WO2010082329A1 - パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計 - Google Patents

パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計 Download PDF

Info

Publication number
WO2010082329A1
WO2010082329A1 PCT/JP2009/050437 JP2009050437W WO2010082329A1 WO 2010082329 A1 WO2010082329 A1 WO 2010082329A1 JP 2009050437 W JP2009050437 W JP 2009050437W WO 2010082329 A1 WO2010082329 A1 WO 2010082329A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
cavity
package
piezoelectric vibrator
bonded body
Prior art date
Application number
PCT/JP2009/050437
Other languages
English (en)
French (fr)
Inventor
純也 福田
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to JP2010546511A priority Critical patent/JPWO2010082329A1/ja
Priority to PCT/JP2009/050437 priority patent/WO2010082329A1/ja
Priority to CN2009801549579A priority patent/CN102282670A/zh
Priority to TW098140822A priority patent/TW201044513A/zh
Publication of WO2010082329A1 publication Critical patent/WO2010082329A1/ja
Priority to US13/177,898 priority patent/US8918971B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/055Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads having a passage through the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/026Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the tuning fork type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0492Resonance frequency during the manufacture of a tuning-fork
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2468Tuning fork resonators
    • H03H9/2494H-shaped, i.e. two tuning forks with common base
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49798Dividing sequentially from leading end, e.g., by cutting or breaking

Definitions

  • the present invention relates to a package manufacturing method, a wafer bonded body, a piezoelectric vibrator, an oscillator, an electronic device, and a radio timepiece.
  • a piezoelectric vibrator using a crystal or the like as a timing source such as a time source or a control signal, a reference signal source, or the like is used in a mobile phone or a portable information terminal device.
  • Various piezoelectric vibrators of this type are known, and one of them is a surface mount (SMD) type piezoelectric vibrator.
  • SMD surface mount
  • As this type of piezoelectric vibrator for example, a base substrate and a lid substrate bonded to each other, a cavity formed between both substrates, and a piezoelectric vibrating piece housed in a hermetically sealed state in the cavity (contents) Thing).
  • a cavity recess is formed in a lid substrate wafer (second wafer), while a base substrate wafer is formed.
  • both wafers are bonded to form a wafer bonded body in which a plurality of packages are formed in the wafer matrix direction.
  • a plurality of piezoelectric vibrators (packages) in which the piezoelectric vibrating pieces are hermetically sealed in the cavity are manufactured. It is.
  • FIG. 18 is a plan view of a wafer bonded body for explaining a conventional laser cutting method.
  • a broken line L indicates a contour line when the laser is irradiated along the outline of the package
  • a solid line L ′ indicates a scribe line when the laser is actually irradiated.
  • each cavity 153 formed between the wafers 151 and 152 for both substrates has a plurality of rows and a plurality of columns along the surface direction excluding the outer peripheral portion of the wafer bonded body 150. It is arranged.
  • a piezoelectric vibrating piece (not shown) is mounted to constitute a plurality of piezoelectric vibrators.
  • the outermost peripheral portion of the wafer bonded body 150 is a region where the cavity 153 is not formed, for example, for use in clamping or the like when bonding the wafers 151 and 152 for both substrates. That is, on the wafer bonded body 150, the outer peripheral region without the cavity 153 is the cavity non-forming region Y ′, and the inner region surrounded by the cavity non-forming region Y ′ is the cavity forming region X ′ having the cavity 153. It has become.
  • the wafer bonded body 150 is cut by a laser, for example, the surface of one substrate wafer 151 is irradiated and scanned with a laser to form a groove (scribe line) with a predetermined depth, and then the other The substrate wafer 152 is braked and cut by applying an impact along the scribe line from the back surface of the substrate wafer 152.
  • a plurality of piezoelectric vibrators can be manufactured from the wafer bonded body 150 at a time.
  • the laser cutting method has advantages such as a very small cutting allowance, a high cutting speed, and a good cutting surface roughness compared to the blade cutting method.
  • a desired scribe line L ′ can be formed along the contour line L at the center of the cavity forming region X ′.
  • the scribe line L ′ is bent with respect to the contour line L because the energy given by the laser is different in the vicinity of the boundary portion from the cavity forming region X ′ to the non-cavity forming region Y ′. There is.
  • the piezoelectric vibrator cannot be cut into a predetermined size at the outermost peripheral portion of the wafer 152. That is, since the scribe line L ′ is formed on the cavity 153, for example, after the wafer bonded body 150 is cut, there is a possibility that the cavity 153 communicates with the outside so that the cavity 153 cannot be hermetically sealed. . As a result, with respect to the piezoelectric vibrating piece mounted in the cavity 153, there is a problem that the number of piezoelectric vibrators taken out as a non-defective product from one wafer bonded body 150 is reduced and the yield is lowered.
  • the present invention has been made in view of the above-described problems, and a package manufacturing method capable of improving the yield by cutting a plurality of packages formed on a wafer bonded body for each predetermined size. And a wafer bonded body, a piezoelectric vibrator, an oscillator, an electronic device, and a radio timepiece.
  • a method for manufacturing a package according to the present invention is a method for manufacturing a package in which contents are enclosed, and a step of forming cavities in a plurality of package forming regions in a first wafer, and the contents are disposed in the cavities.
  • the first wafer and the second wafer are bonded to each other, and the bonded wafer bonded body is irradiated with a laser to divide the package into individual pieces.
  • the cavity forming step the first wafer A dummy cavity is formed outside the outermost package forming region.
  • the position where the laser starts to be bent can be arranged outside the outermost package forming region.
  • the laser begins to bend at a position that reaches the area where the dummy cavity is not formed from the area of the dummy cavity.
  • the number of packages taken out as non-defective products from both wafers bonded to each other can be increased, and the yield can be improved.
  • the contents are not sealed in the dummy cavity in advance, there is no loss of the contents, and the material cost can be reduced.
  • the dummy cavity includes a second dummy cavity in contact with only a corner of the outermost package forming region in addition to the first dummy cavity in contact with the edge of the outermost package forming region.
  • the second dummy cavity that is in contact only with the corner of the outermost package forming region is formed, whereby the dummy cavity is formed into the package. It will completely enclose the area. Therefore, the position where the laser starts to be bent can be arranged further outside, and the yield can be improved more reliably.
  • the first wafer and the second wafer are both made of a glass substrate. According to this configuration, a good cut surface can be obtained by dividing a wafer made of a glass substrate into pieces by a laser.
  • the wafer bonded body according to the present invention is a wafer bonded body comprising a plurality of package forming regions in the first wafer and the second wafer bonded to each other and having cavities in which contents are sealed, and the outermost periphery.
  • a dummy cavity is formed outside the package forming region.
  • the wafer bonding is performed in the package forming area.
  • a plurality of packages formed on the body can be cut into predetermined sizes. Therefore, the number of packages taken out as non-defective products from the wafer bonded body can be increased, and the yield can be improved.
  • the piezoelectric vibrator according to the present invention is manufactured by the package manufacturing method of the present invention. According to this configuration, since the piezoelectric vibrator is manufactured by the method for manufacturing a package of the present invention, a highly accurate piezoelectric vibrator formed in a predetermined size can be provided.
  • the oscillator according to the present invention is characterized in that the piezoelectric vibrator of the present invention is electrically connected to an integrated circuit as an oscillator.
  • the electronic device is characterized in that the piezoelectric vibrator of the present invention is electrically connected to a time measuring unit.
  • the radio timepiece according to the present invention is characterized in that the piezoelectric vibrator of the present invention is electrically connected to a filter portion.
  • the oscillator, electronic device, and radio timepiece according to the present invention include the above-described piezoelectric vibrator, high quality can be achieved in the same manner as the piezoelectric vibrator.
  • the package manufacturing method and the wafer bonded body according to the present invention the number of packages taken out from the wafer bonded body as good products can be increased, and the yield can be improved.
  • the piezoelectric vibrator according to the present invention since the wafer bonded body of the present invention is separated, a highly accurate piezoelectric vibrator formed in a predetermined size can be provided. Since the oscillator, electronic device, and radio timepiece according to the present invention include the above-described piezoelectric vibrator, high quality can be achieved over a long period of time as in the case of the piezoelectric vibrator.
  • FIG. 1 is an external perspective view showing an embodiment of a piezoelectric vibrator according to the present invention.
  • FIG. 2 is an internal configuration diagram of the piezoelectric vibrator shown in FIG. 1, and is a view of a piezoelectric vibrating piece viewed from above with a lid substrate removed.
  • FIG. 3 is a sectional view of the piezoelectric vibrator taken along line AA shown in FIG.
  • FIG. 2 is an exploded perspective view of the piezoelectric vibrator shown in FIG. 1.
  • FIG. 2 is a top view of a piezoelectric vibrating piece constituting the piezoelectric vibrator shown in FIG. 1.
  • FIG. 6 is a bottom view of the piezoelectric vibrating piece shown in FIG. 5.
  • FIG. 5 is an internal configuration diagram of the piezoelectric vibrator shown in FIG. 1, and is a view of a piezoelectric vibrating piece viewed from above with a lid substrate removed.
  • FIG. 3 is a sectional view of the piezoelectric vibrator taken
  • FIG. 6 is a cross-sectional view taken along line BB shown in FIG. It is a flowchart which shows the flow at the time of manufacturing the piezoelectric vibrator shown in FIG. It is a figure which shows 1 process at the time of manufacturing a piezoelectric vibrator along the flowchart shown in FIG. 8, Comprising: It is a top view of the wafer for lid substrates. It is a figure which shows 1 process at the time of manufacturing a piezoelectric vibrator along the flowchart shown in FIG. 8, Comprising: It is a top view of the wafer for base substrates.
  • FIG. 9 is a diagram illustrating a process for manufacturing a piezoelectric vibrator according to the flowchart illustrated in FIG.
  • FIG. 8 is a diagram showing a step in manufacturing the piezoelectric vibrator according to the flowchart shown in FIG. 8, and is a cross-sectional view taken along the line DD of FIG. 12 at the time of the cutting step.
  • FIG. 9 is a diagram showing a step in manufacturing the piezoelectric vibrator according to the flowchart shown in FIG. 8, and is a cross-sectional view taken along the line DD of FIG. 12 at the time of the cutting step.
  • FIG. 9 is a diagram showing a step in manufacturing the piezoelectric vibrator along the flowchart shown in FIG. 8, and is a cross-sectional view taken along the line DD in FIG. 12 at the time of the cutting step. It is a block diagram which shows one Embodiment of the oscillator which concerns on this invention. It is a block diagram which shows one Embodiment of the electronic device which concerns on this invention. It is a block diagram which shows one Embodiment of the radio timepiece which concerns on this invention. It is a top view of the wafer bonded body for demonstrating the cutting method by the conventional laser.
  • FIG. 1 is an external perspective view of a piezoelectric vibrator according to the present invention.
  • FIG. 2 is an internal configuration diagram of the piezoelectric vibrator, and shows a piezoelectric vibrating piece viewed from above with a lid substrate removed.
  • FIG. 3 is a cross-sectional view of the piezoelectric vibrator taken along line AA shown in FIG. 2, and
  • FIG. 4 is an exploded perspective view of the piezoelectric vibrator. As shown in FIGS.
  • the piezoelectric vibrator 1 is formed in a box shape in which a base substrate 2 and a lid substrate 3 are laminated in two layers, and piezoelectric vibration is generated in an internal cavity C.
  • This is a surface-mount type piezoelectric vibrator in which the piece 4 is housed.
  • the excitation electrode 15, the extraction electrodes 19 and 20, the mount electrodes 16 and 17, and the weight metal film 21, which will be described later, are omitted for easy understanding of the drawing.
  • the piezoelectric vibrating piece 4 is a tuning fork type vibrating piece formed of a piezoelectric material such as quartz, lithium tantalate, or lithium niobate, and vibrates when a predetermined voltage is applied. To do.
  • the piezoelectric vibrating reed 4 includes a pair of vibrating arm portions 10 and 11 arranged in parallel, a base portion 12 that integrally fixes the base end sides of the pair of vibrating arm portions 10 and 11, and a pair of vibrating arm portions 10.
  • the piezoelectric vibrating reed 4 of the present embodiment includes groove portions 18 formed along the longitudinal direction of the vibrating arm portions 10 and 11 on both main surfaces of the pair of vibrating arm portions 10 and 11.
  • the groove portion 18 is formed from the base end side of the vibrating arm portions 10 and 11 to the vicinity of the middle.
  • the excitation electrode 15 composed of the first excitation electrode 13 and the second excitation electrode 14 is an electrode that vibrates the pair of vibrating arm portions 10 and 11 at a predetermined resonance frequency in a direction approaching or separating from each other. It is formed by patterning on the outer surface of the vibrating arms 10 and 11 while being electrically separated from each other.
  • the first excitation electrode 13 is mainly formed on the groove portion 18 of one vibration arm portion 10 and on both side surfaces of the other vibration arm portion 11, and the second excitation electrode 14 is formed on one side. Are formed mainly on both side surfaces of the vibrating arm portion 10 and on the groove portion 18 of the other vibrating arm portion 11.
  • first excitation electrode 13 and the second excitation electrode 14 are electrically connected to the mount electrodes 16 and 17 via the extraction electrodes 19 and 20, respectively, on both main surfaces of the base portion 12.
  • a voltage is applied to the piezoelectric vibrating reed 4 via the mount electrodes 16 and 17.
  • the excitation electrode 15, the mount electrodes 16 and 17, and the extraction electrodes 19 and 20 described above are made of a conductive film such as chromium (Cr), nickel (Ni), aluminum (Al), or titanium (Ti). It is formed.
  • a weight metal film 21 for adjusting (frequency adjustment) so as to vibrate its own vibration state within a predetermined frequency range is coated on the tips of the pair of vibrating arm portions 10 and 11.
  • the weight metal film 21 is divided into a coarse adjustment film 21a used when the frequency is roughly adjusted and a fine adjustment film 21b used when the frequency is finely adjusted.
  • the piezoelectric vibrating reed 4 configured as described above is bump-bonded to the upper surface of the base substrate 2 using bumps B such as gold as shown in FIGS. More specifically, a pair of mount electrodes 16 and 17 are bump-bonded on two bumps B formed on routing electrodes 36 and 37 (described later) patterned on the upper surface of the base substrate 2. ing. As a result, the piezoelectric vibrating reed 4 is supported in a state where it floats from the upper surface of the base substrate 2, and the mount electrodes 16 and 17 and the routing electrodes 36 and 37 are electrically connected to each other.
  • the above-described lid substrate 3 is a transparent insulating substrate made of a glass material, for example, soda-lime glass, and is formed in a plate shape as shown in FIGS.
  • a rectangular recess 3 a in which the piezoelectric vibrating reed 4 is accommodated is formed on the bonding surface side to which the base substrate 2 is bonded.
  • the recess 3 a is a cavity recess that becomes a cavity C that accommodates the piezoelectric vibrating reed 4 when the substrates 2 and 3 are overlapped.
  • the lid substrate 3 is anodically bonded to the base substrate 2 with the recess 3a facing the base substrate 2 side.
  • the base substrate 2 described above is a transparent insulating substrate made of a glass material, for example, soda-lime glass, like the lid substrate 3, and has a size that can be superimposed on the lid substrate 3 as shown in FIGS. It is formed in a plate shape.
  • a pair of through holes 30 and 31 penetrating the base substrate 2 are formed.
  • the pair of through holes 30 and 31 are formed so as to be accommodated in the cavity C. More specifically, in the through holes 30 and 31 of the present embodiment, one through hole 30 is formed at a position corresponding to the base 12 side of the mounted piezoelectric vibrating reed 4, and the distal ends of the vibrating arm portions 10 and 11 are formed.
  • the other through hole 31 is formed at a position corresponding to.
  • a through hole having a tapered cross section whose diameter gradually decreases from the lower surface to the upper surface of the base substrate 2 will be described as an example.
  • the present invention is not limited to this, and the base substrate 2 is straightened.
  • a through hole that penetrates may be used. In any case, it only has to penetrate the base substrate 2.
  • a pair of through electrodes 32 and 33 formed so as to fill the through holes 30 and 31 are formed.
  • the through electrodes 32 and 33 are formed by the cylindrical body 6 and the core member 7 that are integrally fixed to the through holes 30 and 31 by firing. 31 are completely closed to maintain the airtightness in the cavity C, and the external electrodes 38 and 39, which will be described later, and the routing electrodes 36 and 37 are electrically connected.
  • the cylindrical body 6 is obtained by baking paste-like glass frit.
  • the cylindrical body 6 is formed in a cylindrical shape having both ends flat and substantially the same thickness as the base substrate 2.
  • the core part 7 is distribute
  • the outer shape of the cylindrical body 6 is formed in a conical shape (tapered cross section) according to the shape of the through holes 30 and 31. The cylindrical body 6 is fired in a state of being embedded in the through holes 30 and 31, and is firmly fixed to the through holes 30 and 31.
  • the core material portion 7 described above is a conductive core material formed in a cylindrical shape with a metal material, and both ends are flat like the cylindrical body 6 and have a thickness substantially the same as the thickness of the base substrate 2. Is formed. As shown in FIG. 3, when the through electrodes 32 and 33 are formed as finished products, the core material portion 7 is formed to have substantially the same thickness as the base substrate 2 as described above. However, in the manufacturing process, the length of the core member 7 is shorter by 0.02 mm than the initial thickness of the base substrate 2 in the manufacturing process. The core portion 7 is located in the center hole 6 c of the cylindrical body 6 and is firmly fixed to the cylindrical body 6 by firing the cylindrical body 6. The through electrodes 32 and 33 are ensured to have electrical conductivity through the conductive core portion 7.
  • a conductive material for example, aluminum
  • a bonding film 35 for anodic bonding are paired.
  • the lead-out electrodes 36 and 37 are patterned.
  • the bonding film 35 is formed along the periphery of the base substrate 2 so as to surround the periphery of the recess 3 a formed in the lid substrate 3.
  • the pair of lead-out electrodes 36 and 37 electrically connect one of the through electrodes 32 and 33 to the one mount electrode 16 of the piezoelectric vibrating reed 4 and the other through electrode. 33 and the other mount electrode 17 of the piezoelectric vibrating reed 4 are patterned so as to be electrically connected. More specifically, the one lead-out electrode 36 is formed directly above the one through electrode 32 so as to be positioned directly below the base 12 of the piezoelectric vibrating piece 4.
  • the other routing electrode 37 is routed from the position adjacent to the one routing electrode 36 along the vibrating arm portions 10 and 11 to the distal end side of the vibrating arm portions 10 and 11, and then the other through electrode 33. It is formed so that it may be located just above.
  • a bump B is formed on each of the pair of lead-out electrodes 36 and 37, and the piezoelectric vibrating piece 4 is mounted using the bump B.
  • one mount electrode 16 of the piezoelectric vibrating reed 4 is electrically connected to one through electrode 32 through one routing electrode 36, and the other mount electrode 17 is passed through the other routing electrode 37 to the other penetration electrode.
  • the electrode 33 is electrically connected.
  • external electrodes 38 and 39 that are electrically connected to the pair of through electrodes 32 and 33 are formed on the lower surface of the base substrate 2. That is, one external electrode 38 is electrically connected to the first excitation electrode 13 of the piezoelectric vibrating reed 4 via one through electrode 32 and one routing electrode 36. The other external electrode 39 is electrically connected to the second excitation electrode 14 of the piezoelectric vibrating reed 4 via the other through electrode 33 and the other routing electrode 37.
  • a predetermined drive voltage is applied to the external electrodes 38 and 39 formed on the base substrate 2.
  • a current can flow through the excitation electrode 15 including the first excitation electrode 13 and the second excitation electrode 14 of the piezoelectric vibrating reed 4, and the predetermined amount is set in a direction in which the pair of vibrating arm portions 10 and 11 are approached and separated.
  • Can be vibrated at a frequency of The vibration of the pair of vibrating arm portions 10 and 11 can be used as a time source, a control signal timing source, a reference signal source, and the like.
  • piezoelectric vibrator manufacturing method Next, a manufacturing method for manufacturing a plurality of piezoelectric vibrators 1 at a time using the base substrate wafer 40 and the lid substrate wafer 50 will be described with reference to the flowchart shown in FIG.
  • the piezoelectric vibrating reed manufacturing process is performed to manufacture the piezoelectric vibrating reed 4 shown in FIGS. 5 to 7 (S10). Specifically, a quartz Lambert rough is first sliced at a predetermined angle to obtain a wafer having a constant thickness. Subsequently, the wafer is lapped and roughly processed, and then the work-affected layer is removed by etching, and then mirror polishing such as polishing is performed to obtain a wafer having a predetermined thickness.
  • the wafer is patterned with the outer shape of the piezoelectric vibrating reed 4 by a photolithography technique, and a metal film is formed and patterned, and the excitation electrode 15 and the extraction electrode 15 are extracted. Electrodes 19 and 20, mount electrodes 16 and 17, and weight metal film 21 are formed. Thereby, the some piezoelectric vibrating piece 4 is producible.
  • the resonance frequency is coarsely adjusted. This is performed by irradiating the coarse adjustment film 21a of the weight metal film 21 with laser light to evaporate a part thereof and changing the weight. Note that fine adjustment for adjusting the resonance frequency with higher accuracy is performed after mounting.
  • FIG. 9 is a plan view of the lid substrate wafer.
  • a first wafer manufacturing process is performed in which the lid substrate wafer 50 to be the lid substrate 3 later is manufactured up to the state immediately before anodic bonding (S20).
  • a disk-shaped lid substrate wafer 50 is formed by removing the outermost work-affected layer by etching or the like ( S21).
  • a recess forming step (cavity forming step) is performed in the package forming region on the bonding surface of the lid substrate wafer 50 by forming a plurality of cavity recesses 3a in the matrix direction by etching or the like (S22).
  • a plurality of rows and a plurality of columns of recesses 3 a are formed along the outer shape of the lid substrate wafer 50 in a region excluding the outer peripheral portion of the lid substrate wafer 50.
  • the outer peripheral portion of the lid substrate wafer 50 is used for, for example, a clamp when bonding both the substrate wafers 40 and 50 in the bonding step (S60) to be described later. ) Is not formed. That is, the outer peripheral portion on the lid substrate wafer 50, the region without the recess 3a is radially inward from the cavity non-formation region Y and the cavity non-formation region Y, and the region having the recess 3a is the cavity formation region X. It has become.
  • the piezoelectric vibrating reed 4 is mounted in the recess 3a formed in the outer peripheral portion in the mounting step (S40) described later. It is supposed not to. That is, the plurality of recesses 3 a of the present embodiment are arranged along the circumferential direction of the outer peripheral portion of the lid substrate wafer 50, and a plurality of dummy cavities 42 serving as cavities in which the piezoelectric vibrating reed 4 is not mounted, and these dummy cavities 42. And a mounting cavity 41 that is a cavity C (see FIG.
  • the cavity forming region X described above includes a mounting region P in which mounting cavities 41 formed in a plurality of package forming regions on the lid substrate wafer 50 are arranged, and a dummy region Q in which dummy cavities 42 are arranged. It consists of.
  • the dummy cavities (first dummy cavities) 42 may be disposed so as to be in contact with at least the outer long side and the short side of the mounting cavity 41 located on the outermost periphery of the mounting region P.
  • a second wafer manufacturing process is performed in which a base substrate wafer 40 (see FIG. 10) that will later become the base substrate 2 is manufactured up to the state immediately before anodic bonding (see FIG. 10).
  • S30 First, after polishing and washing soda-lime glass to a predetermined thickness, a disk-shaped base substrate wafer 40 is formed by removing the outermost work-affected layer by etching or the like (S31).
  • S32 a through electrode forming step for forming a plurality of pairs of through electrodes 32 and 33 on the base substrate wafer 40 is performed.
  • a plurality of pairs of through holes 30 and 31 that penetrate the base substrate wafer 40 are formed by a sandblast method or the like.
  • the core portion 7 is disposed in the plurality of through holes 30 and 31, and a predetermined amount of paste-like glass frit made of a glass material is filled in the through holes 30 and 31, and then fired.
  • the cylinder 6 and the core member 7 are fixed to each other. Thereafter, polishing is performed so that both main surfaces of the base substrate wafer 40 are flat, and the tip of the core member 7 is exposed.
  • the through electrode forming process is completed.
  • FIG. 10 is a plan view of the base substrate wafer. Note that a broken line M in the figure indicates a contour line of the piezoelectric vibrator 1.
  • S33 a routing electrode forming step of forming a plurality of routing electrodes 36 and 37 electrically connected to the pair of through electrodes 32 and 33, respectively
  • S34 routing electrode forming step of forming a plurality of routing electrodes 36 and 37 electrically connected to the pair of through electrodes 32 and 33, respectively
  • the order of steps for performing the routing electrode formation step (S34) is performed after the bonding film formation step (S33). Conversely, the bonding film formation is performed after the routing electrode formation step (S34).
  • the step (S33) may be performed, or both steps may be performed simultaneously.
  • both the wafers 40 and 50 are bonded, and the piezoelectric vibration is generated in the plurality of cavities C in which the concave portions 3a are covered with the base substrate wafer 40.
  • the piece 4 is sealed (S40: sealing step).
  • a mounting step is performed in which the produced plurality of piezoelectric vibrating reeds 4 are joined to the upper surface of the base substrate wafer 40 via the routing electrodes 36 and 37, respectively (S41).
  • bumps B such as gold are formed on the pair of lead-out electrodes 36 and 37, respectively.
  • the piezoelectric vibrating piece 4 is pressed against the bump B while heating the bump B to a predetermined temperature.
  • the piezoelectric vibrating reed 4 is mounted in the recess 3 a of the mounting cavity 41, while the piezoelectric vibrating reed 4 is not mounted in the recess 3 a of the dummy cavity 42.
  • the piezoelectric vibrating reed 4 is mechanically supported by the bumps B, and the mount electrodes 16 and 17 and the routing electrodes 36 and 37 are electrically connected. Therefore, at this point, the pair of excitation electrodes 15 of the piezoelectric vibrating reed 4 are in a state of being electrically connected to the pair of through electrodes 32 and 33, respectively.
  • an overlaying process for overlaying the lid substrate wafer 50 on the base substrate wafer 40 is performed (S42). Specifically, both wafers 40 and 50 are aligned at the correct positions while using a reference mark (not shown) as an index. As a result, the mounted piezoelectric vibrating reed 4 is housed in a mounting cavity 41 (cavity C) surrounded by the recess 3 a formed in the base substrate wafer 40 and the base substrate wafer 40. On the other hand, the piezoelectric vibrating reed 4 is not housed in the dummy cavity 42 surrounded by the recess 3 a formed in the outer peripheral portion of the wafer bonded body 60 and the base substrate wafer 40.
  • FIG. 11 is an exploded perspective view of the wafer bonded body in which the base substrate wafer and the lid substrate wafer are anodically bonded in a state where the piezoelectric vibrating piece is accommodated in the cavity.
  • the two superposed wafers 40 and 50 are put into an anodic bonding apparatus (not shown), and the outer periphery of the wafers 40 and 50 are clamped by a holding mechanism (not shown), and a predetermined voltage is applied in a predetermined temperature atmosphere. Is applied to perform anodic bonding (S43). Specifically, a predetermined voltage is applied between the bonding film 35 and the lid substrate wafer 50.
  • the piezoelectric vibrating reed 4 can be sealed in the mounting cavity 41, and the wafer bonded body 60 shown in FIG. 11 in which the base substrate wafer 40 and the lid substrate wafer 50 are bonded can be obtained.
  • FIG. 11 in order to make the drawing easy to see, a state where the wafer bonded body 60 is disassembled is illustrated, and the bonding film 35 is omitted from the base substrate wafer 40.
  • a conductive material is patterned on the lower surface of the base substrate wafer 40 to form a pair of external electrodes 38 and 39 electrically connected to the pair of through electrodes 32 and 33, respectively.
  • a plurality of external electrode forming steps are formed (S44). With this step, the sealing step is completed, and the piezoelectric vibrating reed 4 sealed in the cavity C can be operated using the external electrodes 38 and 39.
  • a fine adjustment step of finely adjusting the frequency of each piezoelectric vibrator 1 sealed in the cavity C to be within a predetermined range is performed (S50). More specifically, a voltage is applied to the pair of external electrodes 38 and 39 formed on the lower surface of the base substrate wafer 40 to vibrate the piezoelectric vibrating reed 4. Then, laser light is irradiated from the outside through the lid substrate wafer 50 while measuring the frequency to evaporate the fine-tuning film 21 b of the weight metal film 21. Thereby, since the weight of the tip side of a pair of vibration arm parts 10 and 11 changes, the frequency of the piezoelectric vibrating reed 4 can be finely adjusted to be within a predetermined range of the nominal frequency.
  • FIG. 12 is a process diagram showing a scribe process, and is a plan view of a wafer bonded body.
  • FIG. 13 is a sectional view taken along the line DD in FIG.
  • a laser is irradiated from the surface side of the base substrate wafer 40 by a laser device (not shown) (see the arrow in FIG. 13).
  • a scribe line is formed (S61: scribe process (groove formation process)).
  • the laser device and the wafer bonded body 60 are relatively moved in parallel, and the laser is scanned along the partition walls that partition the mounting cavities 41, that is, the contour line M of the piezoelectric vibrator 1.
  • a groove-like scribe line M ′ is formed in the portion of the base substrate wafer 40 irradiated with the laser.
  • a desired scribe line M ′ matching the contour line M can be formed on the mounting cavity 41 in the central portion of the cavity forming region X.
  • the scribe line M ′ starts to bend with respect to the contour line M of the piezoelectric vibrator 1 as described above.
  • the concave portion 3a on the outermost periphery of the wafer bonded body 60 is formed as a dummy cavity 42 in which the piezoelectric vibrating reed 4 is not mounted.
  • the region where the bending starts is the position where the dummy region 42 of the dummy cavity 42 reaches the non-cavity region Y.
  • the position at which the scribe line M ′ begins to be bent is radially outward from the mounting region P. Can be arranged.
  • a desired scribe line M ′ along the contour line M can be formed in the mounting region P disposed radially inward of the dummy region Q.
  • the scribe line M ′ is bent.
  • the dummy cavity 42 in the dummy region Q is not a product, for example, the scribe line M ′ is formed on the cavity. Even if it is done, there is no problem.
  • FIG. 14 is a process diagram showing a breaking process, and is a cross-sectional view of a wafer bonded body.
  • a breaking step (S62) is performed in which the wafer bonded body 60 on which the scribe line M ′ is formed is cut by the cutting blade 70.
  • a cutting blade 70 having a blade length longer than the diameter of the wafer bonded body 60 is prepared, and the cutting blade 70 is formed on the mounting cavity 41 from the surface of the lid substrate wafer 50. Press to match '(outline M).
  • the wafer bonded body 60 is cut so as to be folded along the scribe line M ′ formed on the lid substrate wafer 50.
  • the wafer bonded body 60 can be collectively separated into packages for each contour line M.
  • the piezoelectric vibration piece 4 is sealed in the cavity C formed between the base substrate 2 and the lid substrate 3 which are anodic bonded to each other, and the two-layer structure surface mount type piezoelectric vibration shown in FIG.
  • a plurality of children 1 can be manufactured at a time.
  • the cutting allowance is very small, the cutting speed is fast, the cutting surface roughness is good, and the chipping is low compared with the conventional cutting method using a blade. There are advantages such as no occurrence.
  • an internal electrical characteristic inspection is performed (S70). That is, the resonance frequency, resonance resistance value, drive level characteristic (excitation power dependence of resonance frequency and resonance resistance value), etc. of the piezoelectric vibrating reed 4 are measured and checked. In addition, the insulation resistance characteristics and the like are also checked. Finally, an appearance inspection of the piezoelectric vibrator 1 is performed to finally check dimensions, quality, and the like. This completes the manufacture of the piezoelectric vibrator 1.
  • the plurality of concave portions 3a of the cavity forming region X are formed in the central portion (mounting region P in FIG. 9) of the lid substrate wafer 50, and the mounting cavity in which the piezoelectric vibrating reed 4 is mounted.
  • 41 and a plurality of dummy cavities 42 that are formed so as to surround the mounting region P (a dummy region Q in the figure) and on which the piezoelectric vibrating reed 4 is not mounted.
  • the dummy region Q is formed radially outside the mounting region P in the cavity forming region X, so that the position where the scribe line M ′ starts to be bent is disposed radially outside the mounting region P. can do.
  • a desired scribe line M ′ along the contour line M can be formed in the mounting region P disposed radially inward of the dummy region Q. Therefore, in the subsequent braking process, in the mounting region P, a plurality of packages formed on the wafer bonded body 60 can be cut into predetermined sizes. Therefore, it is possible to increase the number of piezoelectric vibrators 1 that are taken out as non-defective products from one wafer bonded body 60, and to improve the yield. In this case, since the piezoelectric vibrating reed 4 and each wiring are not formed in the dummy cavity 42 in advance, there is no material loss and the material cost can be reduced. Further, it is possible to manufacture only the high-performance piezoelectric vibrator 1 without manufacturing the piezoelectric vibrator 1 having a predetermined size. Accordingly, defective products are not distributed, and only the highly reliable piezoelectric vibrator 1 can be distributed.
  • the dummy cavities 42 in contact with the long and short sides outside the mounting cavity 41 located on the outermost periphery on the lid substrate wafer 50 only the corners located outside the mounting cavity 41 are used.
  • the dummy cavity 42 that is in contact is formed. Therefore, the position where the scribe line M ′ starts to be bent can be surely arranged radially outside the mounting cavity 41. Therefore, the yield can be improved more reliably.
  • a favorable cut surface can be obtained by separating the wafer bonded body 60 which consists of a glass base material with a laser.
  • the existing recess 3 a is used as the mounting cavity 41. It is preferable to newly form a recess 3a for the dummy cavity 42 so as to surround the mounting cavities 41 from the outside. Thereby, while maintaining the number of piezoelectric vibrators 1 that can be taken out from one wafer bonded body 60, the number of good piezoelectric vibrators 1 cut to a desired size can be increased.
  • the concave portions 3 a arranged on the outermost periphery of the mounting cavity 41 can be used as the dummy cavity 42.
  • the piezoelectric vibrator 1 that is a non-defective product can be reliably manufactured, there is no material loss and the material cost can be reduced.
  • the oscillator 100 is configured such that the piezoelectric vibrator 1 is an oscillator electrically connected to the integrated circuit 101.
  • the oscillator 100 includes a substrate 103 on which an electronic component 102 such as a capacitor is mounted. On the substrate 103, the above-described integrated circuit 101 for the oscillator is mounted, and the piezoelectric vibrator 1 is mounted in the vicinity of the integrated circuit 101.
  • the electronic component 102, the integrated circuit 101, and the piezoelectric vibrator 1 are electrically connected by a wiring pattern (not shown). Each component is molded with a resin (not shown).
  • the piezoelectric vibrating reed 4 in the piezoelectric vibrator 1 vibrates. This vibration is converted into an electric signal by the piezoelectric characteristics of the piezoelectric vibrating piece 4 and input to the integrated circuit 101 as an electric signal.
  • the input electrical signal is subjected to various processes by the integrated circuit 101 and is output as a frequency signal.
  • the piezoelectric vibrator 1 functions as an oscillator.
  • an RTC real-time clock
  • a function for controlling the time, providing a time, a calendar, and the like can be added.
  • the quality of the oscillator 100 itself can be improved in the same manner. In addition to this, it is possible to obtain a highly accurate frequency signal that is stable over a long period of time.
  • the portable information device 110 having the above-described piezoelectric vibrator 1 will be described as an example of the electronic device.
  • the portable information device 110 according to the present embodiment is represented by, for example, a mobile phone, and is a development and improvement of a wrist watch in the related art. The appearance is similar to that of a wristwatch, and a liquid crystal display is arranged in a portion corresponding to a dial so that the current time and the like can be displayed on this screen.
  • the portable information device 110 includes the piezoelectric vibrator 1 and a power supply unit 111 for supplying power.
  • the power supply unit 111 is made of, for example, a lithium secondary battery.
  • the power supply unit 111 includes a control unit 112 that performs various controls, a clock unit 113 that counts time, a communication unit 114 that communicates with the outside, a display unit 115 that displays various types of information, A voltage detection unit 116 that detects the voltage of the functional unit is connected in parallel.
  • the power unit 111 supplies power to each functional unit.
  • the control unit 112 controls each function unit to control operation of the entire system such as transmission and reception of voice data, measurement and display of the current time, and the like.
  • the control unit 112 includes a ROM in which a program is written in advance, a CPU that reads and executes the program written in the ROM, and a RAM that is used as a work area of the CPU.
  • the clock unit 113 includes an integrated circuit including an oscillation circuit, a register circuit, a counter circuit, an interface circuit, and the like, and the piezoelectric vibrator 1.
  • the piezoelectric vibrating piece 4 vibrates, and this vibration is converted into an electric signal by the piezoelectric characteristics of the crystal and is input to the oscillation circuit as an electric signal.
  • the output of the oscillation circuit is binarized and counted by a register circuit and a counter circuit. Then, signals are transmitted to and received from the control unit 112 via the interface circuit, and the current time, current date, calendar information, or the like is displayed on the display unit 115.
  • the communication unit 114 has functions similar to those of a conventional mobile phone, and includes a radio unit 117, a voice processing unit 118, a switching unit 119, an amplification unit 120, a voice input / output unit 121, a telephone number input unit 122, and a ring tone generation unit. 123 and a call control memory unit 124.
  • the wireless unit 117 exchanges various data such as audio data with the base station via the antenna 125.
  • the audio processing unit 118 encodes and decodes the audio signal input from the radio unit 117 or the amplification unit 120.
  • the amplifying unit 120 amplifies the signal input from the audio processing unit 118 or the audio input / output unit 121 to a predetermined level.
  • the voice input / output unit 121 includes a speaker, a microphone, and the like, and amplifies a ringtone and a received voice or collects a voice.
  • the ring tone generator 123 generates a ring tone in response to a call from the base station.
  • the switching unit 119 switches the amplifying unit 120 connected to the voice processing unit 118 to the ringing tone generating unit 123 only when an incoming call is received, so that the ringing tone generated in the ringing tone generating unit 123 is transmitted via the amplifying unit 120.
  • the call control memory unit 124 stores a program related to incoming / outgoing call control of communication.
  • the telephone number input unit 122 includes, for example, a number key from 0 to 9 and other keys. By pressing these number keys and the like, a telephone number of a call destination is input.
  • the voltage detection unit 116 detects the voltage drop and notifies the control unit 112 of the voltage drop.
  • the predetermined voltage value at this time is a value set in advance as a minimum voltage necessary for stably operating the communication unit 114, and is, for example, about 3V.
  • the control unit 112 prohibits the operations of the radio unit 117, the voice processing unit 118, the switching unit 119, and the ring tone generation unit 123. In particular, it is essential to stop the operation of the wireless unit 117 with high power consumption. Further, the display unit 115 displays that the communication unit 114 has become unusable due to insufficient battery power.
  • the operation of the communication unit 114 can be prohibited by the voltage detection unit 116 and the control unit 112, and that effect can be displayed on the display unit 115.
  • This display may be a text message, but as a more intuitive display, a x (X) mark may be attached to the telephone icon displayed at the top of the display surface of the display unit 115.
  • the function of the communication part 114 can be stopped more reliably by providing the power supply cutoff part 126 that can selectively cut off the power of the part related to the function of the communication part 114.
  • the portable information device 110 of the present embodiment since the high-quality piezoelectric vibrator 1 is provided, the quality of the portable information device itself can be improved as well. In addition to this, it is possible to display highly accurate clock information that is stable over a long period of time.
  • the radio timepiece 130 of this embodiment includes the piezoelectric vibrator 1 that is electrically connected to the filter unit 131.
  • the radio timepiece 130 receives a standard radio wave including timepiece information and is accurate. It is a clock with a function of automatically correcting and displaying the correct time.
  • transmitting stations transmitting stations that transmit standard radio waves in Fukushima Prefecture (40 kHz) and Saga Prefecture (60 kHz), each transmitting standard radio waves.
  • Long waves such as 40 kHz or 60 kHz have the property of propagating the surface of the earth and the property of propagating while reflecting the ionosphere and the surface of the earth, so the propagation range is wide, and the above two transmitting stations cover all of Japan. is doing.
  • the antenna 132 receives a long standard wave of 40 kHz or 60 kHz.
  • the long-wave standard radio wave is obtained by subjecting time information called a time code to AM modulation on a 40 kHz or 60 kHz carrier wave.
  • the received long standard wave is amplified by the amplifier 133 and filtered and tuned by the filter unit 131 having the plurality of piezoelectric vibrators 1.
  • the piezoelectric vibrator 1 in this embodiment includes crystal vibrator portions 138 and 139 having resonance frequencies of 40 kHz and 60 kHz that are the same as the carrier frequency described above.
  • the filtered signal having a predetermined frequency is detected and demodulated by the detection and rectification circuit 134. Subsequently, the time code is taken out via the waveform shaping circuit 135 and counted by the CPU 136.
  • the CPU 136 reads information such as the current year, accumulated date, day of the week, and time. The read information is reflected in the RTC 137, and accurate time information is displayed. Since the carrier wave is 40 kHz or 60 kHz, the crystal vibrator units 138 and 139 are preferably vibrators having the tuning fork type structure described above.
  • the frequency of the long standard radio wave is different overseas.
  • a standard radio wave of 77.5 KHz is used. Accordingly, when the radio timepiece 130 that can be used overseas is incorporated in a portable device, the piezoelectric vibrator 1 having a frequency different from that in Japan is required.
  • the radio-controlled timepiece 130 of the present embodiment since the high-quality piezoelectric vibrator 1 is provided, the quality of the radio-controlled timepiece itself can be improved in the same manner. In addition to this, it is possible to count time stably and with high accuracy over a long period of time.
  • the tuning fork type piezoelectric vibrating piece 4 has been described as an example, but is not limited to the tuning fork type.
  • it may be a thickness sliding vibration piece.
  • the surface mount type piezoelectric vibrator 1 has been described as an example.
  • the piezoelectric vibrator 1 is not limited thereto.
  • the wafer bonded body made of a glass material has been described as an example.
  • the present invention is not limited to this, and various materials such as a silicon wafer can be used.
  • the scribe line M ′ is formed on the surface of the base substrate wafer 40 in the cutting process, while the cutting blade 70 is pressed from the surface of the lid substrate wafer 50.
  • the scribe line M ′ may be formed on the surface of the lid substrate wafer 50 while the cutting blade 70 may be pressed from the surface of the base substrate wafer 40.
  • the recess 3a may be formed in the base substrate wafer 40, or the recess 3a may be formed in both the wafers 40 and 50, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

内容物を封入したパッケージの製造方法であって、第1ウエハにおける複数のパッケージ形成領域にキャビティを形成する工程と、前記内容物を前記キャビティ内に配置しつつ前記第1ウエハ及び第2ウエハを貼り合わせる工程と、貼り合せウエハにレーザーを照射して前記パッケージを個片化する工程と、を有し、キャビティ形成工程では、前記第1ウエハの最外周の前記パッケージ形成領域の外側に、ダミーキャビティを形成することを特徴とするパッケージの製造方法。

Description

パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計
 本発明は、パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計に関するものである。
 近年、携帯電話や携帯情報端末機器には、時刻源や制御信号等のタイミング源、リファレンス信号源等として水晶等を利用した圧電振動子が用いられている。この種の圧電振動子は、様々なものが知られているが、その1つとして、表面実装(SMD)型の圧電振動子が知られている。この種の圧電振動子としては、例えば互いに接合されたベース基板及びリッド基板と、両基板の間に形成されたキャビティと、キャビティ内に気密封止された状態で収納された圧電振動片(内容物)とを備えている。
 ここで、上述した圧電振動子を製造する際には、例えば特許文献1,2に示されるように、リッド基板用ウエハ(第2ウエハ)にキャビティ用の凹部を形成する一方、ベース基板用ウエハ(第1ウエハ)上に圧電振動片をマウントした後、両ウエハを接合して複数のパッケージがウエハの行列方向に形成されたウエハ接合体とする。そして、ウエハ接合体に形成された各パッケージ毎(キャビティ毎)にウエハ接合体を切断することで、キャビティ内に圧電振動片が気密封止された複数の圧電振動子(パッケージ)を製造するものである。
 ところで、ウエハ接合体の切断方法としては、例えばブレードやレーザー等を用いる方法が知られている。
 しかしながら、ブレードによる切断方法では、ブレードの幅を考慮した切断代をキャビティ間に設ける必要があること、また切断時におけるチッピングの発生、切断面が粗いこと等の問題があった。
特開2002-121037号公報 特開2007-13628号公報
 ここで、レーザーによるウエハ接合体の切断方法について簡単に説明する。図18は、従来のレーザーによる切断方法を説明するためのウエハ接合体の平面図である。なお、図中破線Lはパッケージの輪郭に沿ってレーザーを照射した場合の輪郭線、実線L’は実際にレーザーを照射した場合のスクライブラインを図示している。
 図18に示すように、ウエハ接合体150には、両基板用ウエハ151,152間に形成された各キャビティ153が、ウエハ接合体150の外周部分を除く面方向に沿って複数行、複数列配列されている。そして、これら各キャビティ153内には、それぞれ圧電振動片(不図示)がマウントされて複数の圧電振動子を構成している。なお、ウエハ接合体150の最外周部分は、例えば両基板用ウエハ151,152の接合時のクランプ等に用いたりするため、キャビティ153を形成しない領域になっている。すなわち、ウエハ接合体150上において、キャビティ153が無い外周部分の領域がキャビティ非形成領域Y’、キャビティ非形成領域Y’に囲まれた内側の領域が、キャビティ153を有するキャビティ形成領域X’となっている。
 そして、レーザーによりウエハ接合体150を切断する場合には、例えば一方の基板用ウエハ151の表面に対してレーザーを照射・走査させ、所定の深さの溝(スクライブライン)を付けた後、他方の基板用ウエハ152の裏面からスクライブラインに沿って衝撃を与えることで、ブレーキングして切断する。以上により、ウエハ接合体150から一度に複数の圧電振動子を製造することができる。この場合、レーザーによる切断方法では、ブレードによる切断方法に比べて切断代が非常に小さい、切断速度が速い、切断面の粗さが良好である等のメリットがある。
 ところで、上述した切断工程において、レーザーを輪郭線Lに沿って走査させた場合に、キャビティ形成領域X’の中央部では、輪郭線Lに沿って所望のスクライブラインL’を形成することができる。
 しかしながら、キャビティ形成領域X’からキャビティ非形成領域Y’に差し掛かる境界部分の近傍において、レーザーが与えるエネルギーが異なる等の理由により、スクライブラインL’が輪郭線Lに対して曲がってしまうという問題がある。
 キャビティ非形成領域Y’よりも内側でスクライブラインL’が曲がってしまうと、ウエハ152の最外周部において圧電振動子を所定のサイズに切断できないという問題がある。すなわち、スクライブラインL’がキャビティ153上に形成されたりするので、例えばウエハ接合体150の切断後にキャビティ153内と外部とが連通してキャビティ153内を気密封止することができなくなる虞がある。
 その結果、キャビティ153内に実装された圧電振動片に対して、一枚のウエハ接合体150から良品として取り出される圧電振動子の数が低下して歩留まりが低下するという問題がある。
 そこで、本発明は、上述した問題に鑑みてなされたものであり、ウエハ接合体上に形成された複数のパッケージを所定サイズ毎に切断することで、歩留まりを向上させることができるパッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計を提供するものである。
 上述した課題を解決するために、本発明は以下の手段を提供する。
 本発明に係るパッケージの製造方法は、内容物を封入したパッケージの製造方法であって、第1ウエハにおける複数のパッケージ形成領域にキャビティを形成する工程と、前記内容物を前記キャビティ内に配置しつつ前記第1ウエハ及び第2ウエハを貼り合わせる工程と、貼り合せたウエハ接合体にレーザーを照射して前記パッケージを個片化する工程と、を有し、キャビティ形成工程では、前記第1ウエハの最外周の前記パッケージ形成領域の外側に、ダミーキャビティを形成することを特徴としている。
 この構成によれば、最外周のパッケージ形成領域の外側に内容物を封入しないダミーキャビティを形成することで、レーザーが曲がり始める位置を最外周のパッケージ形成領域よりも外側に配置することができる。すなわち、ダミーキャビティの領域からダミーキャビティが形成されていない領域に差し掛かる位置で、レーザーが曲がり始めることとなる。これにより、ダミーキャビティよりも内側に配置されたキャビティ、すなわちパッケージ形成領域では、パッケージの輪郭に沿った所望の位置にレーザーを照射することができる。
 そのため、パッケージ形成領域では、両ウエハ上に形成された複数のパッケージを所定サイズ毎に切断することができる。したがって、互いに接合された両ウエハから良品として取り出されるパッケージの数を増加することができ、歩留まりを向上させることができる。この場合、予めダミーキャビティには内容物を封入しないため、内容物のロスがなくなり、材料コストを低減することができる。
 また、所定サイズではないパッケージを製造することがなく、高性能なパッケージのみを製造することができる。したがって、不良品を流通させることはなく、信頼性の高いパッケージのみを流通させることができる。
 また、前記ダミーキャビティは、前記最外周のパッケージ形成領域の縁辺に接する第1ダミーキャビティに加えて、前記最外周のパッケージ形成領域の角部のみに接する第2ダミーキャビティを含むことを特徴としている。
 この構成によれば、最外周のパッケージ形成領域の縁辺に接する第1ダミーキャビティに加え、最外周のパッケージ形成領域の角部にのみ接する第2ダミーキャビティを形成することで、ダミーキャビティがパッケージ形成領域を完全に囲むことになる。そのため、レーザーが曲がり始める位置をさらに外側に配置することができ、より確実に歩留まりを向上させることができる。
 また、前記第1ウエハ及び前記第2ウエハは、ともにガラス基材からなることを特徴としている。
 この構成によれば、ガラス基材からなるウエハをレーザーにより個片化することで、良好な切断面を得ることができる。
 また、前記切断工程では、前記第1ウエハ及び前記第2ウエハのうち、一方のウエハの表面側から前記レーザーを照射して、前記一方のウエハ表面に溝を形成する溝形成工程と、他方のウエハの裏面から前記溝に沿って衝撃力を加えることで、前記両ウエハを前記パッケージ毎に分離するブレーキング工程とを有することを特徴としている。
 この構成によれば、スクライブラインに沿ってパッケージを分離することで、互いに接合された両ウエハから複数のパッケージを所定サイズ毎に一括して分離することができる。特に、従来のようなブレードによる切断方法に比べて、切断代が非常に小さい、切断速度が速い、切断面の粗さが良好、チッピングの発生がない等のメリットがある。
 また、本発明に係るウエハ接合体は、互いに接合された第1ウエハ及び第2ウエハにおける複数のパッケージ形成領域に、内容物が封入されたキャビティを備えてなるウエハ接合体であって、最外周の前記パッケージ形成領域の外側に、ダミーキャビティが形成されていることを特徴としている。
 この構成によれば、最外周のパッケージ形成領域の外側に内容物を封入しないダミーキャビティを形成することで、ウエハ接合体をレーザーにより複数のパッケージに分離する際に、パッケージ形成領域では、ウエハ接合体上に形成された複数のパッケージを所定サイズ毎に切断することができる。
 したがって、ウエハ接合体から良品として取り出されるパッケージの数を増加することができ、歩留まりを向上させることができる。この場合、予めダミーキャビティには内容物を封入しないため、内容物のロスがなくなり、材料コストを低減することができる。
 また、所定サイズではないパッケージを製造することがなく、高性能なパッケージのみを製造することができる。したがって、不良品を流通させることはなく、信頼性の高いパッケージのみを流通させることができる。
 また、本発明に係る圧電振動子は、上記本発明のパッケージの製造方法によって製造されたことを特徴としている。
 この構成によれば、上記本発明のパッケージの製造方法によって製造された圧電振動子であるため、所定サイズに形成された高精度な圧電振動子を提供することができる。
 また、本発明に係る発振器は、上記本発明の圧電振動子が、発振子として集積回路に電気的に接続されていることを特徴としている。
 また、本発明に係る電子機器は、上記本発明の圧電振動子が、計時部に電気的に接続されていることを特徴としている。
 また、本発明に係る電波時計は、上記本発明の圧電振動子が、フィルタ部に電気的に接続されていることを特徴としている。
 本発明に係る発振器、電子機器及び電波時計においては、上述した圧電振動子を備えているので、圧電振動子と同様に高品質化を図ることができる。
 本発明に係るパッケージの製造方法及びウエハ接合体によれば、ウエハ接合体から良品として取り出されるパッケージの数を増加することができ、歩留まりを向上させることができる。
 また、本発明に係る圧電振動子によれば、上記本発明のウエハ接合体が分離されてなるので、所定サイズに形成された高精度な圧電振動子を提供することができる。
 本発明に係る発振器、電子機器及び電波時計においては、上述した圧電振動子を備えているので、圧電振動子と同様に長期間に亘って高品質化を図ることができる。
本発明に係る圧電振動子の一実施形態を示す外観斜視図である。 図1に示す圧電振動子の内部構成図であって、リッド基板を取り外した状態で圧電振動片を上方から見た図である。 図2に示すA-A線に沿った圧電振動子の断面図である。 図1に示す圧電振動子の分解斜視図である。 図1に示す圧電振動子を構成する圧電振動片の上面図である。 図5に示す圧電振動片の下面図である。 図5に示す断面矢視B-B図である。 図1に示す圧電振動子を製造する際の流れを示すフローチャートである。 図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、リッド基板用ウエハの平面図である。 図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、ベース基板用ウエハの平面図である。 図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、圧電振動片をキャビティ内に収容した状態でベース基板用ウエハとリッド基板用ウエハとが陽極接合されたウエハ接合体の分解斜視図である。 図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、スクライブ工程時におけるウエハ接合体の平面図である。 図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、切断工程時における図12のD-D線に沿う断面図である。 図8に示すフローチャートに沿って圧電振動子を製造する際の一工程を示す図であって、切断工程時における図12のD-D線に沿う断面図である。 本発明に係る発振器の一実施形態を示す構成図である。 本発明に係る電子機器の一実施形態を示す構成図である。 本発明に係る電波時計の一実施形態を示す構成図である。 従来のレーザーによる切断方法を説明するためのウエハ接合体の平面図である。
符号の説明
1…圧電振動子 3a…凹部 4…圧電振動片(内容物) 40…ベース基板用ウエハ(第1ウエハ) 41…実装キャビティ 42…ダミーキャビティ 50…リッド基板用ウエハ(第2ウエハ) 60…ウエハ接合体 100…発振器 101…発振器の集積回路 110…携帯情報機器(電子機器) 113…電子機器の計時部 130…電波時計 131…電波時計のフィルタ部 C…キャビティ
 次に、図面に基づいて本発明に係る実施形態を説明する。
 (圧電振動子)
 図1は本発明に係る圧電振動子の外観斜視図であり、図2は圧電振動子の内部構成図であって、リッド基板を取り外した状態で圧電振動片を上方から見た図ある。また、図3は図2に示すA-A線に沿った圧電振動子の断面図であり、図4は圧電振動子の分解斜視図である。
 図1~4に示すように、本実施形態の圧電振動子1は、ベース基板2とリッド基板3とで2層に積層された箱状に形成されており、内部のキャビティC内に圧電振動片4が収納された表面実装型の圧電振動子である。なお、図4においては、図面を見易くするために後述する励振電極15、引き出し電極19,20、マウント電極16,17及び重り金属膜21の図示を省略している。
 図5は圧電振動子を構成する圧電振動片の上面図であり、図6は下面図、図7は図5のB-B線に沿う断面図である。
 図5~7に示すように、圧電振動片4は、水晶、タンタル酸リチウムやニオブ酸リチウム等の圧電材料から形成された音叉型の振動片であり、所定の電圧が印加されたときに振動するものである。
 この圧電振動片4は、平行に配置された一対の振動腕部10,11と、一対の振動腕部10,11の基端側を一体的に固定する基部12と、一対の振動腕部10,11の外表面上に形成されて一対の振動腕部10,11を振動させる第1の励振電極13と第2の励振電極14とからなる励振電極15と、第1の励振電極13及び第2の励振電極14に電気的に接続されたマウント電極16,17とを有している。
 また、本実施形態の圧電振動片4は、一対の振動腕部10,11の両主面上に、振動腕部10,11の長手方向に沿ってそれぞれ形成された溝部18を備えている。この溝部18は、振動腕部10,11の基端側から略中間付近まで形成されている。
 第1の励振電極13と第2の励振電極14とからなる励振電極15は、一対の振動腕部10,11を互いに接近または離間する方向に所定の共振周波数で振動させる電極であり、一対の振動腕部10,11の外表面に、それぞれ電気的に切り離された状態でパターニングされて形成されている。具体的には、第1の励振電極13が、一方の振動腕部10の溝部18上と他方の振動腕部11の両側面上とに主に形成され、第2の励振電極14が、一方の振動腕部10の両側面上と他方の振動腕部11の溝部18上とに主に形成されている。
 また、第1の励振電極13及び第2の励振電極14は、基部12の両主面上において、それぞれ引き出し電極19,20を介してマウント電極16,17に電気的に接続されている。そして圧電振動片4は、このマウント電極16,17を介して電圧が印加されるようになっている。
 なお、上述した励振電極15、マウント電極16,17及び引き出し電極19,20は、例えば、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)やチタン(Ti)等の導電性膜の被膜により形成されたものである。
 また、一対の振動腕部10,11の先端には、自身の振動状態を所定の周波数の範囲内で振動するように調整(周波数調整)を行うための重り金属膜21が被膜されている。なお、この重り金属膜21は、周波数を粗く調整する際に使用される粗調膜21aと、微小に調整する際に使用される微調膜21bとに分かれている。これら粗調膜21a及び微調膜21bを利用して周波数調整を行うことで、一対の振動腕部10,11の周波数をデバイスの公称周波数の範囲内に収めることができる。
 このように構成された圧電振動片4は、図3,4に示すように、金等のバンプBを利用して、ベース基板2の上面にバンプ接合されている。より具体的には、ベース基板2の上面にパターニングされた後述する引き回し電極36,37上に形成された2つのバンプB上に、一対のマウント電極16,17がそれぞれ接触した状態でバンプ接合されている。これにより、圧電振動片4は、ベース基板2の上面から浮いた状態で支持されるとともに、マウント電極16,17と引き回し電極36,37とがそれぞれ電気的に接続された状態となっている。
 上述したリッド基板3は、ガラス材料、例えばソーダ石灰ガラスからなる透明の絶縁基板であり、図1,3,4に示すように、板状に形成されている。そして、ベース基板2が接合される接合面側には、圧電振動片4が収まる矩形状の凹部3aが形成されている。この凹部3aは、両基板2,3が重ね合わされたときに、圧電振動片4を収容するキャビティCとなるキャビティ用の凹部である。そして、リッド基板3は、この凹部3aをベース基板2側に対向させた状態でベース基板2に対して陽極接合されている。
 上述したベース基板2は、リッド基板3と同様にガラス材料、例えばソーダ石灰ガラスからなる透明な絶縁基板であり、図1~4に示すように、リッド基板3に対して重ね合わせ可能な大きさで板状に形成されている。
 このベース基板2には、ベース基板2を貫通する一対のスルーホール30,31が形成されている。この際、一対のスルーホール30,31は、キャビティC内に収まるように形成されている。より詳しく説明すると、本実施形態のスルーホール30,31は、マウントされた圧電振動片4の基部12側に対応した位置に一方のスルーホール30が形成され、振動腕部10,11の先端側に対応した位置に他方のスルーホール31が形成されている。また、本実施形態では、ベース基板2の下面から上面に向かって漸次径が縮径した断面テーパ状のスルーホールを例に挙げて説明するが、この場合に限られず、ベース基板2を真っ直ぐに貫通するスルーホールでも構わない。いずれにしても、ベース基板2を貫通していれば良い。
 そして、これら一対のスルーホール30,31には、これらスルーホール30,31を埋めるように形成された一対の貫通電極32,33が形成されている。これら貫通電極32,33は、図3に示すように、焼成によってスルーホール30,31に対して一体的に固定された筒体6及び芯材部7によって形成されたものであり、スルーホール30,31を完全に塞いでキャビティC内の気密を維持しているとともに、後述する外部電極38,39と引き回し電極36,37とを導通させる役割を担っている。
 筒体6は、ペースト状のガラスフリットが焼成されたものである。筒体6は、両端が平坦で且つベース基板2と略同じ厚みの円筒状に形成されている。そして、筒体6の中心には、芯材部7が筒体6を貫通するように配されている。また、本実施形態ではスルーホール30,31の形状に合わせて、筒体6の外形が円錐状(断面テーパ状)となるように形成されている。そして、この筒体6は、スルーホール30,31内に埋め込まれた状態で焼成されており、これらスルーホール30,31に対して強固に固着されている。
 上述した芯材部7は、金属材料により円柱状に形成された導電性の芯材であり、筒体6と同様に両端が平坦で、且つベース基板2の厚みと略同じ厚さとなるように形成されている。なお、図3に示すように、貫通電極32,33が完成品として形成された場合には、上述したように芯材部7は、ベース基板2の厚みと略同じ厚さとなるように形成されているが、製造過程では、芯材部7の長さは、製造過程の当初のベース基板2の厚さよりも0.02mmだけ短い長さのものを採用している。そして、この芯材部7は、筒体6の中心孔6cに位置しており、筒体6の焼成によって筒体6に対して強固に固着されている。
 なお、貫通電極32,33は、導電性の芯材部7を通して電気導通性が確保されている。
 ベース基板2の上面側(リッド基板3が接合される接合面側)には、図1~4に示すように、導電性材料(例えば、アルミニウム)により、陽極接合用の接合膜35と、一対の引き回し電極36,37とがパターニングされている。このうち接合膜35は、リッド基板3に形成された凹部3aの周囲を囲むようにベース基板2の周縁に沿って形成されている。
 また、一対の引き回し電極36,37は、一対の貫通電極32,33のうち、一方の貫通電極32と圧電振動片4の一方のマウント電極16とを電気的に接続するとともに、他方の貫通電極33と圧電振動片4の他方のマウント電極17とを電気的に接続するようにパターニングされている。
 より詳しく説明すると、一方の引き回し電極36は、圧電振動片4の基部12の真下に位置するように一方の貫通電極32の真上に形成されている。また、他方の引き回し電極37は、一方の引き回し電極36に隣接した位置から、振動腕部10,11に沿って該振動腕部10,11の先端側に引き回しされた後、他方の貫通電極33の真上に位置するように形成されている。
 そして、これら一対の引き回し電極36,37上にそれぞれバンプBが形成されており、該バンプBを利用して圧電振動片4がマウントされている。これにより、圧電振動片4の一方のマウント電極16が、一方の引き回し電極36を介して一方の貫通電極32に導通し、他方のマウント電極17が、他方の引き回し電極37を介して他方の貫通電極33に導通するようになっている。
 また、ベース基板2の下面には、図1,3,4に示すように、一対の貫通電極32,33に対してそれぞれ電気的に接続される外部電極38,39が形成されている。つまり、一方の外部電極38は、一方の貫通電極32及び一方の引き回し電極36を介して圧電振動片4の第1の励振電極13に電気的に接続されている。また、他方の外部電極39は、他方の貫通電極33及び他方の引き回し電極37を介して、圧電振動片4の第2の励振電極14に電気的に接続されている。
 このように構成された圧電振動子1を作動させる場合には、ベース基板2に形成された外部電極38,39に対して、所定の駆動電圧を印加する。これにより、圧電振動片4の第1の励振電極13及び第2の励振電極14からなる励振電極15に電流を流すことができ、一対の振動腕部10,11を接近・離間させる方向に所定の周波数で振動させることができる。そして、この一対の振動腕部10,11の振動を利用して、時刻源、制御信号のタイミング源やリファレンス信号源等として利用することができる。
 (圧電振動子の製造方法)
 次に、図8に示すフローチャートを参照しながら、ベース基板用ウエハ40とリッド基板用ウエハ50とを利用して一度に複数の圧電振動子1を製造する製造方法について以下に説明する。
 初めに、圧電振動片作製工程を行って図5~7に示す圧電振動片4を作製する(S10)。具体的には、まず水晶のランバート原石を所定の角度でスライスして一定の厚みのウエハとする。続いて、このウエハをラッピングして粗加工した後、加工変質層をエッチングで取り除き、その後ポリッシュ等の鏡面研磨加工を行って、所定の厚みのウエハとする。続いて、ウエハに洗浄等の適切な処理を施した後、ウエハをフォトリソグラフィ技術によって圧電振動片4の外形形状でパターニングするとともに、金属膜の成膜及びパターニングを行って、励振電極15、引き出し電極19,20、マウント電極16,17、重り金属膜21を形成する。これにより、複数の圧電振動片4を作製することができる。
 また、圧電振動片4を作製した後、共振周波数の粗調を行っておく。これは、重り金属膜21の粗調膜21aにレーザー光を照射して一部を蒸発させ、重量を変化させることで行う。なお、共振周波数をより高精度に調整する微調に関しては、マウント後に行う。
 図9は、リッド基板用ウエハの平面図である。
 次に、後にリッド基板3となるリッド基板用ウエハ50を、陽極接合を行う直前の状態まで作製する第1のウエハ作製工程を行う(S20)。まず、ソーダ石灰ガラスを所定の厚さまで研磨加工して洗浄した後に、図9に示すように、エッチング等により最表面の加工変質層を除去した円板状のリッド基板用ウエハ50を形成する(S21)。次いで、リッド基板用ウエハ50の接合面におけるパッケージ形成領域に、エッチング等によりキャビティ用の凹部3aを行列方向に複数形成する凹部形成工程(キャビティ形成工程)を行う(S22)。具体的には、リッド基板用ウエハ50の外周部分を除く領域に、リッド基板用ウエハ50の外形に沿って複数行、複数列の凹部3aを形成する。なお、上述したようにリッド基板用ウエハ50の外周部分は、例えば後述する接合工程(S60)で両基板用ウエハ40,50の接合時におけるクランプ等に用いたりするため、キャビティC(図3参照)を形成しない領域になっている。すなわち、リッド基板用ウエハ50上における外周部分であって、凹部3aが無い領域がキャビティ非形成領域Y、キャビティ非形成領域Yより径方向内側であって、凹部3aを有する領域がキャビティ形成領域Xとなっている。
 ここで、本実施形態では、凹部形成工程(S22)で形成する複数の凹部3aのうち、外周部分に形成された凹部3aには、後述するマウント工程(S40)において、圧電振動片4をマウントしないようになっている。すなわち、本実施形態の複数の凹部3aは、リッド基板用ウエハ50の外周部分の周方向に沿って配列され、圧電振動片4がマウントされないキャビティとなる複数のダミーキャビティ42と、これらダミーキャビティ42が配列されたダミー領域Qに囲まれて、圧電振動片4が実装されるキャビティC(図3参照)となる実装キャビティ41とを有している(図9中実装領域P)。すなわち、上述したキャビティ形成領域Xは、リッド基板用ウエハ50上の複数のパッケージ形成領域に形成された実装キャビティ41が配列されてなる実装領域Pと、ダミーキャビティ42が配列されてなるダミー領域Qとからなる。なお、少なくとも実装領域Pの最外周に位置する実装キャビティ41の外側の長辺及び短辺に接するように、ダミーキャビティ(第1ダミーキャビティ)42を配置していればよいが、本実施形態のように実装領域Pの最外周に配置された実装キャビティ41の外側に位置する角部にのみに接するようなダミーキャビティ(第2ダミーキャビティ)42も配置することがより好ましい。
 次に、上記工程と同時或いは前後のタイミングで、後にベース基板2となるベース基板用ウエハ40(図10参照)を、陽極接合を行う直前の状態まで作製する第2のウエハ作製工程を行う(S30)。まず、ソーダ石灰ガラスを所定の厚さまで研磨加工して洗浄した後に、エッチング等により最表面の加工変質層を除去した円板状のベース基板用ウエハ40を形成する(S31)。
 次いで、ベース基板用ウエハ40に一対の貫通電極32,33を複数形成する貫通電極形成工程(S32)を行う。具体的には、サンドブラスト法等によりベース基板用ウエハ40を貫通する一対のスルーホール30,31を複数形成する。
 続いて、これら複数のスルーホール30,31内に、芯材部7を配置するとともに、ガラス材料からなるペースト状のガラスフリットをスルーホール30,31内に所定量充填した後、それらを焼成して筒体6と芯材部7とを互いに固着させる。その後、ベース基板用ウエハ40の両主面が平坦面になるように研磨して、芯材部7の先端を露出させる。以上により、貫通電極形成工程が終了する。
 図10は、ベース基板用ウエハの平面図である。なお、図中破線Mは、圧電振動子1の輪郭線を示している。
 次に、ベース基板用ウエハ40の上面に、リッド基板用ウエハ50の各凹部3aのうち、実装キャビティ41に対応するように導電性材料をパターニングして、接合膜35を形成する接合膜形成工程を行う(S33)とともに、各一対の貫通電極32,33にそれぞれ電気的に接続された引き回し電極36,37を複数形成する引き回し電極形成工程を行う(S34)。この工程を行うことにより、一方の引き回し電極36と一方の貫通電極32との導通性、並びに、他方の引き回し電極37と他方の貫通電極33との導通性を確保することができる。この時点で第2のウエハ作製工程が終了する。なお、図8では、接合膜形成工程(S33)の後に、引き回し電極形成工程(S34)を行う工程順序としているが、これとは逆に、引き回し電極形成工程(S34)の後に、接合膜形成工程(S33)を行っても構わないし、両工程を同時に行っても構わない。
 次に、ベース基板用ウエハ40上に圧電振動片4をマウントした状態で、両ウエハ40,50を接合し、凹部3aがベース基板用ウエハ40に覆われてなる複数のキャビティC内に圧電振動片4を封止する(S40:封止工程)。
 まず作製した複数の圧電振動片4を、それぞれ引き回し電極36,37を介してベース基板用ウエハ40の上面に接合するマウント工程を行う(S41)。具体的には、一対の引き回し電極36,37上にそれぞれ金等のバンプBを形成する。そして、圧電振動片4の基部12をバンプB上に載置した後、バンプBを所定温度に加熱しながら圧電振動片4をバンプBに押し付ける。これにより、ベース基板用ウエハ40上において、実装キャビティ41の凹部3aには、圧電振動片4がマウントされる一方、ダミーキャビティ42の凹部3aには、圧電振動片4がマウントされていない。そして、圧電振動片4は、バンプBに機械的に支持されるとともに、マウント電極16,17と引き回し電極36,37とが電気的に接続された状態となる。よって、この時点で圧電振動片4の一対の励振電極15は、一対の貫通電極32,33に対してそれぞれ導通した状態となる。
 圧電振動片4のマウントが終了した後、ベース基板用ウエハ40に対してリッド基板用ウエハ50を重ね合わせる重ね合わせ工程を行う(S42)。具体的には、図示しない基準マーク等を指標としながら、両ウエハ40,50を正しい位置にアライメントする。これにより、マウントされた圧電振動片4が、ベース基板用ウエハ40に形成された凹部3aとベース基板用ウエハ40とで囲まれる実装キャビティ41(キャビティC)内に収納された状態となる。一方、ウエハ接合体60の外周部分に形成された凹部3aとベース基板用ウエハ40とで囲まれるダミーキャビティ42内には、圧電振動片4は収納されていない。
 図11は、圧電振動片をキャビティ内に収容した状態でベース基板用ウエハとリッド基板用ウエハとが陽極接合されたウエハ接合体の分解斜視図である。
 重ね合わせ工程後、重ね合わせた2枚のウエハ40,50を図示しない陽極接合装置に入れ、図示しない保持機構によりウエハ40,50の外周部分をクランプした状態で、所定の温度雰囲気で所定の電圧を印加して陽極接合する接合工程を行う(S43)。具体的には、接合膜35とリッド基板用ウエハ50との間に所定の電圧を印加する。すると、接合膜35とリッド基板用ウエハ50との界面に電気化学的な反応が生じ、両者がそれぞれ強固に密着して陽極接合される。これにより、圧電振動片4を実装キャビティ41内に封止することができ、ベース基板用ウエハ40とリッド基板用ウエハ50とが接合した図11に示すウエハ接合体60を得ることができる。なお、図11においては、図面を見易くするために、ウエハ接合体60を分解した状態を図示しており、ベース基板用ウエハ40から接合膜35の図示を省略している。
 そして、上述した陽極接合が終了した後、ベース基板用ウエハ40の下面に導電性材料をパターニングして、一対の貫通電極32,33にそれぞれ電気的に接続された一対の外部電極38,39を複数形成する外部電極形成工程を行う(S44)。この工程により、封止工程が終了し、外部電極38,39を利用してキャビティC内に封止された圧電振動片4を作動させることができる。
 次に、ウエハ接合体60の状態で、キャビティC内に封止された個々の圧電振動子1の周波数を微調整して所定の範囲内に収める微調工程を行う(S50)。具体的に説明すると、ベース基板用ウエハ40の下面に形成された一対の外部電極38,39に電圧を印加して圧電振動片4を振動させる。そして、周波数を計測しながらリッド基板用ウエハ50を通して外部からレーザー光を照射し、重り金属膜21の微調膜21bを蒸発させる。これにより、一対の振動腕部10,11の先端側の重量が変化するため、圧電振動片4の周波数を、公称周波数の所定範囲内に収まるように微調整することができる。
 周波数の微調が終了後、接合されたウエハ接合体60を切断して個片化する切断工程を行う(S60)。
 図12は、スクライブ工程を示す工程図であり、ウエハ接合体の平面図である。また、図13は図12のD-D線に沿う断面図である。
 図12,13に示すように、切断工程(S60)では、まずベース基板用ウエハ40の表面側から図示しないレーザー装置によりレーザーを照射し(図13中矢印参照)、ベース基板用ウエハ40の表面にスクライブラインを形成する(S61:スクライブ工程(溝形成工程))。具体的には、レーザー装置とウエハ接合体60とを平行に相対移動させ、各実装キャビティ41を仕切る隔壁、すなわち圧電振動子1の輪郭線Mに沿ってレーザーを走査する。すると、ベース基板用ウエハ40におけるレーザーが照射された部位に、溝状のスクライブラインM’が形成される。
 ところで、レーザー装置を輪郭線Mに沿って走査させた場合に、キャビティ形成領域Xの中央部における実装キャビティ41上では、輪郭線Mに一致した所望のスクライブラインM’を形成することができる。
 一方、キャビティ形成領域Xからキャビティ非形成領域Yに差し掛かるにつれて、上述したようにスクライブラインM’が圧電振動子1の輪郭線Mに対して曲がり始める。
 この時、本実施形態では、キャビティ形成領域Xのうち、ウエハ接合体60の最外周上の凹部3aを圧電振動片4が実装されていないダミーキャビティ42として形成しているので、スクライブラインM’が曲がり始める部位はダミーキャビティ42のダミー領域Qからキャビティ非形成領域Yに差し掛かる位置となる。すなわち、実装キャビティ41が配列された実装領域Pよりも径方向外側に、ダミーキャビティ42のダミー領域Qを形成することで、スクライブラインM’が曲がり始める位置を実装領域Pよりも径方向外側に配置することができる。これにより、キャビティ形成領域Xのうち、ダミー領域Qよりも径方向内側に配置された実装領域Pでは、輪郭線Mに沿った所望のスクライブラインM’を形成することができる。なお、圧電振動片4が実装されないダミー領域Qでは、スクライブラインM’が曲がってしまうが、ダミー領域Qのダミーキャビティ42は製品とならないものであるため、例えスクライブラインM’がキャビティ上に形成されたとしても、何ら問題はない。
 図14は、ブレーキング工程を示す工程図であり、ウエハ接合体の断面図である。
 次に、図14に示すように、スクライブラインM’が形成されたウエハ接合体60を切断刃70により切断するブレーキング工程(S62)を行う。具体的には、刃の長さがウエハ接合体60の直径よりも長い切断刃70を用意し、この切断刃70をリッド基板用ウエハ50の表面から実装キャビティ41上に形成されたスクライブラインM’(輪郭線M)に合わせて押し当てる。これにより、ウエハ接合体60は、リッド基板用ウエハ50上に形成されたスクライブラインM’に沿って折れるように切断される。そして、各スクライブラインM’毎に切断刃70を押し当てることで、ウエハ接合体60が輪郭線M毎のパッケージに一括して分離することができる。以上により、互いに陽極接合されたベース基板2とリッド基板3との間に形成されたキャビティC内に圧電振動片4が封止された、図1に示す2層構造式表面実装型の圧電振動子1を一度に複数製造することができる。特に、本実施形態のように切断にレーザーを用いることで、従来のようなブレードによる切断方法に比べて、切断代が非常に小さい、切断速度が速い、切断面の粗さが良好、チッピングの発生がない等のメリットがある。
 その後、内部の電気特性検査を行う(S70)。すなわち、圧電振動片4の共振周波数、共振抵抗値、ドライブレベル特性(共振周波数及び共振抵抗値の励振電力依存性)等を測定してチェックする。また、絶縁抵抗特性等を併せてチェックする。そして、最後に圧電振動子1の外観検査を行って、寸法や品質等を最終的にチェックする。これをもって圧電振動子1の製造が終了する。
 このように、本実施形態では、キャビティ形成領域Xの複数の凹部3aが、リッド基板用ウエハ50の中央部(図9中実装領域P)に形成され、圧電振動片4が実装される実装キャビティ41と、実装領域Pを囲むように形成され(図中ダミー領域Q)、圧電振動片4がマウントされない複数のダミーキャビティ42とを有している構成とした。
 この構成によれば、キャビティ形成領域Xのうち、実装領域Pよりも径方向外側にダミー領域Qを形成することで、スクライブラインM’が曲がり始める位置を実装領域Pよりも径方向外側に配置することができる。これにより、ダミー領域Qよりも径方向内側に配置された実装領域Pでは、輪郭線Mに沿った所望のスクライブラインM’を形成することができる。
 そのため、その後ブレーキング工程において実装領域Pでは、ウエハ接合体60上に形成された複数のパッケージを所定サイズ毎に切断することができる。したがって、一枚のウエハ接合体60から良品として取り出される圧電振動子1の数を増加することができ、歩留まりを向上させることができる。この場合、予めダミーキャビティ42には圧電振動片4や各配線を形成しないため、材料のロスがなくなり、材料コストを低減することができる。
 また、所定サイズではない圧電振動子1を製造することがなく、高性能な圧電振動子1のみを製造することができる。したがって、不良品を流通させることはなく、信頼性の高い圧電振動子1のみを流通させることができる。
 また、本実施形態では、リッド基板用ウエハ50上の最外周上に位置する実装キャビティ41の外側の長辺及び短辺に接するダミーキャビティ42加え、実装キャビティ41の外側に位置する角部にのみ接するダミーキャビティ42が形成されている構成とした。そのため、スクライブラインM’が曲がり始める位置を、実装キャビティ41よりも径方向外側に確実に配置することができる。したがって、より確実に歩留まりを向上させることができる。そして、本実施形態のように、ガラス基材からなるウエハ接合体60をレーザーにより個片化することで、良好な切断面を得ることができる。
 なお、ダミーキャビティ42を形成する際に、リッド基板用ウエハ50の実装キャビティ41よりも外側に、ダミーキャビティ42を新たに追加するスペースが確保できる場合には、既存の凹部3aを実装キャビティ41とし、それら実装キャビティ41を外側から囲むようにダミーキャビティ42用の凹部3aを新たに形成することが好ましい。これにより、1枚のウエハ接合体60から取り出せる圧電振動子1の個数を維持した上で、所望のサイズで切断された良品の圧電振動子1の数を増加することができる。
 一方、ウエハ接合体60の外周部分にダミーキャビティ42を形成するダミー領域Qを確保できない場合は、実装キャビティ41の最外周上に配列された凹部3aをダミーキャビティ42として利用することが可能である。この場合には、良品となる圧電振動子1のみを確実に製造することができるため、材料のロスがなくなり、材料コストを低減することができる。
 (発振器)
 次に、本発明に係る発振器の一実施形態について、図15を参照しながら説明する。
 本実施形態の発振器100は、図15に示すように、圧電振動子1を、集積回路101に電気的に接続された発振子として構成したものである。この発振器100は、コンデンサ等の電子部品102が実装された基板103を備えている。基板103には、発振器用の上述した集積回路101が実装されており、この集積回路101の近傍に、圧電振動子1が実装されている。これら電子部品102、集積回路101及び圧電振動子1は、図示しない配線パターンによってそれぞれ電気的に接続されている。なお、各構成部品は、図示しない樹脂によりモールドされている。
 このように構成された発振器100において、圧電振動子1に電圧を印加すると、この圧電振動子1内の圧電振動片4が振動する。この振動は、圧電振動片4が有する圧電特性により電気信号に変換されて、集積回路101に電気信号として入力される。入力された電気信号は、集積回路101によって各種処理がなされ、周波数信号として出力される。これにより、圧電振動子1が発振子として機能する。
 また、集積回路101の構成を、例えば、RTC(リアルタイムクロック)モジュール等を要求に応じて選択的に設定することで、時計用単機能発振器等の他、当該機器や外部機器の動作日や時刻を制御したり、時刻やカレンダー等を提供したりする機能を付加することができる。
 上述したように、本実施形態の発振器100によれば、高品質化された圧電振動子1を備えているので、発振器100自体も同様に高品質化を図ることができる。さらにこれに加え、長期にわたって安定した高精度な周波数信号を得ることができる。
 (電子機器)
 次に、本発明に係る電子機器の一実施形態について、図16を参照して説明する。なお電子機器として、上述した圧電振動子1を有する携帯情報機器110を例にして説明する。始めに本実施形態の携帯情報機器110は、例えば、携帯電話に代表されるものであり、従来技術における腕時計を発展、改良したものである。外観は腕時計に類似し、文字盤に相当する部分に液晶ディスプレイを配し、この画面上に現在の時刻等を表示させることができるものである。また、通信機として利用する場合には、手首から外し、バンドの内側部分に内蔵されたスピーカ及びマイクロフォンによって、従来技術の携帯電話と同様の通信を行うことが可能である。しかしながら、従来の携帯電話と比較して、格段に小型化及び軽量化されている。
 次に、本実施形態の携帯情報機器110の構成について説明する。この携帯情報機器110は、図16に示すように、圧電振動子1と、電力を供給するための電源部111とを備えている。電源部111は、例えば、リチウム二次電池からなっている。この電源部111には、各種制御を行う制御部112と、時刻等のカウントを行う計時部113と、外部との通信を行う通信部114と、各種情報を表示する表示部115と、それぞれの機能部の電圧を検出する電圧検出部116とが並列に接続されている。そして、電源部111によって、各機能部に電力が供給されるようになっている。
 制御部112は、各機能部を制御して音声データの送信及び受信、現在時刻の計測や表示等、システム全体の動作制御を行う。また、制御部112は、予めプログラムが書き込まれたROMと、このROMに書き込まれたプログラムを読み出して実行するCPUと、このCPUのワークエリアとして使用されるRAM等とを備えている。
 計時部113は、発振回路、レジスタ回路、カウンタ回路及びインターフェース回路等を内蔵する集積回路と、圧電振動子1とを備えている。圧電振動子1に電圧を印加すると圧電振動片4が振動し、この振動が水晶の有する圧電特性により電気信号に変換されて、発振回路に電気信号として入力される。発振回路の出力は二値化され、レジスタ回路とカウンタ回路とにより計数される。そして、インターフェース回路を介して、制御部112と信号の送受信が行われ、表示部115に、現在時刻や現在日付或いはカレンダー情報等が表示される。
 通信部114は、従来の携帯電話と同様の機能を有し、無線部117、音声処理部118、切替部119、増幅部120、音声入出力部121、電話番号入力部122、着信音発生部123及び呼制御メモリ部124を備えている。
 無線部117は、音声データ等の各種データを、アンテナ125を介して基地局と送受信のやりとりを行う。音声処理部118は、無線部117又は増幅部120から入力された音声信号を符号化及び複号化する。増幅部120は、音声処理部118又は音声入出力部121から入力された信号を、所定のレベルまで増幅する。音声入出力部121は、スピーカやマイクロフォン等からなり、着信音や受話音声を拡声したり、音声を集音したりする。
 また、着信音発生部123は、基地局からの呼び出しに応じて着信音を生成する。切替部119は、着信時に限って、音声処理部118に接続されている増幅部120を着信音発生部123に切り替えることによって、着信音発生部123において生成された着信音が増幅部120を介して音声入出力部121に出力される。
 なお、呼制御メモリ部124は、通信の発着呼制御に係るプログラムを格納する。また、電話番号入力部122は、例えば、0から9の番号キー及びその他のキーを備えており、これら番号キー等を押下することにより、通話先の電話番号等が入力される。
 電圧検出部116は、電源部111によって制御部112等の各機能部に対して加えられている電圧が、所定の値を下回った場合に、その電圧降下を検出して制御部112に通知する。このときの所定の電圧値は、通信部114を安定して動作させるために必要な最低限の電圧として予め設定されている値であり、例えば、3V程度となる。電圧検出部116から電圧降下の通知を受けた制御部112は、無線部117、音声処理部118、切替部119及び着信音発生部123の動作を禁止する。特に、消費電力の大きな無線部117の動作停止は、必須となる。更に、表示部115に、通信部114が電池残量の不足により使用不能になった旨が表示される。
 すなわち、電圧検出部116と制御部112とによって、通信部114の動作を禁止し、その旨を表示部115に表示することができる。この表示は、文字メッセージであっても良いが、より直感的な表示として、表示部115の表示面の上部に表示された電話アイコンに、×(バツ)印を付けるようにしても良い。
 なお、通信部114の機能に係る部分の電源を、選択的に遮断することができる電源遮断部126を備えることで、通信部114の機能をより確実に停止することができる。
 上述したように、本実施形態の携帯情報機器110によれば、高品質化された圧電振動子1を備えているので、携帯情報機器自体も同様に高品質化を図ることができる。さらにこれに加え、長期にわたって安定した高精度な時計情報を表示することができる。
 次に、本発明に係る電波時計の一実施形態について、図17を参照して説明する。
 本実施形態の電波時計130は、図17に示すように、フィルタ部131に電気的に接続された圧電振動子1を備えたものであり、時計情報を含む標準の電波を受信して、正確な時刻に自動修正して表示する機能を備えた時計である。
 日本国内には、福島県(40kHz)と佐賀県(60kHz)とに、標準の電波を送信する送信所(送信局)があり、それぞれ標準電波を送信している。40kHz若しくは60kHzのような長波は、地表を伝播する性質と、電離層と地表とを反射しながら伝播する性質とを併せもつため、伝播範囲が広く、上述した2つの送信所で日本国内を全て網羅している。
 (電波時計)
 以下、電波時計130の機能的構成について詳細に説明する。
 アンテナ132は、40kHz若しくは60kHzの長波の標準電波を受信する。長波の標準電波は、タイムコードと呼ばれる時刻情報を、40kHz若しくは60kHzの搬送波にAM変調をかけたものである。受信された長波の標準電波は、アンプ133によって増幅され、複数の圧電振動子1を有するフィルタ部131によって濾波、同調される。
 本実施形態における圧電振動子1は、上述した搬送周波数と同一の40kHz及び60kHzの共振周波数を有する水晶振動子部138、139をそれぞれ備えている。
 さらに、濾波された所定周波数の信号は、検波、整流回路134により検波復調される。
続いて、波形整形回路135を介してタイムコードが取り出され、CPU136でカウントされる。CPU136では、現在の年、積算日、曜日、時刻等の情報を読み取る。読み取られた情報は、RTC137に反映され、正確な時刻情報が表示される。
 搬送波は、40kHz若しくは60kHzであるから、水晶振動子部138、139は、上述した音叉型の構造を持つ振動子が好適である。
 なお、上述の説明は、日本国内の例で示したが、長波の標準電波の周波数は、海外では異なっている。例えば、ドイツでは77.5KHzの標準電波が用いられている。従って、海外でも対応可能な電波時計130を携帯機器に組み込む場合には、さらに日本の場合とは異なる周波数の圧電振動子1を必要とする。
 上述したように、本実施形態の電波時計130によれば、高品質化された圧電振動子1を備えているので、電波時計自体も同様に高品質化を図ることができる。さらにこれに加え、長期にわたって安定して高精度に時刻をカウントすることができる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上述した実施形態では、音叉型の圧電振動片4を例に挙げて説明したが、音叉型に限られるものではない。例えば、厚み滑り振動片としても構わない。
 また、圧電振動子の一例として、表面実装型の圧電振動子1を例に挙げて説明したが、この圧電振動子1に限定されるものではない。さらに、上述した実施形態では、ガラス材料からなるウエハ接合体を例にして説明したが、これに限らずシリコンウエハ等、種々の材料を用いることが可能である。
 また、上述した実施形態では、切断工程においてベース基板用ウエハ40の表面にスクライブラインM’を形成する一方、リッド基板用ウエハ50の表面から切断刃70を押し当てる場合について説明したが、これに限られない。例えば、リッド基板用ウエハ50の表面にスクライブラインM’を形成する一方、ベース基板用ウエハ40の表面から切断刃70を押し当ててもよい。
 さらに、ベース基板用ウエハ40に凹部3aを形成してもよく、両ウエハ40,50に凹部3aをそれぞれ形成してもよい。
 ウエハ接合体から良品として取り出されるパッケージの数を増加することができ、歩留まりを向上させることができる。

Claims (9)

  1.  内容物を封入したパッケージの製造方法であって、
     第1ウエハにおける複数のパッケージ形成領域にキャビティを形成する工程と、
     前記内容物を前記キャビティ内に配置しつつ前記第1ウエハ及び第2ウエハを貼り合わせる工程と、
     貼り合せたウエハ接合体にレーザーを照射して前記パッケージを個片化する工程と、を有し、
     キャビティ形成工程では、前記第1ウエハの最外周の前記パッケージ形成領域の外側に、ダミーキャビティを形成することを特徴とするパッケージの製造方法。
  2.  前記ダミーキャビティは、前記最外周のパッケージ形成領域の縁辺に接する第1ダミーキャビティに加えて、前記最外周のパッケージ形成領域の角部のみに接する第2ダミーキャビティを含むことを特徴とする請求項1記載のパッケージの製造方法。
  3.  前記第1ウエハ及び前記第2ウエハは、ともにガラス基材からなることを特徴とする請求項1または請求項2記載のパッケージの製造方法。
  4.  前記切断工程では、前記第1ウエハ及び前記第2ウエハのうち、一方のウエハの表面側から前記レーザーを照射して、前記一方のウエハ表面に溝を形成する溝形成工程と、
     他方のウエハの裏面から前記溝に沿って衝撃力を加えることで、前記両ウエハを前記パッケージ毎に分離するブレーキング工程とを有することを特徴とする請求項1ないし請求項3の何れか1項に記載のパッケージの製造方法。
  5.  互いに接合された第1ウエハ及び第2ウエハにおける複数のパッケージ形成領域に、内容物が封入されたキャビティを備えてなるウエハ接合体であって、
     最外周の前記パッケージ形成領域の外側に、ダミーキャビティが形成されていることを特徴とするウエハ接合体。
  6.  請求項1ないし請求項4の何れか1項に記載のパッケージの製造方法によって製造されたことを特徴とする圧電振動子。
  7.  請求項6に記載の前記圧電振動子が、発振子として集積回路に電気的に接続されていることを特徴とする発振器。
  8.  請求項6に記載の前記圧電振動子が、計時部に電気的に接続されていることを特徴とする電子機器。
  9.  請求項6記載の前記圧電振動子が、フィルタ部に電気的に接続されていることを特徴とする電波時計。
PCT/JP2009/050437 2009-01-15 2009-01-15 パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計 WO2010082329A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010546511A JPWO2010082329A1 (ja) 2009-01-15 2009-01-15 パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計
PCT/JP2009/050437 WO2010082329A1 (ja) 2009-01-15 2009-01-15 パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計
CN2009801549579A CN102282670A (zh) 2009-01-15 2009-01-15 封装件的制造方法及圆片接合体、压电振动器、振荡器、电子设备及电波钟表
TW098140822A TW201044513A (en) 2009-01-15 2009-11-30 Method for manufacturing package, wafer bonded body, piezoelectric vibrator, oscillator, electronic apparatus and radio-controlled clock
US13/177,898 US8918971B2 (en) 2009-01-15 2011-07-07 Method of manufacturing packages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050437 WO2010082329A1 (ja) 2009-01-15 2009-01-15 パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/177,898 Continuation US8918971B2 (en) 2009-01-15 2011-07-07 Method of manufacturing packages

Publications (1)

Publication Number Publication Date
WO2010082329A1 true WO2010082329A1 (ja) 2010-07-22

Family

ID=42339598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050437 WO2010082329A1 (ja) 2009-01-15 2009-01-15 パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計

Country Status (5)

Country Link
US (1) US8918971B2 (ja)
JP (1) JPWO2010082329A1 (ja)
CN (1) CN102282670A (ja)
TW (1) TW201044513A (ja)
WO (1) WO2010082329A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739181A (zh) * 2011-03-29 2012-10-17 精工电子有限公司 压电振动器的制造方法、压电振动器、振荡器、电子设备及电波钟

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755105B2 (en) * 2015-01-30 2017-09-05 Nichia Corporation Method for producing light emitting device
JP6635605B2 (ja) * 2017-10-11 2020-01-29 国立研究開発法人理化学研究所 電流導入端子並びにそれを備えた圧力保持装置及びx線撮像装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121037A (ja) * 2000-08-07 2002-04-23 Nippon Sheet Glass Co Ltd 電子部品パッケージ用多数個取りガラス板の製造方法
JP2007013628A (ja) * 2005-06-30 2007-01-18 Kyocera Kinseki Corp 圧電振動子の製造方法及び圧電振動子
JP2008093880A (ja) * 2006-10-10 2008-04-24 Seiko Epson Corp 積層基板の分割方法、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008258B2 (ja) * 2002-02-15 2007-11-14 セイコーインスツル株式会社 圧電振動子の製造方法
JP2003288026A (ja) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置の製造方法
US6982470B2 (en) * 2002-11-27 2006-01-03 Seiko Epson Corporation Semiconductor device, method of manufacturing the same, cover for semiconductor device, and electronic equipment
JP4471632B2 (ja) * 2003-11-18 2010-06-02 株式会社ディスコ ウエーハの加工方法
TWI292186B (en) * 2006-01-18 2008-01-01 Touch Micro System Tech Method of wafer level packaging and cutting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121037A (ja) * 2000-08-07 2002-04-23 Nippon Sheet Glass Co Ltd 電子部品パッケージ用多数個取りガラス板の製造方法
JP2007013628A (ja) * 2005-06-30 2007-01-18 Kyocera Kinseki Corp 圧電振動子の製造方法及び圧電振動子
JP2008093880A (ja) * 2006-10-10 2008-04-24 Seiko Epson Corp 積層基板の分割方法、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739181A (zh) * 2011-03-29 2012-10-17 精工电子有限公司 压电振动器的制造方法、压电振动器、振荡器、电子设备及电波钟
JP2012209617A (ja) * 2011-03-29 2012-10-25 Seiko Instruments Inc 圧電振動子の製造方法、該製造方法によって製造される圧電振動子、該圧電振動子を有する発振器、電子機器及び電波時計

Also Published As

Publication number Publication date
CN102282670A (zh) 2011-12-14
TW201044513A (en) 2010-12-16
JPWO2010082329A1 (ja) 2012-06-28
US20110261659A1 (en) 2011-10-27
US8918971B2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
JP5237976B2 (ja) 圧電振動子、圧電振動子の製造方法、発振器、電子機器及び電波時計
JP5135510B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5091261B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5065494B2 (ja) 圧電振動子、発振器、電子機器及び電波時計並びに圧電振動子の製造方法
JP5226073B2 (ja) 圧電振動子、発振器、電子機器および電波時計
JP2011049665A (ja) 圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計
JP5121934B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器および電波時計
JP5479931B2 (ja) 圧電振動子、発振器、電子機器および電波時計
JP2011190509A (ja) マスク材、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2011030095A (ja) 圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計
JP5529463B2 (ja) パッケージの製造方法および圧電振動子の製造方法
JP2011160350A (ja) 圧電振動片、圧電振動子、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2012199735A (ja) 圧電振動子の製造方法、圧電振動子、該圧電振動子を有する発振器、電子機器及び電波時計
JP2012169865A (ja) 圧電振動片、圧電振動子、発振器、電子機器、及び電波時計
JP2012209617A (ja) 圧電振動子の製造方法、該製造方法によって製造される圧電振動子、該圧電振動子を有する発振器、電子機器及び電波時計
WO2009104328A1 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5128669B2 (ja) 圧電振動子の製造方法
JP5421690B2 (ja) パッケージの製造方法
WO2010097901A1 (ja) 陽極接合方法、パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2011029911A (ja) 圧電振動子の製造方法、並びに圧電振動子、発振器、電子機器および電波時計
WO2010082329A1 (ja) パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計
JP2011211441A (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器、および電波時計
JP2013165396A (ja) 圧電振動片、圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
WO2010097900A1 (ja) パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
JP2013187639A (ja) 圧電振動片の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154957.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838299

Country of ref document: EP

Kind code of ref document: A1