WO2010079748A1 - 無線通信装置、無線通信システム及び無線通信方法 - Google Patents

無線通信装置、無線通信システム及び無線通信方法 Download PDF

Info

Publication number
WO2010079748A1
WO2010079748A1 PCT/JP2010/000048 JP2010000048W WO2010079748A1 WO 2010079748 A1 WO2010079748 A1 WO 2010079748A1 JP 2010000048 W JP2010000048 W JP 2010000048W WO 2010079748 A1 WO2010079748 A1 WO 2010079748A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
matrix
wireless communication
polarization
unit
Prior art date
Application number
PCT/JP2010/000048
Other languages
English (en)
French (fr)
Inventor
ユチェン
ファンレイ
星野正幸
今村大地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010545746A priority Critical patent/JP5372963B2/ja
Priority to DK10729168.4T priority patent/DK2375604T3/en
Priority to US13/141,743 priority patent/US8737509B2/en
Priority to EP10729168.4A priority patent/EP2375604B1/en
Priority to CN201080004076.1A priority patent/CN102273115B/zh
Priority to PL10729168T priority patent/PL2375604T3/pl
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to ES10729168.4T priority patent/ES2691037T3/es
Priority to EP13178557.8A priority patent/EP2660991B1/en
Publication of WO2010079748A1 publication Critical patent/WO2010079748A1/ja
Priority to US14/251,955 priority patent/US8923428B2/en
Priority to US14/252,000 priority patent/US8953704B2/en
Priority to US14/575,298 priority patent/US9136926B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/002Reducing depolarization effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03961Spatial equalizers design criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • H04L2025/03808Transmission of equaliser coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0248Eigen-space methods

Definitions

  • the present invention relates to a wireless communication apparatus, a wireless communication system, and a wireless communication method used for a MIMO (Multiple Input Multiple Output) system that performs communication using a plurality of antennas.
  • MIMO Multiple Input Multiple Output
  • the MIMO system is a communication system that uses a plurality of transmission antennas and a plurality of reception antennas for data communication.
  • An access point to which a user terminal is connected can communicate with one or more user terminals at an arbitrary required time on a downlink and an uplink.
  • the downlink ie, forward line
  • the uplink ie, reverse line
  • An access point is usually a wireless communication device with a fixed base station that communicates with a user terminal and may also be referred to as a base station or other terminology.
  • a user terminal is a fixed or mobile wireless communication device and may also be referred to as a base station, a wireless device, a mobile station, user equipment, or some other terminology.
  • BS Base Station
  • UE User Equipment
  • channel state information is usually transmitted from the receiver to the transmitter. That is, when precoding or beamforming is performed in a closed-loop MIMO system, channel optimization can be realized by using channel state information fed back from a receiver to a transmitter in the communication system. it can.
  • Precoding is a technique in which, in a MIMO system, when transmitting from a plurality of antennas, a weighted data is transmitted from each antenna to form a beam suitable for the condition of the propagation path and transmit. At this time, in order to reflect the observation state (propagation state) of the received signal at the reception point, a feedback signal including beam information is transmitted from the receiver to the transmitter, and the transmitter controls the beam using the feedback signal.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • the use of a cross-polarized antenna structure is effective.
  • the use of antennas with different polarizations at the transmitter and receiver results in a gain (or power) and correlation imbalance between the elements of the channel matrix.
  • the elements of the channel matrix exhibit more complex behavior.
  • the current LTE does not include any dedicated codebook for cross-polarized antenna structures in order to reduce the complexity of implementation and maintain one codebook for all applications (various antenna structures). It was. Because cross-polarized antenna structures have significant utility, the addition of this type of codebook will provide significant performance advantages in the next LTE-advanced deployment.
  • a codebook using a block diagonal matrix is conceivable for precoding of a MIMO system using a cross polarization antenna structure (hereinafter referred to as a cross polarization MIMO system).
  • a cross polarization MIMO system the assumption of ideal XPD (Cross Polarization Discrimination) is applied, in which case the channel matrix can be approximated by a block diagonal matrix.
  • ideal XPD Cross Polarization Discrimination
  • an ideal XPD is not always expected, and a precoding matrix using this type of codebook cannot be matched with the structure of the channel matrix. Therefore, when the ideal XPD condition is not satisfied, the precoding performance deteriorates.
  • An object of the present invention is to provide a wireless communication apparatus, a wireless communication system, and a wireless communication method capable of performing effective precoding.
  • the present invention provides, as a first aspect, a wireless communication apparatus used in a wireless communication system having a cross-polarized antenna structure and capable of multiplex communication by MIMO, and a plurality of data to be transmitted to a communication partner apparatus And a stream corresponding to one of a plurality of different polarizations based on control information fed back from the communication partner apparatus, and a spatial multiplexing unit that generates a plurality of streams for spatial multiplexing between the transmission antennas
  • a precoding processing unit that performs precoding by applying a precoding matrix of a projection matrix for orthogonally or substantially orthogonalizing channel response matrices for different polarizations, and a plurality of streams subjected to the precoding processing
  • a wireless communication apparatus comprising: a transmitting unit that transmits each of the signals by means of a plurality of cross-polarized transmission antennas Provided.
  • the present invention provides, as a second aspect, the wireless communication apparatus described above, wherein the precoding processing unit is configured to perform a first transmission beam forming for streams corresponding to the plurality of different polarizations. Including a first precoding that applies a precoding matrix and a second precoding that applies a second precoding matrix based on the projection matrix to a stream corresponding to the one polarization.
  • the present invention provides a wireless communication apparatus according to the third aspect, wherein the precoding processing unit divides a stream corresponding to the plurality of different polarizations for each polarization, and each polarization Are applied to a stream corresponding to 1 by applying a precoding matrix corresponding to each polarization as the first precoding matrix.
  • the present invention provides the wireless communication apparatus according to the fourth aspect, wherein the precoding processing unit applies a stream corresponding to each polarization as a second precoding matrix based on the projection matrix.
  • the precoding processing unit applies a stream corresponding to each polarization as a second precoding matrix based on the projection matrix.
  • the present invention provides, as a fifth aspect, the above-described wireless communication apparatus, wherein the transmission unit includes a total of four transmission antennas, each corresponding to two different first and second polarizations.
  • the precoding processing unit includes a unit that precodes a stream corresponding to the second polarization with the projection matrix.
  • the present invention provides, as a sixth aspect, the above-described wireless communication apparatus, wherein the transmission unit includes a total of four transmission antennas, each corresponding to two different first and second polarizations. And transmitting three spatially multiplexed streams from these transmission antennas, the first stream is allocated to the two antennas of the first polarization, and the two antennas of the second polarization are Antenna allocation for allocating the second and third streams respectively, and the precoding processing unit performs precoding using the projection matrix for the second and third streams corresponding to the second polarization Including things.
  • the present invention provides, as a seventh aspect, the above-described wireless communication apparatus, wherein the transmission unit includes a total of eight transmission antennas, each corresponding to two different first and second polarizations.
  • the precoding processing unit includes a unit that precodes a stream corresponding to the second polarization with the projection matrix.
  • the present invention provides, as an eighth aspect, a wireless communication device used in a wireless communication system having a cross polarization antenna structure and capable of multiplex communication by MIMO, and a propagation path from a communication partner device to the own device
  • a channel estimation unit that performs channel estimation of a channel, and a projection matrix to be applied to a channel response matrix of one polarization for orthogonally or substantially orthogonalizing channel response matrices for different polarizations based on the channel estimation result
  • a precoding selection unit that determines a precoding matrix, a control information notification unit that feeds back control information including precoding information indicating the determined precoding matrix to the communication partner device, and data transmitted from the communication partner device
  • the present invention provides, as a ninth aspect, the above-described wireless communication apparatus, wherein the precoding selection unit has a predetermined diagonal sum of inner products of precoding matrices applied to each of the different polarizations.
  • the precoding matrix is determined by calculating a unitary matrix that is less than or equal to the value based on a channel response matrix of a propagation path from the communication partner apparatus or by selecting from a codebook having a preset matrix group Including what to do.
  • the present invention provides, as a tenth aspect, the wireless communication apparatus described above, wherein the precoding selection unit performs first precoding for transmitting beam formation applied to the plurality of different polarizations.
  • the present invention provides, as an eleventh aspect, the above wireless communication apparatus, wherein the precoding selection unit uses a polarization as the first precoding matrix for each of the plurality of different polarizations. Including a precoding matrix corresponding to each.
  • a radio communication method in a radio communication system capable of performing multiplex communication by MIMO using a radio communication apparatus having a cross polarization antenna structure, which is transmitted to a communication partner apparatus. And generating one of a plurality of different polarizations based on the step of generating a plurality of streams for spatial multiplexing between a plurality of transmission antennas and control information fed back from the communication counterpart device.
  • Precoding by applying a precoding matrix of a projection matrix for orthogonally or substantially orthogonalizing channel response matrices for different polarizations to corresponding streams, and a plurality of streams subjected to the precoding processing Each of which is transmitted by a plurality of cross-polarization type transmission antennas.
  • a wireless communication method in a wireless communication system capable of performing multiplex communication by MIMO using a wireless communication device having a cross polarization antenna structure. Applying to the channel response matrix of one polarization for making the channel response matrix for different polarizations orthogonal or almost orthogonal based on the channel estimation result, and performing channel estimation of the propagation path to the device
  • Providing a step of separately detecting includes the steps of decoding the received data from a plurality of streams said detecting, a wireless communication method having.
  • interference between different polarizations can be reduced and effective precoding can be performed even when an ideal XPD cannot be obtained. Is possible.
  • Block diagram showing a configuration example of a MIMO system including one transmitter and one receiver The block diagram which shows the 1st example of a structure of the radio
  • a flowchart showing an operation procedure in the present embodiment As a second embodiment of the present invention, a block diagram showing a second example of a configuration of a wireless communication system using a cellular wireless communication network As a third embodiment of the present invention, a block diagram showing a third example of a configuration of a wireless communication system using a cellular wireless communication network
  • a block diagram showing a fifth example of a configuration of a wireless communication system using a cellular wireless communication network As a sixth embodiment of the present invention, a block diagram showing a sixth example of a configuration of a wireless communication system using a
  • cross-polarization MIMO is applied in the downlink of a cellular wireless communication network, and a base station (BS) and user terminals ( 1 shows a configuration example of a wireless communication system that performs communication using a cross-polarized antenna with a UE.
  • precoding is performed in a closed-loop cross-polarization MIMO system.
  • the present embodiment generally relates to remote communication, and more specifically, to a method and apparatus for multi-antenna transmission using a cross-polarized antenna structure in a MIMO system, and a product.
  • a technique for executing precoding control in a cross polarization MIMO system will be described. These technologies are combined with various radio technologies such as Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiplexing (OFDM), and Time Division Multiple Access (TDMA). Can be used.
  • CDMA Code Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • TDMA Time Division Multiple Access
  • a channel response matrix is obtained by performing channel measurement and channel estimation using a reference signal as a reference in the receiver. Is obtained.
  • the plurality of antennas having the cross polarization antenna structure a plurality of antennas having different polarizations such as vertical polarization and horizontal polarization are used.
  • the obtained channel response matrix can be decomposed into two parts representing channel responses from different polarizations of the transmitting antenna.
  • the receiver may select different precoding matrices for transmission data streams with different polarizations based on a channel response matrix that can be decomposed in two.
  • the receiver feeds back the selected precoding matrix to the transmitter.
  • the transmitter performs precoding by applying the fed back precoding matrix to the data stream for each polarization, and transmits the data from antennas having different polarizations.
  • a stricter precoding matrix is applied to one polarization on the transmitter side, and interference mitigation is performed to reduce interference from different polarizations.
  • the system and method of the present embodiment disclosed herein provide the method for transmitting data from a transmitter to a receiver in a cellular radio communication system or the like used for mobile telephone communication, etc. It deals with gender.
  • This embodiment is provided by applying cross-polarization dedicated precoding to a MIMO system using a cross-polarization antenna structure. According to the present embodiment, it is possible to minimize interference between different polarizations such as horizontal polarization and vertical polarization, and to compensate for poor XPD characteristics in the channel of the cross polarization MIMO system, thereby improving the precoding performance. The transmission performance can be improved.
  • the present embodiment includes the following processing procedure.
  • the receiver is composed of two precoding matrices, each from a different polarization on the transmitter side Step (4) for selecting a matrix for data transmission Step for the receiver to select an additional precoding matrix for data transmission from one polarization on the transmitter side (5)
  • the receiver selects the selected precoding matrix Step (6) where the transmitter sends a data stream based on the corresponding downlink assignment signaling.
  • Step-flop (7) receiver which receives the data stream from the transmitter, to acquire the reproduction data stream by performing MIMO detection processing
  • a cellular radio communication system includes a transmitter having multiple antennas of cross polarization type and one receiver having multiple antennas of cross polarization type.
  • the cellular radio communication system includes means for adjusting precoding for processing a plurality of spatial data streams. For this means, the function of selecting a precoding matrix for data transmission from different polarizations at the receiver side and the precoding matrix selected for data transmission from different polarizations at the transmitter side are applied. Functions to be included.
  • FIG. 1 is a block diagram illustrating a configuration example of a MIMO system including one transmitter and one receiver.
  • a MIMO system using cross-polarization type multiple antennas will be described.
  • This MIMO system uses a plurality of transmission antennas and reception antennas for data transmission.
  • a plurality of antennas on the transmitter side and the receiver side use a cross polarization configuration.
  • the transmitter represents multiple inputs and the receiver represents multiple outputs.
  • the data stream is transmitted from the cross polarization transmit antenna to the cross polarization receive antenna via a wireless MIMO channel.
  • a data sequence to be transmitted is input as an input bit sequence, the input bit sequence is encoded by a channel encoding unit 102, and then modulated by a symbol mapping unit 104 to be modulated. Get the symbol. Then, the spatial multiplexing / transmission diversity section 106 performs spatial multiplexing and transmission diversity processing on the modulated symbols to generate a plurality of spatial streams. Thereafter, the precoding unit 108 applies precoding to the plurality of spatial streams, and then the antenna mapping unit 109 maps the precoded spatial streams S 1 to S 4 to the plurality of transmission antennas, respectively. Transmit from Ant1 to 4).
  • the spatial stream transmitted from the transmitter 150 is transmitted via the corresponding MIMO channel, and is received as the spatial streams r 1 to r 4 by the reception antennas 112a to 112d (Ant1 to 4) in the receiver 160.
  • channel estimation / precoding selection section 114 estimates the channel response matrix of the MIMO channel using the reference signal, selects the precoding matrix based on the estimated channel response matrix, and then selects it.
  • the precoding information PMI indicating the precoding matrix V is fed back to the transmitter 150.
  • MIMO detection section 116 performs MIMO separation processing using the channel response matrix, and detects and separates a plurality of data streams from the transmission antenna.
  • a demultiplexing unit 118 that performs processing opposite to that of the spatial multiplexing / transmission diversity unit 106 rearranges the separated and detected streams into one symbol series, and performs de-mapping that performs processing reverse to that of the symbol mapping unit 104
  • the unit 120 performs demodulation processing in symbol units.
  • an error correction decoding process is performed by a decoding unit 122 that performs processing reverse to that of the channel encoding unit 102, and a data sequence transmitted from the transmitter 150 is reproduced and output as an output bit sequence.
  • the MIMO channel formed by the receiving antenna of the receiver and the transmitting antenna of the transmitter is based on a channel response matrix H of N rows and M columns (N ⁇ M) determined by the number of antennas M of the transmitter and the number of antennas N of the receiver. Characterized.
  • the channel response matrix H can be decomposed using singular value decomposition to obtain a corresponding projection matrix, that is, a right singular matrix.
  • the singular value decomposition of the channel response matrix H is expressed by the following equation (1).
  • U is a unitary matrix of N rows and N columns (N ⁇ N) composed of left eigenvectors of H
  • is a diagonal matrix of N rows and M columns (N ⁇ M) composed of singular values of H
  • V is a unitary matrix of M rows and M columns (M ⁇ M) composed of the right eigenvector of H
  • H represents a conjugate transpose matrix.
  • the transmitter performs spatial processing on the communication data using the right eigenvalue vector V of the channel response matrix H as a precoding matrix.
  • the actual channel response matrix H ⁇ can be estimated based on the reference signal transmitted by the transmitter at the receiver. Therefore, the precoding matrix V ⁇ can be derived and quantified based on the above equation (1).
  • the matrix of H, V, etc. without ⁇ is a theoretical value, and H ⁇ , V ⁇ with ⁇ (correctly ⁇ is put on the letter of H, etc. as shown in the following formula.
  • the matrix such as) indicates a matrix actually applied determined using a channel response matrix estimated by the reference signal, a code book, or the like. The same applies to the following.
  • the receiver feeds back the selected precoding matrix V ⁇ to the transmitter and notifies the precoding matrix to be used for transmission. Thereby, the transmitter can transmit data in the main eigenmode of the MIMO channel.
  • a method based on a code book is used for selection of a precoding matrix.
  • the codebook C includes L unitary matrices.
  • a codebook using a block diagonal matrix is conceivable for precoding of a cross polarization MIMO system. That is, in data transmission between a transmitter having a cross-polarization type transmission antenna and a receiver having a cross-polarization type reception antenna, a code book C having L block diagonal matrices is transmitted on the transmitter side. Used for precoding.
  • the ideal XPD premise for the MIMO channel is applied, in which case the channel matrix can be approximated by a block diagonal matrix.
  • an ideal XPD cannot always be expected, and at that time, the orthogonality between the vertical polarization and the horizontal polarization cannot be maintained. For this reason, a precoding matrix using this type of codebook cannot be matched with the structure of the channel matrix. As a result, if the ideal XPD condition is not satisfied, the precoding performance is degraded.
  • R t is a covariance matrix on the transmission side of M t rows and M t columns (M t ⁇ M t )
  • R r is a covariance matrix on the reception side of M r rows and M r columns (M r ⁇ M r ).
  • Hw is a complex Gaussian matrix and indicates a fading component when there is no correlation between polarizations and they are independent.
  • represents the Hadamard product.
  • X is a matrix based on XPD, and in the case of 4 rows and 2 columns (4 ⁇ 2) and 4 rows and 4 columns (4 ⁇ 4), the following equation (3) is obtained.
  • the channel response matrix H is expressed by the following equation (4), in the case of incomplete XPD, the components h VH and h HV on the upper right and lower left do not become zero due to the presence of interference between polarizations, so that the block
  • the non-zero component is not utilized and performance is degraded.
  • This embodiment proposes to apply cross-polarization dedicated precoding so that effective channels between different polarization types are orthogonalized as much as possible in order to reduce interference between polarizations in a cross-polarization MIMO system. It is.
  • a system and method for improving the performance of a communication channel in a communication system is provided, thereby improving the transmission performance of, for example, a cross polarization MIMO system. That is, in the present embodiment, in order to increase the frequency utilization efficiency of uplink and downlink communications in a cellular radio communication network, the MIMO technology is used, and higher-order MIMO and spatial constraints on antenna installation are avoided.
  • a precoding method is provided for MIMO transmission using an effective cross-polarized antenna structure.
  • an appropriate precoding matrix is selected for each polarization in the receiver as a precoding matrix dedicated to the cross polarization MIMO system. This minimizes interference between horizontal and vertical polarizations to compensate for poor XPD characteristics of the channel and eliminates inaccurate matching between the precoding matrix and the channel matrix. Also, in this embodiment, the influence on the signaling overhead is minimized by reducing the size of the dimension of the precoding matrix using subblock precoding control in which precoding is performed in subblocks separated for each polarization. Turn into.
  • FIG. 2 is a block diagram showing a first example of a configuration of a wireless communication system using a cellular wireless communication network as the first embodiment of the present invention.
  • a configuration example in which each of a transmitter and a receiver has a plurality (four in this case) of cross-polarized antennas and transmits a plurality of data streams X 1 to X i is shown.
  • the number of antennas is not limited to four, and a plurality of antennas can be set as appropriate.
  • the cross-polarization MIMO system of the first embodiment includes a transmitter 250 by BS and a receiver 260 by UE, and data is spatially multiplexed from the transmitter 250 via a MIMO channel by MIMO communication.
  • the stream is transmitted to the receiver 260.
  • the transmitter 250 has four transmission antennas 210a (Ant1), 210b (Ant2), 210c (Ant3), and 210d (Ant4) having a cross polarization configuration
  • the receiver 260 is a cross polarization type. It has four receiving antennas 212a (Ant1), 212b (Ant2), 212c (Ant3), and 212d (Ant4).
  • the MIMO channel formed by the receiving antenna of the receiver and the transmitting antenna of the transmitter is characterized by a channel response matrix H of 4 rows and 4 columns (4 ⁇ 4).
  • the channel response matrix H ⁇ is estimated at the receiver based on the reference signal transmitted by the transmitter.
  • This channel response matrix H ⁇ is expressed as the following equation (5), and is decomposed for each of the vertical polarization and the horizontal polarization.
  • H ⁇ V represents the channel response matrix corresponding to the channel between the vertically polarized transmitting and receiving antennas
  • H ⁇ H corresponds to the channel between the horizontally polarized transmitting and receiving antennas. Represents the channel response matrix.
  • the singular value decomposition of the channel response matrices H ⁇ V and H ⁇ H is expressed by the following equation (6).
  • U ⁇ 1 is a 4 ⁇ 4 unitary matrix composed of left eigenvectors of H ⁇ V
  • ⁇ ⁇ 1 is 4 ⁇ 2 (4 ⁇ 2) composed of singular values of H ⁇ V.
  • V ⁇ 1 is a 2-by-2 (2 ⁇ 2) unitary matrix composed of right eigenvectors of H ⁇ V
  • U ⁇ 2 is a 4 ⁇ 4 unitary matrix composed of left eigenvectors of H ⁇ H
  • ⁇ ⁇ 2 is 4 ⁇ 2 columns (4 ⁇ 2) composed of singular values of H ⁇ H.
  • V ⁇ 2 is a unitary matrix of 2 rows and 2 columns (2 ⁇ 2) composed of right eigenvectors of H ⁇ H.
  • unitary matrix precoding is applied to each polarization, and the precoded channel response matrix is orthogonalized (or orthogonalized as much as possible) to the other channel response matrix.
  • a unitary matrix precoding matrix P is selected for one polarization, for example, horizontal polarization, and data symbols are spatially processed as shown in FIG.
  • the precoding unit P performs precoding using the precoding matrix P.
  • the orthogonality ⁇ between the vertical polarization and the horizontal polarization can be evaluated by a formula for obtaining a diagonal sum (trace) of inner products of precoding matrices represented by the following formula (7).
  • an optimal precoding matrix P is calculated by obtaining a minimum value such that ⁇ is equal to or less than a predetermined value as shown in the following equation (8).
  • this embodiment uses a codebook based method in selecting the precoding matrix P.
  • the precoding matrix is selected from a predetermined code book having a preset matrix group.
  • the code book C includes L 2 ⁇ 2 (2 ⁇ 2) unitary matrices. Note that the number L of unitary matrices selected in the codebook C is arbitrary. For example, the number of DFTs in signal processing may be used.
  • the best precoding matrix P C i for minimizing the interference between the polarizations is selected from those having the smallest ⁇ as shown in the following equation (9).
  • codebook can have different contents by using different performance and complexity requirements.
  • a unitary matrix based on L DFTs can be configured in the codebook C as shown in the following equation (10).
  • the same codebook can be used for selection of the precoding matrices V 1 and V 2 in the precoding unit V that performs precoding for each polarization.
  • channel responses for different polarizations are the same, and the same matrix can be used for precoding matrices V 1 and V 2 for precoding of each polarization.
  • the receiver feeds back the selected precoding matrix or codebook index to the transmitter, and the precoding to be used for transmission of different polarizations by different antenna groups. It is necessary to notify the procession.
  • the present invention provides an effective method for precoding control in a cross polarization MIMO system.
  • the precoding matrix P is selected to minimize interference between vertical polarization and horizontal polarization, and compensates for poor XPD characteristics in the MIMO channel.
  • the code book used for the cross polarization MIMO system has a matrix having a reduced order compared to the code book used for the single polarization MIMO system.
  • a 4 ⁇ 4 codebook can be used for a system using multiple transmit antennas. Thereby, a reasonable signaling overhead for precoding control can be maintained.
  • the transmitter 250 includes a channel encoding unit 202, a symbol mapping unit 204, a spatial multiplexing unit 206, a precoding processing unit 208, an antenna mapping unit 209, and four cross-polarization type transmission antennas 210a to 210a. 210d.
  • the precoding processing unit 208 includes a first precoding unit 208a that applies the precoding matrix V and a second precoding unit 208b that applies the precoding matrix P.
  • the function of the transmission unit is realized by the antenna mapping unit 209, the RF unit (not shown), the transmission antennas 210a to 210d, and the like.
  • a data sequence to be transmitted is input as an input bit sequence, and this input bit sequence is encoded by performing error correction encoding processing in channel encoding section 202, and then QPSK in symbol mapping section 204. Then, a modulated symbol is obtained by modulation using a predetermined modulation method such as 16QAM. Then, the spatial multiplexing unit 206 performs spatial multiplexing processing on the modulated symbols to generate a plurality of spatial streams X 1 to X i . Thereafter, the precoding processing unit 208 executes precoding processing in parallel for each half of the plurality of spatial streams X 1 to X i .
  • the first precoding unit 208a applies precoding matrix V to all the spatial streams X 1 to X i to perform precoding. Subsequently, these data precoded streams Z 1 ⁇ Z 4, pre-by the action of additional precoding matrix P with respect to one data stream Z 3, Z 4 in the second preceding unit 208b Coding is performed to obtain precoded spatial streams S 1 , S 2 , S 3 , S 4 . Then, antenna mapping section 209 maps precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and transmits them from antennas 210a to 210d (Ant 1 to 4) having different polarizations.
  • the antennas 210a (Ant1) and 210b (Ant2) are vertical polarization antennas
  • the antennas 210c (Ant3) and 210d (Ant4) are horizontal polarization antennas
  • a horizontal polarization transmission antenna is used.
  • the spatial streams S 3 and S 4 to be transmitted are precoded using an additional precoding matrix P so as to obtain orthogonality between polarizations.
  • the spatial stream transmitted from the transmitter 250 passes through the corresponding MIMO channel, and is received by the receiving antennas 212a to 212d in the receiver 260.
  • the receiver 260 includes four cross-polarized reception antennas 212a to 212d, a channel estimation / precoding selection unit 214, a MIMO detection unit 216, a demultiplexing unit 218, a demapping unit 220, and a decoding unit 222.
  • the functions of the receiving unit are realized by receiving antennas 212a to 212d, an RF unit (not shown), and the like.
  • the MIMO detection unit 216 implements the function of a signal separation unit.
  • the channel estimation / precoding selection unit 214 has functions of a channel estimation unit, a precoding selection unit, and a control information notification unit.
  • the receiver 260 uses the reference signal among the signals received by the receiving antennas 212a to 212d, performs channel estimation in the channel estimation / precoding selection unit 214, and sets the MIMO channel with the transmitter 250. Estimate the channel response matrix. Then, the propagation path estimation result is output to MIMO detection section 216 as a channel matrix. Further, the channel estimation / precoding selection unit 214 decomposes the estimated channel response matrix as shown in the above equations (5) to (10), and the precoding matrix V based on the precoding method of the present embodiment. , P. Subsequently, precoding information PMI is output as an index of the precoding matrices V and P selected by the channel estimation / precoding selection unit 214 and fed back to the transmitter 250.
  • MIMO detection section 216 performs MIMO separation processing on the data signals r 1 , r 2 , r 3 , r 4 of the signals received by the receiving antenna using a channel matrix, and receives data from the transmitter. Streams are detected and separated, and the separated streams X ⁇ 1 to X ⁇ i are obtained. Thereafter, the demultiplexing unit 218 that performs the reverse process of the spatial multiplexing unit 206 rearranges the separated and detected streams into one symbol series, and the demapper unit 220 that performs the reverse process of the symbol mapping unit 204. Performs symbol-by-symbol demodulation processing. Subsequently, an error correction decoding process is performed in a decoding unit 222 that performs the reverse process of the channel encoding unit 202, and a data sequence transmitted from the transmitter 250 is reproduced and output as an output bit sequence.
  • FIG. 3 is a flowchart showing an operation procedure in the present embodiment, and exemplifies a method for performing MIMO transmission in the MIMO channel of the cross polarization MIMO system.
  • the receiver estimates the channel response matrix between the multiple antennas of the transmitter and the multiple antennas of the receiver using the reference signal RS transmitted from the transmitter.
  • the receiver decomposes the channel response matrix into portions representing channel responses from transmit antennas with different polarizations in order to obtain a channel response matrix for each polarization.
  • the receiver calculates a precoding matrix for each data transmission from different polarizations on the transmitter side or selects from the codebook.
  • two precoding matrices are selected corresponding to vertical polarization and horizontal polarization.
  • the receiver adds an additional projection matrix for data transmission from one polarization on the transmitter side so that the precoded channel response matrices for different polarizations are orthogonal or as orthogonal as possible.
  • a precoding matrix is calculated or selected from a codebook.
  • the receiver feeds back precoding information indicating the selected precoding matrix to the transmitter.
  • step 312 the transmitter generates and transmits a data stream based on the corresponding downlink allocation signaling including information about the precoding matrix and the transmission rate.
  • step 314 the receiver receives the data stream transmitted from the transmitter and performs MIMO detection to obtain a reproduced data stream.
  • an appropriate precoding matrix is selected for each different polarization, and stricter precoding according to one polarization on the transmitter side is applied.
  • an appropriate precoding matrix is selected using a channel response matrix at the receiver, and interference between horizontal polarization and vertical polarization is minimized to compensate for poor XPD characteristics of the channel.
  • the channel response matrix is divided for each polarization, and an additional precoding matrix is applied to one polarization so that the channel response matrix between the polarizations is orthogonal or as orthogonal as possible.
  • the first embodiment shown in FIG. 2 shows a general embodiment in consideration of transmission of a plurality of streams in a 4 ⁇ 4 cross-polarization MIMO system.
  • the present invention can be applied to transmission cases of different ranks as in the second to fifth embodiments shown in FIGS. 4 to 7 below.
  • the rank corresponds to the number of data streams to be multiplexed and transmitted.
  • FIG. 4 is a block diagram showing a second example of the configuration of a wireless communication system using a cellular wireless communication network as the second embodiment of the present invention.
  • the transmitter 450 has four transmitting antennas 410a to 410d (Ant1 to Ant4) having a cross polarization type configuration
  • the receiver 460 has four receiving antennas 412a to 412a having a cross polarization type configuration. 412d (Ant1 to 4).
  • MIMO communication a data stream spatially multiplexed from the transmitter 450 via the MIMO channel is transmitted to the receiver 460.
  • the transmitter 450 includes a channel encoding unit 402, a symbol mapping unit 404, a transmission diversity unit 406, a precoding processing unit 408, and an antenna mapping unit 409.
  • Transmitter 450 encodes an input bit sequence by channel encoding section 402 and then modulates by symbol mapping section 404 to obtain a modulated symbol.
  • the transmission diversity section 406 performs transmission diversity processing on the modulated symbols to generate two spatial streams X 1 and X 1 ′. In this case, since it is rank 1, spatial streams X 1 and X 1 ′ for transmission diversity are generated from one stream X 1 .
  • the precoding processing unit 408 performs precoding processing on the two spatial streams X 1 and X 1 ′, respectively.
  • the precoding matrix V 1 in the first pre-coding unit 408a is applied to perform precoding.
  • the third precoding unit 408c applies precoding matrix P to one spatial stream X 1 ′ after the precoding to perform precoding, and the precoded spatial stream S 1 , S 2 , S 3 , S 4 are obtained.
  • the antenna mapping unit 409 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 410a and 410b and the horizontally polarized transmission antennas 410c and 410d.
  • the spatial streams S 3 and S 4 (X 1 ′) transmitted from the horizontally polarized transmission antenna are subjected to precoding using the additional precoding matrix P so as to obtain orthogonality between the polarizations. I have to.
  • the spatial stream transmitted from the transmitter 450 passes through the corresponding MIMO channel, and is received by the receiving antennas 412a to 412d in the receiver 460.
  • the receiver 460 includes a channel estimation / precoding selection unit 414, a MIMO detection unit 416, a demultiplexing unit 418, a demapping unit 420, and a decoding unit 422.
  • channel estimation is performed by channel estimation / precoding selection section 414 using the reference signal of the received signals, and the channel response matrix of the MIMO channel is estimated. Then, the propagation path estimation result is output to MIMO detection section 416 as a channel matrix. Further, in the channel estimation / precoding selection unit 414, as shown in the above equations (5) to (9), the estimated channel response matrix is decomposed, and the precoding matrix V is based on the precoding method of the present embodiment. 1 , V 2 and P are selected. Subsequently, the precoding information PMI is output as an index of the precoding matrices V 1 , V 2 , P selected by the channel estimation / precoding selection unit 414 and fed back to the transmitter 450.
  • a matrix can be selected as the code book C shown in the above equation (10).
  • a code book used for feedback of the precoding matrices V 1 and V 2 a matrix can be selected as the code book ⁇ shown in the following equation (11).
  • the code book ⁇ of Expression (11) includes a vector extracted from the first column of the matrix in the code book C of Expression (10).
  • MIMO detection section 416 performs MIMO separation processing on the data signals r 1 , r 2 , r 3 , r 4 of the signals received by the receiving antenna using a channel matrix, and receives data from the transmitter. Streams are detected and separated, and separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 418 are rearranged into one symbol series, and the demapping unit 420 performs demodulation processing in symbol units. Subsequently, the decoding unit 422 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 450, and outputs it as an output bit sequence.
  • FIG. 5 is a block diagram showing a third example of the configuration of a wireless communication system using a cellular wireless communication network as the third embodiment of the present invention.
  • the transmitter 550 has four transmitting antennas 510a to 510d (Ant1 to Ant4) having a cross polarization type configuration, and the receiver 560 has four receiving antennas 512a to 512a having a cross polarization type configuration. 512d (Ant1 to 4).
  • MIMO communication a data stream spatially multiplexed from the transmitter 550 via the MIMO channel is transmitted to the receiver 560.
  • the transmitter 550 includes a channel encoding unit 502, a symbol mapping unit 504, a spatial multiplexing unit 506, a precoding processing unit 508, and an antenna mapping unit 509.
  • Transmitter 550 encodes the input bit sequence by channel encoding section 502 and then modulates by symbol mapping section 504 to obtain a modulated symbol. Then, the spatial multiplexing unit 506 performs spatial multiplexing processing on the modulated symbols to generate two spatial streams X 1 and X 2 . Thereafter, the precoding processing unit 508 performs precoding processing on the two spatial streams X 1 and X 2 , respectively.
  • the precoding processing unit 508 performs precoding processing on the two spatial streams X 1 and X 2 , respectively.
  • precoding is performed on the one spatial stream X 2 after the precoding by applying an additional precoding matrix P in the third precoding unit 508c, and the precoded spatial streams S 1 and S 2 are processed. 2 , S 3 , S 4 are obtained.
  • the antenna mapping unit 509 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 510a and 510b and the horizontally polarized transmission antennas 510c and 510d. Send each one.
  • the spatial streams S 3 and S 4 (X 2 ) transmitted from the horizontal polarization type transmission antenna are subjected to precoding using the additional precoding matrix P so as to obtain orthogonality between the polarizations. ing.
  • the spatial stream transmitted from the transmitter 550 passes through the corresponding MIMO channel, and is received by the receiving antennas 512a to 512d in the receiver 560.
  • the receiver 560 includes a channel estimation / precoding selection unit 514, a MIMO detection unit 516, a demultiplexing unit 518, a demapping unit 520, and a decoding unit 522.
  • channel estimation is performed by channel estimation / precoding selection section 514 using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 514 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and the precoding matrix V based on the precoding method of the present embodiment. 1 , V 2 and P are selected. At this time, as a code book used for feedback of the precoding matrix P, a matrix can be selected as the code book C shown in the above equation (10). Further, the code book used for feedback of the precoding matrices V 1 and V 2 can be selected as the code book ⁇ shown in the above equation (11).
  • precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 514 and fed back to transmitter 550.
  • the received data signals r 1 , r 2 , r 3 , r 4 are subjected to MIMO separation processing using the channel matrix, and the data stream from the transmitter is detected and separated, The separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 518 are rearranged into one symbol series, and the demapping unit 520 performs demodulation processing in symbol units. Subsequently, the decoding unit 522 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 550, and outputs it as an output bit sequence.
  • FIG. 6 is a block diagram showing a fourth example of the configuration of a wireless communication system using a cellular wireless communication network as the fourth embodiment of the present invention.
  • the transmitter 650 has four transmission antennas 610a to 610d (Ant1 to 4) having a cross polarization type configuration, and the receiver 660 has four reception antennas 612a to 612a to have a cross polarization type configuration. 612d (Ant1 to 4).
  • MIMO communication a data stream spatially multiplexed from the transmitter 650 via the MIMO channel is transmitted to the receiver 660.
  • the transmitter 650 includes a channel encoding unit 602, a symbol mapping unit 604, a spatial multiplexing unit 606, a precoding processing unit 608, and an antenna mapping unit 609.
  • Pre-encoding processor 608 a first pre-coding unit 608a for applying a precoding matrix V 1, a second precoding unit 608b for applying a precoding matrix V 2, third applying the precoding matrix P A precoding unit 608c.
  • the input bit sequence is encoded by the channel encoding unit 602, and then modulated by the symbol mapping unit 604 to obtain modulated symbols.
  • the spatial multiplexing unit 606 performs spatial multiplexing processing on the modulated symbols to generate three spatial streams X 1 , X 2 , and X 3 .
  • the precoding processing unit 608 performs precoding processing on each of the two groups of spatial streams obtained by dividing the three spatial streams into two.
  • the action of the precoding matrix V 1 in the first pre-coding unit 608a for spatial stream X 1 performs precoding.
  • the precoding matrix V 2 is applied in the second precoding unit 608b, and then the additional precoding matrix P is applied in the third precoding unit 608c.
  • Precoding As a result, precoded spatial streams S 1 , S 2 , S 3 , S 4 are obtained.
  • the antenna mapping unit 609 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 610a and 610b and the horizontally polarized transmission antennas 610c and 610d. Send each one.
  • the spatial streams S 3 , S 4 (X 2 , X 3 ) transmitted from the horizontally polarized transmission antenna are precoded using an additional precoding matrix P, and orthogonality between the polarizations is obtained. Trying to get.
  • the spatial stream transmitted from the transmitter 650 passes through the corresponding MIMO channel, and is received by the reception antennas 612a to 612d at the receiver 660.
  • the receiver 660 includes a channel estimation / precoding selection unit 614, a MIMO detection unit 616, a demultiplexing unit 618, a demapping unit 620, and a decoding unit 622.
  • channel estimation is performed by channel estimation / precoding selection section 614 using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 614 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and precoding matrix V based on the precoding method of the present embodiment. 1 , V 2 and P are selected.
  • the code book used for feedback of the precoding matrix V 1 can be selected as the code book ⁇ shown in the above equation (11).
  • a matrix can be selected as the code book C shown in the above equation (10).
  • precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 614 and fed back to transmitter 650.
  • the received data signals r 1 , r 2 , r 3 , r 4 are subjected to MIMO separation processing using a channel matrix, and the data stream from the transmitter is detected and separated, The separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 618 are rearranged into one symbol series, and the demapping unit 620 performs demodulation processing in symbol units. Subsequently, the decoding unit 622 performs error correction decoding processing to reproduce the data sequence transmitted from the transmitter 650 and output it as an output bit sequence.
  • transmission stream allocation control as described above is applied, and the upper stream X 1 having a higher quality and the lower two streams X 2 and X 3 having a lower quality are applied.
  • the processing is divided and the transmission efficiency is increased as much as possible.
  • the first stream X 1 is assigned to one polarization
  • the second and third streams X 2 and X 3 are assigned additional polarization by applying an additional precoding, and between the polarizations. Maintaining orthogonality improves transmission performance and achieves higher transmission efficiency.
  • FIG. 7 is a block diagram showing a fifth example of the configuration of a wireless communication system using a cellular wireless communication network as a fifth embodiment of the present invention.
  • the transmitter 750 has four transmission antennas 710a to 710d (Ant1 to 4) having a cross-polarization type configuration, and the receiver 760 has four reception antennas 712a to 712a to a cross-polarization type configuration. 712d (Ant1 to 4).
  • MIMO communication a data stream spatially multiplexed from the transmitter 750 via the MIMO channel is transmitted to the receiver 760.
  • the transmitter 750 includes a channel encoding unit 702, a symbol mapping unit 704, a spatial multiplexing unit 706, a precoding processing unit 708, and an antenna mapping unit 709.
  • the input bit sequence is encoded by channel encoding section 702, and then modulated by symbol mapping section 704 to obtain modulated symbols.
  • the spatial multiplexing unit 706 performs spatial multiplexing processing on the modulated symbols to generate four spatial streams X 1 , X 2 , X 3 , and X 4 .
  • the precoding processing unit 708 performs precoding processing on two groups of spatial streams obtained by dividing the four spatial streams into two.
  • the precoding matrix V 1 is applied to the spatial streams X 1 and X 2 by the first precoding unit 708a to perform precoding.
  • precoding matrix V 2 is applied in second precoding section 708 b, and then additional precoding matrix P is applied in third precoding section 708 c.
  • Precoding As a result, precoded spatial streams S 1 , S 2 , S 3 , S 4 are obtained.
  • the antenna mapping unit 709 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 710a and 710b and the horizontally polarized transmission antennas 710c and 710d. Send each one.
  • the spatial streams S 3 , S 4 (X 3 , X 4 ) transmitted from the horizontally polarized transmission antenna are precoded using the additional precoding matrix P, and orthogonality between the polarizations is obtained. Trying to get.
  • the spatial stream transmitted from the transmitter 750 passes through the corresponding MIMO channel, and is received by the receiving antennas 712a to 712d at the receiver 760.
  • the receiver 760 includes a channel estimation / precoding selection unit 714, a MIMO detection unit 716, a demultiplexing unit 718, a demapping unit 720, and a decoding unit 722.
  • channel estimation / precoding selection section 714 performs channel estimation using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 714 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and based on the precoding method of this embodiment, the precoding matrix V 1 , V 2 and P are selected. At this time, the code book used for feedback of the precoding matrices V 1 , V 2 , and P can be selected as the code book C shown in the above equation (10). By using this codebook, precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 714 and fed back to transmitter 750.
  • the received data signals r 1 , r 2 , r 3 , r 4 are subjected to MIMO separation processing using the channel matrix, and the data stream from the transmitter is detected and separated, The separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 718 are rearranged into one symbol series, and the demapping unit 720 performs demodulation processing in symbol units. Subsequently, the decoding unit 722 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 750, and outputs it as an output bit sequence.
  • a SU-MIMO (Single User MIMO) system with improved efficiency can be configured.
  • sub-block precoding in which an additional precoding matrix P is applied to one polarization. Control is used.
  • the dimension of the precoding matrix can be reduced, the amount of information in the codebook of the precoding matrix and the number of selection candidates can be reduced, and the precoding matrix selection process can be simplified. Processing can be reduced.
  • the same matrix may be used as V 1 and V 2 .
  • the amount of information necessary for feedback can be further reduced by taking the same matrix value.
  • FIG. 8 is a block diagram showing a sixth example of the configuration of a wireless communication system using a cellular wireless communication network as the sixth embodiment of the present invention.
  • the transmitter 850 has eight transmission antennas 810a to 810h (Ant1 to 8) having a cross-polarization type configuration
  • the receiver 860 has eight reception antennas 812a to 812a to 812h having a cross-polarization type configuration. 812h (Ant1-8).
  • MIMO communication a data stream spatially multiplexed from the transmitter 850 via the MIMO channel is transmitted to the receiver 860.
  • the transmitter 850 includes a channel encoding unit 802, a symbol mapping unit 804, a spatial multiplexing unit 806, a precoding processing unit 808, and an antenna mapping unit 809.
  • Transmitter 850 encodes an input bit sequence by channel encoding section 802 and subsequently modulates by symbol mapping section 804 to obtain a modulated symbol. Then, the spatial multiplexing unit 806 performs spatial multiplexing processing on the modulated symbols to generate a plurality of (eight in the case of full rank) spatial streams X 1 to X 8 . Thereafter, the precoding processing unit 808 performs precoding processing on each of the two groups of spatial streams obtained by dividing the plurality of spatial streams into two. Here, the precoding matrix V 1 is applied to the spatial streams X 1 , X 2 , X 3 , and X 4 by the first precoding unit 808a to perform precoding.
  • the precoding matrix V 2 is applied in the second precoding unit 808 b, and then an additional precoding is performed in the third precoding unit 808 c. Precoding is performed using the coding matrix P. As a result, precoded spatial streams S 1 to S 8 are obtained. Then, the antenna mapping unit 809 maps the precoded spatial streams S 1 to S 8 to a plurality of transmission antennas, vertically polarized transmission antennas 810a to 810d having different polarizations, and a horizontally polarized transmission antenna 810e. To 810h, respectively. In this case, the spatial streams S 5 to S 8 (X 5 to X 8 ) transmitted from the horizontally polarized transmission antenna are precoded using the additional precoding matrix P, and orthogonality between the polarizations is obtained. Trying to get.
  • the spatial stream transmitted from the transmitter 850 passes through the corresponding MIMO channel, and is received by the receiving antennas 812a to 812h at the receiver 860.
  • the receiver 860 includes a channel estimation / precoding selection unit 814, a MIMO detection unit 816, a demultiplexing unit 818, a demapping unit 820, and a decoding unit 822.
  • channel estimation / precoding selection section 814 performs channel estimation using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 814 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and based on the precoding method of this embodiment, the precoding matrix V 1 , V 2 and P are selected. At this time, as a code book used for feedback of the precoding matrices V 1 , V 2 , and P, a matrix can be selected as the code book C shown in the following equation (12).
  • precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 814 and fed back to transmitter 850.
  • the MIMO detection unit 816 performs MIMO separation processing on the received data signals r 1 to r 8 using a channel matrix, detects and separates the data stream from the transmitter, and separates the stream X ⁇ after separation. Obtain 1 to X ⁇ 8 .
  • the streams separated and detected by the demultiplexing unit 818 are rearranged into one symbol series, and the demapping unit 820 performs demodulation processing in symbol units.
  • the decoding unit 822 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 850, and outputs it as an output bit sequence.
  • the dimensions of the precoding matrix are reduced by applying the precoding matrices V 1 and V 2 in sub-blocks separated for each polarization.
  • the processing related to precoding control can be reduced, and the amount of feedback information can be reduced.
  • the precoding of the present embodiment to a configuration having a large number of transmission antennas, it is possible to improve the beamforming gain per polarization, and to improve the precoding performance.
  • the above sixth embodiment shows an embodiment in consideration of full rank transmission in an 8 ⁇ 8 cross polarization MIMO system.
  • the application of each rank in the case of using eight transmission antennas can be realized by a simple extension of the case of using four transmission antennas shown in the second to fifth embodiments of FIGS. it can.
  • the orthogonality of the channel response matrix between different polarizations can be maintained by applying the projection matrix precoding matrix to one of the different polarizations in the cross polarization MIMO system. Interference between polarized waves can be reduced. Thereby, it is possible to provide robustness in the performance of the MIMO system to which precoding is applied. Further, by using sub-block precoding and applying a precoding matrix of an additional simple projection matrix only to one polarization, the influence on signaling overhead for feeding back control information can be minimized.
  • the number of antennas constituting the cross-polarization MIMO system, the number of streams to be transmitted, and the like are not limited to the configuration of the above embodiment, and the present invention can be similarly applied by appropriately setting two or more numbers. .
  • the example applied to the downlink of the cellular radio communication network is shown in the above embodiment, the present invention can be similarly applied to other radio communication lines such as the uplink of the cellular radio communication network.
  • An antenna port refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas. For example, in LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit by which a base station can transmit different reference signals (Reference signals). The antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • Precoding vector precoding vector
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can reduce interference between different polarizations and perform effective precoding even in a case where an ideal XPD cannot be obtained in a MIMO system using a cross polarization antenna structure. It is useful as a wireless communication device such as a cellular communication system using a MIMO system that performs communication using a plurality of antennas, a wireless communication system, a wireless communication method, and the like.
  • Transmitter 160 150, 250, 450, 550, 650, 750, 850 Transmitter 160, 260, 460, 560, 660, 760, 860 Receiver 102, 202, 402, 502, 602, 702, 802 Channel encoding unit 104, 204, 404, 504, 604, 704, 804 Symbol mapping unit 106 Spatial multiplexing / transmission diversity unit 206, 506, 606, 706, 806 Spatial multiplexing unit 406 Transmission diversity unit 108, 208a-c, 408a-c, 508a-c, 608a To c, 708a to c, 808a to c Precoding unit 208, 408, 508, 608, 708, 808 Precoding processing unit 109, 209, 409, 509, 609, 709, 809 Antenna mapping unit 110a to d, 210a d, 410a-d, 510a-d, 610a-d, 710a-d, 810a-h Transmitting antenna

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 交差偏波型アンテナ構造を用いたMIMOシステムにおいて、理想的なXPDが得られない場合であっても、異なる偏波間の干渉を軽減し、効果的なプリコーディングを実行可能にする。 交差偏波型アンテナ構造を用いた送信機250と受信機260との間でMIMO通信を行う際、受信機260のチャネル推定/プリコーディング選択部214は、送信機から受信機へのMIMOチャネルのチャネル推定を行い、異なる偏波のチャネル応答行列を直交またはほぼ直交させるための射影行列によるプリコーディング行列Pを決定して送信機250にフィードバックする。送信機250は、プリコーディング処理部208において、一方の偏波に対応する空間ストリームに対してプリコーディング行列Pを適用してプリコーディングを行い、偏波間の直交性を保った状態で送信する。

Description

無線通信装置、無線通信システム及び無線通信方法
 本発明は、複数のアンテナを使用して通信を行うMIMO(Multiple Input Multiple Output)システムに用いられる無線通信装置、無線通信システム及び無線通信方法に関する。
 MIMOシステムは、データ通信用に複数の送信アンテナと複数の受信アンテナを用いる通信システムである。ユーザ端末が接続されるアクセスポイントは、下り回線(Downlink)と上り回線(Uplink)において任意の所要時点で一つ以上のユーザ端末と通信することができる。下り回線(すなわち、順方向回線)はアクセスポイントからユーザ端末への通信回線であり、上り回線(すなわち、逆方向回線)はユーザ端末からアクセスポイントへの通信回線である。
 アクセスポイントは、通常、ユーザ端末と通信する固定された基地局による無線通信装置であり、基地局または他の専門用語にて呼ばれることもある。ユーザ端末は、固定または可動の無線通信装置であり、基地局、無線装置、移動局、ユーザ機器、または他の何らかの専門用語にて呼ばれることもある。以下の説明では、アクセスポイントについては基地局(BS:Base Station)を、ユーザ端末についてはユーザ機器(UE:User Equipment)を用いることにする。
 閉ループMIMOシステムでは、通常、受信機から送信機へチャネル状態情報を送信する。すなわち、閉ループMIMOシステムにおいてプリコーディング(Precoding)あるいはビームフォーミング(Beamforming)を行う場合、通信システム内の受信機から送信機へフィードバックされるチャネル状態情報を用いることによって、チャネル最適化を実現することができる。プリコーディングは、MIMOシステムにおいて、複数のアンテナから送信する際に、各アンテナから重み付けしたデータを送信することにより伝搬路の状況に適したビームを形成して送信を行う技術である。この際、受信点での受信信号の観測状況(伝搬路状況)を反映させるため、受信機から送信機へビーム情報を含むフィードバック信号を送信し、送信機においてフィードバック信号を用いてビームを制御する(例えば特許文献1参照)。このプリコーディングは、携帯電話の国際的な標準化団体である3GPP(3rd Generation Partnership Project)で標準化活動が行われている次世代システムのLTE(Long Term Evolution)において議論されている。
 また、MIMOシステムの送信においては、例えば下り回線でのより高次のMIMOにおいて最大8本の送信アンテナを使用する場合、あるいは上り回線でのMIMOにおいてユーザ端末内でアンテナ設置上の空間的制約がある場合などに、交差偏波型(cross-polarized)アンテナ構造の利用が有効である。交差偏波型アンテナを適用する際、送信機及び受信機における異なる偏波を用いたアンテナの使用は、チャネル行列の要素間の利得(あるいはパワー)及び相関の不平衡をもたらす。その結果、チャネル行列の要素はより複雑な挙動を示す。しかしながら、現在のLTEでは、実装の複雑さを軽減し全ての用途(各種アンテナ構造)向けに一つのコードブックを保持するために、交差偏波型アンテナ構造向けの専用コードブックは一切含まれなかった。交差偏波型アンテナ構造は際立った有用性を持つため、この種のコードブックの追加は、次のLTE-advancedへの展開の際に顕著な性能利点をもたらすことになる。
 交差偏波型アンテナ構造を用いたMIMOシステム(以下、交差偏波型MIMOシステムと記載)のプリコーディング向けには、ブロック対角行列を用いるコードブックが考えられる。この種のコードブックには、理想的なXPD(Cross Polarization Discrimination、交差偏波識別度)の前提が適用され、その場合にチャネル行列はブロック対角行列により近似することができる。しかしながら、一般に理想的なXPDは必ずしも期待できるとは限らず、そのときはこの種のコードブックを用いたプリコーディング行列をチャネル行列の構造に整合させることはできない。よって、理想的なXPDの条件を満足しない場合、プリコーディング性能が劣化する。このように、交差偏波型MIMOシステム用のプリコーディング技術を、伝送性能及びシグナリングの面において、効率的とする必要性が当該分野には存在する。
米国特許出願公開第2008/0037681号明細書
 上述したように、交差偏波型MIMOシステムにおいては、一般的な実使用環境では理想的なXPDが得られないため、プリコーディング行列として理想的なXPDを前提としたブロック対角行列によるコードブックを使用すると、異なる偏波間の干渉が残った状態となり、プリコーディング実行時の性能が劣化するなどの課題がある。
 本発明は、上記事情に鑑みてなされたもので、交差偏波型アンテナ構造を用いたMIMOシステムにおいて、理想的なXPDが得られない場合であっても、異なる偏波間の干渉を軽減でき、効果的なプリコーディングを行うことが可能な無線通信装置、無線通信システム及び無線通信方法を提供することを目的とする。
 本発明は、第1の態様として、交差偏波型アンテナ構造を有し、MIMOにより多重通信が可能な無線通信システムに用いられる無線通信装置であって、通信相手装置に送信するデータとして、複数の送信アンテナ間で空間多重するための複数のストリームを生成する空間多重部と、前記通信相手装置からフィードバックされる制御情報に基づき、異なる複数の偏波のうちの一方の偏波に対応するストリームに対して、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための射影行列のプリコーディング行列を作用させてプリコーディングを行うプリコーディング処理部と、前記プリコーディング処理を行った複数のストリームを交差偏波型の複数の送信アンテナによってそれぞれ送信する送信部と、を備える無線通信装置を提供する。
 また、本発明は、第2の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記異なる複数の偏波に対応するストリームに対して送信ビーム形成のための第1のプリコーディング行列を適用する第1のプリコーディングと、前記一方の偏波に対応するストリームに対して前記射影行列による第2のプリコーディング行列を適用する第2のプリコーディングとを行うものを含む。
 また、本発明は、第3の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記異なる複数の偏波に対応するストリームを偏波ごとに分割し、それぞれの偏波に対応するストリームに対して、前記第1のプリコーディング行列として偏波ごとに対応させたプリコーディング行列を適用してプリコーディングを行うものを含む。
 また、本発明は、第4の態様として、上記の無線通信装置であって、前記プリコーディング処理部は、前記射影行列による第2のプリコーディング行列として、それぞれの偏波に対応するストリームに対して適用するプリコーディング行列の内積の対角和が所定値以下となるようなユニタリ行列を用いるものを含む。
 また、本発明は、第5の態様として、上記の無線通信装置であって、前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ2つずつ合計4つの送信アンテナを有し、前記プリコーディング処理部は、前記第2の偏波に対応するストリームに対して前記射影行列によるプリコーディングを行うものを含む。
 また、本発明は、第6の態様として、上記の無線通信装置であって、前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ2つずつ合計4つの送信アンテナを有し、これらの送信アンテナから空間多重された3つのストリームを送信する場合に、前記第1の偏波の2つのアンテナに第1のストリームを割り当て、前記第2の偏波の2つのアンテナにそれぞれ第2及び第3のストリームを割り当てるアンテナ割り当てを行い、前記プリコーディング処理部は、前記第2の偏波に対応する第2及び第3のストリームに対して前記射影行列によるプリコーディングを行うものを含む。
 また、本発明は、第7の態様として、上記の無線通信装置であって、前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ4つずつ合計8つの送信アンテナを有し、前記プリコーディング処理部は、前記第2の偏波に対応するストリームに対して前記射影行列によるプリコーディングを行うものを含む。
 本発明は、第8の態様として、交差偏波型アンテナ構造を有し、MIMOにより多重通信が可能な無線通信システムに用いられる無線通信装置であって、通信相手装置から自装置への伝搬路のチャネル推定を行うチャネル推定部と、前記チャネル推定結果に基づき、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための、一方の偏波のチャネル応答行列に対して適用する射影行列のプリコーディング行列を決定するプリコーディング選択部と、前記決定したプリコーディング行列を示すプリコーディング情報を含む制御情報を前記通信相手装置へフィードバックする制御情報通知部と、前記通信相手装置から送信されたデータを複数の受信アンテナによって受信する受信部と、前記受信したデータから複数のストリームを分離して検出する信号分離部と、前記検出した複数のストリームから受信データを復号する復号部と、を備える無線通信装置を提供する。
 また、本発明は、第9の態様として、上記の無線通信装置であって、前記プリコーディング選択部は、前記異なる偏波のそれぞれに対して適用するプリコーディング行列の内積の対角和が所定値以下となるようなユニタリ行列を、前記通信相手装置からの伝搬路のチャネル応答行列に基づいて算出するかまたは予め設定した行列群を持つコードブックから選択することにより、前記プリコーディング行列を決定するものを含む。
 また、本発明は、第10の態様として、上記の無線通信装置であって、前記プリコーディング選択部は、前記異なる複数の偏波に対して適用する送信ビーム形成のための第1のプリコーディング行列と、前記一方の偏波に対して適用する射影行列による第2のプリコーディング行列と、を決定し、前記制御情報通知部は、前記第1のプリコーディング行列及び前記第2のプリコーディング行列を示すプリコーディング情報を前記通信相手装置に通知するものを含む。
 また、本発明は、第11の態様として、上記の無線通信装置であって、前記プリコーディング選択部は、前記異なる複数の偏波のそれぞれに対して、前記第1のプリコーディング行列として偏波ごとに対応させたプリコーディング行列を決定するものを含む。
 また、本発明は、第12の態様として、交差偏波型アンテナ構造を有する無線通信装置を用いて、MIMOにより多重通信が可能な無線通信システムにおける無線通信方法であって、通信相手装置に送信するデータとして、複数の送信アンテナ間で空間多重するための複数のストリームを生成するステップと、前記通信相手装置からフィードバックされる制御情報に基づき、異なる複数の偏波のうちの一方の偏波に対応するストリームに対して、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための射影行列のプリコーディング行列を作用させてプリコーディングを行うステップと、前記プリコーディング処理を行った複数のストリームを交差偏波型の複数の送信アンテナによってそれぞれ送信するステップと、を有する無線通信方法を提供する。
 また、本発明は、第13の態様として、交差偏波型アンテナ構造を有する無線通信装置を用いて、MIMOにより多重通信が可能な無線通信システムにおける無線通信方法であって、通信相手装置から自装置への伝搬路のチャネル推定を行うステップと、前記チャネル推定結果に基づき、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための、一方の偏波のチャネル応答行列に対して適用する射影行列のプリコーディング行列を決定するステップと、前記決定したプリコーディング行列を示すプリコーディング情報を含む制御情報を前記通信相手装置へフィードバックするステップと、前記通信相手装置から送信されたデータを複数の受信アンテナによって受信するステップと、前記受信したデータから複数のストリームを分離して検出するステップと、前記検出した複数のストリームから受信データを復号するステップと、を有する無線通信方法を提供する。
 上記構成により、理想的なXPDが得られない場合であっても、一方の偏波に対して、チャネル応答行列に基づく射影行列のプリコーディング行列を適用することで、異なる偏波間の直交性を保つための効果的なプリコーディングが可能であり、偏波間干渉を最小化することが可能になる。
 本発明によれば、交差偏波型アンテナ構造を用いたMIMOシステムにおいて、理想的なXPDが得られない場合であっても、異なる偏波間の干渉を軽減でき、効果的なプリコーディングを行うことが可能となる。
一つの送信機と一つの受信機とを備えるMIMOシステムの構成例を示すブロック図 本発明の第1の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第1例を示すブロック図 本実施形態における動作手順を示すフローチャート 本発明の第2の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第2例を示すブロック図 本発明の第3の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第3例を示すブロック図 本発明の第4の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第4例を示すブロック図 本発明の第5の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第5例を示すブロック図 本発明の第6の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第6例を示すブロック図 空間多重におけるコードワード-レイヤマッピングの例を示す図
 本実施形態では、本発明に係る無線通信装置、無線通信システム及び無線通信方法の一例として、セルラー無線通信網の下り回線において交差偏波型MIMOを適用し、基地局(BS)とユーザ端末(UE)との間で交差偏波型アンテナを用いた通信を行う無線通信システムの構成例を示す。この際、閉ループの交差偏波型MIMOシステムにおいてプリコーディングを行うものとする。
 本実施形態は、概ね遠隔通信に係り、より具体的には、MIMOシステムにおいて交差偏波型アンテナ構造を用いる複数アンテナ送信のための方法及び装置、並びに製造物に関する。
 まず、交差偏波型MIMOシステムにおいてプリコーディング制御を実行する技術について説明する。これらの技術は、符号分割多重アクセス(CDMA:Code Division Multiple Access)、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)、時分割多重アクセス(TDMA:Time Division Multiple Access)等の各種無線技術と組み合わせて使用することができる。複数アンテナを持つ送信機から複数アンテナを持つ受信機への上りまたは下り回線の送信に対して、受信機において、基準となる参照信号を用いたチャネル測定及びチャネル推定を行うことで、チャネル応答行列が得られる。ここで、交差偏波型アンテナ構造の複数アンテナとしては、垂直偏波と水平偏波など、複数の異なる偏波のアンテナを用いる。得られたチャネル応答行列は、送信アンテナの異なる偏波からのチャネル応答を表す二つの部分に分解できるものである。受信機は、二つに分解可能なチャネル応答行列に基づき、異なる偏波の送信データストリームに対してそれぞれ異なるプリコーディング行列を選択し得る。受信機は、選択されたプリコーディング行列を送信機へフィードバックする。送信機は、フィードバックされたプリコーディング行列を偏波ごとのデータストリームに適用してプリコーディングを行い、それぞれ異なる偏波のアンテナから送信する。この際、異なる偏波向けの異なるプリコーディング行列の中でも、送信機側の一方の偏波に対しより厳密なプリコーディング行列を適用し、異なる偏波からの干渉を軽減する干渉軽減を実行する。
 ここに開示された本実施形態のシステムや方法は、移動電話通信などに用いるセルラー無線通信システム等において送信機から受信機へデータを送信する方法を提供することで、上述の課題に示した必要性に対処するものである。本実施形態は、交差偏波型アンテナ構造を用いるMIMOシステムに対し交差偏波専用プリコーディングを適用することで提供される。本実施形態によれば、水平偏波と垂直偏波などの異なる偏波間の干渉を最小化し、交差偏波型MIMOシステムのチャネルにおける貧弱なXPD特性を補償することが可能となり、プリコーディング性能を改善し、伝送性能を向上することができるようになる。
 本実施形態は、以下の処理手順を含むものである。
(1) 受信機が、送信機から送信される参照信号を用いて、送信機の複数アンテナと受信機の複数アンテナとの間で観測されるチャネル応答行列を推定するステップ
(2) 受信機が、チャネル応答行列を異なる偏波の送信アンテナからのチャネル応答を表す二つの部分に分解するステップ
(3) 受信機が、二つのプリコーディング行列であってそれぞれが送信機側の異なる偏波からのデータ送信に関する行列を選択するステップ
(4) 受信機が、送信機側の一方の偏波からのデータ送信に対する追加のプリコーディング行列を選択するステップ
(5) 受信機が、選択されたプリコーディング行列を送信機へフィードバックするステップ
(6) 送信機が、対応する下り回線割り当てのシグナリングに基づきデータストリームを送信するステップ
(7) 受信機が、送信機からのデータストリームを受信し、MIMO検出処理を行って再生データストリームを取得するステップ
 一つの実施形態によれば、セルラー無線通信システムは、交差偏波型の複数アンテナを有する送信機と、交差偏波型の複数アンテナを有する1つの受信機とを含む。このセルラー無線通信システムは、複数の空間データストリームを処理するためのプリコーディングの調整を行う手段を有する。この手段には、受信機側での異なる偏波からのデータ送信に対するプリコーディング行列を選択する機能と、送信機側での異なる偏波からのデータ送信に対して選択されたプリコーディング行列を適用する機能とが含まれる。
 本発明のこれら及び他の特徴並びに利点は、添付図面及び添付特許請求の範囲と共に本発明の実施形態に係る下記の詳細な説明を参照してより良く理解されよう。
 本発明の好適な実施形態を、添付図面を参照してここで詳細に説明することにする。下記の説明では、本実施形態に取り込む既知の機能及び構成に関する詳細な説明は、明快さと簡潔さに配慮し省略してある。
 図1は、一つの送信機と一つの受信機とを備えるMIMOシステムの構成例を示すブロック図である。この図1の構成例において、交差偏波型の複数アンテナを用いたMIMOシステムを説明する。このMIMOシステムは、データ送信用に複数の送信アンテナ及び受信アンテナを用いるものである。送信機側及び受信機側の複数アンテナは、交差偏波型の構成を用いている。送信機は複数入力を表し、受信機は複数出力を表す。データストリームは、交差偏波型送信アンテナから無線のMIMOチャネルを介して交差偏波型受信アンテナへ送信される。
 図1に示すように、送信機150側では、送信するデータ系列を入力ビット系列として入力し、この入力ビット系列をチャネルエンコーディング部102において符号化し、続いてシンボルマッピング部104において変調して被変調シンボルを得る。そして、被変調シンボルに対し空間多重/送信ダイバーシチ部106において空間多重及び送信ダイバーシチ処理を施し、複数の空間ストリームを生成する。その後、プリコーディング部108において複数の空間ストリームにプリコーディングを適用し、続いてアンテナマッピング部109においてプリコーディング済み空間ストリームS~Sを複数の送信アンテナへマッピングし、それぞれアンテナ110a~110d(Ant1~4)から送信する。
 送信機150から送信された空間ストリームは、対応するMIMOチャネルを介して伝送され、受信機160において受信アンテナ112a~112d(Ant1~4)により空間ストリームr~rとして受信される。受信機160側では、チャネル推定/プリコーディング選択部114において、参照信号を用いてMIMOチャネルのチャネル応答行列を推定し、推定されたチャネル応答行列に基づき、プリコーディング行列を選択し、続いて選択されたプリコーディング行列Vを指示するプリコーディング情報PMIを送信機150へフィードバックする。そして、MIMO検出部116においてチャネル応答行列を用いてMIMO分離処理を施し、送信アンテナからの複数のデータストリームを検出して分離する。その後、空間多重/送信ダイバーシチ部106とは逆の処理を行うデマルチプレキシング部118にて、分離検出したストリームを一つのシンボル系列に並び替え、シンボルマッピング部104とは逆の処理を行うデマッピング部120にてシンボル単位の復調処理を施す。続いて、チャネルエンコーディング部102とは逆の処理を行うデコーディング部122にて誤り訂正復号処理を施し、送信機150から送信されたデータ系列を再生して出力ビット系列として出力する。
 受信機の受信アンテナと送信機の送信アンテナとにより形成されるMIMOチャネルは、送信機のアンテナ数Mと受信機のアンテナ数Nにより定まるN行M列(N×M)のチャネル応答行列Hにより特徴付けられる。
 チャネル応答行列Hは、特異値分解を用いて分解して対応する射影行列、すなわち右特異行列を得ることができる。チャネル応答行列Hの特異値分解は、下記の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、UはHの左固有ベクトルからなるN行N列(N×N)のユニタリ行列であり、ΛはHの特異値からなるN行M列(N×M)の対角行列であり、VはHの右固有ベクトルからなるM行M列(M×M)のユニタリ行列であり、上付きHは共役転置行列を表す。ユニタリ行列Xは特性式XHX=Iにより特徴付けられ、ここでIは単位行列である。ユニタリ行列の列は、互いに直交している。
 送信機は、プリコーディング行列としてチャネル応答行列Hの右固有値ベクトルVを用いて通信データに空間的処理を施す。実際のチャネル応答行列H^は、受信機において送信機が送信する参照信号に基づき推定することができる。このため、プリコーディング行列V^を上記式(1)に基づいて導出し、定量化することができる。ここで、^を付していないH、V等の行列は理論値を示し、^を付したH^、V^(正しくは^は以下の式に示すようにH等の文字の上に付く)等の行列は参照信号により推定されたチャネル応答行列やコードブックなどを用いて決定した実際に適用される行列を示す。以下も同様である。受信機は、選択されたプリコーディング行列V^を送信機にフィードバックし、送信に用いるべきプリコーディング行列を通知する。これにより、送信機は、そのMIMOチャネルの主固有モードにてデータを送信することができる。本実施形態では、プリコーディング行列の選択においてコードブックに基づく方法を用いるものとする。コードブックに基づくプリコーディング方法では、プリコーディング行列は一つの所定のコードブックC={C,C,…,C}から選択される。ここでコードブックCはL個のユニタリ行列を含む。
 背景技術でも述べたように、交差偏波型MIMOシステムのプリコーディング向けには、ブロック対角行列を用いるコードブックが考えられる。すなわち、交差偏波型送信アンテナを持つ送信機と交差偏波型受信アンテナを持つ受信機との間のデータ送信では、L個のブロック対角行列を持つコードブックCが、送信機側でのプリコーディングに用いられる。
 しかしながら、この種のコードブックには、MIMOチャネルに関して理想的なXPDの前提が適用され、その場合にチャネル行列はブロック対角行列により近似することができる。一般に、理想的なXPDが常に期待できるとは限らず、そのときは垂直偏波と水平偏波との間の直交性が維持できない。このため、この種のコードブックを用いたプリコーディング行列をチャネル行列の構造に整合させることはできない。その結果、理想的なXPDの条件を満足しない場合、プリコーディング性能が劣化することになる。
 交差偏波型MIMO構造においては、垂直偏波と水平偏波との間の相互干渉は不完全なXPDの場合に性能劣化を招く極めて重要な課題となる。XPDの値を示すαは、0≦α≦1の範囲の値をとるもので、理想的なXPDの場合はα≒0となる。交差偏波型アンテナを用いる場合のチャネル応答行列Hは、以下の式(2)で近似することができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、RはM行M列(M×M)の送信側の共分散行列であり、RはM行M列(M×M)の受信側の共分散行列であり、送信機側と受信機側のそれぞれにおける偏波間の相関係数を示すものである。Hは複素ガウス行列で、偏波間に相関が無く独立している場合のフェージング成分を示している。Θはアダマール積を示している。また、XはXPDに基づく行列であり、4行2列(4×2)、4行4列(4×4)の場合は下記の式(3)に示すようになる。
Figure JPOXMLDOC01-appb-M000003
 したがって、チャネル応答行列Hを下記の式(4)で表した場合、不完全なXPDの場合には偏波間の干渉の存在によって右上と左下の成分hVH,hHVが0にならないので、ブロック対角行列によるプリコーディング行列を用いてプリコーディングを実行すると、上記0でない成分が活用されず、パフォーマンスが減退する。
Figure JPOXMLDOC01-appb-M000004
 本実施形態は、交差偏波型MIMOシステムにおける偏波間の干渉を低減するため、交差偏波専用プリコーディングを適用して異なる偏波型間の有効チャネルをできる限り直交化させることを提案するものである。本実施形態では、通信システムにおける通信チャネルの性能を向上させるシステム並びに方法を提供し、それによって例えば交差偏波型MIMOシステムの送信性能を改善する。すなわち、本実施形態では、セルラー無線通信網における上り回線及び下り回線の通信の周波数利用効率を増大させるために、MIMO技術を用い、さらに高次のMIMOやアンテナ設置上の空間的制約に対して有効な交差偏波型アンテナ構造を用いるMIMO送信向けに、プリコーディング法を提供する。この際、MIMOチャネルのチャネル応答行列を用いることで、交差偏波型MIMOシステム専用のプリコーディング行列として、受信機において偏波ごとに適切なプリコーディング行列を選択する。これにより、水平偏波と垂直偏波の間の干渉を最小化してチャネルの貧弱なXPD特性を補償し、プリコーディング行列とチャネル行列との間の不正確な整合を解消する。また、本実施形態では、偏波ごとに分離したサブブロックにてプリコーディングを行うサブブロックプリコーディング制御を用いて、プリコーディング行列の次元の大きさを低減することによって、シグナリングオーバーヘッドに対する影響を最小化する。
 (第1の実施形態)
 図2は、本発明の第1の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第1例を示すブロック図である。第1の実施形態は、送信機及び受信機がそれぞれ複数(ここでは4本)の交差偏波型アンテナを有し、複数のデータストリームX~Xを伝送する場合の構成例を示したものである。ここでは、例えば、送信機をBS、受信機をUEとし、これら一つの送信機と一つの受信機との間でMIMOによる下り回線の通信を行う無線通信システムを例示する。なお、アンテナの数は4本に限るものではなく、複数のアンテナを適宜設定可能である。
 第1の実施形態の交差偏波型MIMOシステムは、BSによる送信機250と、UEによる受信機260とを有しており、MIMO通信によって、送信機250からMIMOチャネルを介して空間多重したデータストリームを受信機260に対して送信する。送信機250は、交差偏波型の構成を持つ4本の送信アンテナ210a(Ant1)、210b(Ant2)、210c(Ant3)、210d(Ant4)を有し、受信機260は、交差偏波型の構成を持つ4本の受信アンテナ212a(Ant1)、212b(Ant2)、212c(Ant3)、212d(Ant4)を有する。
 本実施形態の構成において、受信機の受信アンテナと送信機の送信アンテナとが形成するMIMOチャネルは、4行4列(4×4)のチャネル応答行列Hにより特徴付けられる。
 チャネル応答行列H^は、送信機が送信する参照信号に基づき受信機において推定される。このチャネル応答行列H^は、下記の式(5)のように表され、垂直偏波と水平偏波の偏波ごとに分解される。
Figure JPOXMLDOC01-appb-M000005
 ここで、H^は垂直偏波の送信アンテナと受信アンテナとの間のチャネルに対応するチャネル応答行列を表し、H^は水平偏波の送信アンテナと受信アンテナとの間のチャネルに対応するチャネル応答行列を表す。チャネル応答行列H^とH^の特異値分解は、下記の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、U^はH^の左固有ベクトルからなる4行4列(4×4)のユニタリ行列であり、Λ^はH^の特異値からなる4行2列(4×2)の対角行列であり、V^はH^の右固有ベクトルからなる2行2列(2×2)のユニタリ行列である。また、U^はH^の左固有ベクトルからなる4行4列(4×4)のユニタリ行列であり、Λ^はH^の特異値からなる4行2列(4×2)の対角行列であり、V^はH^の右固有ベクトルからなる2行2列(2×2)のユニタリ行列である。
 本発明の一実施形態によれば、各偏波に対しユニタリ行列によるプリコーディングを適用し、そのプリコーディングしたチャネル応答行列をもう一方のチャネル応答行列に対し直交化(あるいはできる限り直交化)させる。すなわち、ユニタリ行列のプリコーディング行列Pを一方の偏波、例えば水平偏波に対して選択し、図2に示すようにデータシンボルを空間的に処理する。この際、プリコーディング部Pにおいてプリコーディング行列Pを用いたプリコーディングを行う。垂直偏波と水平偏波との間の直交性Φは、下記の式(7)で表されるプリコーディング行列同士の内積の対角和(トレース)を求める公式により評価することができる。
Figure JPOXMLDOC01-appb-M000007
 そこで、異なる偏波間の干渉を最小化するために、最適のプリコーディング行列Pを下記の式(8)のようにΦが所定値以下となるような最小値を求めて算出する。
Figure JPOXMLDOC01-appb-M000008
 上記のチャネル最適化方法では、最適プリコーディング行列Pを定量化して送信機へ返信する必要があり、重要なフィードバック帯域の使用に帰結する。フィードバックのオーバーヘッドを低減すべく、本実施形態ではプリコーディング行列Pの選択においてコードブックに基づく方法を用いる。
 コードブックに基づく方法では、プリコーディング行列は予め設定した行列群を持つ所定のコードブックから選択する。例えば、プリコーディング行列Pは偏波間の干渉を最小化すべくコードブックC={C,C,…,C}から選択し得る。ここで、コードブックCはL個の2行2列(2×2)のユニタリ行列を含む。なお、コードブックCで選択されるユニタリ行列の個数Lは任意であり、例えば信号処理におけるDFTの個数を用いればよい。
 偏波間の干渉を最小化するための最良のプリコーディング行列P=Cは、下記の式(9)のようにΦが最小となるものから選択する。
Figure JPOXMLDOC01-appb-M000009
 なお、異なる性能及び複雑さの要件を用いることで、コードブックに異なる内容を持たせることができる。一例として、L個のDFTに基づくユニタリ行列はコードブックC内に下記の式(10)のように構成できる。
Figure JPOXMLDOC01-appb-M000010
 また、同じコードブックを、各偏波に対してプリコーディングを行うプリコーディング部Vにおけるプリコーディング行列V,Vの選択に用いることができる。ここでは実施を容易にするため、異なる偏波に対するチャネル応答は同一であると仮定し、各偏波のプリコーディング用のプリコーディング行列V,Vに同一行列を用い得るものとする。
 本実施形態で提案するプリコーディング方法を用いることで、受信機は、選択されたプリコーディング行列またはコードブックのインデックスを送信機へフィードバックし、異なるアンテナ群による異なる偏波の送信に用いるべきプリコーディング行列を通知する必要がある。
 本発明は交差偏波型MIMOシステムにおけるプリコーディング制御に対し効果的な方法を提供するものである。前記した本実施形態によれば、プリコーディング行列Pは垂直偏波と水平偏波との間の干渉を最小化するよう選択され、MIMOチャネルにおける貧弱なXPD特性を補償する。同時に、本実施形態では、交差偏波型MIMOシステムに用いるコードブックは、単一偏波型MIMOシステムに対して用いるコードブックに比べ低減された次数を持つ行列を有しており、例えば8本の送信アンテナを用いるシステムに対し4行4列(4×4)のコードブックを用いることができる。これにより、プリコーディング制御のために妥当なシグナリングオーバーヘッドを維持することができる。
 図2に示すように、送信機250は、チャネルエンコーディング部202、シンボルマッピング部204、空間多重部206、プリコーディング処理部208、アンテナマッピング部209、交差偏波型の4本の送信アンテナ210a~210dを備える。プリコーディング処理部208は、プリコーディング行列Vを適用する第1のプリコーディング部208aと、プリコーディング行列Pを適用する第2のプリコーディング部208bとを有している。この送信機250において、アンテナマッピング部209、図示しないRF部、送信アンテナ210a~210dなどによって送信部の機能を実現する。
 送信機250では、送信するデータ系列を入力ビット系列として入力し、この入力ビット系列に対してチャネルエンコーディング部202にて誤り訂正符号化処理を施して符号化し、続いてシンボルマッピング部204にてQPSKや16QAMなどの所定の変調方式によって変調して被変調シンボルを得る。そして、被変調シンボルに対し空間多重部206にて空間多重処理を施して複数の空間ストリームX~Xを生成する。その後、プリコーディング処理部208において複数の空間ストリームX~Xのうちの半数ずつに対しプリコーディング処理を並列に実行する。ここで、まず全ての空間ストリームX~Xに対して第1のプリコーディング部208aにてプリコーディング行列Vを作用させてプリコーディングを行う。続いて、このプリコーディング後のデータストリームZ~Zのうち、一方のデータストリームZ,Zに対して第2のプリコーディング部208bにて追加のプリコーディング行列Pを作用させてプリコーディングを行い、プリコーディング済み空間ストリームS,S,S,Sを得る。そして、アンテナマッピング部209においてプリコーディング済み空間ストリームS~Sを複数の送信アンテナへマッピングし、偏波の異なるアンテナ210a~210d(Ant1~4)からそれぞれ送信する。図示例では、アンテナ210a(Ant1),210b(Ant2)が垂直偏波型アンテナであり、アンテナ210c(Ant3),210d(Ant4)が水平偏波型アンテナであり、水平偏波型の送信アンテナより送信する空間ストリームS,Sの方に追加のプリコーディング行列Pを用いたプリコーディングを施し、偏波間の直交性を得るようにしている。
 送信機250から送信された空間ストリームは、対応するMIMOチャネルを通過し、受信機260において受信アンテナ212a~212dにより受信される。受信機260は、交差偏波型の4本の受信アンテナ212a~212d、チャネル推定/プリコーディング選択部214、MIMO検出部216、デマルチプレキシング部218、デマッピング部220、デコーディング部222を備える。この受信機260において、受信アンテナ212a~212d、図示しないRF部などによって受信部の機能を実現する。また、MIMO検出部216が信号分離部の機能を実現する。また、デマルチプレキシング部218、デマッピング部220、デコーディング部222等によって復号部の機能を実現する。また、チャネル推定/プリコーディング選択部214は、チャネル推定部、プリコーディング選択部、制御情報通知部の機能を有している。
 受信機260では、受信アンテナ212a~212dにて受信した信号のうちの参照信号を用いて、チャネル推定/プリコーディング選択部214にて伝搬路推定を行って送信機250との間のMIMOチャネルのチャネル応答行列を推定する。そして、伝搬路推定結果をチャネル行列としてMIMO検出部216に出力する。また、チャネル推定/プリコーディング選択部214において、上記式(5)~(10)で示したように、推定したチャネル応答行列を分解し、本実施形態のプリコーディング方法に基づいてプリコーディング行列V,Pを選択する。続いて、チャネル推定/プリコーディング選択部214より選択したプリコーディング行列V,Pのインデックスとしてプリコーディング情報PMIを出力し、送信機250にフィードバックする。
 そして、MIMO検出部216において、受信アンテナにて受信した信号のうちのデータ信号r,r,r,rに対し、チャネル行列を用いてMIMO分離処理を施し、送信機からのデータストリームを検出して分離し、分離後のストリームX^~X^を得る。その後、空間多重部206の逆の処理を行うデマルチプレキシング部218にて、分離検出したストリームをそれぞれ一つのシンボル系列に並び替え、シンボルマッピング部204の逆の処理を行うデマッピング部220にてシンボル単位の復調処理を施す。続いて、チャネルエンコーディング部202の逆の処理を行うデコーディング部222にて誤り訂正復号処理を施し、送信機250から送信されたデータ系列を再生して出力ビット系列として出力する。
 図3は、本実施形態における動作手順を示すフローチャートであり、交差偏波型MIMOシステムのMIMOチャネルにおいてMIMO送信を実行する方法を例示したものである。まず、ステップ302において、受信機は、送信機から送信される参照信号RSを用いて、送信機の複数アンテナと受信機の複数アンテナとの間のチャネル応答行列を推定する。次に、ステップ304において、受信機は、各偏波ごとにチャネル応答行列を得るために、チャネル応答行列を偏波の異なる送信アンテナからのチャネル応答を表す部分に分解する。ここでは、垂直偏波と水平偏波の各偏波ごとに分離するよう二つの部分に分解する。
 次に、ステップ306において、受信機は送信機側の異なる偏波からのデータ送信に対してそれぞれプリコーディング行列を算出するかあるいはコードブックから選択する。ここでは、垂直偏波と水平偏波に対応して二つのプリコーディング行列を選択する。また、ステップ308において、受信機は異なる偏波用のプリコーディング済みチャネル応答行列を直交またはできる限り直交させるように、送信機側の一方の偏波からのデータ送信に対して射影行列による追加のプリコーディング行列を算出するかあるいはコードブックから選択する。そして、ステップ310において、受信機は選択されたプリコーディング行列を指示するプリコーディング情報を送信機へフィードバックする。
 次に、ステップ312において、送信機は、プリコーディング行列と送信レートに関する情報を含む対応する下り回線割り当てのシグナリングに基づき、データストリームを生成して送信する。最後に、ステップ314において、受信機は送信機から送信されたデータストリームを受信し、MIMO検出を行って再生データストリームを取得する。
 上述したように、本実施形態では、異なる偏波ごとに適切なプリコーディング行列を選択し、送信機側における一方の偏波に合わせたより厳密なプリコーディングを適用する。そのために、受信機においてチャネル応答行列を用いて適切なプリコーディング行列を選択し、水平偏波と垂直偏波の間の干渉を最小化してチャネルの貧弱なXPD特性を補償する。この際、チャネル応答行列を偏波ごとに分割し、偏波間のチャネル応答行列が直交またはできる限り直交するように、一方の偏波に対して追加のプリコーディング行列を適用する。これにより、交差偏波型MIMOシステムにおいて、理想的なXPDが得られない場合であっても、異なる偏波間の干渉を軽減でき、干渉による損失を削減し、伝送性能を向上できる。
 図2に示した第1の実施形態は、4行4列の交差偏波型MIMOシステム内の複数ストリーム送信を考慮した一般的な実施形態を示すものである。本発明は、以下の図4~図7に示す第2~第5の実施形態のように、異なるランクの送信事例に適用することができる。ここで、ランクとは多重化して送信するデータストリームの数に相当する。
 (第2の実施形態)
 図4は、本発明の第2の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第2例を示すブロック図である。第2の実施形態は、4行4列の交差偏波型MIMOシステムにおけるランク1送信(送信ストリーム数=1)を考慮した構成例である。送信機450は、交差偏波型の構成を持つ4本の送信アンテナ410a~410d(Ant1~4)を有し、受信機460は、交差偏波型の構成を持つ4本の受信アンテナ412a~412d(Ant1~4)を有する。MIMO通信によって、送信機450からMIMOチャネルを介して空間多重したデータストリームを受信機460に対して送信する。
 送信機450は、チャネルエンコーディング部402、シンボルマッピング部404、送信ダイバーシチ部406、プリコーディング処理部408、アンテナマッピング部409を備える。プリコーディング処理部408は、プリコーディング行列Vを適用する第1のプリコーディング部408aと、プリコーディング行列Vを適用する第2のプリコーディング部408bと、プリコーディング行列Pを適用する第3のプリコーディング部408cとを有している。
 送信機450では、入力ビット系列に対してチャネルエンコーディング部402にて符号化し、続いてシンボルマッピング部404にて変調して被変調シンボルを得る。そして、被変調シンボルに対し送信ダイバーシチ部406にて送信ダイバーシチ処理を施して二つの空間ストリームX,X′を生成する。この場合はランク1であるため、一つのストリームXから送信ダイバーシチ用の空間ストリームX,X′を生成する。その後、プリコーディング処理部408において二つの空間ストリームX,X′に対してそれぞれプリコーディング処理を実行する。ここで、まず空間ストリームXに対して第1のプリコーディング部408aにてプリコーディング行列Vを作用させ、空間ストリームX′に対して第2のプリコーディング部408bにてプリコーディング行列Vを作用させて、それぞれプリコーディングを行う。続いて、プリコーディング後の一方の空間ストリームX′に対して、第3のプリコーディング部408cにて追加のプリコーディング行列Pを作用させてプリコーディングを行い、プリコーディング済み空間ストリームS,S,S,Sを得る。そして、アンテナマッピング部409においてプリコーディング済み空間ストリームS~Sを複数の送信アンテナへマッピングし、垂直偏波型の送信アンテナ410a,410bと、水平偏波型の送信アンテナ410c,410dとからそれぞれ送信する。この場合、水平偏波型の送信アンテナより送信する空間ストリームS,S(X′)の方に追加のプリコーディング行列Pを用いたプリコーディングを施し、偏波間の直交性を得るようにしている。
 送信機450から送信された空間ストリームは、対応するMIMOチャネルを通過し、受信機460において受信アンテナ412a~412dにより受信される。受信機460は、チャネル推定/プリコーディング選択部414、MIMO検出部416、デマルチプレキシング部418、デマッピング部420、デコーディング部422を備える。
 受信機460では、受信した信号のうちの参照信号を用いて、チャネル推定/プリコーディング選択部414にて伝搬路推定を行ってMIMOチャネルのチャネル応答行列を推定する。そして、伝搬路推定結果をチャネル行列としてMIMO検出部416に出力する。また、チャネル推定/プリコーディング選択部414において、上記式(5)~(9)で示したように、推定したチャネル応答行列を分解し、本実施形態のプリコーディング方法に基づいてプリコーディング行列V,V,Pを選択する。続いて、チャネル推定/プリコーディング選択部414より選択したプリコーディング行列V,V,Pのインデックスとしてプリコーディング情報PMIを出力し、送信機450にフィードバックする。
 プリコーディング行列Pのフィードバックに用いるコードブックは、上記式(10)に示したコードブックCとして行列を選択し得る。また、プリコーディング行列V,Vのフィードバックに用いるコードブックは、下記の式(11)に示したコードブックΦとして行列を選択し得る。
Figure JPOXMLDOC01-appb-M000011
 すなわち、式(11)のコードブックΦは、式(10)のコードブックCにおける行列の第1列から抽出されるベクトルを含む。これらのコードブックを用いることで、偏波間の直交性を保つようなプリコーディング行列V,V,Pが選択され、選択されたプリコーディング行列のインデックスが送信機450へフィードバックされる。
 そして、MIMO検出部416において、受信アンテナにて受信した信号のうちのデータ信号r,r,r,rに対し、チャネル行列を用いてMIMO分離処理を施し、送信機からのデータストリームを検出して分離し、分離後のストリームX^~X^を得る。その後、デマルチプレキシング部418にて分離検出したストリームをそれぞれ一つのシンボル系列に並び替え、デマッピング部420にてシンボル単位の復調処理を施す。続いて、デコーディング部422にて誤り訂正復号処理を施し、送信機450から送信されたデータ系列を再生して出力ビット系列として出力する。
 (第3の実施形態)
 図5は、本発明の第3の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第3例を示すブロック図である。第3の実施形態は、4行4列の交差偏波型MIMOシステムにおけるランク2送信(送信ストリーム数=2)を考慮した構成例である。送信機550は、交差偏波型の構成を持つ4本の送信アンテナ510a~510d(Ant1~4)を有し、受信機560は、交差偏波型の構成を持つ4本の受信アンテナ512a~512d(Ant1~4)を有する。MIMO通信によって、送信機550からMIMOチャネルを介して空間多重したデータストリームを受信機560に対して送信する。
 送信機550は、チャネルエンコーディング部502、シンボルマッピング部504、空間多重部506、プリコーディング処理部508、アンテナマッピング部509を備える。プリコーディング処理部508は、プリコーディング行列Vを適用する第1のプリコーディング部508aと、プリコーディング行列Vを適用する第2のプリコーディング部508bと、プリコーディング行列Pを適用する第3のプリコーディング部508cとを有している。
 送信機550では、入力ビット系列に対してチャネルエンコーディング部502にて符号化し、続いてシンボルマッピング部504にて変調して被変調シンボルを得る。そして、被変調シンボルに対し空間多重部506にて空間多重化処理を施して二つの空間ストリームX,Xを生成する。その後、プリコーディング処理部508において二つの空間ストリームX,Xに対してそれぞれプリコーディング処理を実行する。ここで、まず空間ストリームXに対して第1のプリコーディング部508aにてプリコーディング行列Vを作用させ、空間ストリームXに対して第2のプリコーディング部508bにてプリコーディング行列Vを作用させて、それぞれプリコーディングを行う。続いて、プリコーディング後の一方の空間ストリームXに対して、第3のプリコーディング部508cにて追加のプリコーディング行列Pを作用させてプリコーディングを行い、プリコーディング済み空間ストリームS,S,S,Sを得る。そして、アンテナマッピング部509においてプリコーディング済み空間ストリームS~Sを複数の送信アンテナへマッピングし、垂直偏波型の送信アンテナ510a,510bと、水平偏波型の送信アンテナ510c,510dとからそれぞれ送信する。この場合、水平偏波型の送信アンテナより送信する空間ストリームS,S(X)の方に追加のプリコーディング行列Pを用いたプリコーディングを施し、偏波間の直交性を得るようにしている。
 送信機550から送信された空間ストリームは、対応するMIMOチャネルを通過し、受信機560において受信アンテナ512a~512dにより受信される。受信機560は、チャネル推定/プリコーディング選択部514、MIMO検出部516、デマルチプレキシング部518、デマッピング部520、デコーディング部522を備える。
 受信機560では、チャネル推定/プリコーディング選択部514にて参照信号を用いて伝搬路推定を行ってMIMOチャネルのチャネル応答行列を推定する。そして、チャネル推定/プリコーディング選択部514において、上記式(5)~(9)で示したように、推定したチャネル応答行列を分解し、本実施形態のプリコーディング方法に基づいてプリコーディング行列V,V,Pを選択する。この際、プリコーディング行列Pのフィードバックに用いるコードブックは、上記式(10)に示したコードブックCとして行列を選択し得る。また、プリコーディング行列V,Vのフィードバックに用いるコードブックは、上記の式(11)に示したコードブックΦとして行列を選択し得る。これらのコードブックを用いることで、偏波間の直交性を保つようなプリコーディング行列V,V,Pが選択される。そして、チャネル推定/プリコーディング選択部514より選択されたプリコーディング行列のインデックスとしてプリコーディング情報PMIを出力し、送信機550にフィードバックする。
 そして、MIMO検出部516において、受信したデータ信号r,r,r,rに対し、チャネル行列を用いてMIMO分離処理を施し、送信機からのデータストリームを検出して分離し、分離後のストリームX^~X^を得る。その後、デマルチプレキシング部518にて分離検出したストリームをそれぞれ一つのシンボル系列に並び替え、デマッピング部520にてシンボル単位の復調処理を施す。続いて、デコーディング部522にて誤り訂正復号処理を施し、送信機550から送信されたデータ系列を再生して出力ビット系列として出力する。
 (第4の実施形態)
 図6は、本発明の第4の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第4例を示すブロック図である。第4の実施形態は、4行4列の交差偏波型MIMOシステムにおけるランク3送信(送信ストリーム数=3)を考慮した構成例である。送信機650は、交差偏波型の構成を持つ4本の送信アンテナ610a~610d(Ant1~4)を有し、受信機660は、交差偏波型の構成を持つ4本の受信アンテナ612a~612d(Ant1~4)を有する。MIMO通信によって、送信機650からMIMOチャネルを介して空間多重したデータストリームを受信機660に対して送信する。
 送信機650は、チャネルエンコーディング部602、シンボルマッピング部604、空間多重部606、プリコーディング処理部608、アンテナマッピング部609を備える。プリコーディング処理部608は、プリコーディング行列Vを適用する第1のプリコーディング部608aと、プリコーディング行列Vを適用する第2のプリコーディング部608bと、プリコーディング行列Pを適用する第3のプリコーディング部608cとを有している。
 送信機650では、入力ビット系列に対してチャネルエンコーディング部602にて符号化し、続いてシンボルマッピング部604にて変調して被変調シンボルを得る。そして、被変調シンボルに対し空間多重部606にて空間多重化処理を施して三つの空間ストリームX,X,Xを生成する。その後、プリコーディング処理部608において三つの空間ストリームを二分割した二群の空間ストリームに対してそれぞれプリコーディング処理を実行する。ここで、空間ストリームXに対しては第1のプリコーディング部608aにてプリコーディング行列Vを作用させ、プリコーディングを行う。空間ストリームX,Xに対しては、第2のプリコーディング部608bにてプリコーディング行列Vを作用させ、続いて第3のプリコーディング部608cにて追加のプリコーディング行列Pを作用させてプリコーディングを行う。これにより、プリコーディング済み空間ストリームS,S,S,Sを得る。そして、アンテナマッピング部609においてプリコーディング済み空間ストリームS~Sを複数の送信アンテナへマッピングし、垂直偏波型の送信アンテナ610a,610bと、水平偏波型の送信アンテナ610c,610dとからそれぞれ送信する。この場合、水平偏波型の送信アンテナより送信する空間ストリームS,S(X,X)の方に追加のプリコーディング行列Pを用いたプリコーディングを施し、偏波間の直交性を得るようにしている。
 送信機650から送信された空間ストリームは、対応するMIMOチャネルを通過し、受信機660において受信アンテナ612a~612dにより受信される。受信機660は、チャネル推定/プリコーディング選択部614、MIMO検出部616、デマルチプレキシング部618、デマッピング部620、デコーディング部622を備える。
 受信機660では、チャネル推定/プリコーディング選択部614にて参照信号を用いて伝搬路推定を行ってMIMOチャネルのチャネル応答行列を推定する。そして、チャネル推定/プリコーディング選択部614において、上記式(5)~(9)で示したように、推定したチャネル応答行列を分解し、本実施形態のプリコーディング方法に基づいてプリコーディング行列V,V,Pを選択する。この際、プリコーディング行列Vのフィードバックに用いるコードブックは、上記の式(11)に示したコードブックΦとして行列を選択し得る。また、プリコーディング行列V,Pのフィードバックに用いるコードブックは、上記式(10)に示したコードブックCとして行列を選択し得る。これらのコードブックを用いることで、偏波間の直交性を保つようなプリコーディング行列V,V,Pが選択される。そして、チャネル推定/プリコーディング選択部614より選択されたプリコーディング行列のインデックスとしてプリコーディング情報PMIを出力し、送信機650にフィードバックする。
 そして、MIMO検出部616において、受信したデータ信号r,r,r,rに対し、チャネル行列を用いてMIMO分離処理を施し、送信機からのデータストリームを検出して分離し、分離後のストリームX^~X^を得る。その後、デマルチプレキシング部618にて分離検出したストリームをそれぞれ一つのシンボル系列に並び替え、デマッピング部620にてシンボル単位の復調処理を施す。続いて、デコーディング部622にて誤り訂正復号処理を施し、送信機650から送信されたデータ系列を再生して出力ビット系列として出力する。
 送信ストリーム数の動的制御に際し、LTEでは、3GPPのTS(Technical Specification) 36.211 V8.4.0において、図9に示すTable6.3.3.2-1:Codeword-to-layer mapping for spatial multiplexing(空間多重におけるコードワード-レイヤマッピング)にあるように、下位のストリームを優先的に束ねて単一データの割り当てを行う処理がなされる。より具体的には、送信ストリーム数が3(ランク3、Number of layers=3)のときにd(0)はx(0)のストリームのみに割り当て、一方のd(1)はx(1)とx(2)の2ストリームを束ねて用いるようデータの割り当てを行う。この制御により、例えば送信側でプリコーディング制御によりx(0)からx(2)の順に品質が劣化していくような状況を作り出した上で品質の悪い2つのストリームを束ねて用いることで、該当リソースのエネルギーを掻き集めることによるダイバーシチ効果を狙うことができる。
 本実施形態のランク3の送信においては、上記のような送信ストリーム割り当ての制御を適用し、品質が高い上位の1つのストリームXと品質が低い下位の2つのストリームX、Xとに分けて処理を行い、できる限り伝送効率を高めるようにしている。この際、第1のストリームXを一方の偏波に割り当て、第2及び第3のストリームX、Xには追加のプリコーディングを適用して他方の偏波に割り当てて、偏波間の直交性を保持することで送信性能を改善し、より高い伝送効率を実現する。
 (第5の実施形態)
 図7は、本発明の第5の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第5例を示すブロック図である。第5の実施形態は、4行4列の交差偏波型MIMOシステムにおけるフルランク送信(ランク4、送信ストリーム数=4)を考慮した構成例である。送信機750は、交差偏波型の構成を持つ4本の送信アンテナ710a~710d(Ant1~4)を有し、受信機760は、交差偏波型の構成を持つ4本の受信アンテナ712a~712d(Ant1~4)を有する。MIMO通信によって、送信機750からMIMOチャネルを介して空間多重したデータストリームを受信機760に対して送信する。
 送信機750は、チャネルエンコーディング部702、シンボルマッピング部704、空間多重部706、プリコーディング処理部708、アンテナマッピング部709を備える。プリコーディング処理部708は、プリコーディング行列Vを適用する第1のプリコーディング部708aと、プリコーディング行列Vを適用する第2のプリコーディング部708bと、プリコーディング行列Pを適用する第3のプリコーディング部708cとを有している。
 送信機750では、入力ビット系列に対してチャネルエンコーディング部702にて符号化し、続いてシンボルマッピング部704にて変調して被変調シンボルを得る。そして、被変調シンボルに対し空間多重部706にて空間多重化処理を施して四つの空間ストリームX,X,X,Xを生成する。その後、プリコーディング処理部708において四つの空間ストリームを二分割した二群の空間ストリームに対してそれぞれプリコーディング処理を実行する。ここで、空間ストリームX,Xに対しては第1のプリコーディング部708aにてプリコーディング行列Vを作用させ、プリコーディングを行う。空間ストリームX,Xに対しては、第2のプリコーディング部708bにてプリコーディング行列Vを作用させ、続いて第3のプリコーディング部708cにて追加のプリコーディング行列Pを作用させてプリコーディングを行う。これにより、プリコーディング済み空間ストリームS,S,S,Sを得る。そして、アンテナマッピング部709においてプリコーディング済み空間ストリームS~Sを複数の送信アンテナへマッピングし、垂直偏波型の送信アンテナ710a,710bと、水平偏波型の送信アンテナ710c,710dとからそれぞれ送信する。この場合、水平偏波型の送信アンテナより送信する空間ストリームS,S(X,X)の方に追加のプリコーディング行列Pを用いたプリコーディングを施し、偏波間の直交性を得るようにしている。
 送信機750から送信された空間ストリームは、対応するMIMOチャネルを通過し、受信機760において受信アンテナ712a~712dにより受信される。受信機760は、チャネル推定/プリコーディング選択部714、MIMO検出部716、デマルチプレキシング部718、デマッピング部720、デコーディング部722を備える。
 受信機760では、チャネル推定/プリコーディング選択部714にて参照信号を用いて伝搬路推定を行ってMIMOチャネルのチャネル応答行列を推定する。そして、チャネル推定/プリコーディング選択部714において、上記式(5)~(9)で示したように、推定したチャネル応答行列を分解し、本実施形態のプリコーディング方法に基づいてプリコーディング行列V,V,Pを選択する。この際、プリコーディング行列V,V,Pのフィードバックに用いるコードブックは、上記式(10)に示したコードブックCとして行列を選択し得る。このコードブックを用いることで、偏波間の直交性を保つようなプリコーディング行列V,V,Pが選択される。そして、チャネル推定/プリコーディング選択部714より選択されたプリコーディング行列のインデックスとしてプリコーディング情報PMIを出力し、送信機750にフィードバックする。
 そして、MIMO検出部716において、受信したデータ信号r,r,r,rに対し、チャネル行列を用いてMIMO分離処理を施し、送信機からのデータストリームを検出して分離し、分離後のストリームX^~X^を得る。その後、デマルチプレキシング部718にて分離検出したストリームをそれぞれ一つのシンボル系列に並び替え、デマッピング部720にてシンボル単位の復調処理を施す。続いて、デコーディング部722にて誤り訂正復号処理を施し、送信機750から送信されたデータ系列を再生して出力ビット系列として出力する。
 上述した第2~第5の実施形態によれば、交差偏波型アンテナ構造を用いたMIMOシステムにおける各ランクの送信において、偏波間の干渉を軽減する効果的なプリコーディング制御を実行でき、伝送効率を改善したSU-MIMO(Single User MIMO)システムを構成できる。また、本実施形態では、偏波ごとに分離したサブブロックにてプリコーディング行列V,Vを適用した後、一方の偏波に対して追加のプリコーディング行列Pを適用するサブブロックプリコーディング制御を用いている。これにより、プリコーディング行列の次元の大きさを低減できるので、プリコーディング行列のコードブックの情報量及び選択候補数を小さくでき、プリコーディング行列の選択処理を簡単にできる等、プリコーディング制御にかかる処理を軽減できる。また、シグナリングオーバーヘッドに対する影響を最小化して妥当なシグナリング量を維持でき、プリコーディング制御のためのフィードバックのシグナリングを最低限に抑えることができる。
 なお、プリコーディングにおいて偏波ごとにプリコーディング行列V,Vを適用する場合に、V,Vとして同じ行列を用いるようにしてもよい。この場合、上記したサブブロックプリコーディングによるプリコーディング行列の次元を小さくする効果に加えて、同じ行列の値をとることでさらにフィードバックに必要な情報量を削減できる。
 (第6の実施形態)
 上述した実施形態は、より多くのアンテナ、例えば交差偏波型構造を有する8本のアンテナを用いる事例に拡張することもできる。図8は、本発明の第6の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第6例を示すブロック図である。第6の実施形態は、8行8列の交差偏波型MIMOシステムにおけるフルランク送信(ランク8、送信ストリーム数=8)を考慮した構成例である。送信機850は、交差偏波型の構成を持つ8本の送信アンテナ810a~810h(Ant1~8)を有し、受信機860は、交差偏波型の構成を持つ8本の受信アンテナ812a~812h(Ant1~8)を有する。MIMO通信によって、送信機850からMIMOチャネルを介して空間多重したデータストリームを受信機860に対して送信する。
 送信機850は、チャネルエンコーディング部802、シンボルマッピング部804、空間多重部806、プリコーディング処理部808、アンテナマッピング部809を備える。プリコーディング処理部808は、プリコーディング行列Vを適用する第1のプリコーディング部808aと、プリコーディング行列Vを適用する第2のプリコーディング部808bと、プリコーディング行列Pを適用する第3のプリコーディング部808cとを有している。
 送信機850では、入力ビット系列に対してチャネルエンコーディング部802にて符号化し、続いてシンボルマッピング部804にて変調して被変調シンボルを得る。そして、被変調シンボルに対し空間多重部806にて空間多重化処理を施して複数(フルランクの場合8つ)の空間ストリームX~Xを生成する。その後、プリコーディング処理部808において複数の空間ストリームを二分割した二群の空間ストリームに対してそれぞれプリコーディング処理を実行する。ここで、空間ストリームX,X,X,Xに対しては第1のプリコーディング部808aにてプリコーディング行列Vを作用させ、プリコーディングを行う。空間ストリームX,X,X,Xに対しては、第2のプリコーディング部808bにてプリコーディング行列Vを作用させ、続いて第3のプリコーディング部808cにて追加のプリコーディング行列Pを作用させてプリコーディングを行う。これにより、プリコーディング済み空間ストリームS~Sを得る。そして、アンテナマッピング部809においてプリコーディング済み空間ストリームS~Sを複数の送信アンテナへマッピングし、偏波の異なる垂直偏波型の送信アンテナ810a~810dと、水平偏波型の送信アンテナ810e~810hとからそれぞれ送信する。この場合、水平偏波型の送信アンテナより送信する空間ストリームS~S(X~X)の方に追加のプリコーディング行列Pを用いたプリコーディングを施し、偏波間の直交性を得るようにしている。
 送信機850から送信された空間ストリームは、対応するMIMOチャネルを通過し、受信機860において受信アンテナ812a~812hにより受信される。受信機860は、チャネル推定/プリコーディング選択部814、MIMO検出部816、デマルチプレキシング部818、デマッピング部820、デコーディング部822を備える。
 受信機860では、チャネル推定/プリコーディング選択部814にて参照信号を用いて伝搬路推定を行ってMIMOチャネルのチャネル応答行列を推定する。そして、チャネル推定/プリコーディング選択部814において、上記式(5)~(9)で示したように、推定したチャネル応答行列を分解し、本実施形態のプリコーディング方法に基づいてプリコーディング行列V,V,Pを選択する。この際、プリコーディング行列V,V,Pのフィードバックに用いるコードブックは、下記の式(12)に示したコードブックCとして行列を選択し得る。
Figure JPOXMLDOC01-appb-M000012
 このコードブックを用いることで、偏波間の直交性を保つようなプリコーディング行列V,V,Pが選択される。そして、チャネル推定/プリコーディング選択部814より選択されたプリコーディング行列のインデックスとしてプリコーディング情報PMIを出力し、送信機850にフィードバックする。
 そして、MIMO検出部816において、受信したデータ信号r~rに対し、チャネル行列を用いてMIMO分離処理を施し、送信機からのデータストリームを検出して分離し、分離後のストリームX^~X^を得る。その後、デマルチプレキシング部818にて分離検出したストリームをそれぞれ一つのシンボル系列に並び替え、デマッピング部820にてシンボル単位の復調処理を施す。続いて、デコーディング部822にて誤り訂正復号処理を施し、送信機850から送信されたデータ系列を再生して出力ビット系列として出力する。
 本実施形態のように、8本の送信アンテナを用いる場合においても、偏波ごとに分離したサブブロックにてプリコーディング行列V,Vを適用することで、プリコーディング行列の次元を小さくし、プリコーディング制御にかかる処理を軽減できるとともに、フィードバックの情報量を削減することができる。また、多数の送信アンテナを有する構成に本実施形態のプリコーディングを適用することで、偏波あたりのビームフォーミングのゲインを向上することが可能であり、プリコーディング性能を改善できる。
 上記第6の実施形態は、8行8列の交差偏波型MIMOシステムにおけるフルランク送信を考慮した一実施形態を示したものである。8本の送信アンテナを用いる事例での各ランクの適用は、図4~図7の第2~第5の実施形態に示した4本の送信アンテナを用いる事例の単純な拡張をもって実現することができる。
 上述したように、本実施形態によれば、交差偏波型MIMOシステムにおいて異なる偏波の一方に射影行列のプリコーディング行列を適用することで、異なる偏波間のチャネル応答行列の直交性を維持でき、偏波間の干渉を低減することができる。これにより、プリコーディングを適用したMIMOシステムの性能において、ロバスト性を持たせることができる。また、サブブロックプリコーディングを用い、一方の偏波にだけ追加の簡単な射影行列のプリコーディング行列を適用することによって、制御情報をフィードバックするためのシグナリングのオーバーヘッドに対する影響を最小化できる。
 なお、本発明は、本発明の趣旨ならびに範囲を逸脱することなく、明細書の記載、並びに周知の技術に基づいて、当業者が様々な変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。また、発明の趣旨を逸脱しない範囲で、上記実施形態における各構成要素を任意に組み合わせてもよい。
 交差偏波型MIMOシステムを構成するアンテナの数、送信するストリーム数などは、上記実施形態の構成に限らず、2以上の数を適宜設定して本発明を同様に適用することが可能である。また、上記実施形態ではセルラー無線通信網の下り回線に適用した例を示したが、セルラー無線通信網の上り回線等、他の無線通信回線においても同様に適用可能である。
 なお、上記実施形態ではアンテナとして説明したが、アンテナポートでも同様に適用できる。アンテナポート(antenna port)とは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えばLTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 上記各実施形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 本出願は、2009年1月7日出願の日本特許出願(特願2009-001352)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、交差偏波型アンテナ構造を用いたMIMOシステムにおいて、理想的なXPDが得られない場合であっても、異なる偏波間の干渉を軽減でき、効果的なプリコーディングを行うことが可能となる効果を有し、複数のアンテナを使用して通信を行うMIMOシステムを用いたセルラー通信システム等の無線通信装置、無線通信システム及び無線通信方法等として有用である。
 150、250、450、550、650、750、850 送信機
 160、260、460、560、660、760、860 受信機
 102、202、402、502、602、702、802 チャネルエンコーディング部
 104、204、404、504、604、704、804 シンボルマッピング部
 106 空間多重/送信ダイバーシチ部
 206、506、606、706、806 空間多重部
 406 送信ダイバーシチ部
 108、208a~c、408a~c、508a~c、608a~c、708a~c、808a~c プリコーディング部
 208、408、508、608、708、808 プリコーディング処理部
 109、209、409、509、609、709、809 アンテナマッピング部
 110a~d、210a~d、410a~d、510a~d、610a~d、710a~d、810a~h 送信アンテナ
 112a~d、212a~d、412a~d、512a~d、612a~d、712a~d、812a~h 受信アンテナ
 114、214、414、514、614、714、814 チャネル推定/プリコーディング選択部
 116、216、416、516、616、716、816 MIMO検出部
 118、218、418、518、618、718、818 デマルチプレキシング部
 120、220、420、520、620、720、820 デマッピング部
 122、222、422、522、622、722、822 デコーディング部

Claims (13)

  1.  交差偏波型アンテナ構造を有し、MIMO(Multiple Input Multiple Output)により多重通信が可能な無線通信システムに用いられる無線通信装置であって、
     通信相手装置に送信するデータとして、複数の送信アンテナ間で空間多重するための複数のストリームを生成する空間多重部と、
     前記通信相手装置からフィードバックされる制御情報に基づき、異なる複数の偏波のうちの一方の偏波に対応するストリームに対して、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための射影行列のプリコーディング行列を作用させてプリコーディングを行うプリコーディング処理部と、
     前記プリコーディング処理を行った複数のストリームを交差偏波型の複数の送信アンテナによってそれぞれ送信する送信部と、
     を備える無線通信装置。
  2.  請求項1に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記異なる複数の偏波に対応するストリームに対して送信ビーム形成のための第1のプリコーディング行列を適用する第1のプリコーディングと、前記一方の偏波に対応するストリームに対して前記射影行列による第2のプリコーディング行列を適用する第2のプリコーディングとを行う無線通信装置。
  3.  請求項2に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記異なる複数の偏波に対応するストリームを偏波ごとに分割し、それぞれの偏波に対応するストリームに対して、前記第1のプリコーディング行列として偏波ごとに対応させたプリコーディング行列を適用してプリコーディングを行う無線通信装置。
  4.  請求項2に記載の無線通信装置であって、
     前記プリコーディング処理部は、前記射影行列による第2のプリコーディング行列として、それぞれの偏波に対応するストリームに対して適用するプリコーディング行列の内積の対角和が所定値以下となるようなユニタリ行列を用いる無線通信装置。
  5.  請求項1に記載の無線通信装置であって、
     前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ2つずつ合計4つの送信アンテナを有し、
     前記プリコーディング処理部は、前記第2の偏波に対応するストリームに対して前記射影行列によるプリコーディングを行う無線通信装置。
  6.  請求項1に記載の無線通信装置であって、
     前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ2つずつ合計4つの送信アンテナを有し、これらの送信アンテナから空間多重された3つのストリームを送信する場合に、前記第1の偏波の2つのアンテナに第1のストリームを割り当て、前記第2の偏波の2つのアンテナにそれぞれ第2及び第3のストリームを割り当てるアンテナ割り当てを行い、
     前記プリコーディング処理部は、前記第2の偏波に対応する第2及び第3のストリームに対して前記射影行列によるプリコーディングを行う無線通信装置。
  7.  請求項1に記載の無線通信装置であって、
     前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ4つずつ合計8つの送信アンテナを有し、
     前記プリコーディング処理部は、前記第2の偏波に対応するストリームに対して前記射影行列によるプリコーディングを行う無線通信装置。
  8.  交差偏波型アンテナ構造を有し、MIMOにより多重通信が可能な無線通信システムに用いられる無線通信装置であって、
     通信相手装置から自装置への伝搬路のチャネル推定を行うチャネル推定部と、
     前記チャネル推定結果に基づき、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための、一方の偏波のチャネル応答行列に対して適用する射影行列のプリコーディング行列を決定するプリコーディング選択部と、
     前記決定したプリコーディング行列を示すプリコーディング情報を含む制御情報を前記通信相手装置へフィードバックする制御情報通知部と、
     前記通信相手装置から送信されたデータを複数の受信アンテナによって受信する受信部と、
     前記受信したデータから複数のストリームを分離して検出する信号分離部と、
     前記検出した複数のストリームから受信データを復号する復号部と、
     を備える無線通信装置。
  9.  請求項8に記載の無線通信装置であって、
     前記プリコーディング選択部は、前記異なる偏波のそれぞれに対して適用するプリコーディング行列の内積の対角和が所定値以下となるようなユニタリ行列を、前記通信相手装置からの伝搬路のチャネル応答行列に基づいて算出するかまたは予め設定した行列群を持つコードブックから選択することにより、前記プリコーディング行列を決定する無線通信装置。
  10.  請求項8に記載の無線通信装置であって、
     前記プリコーディング選択部は、前記異なる複数の偏波に対して適用する送信ビーム形成のための第1のプリコーディング行列と、前記一方の偏波に対して適用する射影行列による第2のプリコーディング行列と、を決定し、
     前記制御情報通知部は、前記第1のプリコーディング行列及び前記第2のプリコーディング行列を示すプリコーディング情報を前記通信相手装置に通知する無線通信装置。
  11.  請求項10に記載の無線通信装置であって、
     前記プリコーディング選択部は、前記異なる複数の偏波のそれぞれに対して、前記第1のプリコーディング行列として偏波ごとに対応させたプリコーディング行列を決定する無線通信装置。
  12.  交差偏波型アンテナ構造を有する無線通信装置を用いて、MIMOにより多重通信が可能な無線通信システムにおける無線通信方法であって、
     通信相手装置に送信するデータとして、複数の送信アンテナ間で空間多重するための複数のストリームを生成するステップと、
     前記通信相手装置からフィードバックされる制御情報に基づき、異なる複数の偏波のうちの一方の偏波に対応するストリームに対して、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための射影行列のプリコーディング行列を作用させてプリコーディングを行うステップと、
     前記プリコーディング処理を行った複数のストリームを交差偏波型の複数の送信アンテナによってそれぞれ送信するステップと、
     を有する無線通信方法。
  13.  交差偏波型アンテナ構造を有する無線通信装置を用いて、MIMOにより多重通信が可能な無線通信システムにおける無線通信方法であって、
     通信相手装置から自装置への伝搬路のチャネル推定を行うステップと、
     前記チャネル推定結果に基づき、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための、一方の偏波のチャネル応答行列に対して適用する射影行列のプリコーディング行列を決定するステップと、
     前記決定したプリコーディング行列を示すプリコーディング情報を含む制御情報を前記通信相手装置へフィードバックするステップと、
     前記通信相手装置から送信されたデータを複数の受信アンテナによって受信するステップと、
     前記受信したデータから複数のストリームを分離して検出するステップと、
     前記検出した複数のストリームから受信データを復号するステップと、
     を有する無線通信方法。
PCT/JP2010/000048 2009-01-07 2010-01-06 無線通信装置、無線通信システム及び無線通信方法 WO2010079748A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DK10729168.4T DK2375604T3 (en) 2009-01-07 2010-01-06 Wireless communication device, wireless communication system and method of wireless communication
US13/141,743 US8737509B2 (en) 2009-01-07 2010-01-06 Wireless communication apparatus, wireless communication system and wireless communication method
EP10729168.4A EP2375604B1 (en) 2009-01-07 2010-01-06 Wireless communication apparatus, wireless communication system and wireless communication method
CN201080004076.1A CN102273115B (zh) 2009-01-07 2010-01-06 无线通信设备、无线通信系统和无线通信方法
PL10729168T PL2375604T3 (pl) 2009-01-07 2010-01-06 Urządzenie do komunikacji bezprzewodowej, system komunikacji bezprzewodowej i sposób prowadzenia komunikacji bezprzewodowej
JP2010545746A JP5372963B2 (ja) 2009-01-07 2010-01-06 無線通信装置、無線通信システム及び無線通信方法
ES10729168.4T ES2691037T3 (es) 2009-01-07 2010-01-06 Aparato de comunicación inalámbrica, sistema de comunicación inalámbrica y procedimiento de comunicación inalámbrica
EP13178557.8A EP2660991B1 (en) 2009-01-07 2010-01-06 Wireless communication apparatus and wireless communication method
US14/251,955 US8923428B2 (en) 2009-01-07 2014-04-14 Wireless communication apparatus, wireless communication system and wireless communication method
US14/252,000 US8953704B2 (en) 2009-01-07 2014-04-14 Wireless communication apparatus, wireless communication system and wireless communication method
US14/575,298 US9136926B2 (en) 2009-01-07 2014-12-18 Wireless communication apparatus, wireless communication system and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009001352 2009-01-07
JP2009-001352 2009-01-07

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/141,743 A-371-Of-International US8737509B2 (en) 2009-01-07 2010-01-06 Wireless communication apparatus, wireless communication system and wireless communication method
US14/252,000 Continuation US8953704B2 (en) 2009-01-07 2014-04-14 Wireless communication apparatus, wireless communication system and wireless communication method
US14/251,955 Continuation US8923428B2 (en) 2009-01-07 2014-04-14 Wireless communication apparatus, wireless communication system and wireless communication method

Publications (1)

Publication Number Publication Date
WO2010079748A1 true WO2010079748A1 (ja) 2010-07-15

Family

ID=42316514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000048 WO2010079748A1 (ja) 2009-01-07 2010-01-06 無線通信装置、無線通信システム及び無線通信方法

Country Status (10)

Country Link
US (4) US8737509B2 (ja)
EP (2) EP2660991B1 (ja)
JP (4) JP5372963B2 (ja)
CN (1) CN102273115B (ja)
DK (1) DK2375604T3 (ja)
ES (1) ES2691037T3 (ja)
HU (1) HUE040750T2 (ja)
PL (1) PL2375604T3 (ja)
PT (1) PT2375604T (ja)
WO (1) WO2010079748A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730677B1 (ja) * 2011-01-27 2011-07-20 日本電気株式会社 情報処理装置及び情報処理方法並びに情報処理プログラム
CN102231661A (zh) * 2011-07-22 2011-11-02 电信科学技术研究院 一种信息传输方法、系统及装置
JP2012015920A (ja) * 2010-07-02 2012-01-19 Nippon Hoso Kyokai <Nhk> 偏波mimo伝送システムにおける送信装置及び受信装置
JP2012015922A (ja) * 2010-07-02 2012-01-19 Nippon Hoso Kyokai <Nhk> 偏波mimo伝送システムにおける送信装置及び受信装置
KR20120013120A (ko) * 2010-08-04 2012-02-14 삼성전자주식회사 개 루프 멀티 셀 미모 시스템에서 성능 향상을 위한 장치 및 방법
JP2012049740A (ja) * 2010-08-25 2012-03-08 Nippon Hoso Kyokai <Nhk> 偏波mimo−ofdm伝送方式の送信装置及び受信装置
WO2012155493A1 (zh) * 2011-09-21 2012-11-22 中兴通讯股份有限公司 一种实现信道信息反馈的方法和装置
CN103141035A (zh) * 2010-10-05 2013-06-05 瑞典爱立信有限公司 用于通信系统中极化控制的方法和设备
CN103493393A (zh) * 2011-04-21 2014-01-01 中兴通讯股份有限公司 用于多输入多输出(mimo)的空间信道状态信息反馈的方法和系统
WO2014021008A1 (ja) * 2012-07-30 2014-02-06 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、ユーザ端末、通信システム及び通信制御方法
JP2014504068A (ja) * 2010-11-22 2014-02-13 ノキア シーメンス ネットワークス オサケユキチュア 部分的チャンネル状態情報による多層ビーム成形
JP2014506426A (ja) * 2011-01-04 2014-03-13 アルカテル−ルーセント 交差偏波アンテナ・アレイ(cross−polarizedantennaarray)のためのプリコーディング方法およびプリコーダ
JP2014513482A (ja) * 2011-04-28 2014-05-29 アルカテル−ルーセント ネットワーク・デバイスにおいてコードブックおよび関連データを生成するための方法および装置
WO2014088003A1 (ja) * 2012-12-06 2014-06-12 シャープ株式会社 基地局装置、端末装置、無線通信システムおよび集積回路
JP2014519242A (ja) * 2011-05-02 2014-08-07 アルカテル−ルーセント 多入力多出力ワイヤレス通信のためにプリコードされた信号を変換する方法
JP2015503305A (ja) * 2011-12-23 2015-01-29 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル状態情報をフィードバックするための方法及び装置
JP2015518671A (ja) * 2012-03-30 2015-07-02 サムスン エレクトロニクス カンパニー リミテッド 次世代無線ネットワークのためのチャンネル状態情報パイロット設計のための装置及び方法
JP2015536099A (ja) * 2012-09-28 2015-12-17 インターデイジタル パテント ホールディングス インコーポレイテッド 多次元アンテナ構成を使用する無線通信
JP2016511566A (ja) * 2013-01-28 2016-04-14 富士通株式会社 チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局
WO2016163543A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ 移動局、無線基地局及び無線通信方法
US9559763B2 (en) 2010-10-05 2017-01-31 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for polarization control in a communication system
US10938457B2 (en) 2011-02-21 2021-03-02 Sun Patent Trust Precoding method, precoding device
US11184062B2 (en) 2013-04-15 2021-11-23 Huawei Technologies Co., Ltd. Method for reporting channel state information, user equipment, and base station

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101555820B1 (ko) * 2009-12-02 2015-10-06 삼성전자주식회사 접속망의 클래스에 따라 비대칭적인 피드백 기법을 사용하는 계층 셀 통신 시스템
US9148205B2 (en) * 2010-01-25 2015-09-29 Qualcomm Incorporated Feedback for supporting SU-MIMO and MU-MIMO operation in wireless communication
US9071285B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9130638B2 (en) 2011-05-26 2015-09-08 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
EP2445131B1 (en) * 2010-06-17 2016-02-10 Panasonic Intellectual Property Corporation of America Pre-coding method and transmitter
KR20120002875A (ko) * 2010-07-01 2012-01-09 주식회사 팬택 채널정보 송수신방법 및 그 단말, 그 기지국
KR20120009649A (ko) * 2010-07-20 2012-02-02 삼성전자주식회사 다중 사용자 다중안테나 시스템에서 채널 직교화를 이용한 선처리 방법 및 장치
US8934560B2 (en) * 2010-10-07 2015-01-13 Qualcomm Incorporated Method and apparatus of using CDD like schemes with UE-RS based open loop beamforming
US8948305B2 (en) 2010-11-16 2015-02-03 Panasonic Intellectual Property Corporation Of America Transmission method, transmission apparatus, reception method and reception apparatus
EP3232590B1 (en) 2011-04-19 2018-12-05 Sun Patent Trust Communication method and device
EP2701327B1 (en) 2011-04-19 2024-05-29 Sun Patent Trust Pre-coding method and pre-coding device
WO2012144205A1 (ja) 2011-04-19 2012-10-26 パナソニック株式会社 信号生成方法及び信号生成装置
US8971432B2 (en) 2011-04-19 2015-03-03 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
EP2769516B1 (en) * 2011-10-18 2016-09-21 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for determining a transmission rank
EP2777203A4 (en) * 2011-11-08 2015-07-08 Xg Technology Inc INTERFERENCE MITIGATION METHOD FOR DEVICES AT A SINGLE RECEIVER OR MULTIPLE RECEIVER DEVICES (MIMO, EG)
US9148780B2 (en) * 2012-03-15 2015-09-29 Lg Electronics Inc. Method and apparatus for secure data transmission
KR20130106236A (ko) * 2012-03-19 2013-09-27 한국전자통신연구원 이종 무선 통신 시스템간 간섭분석 방법
CN103378890B (zh) * 2012-04-24 2016-12-07 中兴通讯股份有限公司 一种阵列天线的端口映射方法及该阵列天线端口
US10469215B2 (en) 2012-06-25 2019-11-05 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the Internet of Things
US10411843B2 (en) 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9240853B2 (en) 2012-11-16 2016-01-19 Huawei Technologies Co., Ltd. Systems and methods for sparse code multiple access
WO2014129799A1 (ko) * 2013-02-19 2014-08-28 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 신호 전송 방법 및 이를 위한 장치
US9876655B2 (en) * 2013-08-16 2018-01-23 Mediatek Singapore Pte. Ltd. Precoding-codebook-based secure uplink in LTE
US10469139B2 (en) 2013-10-18 2019-11-05 Qualcomm Incorporated Method and apparatus for configuration of CSI-RS for 3D-MIMO
KR102285852B1 (ko) * 2013-12-17 2021-08-05 삼성전자 주식회사 전차원 다중입력 다중출력 이동통신 시스템에서 통신방법 및 장치
US9419770B2 (en) 2014-03-31 2016-08-16 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
US10531432B2 (en) 2015-03-25 2020-01-07 Huawei Technologies Co., Ltd. System and method for resource allocation for sparse code multiple access transmissions
US10701685B2 (en) 2014-03-31 2020-06-30 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
EP2945299B1 (en) * 2014-05-15 2018-04-04 Alcatel Lucent Apparatus, method and computer program for a transceiver of a mobile communication system
WO2016014598A1 (en) * 2014-07-21 2016-01-28 Cohere Technologies, Inc. Otfs methods of data channel characterization and uses thereof
WO2016148262A1 (ja) * 2015-03-17 2016-09-22 日本電気株式会社 通信装置、方法及びシステムと端末とプログラム
JP7050410B2 (ja) * 2015-06-09 2022-04-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、及び送信方法
US10574317B2 (en) 2015-06-18 2020-02-25 Cohere Technologies, Inc. System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators
WO2017071586A1 (en) 2015-10-30 2017-05-04 Huawei Technologies Co., Ltd. System and method for high-rate sparse code multiple access in downlink
CN106341168B (zh) * 2015-12-31 2019-12-03 北京智谷睿拓技术服务有限公司 预编码方法、信息发送方法、及其装置
CN107863995B (zh) * 2016-09-21 2020-09-11 华为技术有限公司 数据发送方法、数据接收方法、设备及系统
WO2019201928A1 (en) * 2018-04-16 2019-10-24 Sony Corporation Methods and devices for configuring multiple input multiple output wireless transmission
US11522600B1 (en) 2018-08-01 2022-12-06 Cohere Technologies, Inc. Airborne RF-head system
CN111628807A (zh) * 2019-02-28 2020-09-04 英国电讯有限公司 Mimo系统中的信道估计
US11641269B2 (en) 2020-06-30 2023-05-02 Rampart Communications, Inc. Modulation-agnostic transformations using unitary braid divisional multiplexing (UBDM)
US10951442B2 (en) 2019-07-31 2021-03-16 Rampart Communications, Inc. Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security
US10735062B1 (en) 2019-09-04 2020-08-04 Rampart Communications, Inc. Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices
US10965352B1 (en) 2019-09-24 2021-03-30 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
EP4094398A4 (en) * 2020-01-25 2024-03-06 Qualcomm Incorporated SOUNDING REFERENCE SIGNAL CONFIGURATION
US11159220B2 (en) 2020-02-11 2021-10-26 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange
CN113206716B (zh) * 2021-04-23 2022-06-24 成都坤恒顺维科技股份有限公司 正交信道矩阵的建模方法
KR102557491B1 (ko) * 2021-11-12 2023-07-19 한국과학기술원 기술간 교차 통신 방법 및 교차 통신 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165339A (ja) * 1998-11-27 2000-06-16 Nec Corp 送信lo同期方式を用いた両偏波伝送システム
JP2007214780A (ja) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置システム、無線通信方法、基地局装置及び端末装置
US20080037681A1 (en) 2003-11-21 2008-02-14 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
JP2008211476A (ja) * 2007-02-26 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置及び無線通信システム
JP2009001352A (ja) 2007-06-19 2009-01-08 Mitsui Eng & Shipbuild Co Ltd 原料投入装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859503B2 (en) * 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
BRPI0618243A2 (pt) 2005-11-04 2011-08-23 Matsushita Electric Ind Co Ltd aparelho de transmissão por rádio, aparelho de recepção de rádio, método de comunicação sem fio e sistema de comunicação sem fio
KR20080073624A (ko) * 2007-02-06 2008-08-11 삼성전자주식회사 다중 편파 다중 입출력 시스템을 위한 코드북 생성 방법 및그 장치
US7995671B2 (en) 2007-02-09 2011-08-09 Qualcomm Incorporated Multiple-input multiple-output (MIMO) transmission with rank-dependent precoding
ES2407118T3 (es) * 2007-04-30 2013-06-11 Telefonaktiebolaget L M Ericsson (Publ) Método y disposición para adaptar una transmisión multi-antena
CN101316130B (zh) * 2007-06-01 2014-06-11 中国移动通信集团公司 闭环模式下共用天线系统和方法
US7629902B2 (en) * 2007-06-08 2009-12-08 Samsung Electronics Co., Ltd. MIMO wireless precoding system robust to power imbalance
CN102938665B (zh) * 2007-06-19 2015-09-30 株式会社Ntt都科摩 发送装置以及发送方法
KR101306713B1 (ko) * 2007-08-14 2013-09-11 엘지전자 주식회사 다중 안테나 시스템에서 피드백 방법 및 코드북 구성 방법
US8989285B2 (en) * 2007-09-26 2015-03-24 Samsung Electronics Co., Ltd. Efficient MIMO precoding feedback scheme
KR101373951B1 (ko) * 2008-01-30 2014-03-13 엘지전자 주식회사 다중안테나 시스템에서 프리코딩 정보 전송방법
KR20100013251A (ko) * 2008-07-30 2010-02-09 엘지전자 주식회사 다중안테나 시스템에서 데이터 전송방법
US7764746B2 (en) * 2008-08-19 2010-07-27 Samsung Electronics Co., Ltd. User terminal and base station using adapted codebook according to polarization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165339A (ja) * 1998-11-27 2000-06-16 Nec Corp 送信lo同期方式を用いた両偏波伝送システム
US20080037681A1 (en) 2003-11-21 2008-02-14 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
JP2007214780A (ja) * 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置システム、無線通信方法、基地局装置及び端末装置
JP2008211476A (ja) * 2007-02-26 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置及び無線通信システム
JP2009001352A (ja) 2007-06-19 2009-01-08 Mitsui Eng & Shipbuild Co Ltd 原料投入装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INVESTIGATIONS ON PRE-CODING SCHEMES FOR MIMO IN E-UTRA DOWNLINK, R1-063311, 10 November 2006 (2006-11-10), XP050103756 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015920A (ja) * 2010-07-02 2012-01-19 Nippon Hoso Kyokai <Nhk> 偏波mimo伝送システムにおける送信装置及び受信装置
JP2012015922A (ja) * 2010-07-02 2012-01-19 Nippon Hoso Kyokai <Nhk> 偏波mimo伝送システムにおける送信装置及び受信装置
KR20120013120A (ko) * 2010-08-04 2012-02-14 삼성전자주식회사 개 루프 멀티 셀 미모 시스템에서 성능 향상을 위한 장치 및 방법
KR101701896B1 (ko) 2010-08-04 2017-02-02 삼성전자주식회사 개 루프 멀티 셀 미모 시스템에서 성능 향상을 위한 장치 및 방법
JP2012049740A (ja) * 2010-08-25 2012-03-08 Nippon Hoso Kyokai <Nhk> 偏波mimo−ofdm伝送方式の送信装置及び受信装置
CN103141035B (zh) * 2010-10-05 2017-02-15 瑞典爱立信有限公司 用于通信系统中极化控制的方法和设备
US9559763B2 (en) 2010-10-05 2017-01-31 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for polarization control in a communication system
CN103141035A (zh) * 2010-10-05 2013-06-05 瑞典爱立信有限公司 用于通信系统中极化控制的方法和设备
JP2014504068A (ja) * 2010-11-22 2014-02-13 ノキア シーメンス ネットワークス オサケユキチュア 部分的チャンネル状態情報による多層ビーム成形
US8989295B2 (en) 2010-11-22 2015-03-24 Nokia Solutions And Networks Oy Multi-layer beamforming with partial channel state information
JP2014506426A (ja) * 2011-01-04 2014-03-13 アルカテル−ルーセント 交差偏波アンテナ・アレイ(cross−polarizedantennaarray)のためのプリコーディング方法およびプリコーダ
US8942310B2 (en) 2011-01-27 2015-01-27 Nec Corporation Information processing apparatus and information processing method, and non-transitory computer readable medium storing information processing program
WO2012101703A1 (ja) * 2011-01-27 2012-08-02 日本電気株式会社 情報処理装置及び情報処理方法並びに情報処理プログラムが格納された非一時的なコンピュータ可読媒体
JP4730677B1 (ja) * 2011-01-27 2011-07-20 日本電気株式会社 情報処理装置及び情報処理方法並びに情報処理プログラム
US10938457B2 (en) 2011-02-21 2021-03-02 Sun Patent Trust Precoding method, precoding device
US11863263B2 (en) 2011-02-21 2024-01-02 Sun Patent Trust Precoding method, precoding device
US11563471B2 (en) 2011-02-21 2023-01-24 Sun Patent Trust Precoding method, precoding device
US11218200B2 (en) 2011-02-21 2022-01-04 Sun Patent Trust Precoding method, precoding device
EP2700177A2 (en) * 2011-04-21 2014-02-26 ZTE Corporation Method and system for spatial channel state information feedback for multiple-input multiple-output (mimo)
JP2014515907A (ja) * 2011-04-21 2014-07-03 ゼットティーイー コーポレイション 多重入出力(mimo)のための空間チャネル状態情報のフィードバック方法およびシステム
CN103493393B (zh) * 2011-04-21 2018-02-09 中兴通讯股份有限公司 用于多输入多输出(mimo)的空间信道状态信息反馈的方法和系统
EP2700177A4 (en) * 2011-04-21 2014-10-08 Zte Corp METHOD AND SYSTEM FOR RETURNING SPATIAL CHANNEL STATUS INFORMATION FOR MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) SYSTEM
CN103493393A (zh) * 2011-04-21 2014-01-01 中兴通讯股份有限公司 用于多输入多输出(mimo)的空间信道状态信息反馈的方法和系统
JP2014513482A (ja) * 2011-04-28 2014-05-29 アルカテル−ルーセント ネットワーク・デバイスにおいてコードブックおよび関連データを生成するための方法および装置
JP2014519242A (ja) * 2011-05-02 2014-08-07 アルカテル−ルーセント 多入力多出力ワイヤレス通信のためにプリコードされた信号を変換する方法
CN102231661A (zh) * 2011-07-22 2011-11-02 电信科学技术研究院 一种信息传输方法、系统及装置
WO2012155493A1 (zh) * 2011-09-21 2012-11-22 中兴通讯股份有限公司 一种实现信道信息反馈的方法和装置
US9455856B2 (en) 2011-12-23 2016-09-27 Huawei Technologies Co., Ltd. Method and apparatus for feeding back channel state information
JP2015503305A (ja) * 2011-12-23 2015-01-29 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル状態情報をフィードバックするための方法及び装置
USRE47879E1 (en) 2012-03-30 2020-02-25 Samsung Electronics Co., Ltd. Apparatus and method for channel-state-information pilot design for an advanced wireless network
JP2015518671A (ja) * 2012-03-30 2015-07-02 サムスン エレクトロニクス カンパニー リミテッド 次世代無線ネットワークのためのチャンネル状態情報パイロット設計のための装置及び方法
JP2014027608A (ja) * 2012-07-30 2014-02-06 Ntt Docomo Inc 基地局装置、ユーザ端末、通信システム及び通信制御方法
WO2014021008A1 (ja) * 2012-07-30 2014-02-06 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、ユーザ端末、通信システム及び通信制御方法
JP2017139804A (ja) * 2012-09-28 2017-08-10 インターデイジタル パテント ホールディングス インコーポレイテッド 多次元アンテナ構成を使用する無線通信
JP2018198428A (ja) * 2012-09-28 2018-12-13 インターデイジタル パテント ホールディングス インコーポレイテッド 多次元アンテナ構成を使用する無線通信
US9918240B2 (en) 2012-09-28 2018-03-13 Interdigital Patent Holdings, Inc. Wireless communication using multi-dimensional antenna configuration
JP2015536099A (ja) * 2012-09-28 2015-12-17 インターデイジタル パテント ホールディングス インコーポレイテッド 多次元アンテナ構成を使用する無線通信
US11546027B2 (en) 2012-12-06 2023-01-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Base station apparatus, terminal apparatus, wireless communication system and integrated circuit
WO2014088003A1 (ja) * 2012-12-06 2014-06-12 シャープ株式会社 基地局装置、端末装置、無線通信システムおよび集積回路
JP2016511566A (ja) * 2013-01-28 2016-04-14 富士通株式会社 チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局
US11184062B2 (en) 2013-04-15 2021-11-23 Huawei Technologies Co., Ltd. Method for reporting channel state information, user equipment, and base station
US10270501B2 (en) 2015-04-09 2019-04-23 Ntt Docomo, Inc. Mobile station, radio base station, and radio communication method
WO2016163543A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ 移動局、無線基地局及び無線通信方法

Also Published As

Publication number Publication date
JP2013225934A (ja) 2013-10-31
CN102273115B (zh) 2015-06-17
US20140226742A1 (en) 2014-08-14
JP5372963B2 (ja) 2013-12-18
US20140219381A1 (en) 2014-08-07
US9136926B2 (en) 2015-09-15
EP2375604B1 (en) 2018-07-25
JP5877254B2 (ja) 2016-03-02
JP2015119493A (ja) 2015-06-25
EP2375604A4 (en) 2014-07-30
US8737509B2 (en) 2014-05-27
EP2660991A3 (en) 2014-07-30
EP2660991A2 (en) 2013-11-06
PL2375604T3 (pl) 2019-01-31
ES2691037T3 (es) 2018-11-23
EP2660991B1 (en) 2020-07-29
DK2375604T3 (en) 2018-11-19
JP5697116B2 (ja) 2015-04-08
US20110261894A1 (en) 2011-10-27
JP5451932B2 (ja) 2014-03-26
HUE040750T2 (hu) 2019-03-28
EP2375604A1 (en) 2011-10-12
US20150103939A1 (en) 2015-04-16
JP2014112841A (ja) 2014-06-19
PT2375604T (pt) 2018-11-14
US8923428B2 (en) 2014-12-30
CN102273115A (zh) 2011-12-07
US8953704B2 (en) 2015-02-10
JPWO2010079748A1 (ja) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5877254B2 (ja) 端末装置及び通信方法
EP2494730B1 (en) Multi-granular feedback reporting and feedback processing for precoding in telecommunications
US8619641B2 (en) Single-user beamforming method and apparatus suitable for frequency division duplex system
WO2010032385A1 (ja) 無線通信装置、無線通信システム及び無線通信方法
JP2015053681A (ja) クロネッカー積に基づく空間的チャンネル状態情報フィードバックのための方法及びシステム
US9008008B2 (en) Method for communicating in a MIMO context
US8942305B2 (en) Method for communicating in a network
CN102064919A (zh) 一种信道质量信息的修正方法及装置
JP4698346B2 (ja) 無線伝送システム、基地局及び無線伝送方法
EP2557720B1 (en) Transformation device and method
JP5777092B2 (ja) 無線通信装置、無線伝送システム及び無線伝送方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004076.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545746

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13141743

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010729168

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE