜面方向(深さ方向)に対して垂直な面が観察できるように、厚さ測定用試料を別途作製し、日立製作所製電解放出型透過型電子顕微鏡を用いて任意の測定視野を観察(倍率15万倍)・投影した写真から各層の膜厚を測定した。
 Cu合金膜の構成(上層および下地層の組成、酸素含有量、および厚さ)を表1および表2にまとめて示す。
 (Cu合金膜の特性評価)
 次いで、上記のようにして得られた試料を用い、(1)Cu合金膜とガラス基板との密着性、および(2)ウェットエッチング性を以下のようにして測定した。また、(3)膜厚のばらつき(膜厚制御性)および(4)Cu合金膜の電気抵抗率を測定するに当たっては、後記する方法により、それぞれの特性測定用試料を作製して測定した。
 (1)ガラス基板との密着性の評価
 熱処理前および熱処理後(真空雰囲気下、350℃で0.5時間)のCu合金膜の密着性を、テープによる剥離試験で評価した。詳細には、Cu合金の成膜表面にカッターナイフで1mm間隔の碁盤目状の切り込みを入れた。次いで、住友3M製黒色ポリエステルテープ(製品番号8422B)を上記成膜表面上にしっかりと貼り付け、上記テープの引き剥がし角度が60°になるように保持しつつ、上記テープを一挙に引き剥がして、上記テープにより剥離しなかった碁盤目の区画数をカウントし、全区画との比率(膜残存率)を求めた。
 本実施例では、テープによる剥離率が10%未満のものを○、10%以上のものを×と判定した。
 (2)ウェットエッチング性の評価
 上記試料に対し、フォトリソグラフィーにより、Cu合金膜を10μm幅のラインアンドスペースを持つパターンに形成した後、混酸エッチャント(リン酸:硝酸:水の体積比=75:5:20)を用いてエッチングを行い、光学顕微鏡による観察(観察倍率:400倍)により残渣の有無を確認した。
 本実施例では、上記の光学顕微鏡観察で残渣が見られなかったものを○、残渣が見られたものを×と判定した。
 (3)膜厚制御性
 本実施例では、Cu合金膜の厚さのバラツキ(膜厚制御性と呼ぶ。)を以下のようにして測定した。まず、ガラス基板に対し、カプトンテープ(住友3M製5412)を用いて基板の一部の領域をマスキングした後、上記の方法で成膜を行ない、ガラス基板上に、Cu合金膜が成膜された部分と成膜されない部分とを有するCu合金膜を作製した。次いで、カプトンテープを剥がし、膜中に段差が形成されたCu合金膜を、膜厚制御測定用試料とした。
 上記試料(直径100mm)について、試料の中心(厚さ500nm)から25mm離れた個所の厚さd(nm)を触針型段差計(VEECO製の「DEKTAK II」)で測定し、下記式から膜厚分布(%)を算出した:
    膜厚分布={(500-d)/500}×100
 本実施例では、厚さ分布が±10.0%以内であるものを○、この範囲を超えたものを×と評価した。
 (4)電気抵抗率の評価
 Cu合金膜の電気抵抗率は、下記式により算出した。下記式において、「膜厚」は前述した方法で測定した値であり、「シート抵抗値」は、上記試料を2インチサイズにカットし、四端針法で測定した値である。
   電気抵抗率ρ=(シート抵抗値)/(膜厚)
 本実施例では、電気抵抗率が4.0μΩ/cm未満のものを○、4.0μΩ/cm以上のものを×と判定した。
 なお、総合評価として、(1)ガラス基板との密着性の評価、(2)ウェットエッチング性の評価、(3)膜厚制御性、(4)電気抵抗率の評価の全てが基準を満たすものを〇、そうでないものを×と判定した。
 これらの結果を表3および表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3のNo.6、7、10、11、14、15、17~31、表4のNo.33~44は、いずれも本発明の要件を全て満たし、特に密着性向上元素の含有量が、電気抵抗率低減化の観点から本発明の好ましい要件を満たすCu合金膜であり、密着性、電気抵抗率、およびウェットエッチング性に優れており、膜厚制御性も良好である。このうち表4のNo.33~44は、上層と下地層の合金組成が異なる例であるが、いずれも本発明の要件を満足するため、所望の特性が得られた。
 これに対し、No.1~4、5、8、9、12、13、16、32は本発明に規定するいずれかの要件を満たさない例か、または本発明の好ましい要件を満たさない例である。
 表3のNo.1~4は、純Cuを用いた例である。詳細には、単層の純Cu膜であるNo.1は剥離率が100%であり、ガラス基板との密着性に劣っている。No.2は、下地層に酸素を5原子%含有する例であるが、所定の合金元素を含んでいないため、ガラス基板との密着性に劣っている。一方、No.4は、下地層に酸素を40原子%と多く含有する例であり、所定の合金元素を含んでいないこともあって、No.2に比べて剥離率が上昇したほか、ウェットエッチング性や膜厚制御性も低下した。No.3は、所定の合金元素を含んでいないため、ウェットエッチング性および膜厚制御性に劣っている。
 No.5は、Ni量が少ない例であり、ガラス基板との密着性に劣っている。一方、No.8は、Ni量が多い例であり、熱処理後の電気抵抗率が高くなった。
 No.9は下地層が薄い例であり、ガラス基板との密着性に劣っている。一方、No.12は、下地層が厚い例であり、電気抵抗率および膜厚制御性に劣っている。
 No.13は、下地層の酸素含有量が少ない例であり、ガラス基板との密着性に劣っている。一方、No.16は下地層の酸素含有量が多い例であり、電気抵抗率、ウェットエッチング性および膜厚制御性に劣っている。
 No.32は、本発明で規定しない合金元素であるBiを含有する例であり、下地層に所定の酸素含有量を含み、その厚さも適切に制御されているにもかかわらず、ガラス基板との密着性、電気抵抗率、ウェットエッチング性、および膜厚制御性の全てに劣っている。
実施例1-2
 本実施例では、下地層中の合金元素の種類および添加量が密着性に与える影響を検討する。本実施例では、実施例1-1と同様にしてCu合金下地層(膜厚:50nm)と、下地層と同一成分組成のCu合金上層(膜厚:250nm)からなるCu合金膜の試料、および比較用として膜厚300nmの純Cu膜の試料を作製した。Cu合金膜の成膜は実施例1-1と同様であり、純Cuスパッタリングターゲット上に、Cu以外の元素(Ni、Al、Mn、W、Zn)を含むチップを設置したスパッタリングターゲットを用いており、Caについては所定組成のCu-Ca合金を溶製にて作製したスパッタリングターゲットを用いた。また、Cu合金膜への酸素の添加は、上記成膜の際に使用するスパッタリングガスを制御することにより行った。より詳細には、下地層部分の成膜にはAr中にO2を5体積%含有するAr+5体積%O2混合ガスを用い、上層部分の成膜には純Arガスを用いた。なお、ArガスとO2ガスの混合比率はArガスとO2ガスの分圧で設定し、分圧はこれらの流量比を調整することによって制御した。本実施例におけるO2濃度を、実施例1-1と同様に高周波グロー放電発光分光分析(GD-OES)で分析することによって測定した結果、上層のO2濃度は0.02原子%であり、下地層のO2濃度は2.9原子%であった。
 成膜直後(as-depo状態)の試料、および成膜後に真空雰囲気下で350℃×30minの熱処理を行った試料について、実施例1-1と同様にして密着性を評価した。なお、Znについてのみテープの引き剥がし角度を90°とした。結果を図1~3(成膜直後)、および図4~6(熱処理後)に示す。
 図1~6より、下地層への合金元素の添加量の増加に伴ってCu合金膜とガラス基板との密着性が向上し、また熱処理によってさらに密着性が向上していることが分かった。特に、Ni、Al、Mn、Ca、およびZnを添加した例では熱処理後にほぼ100%の密着率を達成できた。
 実施例1-3
 本実施例では、下地層の膜厚が密着性に与える影響を検討する。試料の作製は、下地層と上層をいずれもCu-2原子%Znとし、下地層の膜厚を10~200nmの範囲で変化させたこと以外は実施例1-2と同様にした。また、比較用として下地層の成膜の際も純Arガスを用い、下地層に酸素を含有しない試料も作製した。その後、成膜直後の試料について、実施例1-1と同様にして密着性を評価した。結果を図7に示す。
 図7より、下地層の膜厚が増加するに従って、密着性が向上する傾向にあることが分かった。また、密着性の向上効果は膜厚が100nm程度で飽和し、100nm以上に増加させても密着性はほとんど変化しないことが分かった。
 実施例1-4
 本実施例では、プロセスガス中の酸素濃度が密着率に与える影響、およびプロセスガス中の酸素濃度と下地層中の酸素濃度との関係を検討する。試料の作製は、下地層と上層をいずれもCu-2原子%Znとし、下地層部分を成膜する際のAr中のO濃度を変化させたこと以外は実施例1-2と同様にした。成膜直後の試料に対して、実施例1-1と同様にして密着性を評価した。また、下地層部分を成膜する際のAr中のO濃度を変化させたそれぞれの場合において、下地層中のO濃度を実施例1-1と同様に高周波グロー放電発光分光分析で分析した。結果を図8及び図9に示す。
 図9より、下地層成膜時のAr中のO濃度の増加に伴って、下地層中のO含有量が増加することが分かり、図8より下地層成膜時のAr中のO濃度の増加に伴ってCu合金膜とガラス基板との密着性が向上することが分かる。
 実施例2-1
(試料の作製)
 本実施例では、半導体層の上に、表5~7に示す種々の純Cu膜またはCu合金膜(以下、Cu合金膜で代表させる場合がある。)を有する試料を作製した
 詳細には、本実施例のCu合金膜は、酸素含有量≒0.1原子%を境にして、下地層(半導体層とCu合金膜との界面から、Cu合金膜の表面に向って10nmまでの層、または50nmまでの層)と、上層(上記下地層からCu合金膜の表面までの層)から構成されており、上記下地層および上層に含まれる酸素量および合金組成は、表5~7に示すとおりである。このうち表5は、上層と下地層の合金組成(種類および含有量)が同じ例であり、組成(上層=下層)の欄には、Cu合金膜全体の組成を示している。例えば、表5中、No.4(上層=下層=Cu-0.05Ni)は、Cu合金膜全体に、Cu-0.05原子%Niが含まれているという意味である。表6および表7には、上層と下地層の合金組成(種類及び/又は含有量)が異なる例を示しており(表6のNo.53を除く)、このうち表7は、上層または下地層の各層の組成(種類及び/又は含有量)が更に異なる例である。表7には、最右欄(下地層)から最左欄(上層)に向って、界面からCu合金膜表面への層構成を示しており、例えば、表7のNo.71は、界面からCu合金膜表面に向って順に、5原子%酸素含有Cu-2.2原子%Ni(10nm)→5原子%酸素含有Cu-0.3原子%Ni(40nm)(以上、下地層)→Cu-0.3原子%Ni(300nm)の積層構成からなる。
 試料の詳細な作製方法は以下のとおりである。
 まず、以下のようにしてガラス基板の上に半導体層を成膜した。はじめに、アルバック社製クラスター式CVD装置を用いたプラズマCVD法により、ガラス基板(コーニング社製 #1737、直径100mm、厚さ0.7mm)上に、膜厚約200nmの窒化シリコン膜(SiN)を形成し、ゲート絶縁膜とした。プラズマCVD法の成膜温度は約350℃とした。次いで、上記と同じCVD装置を用いたプラズマCVD法により、膜厚約200nmのノンドープアモルファスシリコン膜[a-Si(i)]、および膜厚約40nmの不純物(P)をドーピングした低抵抗アモルファスシリコン膜[a-Si(n)]を順次成膜した。この低抵抗アモルファスシリコン膜[a-Si(n)]は、SiH4 、およびPH3 を原料としたプラズマCVDを行うことによって形成した。
 次に、島津製作所製スパッタリング装置(製品名:HSR 542)を使用し、以下のようにして半導体層の上に、表5~7に示す種々の組成のCu合金膜を成膜した。
 まず、Cu合金膜の組成は、(i)純Cu膜の成膜にはCuスパッタリングターゲットを用い、(ii)種々の合金元素を含むCu合金膜の成膜には、Cuスパッタリングターゲット上に、Cu以外の元素を含むチップを設置したスパッタリングターゲットを用いて制御した。下地層および上層が同じ組成のCu合金膜を成膜する場合は同じスパッタリングターゲットを使用し、一方、下地層および上層の組成または含有量が異なるCu合金膜を成膜する場合は、所定の膜が得られるように異なる組成のスパッタリングターゲットを使用した。
 また、Cu合金膜の酸素含有量は、下地層の成膜ではArとO2との混合ガスをプロセスガスとして使用し、上層の成膜ではArガスのみを使用することによって制御した。下地層中の酸素含有量は、混合ガスに占める酸素ガスの比率を変えることによって調整した。例えば下地層に酸素を5原子%含有させる際には、プロセスガス中のO2の比率を10体積%とした。
 その他の成膜条件は、以下のとおりである。
 ・背圧:1.0×10-6 Torr以下
 ・プロセスガス圧:2.0×10-3 Torr
 ・プロセスガスの流量:30sccm
 ・スパッタパワー:3.2W/cm2
 ・極間距離:50mm
 ・基板温度:室温
 ・成膜温度:室温
 上記のようにして成膜されたCu合金膜の組成は、ICP発光分光分析装置(島津製作所製のICP発光分光分析装置「ICP-8000型」)を用い、定量分析して確認した。
 (下地層および上層の酸素含有量)
 下地層および上層に含まれる各酸素含有量は、高周波グロー放電発光分光分析(GDOES)で分析することによって測定した。表5~7に記載の下地層および上層のそれぞれのO(酸素)含有量は、上記分析によって得られた深さ方向濃度プロファイルを元に、下地層および上層のそれぞれの膜厚中に含まれる平均濃度含有量を算出したものである。本発明によれば、いずれの試料も、上層の酸素含有量は0.05原子%未満であり(表5~7を参照)、実質的に酸素を含んでいない。
 (上層および下地層の厚さ測定)
 Cu合金膜の上層および下地層の厚さは、Cuの膜面方向(深さ方向)に対して垂直な面が観察できるように、厚さ測定用試料を別途作製し、日立製作所製電解放出型透過型電子顕微鏡を用いて任意の測定視野を観察(倍率15万倍)・投影した写真から各層の膜厚を測定した。
 Cu合金膜の構成(上層および下地層の組成、酸素含有量、および厚さ)を表5~7にまとめて示す。
 (Cu合金膜の特性評価)
 次いで、上記のようにして得られた試料を用い、(1)Cu合金膜と半導体層との密着性、および(2)ウェットエッチング性を以下のようにして測定した。
 (1)半導体層との密着性の評価
 熱処理前および熱処理後(真空雰囲気下、350℃で0.5時間)のCu合金膜の密着性を、テープによる剥離試験で評価した。詳細には、Cu合金の成膜表面にカッターナイフで1mm間隔の碁盤目状の切り込みを入れた。次いで、住友3M製黒色ポリエステルテープ(製品番号8422B)を上記成膜表面上にしっかりと貼り付け、上記テープの引き剥がし角度が60°になるように保持しつつ、上記テープを一挙に引き剥がして、上記テープにより剥離しなかった碁盤目の区画数をカウントする方法で、全区画との比率(膜残存率)を求めた。なお、示している結果は、Cuの成膜バッチによるばらつきも含めた評価を行うべく、3バッチ実施した結果の平均値を示した。
 本実施例では、テープによる剥離率が20%未満のものを○、20%以上のものを×と判定した。
 (2)ウェットエッチング性の評価
 上記試料に対し、フォトリソグラフィーにより、Cu合金膜を10μm幅のラインアンドスペースを持つパターンに形成した後、混酸エッチャント(リン酸:硝酸:水の体積比=75:5:20)を用いてエッチングを行い、光学顕微鏡による観察(観察倍率:400倍)により残渣の有無を確認した。
 本実施例では、上記の光学顕微鏡観察で残渣が見られなかったものを○、残渣が見られたものを×と判定した。
 これらの結果を表8および表9にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表8のNo.5、7~11、13、14、16~20、22、23、25~42、表9のNo.51、52及び54~78は、いずれも本発明の要件を全て満たすCu合金膜であり、密着性、およびウェットエッチング性に優れている。このうち表9のNo.51、52及び54~78は、上層と下地層の合金組成が異なる例であるが、いずれも本発明の要件を満足するため、所望の特性が得られた。
 なお、表には示していないが、これらのCu合金膜はすべて、低い電気抵抗率(4.0μΩ/cm未満)を有している。ここで、電気抵抗率は、下式により算出した値である。
  電気抵抗率ρ=(シート抵抗値)/(膜厚)
 上式において、「シート抵抗値」は、上記試料を2インチサイズにカットし、四端針法で測定した値であり、「膜厚」は、以下のようにして測定した値である。
 ガラス基板に対し、カプトンテープ(住友3M製5412)を用いて基板の一部の領域をマスキングした後、上記の方法で成膜を行ない、ガラス基板上に、Cu合金膜が成膜された部分と成膜されない部分とを有するCu合金膜を作製した。次いで、カプトンテープを剥がし、膜中に段差が形成されたCu合金膜を、膜厚制御測定用試料とした。上記試料(直径100mm)について、試料の中心(厚さ500nm)から25mm離れた個所の厚さd(nm)を触針型段差計(VEECO製の「DEKTAK II」)で測定した。
 これに対し、本発明に規定するいずれかの要件を満たさない例は、以下のような問題がある。
 No.1~3は、純Cuを用いた例である。詳細には、単層の純Cu膜であるNo.1は剥離率が100%であり、半導体層との密着性に劣っている。No.2は、下地層に酸素を10原子%含有する例であるが、所定の合金元素を含んでいないため、半導体層との密着性に劣っている。一方、No.3は、下地層に酸素を33原子%と多く含有する例であり、半導体層との密着性に劣っており、且つ、ウェットエッチング性も低下した。
 No.4、12、21はそれぞれ、Ni量、Mn量、Al量が少ない例であり、いずれも、半導体層との密着性に劣っている。一方、No.6、15、24は、Ni量、Mn量、Al量が多い例であり、ウェットエッチング性が低下した。
 No.43は、本発明で規定しない合金元素であるBiを含有する例であり、下地層に所定の酸素含有量を含み、その厚さも適切に制御されているにもかかわらず、半導体層との密着性、およびウェットエッチング性に劣っている。
 No.43は、下地層の酸素含有量が少ない例であり、ガラス基板との密着性に劣っている。一方、No.16は下地層の酸素含有量が多い例であり、ウェットエッチング性に劣っている。
 No.53は、下地層を有しないCu-0.2原子%Ni単層の例であり、半導体層との密着性が低下した。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年1月16日出願の日本特許出願(特願2009-008265)、2009年1月16日出願の日本特許出願(特願2009-008266)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明では、透明基板と直接接触する表示デバイス用Cu合金膜として、適切な合金元素を含み、且つ、透明基板と直接接触する下地層の酸素量は上層の酸素量よりも多くなる(好ましくは、下地層は適量の酸素を含み、下地層の上の上層は、酸素を実質的に含まない)ような積層構成を採用しているため、透明基板との高い密着性、低い電気抵抗率、および優れたウェットエッチング性が得られるほか、膜厚分布のバラツキも小さく抑えることができる。このようなCu合金膜を表示デバイスに用いれば、製造の工程数およびコストを低減できる。本発明の酸素含有Cu合金膜は、透明基板と直接接触する配線や電極に用いられ、代表的にはゲート配線やゲート電極用に用いられる。
 また、本発明では、薄膜トランジスタの半導体層と直接接触する表示デバイス用Cu合金膜として、適切な合金元素を含み、且つ、半導体層と直接接触する下地層は適量の酸素を含み、下地層の上の上層は、酸素を実質的に含まないような積層構成を採用しているため、半導体層との高い密着性、低い電気抵抗率、および優れたウェットエッチング性が得られる。このようなCu合金膜を表示デバイスによれば、製造の工程数およびコストを低減できる。本発明の酸素含有Cu合金膜は、薄膜トランジスタの半導体層(アモルファスシリコンまたは多結晶シリコン)と直接接触する配線や電極に用いられ、代表的にはソース-ドレイン配線やソース-ドレイン電極用に用いられる。

Claims (11)

  1.  表示デバイス用Cu合金膜であって、
     前記Cu合金膜が、下記(1)および(2)の要件を満足する酸素含有合金膜である表示デバイス用のCu合金膜。
     (1)前記Cu合金膜は、Ni、Al、Zn、Mn、Fe、Ge、Hf、Nb、Mo、W、およびCaよりなる群から選ばれる少なくとも1種の元素を合計で0.10原子%以上10原子%以下含有する。
     (2)前記Cu合金膜は、酸素含有量が異なる下地層と上層を有し、
     前記下地層は前記透明基板又は半導体層と接触しており、前記下地層の酸素含有量が前記上層の酸素含有量よりも多い。
  2.  前記下地層は透明基板と直接接触している請求項1記載のCu合金膜。
  3.  前記下地層は半導体層と直接接触している請求項1記載のCu合金膜。
  4.  前記(2)において、前記下地層の酸素含有量は0.5原子%以上30原子%以下であり、前記上層の酸素含有量は0.5原子%未満(0原子%を含む)である請求項2に記載のCu合金膜。
  5.  前記(1)において、前記Cu合金膜に含有される元素は合計で0.10原子%以上0.5原子%以下である請求項2に記載のCu合金膜。
  6.  前記(2)において、前記下地層の酸素含有量は0.1原子%以上30原子%以下であり、前記上層の酸素含有量は0.1原子%未満(0原子%を含む)である請求項3に記載のCu合金膜。
  7.  前記(1)において、前記Cu合金膜に含有される元素は、Ni、Al、Zn、Mn、Fe、Ge、Hf、Nb、Mo、およびWよりなる群から選ばれる少なくとも1種の元素であって、合計で0.10原子%以上5.0原子%以下含有する請求項3に記載のCu合金膜。
  8.  前記(2)において、前記Cu合金膜は、前記下地層から前記上層に向って酸素が減少する深さ方向濃度プロファイルを有する請求項1~3の何れかに記載のCu合金膜。
  9.  前記(1)において、前記Cu合金膜は、元素の種類および元素の量のうち少なくとも一つが異なる第1層と第2層を有しており、
     前記第1層は、前記透明基板又は半導体層と接触しており、前記第1層に含まれる前記(1)で規定の元素の含有量は、前記第1層の上の層である前記第2層に含まれる前記(1)で規定の元素の含有量(0原子%を含む。)より多い請求項1~3の何れかに記載のCu合金膜。
  10.  前記上層は純Cuである請求項1~3の何れかに記載のCu合金膜。
  11.  請求項1~3の何れかに記載のCu合金膜を備える表示デバイス。
PCT/JP2010/050438 2009-01-16 2010-01-15 Cu合金膜および表示デバイス WO2010082638A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800035759A CN102246311A (zh) 2009-01-16 2010-01-15 Cu合金膜以及显示设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-008266 2009-01-16
JP2009008265A JP2010165955A (ja) 2009-01-16 2009-01-16 Cu合金膜および表示デバイス
JP2009008266 2009-01-16
JP2009-008265 2009-01-16

Publications (1)

Publication Number Publication Date
WO2010082638A1 true WO2010082638A1 (ja) 2010-07-22

Family

ID=42339891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050438 WO2010082638A1 (ja) 2009-01-16 2010-01-15 Cu合金膜および表示デバイス

Country Status (4)

Country Link
KR (1) KR20110105806A (ja)
CN (1) CN102246311A (ja)
TW (1) TW201042059A (ja)
WO (1) WO2010082638A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048460A1 (zh) * 2010-10-13 2012-04-19 大连理工大学 低电阻率高热稳定性的Cu-Ni-Mo合金薄膜及其制备工艺
WO2017051820A1 (ja) * 2015-09-25 2017-03-30 株式会社アルバック スパッタリングターゲット、ターゲット製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528597B2 (ja) * 2015-08-20 2019-06-12 住友金属鉱山株式会社 導電性基板、および導電性基板の製造方法
CN105603363B (zh) * 2016-01-06 2018-06-22 大连理工大学 一种稳定的高电导Cu-Ge-Fe三元稀合金薄膜及其制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018490A1 (en) * 2006-08-10 2008-02-14 Ulvac, Inc. Method for forming conductive film, thin film transistor, panel with thin film transistor, and method for manufacturing thin film transistor
WO2008081806A1 (ja) * 2006-12-28 2008-07-10 Ulvac, Inc. 配線膜の形成方法、トランジスタ、及び電子装置
JP2008311283A (ja) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp 密着性に優れた配線下地膜およびこの配線下地膜を形成するためのスパッタリングターゲット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592812B1 (en) * 1999-08-19 2003-07-15 Mitsui Mining & Smelting Co., Ltd. Aluminum alloy thin film target material and method for forming thin film using the same
US20050153162A1 (en) * 2003-12-04 2005-07-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ag-base interconnecting film for flat panel display, Ag-base sputtering target and flat panel display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018490A1 (en) * 2006-08-10 2008-02-14 Ulvac, Inc. Method for forming conductive film, thin film transistor, panel with thin film transistor, and method for manufacturing thin film transistor
WO2008081806A1 (ja) * 2006-12-28 2008-07-10 Ulvac, Inc. 配線膜の形成方法、トランジスタ、及び電子装置
JP2008311283A (ja) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp 密着性に優れた配線下地膜およびこの配線下地膜を形成するためのスパッタリングターゲット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048460A1 (zh) * 2010-10-13 2012-04-19 大连理工大学 低电阻率高热稳定性的Cu-Ni-Mo合金薄膜及其制备工艺
WO2017051820A1 (ja) * 2015-09-25 2017-03-30 株式会社アルバック スパッタリングターゲット、ターゲット製造方法
JPWO2017051820A1 (ja) * 2015-09-25 2017-09-21 株式会社アルバック スパッタリングターゲット、ターゲット製造方法

Also Published As

Publication number Publication date
CN102246311A (zh) 2011-11-16
KR20110105806A (ko) 2011-09-27
TW201042059A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
TWI437697B (zh) Wiring structure and a display device having a wiring structure
JP5247448B2 (ja) 導電膜形成方法、薄膜トランジスタの製造方法
TWI454373B (zh) Cu alloy film for display device and display device
KR101230758B1 (ko) 표시 장치용 구리 합금막
TWI394850B (zh) A display device using a Cu alloy film and a Cu alloy sputtering target
WO2012132871A1 (ja) Cu合金膜、及びそれを備えた表示装置または電子装置
JP2011091364A (ja) 配線構造およびその製造方法、並びに配線構造を備えた表示装置
JP2012243779A (ja) Cu合金膜および表示装置
JPWO2008044757A1 (ja) 導電膜形成方法、薄膜トランジスタ、薄膜トランジスタ付パネル、及び薄膜トランジスタの製造方法
JP2011049543A (ja) 配線構造およびその製造方法、並びに配線構造を備えた表示装置
WO2010082638A1 (ja) Cu合金膜および表示デバイス
TW200406789A (en) Wiring material and wiring board using the same
JP5491947B2 (ja) 表示装置用Al合金膜
JP5416470B2 (ja) 表示装置およびこれに用いるCu合金膜
JP2012189725A (ja) Ti合金バリアメタルを用いた配線膜および電極、並びにTi合金スパッタリングターゲット
JP5420964B2 (ja) 表示装置およびこれに用いるCu合金膜
JP2008124450A (ja) ターゲット、成膜方法、薄膜トランジスタ、薄膜トランジスタ付パネル、薄膜トランジスタの製造方法、及び薄膜トランジスタ付パネルの製造方法
JP2010185139A (ja) Cu合金膜および表示デバイス
JP2008112989A (ja) ターゲット、成膜方法、薄膜トランジスタ、薄膜トランジスタ付パネル、及び薄膜トランジスタの製造方法
JP2010165955A (ja) Cu合金膜および表示デバイス
TWI654339B (zh) Wiring film
JP5756319B2 (ja) Cu合金膜、及びそれを備えた表示装置または電子装置
JP2012109465A (ja) 表示装置用金属配線膜
CN102315229A (zh) 薄膜晶体管基板及具备薄膜晶体管基板的显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003575.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016462

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731307

Country of ref document: EP

Kind code of ref document: A1