WO2010079757A1 - 送信装置、送信方法、通信システムおよび通信方法 - Google Patents

送信装置、送信方法、通信システムおよび通信方法 Download PDF

Info

Publication number
WO2010079757A1
WO2010079757A1 PCT/JP2010/000070 JP2010000070W WO2010079757A1 WO 2010079757 A1 WO2010079757 A1 WO 2010079757A1 JP 2010000070 W JP2010000070 W JP 2010000070W WO 2010079757 A1 WO2010079757 A1 WO 2010079757A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
unit
guard interval
signal
multicarrier
Prior art date
Application number
PCT/JP2010/000070
Other languages
English (en)
French (fr)
Inventor
示沢寿之
野上智造
吉本貴司
山田良太
加藤勝也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2010545750A priority Critical patent/JP5361082B2/ja
Priority to US13/143,281 priority patent/US8693560B2/en
Priority to BRPI1006119A priority patent/BRPI1006119A2/pt
Priority to CN2010800039336A priority patent/CN102273113A/zh
Priority to EP10729177.5A priority patent/EP2378685A4/en
Publication of WO2010079757A1 publication Critical patent/WO2010079757A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2688Resistance to perturbation, e.g. noise, interference or fading

Definitions

  • the present invention relates to a transmission device, a transmission method, a communication system, and a communication method.
  • This application claims priority based on Japanese Patent Application Nos. 2009-002693 and 2009-002694 filed in Japan on January 8, 2009, the contents of which are incorporated herein by reference.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA orthogonal frequency division multiple access
  • M-CDR multi-carrier code division multiplexing
  • multipath fading is performed by adding a guard interval (GI) section (length) using a cyclic prefix (CP) to a transmission signal transmitted by a transmission apparatus. The effect of (multipath interference) is reduced.
  • GI guard interval
  • CP cyclic prefix
  • a signal known between the transmitting apparatus and the receiving apparatus is used as a pilot signal in order to compensate for fluctuations in the amplitude and phase of the transmission signal caused by a propagation path such as multipath fading. Then, by inserting it into a part of the transmission signal, the fluctuation of the amplitude and phase of the propagation path is estimated. In addition, it is desired that the propagation path be estimated with high accuracy.
  • Non-Patent Document 1 discloses a method using a scattered pilot signal.
  • FIG. 52 shows a frame composed of 8 subcarriers and 12 OFDM symbols.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • one row in the frequency (vertical axis) direction represents a subcarrier
  • one column in the time (horizontal axis) direction represents an OFDM symbol.
  • pilot symbols are arranged on every third subcarrier in the frequency direction and every other OFDM symbol in the time direction. Further, the OFDM symbol including the pilot symbol is shifted in the frequency direction for each OFDM symbol. As a result, it is possible to follow estimation of time variation and frequency variation of the amplitude and phase by the scattered pilot symbol.
  • FIG. FIG. 53 shows a channel impulse response value of a 12-wave multipath model, where the first four waves of the received signal are within the guard interval GI section, and the other eight waves exceed that section. Show. If there is a delayed wave that exceeds the guard interval in this way, as shown in FIG. 54, the head of the guard interval added to the previous OFDM symbol, that is, the data interval of the previous OFDM symbol, Intersymbol interference (ISI: Inter Symbol Interference) is generated by entering the FFT (Fast Fourier Transform) section performed for demodulation. This inter-symbol interference decreases the estimation accuracy of the propagation path and becomes a factor of reducing the communication quality.
  • ISI Inter Symbol Interference
  • Non-Patent Document 1 As a method of removing the influence due to the intersymbol interference, for example, as shown in Non-Patent Document 1, the guard interval of each OFDM symbol in the subframe (frame, slot) is made longer than usual. It has been shown.
  • Non-Patent Document 1 since a guard interval section to be added for each subframe is set, all guard interval sections in the same subframe are lengthened even when one guard interval is desired to be lengthened. In other words, the length of the guard interval is increased for all OFDM symbols other than the scattered pilot symbol in the same subframe including the scattered pilot symbol for which the guard interval is desired to be extended. Will increase the number of sections. Therefore, in Non-Patent Document 1, it is possible to reduce interference between OFDM symbols, but transmission efficiency is lowered.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the transmission efficiency in an environment in which an incoming wave exceeding the normal guard interval section arrives due to the propagation path without substantially reducing transmission efficiency. Another object of the present invention is to provide a transmission device, a transmission method, a communication system, and a communication method that can improve resistance to inter-channel interference.
  • a transmission apparatus is a transmission apparatus that performs multicarrier modulation on a symbol that is a basic unit of a digital signal and transmits the first guard.
  • Carriers are scattered among a plurality of subcarriers constituting the multicarrier at the same time.
  • the transmitting apparatus of the present invention is the above-described transmitting apparatus, and phase-rotates a part of the symbols to which a second guard interval longer than the first guard interval is added.
  • a phase that generates a symbol that is arranged immediately before in the time direction of the same subcarrier as the partial symbol and that constitutes a part of a second guard interval to be added to the partial symbol
  • a control unit a symbol to which the first guard interval is added, a symbol to which the second guard interval is added, and a multiplexing unit that multiplexes the symbols generated by the phase rotation unit in the frequency domain,
  • An inverse Fourier transform unit that performs inverse Fourier transform on the symbols multiplexed by the multiplexing unit to convert the symbol into a time domain signal, and a time domain signal converted by the inverse Fourier transform unit
  • Anda guard interval inserting unit that adds a guard interval length of the first guard interval, generating a first multi-carrier symbols and a second multicarrier symbols, wherein the.
  • the transmission device of the present invention is the above-described transmission device, and the phase control unit controls a phase rotation amount when performing phase rotation based on a length of the first guard interval. It is characterized by that.
  • the transmission device of the present invention is the above-described transmission device, wherein the effective symbol period of the second multicarrier symbol includes any one of the effective symbol periods of the first multicarrier symbol and a time. It is characterized by matching in direction.
  • the transmission apparatus of this invention is the transmission apparatus mentioned above, Comprising:
  • the transmission apparatus of this invention is the above-mentioned transmission apparatus, Comprising:
  • the said 2nd multicarrier symbol contains the pilot signal known between the receivers which communicate with this transmission apparatus It is a pilot symbol.
  • the transmitting apparatus of the present invention is the transmitting apparatus described above, wherein the second multicarrier symbol is a control data symbol including a control signal for a receiving apparatus communicating with the transmitting apparatus.
  • the transmitting apparatus of the present invention is the above-described transmitting apparatus, wherein the first multicarrier symbol is an information data symbol including information data for a receiving apparatus communicating with the transmitting apparatus.
  • the transmission apparatus of the present invention is the transmission apparatus described above, wherein the first multicarrier symbol includes an information data symbol including information data for a reception apparatus communicating with the transmission apparatus, and the transmission apparatus
  • the control data symbol includes a control signal for a receiving apparatus communicating with the receiver.
  • the transmission apparatus of the present invention is the transmission apparatus described above, wherein the first multicarrier symbol that is the control data symbol is adjacent to a subcarrier in which the second multicarrier symbol is arranged. It arrange
  • the transmission apparatus of the present invention is the above-described transmission apparatus, and includes a transmission processing unit including the phase control unit, the multiplexing unit, the inverse Fourier transform unit, and the guard interval insertion unit.
  • a plurality of the second multicarrier symbols in one transmission processing unit are provided, and the second multicarrier symbols are spatially independent from each other in the other transmission processing units.
  • the transmitting apparatus of the present invention is the above-described transmitting apparatus, wherein the first multicarrier symbol is generated by adding the first guard interval to a part of the symbols.
  • a multiplexing unit that multiplexes the symbol and the second multicarrier symbol in a time domain.
  • the transmission device of the present invention is the above-described transmission device, wherein the first multicarrier symbol generation unit includes a time and a frequency having a predetermined width for each of the partial symbols.
  • a time domain signal of the second multicarrier symbol is generated, and the multiplexing unit and the time domain signal of the first multicarrier symbol and the second multicarrier symbol are generated. Characterized by multiplexing the signal in the time domain of Bol.
  • the communication system of the present invention is a communication system including a transmission device and a reception device that perform multicarrier modulation on a symbol that is a basic unit of a digital signal, and the transmission device has a first guard interval.
  • a subcarrier in which a symbol is arranged in the first multicarrier symbol having, and a subcarrier in which a symbol is arranged in a second multicarrier symbol having a second guard interval longer than the first guard interval. Transmits multicarrier signals scattered among a plurality of subcarriers constituting the multicarrier at the same time, and the receiving device multicarrier-demodulates the multicarrier signals transmitted from the transmitting device. Separating the plurality of subcarriers with the first symbol, Extracting a second symbol, wherein the.
  • the communication system of the present invention is the communication system described above, wherein the reception device receives the multicarrier signal transmitted from the transmission device, and is included in the received multicarrier signal.
  • a first guard interval removing unit that removes the first guard interval; and a second guard interval removing unit that removes the second guard interval included in the received multicarrier signal.
  • the communication system of the present invention is the communication system described above, wherein the reception device receives the multicarrier signal transmitted from the transmission device, and is included in the received multicarrier signal.
  • a first guard interval removing unit that removes the first guard interval; and the first carrier interval removing unit that is included in the multicarrier signal from the multicarrier signal from which the first guard interval has been removed.
  • a symbol extraction unit for extracting a second multicarrier symbol.
  • the communication system of the present invention is the communication system described above, wherein the effective symbol period extracted by the symbol extraction unit is an effective symbol period of the second multicarrier symbol. To do.
  • the transmission method of the present invention is a transmission method of a transmission apparatus for transmitting a symbol, which is a basic unit of a digital signal, by multicarrier modulation, in the first multicarrier symbol having a first guard interval.
  • a subcarrier in which a symbol is arranged and a subcarrier in which a symbol is arranged in a second multicarrier symbol having a second guard interval longer than the first guard interval It is characterized by being scattered among a plurality of subcarriers.
  • the transmission method of the present invention is the transmission method described above, wherein the symbols that are part of the symbols and to which a second guard interval longer than the first guard interval is added are phase-rotated.
  • a phase that generates a symbol that is arranged immediately before in the time direction of the same subcarrier as the partial symbol and that constitutes a part of a second guard interval to be added to the partial symbol
  • the inverse Fourier transform procedure for performing inverse Fourier transform on the symbols multiplexed by the multiplex procedure to convert the symbol into a time domain signal, and the inverse Fourier transform procedure transformed
  • the transmission method of the present invention is the above-described transmission method, which is a transmission method in a transmission device that transmits multi-carrier modulation of a symbol that is a basic unit of a digital signal, and the transmission device includes: A first process of adding a first guard interval to some of the symbols to generate a first multicarrier symbol; and A second process of generating a second multicarrier symbol by adding a long second guard interval, and the transmitting apparatus determines that the first multicarrier symbol and the second multicarrier symbol are in the time domain.
  • the communication method of the present invention is a communication method including a transmission method and a reception method for transmitting a symbol which is a basic unit of a digital signal by multicarrier modulation, wherein the transmission method includes a first guard interval.
  • a subcarrier in which a symbol is arranged in the first multicarrier symbol having, and a subcarrier in which a symbol is arranged in a second multicarrier symbol having a second guard interval longer than the first guard interval. Transmits a multicarrier signal scattered among a plurality of subcarriers constituting the multicarrier at the same time, and the reception method performs multicarrier demodulation on the transmitted multicarrier signal and Separating a carrier and extracting the first symbol and the second symbol; And wherein the door.
  • the communication method of the present invention is the communication method described above, wherein the reception method receives the transmitted multicarrier signal and the first multicarrier signal included in the received multicarrier signal. It includes a first guard interval removing procedure for removing a guard interval and a second guard interval removing procedure for removing the second guard interval included in the received multicarrier signal.
  • the communication method of the present invention is the communication method described above, wherein the reception method receives the transmitted multicarrier signal and includes the first multicarrier signal included in the received multicarrier signal. A first guard interval removing procedure for removing a guard interval; and the second symbol included in the multicarrier signal from the multicarrier signal from which the first guard interval removing procedure has removed the first guard interval. And a symbol extraction procedure for extracting.
  • a first OFDM symbol and a second OFDM symbol are generated in an environment in which an incoming wave exceeding a normal guard interval section arrives due to a propagation path, and the first OFDM symbol and The first and second guard intervals having different lengths are added to the second OFDM symbol (the length of the second guard interval is longer than the length of the first guard interval), Since it is possible to transmit transmission signals that are scattered and arranged between a plurality of subcarriers constituting a carrier, it is possible to improve resistance to intersymbol interference without substantially reducing the transmission efficiency of communication.
  • FIG. 10 It is a figure which shows another example of the FFT area for the normal GI information data symbol and normal GI control symbol in the embodiment. It is a figure which shows schematic structure of the information data signal which added normal GI in the same embodiment, and the pilot signal which added long GI. It is a figure which shows the schematic structural example of a received signal about the information data signal or control signal to which normal GI was added in the same embodiment. It is a figure which shows the schematic structural example of a received signal about the information data signal to which normal GI was added in the same embodiment, and the pilot signal to which long GI was added. It is a schematic block diagram which shows the structure of the transmitter 10a which concerns on 8th Embodiment of this invention.
  • a normal guard interval is referred to as a normal guard interval (hereinafter referred to as “normal GI”), and a guard interval longer than a normal guard interval interval is referred to as a long guard interval (hereinafter referred to as “long GI”). ").
  • FIG. 1 is a schematic block diagram showing the configuration of the transmission apparatus according to the first embodiment of the present invention.
  • a transmission device a1 includes an information data symbol generation unit a10 (normal GI symbol generation unit), a pilot symbol processing unit a20 (long GI symbol generation unit), a multiplexing unit a30, and an IFFT (Inverse Fast Fourier Transform).
  • the information data symbol generation unit a10 arranges (maps) information data symbols obtained by encoding and modulating an information data signal (transmission data) to be transmitted, which is input from a higher-layer processing device of the transmission device a1 (not shown), in resource elements.
  • the arranged information data symbols are output to the multiplexing unit a30.
  • the information data symbol generation unit a10 includes a coding unit a11, a modulation unit a12, and a mapping unit a13.
  • the encoding unit a11 performs error correction encoding such as a convolutional code or a turbo code on the input information data signal, and outputs the result to the modulation unit a12.
  • the modulation unit a12 converts, for example, QPSK (Quadrature Phase Shift Keying) or QAM (Quadrature Amplitude Modulation) into the error correction encoded information data signal input from the encoding unit a11.
  • QPSK Quadratture Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • the mapping unit a13 is a resource element other than the resource element into which the scattered pilot symbol or the like is inserted by the pilot symbol processing unit a20. Mapping is performed and output to the multiplexing unit a30 as the output of the information data symbol generation unit a10.
  • the resource element is an area composed of a predetermined
  • the pilot symbol processing unit a20 maps pilot symbols input from a higher-layer processing apparatus of the transmission apparatus a1 (not shown) to resource elements distributed in the frequency direction and the time direction as scattered pilot symbols, and further performs mapping Mapping a scattered pilot symbol obtained by phase-controlling a scattered pilot symbol to a resource element one before in the time direction, that is, mapping a pilot symbol phase-controlled so as to become a part of a long GI later, These symbols are output to the multiplexing unit a30.
  • the pilot symbol processing unit a20 includes a mapping unit a21 and a phase control unit a22.
  • the mapping unit a21 performs mapping to predetermined times and subcarriers (resource elements) so that the input pilot symbols are scattered in the frequency direction and the time direction as scattered pilot symbols, and the phase control unit a22 Output to.
  • the mapping unit a21 copies the pilot symbol when mapping the pilot symbol. Then, the pilot symbol copied to the previous resource element in the time direction of the resource element to which the original pilot symbol is mapped is mapped so as to become a part of the subsequent long GI.
  • the phase control unit a22 controls the phase of the pilot symbols that are part of the long GI among the scattered pilot symbols input from the mapping unit a21 according to the length of the normal GI and the position (number) of the subcarrier. And outputs all the pilot symbols including the phase-controlled pilot symbols to the multiplexing unit a30 as the output of the pilot symbol processing unit a20.
  • Multiplexer a30 performs mapping of the mapped information data symbol input from information data symbol generator a10, the mapped pilot symbol input from pilot symbol processor a20, and the phase-controlled pilot symbol, in the frequency domain To superimpose (multiplex) and output to the IFFT unit a40.
  • the IFFT unit a40 converts the frequency-domain signal into a time-domain signal by performing IFFT processing on the multiplexed symbol input from the multiplexing unit a30, which is a frequency-domain signal, and outputs the signal to the GI insertion unit a50.
  • the GI insertion unit a50 adds a guard interval of a predetermined length to the time domain signal input from the IFFT unit a50, generates an OFDM symbol, and outputs the OFDM symbol to the transmission unit a60.
  • a detailed description of the guard interval addition processing will be described later.
  • multicarrier modulation such a method of performing modulation by dispersing symbols over a number of subcarriers.
  • the above symbols correspond to modulation symbols
  • multicarrier modulation modulation modulation is performed in which the modulation symbols are distributed and arranged on subcarriers, and after inverse Fourier transform, a guard interval is added.
  • OFDM modulation is an example of multi-carrier modulation, and at that time, a large number of subcarriers are overlapped and orthogonal to each other, so that the occupied bandwidth can be reduced.
  • a chip corresponds to the symbol, and as a multi-carrier modulation, a chip generated by multiplying a modulation symbol by a spreading code is distributed and arranged on subcarriers, and after performing an inverse Fourier transform, a guard interval is used. MC-CDM modulation is added. Also, in DFT-S-OFDM (Discrete Fourier Transform-Spread-OFDM), a discrete spectrum corresponds to the symbol, and a discrete spectrum generated by Fourier transforming a plurality of symbols is dispersed. DFT-S-OFDM modulation in which a guard interval is added after the inverse Fourier transform is arranged on the subcarrier is performed.
  • DFT-S-OFDM Discrete Fourier Transform-Spread-OFDM
  • an hour unit of a signal subjected to multicarrier modulation in this way is called a multicarrier symbol.
  • a multicarrier symbol For example, in OFDM and OFDMA, a signal in a section obtained by combining one effective symbol section and a guard interval section added before it is referred to as an OFDM symbol.
  • the transmission unit a60 performs digital-analog conversion, frequency conversion, and the like on the OFDM symbol input from the GI insertion unit a50, and transmits the result through the transmission antenna a100.
  • FIG. 2 is a diagram illustrating an example of an information data symbol frame obtained by mapping the information data signal input in the mapping unit a13.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • one row represents a subcarrier
  • one column represents a symbol mapped to an OFDM symbol.
  • An example of the information data symbol frame shown in FIG. 2 is composed of 4 OFDM symbols and 8 subcarriers, and each of the 3rd OFDM symbols of the 3rd and 6th subcarriers is a scattered pilot symbol. Shows the case of mapping.
  • the mapping unit a13 is a solid line obtained by removing the information data symbol modulated by the modulation unit a12 from the position where the scattered pilot symbol is mapped as shown in FIG. 2 and the previous position in the time direction. It maps to the resource element shown in. Note that the mapping unit a13 maps zero (null) to the position where the scattered pilot symbol is mapped and the position immediately preceding in the time direction (the position indicated by the dotted line).
  • the pilot symbol processing unit a20 receives the input pilot symbol (the symbol of this pilot symbol is modulated by QPSK, QAM, etc. as in the case of the information data symbol).
  • the mapping unit a21 maps the scattered pilot symbols.
  • the phase control unit a22 performs phase control.
  • two pilot symbols are mapped as one long GI so that the long GI is added, and phase-controlled pilot symbols in the frequency domain are output to the multiplexing unit a30.
  • FIG. 3 is a diagram illustrating an example of a pilot symbol frame in which scattered pilot symbols corresponding to the information data symbol frame illustrated in FIG. 2 are mapped.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • one row represents a subcarrier
  • one column represents a symbol mapped to an OFDM symbol.
  • the positions where the scattered pilot symbols shown by dotted lines in FIG. 2 are mapped that is, the second and third subcarriers for the third and sixth subcarriers. This shows a case where one long GI pilot symbol is set using multiple OFDM symbols.
  • the phase control unit a22 does not rotate the phase of the pilot symbol mapped to the third OFDM symbol, and changes the phase of the pilot symbol mapped to the second OFDM symbol to the length of the normal GI and the position of the subcarrier.
  • the mapping unit a21 maps zero (null) at the position where the information data symbol is inserted.
  • the multiplexing unit a30 multiplexes the mapped information data symbol output from the information data symbol generation unit a10 and the pilot symbol output from the pilot symbol processing unit a20 in the frequency domain, and then the IFFT unit In step a40, IFFT processing is performed to convert a frequency domain signal into a time domain signal.
  • the GI insertion unit a50 inserts a guard interval into the time domain signal to generate an OFDM symbol.
  • FIG. 4A to 4C are diagrams illustrating a method for generating a normal GI by the GI insertion unit a50.
  • a time-domain signal input from IFFT section a40 for example, a time-domain signal having an effective symbol length shown in FIG. 4A, a part of the rear end as shown in FIG. 4B (with a predetermined guard interval length).
  • the signal G) is copied and inserted in front of the valid symbol.
  • the symbol shown in FIG. 4C generated by inserting this signal G is an OFDM symbol.
  • a signal G having a predetermined length copied and inserted in front is a normal GI, a guard interval length (hereinafter referred to as “normal GI length”) of the signal G being a normal GI, an effective symbol length,
  • the total length of the normal GI length is the length of the normal GI symbol (hereinafter referred to as “OFDM symbol length”).
  • the process of inserting the guard interval is the same as the process of inserting the guard interval (normal GI) that is normally performed in OFDM communication.
  • the transmission unit a60 performs digital-analog conversion, frequency conversion, and the like on the OFDM symbol output from the GI insertion unit a50, and transmits the result through the transmission antenna a100.
  • the transmission apparatus multiplexes the example of the information data symbol frame shown in FIG. 2 and the example of the pilot symbol frame shown in FIG. 3 by the multiplexing unit a30, and the GI insertion unit a50 adds the normal GI to the multiplexed signal. It is the figure which showed an example of the added frame by the frequency component and the time component.
  • the phase control unit a22 performs phase control according to the normal GI length for the symbols mapped to the third and sixth subcarriers of the second OFDM symbol. As shown in FIG.
  • the subsequent processing includes IFFT processing normally performed in OFDM communication and processing for adding normal GI, respectively. Only once (FIG. 5), an OFDM symbol in which normal GI and long GI are mixed between subcarriers can be generated (FIG. 6).
  • the effective symbol section in the OFDM symbol to which the long GI is added coincides with the effective symbol section of the third OFDM symbol to which the normal GI is added in the time direction. Therefore, the receiving apparatus that has received the frame can set the FFT interval as in the conventional case. Detailed description regarding the FFT section in this receiving apparatus will be described later.
  • phase control performed by the phase control unit a22 on consecutive OFDM symbol signals of the same subcarrier will be described. That is, the phase control for the symbols mapped to the second OFDM symbol of the third and sixth subcarriers in FIG. 3 will be described.
  • an effect obtained by rotating the phase of each subcarrier signal in multicarrier transmission will be described.
  • 7A and 7B are diagrams showing the results of IFFT processing of subcarriers.
  • a signal x (n) in the time domain, which is a result of performing IFFT processing on X (k) is expressed by the following equation (1). That is, the result of performing IFFT processing without performing phase rotation does not shift in the time direction as shown in FIG. 7A.
  • i an imaginary unit
  • exp () is an exponential function
  • N is represented by the following formula (2).
  • 8A to 8E are diagrams illustrating a method for generating one long GI from two OFDM symbols.
  • FIG. 8A shows a symbol of one subcarrier to which a long GI is added (hereinafter referred to as “long GI symbol”), and the symbol length is a normal GI symbol having an OFDM symbol length as shown in FIG. 8B.
  • the symbol length is a combination of the two.
  • one effective symbol length and two normal GI lengths predetermined in the effective symbol length are repeatedly copied.
  • Long GI For example, if two normal GI length sections from the right end of the effective symbol in FIG. 8A are G1 and G2, respectively, the long GI length sections from the left end are as shown in FIG. 8C. That is, the section with the long GI length is generated by first copying the effective symbol length including G1 and G2, copying G1 and G2, and inserting them in front of the previously copied effective symbol length.
  • the view of the long GI symbol in which the guard interval of the long GI length shown in FIG. 8C is generated is changed, it can be regarded as an OFDM symbol to which two normal GIs are added, as shown in FIG. 8D. That is, the rear (right side) symbol in FIG. 8D is an OFDM symbol to which a normal GI length signal G1 is added, and the front (left side) symbol is an OFDM symbol to which a normal GI length signal G2 is added.
  • the rear (right side) effective symbol in FIG. 8D is compared with the effective symbol of the front (left side) OFDM symbol, the rear (right side) effective symbol is the same as the original effective symbol.
  • the front (left) effective symbol is shifted by the normal GI length of the rear (right) effective symbol, that is, the original effective symbol. Therefore, in the present embodiment, instead of the method shown in FIG. 8C, the effective symbol of the rear (right side) OFDM symbol is not shifted with respect to the original effective symbol, and the front (left side) OFDM symbol is effective.
  • a long GI symbol as shown in FIG. 8A is generated by shifting the original effective symbol according to the normal GI length.
  • the effective symbol of the OFDM symbol to be shifted is the front (left side) OFDM symbol as described above, and the effective symbol is shifted by the normal GI length.
  • the time domain signal x (ng) obtained by shifting the time domain signal x (n) by the normal GI length g, where g is the normal GI length, is expressed by the following equation (3).
  • the phase rotation amount ⁇ k according to the normal GI length. ⁇ 2 ⁇ kg / Ns indicates that the phase control unit a22 rotates the phase, thereby shifting the time domain signal x (n) by the normal GI length g. It also changes depending on the position (k).
  • FIGS. 9A to 9E are diagrams illustrating a case where one long GI symbol is generated using three normal GI symbols having an OFDM symbol length.
  • FIG. 9A shows a long GI symbol having three OFDM symbol lengths.
  • the symbol length is a symbol length obtained by combining three normal GI symbols having OFDM symbol lengths as shown in FIG. 9B. is there.
  • FIG. 9C two effective symbol lengths and three normal GI lengths predetermined in the effective symbol length are repeatedly copied.
  • Long GI For example, assuming that three normal GI length sections from the right end of the effective symbol in FIG. 9A are G1, G2, and G3, the long GI length sections from the left end are as shown in FIG. 9C. That is, in the long GI length section, first, the effective symbol length including G1, G2, and G3 is copied twice, and G1, G2, and G3 are copied and inserted in front of the previously copied effective symbol length. Is generated by
  • the view of the long GI symbol generated by copying the effective symbol and G1, G2, and G3 is changed in this way, it is regarded as an OFDM symbol with three normal GIs added as shown in FIG. 9D.
  • the rear (right side) symbol in FIG. 9D is an OFDM symbol to which a normal GI length signal G1 is added
  • the center symbol is an OFDM symbol to which a normal GI length signal G2 is added
  • These symbols are OFDM symbols to which a signal G3 having a normal GI length is added.
  • the rear (right side) effective symbol when comparing the effective symbol of the rear (right side) OFDM symbol with the effective symbol of the center OFDM symbol and the effective symbol of the front (left side) OFDM symbol, the rear (right side) effective symbol is Although it is the same as the original effective symbol, it can be seen that the central effective symbol shifts the effective symbol of the rear (right side), that is, the original effective symbol by one normal GI length. Further, it can be seen that the front (left side) effective symbol is shifted from the rear (right side) effective symbol, that is, the original effective symbol by two normal GI lengths. Therefore, in the present embodiment, instead of the method shown in FIG.
  • a long GI symbol as shown in FIG. 9A can be generated by shifting each of the effective symbols according to the normal GI length.
  • the shift shown in FIG. 9D will be described.
  • the shift to the front (left side) effective symbol is performed by an amount corresponding to shifting the effective symbol by two normal GI lengths.
  • the time domain signal x (n ⁇ 2g) at that time is expressed by the following equation (4). It is.
  • This phase control unit a22 includes an effective symbol of the OFDM symbol in front (left) in FIG. 9D, the effective symbol of the OFDM symbol of the rear (right side), that may be carried out phase rotation of 2 [Theta] k Show.
  • the phase rotation also changes depending on the position (k) of the subcarrier as in the case shown in FIGS. 8A to 8E.
  • the long GI can be generated by adding (copying) a signal having a predetermined length at the rear end of the effective symbol to the front as described above. However, all of the effective symbols are copied to the front. Even so, the OFDM symbol length to which the long GI is added may be insufficient. In this case, a signal having a predetermined length at the rear end of the effective symbol is further added to the front, that is, by repeating the process of copying forward again in order from the signal first added to the front, the long GI is repeated. Can be generated. In such a case, the phase control unit a22 generates a long GI symbol by performing phase rotation corresponding to the number of copied normal GI length sections.
  • FIG. 10 is a schematic block diagram showing the configuration of the receiving apparatus according to the first embodiment of the present invention.
  • a receiving device b1 includes a receiving antenna b500, a receiving unit b10, a normal GI-FFT section extracting unit b20 (first guard interval removing unit), an FFT unit b30, a filter unit b40, a demapping unit b50, and a demodulating unit.
  • b60 a decoding unit b70, and a pilot symbol processing unit b80.
  • the receiving unit b10 performs processing such as frequency conversion and analog-digital conversion on the received signal received from the receiving antenna b500, and outputs a baseband signal to the normal GI-FFT interval extracting unit b20 and the pilot symbol processing unit b80.
  • the normal GI-FFT section extraction unit b20 extracts an FFT section from the baseband signal input from the reception unit b10, thereby removing a section other than the FFT section, that is, a normal GI section.
  • the normal GI-FFT section extraction unit b20 restores the information data signal included in the baseband signal, that is, the normal GI added to the OFDM symbol, that is, the information data symbol added with the normal GI shown in FIG.
  • the normal GI section other than the FFT section is removed, and the time domain signal from which the normal GI section is removed is output to the FFT unit b30.
  • the FFT unit b30 performs FFT processing on the FFT section of the information data symbol to which the normal GI shown in FIG.
  • time domain signal input from the normal GI-FFT section extracting unit b20, and the time domain Is converted into a frequency domain signal and output to the filter unit b40.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • one row represents a subcarrier
  • one column represents an OFDM symbol.
  • the pilot symbol processing unit b80 performs propagation path estimation using pilot symbols in the baseband signal input from the reception unit b10, and outputs the result of propagation path estimation to the filter unit b40. Next, this point will be described in detail.
  • the pilot symbol processing unit b80 includes a long GI-FFT section extraction unit b81 (second guard interval removal unit), an FFT unit b82, a pilot extraction unit b83 (symbol extraction unit), and a propagation path estimation unit b84.
  • the long GI-FFT section extracting unit b81 extracts an FFT section from the baseband signal input from the receiving section b10, thereby removing a section other than the FFT section, that is, a long GI section.
  • the long GI-FFT interval extraction unit b81 restores the pilot symbols included in the baseband signal, that is, the long GI added to the scattered pilot symbols, that is, the pilot added with the long GI shown in FIG.
  • a long GI section other than the FFT section of the symbol is removed, and a time-domain signal obtained by removing the long GI section from the baseband signal is output to the FFT unit b82.
  • the FFT unit b82 is a time domain signal input from the long GI-FFT interval extraction unit b81, and the pilot symbol FFT interval of the pilot symbol to which the long GI shown in FIG. 12 is added.
  • An FFT process is performed to convert the time domain signal from which the long GI section has been removed into a frequency domain signal and output the signal to the pilot extraction unit b83.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • one row represents a subcarrier
  • one column represents an OFDM symbol.
  • the pilot extraction unit b83 has a predetermined time and subcarrier (resource element) from the frequency domain signal from which the section of the long GI input from the FFT unit b82 is removed, and a resource to which a pilot symbol is mapped By extracting the element signal, a scattered pilot symbol is extracted, and the extracted scattered pilot symbol is output to the propagation path estimation unit b84.
  • the propagation path estimation unit b84 uses the scattered pilot symbols extracted by the pilot extraction unit b83 to estimate fluctuations in the amplitude and phase of the transmission signal caused by the propagation path due to multipath fading (propagation path estimation). The result of the propagation path estimation is output to the filter unit b40. Note that various methods such as well-known linear interpolation and FFT interpolation can be used as a propagation path estimation method for resource elements other than the resource elements to which the scattered pilot symbols are mapped.
  • propagation is performed using a pilot symbol obtained by removing a long GI section from a long GI pilot symbol, that is, a scattered pilot symbol that is an effective symbol section of the pilot symbol extracted by the pilot extraction unit b83.
  • the channel estimation method is not limited to this, and channel estimation can also be performed using a part of the long GI section in the long GI pilot symbol.
  • the long GI in the same section as the effective symbol length from the rear end of the long GI section is used as the pilot symbol. Then, by performing averaging processing on the pilot symbols, it is possible to further improve the accuracy of channel estimation.
  • the filter section b40 Based on the propagation path estimation value (the propagation path estimation result) estimated by the propagation path estimation section b84 of the pilot symbol processing section b80, the filter section b40, for example, a zero forcing (ZF: Zero Forcing) standard, a least mean square
  • ZF Zero Forcing
  • MMSE Minimum Mean Square Error
  • signal amplitude and phase fluctuation compensation propagation
  • Path compensation a signal in the frequency domain subjected to propagation path compensation is output to the demapping unit b50.
  • the demapping unit b50 has a predetermined time and subcarrier (resource element) from the frequency domain signal for which propagation path compensation has been performed by the filter unit b40, and is a signal of a resource element to which an information data symbol is mapped Is extracted, the demapping process for extracting the information data symbol is performed, and the extracted information data symbol is output to the demodulator b60.
  • the demodulator b60 performs a demodulation process on the information data symbol (for example, modulated by a modulation scheme such as QPSK or QAM) input from the demapping unit b50, and converts the error-encoded information data signal It outputs to the decoding part b70.
  • the decoding unit b70 performs maximum likelihood decoding on the demodulated error correction encoded information data signal (for example, error correction encoded by a convolutional code, a turbo code, or the like) input from the demodulation unit b60.
  • MLD Maximum Likelihood Decoding
  • MAP Maximum A posteriori probability estimation
  • Log-MAP Maximum A posteriability
  • Log-MAP Max-log-MAP
  • SOVA Soft Output Viterbi processing
  • FIG. 13A and 13B are diagrams showing a normal GI symbol and a long GI symbol.
  • FIG. 13A shows a normal GI symbol (hereinafter referred to as “normal GI information data symbol”) that is a symbol with a guard interval of an information data signal
  • FIG. 13B shows a long GI symbol (long) that is a symbol with a guard interval of a pilot symbol. GI pilot symbol).
  • the long GI symbol shown in FIG. 13B is twice as long as the normal GI symbol shown in FIG. 13A. Even in the long GI symbol, the effective symbol length is the same as that of the normal GI symbol, and therefore, in the long GI symbol shown in FIG. 13B, all sections other than the effective symbol are sections of the guard interval.
  • FIG. 14 is a diagram illustrating an example in which a signal including only normal GI symbols is received.
  • FIG. 14 shows a case where a signal composed of only normal GI symbols arrives as a preceding wave and two delayed waves and performs FFT processing on the third OFDM symbol. Note that the FFT interval at this time is set to the effective symbol interval of the preceding wave that has arrived first.
  • the second OFDM symbol of delayed wave 1 that has arrived second (the OFDM symbol immediately before the third OFDM symbol for which the current FFT processing is performed) is not included in the set FFT interval. Therefore, the FFT process can be normally performed.
  • the second OFDM symbol of the delayed wave 2 that has arrived third (the OFDM symbol immediately before the third OFDM symbol for which the FFT processing is performed this time) is the guard of the preceding preceding wave as a reference.
  • the interval has been exceeded. That is, in the FFT processing of the third OFDM symbol, the second OFDM symbol of the delayed wave 2 is included in the FFT interval.
  • inter-symbol interference occurs in the third OFDM symbol of the preceding wave and the second OFDM symbol of the delayed wave 2, and an interference component is included in the result of the FFT processing.
  • FIG. 15 is a diagram illustrating an example in which a signal including a normal GI symbol and a long GI symbol is received.
  • FIG. 15 shows a case where a signal composed of a normal GI symbol and a long GI symbol arrives as a preceding wave and two delayed waves as in FIG. 14, and performs an FFT process on the OFDM symbol in the same section as in FIG. Show. Note that the FFT interval at this time is set to the effective symbol interval of the preceding wave that has arrived first.
  • the OFDM symbol immediately before the OFDM symbol to be subjected to the FFT processing this time is a long GI symbol for both the second delay wave 1 and the third delay wave 2 arrived. That is, as shown in FIG.
  • a scan is performed on any subcarrier in the same OFDM symbol. Since a long GI interval longer than the normal GI interval is set only for the scattered pilot symbol by inserting a scattered pilot symbol, the tolerance to inter-symbol interference can be improved. It is possible to estimate the propagation path with high accuracy in the receiving apparatus without substantially reducing the efficiency.
  • the decoding result can be used for iterative processing such as interference cancellation or turbo equalization for removing intersymbol interference.
  • the insertion process of the guard interval is as follows: This can be performed in the same manner as a guard interval (normal GI) insertion process normally performed in OFDM communication.
  • the present invention is not limited to this, and three or more types of guard interval sections are different. It can also be applied to signals. That is, a normal GI that is the first guard interval and a long GI that is a plurality of types of second guard intervals may be used.
  • the pilot symbol processing unit a20 has the same functions as those of the coding unit a11 and the modulation unit a12. A pilot signal is input instead of the pilot symbol, and error correction coding processing and modulation processing are performed on the input pilot signal. And pilot symbols may be generated.
  • a long GI is added to all input pilot symbols.
  • the present invention is not limited to this.
  • some pilot symbols may be added to some pilot symbols.
  • a long GI may be added only to the pilot symbol, and a normal GI may be added to other pilot symbols.
  • FIG. 16 is a schematic block diagram illustrating the configuration of the transmission apparatus according to the second embodiment.
  • a transmission device a2 includes an information data symbol generation unit a10, a pilot symbol processing unit a20, a pilot symbol storage unit a70 (symbol storage unit), a multiplexing unit a32, an IFFT unit a40, a GI insertion unit a50, a transmission unit a60, A transmission antenna a100 is provided.
  • the difference from the transmission device a1 in the first embodiment shown in FIG. 1 is that a pilot symbol storage unit a70 is added after the pilot symbol processing unit a20.
  • the information data symbol generation unit a10, the pilot symbol processing unit a20, the IFFT unit a40, the GI insertion unit a50, the transmission unit a60, and the transmission antenna a100 of the transmission device a2 are the first embodiment shown in FIG.
  • the function is the same as the form.
  • the receiving device in the second embodiment is the same as the receiving device b1 (FIG. 10) shown in the first embodiment.
  • the information data symbol generation unit a10 performs the same processing as the processing described in the first embodiment on the information data signal (transmission data) to be transmitted, which is input from the processing device in the higher layer of the transmission device a2 (not shown).
  • the mapped information data symbol is output to the multiplexing unit a32.
  • the pilot symbol processing unit a20 performs the same processing as the processing described in the first embodiment on the pilot symbol input from the processing device of the higher layer of the transmission device a2 (not shown), and the mapped pilot symbol is obtained.
  • the pilot symbol storage unit a70 stores the mapped pilot symbols and the phase-controlled pilot symbols input from the pilot symbol processing unit a20. Further, the mapped pilot symbols and the phase-controlled pilot symbols stored in the pilot symbol storage unit a70 are read out by the multiplexing unit a32.
  • the multiplexing unit a32 receives the mapped information data symbol input from the information data symbol generation unit a10, the mapped pilot symbol read from the pilot symbol storage unit a70, and the phase-controlled pilot symbol as a first
  • the same processing as described in the embodiment is performed, multiplexed, and output to the IFFT unit a40. Thereafter, processing similar to that described in the first embodiment is performed, and an OFDM symbol is transmitted via the transmission antenna a100.
  • the mapped pilot symbol stored in the pilot symbol storage unit a70 and the phase-controlled pilot symbol can be used.
  • the number of processings in the pilot symbol processing unit a20 performed for each transmission in the first embodiment is reduced, that is, the processing in the pilot symbol processing unit a20 is the value of the scattered pilot symbol or Since it can be executed only when the position of the scattered pilot symbol is changed, the overall calculation amount related to communication is reduced.
  • a scan is performed on any subcarrier in the same OFDM symbol. Cuttered pilot symbols are inserted, and pilot symbols in which a long GI section longer than the normal GI section is set for only the scattered pilot symbols are generated and stored in advance. Thereafter, when the transmission apparatus transmits the information data signal, pilot symbols stored in advance are multiplexed with the information data symbols as necessary.
  • the number of pilot symbol generation calculations performed for each transmission in the first embodiment can be reduced and the tolerance to inter-symbol interference can be improved, so that the transmission efficiency of the entire communication is hardly reduced.
  • the propagation path can be estimated with high accuracy in the receiving apparatus.
  • the transmission apparatus a2 includes the pilot symbol processing unit a20, and inputs the mapped pilot symbols and phase-controlled pilot symbols to the pilot symbol storage unit a70.
  • the pilot symbol processing unit a20 of the transmission device a2 can be omitted.
  • a mapping created in advance generated in an upper layer processing device of the transmission device a2 is performed.
  • the pilot symbol and the phase-controlled pilot symbol are directly input to the pilot symbol storage unit a70 of the transmission device a2.
  • a long GI is added to all input pilot symbols.
  • the present invention is not limited to this.
  • some pilot symbols may be added to some pilot symbols.
  • a long GI can be added, and a normal GI can be added to other pilot symbols.
  • FIG. 17 is a schematic block diagram illustrating the configuration of the transmission device according to the third embodiment.
  • the transmission device a3 includes an information data symbol generation unit a10, a control symbol processing unit a80, a multiplexing unit a33, an IFFT unit a40, a GI insertion unit a50, a transmission unit a60, and a transmission antenna a100.
  • the difference from the transmission device a1 in the first embodiment shown in FIG. 1 is that the pilot symbol processing unit a20 is replaced with a control symbol processing unit a80.
  • a control symbol is input from an upper layer processing device of the transmission device a3 (not shown).
  • the information data symbol generation unit a10, the IFFT unit a40, the GI insertion unit a50, the transmission unit a60, and the transmission antenna a100 of the transmission device a3 have the same functions as those of the first embodiment shown in FIG. is there.
  • the receiving device in the third embodiment is the same as the receiving device b1 (FIG. 10) shown in the first embodiment.
  • control symbol input to the transmission device a3 from the processing device on the upper layer of the transmission device a3 is information on a plurality of information data signals, and includes, for example, a modulation scheme and a mapping method ( Resource allocation method), error correction coding information (eg, coding method, coding rate, puncture pattern), interleaving method, scrambling method, hybrid automatic repeat request (HARQ: Hybrid Automatic Repeat reQuest) control information (eg, Packet reception notification information (ACK: Acknowledgment), packet non-reception notification information (NACK: Negative Acknowledgment) and the number of retransmissions), synchronization signal, spatial multiplexing technology (MIMO: Multiple) e Input Multiple Output control information (eg, number of layers (number of streams) and precoding method), base station information, terminal information, format information of control information, format information of data information, feedback information (eg, channel quality indicator) (CQI: Channel Quality Indicator, etc.) includes information necessary for a modulation scheme and
  • the information data symbol generation unit a10 performs the same processing as the processing described in the first embodiment on the information data signal (transmission data) to be transmitted, which is input from the processing device in the higher layer of the transmission device a3 (not shown). And outputs the mapped information data symbol to the multiplexing unit a33.
  • the control symbol processing unit a80 applies a control symbol to a control symbol input from a higher-level processing device of the transmission device a3 (not shown) in the same manner as the processing of the pilot symbol processing unit a20 described in the first embodiment. Further, the control symbol obtained by phase-controlling the mapped control symbol is mapped to the previous resource element in the time direction, that is, the control symbol phase-controlled so as to become a part of the long GI later is mapped. These symbols are output to the multiplexing unit a33. Next, this point will be described in detail.
  • the control symbol processing unit a80 includes a mapping unit a81 and a phase control unit a82.
  • the mapping unit a81 preliminarily distributes the input control symbols in the frequency direction and the time direction in the same manner as the processing of the mapping unit a21 in the pilot symbol processing unit a20 described in the first embodiment. Mapping to a predetermined time and subcarrier (resource element) is performed and output to the phase controller a82.
  • the mapping unit a81 copies the control symbol when mapping the control symbol. Then, the control symbol copied to the previous resource element in the time direction of the resource element to which the original control symbol is mapped is mapped so as to become a part of the subsequent long GI.
  • the phase control unit a82 controls the phase control symbols in the pilot symbol processing unit a20 described in the first embodiment, among the mapped control symbols input from the mapping unit a81, as control symbols that are part of the long GI. Similarly to the processing of the part a22, phase control is performed in accordance with the length of the normal GI and the position (number) of the subcarrier, and all control symbols including the phase-controlled control symbols are output from the control symbol processing part a80. Is output to the multiplexing unit a33.
  • phase control unit a82 the phase control unit a82, and the normal GI is inserted later by the GI insertion unit a50, thereby generating a control symbol to which the long GI is added in the same manner as the long GI pilot symbol in the first embodiment. can do.
  • the multiplexing unit a33 outputs the mapped information data symbol input from the information data symbol generation unit a10, the mapped control symbol input from the control symbol processing unit a80, and the phase-controlled control symbol to the first
  • the same processing as that described in the embodiment is performed, multiplexed, and output to the IFFT unit a40. Thereafter, processing similar to that described in the first embodiment is performed, and an OFDM symbol is transmitted via the transmission antenna a100.
  • FIG. 18 is a diagram illustrating an example of a frame in which the information data symbol and the control symbol are multiplexed by the multiplexing unit a33 and the normal GI is added to the multiplexed signal by the GI insertion unit a50 in terms of frequency components and time components.
  • a frame in which signals are arranged as shown in FIG. 18 can be regarded as a frame in which normal GI information data symbols and long GI control symbols are mixed between subcarriers as shown in FIG. 18 and 19, the horizontal axis represents time, the vertical axis represents frequency, one row represents a subcarrier, and one column represents an OFDM symbol.
  • the long GI control symbol is mapped to the front OFDM symbol, that is, the third to sixth subcarriers of the second OFDM symbol among the control symbols.
  • the phase control according to the normal GI length by the phase control unit a82 is performed on the symbols.
  • a long GI control symbol is mapped as a symbol to which one long GI is added using two OFDM symbols, and this one long GI is compared with a normal GI,
  • the guard interval length is significantly longer. As a result, resistance to intersymbol interference can be enhanced even in control symbols.
  • a control signal is inserted into any subcarrier in the same OFDM symbol, and only the control signal is longer than the normal GI section.
  • a long GI can be added.
  • a long GI can be added to an information data signal with a high quality of service (QoS) or an information data signal with a high urgency.
  • QoS quality of service
  • the transmission device a3 in the third embodiment is transmitted in the first and second embodiments. It can be applied as a device. Further, even when a control symbol and a pilot symbol are input from an upper layer processing apparatus of the transmission apparatus a3 (not shown), the long GI can be added to both by applying the same.
  • the control symbol processing unit a80 has the same functions as those of the encoding unit a11 and the modulation unit a12. A control signal is input instead of the control symbol, and the control symbol processing unit a80 adds an error correction code to the input control signal.
  • the control symbol may be generated by performing a digitization process and a modulation process.
  • a long GI is added to all input control symbols.
  • the present invention is not limited to this.
  • some control symbols may be included in some control symbols.
  • a long GI can be added, and a normal GI can be added to other control symbols. In that case, it is desirable to add a long GI to control symbols having a high degree of importance among the control symbols.
  • FIG. 20 is a schematic block diagram illustrating a configuration of a transmission device according to the fourth embodiment.
  • a transmission device a4 includes an information data / control symbol generation unit a90, a pilot symbol processing unit a20, a multiplexing unit a34, an IFFT unit a40, a GI insertion unit a50, a transmission unit a60, and a transmission antenna a100.
  • the difference from the transmission device a1 in the first embodiment shown in FIG. 1 is that the information data symbol generation unit a10 is replaced with the information data / control symbol generation unit a90. is there.
  • a control signal is also input from a processing device in an upper layer of the transmission device a4 (not shown).
  • the pilot symbol processing unit a20, the IFFT unit a40, the GI insertion unit a50, the transmission unit a60, and the transmission antenna a100 of the transmission device a4 have the same functions as those of the first embodiment shown in FIG. .
  • the receiving device in the fourth embodiment is the same as the receiving device b1 (FIG. 10) shown in the first embodiment.
  • control signal input to the transmission device a4 from the processing device on the upper layer of the transmission device a4 is information about a plurality of information data signals, and includes, for example, a modulation scheme in adaptive modulation, a mapping method ( Resource allocation method), error correction coding information (eg, coding method, coding rate, puncture pattern), interleaving method, scrambling method, hybrid automatic repeat request (HARQ: Hybrid Automatic Repeat reQuest) control information (eg, Packet reception notification information (ACK: Acknowledgment), packet non-reception notification information (NACK: Negative Acknowledgment) and the number of retransmissions, synchronization signal, spatial multiplexing technology (MIMO: Multiplet) Input Multiple Output control information (eg, number of layers (number of streams) and precoding method), base station information, terminal information, format information of control information, format information of data information, feedback information (eg, channel quality indicator ( CQI: Channel Quality Indicator) and the like, information
  • CQI Channel
  • the information data / control symbol generation unit a90 encodes and modulates an information data signal (transmission data) and a control signal (transmission data) to be transmitted, which are input from an upper layer processing device of the transmission device a4 (not shown).
  • the symbols and control symbols are mapped to resource elements, and the mapped information data symbols and control symbols are output to multiplexing section a34.
  • the information data / control symbol generation unit a90 includes a coding unit a91, a modulation unit a92, and a mapping unit a93.
  • the encoding unit a91 performs error correction encoding such as a convolutional code and a turbo code on the input information data signal and control signal, and outputs the result to the modulation unit a92.
  • the modulation unit a92 modulates the information data signal subjected to error correction coding and the control signal input from the coding unit a91 by a modulation scheme such as QPSK or QAM, and uses the modulation symbol of the information data signal.
  • a modulation scheme such as QPSK or QAM
  • the mapping unit a93 is a resource element other than the resource element into which the information symbol and the control symbol input from the modulation unit a92 are inserted by the pilot symbol processing unit a20.
  • the mapped information data symbol and control symbol that is, the frequency domain signal to which the normal GI is added later are output to the multiplexing unit a34 as the output of the information data / control symbol generation unit a90.
  • mapping of the control symbols by the mapping unit a93 is performed after the adjacent subcarriers in the same OFDM symbol as the scattered pilot symbol to which the long GI is added later, as shown in FIGS. Map to element preferentially.
  • the pilot symbol processing unit a20 performs the same processing as the processing described in the first embodiment on the pilot symbols input from the processing device of the higher layer of the transmission device a4 (not shown), and the mapped pilot symbols are obtained.
  • the data is output to the multiplexing unit a34.
  • Multiplexer a34 receives mapped information data symbols and control symbols input from information data / control symbol generator a90, mapped pilot symbols input from pilot symbol processor a20, and phase-controlled pilot symbols Are multiplexed by performing the same process as described in the first embodiment, and output to the IFFT unit a40. Thereafter, processing similar to that described in the first embodiment is performed, and an OFDM symbol is transmitted via the transmission antenna a100.
  • a normal GI symbol that is a symbol with a guard interval of a control signal is referred to as a “normal GI control symbol”.
  • mapped information data symbols and control symbols, mapped pilot symbols, and phase-controlled pilot symbols are multiplexed by multiplexing section a34, and GI insertion section a50 adds normal GI to the multiplexed signal.
  • frame which added ⁇ with the frequency component and the time component A frame in which signals are arranged as shown in FIG. 21 can be seen as a frame in which normal GI information data symbols, normal GI control symbols, and long GI pilot symbols are mixed between subcarriers as shown in FIG. it can. 21 and 22, the horizontal axis represents time, the vertical axis represents frequency, one row represents a subcarrier, and one column represents an OFDM symbol.
  • the information data / control symbol generator a90 preferentially maps the normal GI control symbol to the element behind the adjacent subcarrier in the same OFDM symbol as the long GI pilot symbol, as shown in FIG.
  • a discontinuous portion such as a symbol joint is included in the FFT interval when the receiving device b1 performs the FFT process.
  • ICI inter-carrier interference
  • ICI inter-carrier interference
  • a scattered pilot symbol is inserted into any subcarrier in the same OFDM symbol, and only for the scattered pilot symbol, A long GI section longer than the normal GI section is set.
  • a control signal preferentially to an element located in an adjacent subcarrier of the scattered pilot symbol, inter-carrier interference is reduced in an environment where an incoming wave exceeding the normal GI section arrives due to a propagation path. Therefore, it is possible to restore the control signal with high accuracy and high accuracy in the receiving device.
  • the control signal is preferentially mapped to the resource element behind the adjacent subcarrier in the same OFDM symbol as the long GI pilot symbol.
  • the present invention is not limited to this. Instead, it may be mapped to a resource element of any subcarrier in the same OFDM symbol as the long GI pilot symbol. In that case, it is desirable to map the control signal to the resource element of the subcarrier close to the resource element of the long GI pilot symbol.
  • an information data signal having a high quality of service (QoS) or an information data signal having a high urgency can be preferentially mapped.
  • QoS quality of service
  • an information data signal having a high urgency can be preferentially mapped.
  • the control signal preferentially mapped to the resource element of the adjacent subcarrier in the same OFDM symbol as the long GI pilot symbol has been described as the normal GI.
  • the long GI can also be added to the control signal to be preferentially mapped.
  • the transmission device a4 in the fourth embodiment can be applied as the transmission device in the first to third embodiments.
  • the control signal input to the information data / control symbol generation unit a90 is configured to have a function of processing in the same manner as the pilot symbol phase control described in the first embodiment.
  • a long GI is added to all input pilot symbols.
  • the present invention is not limited to this.
  • some pilot symbols may be added to some pilot symbols.
  • a long GI can be added, and a normal GI can be added to other pilot symbols.
  • the control symbol shown in FIG. 21 is controlled by adding a long GI by performing phase control on the front OFDM symbol in the pilot symbol in the same manner as the pilot symbol phase control described in the first embodiment. Symbols can be generated.
  • FIG. 23 is a schematic block diagram illustrating a configuration of a reception device according to the fifth embodiment of the present invention.
  • a receiving apparatus b2 includes a receiving antenna b500, a receiving unit b10, a normal GI-FFT section extracting unit b20, an FFT unit b30, a filter unit b42, a demapping unit b50, a demodulating unit b60, a decoding unit b70, and pilot symbol processing. Part b90 is provided.
  • the difference from the receiving device b1 in the first embodiment shown in FIG. 10 is that the long GI-FFT interval extracting unit b81 in the pilot symbol processing unit b80 of the receiving device b1 and the FFT The unit b82 is omitted, and the pilot symbol processing unit b90 of the receiving device b2 receives the frequency domain signal from which the normal GI section output from the FFT unit b30 is removed.
  • the receiving antenna b500, the receiving unit b10, the normal GI-FFT section extracting unit b20, the FFT unit b30, the demapping unit b50, the demodulating unit b60, and the decoding unit b70 of the receiving device b2 are shown in FIG.
  • the function is the same as that of the first embodiment.
  • the transmission apparatus in the fifth embodiment is the same as the transmission apparatus b1 shown in the first embodiment shown in FIG.
  • the reception signal received by the reception apparatus b2 is a signal in which normal GI information data symbols and long GI pilot symbols as shown in FIG. 6 are multiplexed.
  • the reception signal received from the reception antenna b500 is subjected to processing such as frequency conversion and analog-digital conversion by the reception unit b10, similarly to the processing described in the first embodiment, and then the normal GI-FFT interval extraction unit b20.
  • the normal GI section is removed, and then the frequency domain signal FFT-processed by the FFT unit b30 is output to the filter unit b42 and the pilot symbol processing unit b90.
  • the function of removing the guard interval section in the receiving apparatus b2 has a configuration including only the normal GI-FFT section extraction unit b20, and only removes the normal GI section from the received OFDM symbol, and performs the FFT. Process. That is, the FFT processing is also performed on the phase-controlled pilot symbol included in the guard interval in the long GI pilot symbol, for example, the second OFDM symbol shown in FIG. Note that the phase-controlled pilot symbol subjected to the FFT processing can be used for channel estimation by returning the phase rotated by the phase control to the original state. The channel estimation using the second OFDM symbol can be effectively used in a propagation environment that does not exceed the normal GI. However, in a propagation environment exceeding the normal GI, since the accuracy of propagation path estimation decreases due to intersymbol interference, it is necessary to determine whether or not to use depending on the propagation environment.
  • the pilot symbol processing unit b90 performs propagation path estimation using a frequency and time signal to which pilot symbols are mapped from the frequency domain signal input from the FFT unit b30, and the result of the propagation path estimation is sent to the filter unit b42. Output. Next, this point will be described in detail.
  • the pilot symbol processing unit b90 includes a pilot extraction unit b93 and a propagation path estimation unit b94.
  • the pilot extraction unit b93 performs a process similar to the process described in the first embodiment on the frequency domain signal from which the normal GI section input from the FFT unit b30 has been removed, and generates a scattered pilot symbol.
  • the extracted scattered pilot symbol is output to the propagation path estimation unit b94.
  • the propagation path estimation unit b94 uses the scattered pilot symbols extracted by the pilot extraction unit b93, and the amplitude of the transmission signal caused by the propagation path due to multipath fading, etc., as in the processing described in the first embodiment.
  • the phase fluctuation is estimated (propagation path estimation), and the propagation path estimation result is output to the filter unit b42.
  • various methods such as well-known linear interpolation and FFT interpolation can be used as a propagation path estimation method for resource elements other than the resource elements to which the scattered pilot symbols are mapped.
  • the frequency domain signal input to the pilot symbol processing unit b90 is a signal in which only the normal GI section is removed and the long GI section is subjected to FFT processing in the same manner as the normal GI section.
  • the pilot extraction unit b93 in the pilot symbol processing unit b90 does not use the long GI section subjected to the FFT processing in the same way as the normal GI section, but uses an effective symbol section in the long GI pilot symbol, for example, 3 in FIG.
  • the propagation path estimation process is performed by using data of the effective symbol section of the th OFDM symbol.
  • a scattered pilot symbol is inserted into one of the subcarriers in the same OFDM symbol, and the normal GI is included only in the scattered pilot symbol.
  • the long GI section added to the received frame is not removed, but only the normal GI section is removed.
  • the receiving device b2 in the fifth embodiment can be applied to the receiving devices in the first to fourth embodiments.
  • the communication system includes a transmission device and a reception device.
  • FIG. 24 is a schematic block diagram illustrating a configuration of a transmission device according to the sixth embodiment.
  • the transmission device a5 includes a transmission processing unit a1-1 for the transmission antenna 1 and a transmission processing unit a1-2 for the transmission antenna 2.
  • Each transmission processing unit in FIG. 24 includes an information data symbol generation unit a10, a pilot symbol processing unit a20, a multiplexing unit a30, an IFFT unit a40, a GI insertion unit a50, a transmission unit a60, and a transmission antenna a100.
  • the number following the hyphen “-” after the code of each block in FIG. 24 indicates the number of the corresponding transmitting antenna.
  • an information data signal and a pilot symbol are input to each transmission processing unit for each corresponding transmission antenna from an upper layer processing device (not shown) of the transmission device a5.
  • FIG. 25 is a schematic block diagram showing the configuration of the receiving apparatus according to the sixth embodiment.
  • the reception device b3 includes a reception processing unit b100-1 for the reception antenna 1, a reception processing unit b100-2 for the reception antenna 2, a signal separation unit b200, a reception processing unit b300-1 for the transmission antenna 1, and a transmission antenna 2.
  • Reception processor b300-2 and pilot symbol processor b800 are respectively the reception antenna b500, the reception unit b10, the normal GI-FFT section extraction unit b20, and the FFT unit b30. Is provided.
  • the pilot symbol processing unit b800 estimates a propagation path for each combination of the transmission antenna and the reception antenna, and based on the result of estimating the propagation path, the signal separation unit b200 The signal is separated for each multiplexed transmission antenna. A detailed description of this propagation path estimation and signal separation processing will be given later.
  • the transmission antenna 1 reception processing unit b300-1 and the transmission antenna 2 reception processing unit b300-2 each include a demapping unit b50, a demodulation unit b60, and a decoding unit b70.
  • the number following the hyphen “-” after the code of each block in FIG. 25 indicates the number of the corresponding receiving antenna.
  • the basic configurations of the transmission device a5 and the reception device b3 in the sixth embodiment are the same as those of the transmission device a1 shown in FIG. 1 and the reception device b1 shown in FIG. 10 in the first embodiment. It is. However, since the sixth embodiment is a MIMO system using a plurality of transmission antennas and reception antennas, the transmission apparatus a1 illustrated in FIG. 1 and the transmission apparatus a1 illustrated in FIG. 10 are illustrated according to the number of antennas in the MIMO system.
  • the receiving device b1 is different in that it includes a plurality of configurations indicated by blocks. 24 and 25 have the same functions as those in the first embodiment shown in FIGS. 1 and 10 and the blocks having the same reference numerals before the hyphen “-” in each block.
  • FIG. 26 is a diagram illustrating an example of a frame in which a long GI pilot symbol generated by the transmission processing unit a1-1 for the transmission antenna 1 is multiplexed with a frequency component and a time component.
  • FIG. 27 is a diagram illustrating an example of a frame in which a long GI pilot symbol generated by the transmission processing unit a1-2 for the transmission antenna 2 is multiplexed with a frequency component and a time component. 26 and 27, the horizontal axis represents time, the vertical axis represents frequency, one row represents a subcarrier, and one column represents an OFDM symbol. As shown in FIG.
  • the transmission processing unit a1-1 for the transmission antenna 1 transmits the transmission antenna to one resource element (sixth subcarrier) among the resource elements for mapping two scattered pilot symbols. 1 pilot symbols are mapped. Further, the resource element (third subcarrier) for mapping another scattered pilot symbol is such that the pilot symbol for transmission antenna 2 is mapped by transmission processing unit a1-2 for transmission antenna 2. Therefore, it is set to zero (null).
  • the transmission processing unit a1-2 for the transmission antenna 2 assigns one resource element (third subcarrier) out of resource elements for mapping two scattered pilot symbols.
  • the pilot symbol for the transmission antenna 2 is mapped.
  • the resource element (sixth subcarrier) for mapping another scattered pilot symbol is such that the transmission antenna 1 transmission processing unit a1-1 maps the pilot symbol for the transmission antenna 1. Therefore, it is set to zero (null).
  • pilot symbols shown in FIG. 26 and FIG. 27 can generate a long GI pilot symbol by performing phase control as described in the first embodiment.
  • the transmission device a5 processes and transmits the frame in which the scattered pilot symbols are mapped so as to be independent from each other for each transmission antenna in the same manner as the processing described in the first embodiment.
  • Each transmission processing unit in the transmission device a5 transmits each frame simultaneously.
  • the receiving apparatus b3 receiving this frame can receive normal GI information data symbols spatially multiplexed, but long GI pilot symbols are not spatially multiplexed and can receive each other without receiving stream interference. it can.
  • FIG. 28 is a diagram illustrating an example of a frame in which pilot symbols of the transmitting antenna 1 and the transmitting antenna 2 received by the receiving apparatus b3 are multiplexed with a frequency component and a time component.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • one row represents a subcarrier
  • one column represents an OFDM symbol.
  • the receiving apparatus b3 receives a frame as shown in FIG. Since the normal GI information data symbols are spatially multiplexed, it is necessary to separate the spatially multiplexed signals. However, since the long GI pilot symbols are not spatially multiplexed, there is no need for separation processing. In addition, the propagation path can be estimated with high accuracy.
  • the reception processing unit b100-1 for the reception antenna 1 and the reception processing unit b100-2 for the reception antenna 2 perform the reception unit b10, normal processing on the reception signal for each reception antenna in the same manner as the processing described in the first embodiment.
  • the GI-FFT section extraction unit b20 and the FFT unit b30 perform processing, respectively, and output a frequency domain signal for each reception antenna to the signal separation unit b200.
  • Pilot symbol processing unit b800 performs the same process as the process described in the first embodiment for each combination of the transmission antenna and the reception antenna to estimate a propagation path, and the result of the propagation path estimation is obtained as a signal separation unit b200.
  • Pilot symbol processing section b800 includes long GI-FFT section extraction section b801, FFT section b802, pilot extraction section b803, and propagation path estimation section b804.
  • the long GI-FFT section extraction described in the first embodiment is performed except that the baseband signal received from the receiving section b10 corresponding to each receiving antenna is input as the input of the long GI-FFT section extracting section b801.
  • the function is the same as that of the part b81, the FFT part b82, the pilot extraction part b83, and the propagation path estimation part b84.
  • the signal separation section b200 Based on the propagation path estimation value (result of propagation path estimation) for each reception antenna estimated by the propagation path estimation section b804 of the pilot symbol processing section b800, the signal separation section b200 receives the reception processing section b100-1 for the reception antenna 1 And the frequency domain signal for each reception antenna input from the FFT unit b30 of the reception processing unit b100-2 for the reception antenna 2 is separated into frequency domain signals that have been subjected to propagation path compensation for each spatially multiplexed transmission antenna, The data is output to the transmission antenna 1 reception processing unit b300-1 and the transmission antenna 2 reception processing unit b300-2 for each transmission antenna.
  • Signal separation methods for spatially multiplexed frequency domain signals at this time include, for example, zero forcing (ZF) standard, minimum mean square error (MMSE) standard, and maximum likelihood (ML).
  • ZF zero forcing
  • MMSE minimum mean square error
  • ML maximum likelihood
  • Various signal separation methods such as the Maximum (Likelihood) standard can be applied, but are not limited thereto.
  • the reception processing unit b300-1 for transmission antenna 1 and the reception processing unit b300-2 for transmission antenna 2 perform the channel-compensated frequency domain signals for each transmission antenna separated by the signal separation unit b200. Then, the demapping unit b50, the demodulating unit b60, and the decoding unit b70 perform the same processing as that described in the first embodiment, and the information data signal (reception data) of the receiving device b3 (not shown) is transmitted for each transmission antenna. Output to the upper layer processing device.
  • each sub-carrier within the same OFDM symbol is independent of each other for each transmission antenna.
  • a scattered pilot symbol is inserted, and a long GI section longer than the normal GI section is set only for the scattered pilot symbol.
  • tolerance to intersymbol interference can be improved in an environment in which an incoming wave exceeding the normal GI section arrives due to the propagation path, so that the accuracy of the receiving apparatus can be reduced without substantially reducing the transmission efficiency of the entire communication.
  • the propagation path can be estimated well.
  • the present invention is not limited to this.
  • the transmission antenna included in a5 and the reception antenna included in the reception device b3 can be applied to the case where either one or both exceed two. Further, the present invention can also be applied to cases where the number of transmission antennas included in the transmission device a5 and the number of reception antennas included in the reception device b3 are different from each other.
  • the transmission data processing unit for the transmission antenna 1 in the transmission device a5 is used as the information data signal for each transmission antenna input from the processing device in the higher layer of the transmission device a5 (not shown).
  • the error correction encoding process and the modulation process are performed by the a1-1 and the transmission processing unit a1-2 for the transmission antenna 2 respectively, the present invention is not limited to this.
  • a signal that has been subjected to error correction coding processing and modulation processing from an upper layer processing device of the transmission device a5 (not shown) can be input to the transmission processing unit of each transmission antenna.
  • the received signals are respectively demodulated by the reception processing unit b300-1 for the transmission antenna 1 and the reception processing unit b300-2 for the transmission antenna 2 in the reception device b3.
  • the decoding process is performed and output to a processing device in an upper layer of the receiving device b3 (not shown)
  • the present invention is not limited to this.
  • demodulation processing and decoding processing of received signals can be performed in one place, and an information data signal after demapping can be output to an upper layer processing device of the receiving device b3 (not shown).
  • the transmission device a5 and the reception device b3 in the sixth embodiment can also be applied to the transmission device and the reception device in the first to fifth embodiments.
  • a long GI is added to all input pilot symbols.
  • some pilot symbols may be added to some pilot symbols.
  • a long GI can be added, and a normal GI can be added to other pilot symbols.
  • a long GI may be added to pilot symbols for some transmission antennas, and a normal GI may be added to pilot symbols for other transmission antennas. In that case, a high effect can be obtained by adding a long GI to a pilot symbol for a transmitting antenna that transmits a highly important information data signal and control symbol.
  • a pilot of any subcarrier in the same OFDM symbol By setting a long GI section longer than the normal GI section for either or both of the symbol and the control signal, tolerance against intersymbol interference can be improved, so that transmission efficiency of the entire communication is almost reduced. Therefore, it is possible to accurately perform propagation path estimation and signal restoration in the receiving apparatus.
  • mapped information data symbols, mapped pilot symbols, and phase-controlled pilot symbols are superimposed (multiplexed) in the frequency domain and multiplexed symbols.
  • the OFDM symbol is generated by adding a guard interval having a predetermined length after IFFT processing is performed.
  • the present invention is not limited to this.
  • a normal GI is added to some symbols to generate a normal GI-OFDM symbol
  • a long GI is added to other symbols to generate a long GI-OFDM symbol
  • each generated normal GI-OFDM is generated.
  • the symbols and the long GI-OFDM symbols can be superimposed (multiplexed) in the time domain.
  • a symbol to which a long GI is added is mapped with a symbol whose phase is controlled by the previous resource element in the time direction, and a symbol to which a long GI is added and a normal GI.
  • a mode has been described in which a guard interval is added after multiplexing symbols to be added.
  • a long GI and a normal GI are separately generated and then multiplexed, and, as in the first to sixth embodiments, between a plurality of subcarriers at the same time. , A signal in which long GI symbols and normal GI symbols are scattered is generated.
  • the wireless communication system of the present embodiment includes a transmission device 10 and a reception device 20 that communicate with each other by the OFDM method.
  • FIG. 29 is a schematic block diagram showing the configuration of the transmission apparatus according to this embodiment.
  • Transmitting apparatus 10 includes information data symbol generation section 100 (also referred to as a first multicarrier symbol generation section), pilot symbol processing section 110 (also referred to as a second multicarrier symbol generation section), multiplexing section 120, transmission section 130, A transmission antenna 140 is provided.
  • the information data symbol generation unit 100 includes an encoding unit 101, a modulation unit 102, a mapping unit 103, an IFFT (Inverse Fast Frequency Transform) unit 104, and a normal GI insertion unit 105.
  • the pilot symbol generation unit 110 includes a mapping unit 111, an IFFT unit 112, and a long GI insertion unit 113.
  • An information data signal that is a signal of a bit string of data (information) to be transmitted from the transmission device 10 to the reception device 20 and a control signal for transmitting the information data signal are first input to the information data symbol generation unit 100.
  • the encoding unit 101 performs error correction encoding such as a convolutional code or a turbo code on the input information data signal and control signal.
  • the modulation unit 102 modulates the error correction coded information data signal and the control signal by a modulation scheme such as QPSK (Quadrature Phase Shift Keying; four-phase phase shift keying) or QAM (Quadrature Amplitude Modulation). Modulation is performed on symbols, that is, information data symbols and control symbols.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • Mapping section 103 applies information data symbols and control symbols modulated by modulation section 102 to resource elements other than positions (resource elements) at which pilot symbols, which are signals used for propagation path estimation on the receiving side, are inserted.
  • Map place
  • the resource element is an area having a predetermined width of time and frequency, and is an area to which one modulation symbol is mapped.
  • resource elements for mapping information data symbols, resource elements for mapping control symbols, and resource elements for mapping pilot symbols are set in advance so as not to overlap each other.
  • control signal includes, for example, a modulation scheme used for the information data signal, a mapping method (resource allocation method), error correction coding information (for example, a coding method, a coding rate, a puncture pattern), and an interleaving method.
  • a mapping method resource allocation method
  • error correction coding information for example, a coding method, a coding rate, a puncture pattern
  • HARQ Hybrid Automatic Repeat reQuest
  • control information for example, packet reception notification information (ACK (Acknowledgement), NACK (Negative Acknowledgment), number of retransmissions, etc.), synchronization signal, MIMO (Multi-Multi-Multi-Mut-Multi-Mut-Multi ) Control information (for example, number of layers (number of streams) and precoding method), base station information, terminal information, control information format information, data information format Information used for communication control necessary for transmission / reception of a plurality of information data signals such as mat information, feedback information (for example, CQI (Channel Quality Indicator)), transmission power control information, and the like is included, but is not limited thereto. .
  • FIG. 30 is a diagram illustrating an example of the arrangement of information data symbols and control symbols in the frame by the mapping unit 103.
  • pilot symbols are respectively assigned to the 2nd and 3rd OFDM symbols of the 3rd and 6th subcarriers from the lowest frequency.
  • mapping section 103 assigns the modulated information data symbols and control symbols to all OFDM symbols of the first, second, fourth, fifth, seventh and eighth subcarriers and third, sixth, as shown in FIG.
  • mapping section 103 arranges zero (null) at the position where the pilot symbol is inserted.
  • IFFT section 104 performs inverse fast Fourier transform processing on the information data symbols and control symbols mapped by mapping section 103, which are frequency domain signals, and converts the frequency domain signals into time domain signals. Convert to signal.
  • the normal GI insertion unit 105 adds a normal GI (first guard interval), which is a guard interval having a predetermined length and a normal length, to the signal in the time domain. That is, normal GI insertion section 105 generates a time domain signal of a normal GI-OFDM symbol composed of information data symbols and control symbols to which normal GI is added.
  • pilot symbols that are known signals used for propagation path estimation in receiving apparatus 20 are input to pilot symbol processing section 110.
  • the pilot symbol is a pilot signal that is a bit string, as is the case with the information data signal and the control signal, and the pilot symbol processing unit 110 converts the input pilot signal into QPSK or QAM. You may make it modulate by the modulation system of these.
  • mapping section 111 performs mapping so that the input pilot symbols are scattered in the frequency direction and the time direction as scattered pilot symbols.
  • FIG. 31 is a diagram showing an example of arrangement of pilot symbols in a frame by mapping section 111 for mapping information data symbols and control symbols shown in FIG. 30 as an example.
  • the example of FIG. 31 shows a case where one pilot symbol with a guard interval (long GI described later) is set using two OFDM symbols in a frame composed of 4 OFDM symbols and 8 subcarriers. Yes.
  • the pilot symbol in this example is mapped to the third OFDM symbol of the third and sixth subcarriers, and the second OFDM symbol before that is set to zero (null). This is because, as will be described later, the resource element immediately before in the time direction from the resource element in which the pilot symbol is arranged by the mapping unit 111 is a long GI section of the pilot symbol.
  • IFFT section 112 performs inverse Fourier transform processing on the pilot symbols mapped by mapping section 111, which are frequency domain signals, and converts the frequency domain signals into time domain signals.
  • the long GI insertion unit 113 is a guard interval having a predetermined length in the time domain signal generated by the IFFT unit 112 and is a longer guard interval than the normal GI added by the normal GI insertion unit 105. GI is added. That is, long GI insertion section 113 generates a signal in the time domain of a long GI-OFDM symbol composed of pilot symbols to which a long GI longer than normal GI is added. As will be described later, the length of the long GI is twice the normal GI plus the length of the pilot symbol.
  • information data symbol generation section 100 adds a normal GI to the input information data signal and control signal symbols to generate a normal GI-OFDM symbol
  • pilot symbol generation section 110 receives the input
  • a long GI is added to the pilot symbol to generate a long GI-OFDM symbol.
  • Multiplexer 120 is an OFDM symbol generated by information data symbol generator 100, and is a normal GI-OFDM composed of an information data symbol and a control symbol (normal GI information data symbol and normal GI control symbol) to which a normal GI is attached.
  • a symbol and a long GI-OFDM symbol that is an OFDM symbol generated by pilot symbol generation section 110 and includes a pilot symbol with a long GI (long GI pilot symbol) are multiplexed in the time domain.
  • multiplexing in the time domain by multiplexing section 120 means that the sampling value at each time position of the signal in the time domain of the normal GI-OFDM symbol generated by information data symbol generation section 100 and the pilot symbol generation section 110 generate And the sampling value at each time position of the signal in the time domain of the long GI-OFDM symbol is added, thereby the information data symbol and control symbol to which the normal GI is attached and the pilot symbol to which the long GI is attached.
  • frequency-multiplexed In a frequency-multiplexed signal, subcarriers in which symbols are arranged in normal GI-OFDM symbols and subcarriers in which symbols are arranged in long GI-OFDM symbols form a multicarrier at the same time. Interspersed among multiple subcarriers.
  • FIG. 32 is a diagram illustrating an example of frequency components and time components of a signal multiplexed by the multiplexing unit 120 in the example shown in FIGS. 30 and 31.
  • the example of FIG. 32 shows a frame composed of 4 OFDM symbols and 8 subcarriers.
  • rectangles P1 and P2 hatched with diagonal lines indicate resource elements in which long GI pilot symbols are arranged.
  • the rectangles not hatched with diagonal lines indicate resource elements in which normal GI information data symbols or normal GI control symbols are arranged.
  • the hatched portion indicates the guard interval, and the white portion is valid. A symbol interval is shown.
  • a signal in which a long GI in which a long GI pilot symbol is arranged and a symbol to which the long GI is added in a section combining the long GI and the symbol is multiplexed is referred to as a long GI-OFDM symbol.
  • a signal in which a normal GI in which a normal GI information data symbol or a normal GI control symbol is arranged and a symbol combined with the normal GI and a symbol to which the normal GI is added is multiplexed is a normal GI ⁇ This is called an OFDM symbol.
  • a section corresponding to a normal GI-OFDM symbol in a frame is also simply called an OFDM symbol, and the length of this OFDM symbol is called an OFDM symbol length.
  • the long GI pilot symbols are arranged in regions P1 and P2, that is, in the third and sixth subcarriers from the lower frequency, in the region extending over the second and third OFDM symbols, and their effective symbol intervals.
  • the guard interval (long GI) is a length obtained by adding a normal GI to one OFDM symbol, which is significantly longer than a normal GI. ing.
  • the effective symbol period of each long GI-OFDM symbol coincides with the effective symbol period of any normal GI-OFDM symbol in the time direction.
  • the receiving apparatus 20 can separate the pilot symbol, the information data symbol, and the control symbol by setting the FFT (Fast Fourier Transform) section and performing the FFT processing as in the conventional case.
  • FFT Fast Fourier Transform
  • the transmission unit 130 performs conversion from a digital signal to an analog signal, frequency conversion from a baseband frequency to a radio frequency, and the like for the signal multiplexed by the multiplexing unit 120, and performs transmission from the transmission antenna 140 to the reception device 20. Send to.
  • FIG. 33 is a schematic block diagram illustrating the configuration of the receiving device 20 according to the present embodiment.
  • the receiving apparatus 20 includes a receiving antenna 200, a receiving unit 210, a first FFT section extracting unit 220, a first FFT unit 230, a filter unit 240, a demapping unit 250, a demodulating unit 260, a decoding unit 270, and a pilot symbol processing unit. 280.
  • the pilot symbol processing unit 280 includes a second FFT section extraction unit 281, a second FFT unit 282, a pilot extraction unit (symbol extraction unit) 283, and a propagation path estimation unit 284.
  • the receiving unit 210 For the received signal received from the receiving antenna 200, the receiving unit 210 performs processing such as frequency conversion from a radio frequency to a baseband frequency and conversion from an analog signal to a digital signal, and outputs a baseband signal as a result of the processing.
  • the baseband signal output from the receiving unit 210 includes a first FFT interval extracting unit 220 for restoring the information data signal and the control signal, and a pilot symbol processing unit 280 for performing channel estimation using the pilot signal. Are input to the two FFT interval extraction units 281.
  • the second FFT interval extraction unit 281 outputs, from the signal output from the reception unit 210, a signal corresponding to an effective symbol interval having a predetermined length from the end of the long GI interval added to the pilot symbol.
  • the signal is extracted as an FFT section signal to be subjected to Fourier transform by the FFT section 282.
  • FIG. 34 shows an FFT interval for a long GI pilot symbol in the frame shown in FIG. 32 as an example.
  • the second FFT section extraction unit 281 extracts the FFT section, that is, removes sections other than the FFT section.
  • the second FFT unit 282 performs fast Fourier transform processing on the FFT section extracted by the second FFT section extraction unit 281 to convert the time domain signal into the frequency domain signal. Thereby, second FFT section 282 obtains a received signal of symbols included in the long GI-OFDM symbol.
  • Pilot extraction section 283 receives a pilot signal that has received a signal of a subcarrier in which an effective symbol period of a long GI-OFDM symbol and a pilot symbol are arranged, from a signal in the frequency domain that is a conversion result of second FFT section 282 Extract as a symbol.
  • the propagation path estimation unit 284 compares the received pilot symbol and the waveform (phase, amplitude) of a known pilot symbol, estimates amplitude and phase fluctuations due to fading (propagation path estimation), and filters the result. Output to the unit 240.
  • a propagation path estimation method for resource elements other than the resource element to which the pilot symbol is mapped a known method such as linear interpolation or FFT interpolation using a propagation path estimation result for the resource element to which the pilot symbol is mapped is used. Can be used.
  • the first FFT interval extraction unit 220 is a signal for an effective symbol interval having a predetermined length from the end of the normal GI added to the information data symbol and the control symbol from the signal output from the reception unit 210.
  • FIG. 35 shows, as an example, FFT sections for normal GI information data symbols and normal GI control symbols in the frame shown in FIG.
  • the first FFT section extraction unit 220 removes sections other than the FFT section.
  • the first FFT unit 230 performs fast Fourier transform on the FFT interval extracted by the first FFT interval extraction unit 220, and converts the time domain signal into a frequency domain signal.
  • first FFT section 230 obtains a received signal of symbols included in the normal GI-OFDM symbol.
  • the filter unit 240 calculates a weighting factor using a ZF (Zero Forcing) standard, an MMSE (Minimum Mean Square Error) standard, and the like based on the channel estimation value estimated by the channel estimation unit 284. By multiplying the signal in the frequency domain, which is the result of conversion by the first FFT unit 230, compensation for fluctuations in the amplitude and phase of the signal (propagation path compensation) is performed.
  • ZF Zero Forcing
  • MMSE Minimum Mean Square Error
  • FIGS. 36 and 37 another example of the FFT section extraction performed by the second FFT section extraction unit 281 and the first FFT section extraction unit 220 is shown in FIGS. 36 and 37, respectively.
  • the case where two long GI pilot symbols are mapped to one subcarrier using the 2nd to 4th, that is, 3 OFDM symbols of the 3rd and 6th subcarriers is shown.
  • the normal GI is added to the information data symbol and the control symbol arranged in the OFDM symbol whose time overlaps with that of the long GI pilot symbol.
  • FIG. 37 the FFT interval for the normal GI information data symbol and the normal GI control symbol is shown as in FIG.
  • the first FFT section extraction unit 220 removes sections other than the FFT section.
  • the second FFT section extraction unit 281 removes sections other than the FFT section.
  • each is not included in the FFT period set by the receiving apparatus. Since continuous points (symbol boundaries) are included, inter-carrier interference (ICI: Inter Carrier Interference) occurs. Therefore, an interference canceller or turbo equalization for removing the inter-carrier interference can be applied. For example, after the processing already described in the pilot symbol processing unit 280 is performed, a replica signal of the received pilot symbol (long GI-OFDM symbol) is generated, and a signal obtained by subtracting from the received signal is extracted as the first FFT interval. The data can be input to the unit 220.
  • ICI Inter Carrier Interference
  • the inter-carrier interference due to the long GI pilot symbol can be removed or reduced.
  • the reverse process is also possible. That is, by generating a replica signal of a normal GI-OFDM symbol and performing subtraction from the received signal, it is possible to remove or reduce intercarrier interference with respect to the long GI pilot symbol. It is also possible to apply an iterative process in which these processes are repeated.
  • the demapping unit 250 receives the information data symbol and the reception of the signal in the region in which the information data symbol is arranged and the signal in the region in which the control symbol is arranged from the signal subjected to propagation path compensation by the filter unit 240, respectively.
  • the demapping process is performed to extract the control symbol.
  • the demodulator 260 uses the modulation method used by the modulator 102 of the transmission apparatus 10 such as QPSK or QAM for the signal extracted by the demapping unit 250, and the information data symbol is determined by the control signal decoded by the decoder 270. With the designated modulation method, the control symbol is demodulated by a predetermined modulation method.
  • the decoding unit 270 performs maximum likelihood decoding (MLD; Maximum Likelihood Decoding), maximum a posteriori probability estimation (MAP; Maximum A posteriori Probability) on the error-corrected encoded signal that is the demodulation result of the demodulation unit 260. ), Log-MAP, Max-log-MAP, SOVA (Soft Output Viterbi Algorithm), etc., perform a decoding process, and output an information data signal and a control signal which are bit strings of the decoding process result.
  • the control signal output from the decoding unit 270 includes information indicating the modulation scheme used when the modulation unit 102 of the transmission apparatus 10 modulates the information data signal.
  • the demodulation unit 260 uses the information to The modulation method used when demodulating the data signal is determined.
  • FIG. 38 is a diagram illustrating a schematic configuration of a normal GI information data symbol and a normal GI control symbol and a schematic configuration of a long GI pilot symbol.
  • the length of the long GI pilot symbol is two OFDM symbol lengths, which is twice as long as the normal GI information data symbol length is one OFDM symbol length. Also, since the effective symbol lengths at that time are the same, the difference in length is that the guard interval section of the long GI is greatly lengthened, that is, the pilot signal length is added to twice that of the normal GI. It is realized by making it a long length.
  • the guard interval interval is realized by adding the rear end of the effective symbol interval to the front.
  • the long GI insertion unit 113 may add all the effective symbol intervals to the front. Since the length of the long GI is insufficient, the rear end of the effective symbol period is further added forward to obtain a long GI signal. If the long GI is longer than the present embodiment and the length is insufficient even if the long GI is generated by the method of the present embodiment, the long GI is generated by repeatedly adding the rear end of the effective symbol section to the front.
  • FIG. 39 is a diagram illustrating a schematic configuration example of a received signal when a preceding wave and two delayed waves arrive for a normal GI information data symbol or a normal GI control symbol.
  • a hatched rectangle indicates a normal GI signal
  • a white rectangle indicates an effective symbol period signal.
  • FIG. 39 shows a case where fast Fourier transform processing is performed on the third OFDM symbol of the arriving wave shown in the figure, and an FFT interval that is a target of fast Fourier transform is set as an effective symbol interval of the preceding wave. Yes.
  • the delay time of the delay wave 2 exceeds the guard interval interval, the signal of the second OFDM symbol in the delay wave 2 is included in the FFT interval, resulting in intersymbol interference. .
  • FIG. 40 is a diagram illustrating a schematic configuration example of a reception signal when a preceding wave and two delayed waves arrive for the normal GI information data symbol and the long GI pilot symbol as in FIG.
  • a rectangle hatched with diagonal lines indicates a signal of a long GI pilot symbol.
  • a rectangle that is not hatched with diagonal lines indicates a signal of a normal GI information data symbol or a normal GI control symbol.
  • the hatched portion indicates the guard interval (normal GI or long GI) signal, and the white portion indicates the effective symbol interval. The signal is shown.
  • FIG. 40 shows a case where fast Fourier transform processing is performed on a long GI OFDM symbol, and the FFT interval is set as the effective symbol interval of the preceding wave.
  • the FFT interval is set as the effective symbol interval of the preceding wave.
  • the signal of the previous symbol does not enter the FFT interval unless the long GI is exceeded. Does not occur. From the above, it can be seen that the signal to which the long GI is attached is greatly improved in resistance to intersymbol interference with respect to the normal GI.
  • the propagation path estimation by the propagation path estimation unit 284 and the propagation path compensation by the filter unit 240 using the pilot symbol whose inter-symbol interference tolerance is enhanced by adding the long GI will be described.
  • the propagation path estimation method and the propagation path compensation method can use the same method as the conventional method, and an example is shown here.
  • the pilot symbol is a signal known to each other in the transmission device 10 and the reception device 20.
  • the propagation path estimation unit 284 of the receiving apparatus 20 divides the received pilot symbol P′m, n by the known pilot symbol Pm, n to calculate a propagation estimated value. That is, the propagation path estimation unit 284 obtains the propagation path estimation value H ⁇ m, n using the following equation (5).
  • n is an OFDM symbol number.
  • the accuracy of channel estimation depends on the received pilot symbol P′m, n.
  • propagation path estimation section 284 also performs propagation path estimation for information data symbols and pilot symbol resource elements (regions for signal arrangement determined by subcarriers and OFDM symbols) where pilot symbols are not arranged.
  • the estimation method can be performed by various interpolation methods such as linear interpolation, nonlinear interpolation, and FFT interpolation using the propagation path estimation value obtained by the equation (5).
  • the propagation path estimation value used for interpolation that is, the propagation path estimation value obtained by the equation (5), can be improved in accuracy by adding a long GI to the pilot symbol. Based on the estimated value, it is possible to increase the accuracy of the propagation path estimated value of the resource element of the information data symbol and the control symbol obtained by interpolation.
  • filter section 240 performs propagation path compensation on the information data symbol and the control symbol.
  • the weighting coefficient W ZF m, n represented by the following equation (6) is set in the frequency domain including the information data symbol or the control symbol.
  • Propagation path compensation is performed by multiplying the signal.
  • * represents the conjugate.
  • the weighting factor W MMSE m, n represented by the following equation (7) is used as a frequency domain signal including an information data symbol or a control symbol. Multiplication is performed to compensate for the propagation path.
  • ⁇ 2 represents noise power.
  • the normal GI is added to the information data symbol and the control symbol arranged in the OFDM symbol whose time overlaps with the pilot symbol to which the long GI is added, the increase in the guard interval section generated by using the long GI is reduced. Therefore, it is possible to realize accurate channel estimation in the receiving apparatus 20 without substantially degrading the overall transmission efficiency. Therefore, it is possible to perform communication so that the signal can be restored on the receiving side without greatly degrading the overall transmission efficiency while greatly improving the resistance to intersymbol interference.
  • the long GI insertion unit 113 adds a long GI to a pilot symbol that is an important symbol used for propagation path estimation
  • the normal GI insertion unit 105 adds a normal GI to other symbols.
  • the tolerance to intersymbol interference is greatly improved in pilot symbols that are important symbols (symbols that affect demodulation of a plurality of symbols).
  • the overall communication can be greatly improved in resistance to inter-symbol interference, and communication can be performed so that the signal can be restored on the receiving side with almost no deterioration in transmission efficiency.
  • the receiving device 20 restores the information data signal and the control signal without performing the iterative process.
  • the receiving device 20 uses the decoding result to remove inter-symbol interference and the like and transmit it. It is also possible to perform an iterative process such as interference cancellation or turbo equalization for restoring the received signal.
  • the length of a pilot symbol to which a long GI is added is an OFDM symbol length twice as long as the OFDM symbol length of a normal GI information data symbol and a control symbol.
  • the present invention is not limited to this, as in the example shown in FIGS.
  • At least the length of the long GI pilot symbol may be set longer than the length of the normal GI information data symbol and the control symbol. For example, it may be three times longer or 1.5 times longer.
  • a signal to which two types of guard intervals of normal GI and long GI are added has been described.
  • the present invention is not limited to this, and three or more types of guard intervals having different lengths are used. You may make it use the signal which added.
  • a normal GI that is the first guard interval and a long GI that is a plurality of types of second guard intervals may be used.
  • a long GI is added to all input pilot symbols.
  • the present invention is not limited to this.
  • a long GI may be added to some pilot symbols, and a normal GI may be added to other pilot symbols.
  • the wireless communication system according to the present embodiment includes a transmission device 10a and a reception device 20 that communicate using the OFDM method.
  • the transmission apparatus 10a according to the present embodiment is different from the transmission apparatus 10 according to the seventh embodiment in part.
  • the description will focus on blocks having different functions from the blocks described in the seventh embodiment. It should be noted that blocks whose description is omitted have the same functions as those in the seventh embodiment.
  • the receiving device 20 according to the present embodiment has the same configuration as the receiving device 20 according to the seventh embodiment (FIG. 33), and thus the description thereof is omitted.
  • FIG. 41 is a schematic block diagram showing the configuration of the transmission device 10a according to this embodiment.
  • a pilot symbol storage unit 150 symbol storage unit
  • Pilot symbol processing section 110 performs processing similar to that described in the seventh embodiment, maps pilot symbols, performs inverse Fourier transform, and outputs a signal in the time domain of a long GI-OFDM symbol to which a long GI is added. To do. Pilot symbol storage section 150 stores the time domain signal of the long GI-OFDM symbol output from pilot symbol generation section 110.
  • the information data symbol generation unit 100 performs processing similar to the processing described in the seventh embodiment, and outputs a time domain signal of a normal GI-OFDM symbol.
  • Multiplexer 120 performs the same processing as that described in the seventh embodiment, but in time domain signals of normal GI-OFDM symbols composed of normal GI information data symbols and control symbols, and pilot symbol storage 150
  • the time domain signal of the long GI-OFDM symbol composed of the stored long GI pilot symbols is multiplexed.
  • the time domain signal of the long GI-OFDM symbol stored in pilot symbol storage section 150 can be used as long as the value of the scattered pilot symbol and its position are not changed. Since this process can be omitted, the amount of calculation corresponding to the process is reduced.
  • the pilot symbol storage unit 150 outputs, for each pattern, the time domain of the long GI-OFDM symbol output from the pilot symbol processing unit 110.
  • the processing in the pilot symbol processing unit 110 is performed only for the first generation of each pattern. Since it can be omitted thereafter, the amount of processing can be reduced.
  • the amount of pilot symbol generation is reduced, and the tolerance to intersymbol interference is greatly improved as in the seventh embodiment. It is possible to realize accurate channel estimation in the receiving apparatus 20 without substantially degrading general transmission efficiency.
  • the transmission apparatus 10a includes the pilot symbol processing unit 110 and inputs a long GI-OFDM symbol to the pilot symbol storage unit 150.
  • the pilot symbol processing unit 110 is omitted, that is, transmission is performed.
  • the apparatus 10a may not include the pilot symbol processing unit 110.
  • a long-time GI-OFDM symbol time domain signal created in advance may be input to the transmitter 10a, and the pilot symbol storage unit 150 may store this.
  • a long GI is added to all input pilot symbols has been described.
  • the present invention is not limited to this. For example, a long GI may be added to some pilot symbols, and a normal GI may be added to other pilot symbols.
  • the wireless communication system according to the present embodiment includes a transmission device 10b and a reception device 20 that communicate with each other by the OFDM method.
  • the transmission apparatus 10b according to the present embodiment is different from the transmission apparatus 10 according to the seventh embodiment.
  • the description will focus on blocks having different functions from the blocks described in the seventh embodiment. It should be noted that blocks whose description is omitted have the same functions as those in the seventh embodiment.
  • the receiving device 20 according to the present embodiment can be realized by the same block configuration as the receiving device 20 (FIG. 33) according to the seventh embodiment.
  • FIG. 42 is a schematic block diagram illustrating a configuration of the transmission device 10b according to the present embodiment.
  • the difference from the transmission apparatus 10 according to the seventh embodiment is that the pilot symbol processing unit 110 is omitted and a control symbol processing unit 160 (also referred to as a second multicarrier symbol generation unit) is added.
  • the other symbols (100 to 105, 120 to 140) have the same configuration.
  • the pilot symbols are input to the control symbol processing unit 160, and the pilot symbols are information data symbol generation units.
  • 100 mapping units 103 are input.
  • control symbol is a modulation symbol that has been encoded and modulated, and includes, for example, a modulation scheme used for an information data signal, a mapping method (resource allocation method), error correction encoded information (for example, an encoding method, (Coding rate, puncture pattern), interleaving method, scrambling method, HARQ (Hybrid Automatic Repeat reQuest) control information (for example, packet reception notification information (ACK (Acknowledgement), NACK (Negative Acknowledgment), retransmission number, etc.) Synchronization signal, MIMO (Multi-Input Multi-Output) control information (eg number of layers (number of streams) and precoding method), base station information, terminal information Control information modulation symbols representing information necessary for receiving a plurality of information data signals, such as control information format information, data information format information, feedback information (for example, CQI (Channel Quality Indicator), etc.), transmission power control information, etc. Is included, but is not limited to these.
  • the control symbol processing unit 160 includes a mapping unit 161, an IFFT unit 162, and a long GI insertion unit 163.
  • the mapping unit 161 arranges control symbols for the input control symbols in the same manner as the processing by the mapping unit 111 of the pilot symbol generation unit 110 described in the seventh embodiment. Mapping to the resource element to be performed.
  • mapping section 161 performs inverse fast Fourier transform processing on the mapped control symbols, which are frequency domain signals, and converts the frequency domain signals into time domain signals.
  • the long GI insertion unit 163 includes a control symbol to which a long GI is added by adding a guard interval longer than the normal guard interval added by the normal GI insertion unit 105 to the time domain signal generated by the IFFT unit 162.
  • a time domain signal of a long GI-OFDM symbol is generated.
  • the information data symbol generation unit 100 performs the same processing as the processing described in the seventh embodiment on the input information data signal.
  • the mapping unit 103 places the pilot symbol input to the mapping unit 103 in the pilot symbol resource element, and the IFFT unit 104 and the normal GI insertion unit 105 perform the seventh processing on the information data signal and the pilot symbol.
  • the same processing as that described in the embodiment is performed.
  • information data symbol generation unit 100 outputs a time domain signal of a normal GI-OFDM symbol composed of information data symbols and pilot symbols to which normal GI is added.
  • FIG. 43 is a diagram illustrating an example of frequency components and time components of a signal multiplexed by the multiplexing unit 120.
  • the example of FIG. 43 shows a frame composed of 4 OFDM symbols and 8 subcarriers.
  • rectangles C1 to C4 hatched with diagonal lines indicate areas where long GI control symbols, which are control symbols to which a long GI is added, are arranged.
  • a rectangle not hatched with diagonal lines indicates a region where a normal GI information data symbol which is an information data symbol to which a normal GI is added or a normal GI pilot symbol which is a pilot symbol to which a normal GI is added. Yes.
  • the hatched portion indicates the guard interval, and the white portion indicates the effective symbol interval. Is shown.
  • control symbol is inserted into any subcarrier in the same OFDM symbol, and long GI insertion section 163 transmits an information data signal.
  • control symbols which are important information used for specifying parameters, etc.
  • the control signal is an important signal used for specifying parameters for transmitting many information data signals. If the control signal is not transmitted, many information data signals are not transmitted. Can increase the transmission efficiency of the information data signal.
  • the long GI control symbol is twice as long as the normal GI information data symbol.
  • the present invention is not limited to this.
  • At least the long GI control symbol may be set longer than the length of the normal GI information data symbol. For example, it may be three times longer or 1.5 times longer.
  • a long GI may be added to a symbol such as an information data signal having a high QoS (Quality of Service) or an information data signal having a high urgency.
  • QoS Quality of Service
  • the transmission device can also be applied to the transmission devices according to the seventh and eighth embodiments.
  • the control symbol processing unit 160 has been described as receiving a modulated control symbol.
  • the control symbol processing unit 160 includes an encoding unit that performs error correction encoding, and a modulation such as BPSK.
  • a mapping unit 161 that receives a control signal that has not been subjected to error correction coding and modulation, performs error correction coding by the coding unit and modulation by the modulation unit, and generates a control symbol. You may make it input into.
  • a long GI is added to all input control symbols has been described.
  • the present invention is not limited to this.
  • a long GI may be added to some control symbols, and a normal GI may be added to other control symbols. In that case, it is desirable to add a long GI to a control symbol having high importance among the control symbols.
  • the wireless communication system according to the present embodiment includes a transmission device 10c and a reception device 20 that communicate with each other by the OFDM method.
  • the transmission apparatus 10c according to the present embodiment is different from the transmission apparatus 10 according to the seventh embodiment in part.
  • the following description focuses on blocks having different block functions described in the seventh embodiment. It should be noted that blocks whose description is omitted have the same functions as those in the seventh embodiment.
  • the receiving device 20 according to the present embodiment can be realized by the same block configuration as the receiving device 20 (FIG. 33) according to the seventh embodiment.
  • FIG. 44 is a schematic block diagram showing the configuration of the transmission device 10c according to this embodiment.
  • the difference from the transmission apparatus 10 according to the seventh embodiment is that the information data symbol generation unit 100 is changed to an information data symbol generation unit 100c (also referred to as a first multicarrier symbol generation unit).
  • the other codes (110 to 140) have the same configuration.
  • the information data symbol generation unit 100c differs from the information data symbol generation unit 100 only in that it includes a mapping unit 103c instead of the mapping unit 103, and other codes (101, 102, 104, and 105). Has the same configuration.
  • control signal is, for example, a modulation scheme used for an information data signal, a mapping method (resource allocation method), error correction coding information (for example, a coding method, a coding rate, a puncture pattern), and an interleaving method.
  • a mapping method resource allocation method
  • error correction coding information for example, a coding method, a coding rate, a puncture pattern
  • HARQ Hybrid Automatic Repeat reQuest
  • control information for example, packet reception notification information (ACK (Acknowledgement), NACK (Negative Acknowledgment), number of retransmissions, etc.), synchronization signal, MIMO (Multi-Multi-Multi-Mut-Multi-Mut-Multi ) Control information (for example, number of layers (number of streams) and precoding method), base station information, terminal information, control information format information, data information format Mat information, feedback information (e.g., CQI (Channel Quality Indicator), etc.), but are such as transmission power control information is not limited thereto.
  • the information data symbol generation unit 100c includes an encoding unit 101, a modulation unit 102, a mapping unit 103c, an IFFT unit 104, and a normal GI insertion unit 105.
  • the encoding unit 101 performs error correction encoding such as a convolutional code or a turbo code.
  • Modulation section 102 modulates the error correction encoded information data signal and control signal using a modulation scheme such as QPSK or QAM, and generates information data symbols and control symbols.
  • the mapping unit 103c is a resource element other than the resource element to which the scattered pilot symbol is mapped, and the information data symbol and the control symbol generated by the modulation unit 102 are determined in advance for each of the information data symbol and the control symbol. Map to resource element.
  • the resource element mapped by the mapping unit 103c and determined for the control symbol is a resource adjacent to the scattered pilot symbol to which the long GI is added. Elements, particularly resource elements of adjacent subcarriers within the same OFDM symbol, are preferentially assigned.
  • IFFT section 104 performs an inverse fast Fourier transform process on the information data symbols and control symbols mapped by mapping section 103c, which is a frequency domain signal, and converts the frequency domain signal into a time domain signal.
  • the normal GI insertion unit 105 adds a normal guard interval to the time domain signal generated by the IFFT unit 104.
  • FIG. 45 is a diagram illustrating an example of frequency components and time components of a signal multiplexed by the multiplexing unit 120 in the present embodiment.
  • the example of FIG. 45 shows a frame composed of 4 OFDM symbols and 8 subcarriers.
  • rectangles P3 and P4 hatched with diagonal lines rising to the right indicate areas where pilot symbols including guard intervals are arranged.
  • the rectangles C5 to C8 hatched with slanting lines to the right indicate areas where control symbols including guard intervals are arranged.
  • a rectangle that is not hatched with diagonal lines indicates an area where information data symbols including guard intervals are arranged.
  • hatched portions indicate guard interval intervals
  • white background portions indicate effective symbol intervals.
  • Long GI pilot symbols are arranged in regions P3 and P4, that is, in regions extending from the lower frequency to the second and third OFDM symbols in the third and sixth subcarriers, respectively, and their effective symbol intervals Corresponds to the symbol arranged in the other third OFDM symbol.
  • the control symbols are arranged in the third OFDM symbol in each of the second, fourth, fifth, and seventh subcarriers from regions C5 to C8, that is, from the lower frequency.
  • the guard interval (long GI) is a length obtained by adding a normal GI to one OFDM symbol, which is significantly longer than a normal GI. ing. Control symbols are arranged in resource elements adjacent to each pilot symbol in the frequency direction (resource elements of adjacent subcarriers in the same OFDM symbol).
  • effects obtained by preferentially assigning control symbols to resource elements of adjacent subcarriers in the same OFDM symbol as the scattered pilot symbols to which the long GI is added are as follows. explain.
  • a fast Fourier transform (FFT) process is performed in the receiving device, so that a discontinuous part (symbol boundary) of a part of the incoming wave in the FFT section Will be included.
  • ICI inter-carrier interference
  • a symbol with a long GI as shown in FIG. 45 has a long guard interval period, so that an incoming wave exceeding the guard interval period does not arrive or a symbol with a normal GI is added. It becomes very weak. Therefore, in a symbol to which a long GI is added, such inter-carrier interference ICI does not occur or inter-carrier interference ICI is very weak. That is, a symbol to which a long GI is added has less interference (an intercarrier interference ICI) with respect to a symbol adjacent in the frequency direction than a symbol to which a normal GI is added. From the above, the element of the adjacent subcarrier of the symbol to which the long GI is added has less inter-carrier interference ICI than other elements, and can be restored with high accuracy.
  • a scattered pilot symbol is inserted into any subcarrier in the same OFDM symbol, and only for the scattered pilot symbol.
  • a guard interval section longer than the normal guard interval section is set.
  • control symbols are preferentially assigned to elements located in adjacent subcarriers of the scattered pilot symbols. Thereby, the inter-carrier interference ICI to the control symbol can be reduced, and the control signal can be restored with high accuracy on the receiving side.
  • control symbol is preferentially assigned to the resource element of the adjacent subcarrier in the same OFDM symbol as the scattered pilot symbol to which the long GI is added.
  • the present invention is not limited to this. Instead, it may be assigned to a subcarrier element in the same OFDM symbol as the scattered pilot symbol to which the long GI is added. In that case, it is desirable to assign to a resource element of a subcarrier close to a resource element of a scattered pilot symbol to which a long GI is added.
  • the control symbol is preferentially assigned to the resource element of the adjacent subcarrier in the same OFDM symbol as the scattered pilot symbol to which the long GI is added. It is not limited. For example, symbols such as an information data signal with a high QoS (Quality of Service) or an information data signal with a high urgency may be preferentially assigned.
  • the mapping unit 103c of the transmission device 10c according to the present embodiment can also be applied to the transmission devices according to the first to ninth embodiments.
  • the present invention is not limited to this. For example, a long GI may be added to some pilot symbols, and a normal GI may be added to other pilot symbols.
  • the eleventh embodiment of the present invention will be described below with reference to the drawings.
  • the wireless communication system according to the present embodiment includes a transmission device 10 and a reception device 20a that communicate by OFDM.
  • the transmission apparatus 10 according to the present embodiment can be realized with the same block configuration as the transmission apparatus 10 (FIG. 29) according to the seventh embodiment.
  • the receiving device 20a according to the present embodiment is different from the receiving device 20 according to the seventh embodiment in part.
  • the following description focuses on blocks having different block functions described in the seventh embodiment. It should be noted that blocks whose description is omitted have the same functions as those in the seventh embodiment.
  • FIG. 46 is a schematic block diagram showing the configuration of the receiving device 20a according to this embodiment.
  • the difference from the receiving apparatus 20 according to the seventh embodiment is that the second FFT section extracting unit 281 and the second FFT unit 282 in the pilot symbol processing unit 280 in the seventh embodiment are omitted, and this embodiment is omitted.
  • the input to pilot symbol processing section 280a in the embodiment is that it is a frequency domain signal output from first FFT section 230.
  • the information data symbol and control symbol to which the normal GI is added as shown in FIG. 32 and the scattered pilot symbol to which the long GI is added are multiplexed as in the seventh embodiment.
  • Signal is received.
  • the receiving device 20a according to the eleventh embodiment does not include the second FFT interval extraction unit 281 but includes only the first FFT interval extraction unit 220.
  • the first FFT section extraction unit 220 and the first FFT unit 230 of the reception device 20a perform FFT on the information data symbol and the control symbol in which the normal GI in the seventh embodiment is added to the reception signal. The same processing as the section extraction and FFT processing is performed.
  • the FFT processing is also performed on the scattered pilot symbol to which the long GI is added, that is, the effective symbol section of the long GI-OFDM (the second OFDM symbol in FIG. 32).
  • the frequency domain signal generated by the FFT processing includes a symbol reception signal included in the normal GI-OFDM symbol and a symbol reception signal included in the long GI-OFDM symbol.
  • pilot extraction section 283 symbol extraction section
  • pilot symbol processing section 280 discards the received signal portion of the symbols included in the normal GI-OFDM symbol from this frequency domain signal without extracting the long GI. -The received signal of the symbol included in the OFDM symbol is extracted as a received pilot symbol.
  • pilot extraction section 283 extracts the long GI-OFDM symbol by extracting the signal of the subcarrier in which the effective symbol period of the long GI-OFDM symbol (the third OFDM symbol in FIG. 32) and the pilot symbol is arranged. A symbol reception signal included in the symbol is extracted as a pilot symbol reception signal.
  • a scattered pilot symbol is inserted into any subcarrier in the same OFDM symbol, and a guard interval period longer than a normal guard interval period is set only for the scattered pilot symbol.
  • the circuit scale is reduced and the resistance to the intersymbol interference is greatly increased. It is possible to realize accurate channel estimation with little improvement in overall transmission efficiency.
  • the receiving device 20a according to the present embodiment can also be applied to the receiving devices according to the seventh to tenth embodiments.
  • the wireless communication system includes a transmission device 10d and a reception device 20d that communicate using the OFDM method.
  • the transmission device 10d and the reception device 20d are substantially the same as the transmission device 10 (FIG. 29) and the reception device 20 (FIG. 33) according to the seventh embodiment, but in this embodiment, a plurality of transmission antennas and reception antennas are used. Since this is a MIMO (Multiple Input Multiple Output) system, the number of blocks differs depending on the number of antennas.
  • MIMO Multiple Input Multiple Output
  • FIG. 47 is a schematic block diagram showing the configuration of the transmission device 10d according to this embodiment.
  • the transmission device 10d includes a transmission processing unit 11 for the transmission antenna 1 and a transmission processing unit 12 for the transmission antenna 2.
  • Each transmission processing unit includes an information data symbol generation unit 100, a pilot symbol processing unit 110d, a multiplexing unit 120, a transmission unit 130, and a transmission antenna 140, respectively.
  • Each transmission processing unit includes an information data signal and a control signal (for transmission antenna 1), a pilot symbol (for transmission antenna 1), an information data signal and a control signal (for transmission antenna 2), and a pilot symbol (transmission).
  • Antenna 2) is input.
  • FIG. 48 is a diagram illustrating frames formed by normal GI information data symbols, normal GI control symbols (for antenna 1), and long GI pilot symbols (for antenna 1) generated by the transmission processing unit 11 for the transmission antenna 1.
  • the example of FIG. 48 shows a frame composed of 4 OFDM symbols and 8 subcarriers.
  • the transmission processing unit 11 for the transmission antenna 1 uses one resource element (6 of the 3rd OFDM symbols of the 3rd and 6th subcarriers) that arranges the scattered pilot symbols in the frame.
  • the effective symbol of the long GI pilot symbol P5 for the transmission antenna 1 is arranged on the (th) subcarrier), and the resource element (third subcarrier) of the other scattered pilot symbol is set to zero.
  • the pilot symbol for the transmission antenna 1 is not overlapped with the pilot symbol for the transmission antenna 2 arranged by the transmission processing unit 12 for the transmission antenna 2 (so as not to interfere).
  • FIG. 49 is a diagram illustrating frames formed by normal GI information data symbols, normal GI control symbols (for antenna 2), and long GI pilot symbols (for antenna 2) generated by the transmission processing unit 12 for the transmission antenna 2. is there.
  • the example of FIG. 49 shows a frame composed of 4 OFDM symbols and 8 subcarriers.
  • the transmission antenna 2 transmission processing unit 12 transmits a pilot symbol for the transmission antenna 2 to one resource element (third subcarrier) of the two scattered pilot symbols in which the scattered pilot symbols in the frame are arranged.
  • An effective symbol of P6 is arranged, and the resource element (sixth subcarrier) of another scattered pilot symbol is set to zero.
  • the pilot symbol for the transmission antenna 2 is prevented from overlapping (not interfering) with the pilot symbol for the transmission antenna 1 arranged by the transmission processing unit 11 for the transmission antenna 1.
  • the receiving apparatus 20d receives the information data symbols to which the normal GI is added in a spatially multiplexed state.
  • the scattered pilot symbols to which the long GI is added can be received without being spatially multiplexed.
  • Each transmission processing unit transmits each transmission frame as illustrated in FIGS. 48 and 49 simultaneously.
  • FIG. 50 is a schematic block diagram showing the configuration of the receiving device 20d according to this embodiment.
  • the reception device 20d includes a reception processing unit 21 for the reception antenna 1, a reception processing unit 22 for the reception antenna 2, a signal separation unit 23, a reception processing unit 24 for the transmission antenna 1, a reception processing unit 25 for the transmission antenna 2, and a pilot symbol processing unit. 26.
  • the reception antenna 1 reception processing unit 21 and the reception antenna 2 reception processing unit 22 include a reception antenna 200, a reception unit 210, a first FFT section extraction unit 220, and a first FFT unit 230, respectively.
  • the transmission antenna 1 reception processing unit 24 and the transmission antenna 2 reception processing unit 25 include a demapping unit 250, a demodulation unit 260, and a decoding unit 270, respectively.
  • the same reference numerals (200 to 283) are given to portions corresponding to the respective portions in FIG.
  • the reception processing unit 21 for the reception antenna 1 and the reception processing unit 22 for the reception antenna 2 the reception unit 210, the first FFT section extraction unit 220, and the first FFT unit 230 are provided for the reception signal for each reception antenna 200.
  • 33 the same processing as that of the reception unit 210, the first FFT section extraction unit 220, and the first FFT unit 230 in FIG. 33 is performed and output to the signal separation unit 23.
  • the pilot symbol processing unit 26 the second FFT section extraction unit 281, the second FFT unit 282, and the pilot extraction unit 283 are respectively provided for the received signal for each reception antenna, and the second FFT section extraction unit in FIG. 33.
  • the propagation path estimation unit 284 d uses the pilot symbols extracted by the pilot extraction unit 283 for each combination of the transmission antenna 130 and the reception antenna 200. Then, the propagation path is estimated and output to the signal separator 23.
  • the signal separation unit 23 Based on the signal for each reception antenna 200 received from the reception processing unit 21 for reception antenna 1 and the reception processing unit 22 for reception antenna 2 and the propagation path estimation result received from the pilot symbol processing unit 26, the signal separation unit 23 The information data symbols for each multiplexed transmission antenna 140 are separated.
  • various methods can be applied as a signal separation method for spatially multiplexed signals.
  • signal separation methods such as ZF (Zero-Forcing) criterion, MMSE (Minimum Mean Square Error: Minimum Mean Square Error) criterion, and ML (Maximum Likelihood) criterion can be applied. This is not a limitation.
  • the demapping unit 250, the demodulation unit 260, and the decoding unit 270 perform the signal for each transmission antenna 140 separated by the signal separation unit 23.
  • the same processing as that of the demapping unit 250, demodulation unit 260, and decoding unit 270 in FIG. 33 is performed.
  • FIG. 51 is a diagram illustrating frames formed by information data symbols, control symbols, and pilot symbols received by the receiving device 20d.
  • the example of FIG. 51 shows a frame composed of 4 OFDM symbols and 8 subcarriers.
  • receiving apparatus 20d receives a frame as shown in FIG. 51 by assigning scattered pilot symbols independently of each other. Since the information data symbols to which the normal GI is added are spatially multiplexed, processing by the signal separation unit 23 that separates the spatially multiplexed signals is required.
  • each transmission processing unit of the transmission device 10d inserts scattered pilot symbols independently from each other for each transmission antenna, in other words, arranges scattered pilot symbols to which a long GI is added in other transmission processing units. No symbol is placed in the resource element to be executed.
  • the long GI pilot symbol P5 for the transmission antenna 1 is transmitted to the transmission antenna 2 on the 2nd and 3rd OFDM symbols of the 6th subcarrier.
  • Long GI pilot symbol P6 for use is arranged in the second and third OFDM symbols of the third subcarrier.
  • the path estimation unit 284d can perform highly accurate propagation path estimation that is not affected by interference due to spatial multiplexing.
  • any subcarrier in the same OFDM symbol is transmitted.
  • MIMO Multi-Input Multi-Output
  • interference with intersymbol interference can be achieved.
  • Propagation path estimation can be realized with greatly improved tolerance and almost no deterioration in overall transmission efficiency.
  • the present invention is not limited to this, and the present invention can also be applied to the case where there are two or more transmission antennas and reception antennas. Also, the present invention can be applied when the number of transmitting antennas and receiving antennas are different from each other.
  • the information data symbols for each transmission antenna have been subjected to modulation processing and decoding processing, respectively, but this is not a limitation.
  • a signal subjected to demodulation processing or decoding processing may be assigned to the transmission processing unit of each transmission antenna.
  • the transmission device 10 and the reception device 20d according to the present embodiment can also be applied to the transmission device and the reception device according to the seventh to eleventh embodiments.
  • a long GI is added to all input pilot symbols.
  • the present invention is not limited to this.
  • a long GI may be added to some pilot symbols, and a normal GI may be added to other pilot symbols.
  • a long GI may be added to pilot symbols for some transmission antennas, and a normal GI may be added to pilot symbols for other transmission antennas. In that case, a long GI may be added to a pilot symbol for a transmitting antenna that transmits a highly important information data signal and control signal.
  • the present invention can be used not only in mobile communication but also in the field of fixed communication.
  • the transmission apparatus of the present invention is used for the transmission part of one transceiver, and the reception apparatus of the present invention is used for the reception part of the other transmission / reception apparatus.
  • the transmission apparatus of the present invention is used for the transmission part of the base station apparatus, and the reception apparatus of the present invention is used for the reception part of the mobile station apparatus.
  • a program for realizing this control function may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read into a computer system and executed.
  • the “computer system” here includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time, like a communication line in the case of transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system that serves as a server or a client in that case may also be included that holds a program for a certain time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • IFFT unit 163 ... long GI insertion unit 200 ... receiving antenna 210 ... receiving unit 220 ... first FFT section extracting unit 230 ... first FFT unit 240 ... Filter unit 250 ... Demapping unit 260 ... Demodulation unit 270 ... Decoding unit 280, 280a ... Pilot symbol processing unit 281 ... Second FFT section extraction unit 282 ... Second FFT unit 283 ... Pilot extraction unit 284, 284d ... Propagation Road estimation part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置において、第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻においてマルチキャリアを構成する複数のサブキャリアの間で散在していることで、通信の伝送効率をほとんど低下させることなく、シンボル間干渉に対する耐性を向上させる。

Description

送信装置、送信方法、通信システムおよび通信方法
 本発明は、送信装置、送信方法、通信システムおよび通信方法に関する。
 本願は、2009年1月8日に、日本に出願された特願2009-002693号および特願2009-002694号に基づき優先権を主張し、その内容をここに援用する。
 移動体通信、固定通信などの無線通信において、送信信号が伝搬路に存在する障害物等による反射波の影響で様々な干渉を受け、受信信号のレベルが変動する、いわゆるフェージングによって通信品質が低下する。
 例えば、直交周波数分割多重(以下、「OFDM(Orthogonal Frequency Division Multiplexing)」という)、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)、マルチキャリア符号分割多重(MC-CDM:Multi Carrier-Code Division Multiplexing)などのマルチキャリア伝送では、送信装置が送信する送信信号にサイクリックプレフィックス(CP:Cyclic Prefix)によるガードインターバル(GI:Guard Interval)区間(長さ)を付加することによって、マルチパスフェージング(マルチパス干渉)の影響を低減している。
 また、受信装置においては、マルチパスフェージングなどの伝搬路に起因した送信信号の振幅や位相の変動を補償するために、送信装置と受信装置との間で既知となっている信号をパイロット信号として、送信信号の一部に挿入することによって、伝搬路の振幅や位相の変動の推定を行っている。また、その伝搬路の推定は、高精度で行うことが望まれている。
 特に、広帯域伝送や高速移動環境では、送信信号の振幅と位相の変動を周波数方向および時間方向に追従できることが望まれている。その時間変動と周波数変動を推定する方法として、周波数方向および時間方向に対して、パイロット信号を散乱(スキャッタード:Scattered:散乱、散在)して配置する方法がある。例えば、非特許文献1でスキャッタードパイロット信号を用いる方法が示されている。
 非特許文献1で示された散乱して配置したパイロットシンボル(以下、「スキャッタードパイロットシンボル」という)を用いる方法の一例について図52を用いて説明する。
 図52は、8個のサブキャリアおよび12個のOFDMシンボルによって構成されるフレームについて示している。図52において、横軸は時間、縦軸は周波数を示し、周波数(縦軸)方向の1行がサブキャリア、時間(横軸)方向の1列がOFDMシンボルを示している。このフレームにおいては、周波数方向に3個おきのサブキャリア、および時間方向に1個おきのOFDMシンボルにパイロットシンボルを配置している。さらに、パイロットシンボルが含まれるOFDMシンボルはOFDMシンボル毎に、パイロットシンボルを周波数方向にシフトしている。これにより、スキャッタードパイロットシンボルによって振幅と位相の時間変動と周波数変動の推定に追従することを可能としている。
 一方、OFDM等のマルチキャリア伝送において、ガードインターバル区間を超える到来波が存在し、通信品質が低下する要因となる例について図53および図54を用いて説明する。図53では、12波のマルチパスモデルのチャネルインパルス応答値を示しており、受信信号の先頭の4波がガードインターバルGI区間内であり、それ以外の8波がその区間を超えている場合を示している。このようにガードインターバル区間を越える遅延波が存在すると、図54に示すように、前のOFDMシンボルに付加されているガードインターバルの先頭、すなわち、前のOFDMシンボルのデータ区間が、受信した信号を復調するために行われるFFT(高速フーリエ変換:Fast Fourier Transform)区間内に入り込むことによって、シンボル間干渉(ISI:Inter Symbol Interference)が生じる。このシンボル間干渉が、伝搬路の推定精度を低下させ、通信品質が低下する要因となる。
 このシンボル間干渉による影響を除去する方法として、例えば、非特許文献1に示されているように、当該サブフレーム(フレーム,スロット)にある各OFDMシンボルのガードインターバルを通常のものよりも長くすることが示されている。
「3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access(EUTRA);Physical Channels and Modulation(Release8)」3GPP TS 36.211 V8.3.0(2008-05).
 しかしながら、非特許文献1では、サブフレーム毎に付加するガードインターバル区間を設定しているため、1個のガードインターバルを長くしたい場合でも、同じサブフレームの全てのガードインターバル区間が長くなってしまう。すなわち、ガードインターバル区間を長くしたいスキャッタードパイロットシンボルが含まれる同じサブフレームのスキャッタードパイロットシンボル以外の全てのOFDMシンボルに対しても、ガードインターバル区間を長くしてしまうため、無線通信における冗長な区間が増加することとなってしまう。よって、非特許文献1では、OFDMシンボル間の干渉を低減することは可能であるが、伝送効率が低下することになる。
 また、上記のように、伝搬路の推定を行うためのスキャッタードパイロットシンボル以外では、例えば、同一のOFDMシンボル内のいずれかのサブキャリアの信号を高精度に復元させる場合においても、同様にシンボル間干渉の問題がある。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、伝搬路に起因して通常のガードインターバル区間を超える到来波が到来する環境において、伝送効率をほとんど低下させることなく、シンボル間干渉に対する耐性を向上させられる送信装置、送信方法、通信システムおよび通信方法を提供することにある。
(1)この発明は上述した課題を解決するためになされたもので、本発明の送信装置は、デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置において、第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在している、ことを特徴とする。
(2)また、本発明の送信装置は、上述の送信装置であって、一部の前記シンボルであって、第1のガードインターバルより長い第2のガードインターバルが付加されるシンボルを位相回転し、前記一部のシンボルと同じサブキャリアの時間方向に1つ前に配置されるシンボルであって、前記一部のシンボルに付加する第2のガードインターバルの一部を構成するシンボルを生成する位相制御部と、前記第1のガードインターバルが付加されるシンボルと、前記第2のガードインターバルが付加されるシンボルと、前記位相回転部が生成したシンボルとを周波数領域で多重する多重部と、前記多重部が多重したシンボルを逆フーリエ変換して、時間領域の信号に変換する逆フーリエ変換部と、前記逆フーリエ変換部が変換した時間領域の信号に、前記第1のガードインターバルの長さのガードインターバルを付加するガードインターバル挿入部と、を具備し、第1のマルチキャリアシンボルと第2のマルチキャリアシンボルを生成する、ことを特徴とする。
(3)また、本発明の送信装置は、上述の送信装置であって、前記位相制御部は、前記第1のガードインターバルの長さに基づいて位相回転する際の位相回転量を制御する、ことを特徴とする。
(4)また、本発明の送信装置は、上述の送信装置であって、前記第2のマルチキャリアシンボルの有効シンボル区間は、前記第1のマルチキャリアシンボルのいずれかの有効シンボル区間と、時間方向で一致している、ことを特徴とする。
(5)また、本発明の送信装置は、上述の送信装置であって、前記第2のマルチキャリアシンボルを記憶するシンボル記憶部をさらに備える、ことを特徴とする。
(6)また、本発明の送信装置は、上述の送信装置であって、前記第2のマルチキャリアシンボルは、該送信装置と通信する受信装置との間で既知となっているパイロット信号を含むパイロットシンボルである、ことを特徴とする。
(7)また、本発明の送信装置は、上述の送信装置であって、前記第2のマルチキャリアシンボルは、該送信装置と通信する受信装置に対する制御信号を含む制御データシンボルである、ことを特徴とする。
(8)また、本発明の送信装置は、上述の送信装置であって、前記第1のマルチキャリアシンボルは、該送信装置と通信する受信装置に対する情報データを含む情報データシンボルである、ことを特徴とする。
(9)また、本発明の送信装置は、上述の送信装置であって、前記第1のマルチキャリアシンボルは、該送信装置と通信する受信装置に対する情報データを含む情報データシンボル、および該送信装置と通信する受信装置に対する制御信号を含む制御データシンボルである、ことを特徴とする。
(10)また、本発明の送信装置は、上述の送信装置であって、前記制御データシンボルである前記第1のマルチキャリアシンボルは、前記第2のマルチキャリアシンボルが配置されたサブキャリアに隣接するサブキャリアに配置する、ことを特徴とする。
(11)また、本発明の送信装置は、上述の送信装置であって、前記位相制御部と、前記多重部と、前記逆フーリエ変換部と、前記ガードインターバル挿入部とからなる送信処理部を複数備え、1つの前記送信処理部内の前記第2のマルチキャリアシンボルは、他の前記送信処理部と互いに空間的に独立した第2のマルチキャリアシンボルである、ことを特徴とする。
(12)また、本発明の送信装置は、上述の送信装置であって、一部の前記シンボルに前記第1のガードインターバルを付加して前記第1のマルチキャリアシンボルを生成する第1のマルチキャリアシンボル生成部と、その他の一部の前記シンボルに前記第2のガードインターバルを付加して前記第2のマルチキャリアシンボルを生成する第2のマルチキャリアシンボル生成部と、前記第1のマルチキャリアシンボルと、前記第2のマルチキャリアシンボルとを時間領域で多重する多重部とを具備することを特徴とする。
(13)また、本発明の送信装置は、上述の送信装置であって、前記第1のマルチキャリアシンボル生成部は、前記一部のシンボルの各々を予め決められた幅の時間、周波数からなる領域のいずれかに配置し、前記第1のガードインターバルを付加した前記第1のマルチキャリアシンボルの時間領域の信号を生成し、前記第2のマルチキャリアシンボル生成部は、前記その他の一部のシンボルの各々を前記予め決められた幅の時間、周波数からなる領域であって、前記一部のシンボルが配置される領域を除く領域のいずれかに配置し、前記第2のガードインターバルを付加した前記第2のマルチキャリアシンボルの時間領域の信号を生成し、前記多重部は、前記第1のマルチキャリアシンボルの時間領域の信号と前記第2のマルチキャリアシンボルの時間領域の信号とを多重することを特徴とする。
(14)また、本発明の通信システムは、デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置および受信装置を備える通信システムにおいて、前記送信装置は、第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在しているマルチキャリア信号を送信し、前記受信装置は、前記送信装置から送信されてきたマルチキャリア信号をマルチキャリア復調して前記複数のサブキャリアを分離し、前記第1のシンボルと、前記第2のシンボルとを抽出する、ことを特徴とする。
(15)また、本発明の通信システムは、上述の通信システムであって、前記受信装置は、前記送信装置から送信されてきた前記マルチキャリア信号を受信し、受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去部と、受信した前記マルチキャリア信号に含まれる前記第2のガードインターバルを除去する第2のガードインターバル除去部と、を備えることを特徴とする。
(16)また、本発明の通信システムは、上述の通信システムであって、前記受信装置は、前記送信装置から送信されてきた前記マルチキャリア信号を受信し、受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去部と、前記第1のガードインターバル除去部が前記第1のガードインターバルを除去した前記マルチキャリア信号から、該マルチキャリア信号に含まれる前記第2のマルチキャリアシンボルを抽出するシンボル抽出部と、を備えることを特徴とする。
(17)また、本発明の通信システムは、上述の通信システムであって、前記シンボル抽出部が抽出する有効シンボル区間は、前記第2のマルチキャリアシンボルの有効シンボル区間である、ことを特徴とする。
(18)また、本発明の送信方法は、デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置の送信方法において、第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在している、ことを特徴とする。
(19)また、本発明の送信方法は、上述の送信方法であって、一部の前記シンボルであって、第1のガードインターバルより長い第2のガードインターバルが付加されるシンボルを位相回転し、前記一部のシンボルと同じサブキャリアの時間方向に1つ前に配置されるシンボルであって、前記一部のシンボルに付加する第2のガードインターバルの一部を構成するシンボルを生成する位相制御手順と、前記第1のガードインターバルが付加されるシンボルと、前記第2のガードインターバルが付加されるシンボルと、前記位相回転手順が生成したシンボルとを周波数領域で多重する多重手順と、前記多重手順が多重したシンボルを逆フーリエ変換して、時間領域の信号に変換する逆フーリエ変換手順と、前記逆フーリエ変換手順が変換した時間領域の信号に、前記第1のガードインターバルの長さのガードインターバルを付加するガードインターバル挿入手順と、を含み、第1のマルチキャリアシンボルと第2のマルチキャリアシンボルを生成したマルチキャリア信号を送信する、ことを特徴とする。
(20)また、本発明の送信方法は、上述の送信方法であって、デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置における送信方法であって、前記送信装置が、一部の前記シンボルに第1のガードインターバルを付加して第1のマルチキャリアシンボルを生成する第1の過程と、前記送信装置が、その他の一部の前記シンボルに前記第1のガードインターバルより長い第2のガードインターバルを付加して第2のマルチキャリアシンボルを生成する第2の過程と、前記送信装置が、前記第1のマルチキャリアシンボルと、前記第2のマルチキャリアシンボルとを時間領域で多重する第3の過程とを備え、前記第1のマルチキャリアシンボル中で前記一部のシンボルが配置されたサブキャリアと、前記第2のマルチキャリアシンボル中で前記その他の一部のシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在していることを特徴とする送信方法。
(21)また、本発明の通信方法は、デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信方法および受信方法を含む通信方法において、前記送信方法は、第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在しているマルチキャリア信号を送信し、前記受信方法は、送信されてきたマルチキャリア信号をマルチキャリア復調して前記複数のキャリアを分離し、前記第1のシンボルと、前記第2のシンボルとを抽出する、ことを特徴とする。
(22)また、本発明の通信方法は、上述の通信方法であって、前記受信方法は、送信されてきた前記マルチキャリア信号を受信し、受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去手順と、受信した前記マルチキャリア信号に含まれる前記第2のガードインターバルを除去する第2のガードインターバル除去手順と、を含むことを特徴とする。
(23)また、本発明の通信方法は、上述の通信方法であって、前記受信方法は、送信されてきた前記マルチキャリア信号を受信し、受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去手順と、前記第1のガードインターバル除去手順が前記第1のガードインターバルを除去した前記マルチキャリア信号から、該マルチキャリア信号に含まれる前記第2のシンボルを抽出するシンボル抽出手順と、を含むことを特徴とする。
 本発明によれば、伝搬路に起因して通常のガードインターバル区間を超える到来波が到来する環境において、第1のOFDMシンボルと、第2のOFDMシンボルを生成し、その第1のOFDMシンボルと、第2のOFDMシンボルとに長さの異なる第1と第2のガードインターバル(第2のガードインターバルの長さは、第1のガードインターバルの長さよりも長い)を付加し、同一時刻においてマルチキャリアを構成する複数のサブキャリアの間で散在して配置した送信信号を送信することができるので、通信の伝送効率をほとんど低下させることなく、シンボル間干渉に対する耐性を向上させることができる。
本発明の第1の実施形態における送信装置の構成を示す概略ブロック図である。 本発明の第1の実施形態における情報データシンボルフレームの一例を示す図である。 本発明の第1の実施形態におけるパイロットシンボルフレームの一例を示す図である。 本発明の第1の実施形態におけるノーマルガードインターバルの生成方法を示した第1の図である。 本発明の第1の実施形態におけるノーマルガードインターバルの生成方法を示した第2の図である。 本発明の第1の実施形態におけるノーマルガードインターバルの生成方法を示した第3の図である。 本発明の第1の実施形態において情報データシンボルフレームとパイロットシンボルフレームとが多重されたフレームの一例を示した図である。 本発明の第1の実施形態においてノーマルGI情報データシンボルとロングGIパイロットシンボルとをサブキャリア間で混在させたフレームの一例を示した図である。 本発明の第1の実施形態において位相回転を行なわずにサブキャリアをIFFT処理した結果を示した図である。 本発明の第1の実施形態において位相回転を行ないサブキャリアをIFFT処理した結果を示した図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法を示した第1の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法を示した第2の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法を示した第3の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法を示した第4の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法を示した図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法の別の例を示した第1の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法の別の例を示した第2の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法の別の例を示した第3の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法の別の例を示した第4の図である。 本発明の第1の実施形態におけるロングガードインターバルの生成方法の別の例を示した第5の図である。 本発明の第1の実施形態における受信装置の構成を示す概略ブロック図である。 本発明の第1の実施形態におけるノーマルGIが付加された情報データ信号のFFT区間を示した図である。 本発明の第1の実施形態におけるロングGIが付加されたパイロットシンボルのFFT区間を示した図である。 本発明の第1の実施形態におけるノーマルGIの信号を示した図である。 本発明の第1の実施形態におけるロングGIの信号を示した図である。 本発明の第1の実施形態においてノーマルGIのみで構成された信号を受信した例を示す図である。 本発明の第1の実施形態においてノーマルGIとロングGIで構成された信号を受信した例を示す図である。 本発明の第2の実施形態における送信装置の構成を示す概略ブロック図である。 本発明の第3の実施形態における送信装置の構成を示す概略ブロック図である。 本発明の第3の実施形態においてノーマルGI情報データシンボルとロングGI制御シンボルとが多重されたOFDMシンボルの一例を示した図である。 本発明の第3の実施形態においてノーマルGI情報データシンボルとロングGI制御シンボルとをサブキャリア間で混在させたOFDMシンボルの一例を示した図である。 本発明の第4の実施形態における送信装置の構成を示す概略ブロック図である。 本発明の第4の実施形態においてノーマルGI情報データと、ノーマルGI制御シンボルと、ロングGIパイロットシンボルとが多重された多重されたフレームの一例信号を示した図である。 本発明の第4の実施形態においてノーマルGI情報データと、ノーマルGI制御シンボルと、ロングGIパイロットシンボルとをサブキャリア間で混在させたフレームの一例を示した図である。 本発明の第5の実施形態における受信装置の構成を示す概略ブロック図である。 本発明の第6の実施形態における送信装置の構成を示す概略ブロック図である。 本発明の第6の実施形態における受信装置の構成を示す概略ブロック図である。 本発明の第6の実施形態においてアンテナ1のパイロットシンボルを多重したフレームの一例を示した図である。 本発明の第6の実施形態においてアンテナ2のパイロットシンボルを多重したフレームの一例を示した図である。 本発明の第6の実施形態において受信されるアンテナ1およびアンテナ2のパイロットシンボルが多重されたフレームの一例を示した図である。 この発明の第7の実施形態に係る送信装置の構成を示す概略ブロック図である。 同実施形態におけるマッピング部103による情報データ信号および制御信号のシンボルのフレームへの配置の一例を示す図である。 同実施形態におけるマッピング部111によるパイロット信号のシンボルのフレームへの配置の例を示す図である。 同実施形態における多重部120により多重された信号の周波数成分と時間成分の例を示す図である。 同実施形態における実施形態に係る受信装置20の構成を示す概略ブロック図である。 同実施形態におけるロングGIパイロットシンボルのためのFFT区間の例を示す図である。 同実施形態におけるノーマルGI情報データシンボルおよびノーマルGI制御シンボルのためのFFT区間の例を示す図である。 同実施形態におけるロングGIパイロットシンボルのためのFFT区間の別の例を示す図である。 同実施形態におけるノーマルGI情報データシンボルおよびノーマルGI制御シンボルのためのFFT区間の別の例を示す図である。 同実施形態におけるノーマルGIを付加した情報データ信号と、ロングGIを付加したパイロット信号の概略構成を示す図である。 同実施形態におけるノーマルGIが付加された情報データ信号または制御信号について受信信号の概略構成例を示す図である。 同実施形態におけるノーマルGIが付加された情報データ信号およびロングGIが付加されたパイロット信号について受信信号の概略構成例を示す図である。 この発明の第8の実施形態に係る送信装置10aの構成を示す概略ブロック図である。 この発明の第9の実施形態に係る送信装置10bの構成を示す概略ブロック図である。 同実施形態における多重部120で多重された信号の周波数成分と時間成分の例を示す図である。 この発明の第10の実施形態に係る実施形態に係る送信装置10cの構成を示す概略ブロック図である。 同実施形態における多重部120により多重された信号の周波数成分と時間成分の例を示す図である。 この発明の第11の実施形態に係る実施形態に係る受信装置20aの構成を示す概略ブロック図である。 この発明の第12の実施形態に係る実施形態に係る送信装置10dの構成を示す概略ブロック図である。 同実施形態における送信アンテナ1用送信処理部11が生成する情報データ信号のシンボル、制御信号のシンボルおよびパイロットシンボルが構成するフレームを示す図である。 同実施形態における送信アンテナ2用送信処理部12が生成する情報データ信号のシンボル、制御信号のシンボルおよびパイロットシンボルが構成するフレームを示す図である。 同実施形態に係る受信装置20dの構成を示す概略ブロック図である。 同実施形態に係る受信装置20dが受信する情報データ信号のシンボル、制御信号のシンボルおよびパイロットシンボルが構成するフレームを示す図である。 従来のスキャッタードパイロットシンボルを用いたフレームの一例を示す図である。 従来のマルチキャリア伝送においてガードインターバル区間を超える到来波によって通信品質が低下する一例を示す図である。 従来のマルチキャリア伝送においてガードインターバル区間を超える到来波によってシンボル間干渉が生じる一例を示す図である。
 以下、図面を参照して、本発明の実施形態について説明する。なお、本発明の実施形態においては、通常のガードインターバルをノーマルガードインターバル(以下、「ノーマルGI」という)といい、通常のガードインターバル区間よりも長いガードインターバルをロングガードインターバル(以下、「ロングGI」という)という。
 (第1の実施形態)
 以下、本発明の第1の実施の形態について説明する。本第1の実施形態における通信システムは、送信装置および受信装置を備える。図1は、本発明の第1の実施形態における送信装置の構成を示す概略ブロック図である。図1において、送信装置a1は、情報データシンボル生成部a10(ノーマルGIシンボル生成部)、パイロットシンボル処理部a20(ロングGIシンボル生成部)、多重部a30、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部a40、GI挿入部a50、送信部a60(無線送信部)、送信アンテナa100を備える。
 情報データシンボル生成部a10は、図示しない送信装置a1の上位層の処理装置から入力された送信する情報データ信号(送信データ)を符号化および変調した情報データシンボルをリソースエレメントに配置(マッピング)し、配置した情報データシンボルを多重部a30に出力する。また、情報データシンボル生成部a10は、符号部a11、変調部a12、マッピング部a13を備える。
 符号部a11は、入力された情報データ信号に対して畳み込み符号やターボ符号などの誤り訂正符号化を行い、変調部a12に出力する。
 変調部a12は、符号部a11から入力された誤り訂正符号化された情報データ信号を、例えば、QPSK(Quadrature Phase Shift Keying:4相位相偏移変調)やQAM(Quadrature Amplitude Modulation:直交振幅変調)などの変調方式によって変調して、情報データ信号の変調シンボルである情報データシンボルを生成し、マッピング部a13に出力する。
 マッピング部a13は、変調部a12から入力された情報データシンボルを、パイロットシンボル処理部a20によりスキャッタードパイロットシンボル等が挿入されるリソースエレメント以外のリソースエレメントであって、予め定められたリソースエレメントにマッピングし、情報データシンボル生成部a10の出力として多重部a30に出力する。
ここで、リソースエレメントとは、予め定められた幅の周波数、時間からなる領域であり、1つのシンボルが配置される。
 パイロットシンボル処理部a20は、図示しない送信装置a1の上位層の処理装置から入力されたパイロットシンボルをスキャッタードパイロットシンボルとして、周波数方向、時間方向に分散したリソースエレメントにマッピングし、さらに、マッピングしたスキャッタードパイロットシンボルを位相制御したスキャッタードパイロットシンボルを、時間方向に1つ前のリソースエレメントにマッピング、すなわち、後にロングGIの一部となるように位相制御されたパイロットシンボルをマッピングし、これらのシンボルを多重部a30に出力する。次にこの点を詳述する。また、パイロットシンボル処理部a20は、マッピング部a21、位相制御部a22を備える。
 マッピング部a21は、入力されたパイロットシンボルをスキャッタードパイロットシンボルとして、周波数方向および時間方向に散在させるように予め定められた時間およびサブキャリア(リソースエレメント)へのマッピングを行い、位相制御部a22に出力する。なお、2個のOFDMシンボルでロングGIを付加したパイロットシンボル(以下、「ロングGIパイロットシンボル」という)を生成する場合、マッピング部a21は、パイロットシンボルをマッピングする際に、該パイロットシンボルをコピーし、元のパイロットシンボルがマッピングされるリソースエレメントの時間方向に1つ前のリソースエレメントにコピーしたパイロットシンボルを後のロングGIの一部となるようにマッピングする。
 位相制御部a22は、マッピング部a21から入力されたスキャッタードパイロットシンボルの内、ロングGIの一部となるパイロットシンボルを、ノーマルGIの長さおよびサブキャリアの位置(番号)に応じて位相制御を行い、位相制御されたパイロットシンボルを含む全てのパイロットシンボルを、パイロットシンボル処理部a20の出力として多重部a30に出力する。
 多重部a30は、情報データシンボル生成部a10から入力されたマッピングされた情報データシンボルと、パイロットシンボル処理部a20から入力されたマッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを、周波数領域で重ね合わせ(多重)を行い、IFFT部a40に出力する。
 IFFT部a40は、周波数領域の信号である多重部a30から入力された多重されたシンボルを、IFFT処理することによって、周波数領域の信号から時間領域の信号に変換し、GI挿入部a50に出力する。
 GI挿入部a50は、IFFT部a50から入力された時間領域の信号に対して、予め定められた長さのガードインターバルを付加して、OFDMシンボルを生成し、送信部a60に出力する。なお、このガードインターバルの付加処理に関する詳細な説明については後述する。
 また、このように、シンボルを多数のサブキャリアに分散させて変調を行う方法をマルチキャリア変調という。例えば、OFDM、OFDMAでは、上記シンボルには変調シンボルが相当し、マルチキャリア変調として、変調シンボルを分散させてサブキャリアに配置し、逆フーリエ変換した後にガードインターバルを付加するOFDM変調を行なう。OFDM変調は、マルチキャリア変調の一つの例であり、その際に多数のサブキャリアは重ね合いながら直交しているので占有帯域幅を狭くすることができる。また、MC-CDMでは、上記シンボルにはチップが相当し、マルチキャリア変調として、変調シンボルに拡散符号を乗算して生成したチップを分散させてサブキャリアに配置し、逆フーリエ変換した後にガードインターバルを付加するMC-CDM変調を行う。また、DFT-S-OFDM(Discrete Fourier Transform-Spread-OFDM;離散フーリエ変換拡散OFDM)では、上記シンボルには離散スペクトルが相当し、複数のシンボルをフーリエ変換して生成した離散スペクトルを分散させてサブキャリアに配置し、逆フーリエ変換した後にガードインターバルを付加するDFT-S-OFDM変調を行う。また、このように、マルチキャリア変調した信号の1時間単位をマルチキャリアシンボルという。例えば、OFDM、OFDMAでは、1有効シンボル区間と、その前に付されたガードインターバルの区間とを合わせた区間の信号が相当し、これをOFDMシンボルという。
 送信部a60は、GI挿入部a50から入力されたOFDMシンボルに対して、デジタル―アナログ変換、周波数変換等を行い、送信アンテナa100を介して送信する。
 次に本第1の実施形態における送信装置a1の送信処理について説明する。図2は、マッピング部a13において入力された情報データ信号をマッピングした情報データシンボルフレームの一例を示す図である。図2において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルにマッピングされるシンボルを示している。
 図2に示す情報データシンボルフレームの一例は、4個のOFDMシンボルと、8個のサブキャリアから構成され、3番目と6番目のサブキャリアの3番目のOFDMシンボルに、それぞれスキャッタードパイロットシンボルをマッピングする場合を示している。
 この場合、マッピング部a13は、変調部a12によって変調された情報データシンボルを、図2のようにスキャッタードパイロットシンボルがマッピングされる位置、およびその時間方向に1つ前の位置を除いた実線で示したリソースエレメントにマッピングする。なお、マッピング部a13は、スキャッタードパイロットシンボルがマッピングされる位置、およびその時間方向に1つ前の位置(点線で示した位置)には、ゼロ(ヌル:null)をマッピングする。
 一方、パイロットシンボルが、パイロットシンボル処理部a20に入力されると、パイロットシンボル処理部a20では、入力されたパイロットシンボル(このパイロットシンボルのシンボルは、情報データシンボルと同様に、QPSKやQAM等の変調方式により変調されたシンボルでもよい)に対して、最初に、マッピング部a21がスキャッタードパイロットシンボルをマッピングする。このマッピングをする時、例えば、2個のOFDMシンボルを用いて1個のロングGIを付加したパイロットシンボルを生成する場合は、同一のサブキャリアにおいて連続する2個のOFDMシンボルに、同一のパイロットシンボルをマッピングする。続いて、位相制御部a22が位相制御を行う。これによって、ロングGIが付加されるように、例えば、2個のパイロットシンボルが1個のロングGIとしてマッピングされ、位相制御された周波数領域のパイロットシンボルを多重部a30に出力する。
 図3は、図2で示した情報データシンボルフレームに対応するスキャッタードパイロットシンボルをマッピングしたパイロットシンボルフレームの一例を示す図である。図3においては、図2と同様に、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルにマッピングされるシンボルを示している。図3に示すパイロットシンボルフレームの一例では、図2において点線で示したスキャッタードパイロットシンボルがマッピングされる位置、すなわち、3番目と6番目のサブキャリアに対して2番目と3番目の2個のOFDMシンボルを用いて、1個のロングGIパイロットシンボルを設定する場合を示している。
 この場合、位相制御部a22は、3番目のOFDMシンボルにマッピングしたパイロットシンボルの位相は回転させず、2番目のOFDMシンボルにマッピングしたパイロットシンボルの位相を、ノーマルGIの長さおよびサブキャリアの位置(番号)に応じた回転量=θだけ回転させる位相制御を行う。なお、このノーマルGIの長さおよびサブキャリアの位置(番号)に応じた位相制御に関する詳細な説明については後述する。また、マッピング部a21は、情報データシンボルが挿入される位置には、ゼロ(ヌル:null)をマッピングする。
 続いて、多重部a30は、情報データシンボル生成部a10から出力されたマッピングされた情報データシンボルと、パイロットシンボル処理部a20から出力されたパイロットシンボルとを周波数領域で多重し、続いて、IFFT部a40は、IFFT処理を行って周波数領域の信号から時間領域の信号に変換する。続いて、GI挿入部a50は、時間領域の信号に、ガードインターバルを挿入して、OFDMシンボルを生成する。
 ここで、GI挿入部a50によって行われるガードインターバルの挿入処理について説明する。図4A~図4Cは、GI挿入部a50によるノーマルGIの生成方法を示した図である。IFFT部a40から入力された時間領域の信号、例えば、図4Aに示す有効シンボル長の時間領域の信号に対して、図4Bに示すような後端の一部(予め定められたガードインターバル長の信号G)をコピーして、有効シンボルの前方に挿入する。この信号Gが挿入されて生成された図4Cに示したシンボルが、OFDMシンボルである。なお、コピーして前方に挿入された予め定められた長さの信号GがノーマルGI、信号Gの長さがノーマルGIのガードインターバル長(以下、「ノーマルGI長」という)、有効シンボル長とノーマルGI長を合わせた長さがノーマルGIシンボルの長さ(以下、「OFDMシンボル長」という)である。
 なお、このガードインターバルを挿入する処理は、OFDM方式の通信において通常行われているガードインターバル(ノーマルGI)の挿入処理と同様である。
 続いて、送信部a60が、GI挿入部a50から出力されたOFDMシンボルにデジタル―アナログ変換、周波数変換等を行い、送信アンテナa100を介して送信する。
 次に、本第1の実施形態の送信装置において送信されるフレームについて説明する。
 図5は、図2で示した情報データシンボルフレームの一例と図3で示したパイロットシンボルフレームの一例とを、多重部a30によって多重し、その多重された信号にGI挿入部a50がノーマルGIを付加したフレームの一例を周波数成分と時間成分で示した図である。このとき、図5では、2番目のOFDMシンボルの3番目と6番目のサブキャリアにマッピングされたシンボルに対しては、位相制御部a22によってノーマルGI長に応じた位相制御がなされているため、図6に示すようにノーマルGIシンボルと、ロングGIを付加したパイロットシンボルとをサブキャリア間で混在させたOFDMシンボルを生成したことになる。図6において、ロングGIパイロットシンボルは、2個のOFDMシンボルを用いて1個のロングGIが付加されたシンボルとしてマッピングされているため、この1個のロングGIは、ノーマルGIに比べてガードインターバルの長さが大幅に長くなっている。図5および図6において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルを示している。
 上述のように、情報データシンボルフレームと位相制御されたパイロットシンボルフレームとを多重することによって、以降の処理はOFDM方式の通信において通常行われているIFFT処理とノーマルGIを付加する処理とをそれぞれ1度行うのみで(図5)、ノーマルGIとロングGIとをサブキャリア間で混在させたOFDMシンボルを生成すること(図6)ができる。
 また、ロングGIを付加したOFDMシンボル(以下、「ロングGI-OFDMシンボル」という)における有効シンボルの区間は、ノーマルGIを付加した3番目のOFDMシンボルの有効シンボルの区間と、時間方向に一致しているため、該フレームを受信した受信装置は、従来と同様にFFT区間を設定することができる。この受信装置におけるFFT区間に関する詳細な説明については後述する。
 次に、本第1の実施形態の送信装置において、位相制御部a22が同一サブキャリアの連続するOFDMシンボルの信号に対して行う位相制御について説明する。すなわち、図3の3番目と6番目のサブキャリアの、2番目のOFDMシンボルにマッピングされたシンボルに対する位相制御について説明する。
 まず、マルチキャリア伝送において各サブキャリアの信号を位相回転することによって得られる効果について説明する。図7A、図7Bは、サブキャリアをIFFT処理した結果を示した図である。
 各サブキャリアに位相回転(位相オフセット)を行わない場合、周波数領域の信号であるk番目(k=0,1,・・・,Ns-1:Nsはサブキャリア数)のサブキャリアの変調シンボルX(k)にIFFT処理を行った結果である、時間領域の信号x(n)は、下式(1)で示される。すなわち、位相回転を行わずに、IFFT処理を行った結果は、図7Aに示すように、時間方向にシフトしない。
Figure JPOXMLDOC01-appb-M000001
 上式(1)において、n(n=0,1,・・・,Ns-1)は時間、iは虚数単位、exp( )は指数関数を示す。
 一方、各サブキャリアの信号に位相回転する場合、k番目のサブキャリアの変調シンボルに回転量θ=2πkm/Nsの位相回転を行い、IFFT処理を行った結果である時間領域の信号x’(n)は、下式(2)で示される。下式(2)は、右辺を変形し、さらに、上式(1)より、x(n+m)となる。従って、x’(n)=x(n+m)となる。
これは、k番目のサブキャリアの変調シンボルに回転量θ=2πkm/Nsの位相回転を行い、k=0~Ns-1についてIFFT処理を行った結果であるx’(n)は、図7Bに示すように、x(n)を時間方向にmポイントシフトしたx(n+m)となることを示す。
Figure JPOXMLDOC01-appb-M000002
 続いて、連続するOFDMシンボルの有効シンボルに対して、位相制御部a22が位相制御を行うことによって、ロングGI-OFDMシンボルを生成することについて説明する。図8A~図8Eは、2個のOFDMシンボルから1個のロングGIを生成する方法を示した図である。
 図8Aは、ロングGIを付加した1個のサブキャリアのシンボル(以下、「ロングGIシンボル」という)を示しており、そのシンボル長は、図8Bに示すようなOFDMシンボル長のノーマルGIシンボルを2個合わせたシンボル長である。通常、図8Aに示すようなロングGIを付加する場合、図8Cに示すように、1個の有効シンボル長とこの有効シンボル長において予め定められた2個のノーマルGI長の長さを繰り返しコピーしてロングGIとする。例えば、図8Aにおける有効シンボルの右端から2つのノーマルGI長の区間をそれぞれG1およびG2とすると、その左端からのロングGI長の区間は、図8Cに示すようになる。すなわち、ロングGI長の区間は、まず、G1およびG2を含む有効シンボル長をコピーし、さらにG1とG2とをコピーして、前回コピーした有効シンボル長の前方に挿入することによって生成される。
 図8Cで示したロングGI長のガードインターバルが生成されたロングGIシンボルの見方を変えると、図8Dで示すように、2個のノーマルGIを付加したOFDMシンボルと見なすことができる。すなわち、図8Dにおける後方(右側)のシンボルは、ノーマルGI長の信号G1が付加されたOFDMシンボルとなり、前方(左側)のシンボルは、ノーマルGI長の信号G2が付加されたOFDMシンボルとなる。
 このとき、図8Dにおける後方(右側)のOFDMシンボルの有効シンボルと、前方(左側)のOFDMシンボルの有効シンボルとを比較すると、後方(右側)の有効シンボルは、元の有効シンボルと同じであるが、前方(左側)の有効シンボルは、後方(右側)の有効シンボル、すなわち、元の有効シンボルをノーマルGI長分だけシフトしていることが分かる。そこで、本実施形態では、図8Cのような方法ではなく、後方(右側)のOFDMシンボルの有効シンボルについては、元の有効シンボルに対してシフトを行わず、前方(左側)のOFDMシンボルの有効シンボルについては、元の有効シンボルに対してノーマルGI長に応じたシフトをすることで、図8Aに示すようなロングGIシンボルを生成する。
 続いて、図8Dで示したシフトについて説明する。シフトをするOFDMシンボルの有効シンボルは、上述のように、前方(左側)のOFDMシンボルであり、該有効シンボルをノーマルGI長だけシフトしている。このとき、ノーマルGI長をgとし、時間領域の信号x(n)をノーマルGI長gだけシフトした時間領域の信号x(n-g)は、下式(3)で示される。
 このことは、図8Eのように前方(左側)のOFDMシンボルの変調シンボル(パイロットシンボル)、すなわち、マッピング部a21がコピーしたパイロットシンボルに対して、ノーマルGI長に応じた位相の回転量θ=-2πkg/Nsで位相制御部a22が位相回転することで時間領域の信号x(n)をノーマルGI長gだけシフトしていることを示しており、また、その位相回転は、サブキャリアの位置(k)によっても変化する。
 なお、上記の説明においては、2個のOFDMシンボル長のノーマルGIシンボルを用いて、1個のロングGIシンボルを生成する方法について、説明したが、3個以上のOFDMシンボル長を持ったロングGIシンボルを生成する場合でも適用することができる。
例えば、図9A~図9Eは、3個のOFDMシンボル長のノーマルGIシンボルを用いて、1個のロングGIシンボルを生成する場合を示した図である。
 図9Aは3個のOFDMシンボル長を持ったロングGIシンボルを示しており、図9Aにおいて、そのシンボル長は、図9Bに示すようなOFDMシンボル長のノーマルGIシンボルを3個合わせたシンボル長である。通常、図9Aに示すようなロングGIを付加する場合、図9Cに示すように、2個の有効シンボル長とこの有効シンボル長において予め定められた3個のノーマルGI長の長さを繰り返しコピーしてロングGIとする。例えば、図9Aにおける有効シンボルの右端から3つのノーマルGI長の区間をそれぞれG1、G2およびG3とすると、その左端からのロングGI長の区間は、図9Cに示すようになる。すなわち、ロングGI長の区間は、まず、G1、G2およびG3を含む有効シンボル長を2回コピーし、さらにG1とG2とG3とをコピーして、前回コピーした有効シンボル長の前方に挿入することによって生成される。
 このように有効シンボルとG1、G2およびG3を繰り返してコピーをして生成されたロングGIシンボルの見方を変えると、図9Dで示すように、3個のノーマルGIを付加したOFDMシンボルと見なすことができる。すなわち、図9Dにおける後方(右側)のシンボルは、ノーマルGI長の信号G1が付加されたOFDMシンボルとなり、中央のシンボルは、ノーマルGI長の信号G2が付加されたOFDMシンボルとなり、前方(左側)のシンボルは、ノーマルGI長の信号G3が付加されたOFDMシンボルとなる。
 また、図9Dにおいて後方(右側)のOFDMシンボルの有効シンボルと、中央のOFDMシンボルの有効シンボル、および前方(左側)のOFDMシンボルの有効シンボルとを比較すると、後方(右側)の有効シンボルは、元の有効シンボルと同じであるが、中央の有効シンボルは、後方(右側)の有効シンボル、すなわち、元の有効シンボルを1個のノーマルGI長分だけシフトしていることが分かる。また、前方(左側)の有効シンボルは、後方(右側)の有効シンボル、すなわち、元の有効シンボルを2個のノーマルGI長分だけシフトしていることが分かる。そこで、本実施形態では、図9Cのような方法ではなく、後方(右側)のOFDMシンボルの有効シンボルについては、シフトを行わず、中央および前方(左側)のOFDMシンボルの有効シンボルについては、元の有効シンボルに対してノーマルGI長に応じたシフトをそれぞれ行うことで、図9Aに示すようなロングGIシンボルを生成することができる。
 続いて、図9Dで示したシフトについて説明する。なお、図9Dにおける中央の有効シンボルに対するシフトは、図8で示したときと同様であるため、ここでは、図9Dにおける前方(左側)の有効シンボルに対するシフトについて説明する。
 前方(左側)の有効シンボルに対するシフトは、該有効シンボルを2個のノーマルGI長だけシフトすることに対応する量を行う。このときのノーマルGI長をgとし、位相の回転量θを、θ=-2πkg/Nsとすると、そのときの時間領域の信号x(n-2g)は、下式(4)で示される。
Figure JPOXMLDOC01-appb-M000004
 このことは、位相制御部a22は、図9Dにおける前方(左側)のOFDMシンボルの有効シンボルを、後方(右側)のOFDMシンボルの有効シンボルに対して、2θの位相回転を行えばよいことを示している。また、その位相回転は、図8A~図8Eで示したときと同様にサブキャリアの位置(k)によっても変化する。
 以降同様に、4個以上のOFDMシンボル長を持ったロングGIシンボルを生成する場合でも、3θ、4θ、・・・、(n-1)θ(nはロングGIシンボルが持つOFDMシンボル長の個数)というように、それぞれの有効シンボルに対して、位相回転をすることによって生成することができる。
 なお、ロングGIは、上述のように有効シンボルの後端の予め定められた長さの信号を、前方に付加(コピー)することによって生成することができるが、有効シンボルの全てを前方にコピーしても、ロングGIを付加するOFDMシンボル長に不足する場合がある。この場合は、さらに有効シンボルの後端の予め定められた長さの信号を前方に付加する、すなわち、最初に前方に付加した信号から順に再度、前方にコピーする処理を繰り返すことによって、ロングGIを生成することができる。このような場合、位相制御部a22は、コピーしたノーマルGI長の区間の数に対応する位相回転をすることによってロングGIシンボルを生成する。
 次に送信装置a1が送信した信号を受信する本第1の実施形態における受信装置について説明する。図10は、本発明の第1の実施形態における受信装置の構成を示す概略ブロック図である。図10において、受信装置b1は、受信アンテナb500、受信部b10、ノーマルGI-FFT区間抽出部b20(第1のガードインターバル除去部)、FFT部b30、フィルタ部b40、デマッピング部b50、復調部b60、復号部b70、パイロットシンボル処理部b80を備える。
 受信部b10は、受信アンテナb500から受信した受信信号を、周波数変換やアナログ―デジタル変換などの処理を行ってベースバンド信号をノーマルGI-FFT区間抽出部b20およびパイロットシンボル処理部b80に出力する。
 ノーマルGI-FFT区間抽出部b20は、受信部b10から入力されたベースバンド信号からFFT区間を抽出することによって、そのFFT区間以外の区間、すなわち、ノーマルGIの区間を除去する。ノーマルGI-FFT区間抽出部b20は、ベースバンド信号に含まれる情報データ信号を復元するために、OFDMシンボルに付加されたノーマルGI、すなわち、図11に示したノーマルGIが付加された情報データシンボルのFFT区間以外に存在するノーマルGIの区間を除去し、ノーマルGIの区間を除去した時間領域の信号をFFT部b30に出力する。
 FFT部b30は、ノーマルGI-FFT区間抽出部b20から入力された時間領域の信号に対して、図11に示したノーマルGIが付加された情報データシンボルのFFT区間のFFT処理を行い、時間領域の信号から周波数領域の信号に変換し、フィルタ部b40に出力する。なお、図11において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルを示している。
 パイロットシンボル処理部b80は、受信部b10から入力されたベースバンド信号中のパイロットシンボルによる伝搬路推定を行い、伝搬路推定を行った結果をフィルタ部b40に出力する。次にこの点を詳述する。また、パイロットシンボル処理部b80は、ロングGI-FFT区間抽出部b81(第2のガードインターバル除去部)、FFT部b82、パイロット抽出部b83(シンボル抽出部)、伝搬路推定部b84を備える。
 ロングGI-FFT区間抽出部b81は、受信部b10から入力されたベースバンド信号からFFT区間を抽出することによって、そのFFT区間以外の区間、すなわち、ロングGIの区間を除去する。ロングGI-FFT区間抽出部b81は、ベースバンド信号に含まれるパイロットシンボルを復元するために、スキャッタードパイロットシンボルに付加されたロングGI、すなわち、図12に示したロングGIが付加されたパイロットシンボルのFFT区間以外に存在するロングGIの区間を除去し、ベースバンド信号からロングGIの区間を除去した時間領域の信号をFFT部b82に出力する。
 FFT部b82は、ロングGI-FFT区間抽出部b81から入力されたロングGIの区間が除去された時間領域の信号に対して、図12に示したロングGIが付加されたパイロットシンボルのFFT区間のFFT処理を行い、ロングGIの区間が除去された時間領域の信号から周波数領域の信号に変換し、パイロット抽出部b83に出力する。なお、図12において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルを示している。
 パイロット抽出部b83は、FFT部b82から入力されたロングGIの区間が除去された周波数領域の信号から、予め定められた時間およびサブキャリア(リソースエレメント)であって、パイロットシンボルがマッピングされたリソースエレメントの信号を抽出することで、スキャッタードパイロットシンボルを抽出して、抽出したスキャッタードパイロットシンボルを伝搬路推定部b84に出力する。
 伝搬路推定部b84は、パイロット抽出部b83によって抽出されたスキャッタードパイロットシンボルを用いて、マルチパスフェージングなどによる伝搬路に起因した送信信号の振幅と位相の変動を推定(伝搬路推定)し、伝搬路推定した結果をフィルタ部b40に出力する。なお、スキャッタードパイロットシンボルがマッピングされたリソースエレメント以外のリソースエレメントに対する伝搬路の推定方法としては、公知の線形補間やFFT補間など様々な方法を用いることができる。
 なお、上記の説明においては、ロングGIパイロットシンボルからロングGIの区間を除去したパイロットシンボル、すなわち、パイロット抽出部b83によって抽出されたパイロットシンボルの有効シンボル区間であるスキャッタードパイロットシンボルを用いて伝搬路推定を行う方法を説明したが、伝搬路推定の方法は、これに限るものではなく、ロングGIパイロットシンボル内のロングGIの区間の一部を用いて伝搬路推定をすることもできる。例えば、ロングGIの区間の後端から有効シンボル長の長さと同じ区間のロングGIをパイロットシンボルとする。そして、そのパイロットシンボルに平均化処理を行うことによって、さらに伝搬路推定の精度を高めることができる。
 フィルタ部b40は、パイロットシンボル処理部b80の伝搬路推定部b84によって推定された伝搬路推定値(伝搬路推定の結果)に基づいて、例えば、ゼロフォーシング(ZF:Zero Forcing)基準、最小二乗平均誤差(MMSE:Minimum Mean Square Error)基準等を用いて各サブキャリアの重み係数を算出し、FFT部b30から入力された周波数領域の信号に対して、信号の振幅と位相の変動の補償(伝搬路補償)を行い、伝搬路補償された周波数領域の信号をデマッピング部b50に出力する。
 デマッピング部b50は、フィルタ部b40によって伝搬路補償が行われた周波数領域の信号から、予め定められた時間およびサブキャリア(リソースエレメント)であって、情報データシンボルがマッピングされたリソースエレメントの信号を抽出することで、情報データシンボルを抜き出すデマッピング処理を行い、抜き出した情報データシンボルを復調部b60に出力する。
 復調部b60は、デマッピング部b50から入力された情報データシンボル(例えば、QPSKやQAMなどの変調方式によって変調されている)に対して復調処理を行い、誤り訂正符号化された情報データ信号を復号部b70に出力する。
 復号部b70は、復調部b60から入力された復調後の誤り訂正符号化された情報データ信号(例えば、畳み込み符号やターボ符号などによって誤り訂正符号化されている)に対して、最尤復号法(MLD:Maximum Likelihood Decoding)、最大事後確率推定(MAP:Maximum A posteriori Probability)、log-MAP、Max-log-MAP、SOVA(Soft Output Viterbi Algorithm)等を用いて復号処理を行い、情報データ信号(受信データ)を図示しない受信装置b1の上位層の処理装置に出力する。
 次に、本第1の実施形態におけるノーマルGIシンボルとロングGIシンボルとのシンボル間干渉に対する耐性について説明する。図13A、図13Bは、ノーマルGIシンボルとロングGIシンボルとを示した図である。図13Aは、情報データ信号のガードインターバル付きシンボルであるノーマルGIシンボル(以下、「ノーマルGI情報データシンボル」という)を示し、図13Bは、パイロットシンボルのガードインターバル付きシンボルであるロングGIシンボル(ロングGIパイロットシンボル)を示している。図13Bに示すロングGIシンボルは、図13Aに示すノーマルGIシンボルに対して2倍の長さである。ロングGIシンボルにおいても有効シンボル長はノーマルGIシンボルと同じであるため、図13Bに示すロングGIシンボルは、有効シンボル以外の区間が全てガードインターバルの区間である。
 図14は、ノーマルGIシンボルのみで構成された信号を受信した例を示す図である。図14は、ノーマルGIシンボルのみで構成された信号が、先行波および2つの遅延波として到来し、3番目のOFDMシンボルにFFT処理を行う場合を示している。なお、このときのFFT区間は、1番目に到来した先行波の有効シンボル区間に設定される。
 図14において、2番目に到来した遅延波1の2番目のOFDMシンボル(今回FFT処理を行う3番目のOFDMシンボルに対して1つ前のOFDMシンボル)は、設定されたFFT区間に含まれないため、正常にFFT処理を行うことができる。
 また、図14において、3番目に到来した遅延波2の2番目のOFDMシンボル(今回FFT処理を行う3番目のOFDMシンボルに対して1つ前のOFDMシンボル)は、基準となる先行波のガードインターバル区間を超えてしまっている。すなわち、3番目のOFDMシンボルのFFT処理において、遅延波2の2番目のOFDMシンボルが、FFT区間に含まれてしまうこととなる。このことによって、先行波の3番目のOFDMシンボルと遅延波2の2番目のOFDMシンボルにおけるシンボル間干渉が生じ、FFT処理の結果に干渉の成分が含まれてしまう。
 一方、図15は、ノーマルGIシンボルとロングGIシンボルで構成された信号を受信した例を示す図である。図15は、ノーマルGIシンボルとロングGIシンボルで構成された信号が、図14と同様に先行波および2つの遅延波として到来し、図14と同様の区間でOFDMシンボルにFFT処理を行う場合を示している。なお、この時のFFT区間は、1番目に到来した先行波の有効シンボル区間に設定される。
 図15において、今回FFT処理を行うOFDMシンボルに対して1つ前のOFDMシンボルは、2番目に到来した遅延波1と3番目に到来した遅延波2ともロングGIシンボルである。すなわち、図14に示したように、ノーマルGIシンボルのみで構成された信号において先行波のガードインターバル区間を超えてしまっている場合、例えば、図14の遅延波2のような場合でも、ロングGIシンボルによってシンボル間干渉の発生を防ぐことができる。
 このことにより、ロングGIシンボルは、ノーマルGIシンボルに対して、シンボル間干渉への耐性が高められることが分かる。
 上記に述べたとおり、本発明の第1の実施形態によれば、伝搬路に起因してノーマルGI区間を超える到来波が到来する環境において、同一のOFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルを挿入し、該スキャッタードパイロットシンボルにのみに対して、ノーマルGI区間よりも長いロングGI区間を設定することにより、シンボル間干渉に対する耐性を向上させられるので、通信全体の伝送効率をほとんど低下させることなく、受信装置において精度良く伝搬路推定をすることができる。
 また、ノーマルGIを超える到来波が到来する環境においても、ロングGIを付加したことによって精度の良い伝搬路推定をすることができ、ロングGIシンボルを用いて得られた伝搬路推定の結果を、ノーマルGIを付加した情報データシンボルに対して適用することによって、精度よく情報データ信号を復元させることができる。例えば、復号結果を利用してシンボル間干渉などを除去する干渉キャンセルやターボ等化などの繰返し処理に用いることができる。
 また、マッピングしたスキャッタードパイロットシンボルを位相制御したスキャッタードパイロットシンボルを、時間方向に1つ前のリソースエレメントにマッピングするのみでロングGIとすることができるので、ガードインターバルの挿入処理は、OFDM方式の通信において通常行われているガードインターバル(ノーマルGI)の挿入処理と同様に行うことができる。
 なお、本第1の実施形態の説明においては、ノーマルGIおよびロングGIの2種類のガードインターバル区間を設けた例について説明したが、これに限るものではなく、3種類以上のガードインターバル区間を異なる信号に対しても適用することもできる。つまり、第1のガードインターバルであるノーマルGIおよび複数種類の第2のガードインターバルであるロングGIとすることもできる。
 なお、パイロットシンボル処理部a20に、符号部a11、変調部a12と同様の機能を備え、パイロットシンボルに変えてパイロット信号を入力し、入力されたパイロット信号に、誤り訂正符号化処理、変調処理を行い、パイロットシンボルを生成するようにしてもよい。
 なお、本第1の実施形態の説明においては、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではなく、例えば、一部のパイロットシンボルに対してのみロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加することもできる。
 (第2の実施形態)
次に、本発明の第2の実施の形態として、生成したパイロットシンボルを記憶しておく場合について説明する。本第2の実施形態における通信システムは、送信装置および受信装置を備える。図16は、本第2の実施形態における送信装置の構成を示す概略ブロック図である。図16において、送信装置a2は、情報データシンボル生成部a10、パイロットシンボル処理部a20、パイロットシンボル記憶部a70(シンボル記憶部)、多重部a32、IFFT部a40、GI挿入部a50、送信部a60、送信アンテナa100を備える。
 図16の送信装置a2の構成において、図1に示した第1の実施形態における送信装置a1との差は、パイロットシンボル処理部a20の後に、パイロットシンボル記憶部a70が追加されていることである。なお、図16において、送信装置a2の情報データシンボル生成部a10、パイロットシンボル処理部a20、IFFT部a40、GI挿入部a50、送信部a60、送信アンテナa100は、図1に示した第1の実施形態と同様の機能である。
 また、本第2の実施形態における受信装置は、第1の実施形態で示した受信装置b1(図10)と同様である。
 情報データシンボル生成部a10は、図示しない送信装置a2の上位層の処理装置から入力された送信する情報データ信号(送信データ)に対して、第1の実施形態で説明した処理と同様の処理を行い、マッピングされた情報データシンボルを多重部a32に出力する。
 パイロットシンボル処理部a20は、図示しない送信装置a2の上位層の処理装置から入力されたパイロットシンボルに対して、第1の実施形態で説明した処理と同様の処理を行い、マッピングされたパイロットシンボルを、パイロットシンボル記憶部a70に出力する。
 パイロットシンボル記憶部a70は、パイロットシンボル処理部a20から入力された、マッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを記憶する。また、パイロットシンボル記憶部a70に記憶されたマッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとは、多重部a32によって読み出される。
 多重部a32は、情報データシンボル生成部a10から入力されたマッピングされた情報データシンボルと、パイロットシンボル記憶部a70から読み出したマッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを、第1の実施形態で説明した処理と同様の処理を行って多重し、IFFT部a40に出力する。
 以降、第1の実施形態で説明した処理と同様の処理が行われ、OFDMシンボルが送信アンテナa100を介して送信される。
 つまり、スキャッタードパイロットシンボルの値とその位置とに変更が生じない限り、パイロットシンボル記憶部a70に記憶したマッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを流用することができる。このことによって、第1の実施形態において送信毎に行われていたパイロットシンボル処理部a20での処理回数を削減、すなわち、パイロットシンボル処理部a20での処理は、スキャッタードパイロットシンボルの値または、スキャッタードパイロットシンボルの位置に変更が生じた場合のみ実行することが可能となるため、通信に係わる全体の計算量が削減される。
 上記に述べたとおり、本発明の第2の実施形態によれば、伝搬路に起因してノーマルGI区間を超える到来波が到来する環境において、同一のOFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルを挿入し、該スキャッタードパイロットシンボルのみに対して、ノーマルGI区間よりも長いロングGI区間を設定したパイロットシンボルを予め生成して記憶しておく。その後、送信装置が情報データ信号を送信する際、必要に応じて予め記憶しておいたパイロットシンボルを情報データシンボルに多重して送信する。このことによって、第1の実施形態において送信毎に行われていたパイロットシンボル生成の計算回数を削減させると共に、シンボル間干渉に対する耐性を向上させられるので、通信全体の伝送効率をほとんど低下させることなく、受信装置において精度良く伝搬路の推定を実現させることができる。
 なお、本第2の実施形態の説明においては、送信装置a2がパイロットシンボル処理部a20を備え、マッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを、パイロットシンボル記憶部a70に入力する場合を説明したが、送信装置a2のパイロットシンボル処理部a20を省略することもできる。この場合は、送信装置a2に図示しない送信装置a2の上位層の処理装置からパイロットシンボルを入力する代わりに、例えば、図示しない送信装置a2の上位層の処理装置において生成した予め作成したマッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを送信装置a2のパイロットシンボル記憶部a70に直接入力する構成とする。
 なお、本第2の実施形態の説明においては、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではなく、例えば、一部のパイロットシンボルに対してロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加することもできる。
 (第3の実施形態)
 次に、本発明の第3の実施の形態として、制御データを送信する場合について説明する。本第3の実施形態における通信システムは、送信装置および受信装置を備える。図17は、本第3の実施形態における送信装置の構成を示す概略ブロック図である。図17において、送信装置a3は、情報データシンボル生成部a10、制御シンボル処理部a80、多重部a33、IFFT部a40、GI挿入部a50、送信部a60、送信アンテナa100を備える。
 図17の送信装置a3の構成において、図1に示した第1の実施形態における送信装置a1との差は、パイロットシンボル処理部a20が制御シンボル処理部a80に置き換わっていることである。また、第1の実施形態において送信装置a1に入力されるパイロットシンボルに換わって、図示しない送信装置a3の上位層の処理装置からは、制御シンボルが入力される。なお、図17において、送信装置a3の情報データシンボル生成部a10、IFFT部a40、GI挿入部a50、送信部a60、送信アンテナa100は、図1に示した第1の実施形態と同様の機能である。
 また、本第3の実施形態における受信装置は、第1の実施形態で示した受信装置b1(図10)と同様である。
 ここで、図示しない送信装置a3の上位層の処理装置から送信装置a3に入力される制御シンボルとは、複数の情報データ信号についての情報であって、例えば、適応変調における変調方式、マッピング方法(リソース割り当て方法)、誤り訂正符号化情報(例えば、符号化方法、符号化率、パンクチャーパターン)、インターリーブ方法、スクランブリング方法、ハイブリッド自動再送要求(HARQ:Hybrid Automatic Repeat reQuest)制御情報(例えば、パケットの受信通知情報(ACK:Acknowledgement)、パケットの非受信通知情報(NACK:Negative Acknowledgement)や再送回数など)、同期信号、空間多重化技術(MIMO:Multiple Input Multiple Output)制御情報(例えば、レイヤー数(ストリーム数)やプリコーディング方法)、基地局情報、端末情報、制御情報のフォーマット情報、データ情報のフォーマット情報、フィードバック情報(例えば、チャネル品質インディケーター(CQI:Channel Quality Indicator)など)、送信電力制御情報など複数の情報データ信号の受信に必要な情報が含まれるが、これに限るものではない。
 情報データシンボル生成部a10は、図示しない送信装置a3の上位層の処理装置から入力された送信する情報データ信号(送信データ)に対して、第1の実施形態で説明した処理と同様の処理を行い、マッピングされた情報データシンボルを多重部a33に出力する。
 制御シンボル処理部a80は、図示しない送信装置a3の上位層の処理装置から入力された制御シンボルに対して、第1の実施形態で説明したパイロットシンボル処理部a20の処理と同様に、制御シンボルをマッピングし、さらに、マッピングした制御シンボルを位相制御した制御シンボルを、時間方向に1つ前のリソースエレメントにマッピング、すなわち、後にロングGIの一部となるように位相制御された制御シンボルをマッピングし、これらのシンボルを多重部a33に出力する。次にこの点を詳述する。また、制御シンボル処理部a80は、マッピング部a81、位相制御部a82を備える。
 マッピング部a81は、入力された制御シンボルに対して、第1の実施形態で説明したパイロットシンボル処理部a20の中のマッピング部a21の処理と同様に、周波数方向および時間方向に散在させるように予め定められた時間およびサブキャリア(リソースエレメント)へのマッピングを行い、位相制御部a82に出力する。なお、2個のOFDMシンボルでロングGIを付加した制御シンボル(以下、「ロングGI制御シンボル」という)を生成する場合、マッピング部a81は、制御シンボルをマッピングする際に、該制御シンボルをコピーし、元の制御シンボルがマッピングされるリソースエレメントの時間方向に1つ前のリソースエレメントにコピーした制御シンボルを後のロングGIの一部となるようにマッピングする。
 位相制御部a82は、マッピング部a81から入力されたマッピングされた制御シンボルの内、ロングGIの一部となる制御シンボルを、第1の実施形態で説明したパイロットシンボル処理部a20の中の位相制御部a22の処理と同様に、ノーマルGIの長さおよびサブキャリアの位置(番号)に応じて位相制御を行い、位相制御された制御シンボルを含む全ての制御シンボルを、制御シンボル処理部a80の出力として多重部a33に出力する。このように、位相制御部a82によって位相制御し、後にGI挿入部a50にてノーマルGIを挿入することにより、第1の実施形態におけるロングGIパイロットシンボルと同様にロングGIを付加した制御シンボルを生成することができる。
 多重部a33は、情報データシンボル生成部a10から入力されたマッピングされた情報データシンボルと、制御シンボル処理部a80から入力されたマッピングされた制御シンボルと、位相制御された制御シンボルとを、第1の実施形態で説明した処理と同様の処理を行って多重し、IFFT部a40に出力する。
 以降、第1の実施形態で説明した処理と同様の処理が行われ、OFDMシンボルが送信アンテナa100を介して送信される。
 次に、本第3の実施形態の送信装置において送信されるフレームについて説明する。
 図18は、情報データシンボルと制御シンボルとを多重部a33によって多重し、その多重された信号にGI挿入部a50がノーマルGIを付加したフレーム一例を周波数成分と時間成分で示した図である。図18のように信号が配置されたフレームは、図19のように、ノーマルGI情報データシンボルと、ロングGI制御シンボルとがサブキャリア間で混在されたフレームと見ることができる。図18および図19において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルを示している。
 図19において、ロングGI制御シンボルは、第1の実施形態で説明したように、制御シンボルの内、前方のOFDMシンボル、すなわち、2番目のOFDMシンボルの3番目から6番目のサブキャリアにマッピングされたシンボルに対して、位相制御部a82によるノーマルGI長に応じた位相制御がなされている。また、図19において、ロングGI制御シンボルは、2個のOFDMシンボルを用いて1個のロングGIが付加されたシンボルとしてマッピングされており、この1個のロングGIは、ノーマルGIに比べて、ガードインターバルの長さが大幅に長くなっている。このことにより、制御シンボルにおいてもシンボル間干渉への耐性を高めることができる。
 上記に述べたとおり、本発明の第3の実施形態によれば、同一のOFDMシンボル内のいずれかのサブキャリアに制御信号を挿入し、該制御信号のみに対して、ノーマルGI区間よりも長いロングGI区間を設定する。このことにより、伝搬路に起因してノーマルGI区間を超える到来波が到来する環境において、シンボル間干渉に対する耐性を向上させられるので、通信全体の伝送効率をほとんど低下させることなく、受信装置において精度良く制御信号を復元することができる。
 なお、本第3の実施形態の説明においては、制御シンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではなく、情報データ信号内で重要度の高い信号のシンボルに対して、ロングGIを付加することもできる。例えば、サービス品質(QoS:Quality of Service)が高い情報データ信号や緊急性が高い情報データ信号などに、ロングGIを付加することもできる。
 また、図示しない送信装置a3の上位層の処理装置から入力された制御シンボルをパイロットシンボルとして処理することにより、本第3の実施形態における送信装置a3を、第1および第2の実施形態における送信装置として適用することができる。また、図示しない送信装置a3の上位層の処理装置から制御シンボルとパイロットシンボルが入力される場合においても、同様に適用して両者にロングGIを付加することができる。
 なお、制御シンボル処理部a80に、符号部a11、変調部a12と同様の機能を備え、制御シンボルに変えて制御信号を入力し、入力された制御信号に、制御シンボル処理部a80が誤り訂正符号化処理、変調処理を行い、制御シンボルを生成するようにしてもよい。
 なお、本第3の実施形態の説明においては、入力された全ての制御シンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではなく、例えば、一部の制御シンボルに対してロングGIを付加し、それ以外の制御シンボルに対してはノーマルGIを付加することもできる。その場合、制御シンボルの内、重要度の高い制御シンボルに対してロングGIを付加することが望ましい。
 (第4の実施形態)
 次に、本発明の第4の実施の形態として、制御データを送信する場合について説明する。本第4の実施形態における通信システムは、送信装置および受信装置を備える。図20は、本第4の実施形態における送信装置の構成を示す概略ブロック図である。図20において、送信装置a4は、情報データ・制御シンボル生成部a90、パイロットシンボル処理部a20、多重部a34、IFFT部a40、GI挿入部a50、送信部a60、送信アンテナa100を備える。
 図20の送信装置a4の構成において、図1に示した第1の実施形態における送信装置a1との差は、情報データシンボル生成部a10が情報データ・制御シンボル生成部a90に置き換わっていることである。また、第1の実施形態における送信装置a1に入力される情報データ信号とパイロットシンボルとに加えて、図示しない送信装置a4の上位層の処理装置から制御信号も入力されることである。なお、図20において、送信装置a4のパイロットシンボル処理部a20、IFFT部a40、GI挿入部a50、送信部a60、送信アンテナa100は、図1に示した第1の実施形態と同様の機能である。
 また、本第4の実施形態における受信装置は、第1の実施形態で示した受信装置b1(図10)と同様である。
 ここで、図示しない送信装置a4の上位層の処理装置から送信装置a4に入力される制御信号とは、複数の情報データ信号についての情報であって、例えば、適応変調における変調方式、マッピング方法(リソース割り当て方法)、誤り訂正符号化情報(例えば、符号化方法、符号化率、パンクチャーパターン)、インターリーブ方法、スクランブリング方法、ハイブリッド自動再送要求(HARQ:Hybrid Automatic Repeat reQuest)制御情報(例えば、パケットの受信通知情報(ACK:Acknowledgement)、パケットの非受信通知情報(NACK:Negative Acknowledgement)や再送回数など)、同期信号、空間多重化技術(MIMO:Multiple Input Multiple Output)制御情報(例えば、レイヤー数(ストリーム数)やプリコーディング方法)、基地局情報、端末情報、制御情報のフォーマット情報、データ情報のフォーマット情報、フィードバック情報(例えば、チャネル品質インディケーター(CQI:Channel Quality Indicator)など)、送信電力制御情報など複数の情報データ信号の受信に必要な情報が含まれるが、これに限るものではない。
 情報データ・制御シンボル生成部a90は、図示しない送信装置a4の上位層の処理装置から入力された送信する情報データ信号(送信データ)と制御信号(送信データ)とを符号化および変調した情報データシンボルと制御シンボルとをリソースエレメントにマッピングし、マッピングした情報データシンボルおよび制御シンボルを多重部a34に出力する。次にこの点を詳述する。また、情報データ・制御シンボル生成部a90は、符号部a91、変調部a92、マッピング部a93を備える。
 符号部a91は、入力された情報データ信号と制御信号とに対して畳み込み符号やターボ符号などの誤り訂正符号化を行い、変調部a92に出力する。
 変調部a92は、符号部a91から入力された誤り訂正符号化が行われた情報データ信号と制御信号とを、例えば、QPSKやQAMなどの変調方式によって変調して、情報データ信号の変調シンボルである情報データシンボル、および制御信号の変調シンボルである制御シンボルを生成し、マッピング部a93に出力する。
 マッピング部a93は、変調部a92から入力された情報データシンボルと制御シンボルとを、パイロットシンボル処理部a20によりスキャッタードパイロットシンボル等が挿入されるリソースエレメント以外のリソースエレメントであって、予め定められたリソースエレメントにマッピングし、マッピングされた情報データシンボルおよび制御シンボル、すなわち、後にノーマルGIが付加される周波数領域の信号を、情報データ・制御シンボル生成部a90の出力として多重部a34に出力する。
 なお、マッピング部a93による制御シンボルのマッピングは、後述する図21および図22に示すように、後にロングGIが付加されるスキャッタードパイロットシンボルと同一のOFDMシンボル内の隣接するサブキャリアの後方のエレメントに優先的にマッピングする。
 パイロットシンボル処理部a20は、図示しない送信装置a4の上位層の処理装置から入力されたパイロットシンボルに対して、第1の実施形態で説明した処理と同様の処理を行い、マッピングされたパイロットシンボルを多重部a34に出力する。
 多重部a34は、情報データ・制御シンボル生成部a90から入力されたマッピングされた情報データシンボルおよび制御シンボルと、パイロットシンボル処理部a20から入力されたマッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを、第1の実施形態で説明した処理と同様の処理を行って多重し、IFFT部a40に出力する。
 以降、第1の実施形態で説明した処理と同様の処理が行われ、OFDMシンボルが送信アンテナa100を介して送信される。
 なお、制御信号のガードインターバル付きシンボルであるノーマルGIシンボルを「ノーマルGI制御シンボル」という。
 次に、本第4の実施形態の送信装置において送信されるフレームについて説明する。
 図21は、マッピングされた情報データシンボルおよび制御シンボルと、マッピングされたパイロットシンボル、および位相制御されたパイロットシンボルとを多重部a34によって多重し、その多重された信号にGI挿入部a50がノーマルGIを付加したフレームの一例を周波数成分と時間成分で示した図である。図21のように信号が配置されたフレームは、図22のように、ノーマルGI情報データシンボルと、ノーマルGI制御シンボルと、ロングGIパイロットシンボルとがサブキャリア間で混在されたフレームと見ることができる。図21および図22において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルを示している。
 情報データ・制御シンボル生成部a90は、ノーマルGI制御シンボルを図22に示すように、ロングGIパイロットシンボルと同一のOFDMシンボル内の隣接するサブキャリアの後方のエレメントに優先的にマッピングする。
 これは、一般に、ガードインターバル区間を超える到来波が到来する環境においては、受信装置b1がFFT処理を行う際に、到来波の一部にシンボルのつなぎ目など不連続な部分がFFT区間内に含まれることに起因するFFT処理後の信号に生じるキャリア間干渉(ICI:Inter Carrier Interference)に対する耐性を向上させる効果がある。すなわち、図22に示すようなロングGIが付加されたシンボルでは、ガードインターバルを超えるような到来波が到来しないため、キャリア間干渉(ICI)が生じないようにすることができる。
 このことから、ロングGIが付加されたシンボルに隣接するサブキャリアの後方のリソースエレメント、すなわち、3番目のOFDMシンボルに制御シンボルがマッピングされたリソースエレメントにおいては、他のリソースエレメントに比べて、キャリア間干渉(ICI)が減少するため、高精度の復元が可能となる。
 上記に述べたとおり、本発明の第4の実施形態によれば、同一のOFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルを挿入し、該スキャッタードパイロットシンボルのみに対して、ノーマルGI区間よりも長いロングGI区間を設定する。また、該スキャッタードパイロットシンボルの隣接サブキャリアに位置するエレメントに制御信号を優先的に割り当てることにより、伝搬路に起因してノーマルGI区間を超える到来波が到来する環境において、キャリア間干渉を低減させられるので、受信装置において精度良く高精度に制御信号を復元させることができる
 なお、本第4の実施形態の説明においては、制御信号をロングGIパイロットシンボルと同一のOFDMシンボル内の隣接サブキャリアの後方のリソースエレメントに優先的にマッピングすることについて説明したが、これに限るものではなく、ロングGIパイロットシンボルと同一のOFDMシンボル内のいずれかのサブキャリアのリソースエレメントにマッピングすることもできる。その場合は、制御信号をロングGIパイロットシンボルのリソースエレメントに近いサブキャリアのリソースエレメントにマッピングすることが望ましい。
 また、例えば、サービス品質(QoS:Quality of Service)が高い情報データ信号や緊急性が高い情報データ信号などを優先的にマッピングすることもできる。
 また、本第4の実施形態の説明においては、ロングGIパイロットシンボルと同一のOFDMシンボル内の隣接サブキャリアのリソースエレメントに、優先的にマッピングする制御信号は、ノーマルGIとして説明したが、これに限るものではなく、優先的にマッピングする制御信号にロングGIを付加することもできる。このことによって、本第4の実施形態における送信装置a4を、第1~第3の実施形態における送信装置として適用することができる。なお、この場合は、情報データ・制御シンボル生成部a90に入力された制御信号を第1の実施形態で説明したパイロットシンボルの位相制御と同様に処理する機能を具備する構成とする。
 なお、本第4の実施形態の説明においては、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではなく、例えば、一部のパイロットシンボルに対してロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加することもできる。
 また、図21に示した制御シンボルを、第1の実施形態で説明したパイロットシンボルの位相制御と同様に、パイロットシンボル内の前方のOFDMシンボルに位相制御をすることにより、ロングGIを付加した制御シンボルを生成することができる。
 (第5の実施形態)
 次に本第5の実施形態における受信装置について説明する。図23は、本発明の第5の実施形態における受信装置の構成を示す概略ブロック図である。図23において、受信装置b2は、受信アンテナb500、受信部b10、ノーマルGI-FFT区間抽出部b20、FFT部b30、フィルタ部b42、デマッピング部b50、復調部b60、復号部b70、パイロットシンボル処理部b90を備える。
 図23の受信装置b2の構成において、図10に示した第1の実施形態における受信装置b1との差は、受信装置b1のパイロットシンボル処理部b80におけるロングGI-FFT区間抽出部b81と、FFT部b82が省略され、受信装置b2のパイロットシンボル処理部b90には、FFT部b30から出力されたノーマルGIの区間が除去された周波数領域の信号が入力されることである。なお、図23において、受信装置b2の受信アンテナb500、受信部b10、ノーマルGI-FFT区間抽出部b20、FFT部b30、デマッピング部b50、復調部b60、復号部b70は、図10に示した第1の実施形態と同様の機能である。
 また、本第5の実施形態における送信装置は、図1に示した第1の実施形態で示した送信装置b1と同様である。
 受信装置b2が受信する受信信号は、図6で示したようなノーマルGI情報データシンボルと、ロングGIパイロットシンボルとが、多重された信号である。
 受信アンテナb500から受信した受信信号は、第1の実施形態で説明した処理と同様に、受信部b10によって周波数変換やアナログ―デジタル変換などの処理を行い、その後、ノーマルGI-FFT区間抽出部b20によって、ノーマルGIの区間を除去し、その後、FFT部b30によって、FFT処理された周波数領域の信号が、フィルタ部b42およびパイロットシンボル処理部b90に出力される。
 なお、受信装置b2においてガードインターバルの区間を除去する機能は、ノーマルGI-FFT区間抽出部b20のみを備えた構成となっており、受信したOFDMシンボルからノーマルGIの区間の除去のみを行い、FFT処理を行う。すなわち、ロングGIパイロットシンボルにおけるガードインターバルの区間に含まれる位相制御されたパイロットシンボル、例えば、図6で示した2番目のOFDMシンボルに対してもFFT処理を行う。なお、ここでFFT処理した位相制御されたパイロットシンボルは、位相制御により回転した位相を元に戻すことで、伝搬路推定に用いることもできる。この2番目のOFDMシンボルを用いた伝搬路推定は、ノーマルGIを超えない伝搬環境において有効に活用することができる。ただし、ノーマルGIを超えるような伝搬環境においては、シンボル間干渉によって伝搬路推定の精度が下がるため、伝搬環境によって使用するか否かを判断することが必要となる。
 パイロットシンボル処理部b90は、FFT部b30から入力された周波数領域の信号からパイロットシンボルがマッピングされている周波数および時間の信号による伝搬路推定を行い、伝搬路推定を行った結果をフィルタ部b42に出力する。次にこの点を詳述する。また、パイロットシンボル処理部b90は、パイロット抽出部b93、伝搬路推定部b94を備える。
 パイロット抽出部b93は、FFT部b30から入力されたノーマルGIの区間が除去された周波数領域の信号から、第1の実施形態で説明した処理と同様の処理を行って、スキャッタードパイロットシンボルを抽出し、抽出したスキャッタードパイロットシンボルを伝搬路推定部b94に出力する。
 伝搬路推定部b94は、パイロット抽出部b93によって抽出されたスキャッタードパイロットシンボルを用いて、第1の実施形態で説明した処理と同様にマルチパスフェージングなどによる伝搬路に起因した送信信号の振幅と位相の変動を推定(伝搬路推定)し、伝搬路推定した結果をフィルタ部b42に出力する。なお、スキャッタードパイロットシンボルがマッピングされたリソースエレメント以外のリソースエレメントに対する伝搬路の推定方法としては、公知の線形補間やFFT補間など様々な方法を用いることができる。
 なお、パイロットシンボル処理部b90に入力される周波数領域の信号は、ノーマルGIの区間のみ除去され、ロングGI区間もノーマルGI区間と同様にFFT処理された信号である。このため、パイロットシンボル処理部b90内のパイロット抽出部b93においては、ノーマルGI区間と同様にFFT処理されたロングGI区間を用いずに、ロングGIパイロットシンボルにおける有効シンボル区間、例えば、図6における3番目のOFDMシンボルの有効シンボル区間のデータを用いることにより、伝搬路推定の処理を行う。
 上記に述べたとおり、本発明の第5の実施形態によれば、同一のOFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルが挿入され、該スキャッタードパイロットシンボルのみに、ノーマルGI区間よりも長いロングGI区間が設定されたフレームを受信した際に、受信したフレームに付加されているロングGIの区間を除去せず、ノーマルGIの区間のみを除去する。このことにより、受信装置の回路規模を削減すると共に、シンボル間干渉に対する耐性を向上させられるので、通信全体の伝送効率をほとんど低下させることなく、受信装置において精度良く伝搬路推定を実現させることができる。
 また、本第5の実施形態における受信装置b2は、第1~第4の実施形態における受信装置にも適用することができる。
 (第6の実施形態)
 次に、本発明の第6の実施の形態として、空間多重化技術(MIMO:Multiple Input Multiple Output)を用いた場合について説明する。本第6の実施形態における通信システムは、送信装置および受信装置を備える。
 図24は、本第6の実施形態における送信装置の構成を示す概略ブロック図である。図24において、送信装置a5は、送信アンテナ1用送信処理部a1-1、送信アンテナ2用送信処理部a1-2を備える。また、図24における各送信処理部は、それぞれ、情報データシンボル生成部a10、パイロットシンボル処理部a20、多重部a30、IFFT部a40、GI挿入部a50、送信部a60、送信アンテナa100を備える。なお、図24における各ブロックの符号の後のハイフン“-”に続く数字は対応する送信アンテナの番号を示している。
 また、各送信処理部には、図示しない送信装置a5の上位層の処理装置からそれぞれ、対応する送信アンテナ毎に情報データ信号と、パイロットシンボルとが入力される。
 また、図25は、本第6の実施形態における受信装置の構成を示す概略ブロック図である。図25において、受信装置b3は、受信アンテナ1用受信処理部b100-1、受信アンテナ2用受信処理部b100-2、信号分離部b200、送信アンテナ1用受信処理部b300-1、送信アンテナ2用受信処理部b300-2、パイロットシンボル処理部b800を備える。また、図25における受信アンテナ1用受信処理部b100-1および受信アンテナ2用受信処理部b100-2は、それぞれ、受信アンテナb500、受信部b10、ノーマルGI-FFT区間抽出部b20、FFT部b30を備える。また、パイロットシンボル処理部b800によって、送信アンテナと受信アンテナとの組み合わせ毎に伝搬路を推定し、この伝搬路を推定した結果に基づいて、信号分離部b200が、受信アンテナ毎の信号を、空間多重された送信アンテナ毎の信号に分離する。なお、この伝搬路推定と、信号の分離処理に関する詳細な説明については後述する。また、送信アンテナ1用受信処理部b300-1および送信アンテナ2用受信処理部b300-2は、それぞれ、デマッピング部b50、復調部b60、復号部b70を備える。図25における各ブロックの符号の後のハイフン“-”に続く数字は対応する受信アンテナの番号を示している。
 なお、本第6の実施形態における送信装置a5および受信装置b3の基本的な構成は、第1の実施形態において図1に示した送信装置a1および図10に示した受信装置b1と同様の構成である。ただし、本第6の実施形態は、複数の送信アンテナおよび受信アンテナを用いたMIMOシステムであるため、MIMOシステムのアンテナの数に応じて、図1に示した送信装置a1、および図10に示した受信装置b1においてブロックで示した構成を複数備える点が異なる。
 なお、図24および図25における各ブロックのハイフン“-”より前の符号が同じブロックは、図1および図10に示した第1の実施形態と同様の機能である。
 まず、本第6の実施形態における送信装置a5が送信する送信フレームについて説明する。
 図26は、送信アンテナ1用送信処理部a1-1が生成するロングGIパイロットシンボルを多重したフレームの一例を周波数成分と時間成分で示した図である。また、図27は、送信アンテナ2用送信処理部a1-2が生成するロングGIパイロットシンボルを多重したフレームの一例を周波数成分と時間成分で示した図である。図26および図27において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルを示している。
 図26に示すように、送信アンテナ1用送信処理部a1-1は、2つのスキャッタードパイロットシンボルをマッピングするためのリソースエレメントの内の1つのリソースエレメント(6番目のサブキャリア)に送信アンテナ1用のパイロットシンボルをマッピングする。また、もう1つのスキャッタードパイロットシンボルをマッピングするためのリソースエレメント(3番目のサブキャリア)は、送信アンテナ2用送信処理部a1-2によって送信アンテナ2用のパイロットシンボルがマッピングされるようにするために、ゼロ(ヌル:null)とする。
 一方、図27に示すように、送信アンテナ2用送信処理部a1-2は、2つのスキャッタードパイロットシンボルをマッピングするためのリソースエレメントの内の1つのリソースエレメント(3番目のサブキャリア)に送信アンテナ2用のパイロットシンボルをマッピングする。また、もう1つのスキャッタードパイロットシンボルをマッピングするためのリソースエレメント(6番目のサブキャリア)は、送信アンテナ1用送信処理部a1-1によって送信アンテナ1用のパイロットシンボルがマッピングされるようにするために、ゼロ(ヌル:null)とする。
 なお、図26および図27で示したパイロットシンボルは、第1の実施形態で説明したように、位相制御をすることによって、ロングGIパイロットシンボルを生成することができる。
 このように、送信装置a5は、送信アンテナ毎に互いに独立にするようにスキャッタードパイロットシンボルをマッピングしたフレームを第1の実施形態で説明した処理と同様に処理して送信する。なお、送信装置a5における各送信処理部は、それぞれのフレームを同時に送信する。
 このフレームを受信する受信装置b3は、ノーマルGI情報データシンボルは空間的に多重されるが、ロングGIパイロットシンボルは、空間的に多重されずに、互いにストリーム干渉を受けることなく、受信することができる。
 次に、本第6の実施形態における受信装置b3が受信したフレームの受信処理について説明する。
 図28は、受信装置b3が受信した送信アンテナ1および送信アンテナ2のパイロットシンボルが多重されたフレームの一例を周波数成分と時間成分で示した図である。図28において、横軸は時間、縦軸は周波数を示し、1行がサブキャリア、1列がOFDMシンボルを示している。図26および図27に示したように、スキャッタードパイロットシンボルを互いに独立してマッピングすることによって、受信装置b3においては、図28に示すようなフレームが受信される。ノーマルGI情報データシンボルは空間的に多重されているため、空間多重された信号を分離する処理が必要となるが、ロングGIパイロットシンボルは、空間的に多重されていないため、分離処理の必要はなく、高精度に伝搬路の推定を行うことができる。
 受信アンテナ1用受信処理部b100-1および受信アンテナ2用受信処理部b100-2は、受信アンテナ毎の受信信号に対して、第1の実施形態で説明した処理と同様に受信部b10、ノーマルGI-FFT区間抽出部b20、FFT部b30によって、それぞれ処理を行い、受信アンテナ毎の周波数領域の信号を信号分離部b200に出力する。
 パイロットシンボル処理部b800は、送信アンテナと受信アンテナとの組み合わせ毎に第1の実施形態で説明した処理と同様の処理を行って伝搬路の推定を行い、伝搬路推定した結果を信号分離部b200に出力する。また、パイロットシンボル処理部b800は、ロングGI-FFT区間抽出部b801、FFT部b802、パイロット抽出部b803、伝搬路推定部b804を備える。なお、ロングGI-FFT区間抽出部b801の入力として各受信アンテナに対応した受信部b10からそれぞれ受信したベースバンド信号が入力される以外は、第1の実施形態で説明したロングGI-FFT区間抽出部b81、FFT部b82、パイロット抽出部b83、伝搬路推定部b84と同様の機能である。
 信号分離部b200は、パイロットシンボル処理部b800の伝搬路推定部b804によって推定された受信アンテナ毎の伝搬路推定値(伝搬路推定の結果)に基づいて、受信アンテナ1用受信処理部b100-1および受信アンテナ2用受信処理部b100-2のFFT部b30から入力された受信アンテナ毎の周波数領域の信号を、空間多重された送信アンテナ毎に伝搬路補償された周波数領域の信号に分離し、送信アンテナ毎に送信アンテナ1用受信処理部b300-1および送信アンテナ2用受信処理部b300-2に出力する。このときの、空間多重された周波数領域の信号に対する信号分離方法は、例えば、ゼロフォーシング(ZF:Zero Forcing)基準、最小二乗平均誤差(MMSE:Minimum Mean Square Error)基準、最大尤度(ML:Maximum Likelihood)基準などの様々な信号分離方法を適用することができるが、これに限るものではない。
 送信アンテナ毎に送信アンテナ1用受信処理部b300-1および送信アンテナ2用受信処理部b300-2は、信号分離部b200が信号分離した送信アンテナ毎の伝搬路補償された周波数領域の信号に対して、デマッピング部b50、復調部b60、復号部b70によって、第1の実施形態で説明した処理と同様の処理を行い、送信アンテナ毎に情報データ信号(受信データ)を図示しない受信装置b3の上位層の処理装置に出力する。
 上記に述べたとおり、本発明の第6の実施形態によれば、空間多重化技術(MIMO)を用いた通信システムにおいて、同一のOFDMシンボル内のいずれかのサブキャリアに送信アンテナ毎に互いに独立するようにスキャッタードパイロットシンボルを挿入し、該スキャッタードパイロットシンボルのみに対して、ノーマルGI区間よりも長いロングGI区間を設定する。このことにより、伝搬路に起因してノーマルGI区間を超える到来波が到来する環境において、シンボル間干渉に対する耐性を向上させられるので、通信全体の伝送効率をほとんど低下させることなく、受信装置において精度良く伝搬路の推定を実現させることができる。
 なお、本第6の実施形態の説明においては、送信装置a5の送信アンテナ、および受信装置b3の受信アンテナは、それぞれ2本ずつ具備した場合について説明したが、これに限るものではなく、送信装置a5に具備する送信アンテナ、および受信装置b3に具備する受信アンテナは、どちらか、あるいは両方が2本を超える場合にも適用することができる。また、送信装置a5に具備する送信アンテナと受信装置b3に具備する受信アンテナとの数は、互いに異なる場合にも適用することができる。
 また、本第6の実施形態の説明においては、図示しない送信装置a5の上位層の処理装置からそれぞれ入力された送信アンテナ毎の情報データ信号を、送信装置a5内の送信アンテナ1用送信処理部a1-1および送信アンテナ2用送信処理部a1-2によって、それぞれ互いに誤り訂正符号化処理、変調処理を行っていたが、これに限るものではない。
 例えば、図示しない送信装置a5の上位層の処理装置から誤り訂正符号化処理、変調処理を行った信号を、各送信アンテナの送信処理部に入力することもできる。
 また、本第6の実施形態の説明においては、受信装置b3内の送信アンテナ1用受信処理部b300-1および送信アンテナ2用受信処理部b300-2によって、受信した信号をそれぞれ互いに復調処理、復号処理して、図示しない受信装置b3の上位層の処理装置に出力していたが、これに限るものではない。例えば、受信した信号の復調処理、復号処理をまとめて1カ所で処理することや、デマッピング後の情報データ信号を図示しない受信装置b3の上位層の処理装置に出力することもできる。
 なお、本第6の実施形態における送信装置a5および受信装置b3は、第1~第5の実施形態における送信装置および受信装置にも適用することができる。
 なお、本第6の実施形態の説明においては、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではなく、例えば、一部のパイロットシンボルに対してロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加することもできる。また、一部の送信アンテナ用のパイロットシンボルに対してロングGIを付加し、それ以外の送信アンテナ用のパイロットシンボルに対してはノーマルGIを付加することもできる。その場合、重要度の高い情報データ信号および制御シンボルを送信する送信アンテナ用のパイロットシンボルに対してロングGIを付加すると高い効果が得られる。
 上記に述べたとおり、本発明を実施するための形態によれば、伝搬路に起因してノーマルGI区間を超える到来波が到来する環境において、同一のOFDMシンボル内のいずれかのサブキャリアのパイロットシンボル、制御信号のいずれかまたは、両方の信号に対してノーマルGI区間よりも長いロングGI区間を設定することにより、シンボル間干渉に対する耐性を向上させられるので、通信全体の伝送効率をほとんど低下させることなく、受信装置において精度良く伝搬路推定や信号の復元をすることができる。
 なお、本発明の実施形態においては、例えば、マッピングされた情報データシンボルと、マッピングされたパイロットシンボルと、位相制御されたパイロットシンボルとを、周波数領域で重ね合わせ(多重)し、多重されたシンボルをIFFT処理した後に、予め定められた長さのガードインターバルを付加することによってOFDMシンボルを生成する構成で説明したが、これに限るものではない。
 例えば、一部のシンボルにノーマルGIを付加してノーマルGI-OFDMシンボルを生成し、その他のシンボルにロングGIを付加してロングGI-OFDMシンボルを生成し、その後、それぞれ生成したノーマルGI-OFDMシンボルと、ロングGI-OFDMシンボルとを、時間領域で重ね合わせ(多重)することもできる。
(第7の実施形態)
 第1から第6の実施形態では、ロングGIを付加するシンボルには、その時間方向に一つ前のリソースエレメントに位相制御されたシンボルをマッピングし、ロングGIを付加するシンボルと、ノーマルGIを付加するシンボルとを多重してから、ガードインターバルを付加する形態を説明した。以下の第7から第12の実施形態では、ロングGIとノーマルGIとを別々に生成した後に多重して、第1から第6の実施形態と同様に、同一時刻に複数のサブキャリアの間で、ロングGIシンボルとノーマルGIシンボルとが散在する信号を生成する。
 以下、図面を参照して、本発明の第7の実施形態について説明する。本実施形態の無線通信システムは、OFDM方式で通信する送信装置10と受信装置20とを備える。図29は、本実施形態に係る送信装置の構成を示す概略ブロック図である。
 送信装置10は、情報データシンボル生成部100(第1のマルチキャリアシンボル生成部とも称する)、パイロットシンボル処理部110(第2のマルチキャリアシンボル生成部とも称する)、多重部120、送信部130、送信アンテナ140を備えている。情報データシンボル生成部100は、符号部101、変調部102、マッピング部103、IFFT(逆高速フーリエ変換:Inverse Fast Frequency Transform)部104、ノーマルGI挿入部105を備えている。パイロットシンボル生成部110は、マッピング部111、IFFT部112、ロングGI挿入部113を備えている。
 送信装置10から受信装置20へ送信するデータ(情報)のビット列の信号である情報データ信号および該情報データ信号の送信のための制御信号は、まず、情報データシンボル生成部100に入力される。情報データシンボル生成部100は、符号部101が、入力された情報データ信号および制御信号に対して、畳込み符号やターボ符号などの誤り訂正符号化を行う。変調部102は、QPSK(Quadrature Phase Shift Keying;4相位相偏移変調)やQAM(Quadrature Amplitude Modulation;直交振幅変調)などの変調方式により、誤り訂正符号化された情報データ信号および制御信号を変調シンボル、すなわち情報データシンボルと制御シンボルとに割り当てる変調を行う。マッピング部103は、受信側にて伝搬路推定に用いられる信号であるパイロットシンボルが挿入される位置(リソースエレメント)以外のリソースエレメントに対して、変調部102が変調した情報データシンボルおよび制御シンボルをマッピング(配置)する。ここで、リソースエレメントとは、予め決められた幅の時間・周波数からなる領域であり、1つの変調シンボルがマッピングされる領域である。また、情報データシンボルをマッピングするリソースエレメントと、制御シンボルをマッピングするリソースエレメントと、パイロットシンボルをマッピングするリソースエレメントとは、互いに重複しないように、予め設定されている。
 ここで、制御信号には、例えば、情報データ信号に用いられる変調方式、マッピング方法(リソース割り当て方法)、誤り訂正符号化情報(例えば、符号化方法、符号化率、パンクチャーパターン)、インターリーブ方法、スクランブリング方法、HARQ(Hybrid Automatic Repeat reQuest)制御情報(例えば、パケットの受信通知情報(ACK(Acknowledgement)、NACK(Negative Acknowledgement)や再送回数など)、同期信号、MIMO(Multi-Input Multi-Output)制御情報(例えば、レイヤー数(ストリーム数)やプリコーディング方法)、基地局情報、端末情報、制御情報のフォーマット情報、データ情報のフォーマット情報、フィードバック情報(例えば、CQI(Channel Quality Indicator)など)、送信電力制御情報など、複数の情報データ信号の送受信に必要な通信制御に用いられる情報が含まれるが、これらに限るものではない。
 図30は、マッピング部103による情報データシンボルおよび制御シンボルのフレームへの配置の一例を示す図である。図30に示す例は、4OFDMシンボルと8サブキャリアで構成されるフレームにおいて、周波数の小さい方から3番目と6番目のサブキャリアのそれぞれ、2番目と3番目の2つのOFDMシンボルにパイロットシンボルを配置する場合を示している。そのため、マッピング部103は、変調された情報データシンボルおよび制御シンボルを、図30のように、1、2、4、5、7、8番目のサブキャリアの全てのOFDMシンボルと、3、6番目のサブキャリアの1番目と4番目のOFDMシンボルとに配置する。すなわち、パイロットシンボルが配置されない全ての位置に配置する。また、マッピング部103は、パイロットシンボルが挿入される位置には、ゼロ(null、ヌル)を配置しておく。
 図29に戻って、IFFT部104は、周波数領域の信号である、マッピング部103がマッピングした情報データシンボルおよび制御シンボルに対して、逆高速フーリエ変換処理を行い、周波数領域の信号から時間領域の信号に変換する。ノーマルGI挿入部105は、この時間領域の信号に、予め決められた長さであって通常の長さのガードインターバルであるノーマルGI(第1のガードインターバル)を付加する。すなわちノーマルGI挿入部105は、ノーマルGIを付加した情報データシンボルおよび制御シンボルからなるノーマルGI-OFDMシンボルの時間領域の信号を生成する。
 一方、パイロットシンボル処理部110には、受信装置20において伝搬路推定に用いられる既知の信号であるパイロットシンボルが入力される。ここで、パイロットシンボルは、情報データ信号および制御信号と同様に、パイロットシンボル処理部110にはビット列であるパイロット信号が入力されて、パイロットシンボル処理部110が、入力されたパイロット信号をQPSKやQAM等の変調方式により変調を行うようにしてもよい。
 パイロットシンボル処理部110では、まず、マッピング部111が、入力されたパイロットシンボルを、スキャッタードパイロットシンボルとして、周波数方向および時間方向に散在させるようにマッピングを行う。
 図31は、その一例として、図30で示した情報データシンボルおよび制御シンボルのマッピングに対する、マッピング部111によるパイロットシンボルのフレームへの配置の例を示す図である。図31の例は、4OFDMシンボルと8サブキャリアで構成されるフレームにおいて、2つのOFDMシンボルを用いて、ガードインターバル(後述するロングGI)が付された1つのパイロットシンボルを設定する場合を示している。この例におけるパイロットシンボルは3番目と6番目のサブキャリアの3番目のOFDMシンボルにマッピングし、その前の2番目のOFDMシンボルはゼロ(null、ヌル)としている。これは、後述するように、マッピング部111によりパイロットシンボルが配置されたリソースエレメントから時間方向に1つ前のリソースエレメントは、パイロットシンボルのロングGIの区間となるためである。
 図29に戻って、IFFT部112は、周波数領域の信号である、マッピング部111がマッピングしたパイロットシンボルに対して、逆フーリエ変換処理を行い、周波数領域の信号から時間領域の信号に変換する。ロングGI挿入部113は、IFFT部112が生成した時間領域の信号に、予め決められた長さのガードインターバルであって、ノーマルGI挿入部105が付加したノーマルGIよりも長いガードインターバルであるロングGIを付加する。すなわち、ロングGI挿入部113は、ノーマルGIよりも長いロングGIを付加したパイロットシンボルからなるロングGI-OFDMシンボルの時間領域の信号を生成する。このロングGIの長さは、後述するように、ノーマルGIの2倍に、さらにパイロットシンボルの長さを加えた長さである。
 このように、情報データシンボル生成部100は、入力された情報データ信号および制御信号のシンボルにノーマルGIを付加して、ノーマルGI-OFDMシンボルを生成し、パイロットシンボル生成部110は、入力されたパイロットシンボルに、ロングGIを付加してロングGI-OFDMシンボルを生成する。
 多重部120は、情報データシンボル生成部100が生成したOFDMシンボルであって、ノーマルGIが付された情報データシンボルおよび制御シンボル(ノーマルGI情報データシンボルおよびノーマルGI制御シンボル)からなるノーマルGI-OFDMシンボルと、パイロットシンボル生成部110が生成したOFDMシンボルであって、ロングGIが付されたパイロットシンボル(ロングGIパイロットシンボル)からなるロングGI-OFDMシンボルとを、時間領域で多重する。ここで、多重部120による時間領域での多重とは、情報データシンボル生成部100が生成したノーマルGI-OFDMシンボルの時間領域の信号の各時間位置におけるサンプリング値と、パイロットシンボル生成部110が生成したロングGI-OFDMシンボルの時間領域の信号の各時間位置におけるサンプリング値とを加算することであり、これにより、ノーマルGIが付された情報データシンボルおよび制御シンボルとロングGIが付されたパイロットシンボルとを周波数多重している。そして、周波数多重された信号では、ノーマルGI-OFDMシンボル中でシンボルが配置されたサブキャリアと、ロングGI-OFDMシンボル中でシンボルが配置されたサブキャリアとが、同一時刻においてマルチキャリアを構成する複数のサブキャリアの間で散在している。
 図32は、図30および図31で示したような例において、多重部120により多重された信号の周波数成分と時間成分の例を示す図である。図32の例は、4OFDMシンボルと8サブキャリアで構成されるフレームを示す。図32において、斜線でハッチングされた矩形P1、P2は、ロングGIパイロットシンボルが配置されたリソースエレメントを示している。斜線でハッチングされていない矩形は、ノーマルGI情報データシンボルまたはノーマルGI制御シンボルが配置されたリソースエレメントを示している。ロングGIパイロットシンボル、ノーマルGI情報データシンボルおよびノーマルGI制御シンボル各々が配置されたリソースエレメントを示す矩形のうち、網掛けでハッチングされた部分は、ガードインターバルの区間を示し、白地の部分は、有効シンボル区間を示している。また、ここではロングGIパイロットシンボルが配置されているロングGIとシンボルとをあわせた区間内のロングGIとロングGIを付加されたシンボルが多重された信号をロングGI-OFDMシンボルと呼ぶ。また、ここでは、ノーマルGI情報データシンボルまたはノーマルGI制御シンボルが配置されているノーマルGIとシンボルとをあわせた区間内のノーマルGIとノーマルGIを付加されたシンボルが多重された信号をノーマルGI-OFDMシンボルと呼ぶ。なお、フレームにおけるノーマルGI-OFDMシンボルに相当する区間は、単にOFDMシンボルとも呼び、このOFDMシンボルの長さをOFDMシンボル長と呼ぶ。
 ロングGIパイロットシンボルは、領域P1、P2、すなわち周波数が小さい方から、3番目と6番目のサブキャリア各々において、2番目と3番目のOFDMシンボルにわたる領域に配置されており、それらの有効シンボル区間は、他の3番目のOFDMシンボルに配置されている信号と一致している。すなわち、各ロングGIパイロットシンボルは、2OFDMシンボル分を用いているため、そのガードインターバル(ロングGI)は、1OFDMシンボルにノーマルGIを加えた長さであり、ノーマルGIに比べて、大幅に長くなっている。また、ロングGI-OFDMシンボル各々の有効シンボル区間は、いずれかのノーマルGI-OFDMシンボルの有効シンボル区間と、時間方向において一致している。ここでは、3番目のOFDMシンボルにおいて、ロングGIパイロットシンボルの有効シンボル区間(白地に斜線のハッチングされた矩形)と、ノーマルGI情報データシンボルおよびノーマルGI制御シンボルの有効シンボル区間(白い矩形)とが、時間方向に一致している(ずれがない)。このため、受信装置20では、従来と同様にFFT(高速フーリエ変換)区間を設定してFFT処理することで、パイロットシンボル、情報データシンボルおよび制御シンボルを分離することができる。
 図29に戻って、送信部130は、多重部120が多重した信号について、デジタル信号からアナログ信号への変換、ベースバンド周波数から無線周波数への周波数変換等を行い、送信アンテナ140から受信装置20に送信する。
 図33は、本実施形態に係る受信装置20の構成を示す概略ブロック図である。受信装置20は、受信アンテナ200、受信部210、第1のFFT区間抽出部220、第1のFFT部230、フィルタ部240、デマッピング部250、復調部260、復号部270、パイロットシンボル処理部280を備えている。パイロットシンボル処理部280は、第2のFFT区間抽出部281、第2のFFT部282、パイロット抽出部(シンボル抽出部)283、伝搬路推定部284を備えている。
 受信アンテナ200から受信した受信信号について、受信部210は、無線周波数からベースバンド周波数への周波数変換やアナログ信号からデジタル信号への変換などの処理を行い、その処理結果のベースバンド信号を出力する。受信部210が出力したベースバンド信号は、情報データ信号および制御信号を復元するために第1のFFT区間抽出部220、および、パイロット信号による伝搬路推定を行うためにパイロットシンボル処理部280の第2のFFT区間抽出部281にそれぞれ入力される。
 まず、パイロットシンボル処理部280が行う処理を説明する。第2のFFT区間抽出部281は、受信部210が出力した信号から、パイロットシンボルに付加されたロングGIの区間の末尾から予め決められた長さである有効シンボル区間分の信号を、第2のFFT部282によるフーリエ変換の対象となるFFT区間の信号として抽出する。図34は、一例として、図32で示したフレームにおけるロングGIパイロットシンボルのためのFFT区間を示している。第2のFFT区間抽出部281はそのFFT区間を抽出する、すなわちFFT区間以外の区間を除去する。第2のFFT部282は、第2のFFT区間抽出部281が抽出したFFT区間に高速フーリエ変換処理を施し、時間領域の信号から周波数領域の信号に変換する。これにより、第2のFFT部282は、ロングGI-OFDMシンボルに含まれるシンボルの受信信号を得る。
 パイロット抽出部283は、第2のFFT部282による変換結果である周波数領域の信号から、ロングGI-OFDMシンボルの有効シンボル区間、かつ、パイロットシンボルが配置されたサブキャリアの信号を、受信したパイロットシンボルとして抽出する。伝搬路推定部284は、受信したパイロットシンボルと既知のパイロットシンボルの波形(位相、振幅)とを比較して、フェージングなどによる振幅と位相の変動を推定(伝搬路推定)し、その結果をフィルタ部240に出力する。このとき、パイロットシンボルがマッピングされたリソースエレメント以外のリソースエレメントに対する伝搬路推定の方法としては、パイロットシンボルがマッピングされたリソースエレメントに対する伝搬路推定結果を用いて線形補間やFFT補間するなど公知の方法を用いることができる。
 一方、第1のFFT区間抽出部220は、受信部210が出力した信号から、情報データシンボルおよび制御シンボルに付加されたノーマルGIの末尾から予め決められた長さである有効シンボル区間分の信号を、第1のFFT部230によるフーリエ変換の対象となるFFT区間の信号として抽出する。なお、このFFT区間は、送信装置100が送信する信号における有効シンボル区間と一致する。図35は、一例として、図32で示したフレームにおけるノーマルGI情報データシンボルおよびノーマルGI制御シンボルのためのFFT区間を示している。第1のFFT区間抽出部220はそのFFT区間以外の区間を除去する。第1のFFT部230は、第1のFFT区間抽出部220が抽出したFFT区間に高速フーリエ変換を施し、時間領域の信号から周波数領域の信号に変換する。これにより、第1のFFT部230は、ノーマルGI-OFDMシンボルに含まれるシンボルの受信信号を得る。
 フィルタ部240は、伝搬路推定部284で推定された伝搬路推定値に基づいて、ZF(Zero Forcing)基準、MMSE(Minimum Mean Square Error;最小二乗誤差)基準等を用いた重み係数を算出し、第1のFFT部230による変換結果である周波数領域の信号に対して乗算することで、信号の振幅と位相の変動の補償(伝搬路補償)を行なう。
 ここで、第2のFFT区間抽出部281および第1のFFT区間抽出部220で行うFFT区間の抽出について、別の例を図36および図37にそれぞれ示す。これらの例では、3番目と6番目のサブキャリアの、2~4番目、すなわち3つのOFDMシンボルを用いて、1つのサブキャリアに2つのロングGIパイロットシンボルをマッピングした場合を示している。このような配置の例でも、ロングGIパイロットシンボルと時間が重複するOFDMシンボルに配置された情報データシンボルおよび制御シンボルには、ノーマルGIが付加されている。図37では、図35と同様に、ノーマルGI情報データシンボルおよびノーマルGI制御シンボルのためのFFT区間を示している。第1のFFT区間抽出部220はそのFFT区間以外の区間を除去する。図36では、ロングGIパイロットシンボルのためのFFT区間を示している。その際、ロングGIの有効シンボル区間をFFT区間としているため、前方のパイロットシンボルに対するFFT区間は、ノーマルGIシンボルの有効シンボル区間とは異なっている。第2のFFT区間抽出部281はそのFFT区間以外の区間を除去する。
 図36および図37で示すように、ロングGIが付された有効シンボル区間とノーマルGIが付された有効シンボル区間とが異なっている場合、それぞれに対して受信装置が設定するFFT区間内に不連続点(シンボルの境界)が含まれることになるため、キャリア間干渉(ICI;Inter Carrier Interference)が生じることになる。そのため、そのキャリア間干渉を除去するための干渉キャンセラやターボ等化を適用することができる。例えば、パイロットシンボル処理部280で既に説明した処理を行った後、受信したパイロットシンボル(ロングGI-OFDMシンボル)のレプリカ信号を生成し、受信信号から減算を行った信号を第1のFFT区間抽出部220に入力することができる。これにより、ロングGIパイロットシンボルによるキャリア間干渉を除去または低減することができる。また、その逆の処理も可能である。つまり、ノーマルGI-OFDMシンボルのレプリカ信号を生成し、受信信号から減算を行うことで、ロングGIパイロットシンボルに対するキャリア間干渉を除去または低減することができる。また、これらの処理を繰り返し行う繰返し処理を適用することも可能である。
 デマッピング部250は、フィルタ部240による伝搬路補償が行われた信号から、情報データシンボルが配置された領域の信号および制御シンボルが配置された領域の信号を、それぞれ受信した情報データシンボル、受信した制御シンボルとして抽出する、デマッピング処理を行う。復調部260は、デマッピング部250が抽出した信号について、QPSKやQAMなど、送信装置10の変調部102が用いた変調方式であって、情報データシンボルについては復号部270が復号した制御信号により指定された変調方式で、制御シンボルについては予め決められた変調方式で復調処理を行う。
 このとき、復号部270は、復調部260による復調結果である誤り訂正符号化された信号に対して、最尤復号法(MLD;Maximum Likelihood Decoding)、最大事後確率推定(MAP;Maximum A posteriori Probability)、log-MAP、Max-log-MAP、SOVA(Soft Output Viterbi Algorithm)等の公知の方法を用いて、復号処理を行い、復号処理結果のビット列である情報データ信号および制御信号を出力する。復号部270が出力した制御信号には、送信装置10の変調部102が情報データ信号を変調する際に用いた変調方式を表す情報が含まれており、復調部260は該情報に基づき、情報データ信号を復調する際に用いる変調方式を決定する。
 ここで、ノーマルGIとロングGIとのシンボル間干渉への耐性について、説明する。図38は、ノーマルGI情報データシンボルおよびノーマルGI制御シンボルの概略構成と、ロングGIパイロットシンボルの概略構成を示す図である。ロングGIパイロットシンボルの長さは、ノーマルGI情報データシンボルの長さが1OFDMシンボル長であるのに対して、2倍の2OFDMシンボル長となっている。また、そのときの有効シンボル長はそれぞれ同じであるため、この長さの違いは、ロングGIのガードインターバル区間を大幅に長くすること、すなわちノーマルGIの2倍にさらにパイロット信号の長さを加えた長さとすることで実現されている。
 なお、ガードインターバル区間は、有効シンボル区間の後端を、前方に付加することで実現されるが、本実施形態では、ロングGI挿入部113は、有効シンボル区間の全てを前方に付加しても、ロングGIの長さに不足があるので、さらに有効シンボル区間の後端を前方に付加し、ロングGIの信号を得る。ロングGIが、本実施形態よりも長く、本実施形態の方法で生成しても長さに不足があるときは、さらに有効シンボル区間の後端を前方に付加することを繰り返すことで生成する。
 図39は、ノーマルGI情報データシンボルまたはノーマルGI制御シンボルについて、先行波および2つの遅延波が到来した場合の受信信号の概略構成例を示す図である。図39において、網掛けでハッチングされた矩形はノーマルGIの信号を示し、白地の矩形は有効シンボル区間の信号を示す。図39では、図示した到来波の3番目のOFDMシンボルに高速フーリエ変換処理を行う場合を示しており、高速フーリエ変換の対象とする区間であるFFT区間を先行波の有効シンボル区間に設定している。このとき、遅延波2の遅延時間が、ガードインターバル区間を超えているため、遅延波2における2番目のOFDMシンボルの信号が、FFT区間に含まれることになり、シンボル間干渉が生じる結果となる。
 図40は、ノーマルGI情報データシンボルおよびロングGIパイロットシンボルについて、図39と同様に、先行波および2つの遅延波が到来した場合の受信信号の概略構成例を示す図である。図39において、斜線でハッチングされた矩形は、ロングGIパイロットシンボルの信号を示している。斜線でハッチングされていない矩形は、ノーマルGI情報データシンボルまたはノーマルGI制御シンボルの信号を示している。ロングGIパイロットシンボルおよびノーマルGI情報データシンボルの信号を示す矩形のうち、網掛けでハッチングされた部分は、ガードインターバル(ノーマルGIまたはロングGI)の信号を示し、白地の部分は、有効シンボル区間の信号を示している。
 図40では、ロングGIOFDMシンボルに高速フーリエ変換処理を行う場合を示しており、そのFFT区間を先行波の有効シンボル区間に設定している。ノーマルGIでは、遅延波2の先行波からの遅延時間がノーマルGIを超えている場合でも、ロングGIを超えていなければ、FFT区間に前のシンボルの信号が入り込むことはないので、シンボル間干渉は生じない。
 以上のことから、ロングGIが付された信号は、ノーマルGIに対して、シンボル間干渉への耐性が大幅に高められることが分かる。
 ここで、ロングGIを付加したことによりシンボル間干渉への耐性が高められたパイロットシンボルを用いた、伝搬路推定部284による伝搬路推定とフィルタ部240による伝搬路補償について、説明する。なお、本発明を用いた場合でも、伝搬路推定方法と伝搬路補償方法は、従来と同様の方法を用いることができるため、ここではその一例を示す。
 パイロットシンボルは、送信装置10及び受信装置20で互いに既知の信号である。伝搬路推定を行うために、受信装置20の伝搬路推定部284は、受信されたパイロットシンボルP’m,nを既知のパイロットシンボルPm,nで除算し、伝搬推定値を算出する。すなわち、伝搬路推定部284は、以下の式(5)を用いて、伝搬路推定値H^m,nを求める。
Figure JPOXMLDOC01-appb-M000005
 ただし、mはサブキャリア番号、nはOFDMシンボル番号とする。
 このとき、伝搬路推定の精度は、受信したパイロットシンボルP’m,nに依存することになる。そして、このパイロットシンボルにロングGIを付加しておくことで、既に説明したようにシンボル間干渉への耐性を大幅に高めることができる。そのため、その推定値は非常に高い精度を得ることができる。
 さらに、伝搬路推定部284は、パイロットシンボルを配置していない情報データシンボルおよび制御シンボルのリソースエレメント(サブキャリアおよびOFDMシンボルにより決まる信号配置用の領域)に対しても、伝搬路推定を行う。その推定方法は、式(5)により得られた伝搬路推定値を用いて、線形補間、非線形補間、FFT補間など様々な補間方法により行うことができる。このとき、補間に用いる伝搬路推定値、すなわち式(5)により得られた伝搬路推定値は、パイロットシンボルにロングGIを付加しておくことで精度を高くすることができるため、その伝搬路推定値に基づき、補間して得られる情報データシンボルおよび制御シンボルのリソースエレメントの伝搬路推定値についても、精度を高くすることができる。
 次に、得られた伝搬路推定値を用いて、フィルタ部240が情報データシンボルおよび制御シンボルに対して伝搬路補償を行う。ここで、フィルタ部240による伝搬路補償の方法としてZF基準を用いている場合、以下の式(6)で表される重み係数WZF m,nを情報データシンボルまたは制御シンボルを含む周波数領域の信号に乗算することで伝搬路補償を行う。ただし、式(6)において、*は共役を表している。
Figure JPOXMLDOC01-appb-M000006
 また、フィルタ部240による伝搬路補償の方法としてMMSE基準を用いている場合、以下の式(7)で表される重み係数WMMSE m,nを情報データシンボルまたは制御シンボルを含む周波数領域の信号に乗算することで伝搬路補償を行う。ただし、式(7)において、σ2は雑音電力を表す。
Figure JPOXMLDOC01-appb-M000007
 以上のように、ノーマルGIを超える遅延時間の到来波が到来する環境においても、パイロットシンボルに、時間方向で少なくとも1つ前のリソースエレメントに渡るガードインターバル区間を設定したノーマルGIより長いロングGIを付加しておくことで、受信装置20においてノーマルGIを超える遅延時間の到来波の影響を抑えた精度の良い伝搬路推定を実現させることができる。さらに、ノーマルGIを付加した情報データシンボルおよび制御シンボルに対しても、その精度の良い伝搬路推定結果を用いて伝搬路補償を行うことで、伝搬路補償を精度良く行うことができるので、送信された情報データシンボルおよび制御シンボルを精度良く復元することができる。また、ロングGIを付加したパイロットシンボルと時間が重複するOFDMシンボルに配置された情報データシンボルおよび制御シンボルにはノーマルGIを付加するので、ロングGIを用いることで発生するガードインターバル区間の増加分が抑えられ、よって全体的な伝送効率をほとんど劣化させることなく、受信装置20において精度良い伝搬路推定を実現させることができる。したがって、シンボル間干渉への耐性を大幅に向上させ、かつ、全体的な伝送効率をほとんど劣化させることなく、受信側で信号を復元可能なように通信できる。
 すなわち、ロングGI挿入部113が、伝搬路推定に用いられるという重要なシンボルであるパイロットシンボルにロングGIを付加し、ノーマルGI挿入部105が、その他のシンボルにノーマルGIを付加し、これらの結果を多重部120が多重することで、重要なシンボル(複数のシンボルの復調に影響するシンボル)であるパイロットシンボルにおいてシンボル間干渉への耐性が大幅に向上する。これにより、通信全体としてもシンボル間干渉への耐性が大幅に向上させ、かつ、伝送効率をほとんど劣化させることなく、受信側で信号を復元可能なように通信できる
 なお、本実施形態では、受信装置20は繰返し処理を行わずに情報データ信号および制御信号を復元しているが、受信装置20が、復号結果を利用してシンボル間干渉などを除去して送信された信号を復元する干渉キャンセルやターボ等化などの繰返し処理を行うようにしてもよい。
 なお、以上の説明では、ロングGIが付加されているパイロットシンボルの長さは、ノーマルGIの情報データシンボルおよび制御シンボルのOFDMシンボル長に比べて、2倍のOFDMシンボル長である場合を説明したが、図36および図37に示した例のように、これに限るものではない。少なくとも、ロングGIパイロットシンボルの長さを、ノーマルGI情報データシンボルおよび制御シンボルの長さに比べて、長く設定すればよい。例えば、3倍の長さや、1.5倍の長さなどでもよい。
 なお、以上の説明では、ノーマルGIおよびロングGIの2種類の長さのガードインターバルを付加した信号を用いる場合について説明したが、これに限るものではなく、3種類以上の異なる長さのガードインターバルを付加した信号を用いるようにしてもよい。例えば、第1のガードインターバルであるノーマルGIおよび複数種類の第2のガードインターバルであるロングGIとするようにしてもよい。
 なお、以上の説明では、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではない。例えば、一部のパイロットシンボルに対してロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加してもよい。
(第8の実施形態)
 以下、図面を参照して、本発明の第8の実施形態について説明する。本実施形態に係る無線通信システムは、OFDM方式で通信する送信装置10aと受信装置20とを備える。本実施形態に係る送信装置10aは、第7の実施形態に係る送信装置10の一部が異なる。以下では、第7の実施形態で説明したブロックと機能が異なるブロックを中心に説明する。なお、説明を省略したブロックは第7の実施形態と同様の機能を持つ。また、本実施形態に係る受信装置20は、第7の実施形態に係る受信装置20(図33)と同様の構成であるので、説明を省略する。
 図41は、本実施形態に係る送信装置10aの構成を示す概略ブロック図である。第7の実施形態に係る送信装置10と異なる点は、パイロットシンボル処理部110と多重部120の間に、パイロットシンボル記憶部150(シンボル記憶部)が追加されていることであり、その他の符号(100~140)については同様の構成である。
 パイロットシンボル処理部110は、第7の実施形態で説明した処理と同様の処理を行い、パイロットシンボルをマッピング、逆フーリエ変換し、ロングGIを付加したロングGI-OFDMシンボルの時間領域の信号を出力する。パイロットシンボル記憶部150は、パイロットシンボル生成部110が出力したロングGI-OFDMシンボルの時間領域の信号を記憶する。
 一方、情報データシンボル生成部100は、第7の実施形態で説明した処理と同様の処理を行い、ノーマルGI-OFDMシンボルの時間領域の信号を出力する。
 多重部120は、第7の実施形態で説明した処理と同様の処理を行うが、ノーマルGI情報データシンボルおよび制御シンボルからなるノーマルGI-OFDMシンボルの時間領域の信号と、パイロットシンボル記憶部150に記憶されたロングGIパイロットシンボルからなるロングGI-OFDMシンボルの時間領域の信号とを、多重する。
 これにより、スキャッタードパイロットシンボルの値とその位置に変更が生じない限り、パイロットシンボル記憶部150が記憶したロングGI-OFDMシンボルの時間領域の信号を用いることができ、パイロットシンボル処理部110での処理を省略することが可能となるため、それに応じた計算量が削減される。
 また、スキャッタードパイロットシンボルの値とその位置に、複数のパターンがあるときは、パイロットシンボル記憶部150が、各パターンについて、パイロットシンボル処理部110が出力したロングGI-OFDMシンボルの時間領域の信号を記憶しておき、記憶している信号の中から該当するパターンのものを多重部120に出力することで、パイロットシンボル処理部110での処理を、最初に各パターンについて生成するときのみとし、その後は省略することができるので、処理量を削減することが可能となる。
 このように、同一OFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルにのみに対して、通常のガードインターバル区間よりも長いガードインターバル区間を設定したパイロットシンボルを予め生成および記憶し、必要に応じて情報データシンボルおよび制御シンボルに多重することにより、パイロットシンボル生成の計算量を削減させると共に、第7の実施形態と同様に、シンボル間干渉への耐性を大幅に向上させ、かつ、全体的な伝送効率をほとんど劣化させることなく、受信装置20において精度の良い伝搬路推定を実現させることができる。
 なお、以上の説明では、送信装置10aがパイロットシンボル処理部110を備え、ロングGI-OFDMシンボルを、パイロットシンボル記憶部150に入力する場合を説明したが、パイロットシンボル処理部110を省略、すなわち送信装置10aはパイロットシンボル処理部110を備えていなくてもよい。その場合は、送信装置10aに予め作成したロングGI-OFDMシンボルの時間領域の信号を入力しておき、パイロットシンボル記憶部150がこれを記憶していればよい。
 なお、以上の説明では、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではない。例えば、一部のパイロットシンボルに対してロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加してもよい。
(第9の実施形態)
 以下、図面を参照して、本発明の第9の実施形態について説明する。本実施形態に係る無線通信システムは、OFDM方式で通信する送信装置10bと受信装置20とを備える。本実施形態に係る送信装置10bは、第7の実施形態に係る送信装置10の一部が異なる。以下では、第7の実施形態で説明したブロックと機能が異なるブロックを中心に説明する。なお、説明を省略したブロックは第7の実施形態と同様の機能を持つ。また、本実施形態に係る受信装置20は、第7の実施形態に係る受信装置20(図33)と同様のブロック構成で実現することができる。
 図42は、本実施形態に係る送信装置10bの構成を示す概略ブロック図である。第7の実施形態に係る送信装置10との異なる点は、パイロットシンボル処理部110を省き、制御シンボル処理部160(第2のマルチキャリアシンボル生成部とも称する)を追加していることであり、その他の符号(100~105、120~140)については同様の構成である。また、第7の実施形態で説明した、送信装置10に入力される信号の内、パイロットシンボルではなく、制御シンボルが制御シンボル処理部160には入力されており、パイロットシンボルは情報データシンボル生成部100のマッピング部103に入力されている。
 ここで、制御シンボルには、符号化および変調した変調シンボルであって、例えば、情報データ信号に用いられる変調方式、マッピング方法(リソース割り当て方法)、誤り訂正符号化情報(例えば、符号化方法、符号化率、パンクチャーパターン)、インターリーブ方法、スクランブリング方法、HARQ(Hybrid Automatic Repeat reQuest)制御情報(例えば、パケットの受信通知情報(ACK(Acknowledgement)、NACK(Negative Acknowledgement)や再送回数など)、同期信号、MIMO(Multi-Input Multi-Output)制御情報(例えば、レイヤー数(ストリーム数)やプリコーディング方法)、基地局情報、端末情報、制御情報のフォーマット情報、データ情報のフォーマット情報、フィードバック情報(例えば、CQI(Channel Quality Indicator)など)、送信電力制御情報など、複数の情報データ信号の受信に必要な情報を表す制御信号の変調シンボルが含まれるが、これらに限るものではない。
 制御シンボル処理部160は、マッピング部161、IFFT部162、ロングGI挿入部163を備えている。制御シンボル処理部160では、まず、マッピング部161が、入力された制御シンボルに対して、第7の実施形態で説明したパイロットシンボル生成部110のマッピング部111による処理と同様に、制御シンボルを配置するリソースエレメントにマッピングを行う。IFFT部162は、マッピング部161が、周波数領域の信号である、マッピングした制御シンボルに対して、逆高速フーリエ変換処理を行い、周波数領域の信号から時間領域の信号に変換する。ロングGI挿入部163は、ノーマルGI挿入部105が付加した通常のガードインターバルよりも長いガードインターバルを、IFFT部162が生成した時間領域の信号に付加し、ロングGIが付加された制御シンボルからなるロングGI-OFDMシンボルの時間領域の信号を生成する。
 一方、情報データシンボル生成部100では、入力された情報データ信号に対して、第7の実施形態で説明した処理と同様の処理を行う。ただし、マッピング部103に入力されたパイロットシンボルを、マッピング部103がパイロットシンボル用のリソースエレメントに配置し、IFFT部104およびノーマルGI挿入部105は、情報データ信号およびパイロットシンボルに対して、第7の実施形態で説明した処理と同様の処理を行う。情報データシンボル生成部100は、ノーマルGI挿入部105による処理の結果、ノーマルGIが付加された情報データシンボルおよびパイロットシンボルからなるノーマルGI-OFDMシンボルの時間領域の信号を出力する。
 多重部120は、第7の実施形態で説明した処理と同様の処理を行うが、情報データシンボル生成部100が生成したノーマルGI-OFDMシンボルと、制御シンボル処理部160が生成したロングGI-OFDMシンボルとを、時間領域で多重する。
 図43は、多重部120で多重された信号の周波数成分と時間成分の例を示す図である。図43の例は、4OFDMシンボルと8サブキャリアで構成されるフレームを示す。図43において、斜線でハッチングされた矩形C1~C4は、ロングGIが付加された制御シンボルであるロングGI制御シンボルが配置された領域を示している。斜線でハッチングされていない矩形は、ノーマルGIが付加された情報データシンボルであるノーマルGI情報データシンボル、または、ノーマルGIが付加されたパイロットシンボルであるノーマルGIパイロットシンボルが配置された領域を示している。ロングGI制御シンボル、ノーマルGI情報データシンボルおよびノーマルGIパイロットシンボルが配置された領域を示す矩形のうち、網掛けでハッチングされた部分は、ガードインターバルの区間を示し、白地の部分は、有効シンボル区間を示している。
 ロングGI制御シンボル、領域C1~C4、すなわち周波数が小さい方から、3番目から6番目のサブキャリア各々において、2番目と3番目のOFDMシンボルにわたる領域に配置されており、それらの有効シンボル区間は、他の3番目のOFDMシンボルに配置されている信号と一致している。すなわち、ロングGI制御シンボルが配置される領域は、1つのロングGI制御シンボルに対して2OFDMシンボル分であるため、そのロングGIは、ノーマルGIに比べて、大幅に長くなっている。これにより、制御シンボルに関して、シンボル間干渉への耐性を大幅に高めることができる。
 このように、通常のガードインターバル区間を超える到来波が到来する環境において、同一OFDMシンボル内のいずれかのサブキャリアに制御シンボルを挿入し、ロングGI挿入部163が、情報データ信号を伝送するためのパラメータの指定などに用いられる重要な情報である該制御シンボルのみに対して、通常のガードインターバル区間よりも長いガードインターバル区間を設定することにより、制御シンボルのシンボル間干渉への耐性を大幅に向上させ、かつ、全体的な伝送効率をほとんど劣化させることなく、受信側にて制御信号を復元させることができる。制御信号は、多くの情報データ信号を伝送するためのパラメータの指定などに用いられる重要な信号であり、制御信号が伝送されないと、多くの情報データ信号も伝送されなくなるため、制御信号の伝送効率を上げることで情報データ信号の伝送効率も上げることができる。
 なお、以上の説明では、ロングGI制御シンボルは、ノーマルGI情報データシンボルの長さに比べて、2倍の長さである場合を説明したが、これに限るものではない。少なくとも、ロングGI制御シンボルは、ノーマルGI情報データシンボルの長さに比べて、長く設定すればよい。例えば、3倍の長さや、1.5倍の長さなどでもよい。
 なお、以上の説明では、制御シンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではない。情報データ信号の内でも重要度の高い信号のシンボルに対して、ロングGIを付加するようにしてもよい。例えば、QoS(Quality of Service)が高い情報データ信号や緊急性が高い情報データ信号などのシンボルに、ロングGIを付加するようにしてもよい。
 なお、本実施形態に係る送信装置は、第7および第8の実施形態に係る送信装置にも適用することができる。
 また、本実施形態において、制御シンボル処理部160は、変調された制御シンボルを入力されるとして説明したが、制御シンボル処理部160が、誤り訂正符号化を行う符号化部と、BPSKなどの変調を行う変調部とを備え、誤り訂正符号化および変調されていない制御信号を受け付けて、これら符号化部による誤り訂正符号化と変調部による変調を行って制御シンボルを生成した後に、マッピング部161に入力するようにしてもよい。
 なお、以上の説明では、入力された全ての制御シンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではない。例えば、一部の制御シンボルに対してロングGIを付加し、それ以外の制御シンボルに対してはノーマルGIを付加してもよい。
その場合、制御シンボルの内、重要度の高い制御シンボルに対してロングGIを付加することが望ましい。
(第10の実施形態)
 以下、図面を参照して、本発明の第10の実施形態について説明する。本実施形態に係る無線通信システムは、OFDM方式で通信する送信装置10cと受信装置20とを備える。本実施形態に係る送信装置10cは、第7の実施形態に係る送信装置10の一部が異なる。以下では、第7の実施形態で説明したブロックの機能が異なるブロックを中心に説明する。なお、説明を省略したブロックは第7の実施形態と同様の機能を持つ。また、本実施形態に係る受信装置20は、第7の実施形態に係る受信装置20(図33)と同様のブロック構成で実現することができる。
 図44は、本実施形態に係る送信装置10cの構成を示す概略ブロック図である。第7の実施形態に係る送信装置10との異なる点は、情報データシンボル生成部100を、情報データシンボル生成部100c(第1のマルチキャリアシンボル生成部とも称する)に変更していることであり、その他の符号(110~140)については同様の構成である。なお、情報データシンボル生成部100cは、情報データシンボル生成部100とは、マッピング部103に替えてマッピング部103cを備えている点のみが異なり、その他の符号(101、102、104、105)については同様の構成である。
 ここで、制御信号とは、例えば、情報データ信号に用いられる変調方式、マッピング方法(リソース割り当て方法)、誤り訂正符号化情報(例えば、符号化方法、符号化率、パンクチャーパターン)、インターリーブ方法、スクランブリング方法、HARQ(Hybrid Automatic Repeat reQuest)制御情報(例えば、パケットの受信通知情報(ACK(Acknowledgement)、NACK(Negative Acknowledgement)や再送回数など)、同期信号、MIMO(Multi-Input Multi-Output)制御情報(例えば、レイヤー数(ストリーム数)やプリコーディング方法)、基地局情報、端末情報、制御情報のフォーマット情報、データ情報のフォーマット情報、フィードバック情報(例えば、CQI(Channel Quality Indicator)など)、送信電力制御情報など含まれるが、これに限るものではない。
 情報データシンボル生成部100cは、符号部101、変調部102、マッピング部103c、IFFT部104、ノーマルGI挿入部105を備えている。情報データ信号および制御信号について、まず、符号部101が、畳込み符号やターボ符号などの誤り訂正符号化を行う。変調部102は、誤り訂正符号化された情報データ信号および制御信号を、QPSKやQAMなどの変調方式により変調し、情報データシンボルおよび制御シンボルを生成する。マッピング部103cは、変調部102が生成した情報データシンボルおよび制御シンボルを、スキャッタードパイロットシンボルがマッピングされるリソースエレメント以外のリソースエレメントであって、情報データシンボルと制御シンボル各々について予め決められたリソースエレメントに対してマッピングする。このとき、後述する図45に例示するように、マッピング部103cがマッピングするリソースエレメントであって、制御シンボルについて決められたリソースエレメントは、ロングGIが付加されるスキャッタードパイロットシンボルに隣接するリソースエレメント、特に同一OFDMシンボル内の隣接サブキャリアのリソースエレメントが優先的に割当てられている。IFFT部104は、周波数領域の信号であるマッピング部103cがマッピングした情報データシンボルおよび制御シンボルに対して、逆高速フーリエ変換処理を行い、周波数領域の信号から時間領域の信号に変換する。ノーマルGI挿入部105は、IFFT部104が生成した時間領域の信号に、通常のガードインターバルを付加する。
 図45は、本実施形態における多重部120により多重された信号の周波数成分と時間成分の例を示す図である。図45の例は、4OFDMシンボルと8サブキャリアで構成されるフレームを示す。図45において、右上がりの斜線でハッチングされた矩形P3、P4は、ガードインターバルを含むパイロットシンボルが配置された領域を示している。右下がりの斜線でハッチングされた矩形C5~C8は、ガードインターバルを含む制御シンボルが配置された領域を示している。斜線でハッチングされていない矩形は、ガードインターバルを含む情報データシンボルが配置された領域を示している。パイロットシンボル、情報データシンボル、制御シンボルが配置された領域を示す矩形のうち、網掛けでハッチングされた部分は、ガードインターバルの区間を示し、白地の部分は、有効シンボル区間を示している。
 ロングGIパイロットシンボルは、領域P3、P4、すなわち周波数が小さい方から、3番目と6番目のサブキャリア各々において、2番目と3番目のOFDMシンボルにわたる領域に配置されており、それらの有効シンボル区間は、他の3番目のOFDMシンボルに配置されているシンボルと一致している。また、制御シンボルは、領域C5~C8、すなわち周波数が小さい方から、2、4、5、7番目のサブキャリア各々において、3番目のOFDMシンボルに配置されている。
 すなわち、各ロングGIパイロットシンボルは、2OFDMシンボル分を用いているため、そのガードインターバル(ロングGI)は、1OFDMシンボルにノーマルGIを加えた長さであり、ノーマルGIに比べて、大幅に長くなっている。また、各パイロットシンボルに周波数方向に隣接するリソースエレメント(同一OFDMシンボル内の隣接サブキャリアのリソースエレメント)には、制御シンボルが配置されている。
 図45に示すように、制御シンボルを、ロングGIが付加されるスキャッタードパイロットシンボルと同一OFDMシンボル内の隣接サブキャリアのリソースエレメントに優先的に割り当てることにより得られる効果について、以下の通り、説明する。一般に、ガードインターバル区間を超える到来波が到来する環境では、受信装置において、高速フーリエ変換(FFT)処理を行うことにより、FFT区間内に到来波の一部に不連続な部分(シンボルの境界)が含まれることになる。このことが起因して、高速フーリエ変換処理後の信号において、キャリア間干渉(ICI;Inter-Carrier Interference)が生じる。
 しかし、図45に示すようなロングGIが付加されたシンボルでは、ガードインターバル区間が長いために、そのガードインターバル区間を超えるような到来波が到来しない、あるいはノーマルGIが付加されたシンボルに比べて非常に弱くなる。そのため、ロングGIが付加されたシンボルでは、そのようなキャリア間干渉ICIが生じない、あるいはキャリア間干渉ICIが非常に弱い。すなわち、ロングGIが付加されたシンボルは、周波数方向に隣接するシンボルに対する干渉(キャリア間干渉ICI)が、ノーマルGIが付加されたシンボルに比べて少ない。以上のことから、そのロングGIが付加されたシンボルの隣接サブキャリアのエレメントは、他のエレメントに比べて、キャリア間干渉ICIが減少することになり、高精度に復元することができる。
 このように、通常のガードインターバル区間を超える到来波が到来する環境において、同一OFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルを挿入し、該スキャッタードパイロットシンボルにのみに対して、通常のガードインターバル区間よりも長いガードインターバル区間を設定する。さらに、該スキャッタードパイロットシンボルの隣接サブキャリアに位置するエレメントに制御シンボルを優先的に割り当てる。これにより、制御シンボルへのキャリア間干渉ICIを低減させ、受信側において、高精度に制御信号を復元させることができる。
 なお、以上の説明では、ロングGIが付加されるスキャッタードパイロットシンボルと同一OFDMシンボル内の隣接サブキャリアのリソースエレメントに優先的に制御シンボルを割り当てることについて、説明を行ったが、これに限るものではなく、ロングGIが付加されるスキャッタードパイロットシンボルと同一OFDMシンボル内の周辺のサブキャリアのエレメントに割り当ててもよい。その場合は、特にロングGIが付加されるスキャッタードパイロットシンボルのリソースエレメントに近いサブキャリアのリソースエレメントに割り当てることが望ましい。
 なお、以上の説明では、ロングGIが付加されるスキャッタードパイロットシンボルと同一OFDMシンボル内の隣接サブキャリアのリソースエレメントに、制御シンボルを優先的に割り当てることについて、説明を行ったが、これに限るものではない。例えば、QoS(Quality of Service)が高い情報データ信号や緊急性が高い情報データ信号などのシンボルを優先的に割り当てるようにしてもよい。
 なお、本実施形態に係る送信装置10cのマッピング部103cは、第1~第9の実施形態に係る送信装置にも適用することができる。
 なお、以上の説明では、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではない。例えば、一部のパイロットシンボルに対してロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加してもよい。
(第11の実施形態)
 以下、図面を参照して、本発明の第11の実施形態について説明する。本実施形態に係る無線通信システムは、OFDM方式で通信する送信装置10と受信装置20aとを備える。本実施形態に係る送信装置10は、第7の実施形態に係る送信装置10(図29)と同様のブロック構成で実現することができる。本実施形態に係る受信装置20aは、第7の実施形態に係る受信装置20の一部が異なる。以下では、第7の実施形態で説明したブロックの機能が異なるブロックを中心に説明する。なお、説明を省略したブロックは第7の実施形態と同様の機能を持つ。
 図46は、本実施形態に係る受信装置20aの構成を示す概略ブロック図である。第7の実施形態に係る受信装置20との異なる点は、第7の実施形態におけるパイロットシンボル処理部280における第2のFFT区間抽出部281と、第2のFFT部282が省略され、本実施形態におけるパイロットシンボル処理部280aへの入力は、第1のFFT部230から出力された周波数領域の信号となっていることである。
 受信装置20aでは、第7の実施形態と同様に図32で示したようなノーマルGIが付加された情報データシンボルおよび制御シンボルと、ロングGIが付加されたスキャッタードパイロットシンボルとが、多重された信号が受信される。第11の実施形態に係る受信装置20aは、第2のFFT区間抽出部281を備えず、第1のFFT区間抽出部220のみを備えている。そして、受信装置20aの第1のFFT区間抽出部220および第1のFFT部230は、受信信号に対して、第7の実施形態におけるノーマルGIが付加された情報データシンボルおよび制御シンボルへのFFT区間抽出およびFFT処理と同様の処理を行う。
 この場合、ロングGIが付加されたスキャッタードパイロットシンボル、すなわちロングGI-OFDMの有効シンボル区間(図32における2番目のOFDMシンボル)にもFFT処理を行うことになるので、第1のFFT部230が、このFFT処理により生成した周波数領域の信号は、ノーマルGI-OFDMシンボルに含まれるシンボルの受信信号と、ロングGI-OFDMシンボルに含まれるシンボルの受信信号とを含む。そして、パイロットシンボル処理部280におけるパイロット抽出部283(シンボル抽出部)は、この周波数領域の信号から、ノーマルGI-OFDMシンボルに含まれるシンボルの受信信号の部分を抽出せずに破棄し、ロングGI-OFDMシンボルに含まれるシンボルの受信信号を、受信したパイロットシンボルとして抽出する。このときパイロット抽出部283は、ロングGI-OFDMシンボルの有効シンボル区間(図32における3番目のOFDMシンボル)、かつ、パイロットシンボルが配置されたサブキャリアの信号を抽出することで、ロングGI-OFDMシンボルに含まれるシンボルの受信信号をパイロットシンボルの受信信号として抽出する。
 このように、同一OFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルを挿入し、該スキャッタードパイロットシンボルにのみに対して、通常のガードインターバル区間よりも長いガードインターバル区間を設定する方法において、ロングGIに対応したFFT区間の抽出処理をせず、ノーマルGIに対応したFFT区間の抽出処理のみで受信させることにより、回路規模を削減させると共に、シンボル間干渉への耐性を大幅に向上させ、かつ、全体的な伝送効率をほとんど劣化させることなく、精度の良い伝搬路推定を実現させることができる。
 なお、本実施形態に係る受信装置20aは、第7~第10の実施形態に係る受信装置にも適用することができる。
 (第12の実施形態)
 以下、図面を参照して、本発明の第12の実施形態について説明する。本実施形態に係る無線通信システムは、OFDM方式で通信する送信装置10dと受信装置20dとを備える。送信装置10dおよび受信装置20dは、第7の実施形態に係る送信装置10(図29)および受信装置20(図33)とほぼ同様であるが、本実施形態では複数の送信アンテナおよび受信アンテナを用いたMIMO(Multipul Input Multiple Output;多入力多出力)システムであるため、そのアンテナの数に応じて、各ブロックの数が異なる。以下では、第7の実施形態で説明したブロックの機能が異なるブロックを中心に説明する。なお、説明を省略したブロックは第7の実施形態と同様の機能を持つ。
 図47は、本実施形態に係る送信装置10dの構成を示す概略ブロック図である。送信装置10dは、送信アンテナ1用送信処理部11および送信アンテナ2用送信処理部12を備えている。各送信処理部は、それぞれ、情報データシンボル生成部100、パイロットシンボル処理部110d、多重部120、送信部130、送信アンテナ140を備えている。また、各送信処理部には、それぞれ、情報データ信号および制御信号(送信アンテナ1用)、パイロットシンボル(送信アンテナ1用)および情報データ信号および制御信号(送信アンテナ2用)、パイロットシンボル(送信アンテナ2用)が入力される。
 図48は、送信アンテナ1用送信処理部11が生成するノーマルGI情報データシンボルおよびノーマルGI制御シンボル(アンテナ1用)、ロングGIパイロットシンボル(アンテナ1用)が構成するフレームを示す図である。図48の例は、4OFDMシンボルと8サブキャリアで構成されるフレームを示す。送信アンテナ1用送信処理部11は、フレーム中のスキャッタードパイロットシンボルを配置する2つのリソースエレメント(3番目および6番目のサブキャリアの3番目のOFDMシンボル)の内の1つのリソースエレメント(6番目のサブキャリア)に送信アンテナ1用のロングGIパイロットシンボルP5の有効シンボルを配置し、もう1つのスキャッタードパイロットシンボルのリソースエレメント(3番目のサブキャリア)は、ゼロ(null)とする。これにより、送信アンテナ1用のパイロットシンボルが、送信アンテナ2用送信処理部12が配置する送信アンテナ2用のパイロットシンボルと重ならないように(干渉しないように)している。
 図49は、また、送信アンテナ2用送信処理部12が生成するノーマルGI情報データシンボルおよびノーマルGI制御シンボル(アンテナ2用)、ロングGIパイロットシンボル(アンテナ2用)が構成するフレームを示す図である。図49の例は、4OFDMシンボルと8サブキャリアで構成されるフレームを示す。送信アンテナ2用送信処理部12は、フレーム中のスキャッタードパイロットシンボルを配置する2つのスキャッタードパイロットシンボルの内の1つのリソースエレメント(3番目のサブキャリア)に送信アンテナ2用のパイロットシンボルP6の有効シンボルを配置し、もう1つのスキャッタードパイロットシンボルのリソースエレメント(6番目のサブキャリア)は、ゼロ(null)とする。これにより、送信アンテナ2用のパイロットシンボルが、送信アンテナ1用送信処理部11が配置する送信アンテナ1用のパイロットシンボルと重ならないように(干渉しないように)している。
 以上のように、スキャッタードパイロットシンボルを、送信アンテナ毎に互いに独立に割り当てることで、受信装置20dでは、ノーマルGIが付加された情報データシンボルについては、空間的に多重された状態で受信するが、ロングGIが付加されたスキャッタードパイロットシンボルについては、空間的に多重されずに受信することができる。
 各送信処理部では、図48および図49で例示したような、それぞれの送信フレームを同時に送信する。
 図50は、本実施形態に係る受信装置20dの構成を示す概略ブロック図である。受信装置20dは、受信アンテナ1用受信処理部21、受信アンテナ2用受信処理部22、信号分離部23、送信アンテナ1用受信処理部24、送信アンテナ2用受信処理部25、パイロットシンボル処理部26を備えている。受信アンテナ1用受信処理部21および受信アンテナ2用受信処理部22は、それぞれ、受信アンテナ200、受信部210、第1のFFT区間抽出部220、第1のFFT部230を備えている。送信アンテナ1用受信処理部24および送信アンテナ2用受信処理部25は、それぞれ、デマッピング部250、復調部260、復号部270を備えている。なお、同図において、図33の各部に対応する部分には同一の符号(200~283)を付ける。
 受信アンテナ1用受信処理部21および受信アンテナ2用受信処理部22では、受信アンテナ200毎の受信信号に対して、受信部210、第1のFFT区間抽出部220、第1のFFT部230が、それぞれ図33における受信部210、第1のFFT区間抽出部220、第1のFFT部230と同様の処理を行い、信号分離部23に出力する。
 パイロットシンボル処理部26では、受信アンテナ毎の受信信号に対して、第2のFFT区間抽出部281、第2のFFT部282、パイロット抽出部283が、それぞれ図33における第2のFFT区間抽出部281、第2のFFT部282、パイロット抽出部283と同様の処理を行い、伝搬路推定部284dが、パイロット抽出部283が抽出したパイロットシンボルを用いて、送信アンテナ130と受信アンテナ200の組合せ毎に伝搬路推定を行い、信号分離部23に出力する。
 信号分離部23は、受信アンテナ1用受信処理部21および受信アンテナ2用受信処理部22から受けた受信アンテナ200毎の信号およびパイロットシンボル処理部26から受けた伝搬路推定結果に基づいて、空間多重された送信アンテナ140毎の情報データシンボルを分離する。このとき、空間多重された信号に対する信号分離方法としては、様々な方法を適用することができる。例えば、ZF(ゼロフォーシング:Zero-Forcing)基準、MMSE(最小二乗平均誤差:Minimum Mean Square Error)基準、ML(最大尤度:Maximum Likelihood)基準などの信号分離方法を適用することができるが、これに限るものではない。
 送信アンテナ1用受信処理部24および送信アンテナ2用受信処理部25では、信号分離部23が信号分離した送信アンテナ140毎の信号に対して、デマッピング部250、復調部260、復号部270が、それぞれ図33におけるデマッピング部250、復調部260、復号部270と同様の処理を行う。
 図51は、受信装置20dが受信する情報データシンボル、制御シンボルおよびパイロットシンボルが構成するフレームを示す図である。図51の例は、4OFDMシンボルと8サブキャリアで構成されるフレームを示す。図48および図49に示すように、スキャッタードパイロットシンボルを互いに独立に割り当てることで、受信装置20dは、図51に示すようなフレームを受信する。ノーマルGIが付加された情報データシンボルは空間的に多重されているため、空間多重された信号を分離する信号分離部23による処理が必要となる。
 しかし、送信装置10dの各送信処理部は、スキャッタードパイロットシンボルを送信アンテナ毎に互いに独立に挿入する、言い換えると、他の送信処理部においてロングGIが付加されたスキャッタードパイロットシンボルを配置するリソースエレメントには、シンボルを配置しない。例えば、図51では、ロングGIが付加されたスキャッタードパイロットシンボルのうち、送信アンテナ1用のロングGIパイロットシンボルP5は、6番目のサブキャリアの2、3番目のOFDMシンボルに、送信アンテナ2用のロングGIパイロットシンボルP6は、3番目のサブキャリアの2、3番目のOFDMシンボルにそれぞれ配置されている。このため、各パイロットシンボルは、他のパイロットシンボルとも情報データシンボルとも空間的に多重されていないため、パイロットシンボルに対しては信号分離部23のような処理は不要であり、受信装置20dの伝搬路推定部284dは、空間多重による干渉の影響を受けない、高精度な伝搬路推定を行うことができる。
 本実施形態を用いることにより、MIMO(Multi-Input Multi-Output)を用いた通信システムで、通常のガードインターバル区間を超える到来波が到来する環境において、同一OFDMシンボル内のいずれかのサブキャリアにスキャッタードパイロットシンボルを送信アンテナ毎に互いに独立に挿入し、該スキャッタードパイロットシンボルにのみに対して、通常のガードインターバル区間よりも長いガードインターバル区間を設定することにより、シンボル間干渉への耐性を大幅に向上させ、かつ、全体的な伝送効率をほとんど劣化させることなく、伝搬路推定を実現させることができる。
 以上の説明では、送信アンテナおよび受信アンテナがそれぞれ2つずつの場合を説明したが、これに限るものではなく、送信アンテナおよび受信アンテナがそれぞれ2つ以上の場合にも適用できる。また、送信アンテナと受信アンテナの数が互いに異なる場合にも適用できる。
 以上の説明では、送信アンテナ毎の情報データシンボルは、それぞれ互いに変調処理および復号処理などを行っていたが、これに限るものではない。例えば、復調処理または復号処理を行った信号を、各送信アンテナの送信処理部に割り当ててもよい。
 なお、本実施形態に係る送信装置10および受信装置20dは、第7~第11の実施形態に係る送信装置および受信装置にも適用することができる。
 なお、以上の説明では、入力された全てのパイロットシンボルに対して、ロングGIを付加した場合を説明したが、これに限るものではない。例えば、一部のパイロットシンボルに対してロングGIを付加し、それ以外のパイロットシンボルに対してはノーマルGIを付加してもよい。また、一部の送信アンテナ用のパイロットシンボルに対してロングGIを付加し、それ以外の送信アンテナ用のパイロットシンボルに対してはノーマルGIを付加してもよい。その場合、重要度の高い情報データ信号および制御信号を送信する送信アンテナ用のパイロットシンボルに対してロングGIを付加するようにしてもよい。
 なお、本発明は、移動通信のみならず、固定通信の分野においても使用することができる。双方向通信に使用するときは、本発明の送信装置は一方の送受信機の送信部分に使用され、本発明の受信装置は他方の送受信装置の受信部分に使用される。移動通信に使用される場合には、例えば、本発明の送信装置は基地局装置の送信部分に使用され、本発明の受信装置は移動局装置の受信部分に使用される。
 なお、上述した実施形態における送信装置および受信装置の一部、例えば、送信アンテナと送信部を除いた各部、受信アンテナと受信部を除いた各部の機能をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時刻の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時刻プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、本発明の実施形態について、図面を参照して説明してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲においての種々の変更も含まれる。
 a1,a2,a3,a4,a5・・・送信装置
 a10・・・情報データシンボル生成部(第1のシンボル生成部)
 a20・・・パイロットシンボル処理部(第2のシンボル生成部)
 a30,a32,a33,a34・・・多重部(多重部)
 a40・・・IFFT部(周波数時間変換部)
 a50・・・GI挿入部(ガードインターバル挿入部)
 a60・・・送信部
 a70・・・パイロットシンボル記憶部(シンボル記憶部)
 a80・・・制御シンボル処理部
 a90・・・情報データ・制御シンボル生成部
 a11,a91・・・符号部
 a12,a92・・・変調部
 a13,a93・・・マッピング部
 a21,a81・・・マッピング部
 a22,a82・・・位相制御部
 a1-1・・・送信アンテナ1用送信処理部
 a1-2・・・送信アンテナ2用送信処理部
 a100・・・送信アンテナ
 b1,b2,b3・・・受信装置
 b10・・・受信部
 b20・・・ノーマルGI-FFT区間抽出部(第1のガードインターバル除去部)
 b30・・・FFT部(時間周波数変換部)
 b40,b42・・・フィルタ部
 b50・・・デマッピング部
 b60・・・復調部
 b70・・・復号部
 b80,b90,b800・・・パイロットシンボル処理部
 b81,b801・・・ロングGI-FFT区間抽出部(第2のガードインターバル除去部)
 b82,b802・・・FFT部
 b83,b93,b803・・・パイロット抽出部(シンボル抽出部)
 b84,b94,b804・・・伝搬路推定部
 b100-1・・・受信アンテナ1用受信処理部
 b100-2・・・受信アンテナ2用受信処理部
 b200・・・信号分離部
 b300-1・・・送信アンテナ1用受信処理部
 b300-2・・・送信アンテナ2用受信処理部
 b500・・・受信アンテナ
 10、10a、10b、10c、10d…送信装置
 11…送信アンテナ1用送信処理部
 12…送信アンテナ2用送信処理部
 20、20a、20d…受信装置
 21…受信アンテナ1用受信処理部
 22…受信アンテナ2用受信処理部
 23…信号分離部
 24…送信アンテナ1用受信処理部
 25…送信アンテナ2用受信処理部
 26…パイロットシンボル処理部
 100、100c…情報データシンボル生成部
 101…符号部
 102…変調部
 103、103c…マッピング部
 104…IFFT部
 105…ノーマルGI挿入部
 110、110d…パイロットシンボル処理部
 111、111d…マッピング部
 112…IFFT部
 113…ロングGI挿入部
 120…多重部
 130…送信部
 140…送信アンテナ
 150…パイロットシンボル記憶部
 160…制御シンボル処理部
 161…マッピング部
 162…IFFT部
 163…ロングGI挿入部
 200…受信アンテナ
 210…受信部
 220…第1のFFT区間抽出部
 230…第1のFFT部
 240…フィルタ部
 250…デマッピング部
 260…復調部
 270…復号部
 280、280a…パイロットシンボル処理部
 281…第2のFFT区間抽出部
 282…第2のFFT部
 283…パイロット抽出部
 284、284d…伝搬路推定部

Claims (23)

  1.  デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置において、
     第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在している、
     ことを特徴とする送信装置。
  2.  一部の前記シンボルであって、第1のガードインターバルより長い第2のガードインターバルが付加されるシンボルを位相回転し、前記一部のシンボルと同じサブキャリアの時間方向に1つ前に配置されるシンボルであって、前記一部のシンボルに付加する第2のガードインターバルの一部を構成するシンボルを生成する位相制御部と、
     前記第1のガードインターバルが付加されるシンボルと、前記第2のガードインターバルが付加されるシンボルと、前記位相回転部が生成したシンボルとを周波数領域で多重する多重部と、
     前記多重部が多重したシンボルを逆フーリエ変換して、時間領域の信号に変換する逆フーリエ変換部と、
     前記逆フーリエ変換部が変換した時間領域の信号に、前記第1のガードインターバルの長さのガードインターバルを付加するガードインターバル挿入部と、
     を具備し、
     第1のマルチキャリアシンボルと第2のマルチキャリアシンボルを生成する、
     ことを特徴とする請求項1に記載の送信装置。
  3.  前記位相制御部は、
     前記第1のガードインターバルの長さに基づいて位相回転する際の位相回転量を制御する、
     ことを特徴とする請求項2に記載の送信装置。
  4.  前記第2のマルチキャリアシンボルの有効シンボル区間は、
     前記第1のマルチキャリアシンボルのいずれかの有効シンボル区間と、時間方向で一致している、
     ことを特徴とする請求項1に記載の送信装置。
  5.  前記送信装置は、
     前記第2のマルチキャリアシンボルを記憶するシンボル記憶部をさらに備える、
     ことを特徴とする請求項1に記載の送信装置。
  6.  前記第2のマルチキャリアシンボルは、
     該送信装置と通信する受信装置との間で既知となっているパイロット信号を含むパイロットシンボルである、
     ことを特徴とする請求項1に記載の送信装置。
  7.  前記第2のマルチキャリアシンボルは、
     該送信装置と通信する受信装置に対する制御信号を含む制御データシンボルである、
     ことを特徴とする請求項1に記載の送信装置。
  8.  前記第1のマルチキャリアシンボルは、
     該送信装置と通信する受信装置に対する情報データを含む情報データシンボルである、
     ことを特徴とする請求項1に記載の送信装置。
  9.  前記第1のマルチキャリアシンボルは、
     該送信装置と通信する受信装置に対する情報データを含む情報データシンボル、および該送信装置と通信する受信装置に対する制御信号を含む制御データシンボルである、
     ことを特徴とする請求項1に記載の送信装置。
  10.  前記制御データシンボルである前記第1のマルチキャリアシンボルは、
     前記第2のマルチキャリアシンボルが配置されたサブキャリアに隣接するサブキャリアに配置する、
     ことを特徴とする請求項9に記載の送信装置。
  11.  前記位相制御部と、前記多重部と、前記逆フーリエ変換部と、前記ガードインターバル挿入部とからなる送信処理部を複数備え、
     1つの前記送信処理部内の前記第2のマルチキャリアシンボルは、
     他の前記送信処理部と互いに空間的に独立した第2のマルチキャリアシンボルである、
     ことを特徴とする請求項1に記載の送信装置。
  12.  一部の前記シンボルに前記第1のガードインターバルを付加して前記第1のマルチキャリアシンボルを生成する第1のマルチキャリアシンボル生成部と、
     その他の一部の前記シンボルに前記第2のガードインターバルを付加して前記第2のマルチキャリアシンボルを生成する第2のマルチキャリアシンボル生成部と、
     前記第1のマルチキャリアシンボルと、前記第2のマルチキャリアシンボルとを時間領域で多重する多重部と
     を具備することを特徴とする請求項1に記載の送信装置。
  13.  前記第1のマルチキャリアシンボル生成部は、前記一部のシンボルの各々を予め決められた幅の時間、周波数からなる領域のいずれかに配置し、前記第1のガードインターバルを付加した前記第1のマルチキャリアシンボルの時間領域の信号を生成し、
     前記第2のマルチキャリアシンボル生成部は、前記その他の一部のシンボルの各々を前記予め決められた幅の時間、周波数からなる領域であって、前記一部のシンボルが配置される領域を除く領域のいずれかに配置し、前記第2のガードインターバルを付加した前記第2のマルチキャリアシンボルの時間領域の信号を生成し、
     前記多重部は、前記第1のマルチキャリアシンボルの時間領域の信号と前記第2のマルチキャリアシンボルの時間領域の信号とを多重することを特徴とする請求項12に記載の送信装置。
  14.  デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置および受信装置を備える通信システムにおいて、
     前記送信装置は、
     第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在しているマルチキャリア信号を送信し、
     前記受信装置は、
     前記送信装置から送信されてきたマルチキャリア信号をマルチキャリア復調して前記複数のサブキャリアを分離し、前記第1のシンボルと、前記第2のシンボルとを抽出する、
     ことを特徴とする通信システム。
  15.  前記受信装置は、
     前記送信装置から送信されてきた前記マルチキャリア信号を受信し、
     受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去部と、
     受信した前記マルチキャリア信号に含まれる前記第2のガードインターバルを除去する第2のガードインターバル除去部と、
     を備えることを特徴とする請求項14に記載の通信システム。
  16.  前記受信装置は、
     前記送信装置から送信されてきた前記マルチキャリア信号を受信し、
     受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去部と、
     前記第1のガードインターバル除去部が前記第1のガードインターバルを除去した前記マルチキャリア信号から、該マルチキャリア信号に含まれる前記第2のマルチキャリアシンボルを抽出するシンボル抽出部と、
     を備えることを特徴とする請求項14に記載の通信システム。
  17.  前記シンボル抽出部が抽出する有効シンボル区間は、
     前記第2のマルチキャリアシンボルの有効シンボル区間である、
     ことを特徴とする請求項16に記載の通信システム。
  18.  デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置の送信方法において、
     第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在している、
     ことを特徴とする送信方法。
  19.  前記送信方法は、
     一部の前記シンボルであって、第1のガードインターバルより長い第2のガードインターバルが付加されるシンボルを位相回転し、前記一部のシンボルと同じサブキャリアの時間方向に1つ前に配置されるシンボルであって、前記一部のシンボルに付加する第2のガードインターバルの一部を構成するシンボルを生成する位相制御手順と、
     前記第1のガードインターバルが付加されるシンボルと、前記第2のガードインターバルが付加されるシンボルと、前記位相回転手順が生成したシンボルとを周波数領域で多重する多重手順と、
     前記多重手順が多重したシンボルを逆フーリエ変換して、時間領域の信号に変換する逆フーリエ変換手順と、
     前記逆フーリエ変換手順が変換した時間領域の信号に、前記第1のガードインターバルの長さのガードインターバルを付加するガードインターバル挿入手順と、
     を含み、
     第1のマルチキャリアシンボルと第2のマルチキャリアシンボルを生成したマルチキャリア信号を送信する、
     ことを特徴とする請求項18に記載の送信方法。
  20.  デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信装置における送信方法であって、
     前記送信装置が、一部の前記シンボルに第1のガードインターバルを付加して第1のマルチキャリアシンボルを生成する第1の過程と、
     前記送信装置が、その他の一部の前記シンボルに前記第1のガードインターバルより長い第2のガードインターバルを付加して第2のマルチキャリアシンボルを生成する第2の過程と、
     前記送信装置が、前記第1のマルチキャリアシンボルと、前記第2のマルチキャリアシンボルとを時間領域で多重する第3の過程と
     を備えることを特徴とする請求項18に記載の送信方法。
  21.  デジタル信号の基本単位であるシンボルをマルチキャリア変調して送信する送信方法および受信方法を含む通信方法において、
     前記送信方法は、
     第1のガードインターバルを有する第1のマルチキャリアシンボル中でシンボルが配置されたサブキャリアと、前記第1のガードインターバルよりも長い第2のガードインターバルを有する第2のマルチキャリアシンボル中でシンボルが配置されたサブキャリアとが、同一時刻において前記マルチキャリアを構成する複数のサブキャリアの間で散在しているマルチキャリア信号を送信し、
     前記受信方法は、
     送信されてきたマルチキャリア信号をマルチキャリア復調して前記複数のキャリアを分離し、前記第1のシンボルと、前記第2のシンボルとを抽出する、
     ことを特徴とする通信方法。
  22.  前記受信方法は、
     送信されてきた前記マルチキャリア信号を受信し、
     受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去手順と、
     受信した前記マルチキャリア信号に含まれる前記第2のガードインターバルを除去する第2のガードインターバル除去手順と、
     を含むことを特徴とする請求項21に記載の通信方法。
  23.  前記受信方法は、
     送信されてきた前記マルチキャリア信号を受信し、
     受信した前記マルチキャリア信号に含まれる前記第1のガードインターバルを除去する第1のガードインターバル除去手順と、
     前記第1のガードインターバル除去手順が前記第1のガードインターバルを除去した前記マルチキャリア信号から、該マルチキャリア信号に含まれる前記第2のシンボルを抽出するシンボル抽出手順と、
     を含むことを特徴とする請求項21に記載の通信方法。
PCT/JP2010/000070 2009-01-08 2010-01-07 送信装置、送信方法、通信システムおよび通信方法 WO2010079757A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010545750A JP5361082B2 (ja) 2009-01-08 2010-01-07 送信装置、受信装置、通信システム、送信方法および受信方法
US13/143,281 US8693560B2 (en) 2009-01-08 2010-01-07 Transmission apparatus, transmission method, communication system, and communication method
BRPI1006119A BRPI1006119A2 (pt) 2009-01-08 2010-01-07 aparelho de transmissão, método de transmissão, sistema de comunicação, e método de comunicação
CN2010800039336A CN102273113A (zh) 2009-01-08 2010-01-07 发送装置、发送方法、通信系统以及通信方法
EP10729177.5A EP2378685A4 (en) 2009-01-08 2010-01-07 TRANSMITTER, TRANSMISSION PROCEDURE, COMMUNICATION SYSTEM AND COMMUNICATION PROCESS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009002694 2009-01-08
JP2009002693 2009-01-08
JP2009-002694 2009-01-08
JP2009-002693 2009-01-08

Publications (1)

Publication Number Publication Date
WO2010079757A1 true WO2010079757A1 (ja) 2010-07-15

Family

ID=42316523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000070 WO2010079757A1 (ja) 2009-01-08 2010-01-07 送信装置、送信方法、通信システムおよび通信方法

Country Status (6)

Country Link
US (1) US8693560B2 (ja)
EP (1) EP2378685A4 (ja)
JP (1) JP5361082B2 (ja)
CN (1) CN102273113A (ja)
BR (1) BRPI1006119A2 (ja)
WO (1) WO2010079757A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694757A (zh) * 2011-03-24 2012-09-26 株式会社东芝 接收装置及接收方法
JP2013074418A (ja) * 2011-09-27 2013-04-22 Icom Inc 通信機、および通信方法
JP2015065501A (ja) * 2013-09-24 2015-04-09 日本放送協会 送信装置及び受信装置
WO2017022059A1 (ja) * 2015-08-03 2017-02-09 三菱電機株式会社 送信装置
WO2018135438A1 (ja) * 2017-01-19 2018-07-26 日本電気株式会社 基地局、移動局、基地局の制御方法、記録媒体
WO2022024802A1 (ja) * 2020-07-29 2022-02-03 ソニーグループ株式会社 送信装置、送信方法、受信装置、及び、受信方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335204B2 (en) * 2009-01-30 2012-12-18 Wi-Lan, Inc. Wireless local area network using TV white space spectrum and long term evolution system architecture
US8891461B2 (en) * 2010-06-21 2014-11-18 Futurewei Technologies, Inc. System and method for control information multiplexing for uplink multiple input, multiple output
JP5578617B2 (ja) * 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
AU2011339962B2 (en) 2010-12-10 2016-09-01 Sun Patent Trust Signal generation method and signal generation device
CN102035767B (zh) * 2010-12-10 2013-10-09 华为技术有限公司 信道估计方法和装置
KR20120067872A (ko) * 2010-12-16 2012-06-26 한국전자통신연구원 무선통신 시스템에서의 상향링크 제어신호 전송 방법 및 그 장치
CN103107962B (zh) * 2012-03-07 2014-08-20 展讯通信(上海)有限公司 发送信号估计值的获取处理方法与装置、片上系统
WO2013172729A1 (en) * 2012-05-15 2013-11-21 Intel Corporation Receiver with doppler tolerant equalization
CN104335665A (zh) * 2012-06-08 2015-02-04 诺基亚通信公司 分帧的通信系统中的无线电资源预留
US9166764B2 (en) 2012-10-16 2015-10-20 Qualcomm Incorporated Methods and apparatus for feedback computation and decoding with synchronously coded subcarriers in OFDMA systems
US9462581B2 (en) 2012-10-16 2016-10-04 Qualcomm Incorporated Methods and apparatus for synchronously coded subcarriers in OFDMA systems
US8971906B2 (en) 2013-01-17 2015-03-03 Qualcomm Incorporated Hybrid interference alignment for mixed macro-FEMTO base station downlink
US8908606B2 (en) 2013-01-23 2014-12-09 Qualcomm Incorporated Opportunistic interference alignment for multi-cell multi-user uplink
US20140294124A1 (en) 2013-03-28 2014-10-02 Sony Corporation Transmitter and method of transmitting and receiver and method of detecting ofdm signals
GB2513839A (en) * 2013-03-28 2014-11-12 Sony Corp Transmitter and method of transmitting
KR101822763B1 (ko) * 2013-08-30 2018-01-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 일정한 엔벨로프를 가진 신호를 전송하기 위한 방법 및 장치
US11855818B1 (en) * 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
JP6334816B2 (ja) 2014-08-13 2018-05-30 華為技術有限公司Huawei Technologies Co.,Ltd. Fbmc信号送信方法及び受信方法、送信機及び受信機
ES2970728T3 (es) * 2014-08-28 2024-05-30 Atlas Global Tech Llc Método de transmisión de tramas y método de recepción de tramas
US9553699B2 (en) 2014-08-28 2017-01-24 Newracom, Inc. Frame transmitting method and frame receiving method
CN105337920B (zh) * 2015-09-24 2018-09-04 南京楚卿电子科技有限公司 一种基于干扰消除的多模式无线通信系统
US10103792B2 (en) * 2016-01-14 2018-10-16 Intel Corporation Apparatus, system and method of communicating a multiple-input-multiple-output (MIMO) transmission
US10925005B2 (en) * 2016-03-25 2021-02-16 Apple Inc. Uplink power control for 5G systems
CN106534026B (zh) * 2016-10-14 2020-01-14 深圳市元征科技股份有限公司 一种数据序列处理方法及相关设备
US10700910B2 (en) 2017-06-16 2020-06-30 Qualcomm Incorporated Single carrier waveform data transmission and reception based on configurable DFT window
CN109302718B (zh) * 2017-07-24 2020-10-09 华为技术有限公司 一种数据传输方法及装置
US11321251B2 (en) * 2018-05-18 2022-05-03 Nec Corporation Input/output process allocation control device, input/output process allocation control method, and recording medium having input/output process allocation control program stored therein
US11088799B2 (en) * 2019-03-08 2021-08-10 Qualcomm Incorporated Multi-symbol self-contained waveform design
US11041948B2 (en) * 2019-04-08 2021-06-22 Apple Inc. Channel estimation combining for secure time of flight applications
CN112187682B (zh) * 2019-07-02 2022-08-26 华为技术有限公司 符号处理的方法与装置
CN112187690B (zh) 2019-07-02 2022-10-04 华为技术有限公司 符号处理的方法与装置
CN110649935B (zh) * 2019-09-12 2021-03-19 北京维普无限智能技术有限公司 一种多码制信号切换方法
US11385897B2 (en) * 2019-10-01 2022-07-12 Marvell Asia Pte, Ltd. Merge execution unit for microinstructions
CN114600431B (zh) * 2019-10-30 2023-08-04 华为技术有限公司 符号处理的方法与装置
US10992419B1 (en) * 2020-03-12 2021-04-27 Nxp B.V. Wireless communications device and method for performing an angle measurement
KR20220018358A (ko) * 2020-08-06 2022-02-15 삼성전자주식회사 주파수 오프셋을 사용하는 비직교 다중 접속 시스템에서 채널 추정 방법 및 장치
CN114513396B (zh) * 2022-04-21 2022-07-08 科大天工智能装备技术(天津)有限公司 基于工业5g下的ofdm/oqam的导频方法和系统
CN115460634B (zh) * 2022-11-11 2023-04-07 成都川美新技术股份有限公司 一种基于时频变换的分布式业务流数据扩展复用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077729A1 (ja) * 2005-01-20 2006-07-27 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置、および無線通信方法
WO2007069329A1 (ja) * 2005-12-15 2007-06-21 Fujitsu Limited 移動通信システムにおける送信処理方法及び基地局
JP2007335973A (ja) * 2006-06-12 2007-12-27 Nec Corp 移動通信システム及び受信装置
JP2008028818A (ja) * 2006-07-24 2008-02-07 Fujitsu Ltd 送信装置及びサブフレームの作成方法
JP2009002694A (ja) 2007-06-19 2009-01-08 Nippon Sheet Glass Co Ltd 蛍光測定用プローブ
JP2009002693A (ja) 2007-06-19 2009-01-08 Mitsubishi Heavy Ind Ltd オイル劣化検出装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898681B2 (ja) 2003-09-30 2007-03-28 株式会社東芝 携帯端末、通信システムおよび通信方法
JP4696078B2 (ja) * 2004-11-10 2011-06-08 富士通株式会社 セル選択装置及びセル選択方法
KR100983411B1 (ko) * 2005-01-06 2010-09-20 후지쯔 가부시끼가이샤 무선 통신 시스템
JP4463780B2 (ja) * 2005-06-14 2010-05-19 株式会社エヌ・ティ・ティ・ドコモ 送信装置および送信方法
JP2006352786A (ja) * 2005-06-20 2006-12-28 Sharp Corp Ofdm無線通信システムおよび基地局装置および端末局装置
KR100981552B1 (ko) * 2005-06-21 2010-09-10 삼성전자주식회사 주파수분할 다중접속 시스템에서 상향링크 파일롯의 송수신장치 및 방법
EP1898543A1 (en) 2005-07-14 2008-03-12 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus and radio communication method in multicarrier communication
CN101248605B (zh) * 2005-08-26 2011-09-21 松下电器产业株式会社 无线发送装置和无线发送方法
JP2007067821A (ja) 2005-08-31 2007-03-15 Matsushita Electric Ind Co Ltd 無線受信装置およびスロット同期方法
JP2007159066A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd 無線通信装置及び無線通信制御方法
EP2501075A1 (en) * 2005-12-27 2012-09-19 Fujitsu Limited Subframe structure for the multiplexing of unicast and multicast services
AU2007200185A1 (en) * 2006-02-08 2007-08-23 Nec Australia Pty Ltd Delivery of multicast and uni-cast services in an OFDMA system
KR20070103917A (ko) * 2006-04-20 2007-10-25 엘지전자 주식회사 통신 시스템에서의 보호구간 삽입 방법 및 그를 위한 송신장치
KR20070105558A (ko) * 2006-04-26 2007-10-31 삼성전자주식회사 직교 주파수 분할 다중 접속 기반 셀룰러무선통신시스템에서 공통제어채널의 수신 성능 향상을 위한방법 및 장치
JP4814176B2 (ja) * 2007-05-01 2011-11-16 株式会社エヌ・ティ・ティ・ドコモ 基地局装置および同期チャネル送信方法
KR101443633B1 (ko) * 2008-01-01 2014-09-23 엘지전자 주식회사 새로운 레인징 구조를 이용한 레인징 수행 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077729A1 (ja) * 2005-01-20 2006-07-27 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置、および無線通信方法
WO2007069329A1 (ja) * 2005-12-15 2007-06-21 Fujitsu Limited 移動通信システムにおける送信処理方法及び基地局
JP2007335973A (ja) * 2006-06-12 2007-12-27 Nec Corp 移動通信システム及び受信装置
JP2008028818A (ja) * 2006-07-24 2008-02-07 Fujitsu Ltd 送信装置及びサブフレームの作成方法
JP2009002694A (ja) 2007-06-19 2009-01-08 Nippon Sheet Glass Co Ltd 蛍光測定用プローブ
JP2009002693A (ja) 2007-06-19 2009-01-08 Mitsubishi Heavy Ind Ltd オイル劣化検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2378685A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694757A (zh) * 2011-03-24 2012-09-26 株式会社东芝 接收装置及接收方法
JP2013074418A (ja) * 2011-09-27 2013-04-22 Icom Inc 通信機、および通信方法
JP2015065501A (ja) * 2013-09-24 2015-04-09 日本放送協会 送信装置及び受信装置
WO2017022059A1 (ja) * 2015-08-03 2017-02-09 三菱電機株式会社 送信装置
JPWO2017022059A1 (ja) * 2015-08-03 2017-10-12 三菱電機株式会社 送信装置
CN107431547A (zh) * 2015-08-03 2017-12-01 三菱电机株式会社 发送装置
US10164813B2 (en) 2015-08-03 2018-12-25 Mitsubishi Electric Corporation Transmission apparatus
CN107431547B (zh) * 2015-08-03 2019-02-12 三菱电机株式会社 发送装置
WO2018135438A1 (ja) * 2017-01-19 2018-07-26 日本電気株式会社 基地局、移動局、基地局の制御方法、記録媒体
JPWO2018135438A1 (ja) * 2017-01-19 2019-12-12 日本電気株式会社 基地局、移動局、基地局の制御方法、プログラム
WO2022024802A1 (ja) * 2020-07-29 2022-02-03 ソニーグループ株式会社 送信装置、送信方法、受信装置、及び、受信方法

Also Published As

Publication number Publication date
EP2378685A4 (en) 2013-09-18
US20110305286A1 (en) 2011-12-15
JP5361082B2 (ja) 2013-12-04
JPWO2010079757A1 (ja) 2012-06-21
CN102273113A (zh) 2011-12-07
BRPI1006119A2 (pt) 2016-02-16
EP2378685A1 (en) 2011-10-19
US8693560B2 (en) 2014-04-08

Similar Documents

Publication Publication Date Title
JP5361082B2 (ja) 送信装置、受信装置、通信システム、送信方法および受信方法
JP5213271B2 (ja) 通信装置、通信システム、受信方法およびプログラム
JP5376243B2 (ja) 通信装置、通信システム、受信方法および通信方法
US8761114B2 (en) Method and apparatus for transmitting/receiving multiple codewords in SC-FDMA system
US20120063532A1 (en) Reception device, receiving method, communication system, and communication method
US20110041023A1 (en) Communication device, communication system, reception method, and program
EP1583271A2 (en) System and method for spreading on fading channels
JP5013617B2 (ja) 通信装置、通信システムおよび受信方法
WO2009104515A1 (ja) 中継装置、通信システム、及び通信方法
US10200138B2 (en) Method for jointly adapting an OFDM waveform and the demodulator for interference mitigation and harsh channels
JP6743327B2 (ja) 無線通信システム、無線送信装置および無線受信装置
JP5376244B2 (ja) 通信装置、通信システム、受信方法及び通信方法
EP1724959A1 (en) Multiple access communication system with ARQ and interference cancellation
JP5010329B2 (ja) 誤差ベクトル評価方法並びに適応サブキャリア変調方法、周波数分割通信方法
KR101430609B1 (ko) 무선통신시스템에서 채널 추정 장치 및 방법
JP2010161648A (ja) 通信システム、送信装置、受信装置、送信制御方法、受信制御方法、送信制御プログラム、受信制御プログラム
JP2010199729A (ja) 通信システム、通信方法、受信装置および受信方法
Ahmed et al. Comprehensive Review on LTE-BER Reduction with Modern Transform
JP2010161647A (ja) 送信装置、通信システム、送信方法、及び、受信装置
WO2023023920A1 (en) Frequency diversity in single-carrier communications
WO2008066349A1 (en) Method and apparatus for transmitting/receiving multiple codewords in sc-fdma system
Kalbasi et al. Receiver design for mobile OFDM with application to DVB-H
JP2010219747A (ja) 送信装置、通信システム、通信装置、送信方法、受信方法、送信制御プログラム、及び受信制御プログラム
Arkhipov et al. Combination of H-ARQ and Iterative Multi-user Detection for OFDMA CDM

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003933.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545750

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13143281

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010729177

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006119

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1006119

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110706