WO2010079748A1 - 無線通信装置、無線通信システム及び無線通信方法 - Google Patents
無線通信装置、無線通信システム及び無線通信方法 Download PDFInfo
- Publication number
- WO2010079748A1 WO2010079748A1 PCT/JP2010/000048 JP2010000048W WO2010079748A1 WO 2010079748 A1 WO2010079748 A1 WO 2010079748A1 JP 2010000048 W JP2010000048 W JP 2010000048W WO 2010079748 A1 WO2010079748 A1 WO 2010079748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- precoding
- matrix
- wireless communication
- polarization
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/002—Reducing depolarization effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/046—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
- H04B7/0469—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0634—Antenna weights or vector/matrix coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0691—Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/10—Polarisation diversity; Directional diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03891—Spatial equalizers
- H04L25/03898—Spatial equalizers codebook-based design
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03891—Spatial equalizers
- H04L25/03961—Spatial equalizers design criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03777—Arrangements for removing intersymbol interference characterised by the signalling
- H04L2025/03802—Signalling on the reverse channel
- H04L2025/03808—Transmission of equaliser coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
- H04L25/0242—Channel estimation channel estimation algorithms using matrix methods
- H04L25/0248—Eigen-space methods
Definitions
- the present invention relates to a wireless communication apparatus, a wireless communication system, and a wireless communication method used for a MIMO (Multiple Input Multiple Output) system that performs communication using a plurality of antennas.
- MIMO Multiple Input Multiple Output
- the MIMO system is a communication system that uses a plurality of transmission antennas and a plurality of reception antennas for data communication.
- An access point to which a user terminal is connected can communicate with one or more user terminals at an arbitrary required time on a downlink and an uplink.
- the downlink ie, forward line
- the uplink ie, reverse line
- An access point is usually a wireless communication device with a fixed base station that communicates with a user terminal and may also be referred to as a base station or other terminology.
- a user terminal is a fixed or mobile wireless communication device and may also be referred to as a base station, a wireless device, a mobile station, user equipment, or some other terminology.
- BS Base Station
- UE User Equipment
- channel state information is usually transmitted from the receiver to the transmitter. That is, when precoding or beamforming is performed in a closed-loop MIMO system, channel optimization can be realized by using channel state information fed back from a receiver to a transmitter in the communication system. it can.
- Precoding is a technique in which, in a MIMO system, when transmitting from a plurality of antennas, a weighted data is transmitted from each antenna to form a beam suitable for the condition of the propagation path and transmit. At this time, in order to reflect the observation state (propagation state) of the received signal at the reception point, a feedback signal including beam information is transmitted from the receiver to the transmitter, and the transmitter controls the beam using the feedback signal.
- LTE Long Term Evolution
- 3GPP 3rd Generation Partnership Project
- the use of a cross-polarized antenna structure is effective.
- the use of antennas with different polarizations at the transmitter and receiver results in a gain (or power) and correlation imbalance between the elements of the channel matrix.
- the elements of the channel matrix exhibit more complex behavior.
- the current LTE does not include any dedicated codebook for cross-polarized antenna structures in order to reduce the complexity of implementation and maintain one codebook for all applications (various antenna structures). It was. Because cross-polarized antenna structures have significant utility, the addition of this type of codebook will provide significant performance advantages in the next LTE-advanced deployment.
- a codebook using a block diagonal matrix is conceivable for precoding of a MIMO system using a cross polarization antenna structure (hereinafter referred to as a cross polarization MIMO system).
- a cross polarization MIMO system the assumption of ideal XPD (Cross Polarization Discrimination) is applied, in which case the channel matrix can be approximated by a block diagonal matrix.
- ideal XPD Cross Polarization Discrimination
- an ideal XPD is not always expected, and a precoding matrix using this type of codebook cannot be matched with the structure of the channel matrix. Therefore, when the ideal XPD condition is not satisfied, the precoding performance deteriorates.
- An object of the present invention is to provide a wireless communication apparatus, a wireless communication system, and a wireless communication method capable of performing effective precoding.
- the present invention provides, as a first aspect, a wireless communication apparatus used in a wireless communication system having a cross-polarized antenna structure and capable of multiplex communication by MIMO, and a plurality of data to be transmitted to a communication partner apparatus And a stream corresponding to one of a plurality of different polarizations based on control information fed back from the communication partner apparatus, and a spatial multiplexing unit that generates a plurality of streams for spatial multiplexing between the transmission antennas
- a precoding processing unit that performs precoding by applying a precoding matrix of a projection matrix for orthogonally or substantially orthogonalizing channel response matrices for different polarizations, and a plurality of streams subjected to the precoding processing
- a wireless communication apparatus comprising: a transmitting unit that transmits each of the signals by means of a plurality of cross-polarized transmission antennas Provided.
- the present invention provides, as a second aspect, the wireless communication apparatus described above, wherein the precoding processing unit is configured to perform a first transmission beam forming for streams corresponding to the plurality of different polarizations. Including a first precoding that applies a precoding matrix and a second precoding that applies a second precoding matrix based on the projection matrix to a stream corresponding to the one polarization.
- the present invention provides a wireless communication apparatus according to the third aspect, wherein the precoding processing unit divides a stream corresponding to the plurality of different polarizations for each polarization, and each polarization Are applied to a stream corresponding to 1 by applying a precoding matrix corresponding to each polarization as the first precoding matrix.
- the present invention provides the wireless communication apparatus according to the fourth aspect, wherein the precoding processing unit applies a stream corresponding to each polarization as a second precoding matrix based on the projection matrix.
- the precoding processing unit applies a stream corresponding to each polarization as a second precoding matrix based on the projection matrix.
- the present invention provides, as a fifth aspect, the above-described wireless communication apparatus, wherein the transmission unit includes a total of four transmission antennas, each corresponding to two different first and second polarizations.
- the precoding processing unit includes a unit that precodes a stream corresponding to the second polarization with the projection matrix.
- the present invention provides, as a sixth aspect, the above-described wireless communication apparatus, wherein the transmission unit includes a total of four transmission antennas, each corresponding to two different first and second polarizations. And transmitting three spatially multiplexed streams from these transmission antennas, the first stream is allocated to the two antennas of the first polarization, and the two antennas of the second polarization are Antenna allocation for allocating the second and third streams respectively, and the precoding processing unit performs precoding using the projection matrix for the second and third streams corresponding to the second polarization Including things.
- the present invention provides, as a seventh aspect, the above-described wireless communication apparatus, wherein the transmission unit includes a total of eight transmission antennas, each corresponding to two different first and second polarizations.
- the precoding processing unit includes a unit that precodes a stream corresponding to the second polarization with the projection matrix.
- the present invention provides, as an eighth aspect, a wireless communication device used in a wireless communication system having a cross polarization antenna structure and capable of multiplex communication by MIMO, and a propagation path from a communication partner device to the own device
- a channel estimation unit that performs channel estimation of a channel, and a projection matrix to be applied to a channel response matrix of one polarization for orthogonally or substantially orthogonalizing channel response matrices for different polarizations based on the channel estimation result
- a precoding selection unit that determines a precoding matrix, a control information notification unit that feeds back control information including precoding information indicating the determined precoding matrix to the communication partner device, and data transmitted from the communication partner device
- the present invention provides, as a ninth aspect, the above-described wireless communication apparatus, wherein the precoding selection unit has a predetermined diagonal sum of inner products of precoding matrices applied to each of the different polarizations.
- the precoding matrix is determined by calculating a unitary matrix that is less than or equal to the value based on a channel response matrix of a propagation path from the communication partner apparatus or by selecting from a codebook having a preset matrix group Including what to do.
- the present invention provides, as a tenth aspect, the wireless communication apparatus described above, wherein the precoding selection unit performs first precoding for transmitting beam formation applied to the plurality of different polarizations.
- the present invention provides, as an eleventh aspect, the above wireless communication apparatus, wherein the precoding selection unit uses a polarization as the first precoding matrix for each of the plurality of different polarizations. Including a precoding matrix corresponding to each.
- a radio communication method in a radio communication system capable of performing multiplex communication by MIMO using a radio communication apparatus having a cross polarization antenna structure, which is transmitted to a communication partner apparatus. And generating one of a plurality of different polarizations based on the step of generating a plurality of streams for spatial multiplexing between a plurality of transmission antennas and control information fed back from the communication counterpart device.
- Precoding by applying a precoding matrix of a projection matrix for orthogonally or substantially orthogonalizing channel response matrices for different polarizations to corresponding streams, and a plurality of streams subjected to the precoding processing Each of which is transmitted by a plurality of cross-polarization type transmission antennas.
- a wireless communication method in a wireless communication system capable of performing multiplex communication by MIMO using a wireless communication device having a cross polarization antenna structure. Applying to the channel response matrix of one polarization for making the channel response matrix for different polarizations orthogonal or almost orthogonal based on the channel estimation result, and performing channel estimation of the propagation path to the device
- Providing a step of separately detecting includes the steps of decoding the received data from a plurality of streams said detecting, a wireless communication method having.
- interference between different polarizations can be reduced and effective precoding can be performed even when an ideal XPD cannot be obtained. Is possible.
- Block diagram showing a configuration example of a MIMO system including one transmitter and one receiver The block diagram which shows the 1st example of a structure of the radio
- a flowchart showing an operation procedure in the present embodiment As a second embodiment of the present invention, a block diagram showing a second example of a configuration of a wireless communication system using a cellular wireless communication network As a third embodiment of the present invention, a block diagram showing a third example of a configuration of a wireless communication system using a cellular wireless communication network
- a block diagram showing a fifth example of a configuration of a wireless communication system using a cellular wireless communication network As a sixth embodiment of the present invention, a block diagram showing a sixth example of a configuration of a wireless communication system using a
- cross-polarization MIMO is applied in the downlink of a cellular wireless communication network, and a base station (BS) and user terminals ( 1 shows a configuration example of a wireless communication system that performs communication using a cross-polarized antenna with a UE.
- precoding is performed in a closed-loop cross-polarization MIMO system.
- the present embodiment generally relates to remote communication, and more specifically, to a method and apparatus for multi-antenna transmission using a cross-polarized antenna structure in a MIMO system, and a product.
- a technique for executing precoding control in a cross polarization MIMO system will be described. These technologies are combined with various radio technologies such as Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiplexing (OFDM), and Time Division Multiple Access (TDMA). Can be used.
- CDMA Code Division Multiple Access
- OFDM Orthogonal Frequency Division Multiplexing
- TDMA Time Division Multiple Access
- a channel response matrix is obtained by performing channel measurement and channel estimation using a reference signal as a reference in the receiver. Is obtained.
- the plurality of antennas having the cross polarization antenna structure a plurality of antennas having different polarizations such as vertical polarization and horizontal polarization are used.
- the obtained channel response matrix can be decomposed into two parts representing channel responses from different polarizations of the transmitting antenna.
- the receiver may select different precoding matrices for transmission data streams with different polarizations based on a channel response matrix that can be decomposed in two.
- the receiver feeds back the selected precoding matrix to the transmitter.
- the transmitter performs precoding by applying the fed back precoding matrix to the data stream for each polarization, and transmits the data from antennas having different polarizations.
- a stricter precoding matrix is applied to one polarization on the transmitter side, and interference mitigation is performed to reduce interference from different polarizations.
- the system and method of the present embodiment disclosed herein provide the method for transmitting data from a transmitter to a receiver in a cellular radio communication system or the like used for mobile telephone communication, etc. It deals with gender.
- This embodiment is provided by applying cross-polarization dedicated precoding to a MIMO system using a cross-polarization antenna structure. According to the present embodiment, it is possible to minimize interference between different polarizations such as horizontal polarization and vertical polarization, and to compensate for poor XPD characteristics in the channel of the cross polarization MIMO system, thereby improving the precoding performance. The transmission performance can be improved.
- the present embodiment includes the following processing procedure.
- the receiver is composed of two precoding matrices, each from a different polarization on the transmitter side Step (4) for selecting a matrix for data transmission Step for the receiver to select an additional precoding matrix for data transmission from one polarization on the transmitter side (5)
- the receiver selects the selected precoding matrix Step (6) where the transmitter sends a data stream based on the corresponding downlink assignment signaling.
- Step-flop (7) receiver which receives the data stream from the transmitter, to acquire the reproduction data stream by performing MIMO detection processing
- a cellular radio communication system includes a transmitter having multiple antennas of cross polarization type and one receiver having multiple antennas of cross polarization type.
- the cellular radio communication system includes means for adjusting precoding for processing a plurality of spatial data streams. For this means, the function of selecting a precoding matrix for data transmission from different polarizations at the receiver side and the precoding matrix selected for data transmission from different polarizations at the transmitter side are applied. Functions to be included.
- FIG. 1 is a block diagram illustrating a configuration example of a MIMO system including one transmitter and one receiver.
- a MIMO system using cross-polarization type multiple antennas will be described.
- This MIMO system uses a plurality of transmission antennas and reception antennas for data transmission.
- a plurality of antennas on the transmitter side and the receiver side use a cross polarization configuration.
- the transmitter represents multiple inputs and the receiver represents multiple outputs.
- the data stream is transmitted from the cross polarization transmit antenna to the cross polarization receive antenna via a wireless MIMO channel.
- a data sequence to be transmitted is input as an input bit sequence, the input bit sequence is encoded by a channel encoding unit 102, and then modulated by a symbol mapping unit 104 to be modulated. Get the symbol. Then, the spatial multiplexing / transmission diversity section 106 performs spatial multiplexing and transmission diversity processing on the modulated symbols to generate a plurality of spatial streams. Thereafter, the precoding unit 108 applies precoding to the plurality of spatial streams, and then the antenna mapping unit 109 maps the precoded spatial streams S 1 to S 4 to the plurality of transmission antennas, respectively. Transmit from Ant1 to 4).
- the spatial stream transmitted from the transmitter 150 is transmitted via the corresponding MIMO channel, and is received as the spatial streams r 1 to r 4 by the reception antennas 112a to 112d (Ant1 to 4) in the receiver 160.
- channel estimation / precoding selection section 114 estimates the channel response matrix of the MIMO channel using the reference signal, selects the precoding matrix based on the estimated channel response matrix, and then selects it.
- the precoding information PMI indicating the precoding matrix V is fed back to the transmitter 150.
- MIMO detection section 116 performs MIMO separation processing using the channel response matrix, and detects and separates a plurality of data streams from the transmission antenna.
- a demultiplexing unit 118 that performs processing opposite to that of the spatial multiplexing / transmission diversity unit 106 rearranges the separated and detected streams into one symbol series, and performs de-mapping that performs processing reverse to that of the symbol mapping unit 104
- the unit 120 performs demodulation processing in symbol units.
- an error correction decoding process is performed by a decoding unit 122 that performs processing reverse to that of the channel encoding unit 102, and a data sequence transmitted from the transmitter 150 is reproduced and output as an output bit sequence.
- the MIMO channel formed by the receiving antenna of the receiver and the transmitting antenna of the transmitter is based on a channel response matrix H of N rows and M columns (N ⁇ M) determined by the number of antennas M of the transmitter and the number of antennas N of the receiver. Characterized.
- the channel response matrix H can be decomposed using singular value decomposition to obtain a corresponding projection matrix, that is, a right singular matrix.
- the singular value decomposition of the channel response matrix H is expressed by the following equation (1).
- U is a unitary matrix of N rows and N columns (N ⁇ N) composed of left eigenvectors of H
- ⁇ is a diagonal matrix of N rows and M columns (N ⁇ M) composed of singular values of H
- V is a unitary matrix of M rows and M columns (M ⁇ M) composed of the right eigenvector of H
- H represents a conjugate transpose matrix.
- the transmitter performs spatial processing on the communication data using the right eigenvalue vector V of the channel response matrix H as a precoding matrix.
- the actual channel response matrix H ⁇ can be estimated based on the reference signal transmitted by the transmitter at the receiver. Therefore, the precoding matrix V ⁇ can be derived and quantified based on the above equation (1).
- the matrix of H, V, etc. without ⁇ is a theoretical value, and H ⁇ , V ⁇ with ⁇ (correctly ⁇ is put on the letter of H, etc. as shown in the following formula.
- the matrix such as) indicates a matrix actually applied determined using a channel response matrix estimated by the reference signal, a code book, or the like. The same applies to the following.
- the receiver feeds back the selected precoding matrix V ⁇ to the transmitter and notifies the precoding matrix to be used for transmission. Thereby, the transmitter can transmit data in the main eigenmode of the MIMO channel.
- a method based on a code book is used for selection of a precoding matrix.
- the codebook C includes L unitary matrices.
- a codebook using a block diagonal matrix is conceivable for precoding of a cross polarization MIMO system. That is, in data transmission between a transmitter having a cross-polarization type transmission antenna and a receiver having a cross-polarization type reception antenna, a code book C having L block diagonal matrices is transmitted on the transmitter side. Used for precoding.
- the ideal XPD premise for the MIMO channel is applied, in which case the channel matrix can be approximated by a block diagonal matrix.
- an ideal XPD cannot always be expected, and at that time, the orthogonality between the vertical polarization and the horizontal polarization cannot be maintained. For this reason, a precoding matrix using this type of codebook cannot be matched with the structure of the channel matrix. As a result, if the ideal XPD condition is not satisfied, the precoding performance is degraded.
- R t is a covariance matrix on the transmission side of M t rows and M t columns (M t ⁇ M t )
- R r is a covariance matrix on the reception side of M r rows and M r columns (M r ⁇ M r ).
- Hw is a complex Gaussian matrix and indicates a fading component when there is no correlation between polarizations and they are independent.
- ⁇ represents the Hadamard product.
- X is a matrix based on XPD, and in the case of 4 rows and 2 columns (4 ⁇ 2) and 4 rows and 4 columns (4 ⁇ 4), the following equation (3) is obtained.
- the channel response matrix H is expressed by the following equation (4), in the case of incomplete XPD, the components h VH and h HV on the upper right and lower left do not become zero due to the presence of interference between polarizations, so that the block
- the non-zero component is not utilized and performance is degraded.
- This embodiment proposes to apply cross-polarization dedicated precoding so that effective channels between different polarization types are orthogonalized as much as possible in order to reduce interference between polarizations in a cross-polarization MIMO system. It is.
- a system and method for improving the performance of a communication channel in a communication system is provided, thereby improving the transmission performance of, for example, a cross polarization MIMO system. That is, in the present embodiment, in order to increase the frequency utilization efficiency of uplink and downlink communications in a cellular radio communication network, the MIMO technology is used, and higher-order MIMO and spatial constraints on antenna installation are avoided.
- a precoding method is provided for MIMO transmission using an effective cross-polarized antenna structure.
- an appropriate precoding matrix is selected for each polarization in the receiver as a precoding matrix dedicated to the cross polarization MIMO system. This minimizes interference between horizontal and vertical polarizations to compensate for poor XPD characteristics of the channel and eliminates inaccurate matching between the precoding matrix and the channel matrix. Also, in this embodiment, the influence on the signaling overhead is minimized by reducing the size of the dimension of the precoding matrix using subblock precoding control in which precoding is performed in subblocks separated for each polarization. Turn into.
- FIG. 2 is a block diagram showing a first example of a configuration of a wireless communication system using a cellular wireless communication network as the first embodiment of the present invention.
- a configuration example in which each of a transmitter and a receiver has a plurality (four in this case) of cross-polarized antennas and transmits a plurality of data streams X 1 to X i is shown.
- the number of antennas is not limited to four, and a plurality of antennas can be set as appropriate.
- the cross-polarization MIMO system of the first embodiment includes a transmitter 250 by BS and a receiver 260 by UE, and data is spatially multiplexed from the transmitter 250 via a MIMO channel by MIMO communication.
- the stream is transmitted to the receiver 260.
- the transmitter 250 has four transmission antennas 210a (Ant1), 210b (Ant2), 210c (Ant3), and 210d (Ant4) having a cross polarization configuration
- the receiver 260 is a cross polarization type. It has four receiving antennas 212a (Ant1), 212b (Ant2), 212c (Ant3), and 212d (Ant4).
- the MIMO channel formed by the receiving antenna of the receiver and the transmitting antenna of the transmitter is characterized by a channel response matrix H of 4 rows and 4 columns (4 ⁇ 4).
- the channel response matrix H ⁇ is estimated at the receiver based on the reference signal transmitted by the transmitter.
- This channel response matrix H ⁇ is expressed as the following equation (5), and is decomposed for each of the vertical polarization and the horizontal polarization.
- H ⁇ V represents the channel response matrix corresponding to the channel between the vertically polarized transmitting and receiving antennas
- H ⁇ H corresponds to the channel between the horizontally polarized transmitting and receiving antennas. Represents the channel response matrix.
- the singular value decomposition of the channel response matrices H ⁇ V and H ⁇ H is expressed by the following equation (6).
- U ⁇ 1 is a 4 ⁇ 4 unitary matrix composed of left eigenvectors of H ⁇ V
- ⁇ ⁇ 1 is 4 ⁇ 2 (4 ⁇ 2) composed of singular values of H ⁇ V.
- V ⁇ 1 is a 2-by-2 (2 ⁇ 2) unitary matrix composed of right eigenvectors of H ⁇ V
- U ⁇ 2 is a 4 ⁇ 4 unitary matrix composed of left eigenvectors of H ⁇ H
- ⁇ ⁇ 2 is 4 ⁇ 2 columns (4 ⁇ 2) composed of singular values of H ⁇ H.
- V ⁇ 2 is a unitary matrix of 2 rows and 2 columns (2 ⁇ 2) composed of right eigenvectors of H ⁇ H.
- unitary matrix precoding is applied to each polarization, and the precoded channel response matrix is orthogonalized (or orthogonalized as much as possible) to the other channel response matrix.
- a unitary matrix precoding matrix P is selected for one polarization, for example, horizontal polarization, and data symbols are spatially processed as shown in FIG.
- the precoding unit P performs precoding using the precoding matrix P.
- the orthogonality ⁇ between the vertical polarization and the horizontal polarization can be evaluated by a formula for obtaining a diagonal sum (trace) of inner products of precoding matrices represented by the following formula (7).
- an optimal precoding matrix P is calculated by obtaining a minimum value such that ⁇ is equal to or less than a predetermined value as shown in the following equation (8).
- this embodiment uses a codebook based method in selecting the precoding matrix P.
- the precoding matrix is selected from a predetermined code book having a preset matrix group.
- the code book C includes L 2 ⁇ 2 (2 ⁇ 2) unitary matrices. Note that the number L of unitary matrices selected in the codebook C is arbitrary. For example, the number of DFTs in signal processing may be used.
- the best precoding matrix P C i for minimizing the interference between the polarizations is selected from those having the smallest ⁇ as shown in the following equation (9).
- codebook can have different contents by using different performance and complexity requirements.
- a unitary matrix based on L DFTs can be configured in the codebook C as shown in the following equation (10).
- the same codebook can be used for selection of the precoding matrices V 1 and V 2 in the precoding unit V that performs precoding for each polarization.
- channel responses for different polarizations are the same, and the same matrix can be used for precoding matrices V 1 and V 2 for precoding of each polarization.
- the receiver feeds back the selected precoding matrix or codebook index to the transmitter, and the precoding to be used for transmission of different polarizations by different antenna groups. It is necessary to notify the procession.
- the present invention provides an effective method for precoding control in a cross polarization MIMO system.
- the precoding matrix P is selected to minimize interference between vertical polarization and horizontal polarization, and compensates for poor XPD characteristics in the MIMO channel.
- the code book used for the cross polarization MIMO system has a matrix having a reduced order compared to the code book used for the single polarization MIMO system.
- a 4 ⁇ 4 codebook can be used for a system using multiple transmit antennas. Thereby, a reasonable signaling overhead for precoding control can be maintained.
- the transmitter 250 includes a channel encoding unit 202, a symbol mapping unit 204, a spatial multiplexing unit 206, a precoding processing unit 208, an antenna mapping unit 209, and four cross-polarization type transmission antennas 210a to 210a. 210d.
- the precoding processing unit 208 includes a first precoding unit 208a that applies the precoding matrix V and a second precoding unit 208b that applies the precoding matrix P.
- the function of the transmission unit is realized by the antenna mapping unit 209, the RF unit (not shown), the transmission antennas 210a to 210d, and the like.
- a data sequence to be transmitted is input as an input bit sequence, and this input bit sequence is encoded by performing error correction encoding processing in channel encoding section 202, and then QPSK in symbol mapping section 204. Then, a modulated symbol is obtained by modulation using a predetermined modulation method such as 16QAM. Then, the spatial multiplexing unit 206 performs spatial multiplexing processing on the modulated symbols to generate a plurality of spatial streams X 1 to X i . Thereafter, the precoding processing unit 208 executes precoding processing in parallel for each half of the plurality of spatial streams X 1 to X i .
- the first precoding unit 208a applies precoding matrix V to all the spatial streams X 1 to X i to perform precoding. Subsequently, these data precoded streams Z 1 ⁇ Z 4, pre-by the action of additional precoding matrix P with respect to one data stream Z 3, Z 4 in the second preceding unit 208b Coding is performed to obtain precoded spatial streams S 1 , S 2 , S 3 , S 4 . Then, antenna mapping section 209 maps precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and transmits them from antennas 210a to 210d (Ant 1 to 4) having different polarizations.
- the antennas 210a (Ant1) and 210b (Ant2) are vertical polarization antennas
- the antennas 210c (Ant3) and 210d (Ant4) are horizontal polarization antennas
- a horizontal polarization transmission antenna is used.
- the spatial streams S 3 and S 4 to be transmitted are precoded using an additional precoding matrix P so as to obtain orthogonality between polarizations.
- the spatial stream transmitted from the transmitter 250 passes through the corresponding MIMO channel, and is received by the receiving antennas 212a to 212d in the receiver 260.
- the receiver 260 includes four cross-polarized reception antennas 212a to 212d, a channel estimation / precoding selection unit 214, a MIMO detection unit 216, a demultiplexing unit 218, a demapping unit 220, and a decoding unit 222.
- the functions of the receiving unit are realized by receiving antennas 212a to 212d, an RF unit (not shown), and the like.
- the MIMO detection unit 216 implements the function of a signal separation unit.
- the channel estimation / precoding selection unit 214 has functions of a channel estimation unit, a precoding selection unit, and a control information notification unit.
- the receiver 260 uses the reference signal among the signals received by the receiving antennas 212a to 212d, performs channel estimation in the channel estimation / precoding selection unit 214, and sets the MIMO channel with the transmitter 250. Estimate the channel response matrix. Then, the propagation path estimation result is output to MIMO detection section 216 as a channel matrix. Further, the channel estimation / precoding selection unit 214 decomposes the estimated channel response matrix as shown in the above equations (5) to (10), and the precoding matrix V based on the precoding method of the present embodiment. , P. Subsequently, precoding information PMI is output as an index of the precoding matrices V and P selected by the channel estimation / precoding selection unit 214 and fed back to the transmitter 250.
- MIMO detection section 216 performs MIMO separation processing on the data signals r 1 , r 2 , r 3 , r 4 of the signals received by the receiving antenna using a channel matrix, and receives data from the transmitter. Streams are detected and separated, and the separated streams X ⁇ 1 to X ⁇ i are obtained. Thereafter, the demultiplexing unit 218 that performs the reverse process of the spatial multiplexing unit 206 rearranges the separated and detected streams into one symbol series, and the demapper unit 220 that performs the reverse process of the symbol mapping unit 204. Performs symbol-by-symbol demodulation processing. Subsequently, an error correction decoding process is performed in a decoding unit 222 that performs the reverse process of the channel encoding unit 202, and a data sequence transmitted from the transmitter 250 is reproduced and output as an output bit sequence.
- FIG. 3 is a flowchart showing an operation procedure in the present embodiment, and exemplifies a method for performing MIMO transmission in the MIMO channel of the cross polarization MIMO system.
- the receiver estimates the channel response matrix between the multiple antennas of the transmitter and the multiple antennas of the receiver using the reference signal RS transmitted from the transmitter.
- the receiver decomposes the channel response matrix into portions representing channel responses from transmit antennas with different polarizations in order to obtain a channel response matrix for each polarization.
- the receiver calculates a precoding matrix for each data transmission from different polarizations on the transmitter side or selects from the codebook.
- two precoding matrices are selected corresponding to vertical polarization and horizontal polarization.
- the receiver adds an additional projection matrix for data transmission from one polarization on the transmitter side so that the precoded channel response matrices for different polarizations are orthogonal or as orthogonal as possible.
- a precoding matrix is calculated or selected from a codebook.
- the receiver feeds back precoding information indicating the selected precoding matrix to the transmitter.
- step 312 the transmitter generates and transmits a data stream based on the corresponding downlink allocation signaling including information about the precoding matrix and the transmission rate.
- step 314 the receiver receives the data stream transmitted from the transmitter and performs MIMO detection to obtain a reproduced data stream.
- an appropriate precoding matrix is selected for each different polarization, and stricter precoding according to one polarization on the transmitter side is applied.
- an appropriate precoding matrix is selected using a channel response matrix at the receiver, and interference between horizontal polarization and vertical polarization is minimized to compensate for poor XPD characteristics of the channel.
- the channel response matrix is divided for each polarization, and an additional precoding matrix is applied to one polarization so that the channel response matrix between the polarizations is orthogonal or as orthogonal as possible.
- the first embodiment shown in FIG. 2 shows a general embodiment in consideration of transmission of a plurality of streams in a 4 ⁇ 4 cross-polarization MIMO system.
- the present invention can be applied to transmission cases of different ranks as in the second to fifth embodiments shown in FIGS. 4 to 7 below.
- the rank corresponds to the number of data streams to be multiplexed and transmitted.
- FIG. 4 is a block diagram showing a second example of the configuration of a wireless communication system using a cellular wireless communication network as the second embodiment of the present invention.
- the transmitter 450 has four transmitting antennas 410a to 410d (Ant1 to Ant4) having a cross polarization type configuration
- the receiver 460 has four receiving antennas 412a to 412a having a cross polarization type configuration. 412d (Ant1 to 4).
- MIMO communication a data stream spatially multiplexed from the transmitter 450 via the MIMO channel is transmitted to the receiver 460.
- the transmitter 450 includes a channel encoding unit 402, a symbol mapping unit 404, a transmission diversity unit 406, a precoding processing unit 408, and an antenna mapping unit 409.
- Transmitter 450 encodes an input bit sequence by channel encoding section 402 and then modulates by symbol mapping section 404 to obtain a modulated symbol.
- the transmission diversity section 406 performs transmission diversity processing on the modulated symbols to generate two spatial streams X 1 and X 1 ′. In this case, since it is rank 1, spatial streams X 1 and X 1 ′ for transmission diversity are generated from one stream X 1 .
- the precoding processing unit 408 performs precoding processing on the two spatial streams X 1 and X 1 ′, respectively.
- the precoding matrix V 1 in the first pre-coding unit 408a is applied to perform precoding.
- the third precoding unit 408c applies precoding matrix P to one spatial stream X 1 ′ after the precoding to perform precoding, and the precoded spatial stream S 1 , S 2 , S 3 , S 4 are obtained.
- the antenna mapping unit 409 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 410a and 410b and the horizontally polarized transmission antennas 410c and 410d.
- the spatial streams S 3 and S 4 (X 1 ′) transmitted from the horizontally polarized transmission antenna are subjected to precoding using the additional precoding matrix P so as to obtain orthogonality between the polarizations. I have to.
- the spatial stream transmitted from the transmitter 450 passes through the corresponding MIMO channel, and is received by the receiving antennas 412a to 412d in the receiver 460.
- the receiver 460 includes a channel estimation / precoding selection unit 414, a MIMO detection unit 416, a demultiplexing unit 418, a demapping unit 420, and a decoding unit 422.
- channel estimation is performed by channel estimation / precoding selection section 414 using the reference signal of the received signals, and the channel response matrix of the MIMO channel is estimated. Then, the propagation path estimation result is output to MIMO detection section 416 as a channel matrix. Further, in the channel estimation / precoding selection unit 414, as shown in the above equations (5) to (9), the estimated channel response matrix is decomposed, and the precoding matrix V is based on the precoding method of the present embodiment. 1 , V 2 and P are selected. Subsequently, the precoding information PMI is output as an index of the precoding matrices V 1 , V 2 , P selected by the channel estimation / precoding selection unit 414 and fed back to the transmitter 450.
- a matrix can be selected as the code book C shown in the above equation (10).
- a code book used for feedback of the precoding matrices V 1 and V 2 a matrix can be selected as the code book ⁇ shown in the following equation (11).
- the code book ⁇ of Expression (11) includes a vector extracted from the first column of the matrix in the code book C of Expression (10).
- MIMO detection section 416 performs MIMO separation processing on the data signals r 1 , r 2 , r 3 , r 4 of the signals received by the receiving antenna using a channel matrix, and receives data from the transmitter. Streams are detected and separated, and separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 418 are rearranged into one symbol series, and the demapping unit 420 performs demodulation processing in symbol units. Subsequently, the decoding unit 422 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 450, and outputs it as an output bit sequence.
- FIG. 5 is a block diagram showing a third example of the configuration of a wireless communication system using a cellular wireless communication network as the third embodiment of the present invention.
- the transmitter 550 has four transmitting antennas 510a to 510d (Ant1 to Ant4) having a cross polarization type configuration, and the receiver 560 has four receiving antennas 512a to 512a having a cross polarization type configuration. 512d (Ant1 to 4).
- MIMO communication a data stream spatially multiplexed from the transmitter 550 via the MIMO channel is transmitted to the receiver 560.
- the transmitter 550 includes a channel encoding unit 502, a symbol mapping unit 504, a spatial multiplexing unit 506, a precoding processing unit 508, and an antenna mapping unit 509.
- Transmitter 550 encodes the input bit sequence by channel encoding section 502 and then modulates by symbol mapping section 504 to obtain a modulated symbol. Then, the spatial multiplexing unit 506 performs spatial multiplexing processing on the modulated symbols to generate two spatial streams X 1 and X 2 . Thereafter, the precoding processing unit 508 performs precoding processing on the two spatial streams X 1 and X 2 , respectively.
- the precoding processing unit 508 performs precoding processing on the two spatial streams X 1 and X 2 , respectively.
- precoding is performed on the one spatial stream X 2 after the precoding by applying an additional precoding matrix P in the third precoding unit 508c, and the precoded spatial streams S 1 and S 2 are processed. 2 , S 3 , S 4 are obtained.
- the antenna mapping unit 509 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 510a and 510b and the horizontally polarized transmission antennas 510c and 510d. Send each one.
- the spatial streams S 3 and S 4 (X 2 ) transmitted from the horizontal polarization type transmission antenna are subjected to precoding using the additional precoding matrix P so as to obtain orthogonality between the polarizations. ing.
- the spatial stream transmitted from the transmitter 550 passes through the corresponding MIMO channel, and is received by the receiving antennas 512a to 512d in the receiver 560.
- the receiver 560 includes a channel estimation / precoding selection unit 514, a MIMO detection unit 516, a demultiplexing unit 518, a demapping unit 520, and a decoding unit 522.
- channel estimation is performed by channel estimation / precoding selection section 514 using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 514 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and the precoding matrix V based on the precoding method of the present embodiment. 1 , V 2 and P are selected. At this time, as a code book used for feedback of the precoding matrix P, a matrix can be selected as the code book C shown in the above equation (10). Further, the code book used for feedback of the precoding matrices V 1 and V 2 can be selected as the code book ⁇ shown in the above equation (11).
- precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 514 and fed back to transmitter 550.
- the received data signals r 1 , r 2 , r 3 , r 4 are subjected to MIMO separation processing using the channel matrix, and the data stream from the transmitter is detected and separated, The separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 518 are rearranged into one symbol series, and the demapping unit 520 performs demodulation processing in symbol units. Subsequently, the decoding unit 522 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 550, and outputs it as an output bit sequence.
- FIG. 6 is a block diagram showing a fourth example of the configuration of a wireless communication system using a cellular wireless communication network as the fourth embodiment of the present invention.
- the transmitter 650 has four transmission antennas 610a to 610d (Ant1 to 4) having a cross polarization type configuration, and the receiver 660 has four reception antennas 612a to 612a to have a cross polarization type configuration. 612d (Ant1 to 4).
- MIMO communication a data stream spatially multiplexed from the transmitter 650 via the MIMO channel is transmitted to the receiver 660.
- the transmitter 650 includes a channel encoding unit 602, a symbol mapping unit 604, a spatial multiplexing unit 606, a precoding processing unit 608, and an antenna mapping unit 609.
- Pre-encoding processor 608 a first pre-coding unit 608a for applying a precoding matrix V 1, a second precoding unit 608b for applying a precoding matrix V 2, third applying the precoding matrix P A precoding unit 608c.
- the input bit sequence is encoded by the channel encoding unit 602, and then modulated by the symbol mapping unit 604 to obtain modulated symbols.
- the spatial multiplexing unit 606 performs spatial multiplexing processing on the modulated symbols to generate three spatial streams X 1 , X 2 , and X 3 .
- the precoding processing unit 608 performs precoding processing on each of the two groups of spatial streams obtained by dividing the three spatial streams into two.
- the action of the precoding matrix V 1 in the first pre-coding unit 608a for spatial stream X 1 performs precoding.
- the precoding matrix V 2 is applied in the second precoding unit 608b, and then the additional precoding matrix P is applied in the third precoding unit 608c.
- Precoding As a result, precoded spatial streams S 1 , S 2 , S 3 , S 4 are obtained.
- the antenna mapping unit 609 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 610a and 610b and the horizontally polarized transmission antennas 610c and 610d. Send each one.
- the spatial streams S 3 , S 4 (X 2 , X 3 ) transmitted from the horizontally polarized transmission antenna are precoded using an additional precoding matrix P, and orthogonality between the polarizations is obtained. Trying to get.
- the spatial stream transmitted from the transmitter 650 passes through the corresponding MIMO channel, and is received by the reception antennas 612a to 612d at the receiver 660.
- the receiver 660 includes a channel estimation / precoding selection unit 614, a MIMO detection unit 616, a demultiplexing unit 618, a demapping unit 620, and a decoding unit 622.
- channel estimation is performed by channel estimation / precoding selection section 614 using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 614 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and precoding matrix V based on the precoding method of the present embodiment. 1 , V 2 and P are selected.
- the code book used for feedback of the precoding matrix V 1 can be selected as the code book ⁇ shown in the above equation (11).
- a matrix can be selected as the code book C shown in the above equation (10).
- precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 614 and fed back to transmitter 650.
- the received data signals r 1 , r 2 , r 3 , r 4 are subjected to MIMO separation processing using a channel matrix, and the data stream from the transmitter is detected and separated, The separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 618 are rearranged into one symbol series, and the demapping unit 620 performs demodulation processing in symbol units. Subsequently, the decoding unit 622 performs error correction decoding processing to reproduce the data sequence transmitted from the transmitter 650 and output it as an output bit sequence.
- transmission stream allocation control as described above is applied, and the upper stream X 1 having a higher quality and the lower two streams X 2 and X 3 having a lower quality are applied.
- the processing is divided and the transmission efficiency is increased as much as possible.
- the first stream X 1 is assigned to one polarization
- the second and third streams X 2 and X 3 are assigned additional polarization by applying an additional precoding, and between the polarizations. Maintaining orthogonality improves transmission performance and achieves higher transmission efficiency.
- FIG. 7 is a block diagram showing a fifth example of the configuration of a wireless communication system using a cellular wireless communication network as a fifth embodiment of the present invention.
- the transmitter 750 has four transmission antennas 710a to 710d (Ant1 to 4) having a cross-polarization type configuration, and the receiver 760 has four reception antennas 712a to 712a to a cross-polarization type configuration. 712d (Ant1 to 4).
- MIMO communication a data stream spatially multiplexed from the transmitter 750 via the MIMO channel is transmitted to the receiver 760.
- the transmitter 750 includes a channel encoding unit 702, a symbol mapping unit 704, a spatial multiplexing unit 706, a precoding processing unit 708, and an antenna mapping unit 709.
- the input bit sequence is encoded by channel encoding section 702, and then modulated by symbol mapping section 704 to obtain modulated symbols.
- the spatial multiplexing unit 706 performs spatial multiplexing processing on the modulated symbols to generate four spatial streams X 1 , X 2 , X 3 , and X 4 .
- the precoding processing unit 708 performs precoding processing on two groups of spatial streams obtained by dividing the four spatial streams into two.
- the precoding matrix V 1 is applied to the spatial streams X 1 and X 2 by the first precoding unit 708a to perform precoding.
- precoding matrix V 2 is applied in second precoding section 708 b, and then additional precoding matrix P is applied in third precoding section 708 c.
- Precoding As a result, precoded spatial streams S 1 , S 2 , S 3 , S 4 are obtained.
- the antenna mapping unit 709 maps the precoded spatial streams S 1 to S 4 to a plurality of transmission antennas, and uses the vertically polarized transmission antennas 710a and 710b and the horizontally polarized transmission antennas 710c and 710d. Send each one.
- the spatial streams S 3 , S 4 (X 3 , X 4 ) transmitted from the horizontally polarized transmission antenna are precoded using the additional precoding matrix P, and orthogonality between the polarizations is obtained. Trying to get.
- the spatial stream transmitted from the transmitter 750 passes through the corresponding MIMO channel, and is received by the receiving antennas 712a to 712d at the receiver 760.
- the receiver 760 includes a channel estimation / precoding selection unit 714, a MIMO detection unit 716, a demultiplexing unit 718, a demapping unit 720, and a decoding unit 722.
- channel estimation / precoding selection section 714 performs channel estimation using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 714 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and based on the precoding method of this embodiment, the precoding matrix V 1 , V 2 and P are selected. At this time, the code book used for feedback of the precoding matrices V 1 , V 2 , and P can be selected as the code book C shown in the above equation (10). By using this codebook, precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 714 and fed back to transmitter 750.
- the received data signals r 1 , r 2 , r 3 , r 4 are subjected to MIMO separation processing using the channel matrix, and the data stream from the transmitter is detected and separated, The separated streams X ⁇ 1 to X ⁇ 4 are obtained. Thereafter, the streams separated and detected by the demultiplexing unit 718 are rearranged into one symbol series, and the demapping unit 720 performs demodulation processing in symbol units. Subsequently, the decoding unit 722 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 750, and outputs it as an output bit sequence.
- a SU-MIMO (Single User MIMO) system with improved efficiency can be configured.
- sub-block precoding in which an additional precoding matrix P is applied to one polarization. Control is used.
- the dimension of the precoding matrix can be reduced, the amount of information in the codebook of the precoding matrix and the number of selection candidates can be reduced, and the precoding matrix selection process can be simplified. Processing can be reduced.
- the same matrix may be used as V 1 and V 2 .
- the amount of information necessary for feedback can be further reduced by taking the same matrix value.
- FIG. 8 is a block diagram showing a sixth example of the configuration of a wireless communication system using a cellular wireless communication network as the sixth embodiment of the present invention.
- the transmitter 850 has eight transmission antennas 810a to 810h (Ant1 to 8) having a cross-polarization type configuration
- the receiver 860 has eight reception antennas 812a to 812a to 812h having a cross-polarization type configuration. 812h (Ant1-8).
- MIMO communication a data stream spatially multiplexed from the transmitter 850 via the MIMO channel is transmitted to the receiver 860.
- the transmitter 850 includes a channel encoding unit 802, a symbol mapping unit 804, a spatial multiplexing unit 806, a precoding processing unit 808, and an antenna mapping unit 809.
- Transmitter 850 encodes an input bit sequence by channel encoding section 802 and subsequently modulates by symbol mapping section 804 to obtain a modulated symbol. Then, the spatial multiplexing unit 806 performs spatial multiplexing processing on the modulated symbols to generate a plurality of (eight in the case of full rank) spatial streams X 1 to X 8 . Thereafter, the precoding processing unit 808 performs precoding processing on each of the two groups of spatial streams obtained by dividing the plurality of spatial streams into two. Here, the precoding matrix V 1 is applied to the spatial streams X 1 , X 2 , X 3 , and X 4 by the first precoding unit 808a to perform precoding.
- the precoding matrix V 2 is applied in the second precoding unit 808 b, and then an additional precoding is performed in the third precoding unit 808 c. Precoding is performed using the coding matrix P. As a result, precoded spatial streams S 1 to S 8 are obtained. Then, the antenna mapping unit 809 maps the precoded spatial streams S 1 to S 8 to a plurality of transmission antennas, vertically polarized transmission antennas 810a to 810d having different polarizations, and a horizontally polarized transmission antenna 810e. To 810h, respectively. In this case, the spatial streams S 5 to S 8 (X 5 to X 8 ) transmitted from the horizontally polarized transmission antenna are precoded using the additional precoding matrix P, and orthogonality between the polarizations is obtained. Trying to get.
- the spatial stream transmitted from the transmitter 850 passes through the corresponding MIMO channel, and is received by the receiving antennas 812a to 812h at the receiver 860.
- the receiver 860 includes a channel estimation / precoding selection unit 814, a MIMO detection unit 816, a demultiplexing unit 818, a demapping unit 820, and a decoding unit 822.
- channel estimation / precoding selection section 814 performs channel estimation using the reference signal to estimate the channel response matrix of the MIMO channel. Then, the channel estimation / precoding selection unit 814 decomposes the estimated channel response matrix as shown in the above equations (5) to (9), and based on the precoding method of this embodiment, the precoding matrix V 1 , V 2 and P are selected. At this time, as a code book used for feedback of the precoding matrices V 1 , V 2 , and P, a matrix can be selected as the code book C shown in the following equation (12).
- precoding matrices V 1 , V 2 , and P that maintain orthogonality between polarizations are selected. Then, precoding information PMI is output as an index of the precoding matrix selected by channel estimation / precoding selection section 814 and fed back to transmitter 850.
- the MIMO detection unit 816 performs MIMO separation processing on the received data signals r 1 to r 8 using a channel matrix, detects and separates the data stream from the transmitter, and separates the stream X ⁇ after separation. Obtain 1 to X ⁇ 8 .
- the streams separated and detected by the demultiplexing unit 818 are rearranged into one symbol series, and the demapping unit 820 performs demodulation processing in symbol units.
- the decoding unit 822 performs error correction decoding processing, reproduces the data sequence transmitted from the transmitter 850, and outputs it as an output bit sequence.
- the dimensions of the precoding matrix are reduced by applying the precoding matrices V 1 and V 2 in sub-blocks separated for each polarization.
- the processing related to precoding control can be reduced, and the amount of feedback information can be reduced.
- the precoding of the present embodiment to a configuration having a large number of transmission antennas, it is possible to improve the beamforming gain per polarization, and to improve the precoding performance.
- the above sixth embodiment shows an embodiment in consideration of full rank transmission in an 8 ⁇ 8 cross polarization MIMO system.
- the application of each rank in the case of using eight transmission antennas can be realized by a simple extension of the case of using four transmission antennas shown in the second to fifth embodiments of FIGS. it can.
- the orthogonality of the channel response matrix between different polarizations can be maintained by applying the projection matrix precoding matrix to one of the different polarizations in the cross polarization MIMO system. Interference between polarized waves can be reduced. Thereby, it is possible to provide robustness in the performance of the MIMO system to which precoding is applied. Further, by using sub-block precoding and applying a precoding matrix of an additional simple projection matrix only to one polarization, the influence on signaling overhead for feeding back control information can be minimized.
- the number of antennas constituting the cross-polarization MIMO system, the number of streams to be transmitted, and the like are not limited to the configuration of the above embodiment, and the present invention can be similarly applied by appropriately setting two or more numbers. .
- the example applied to the downlink of the cellular radio communication network is shown in the above embodiment, the present invention can be similarly applied to other radio communication lines such as the uplink of the cellular radio communication network.
- An antenna port refers to a logical antenna composed of one or a plurality of physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas. For example, in LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit by which a base station can transmit different reference signals (Reference signals). The antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
- Precoding vector precoding vector
- each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
- the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
- the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
- An FPGA Field Programmable Gate Array
- a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
- the present invention can reduce interference between different polarizations and perform effective precoding even in a case where an ideal XPD cannot be obtained in a MIMO system using a cross polarization antenna structure. It is useful as a wireless communication device such as a cellular communication system using a MIMO system that performs communication using a plurality of antennas, a wireless communication system, a wireless communication method, and the like.
- Transmitter 160 150, 250, 450, 550, 650, 750, 850 Transmitter 160, 260, 460, 560, 660, 760, 860 Receiver 102, 202, 402, 502, 602, 702, 802 Channel encoding unit 104, 204, 404, 504, 604, 704, 804 Symbol mapping unit 106 Spatial multiplexing / transmission diversity unit 206, 506, 606, 706, 806 Spatial multiplexing unit 406 Transmission diversity unit 108, 208a-c, 408a-c, 508a-c, 608a To c, 708a to c, 808a to c Precoding unit 208, 408, 508, 608, 708, 808 Precoding processing unit 109, 209, 409, 509, 609, 709, 809 Antenna mapping unit 110a to d, 210a d, 410a-d, 510a-d, 610a-d, 710a-d, 810a-h Transmitting antenna
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Power Engineering (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
(1) 受信機が、送信機から送信される参照信号を用いて、送信機の複数アンテナと受信機の複数アンテナとの間で観測されるチャネル応答行列を推定するステップ
(2) 受信機が、チャネル応答行列を異なる偏波の送信アンテナからのチャネル応答を表す二つの部分に分解するステップ
(3) 受信機が、二つのプリコーディング行列であってそれぞれが送信機側の異なる偏波からのデータ送信に関する行列を選択するステップ
(4) 受信機が、送信機側の一方の偏波からのデータ送信に対する追加のプリコーディング行列を選択するステップ
(5) 受信機が、選択されたプリコーディング行列を送信機へフィードバックするステップ
(6) 送信機が、対応する下り回線割り当てのシグナリングに基づきデータストリームを送信するステップ
(7) 受信機が、送信機からのデータストリームを受信し、MIMO検出処理を行って再生データストリームを取得するステップ
図2は、本発明の第1の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第1例を示すブロック図である。第1の実施形態は、送信機及び受信機がそれぞれ複数(ここでは4本)の交差偏波型アンテナを有し、複数のデータストリームX1~Xiを伝送する場合の構成例を示したものである。ここでは、例えば、送信機をBS、受信機をUEとし、これら一つの送信機と一つの受信機との間でMIMOによる下り回線の通信を行う無線通信システムを例示する。なお、アンテナの数は4本に限るものではなく、複数のアンテナを適宜設定可能である。
図4は、本発明の第2の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第2例を示すブロック図である。第2の実施形態は、4行4列の交差偏波型MIMOシステムにおけるランク1送信(送信ストリーム数=1)を考慮した構成例である。送信機450は、交差偏波型の構成を持つ4本の送信アンテナ410a~410d(Ant1~4)を有し、受信機460は、交差偏波型の構成を持つ4本の受信アンテナ412a~412d(Ant1~4)を有する。MIMO通信によって、送信機450からMIMOチャネルを介して空間多重したデータストリームを受信機460に対して送信する。
図5は、本発明の第3の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第3例を示すブロック図である。第3の実施形態は、4行4列の交差偏波型MIMOシステムにおけるランク2送信(送信ストリーム数=2)を考慮した構成例である。送信機550は、交差偏波型の構成を持つ4本の送信アンテナ510a~510d(Ant1~4)を有し、受信機560は、交差偏波型の構成を持つ4本の受信アンテナ512a~512d(Ant1~4)を有する。MIMO通信によって、送信機550からMIMOチャネルを介して空間多重したデータストリームを受信機560に対して送信する。
図6は、本発明の第4の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第4例を示すブロック図である。第4の実施形態は、4行4列の交差偏波型MIMOシステムにおけるランク3送信(送信ストリーム数=3)を考慮した構成例である。送信機650は、交差偏波型の構成を持つ4本の送信アンテナ610a~610d(Ant1~4)を有し、受信機660は、交差偏波型の構成を持つ4本の受信アンテナ612a~612d(Ant1~4)を有する。MIMO通信によって、送信機650からMIMOチャネルを介して空間多重したデータストリームを受信機660に対して送信する。
図7は、本発明の第5の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第5例を示すブロック図である。第5の実施形態は、4行4列の交差偏波型MIMOシステムにおけるフルランク送信(ランク4、送信ストリーム数=4)を考慮した構成例である。送信機750は、交差偏波型の構成を持つ4本の送信アンテナ710a~710d(Ant1~4)を有し、受信機760は、交差偏波型の構成を持つ4本の受信アンテナ712a~712d(Ant1~4)を有する。MIMO通信によって、送信機750からMIMOチャネルを介して空間多重したデータストリームを受信機760に対して送信する。
上述した実施形態は、より多くのアンテナ、例えば交差偏波型構造を有する8本のアンテナを用いる事例に拡張することもできる。図8は、本発明の第6の実施形態として、セルラー無線通信網を用いた無線通信システムの構成の第6例を示すブロック図である。第6の実施形態は、8行8列の交差偏波型MIMOシステムにおけるフルランク送信(ランク8、送信ストリーム数=8)を考慮した構成例である。送信機850は、交差偏波型の構成を持つ8本の送信アンテナ810a~810h(Ant1~8)を有し、受信機860は、交差偏波型の構成を持つ8本の受信アンテナ812a~812h(Ant1~8)を有する。MIMO通信によって、送信機850からMIMOチャネルを介して空間多重したデータストリームを受信機860に対して送信する。
160、260、460、560、660、760、860 受信機
102、202、402、502、602、702、802 チャネルエンコーディング部
104、204、404、504、604、704、804 シンボルマッピング部
106 空間多重/送信ダイバーシチ部
206、506、606、706、806 空間多重部
406 送信ダイバーシチ部
108、208a~c、408a~c、508a~c、608a~c、708a~c、808a~c プリコーディング部
208、408、508、608、708、808 プリコーディング処理部
109、209、409、509、609、709、809 アンテナマッピング部
110a~d、210a~d、410a~d、510a~d、610a~d、710a~d、810a~h 送信アンテナ
112a~d、212a~d、412a~d、512a~d、612a~d、712a~d、812a~h 受信アンテナ
114、214、414、514、614、714、814 チャネル推定/プリコーディング選択部
116、216、416、516、616、716、816 MIMO検出部
118、218、418、518、618、718、818 デマルチプレキシング部
120、220、420、520、620、720、820 デマッピング部
122、222、422、522、622、722、822 デコーディング部
Claims (13)
- 交差偏波型アンテナ構造を有し、MIMO(Multiple Input Multiple Output)により多重通信が可能な無線通信システムに用いられる無線通信装置であって、
通信相手装置に送信するデータとして、複数の送信アンテナ間で空間多重するための複数のストリームを生成する空間多重部と、
前記通信相手装置からフィードバックされる制御情報に基づき、異なる複数の偏波のうちの一方の偏波に対応するストリームに対して、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための射影行列のプリコーディング行列を作用させてプリコーディングを行うプリコーディング処理部と、
前記プリコーディング処理を行った複数のストリームを交差偏波型の複数の送信アンテナによってそれぞれ送信する送信部と、
を備える無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記プリコーディング処理部は、前記異なる複数の偏波に対応するストリームに対して送信ビーム形成のための第1のプリコーディング行列を適用する第1のプリコーディングと、前記一方の偏波に対応するストリームに対して前記射影行列による第2のプリコーディング行列を適用する第2のプリコーディングとを行う無線通信装置。 - 請求項2に記載の無線通信装置であって、
前記プリコーディング処理部は、前記異なる複数の偏波に対応するストリームを偏波ごとに分割し、それぞれの偏波に対応するストリームに対して、前記第1のプリコーディング行列として偏波ごとに対応させたプリコーディング行列を適用してプリコーディングを行う無線通信装置。 - 請求項2に記載の無線通信装置であって、
前記プリコーディング処理部は、前記射影行列による第2のプリコーディング行列として、それぞれの偏波に対応するストリームに対して適用するプリコーディング行列の内積の対角和が所定値以下となるようなユニタリ行列を用いる無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ2つずつ合計4つの送信アンテナを有し、
前記プリコーディング処理部は、前記第2の偏波に対応するストリームに対して前記射影行列によるプリコーディングを行う無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ2つずつ合計4つの送信アンテナを有し、これらの送信アンテナから空間多重された3つのストリームを送信する場合に、前記第1の偏波の2つのアンテナに第1のストリームを割り当て、前記第2の偏波の2つのアンテナにそれぞれ第2及び第3のストリームを割り当てるアンテナ割り当てを行い、
前記プリコーディング処理部は、前記第2の偏波に対応する第2及び第3のストリームに対して前記射影行列によるプリコーディングを行う無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記送信部は、異なる2つの第1及び第2の偏波に対応してそれぞれ4つずつ合計8つの送信アンテナを有し、
前記プリコーディング処理部は、前記第2の偏波に対応するストリームに対して前記射影行列によるプリコーディングを行う無線通信装置。 - 交差偏波型アンテナ構造を有し、MIMOにより多重通信が可能な無線通信システムに用いられる無線通信装置であって、
通信相手装置から自装置への伝搬路のチャネル推定を行うチャネル推定部と、
前記チャネル推定結果に基づき、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための、一方の偏波のチャネル応答行列に対して適用する射影行列のプリコーディング行列を決定するプリコーディング選択部と、
前記決定したプリコーディング行列を示すプリコーディング情報を含む制御情報を前記通信相手装置へフィードバックする制御情報通知部と、
前記通信相手装置から送信されたデータを複数の受信アンテナによって受信する受信部と、
前記受信したデータから複数のストリームを分離して検出する信号分離部と、
前記検出した複数のストリームから受信データを復号する復号部と、
を備える無線通信装置。 - 請求項8に記載の無線通信装置であって、
前記プリコーディング選択部は、前記異なる偏波のそれぞれに対して適用するプリコーディング行列の内積の対角和が所定値以下となるようなユニタリ行列を、前記通信相手装置からの伝搬路のチャネル応答行列に基づいて算出するかまたは予め設定した行列群を持つコードブックから選択することにより、前記プリコーディング行列を決定する無線通信装置。 - 請求項8に記載の無線通信装置であって、
前記プリコーディング選択部は、前記異なる複数の偏波に対して適用する送信ビーム形成のための第1のプリコーディング行列と、前記一方の偏波に対して適用する射影行列による第2のプリコーディング行列と、を決定し、
前記制御情報通知部は、前記第1のプリコーディング行列及び前記第2のプリコーディング行列を示すプリコーディング情報を前記通信相手装置に通知する無線通信装置。 - 請求項10に記載の無線通信装置であって、
前記プリコーディング選択部は、前記異なる複数の偏波のそれぞれに対して、前記第1のプリコーディング行列として偏波ごとに対応させたプリコーディング行列を決定する無線通信装置。 - 交差偏波型アンテナ構造を有する無線通信装置を用いて、MIMOにより多重通信が可能な無線通信システムにおける無線通信方法であって、
通信相手装置に送信するデータとして、複数の送信アンテナ間で空間多重するための複数のストリームを生成するステップと、
前記通信相手装置からフィードバックされる制御情報に基づき、異なる複数の偏波のうちの一方の偏波に対応するストリームに対して、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための射影行列のプリコーディング行列を作用させてプリコーディングを行うステップと、
前記プリコーディング処理を行った複数のストリームを交差偏波型の複数の送信アンテナによってそれぞれ送信するステップと、
を有する無線通信方法。 - 交差偏波型アンテナ構造を有する無線通信装置を用いて、MIMOにより多重通信が可能な無線通信システムにおける無線通信方法であって、
通信相手装置から自装置への伝搬路のチャネル推定を行うステップと、
前記チャネル推定結果に基づき、異なる偏波ごとのチャネル応答行列を直交またはほぼ直交させるための、一方の偏波のチャネル応答行列に対して適用する射影行列のプリコーディング行列を決定するステップと、
前記決定したプリコーディング行列を示すプリコーディング情報を含む制御情報を前記通信相手装置へフィードバックするステップと、
前記通信相手装置から送信されたデータを複数の受信アンテナによって受信するステップと、
前記受信したデータから複数のストリームを分離して検出するステップと、
前記検出した複数のストリームから受信データを復号するステップと、
を有する無線通信方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK10729168.4T DK2375604T3 (en) | 2009-01-07 | 2010-01-06 | Wireless communication device, wireless communication system and method of wireless communication |
US13/141,743 US8737509B2 (en) | 2009-01-07 | 2010-01-06 | Wireless communication apparatus, wireless communication system and wireless communication method |
EP10729168.4A EP2375604B1 (en) | 2009-01-07 | 2010-01-06 | Wireless communication apparatus, wireless communication system and wireless communication method |
CN201080004076.1A CN102273115B (zh) | 2009-01-07 | 2010-01-06 | 无线通信设备、无线通信系统和无线通信方法 |
PL10729168T PL2375604T3 (pl) | 2009-01-07 | 2010-01-06 | Urządzenie do komunikacji bezprzewodowej, system komunikacji bezprzewodowej i sposób prowadzenia komunikacji bezprzewodowej |
JP2010545746A JP5372963B2 (ja) | 2009-01-07 | 2010-01-06 | 無線通信装置、無線通信システム及び無線通信方法 |
ES10729168.4T ES2691037T3 (es) | 2009-01-07 | 2010-01-06 | Aparato de comunicación inalámbrica, sistema de comunicación inalámbrica y procedimiento de comunicación inalámbrica |
EP13178557.8A EP2660991B1 (en) | 2009-01-07 | 2010-01-06 | Wireless communication apparatus and wireless communication method |
US14/251,955 US8923428B2 (en) | 2009-01-07 | 2014-04-14 | Wireless communication apparatus, wireless communication system and wireless communication method |
US14/252,000 US8953704B2 (en) | 2009-01-07 | 2014-04-14 | Wireless communication apparatus, wireless communication system and wireless communication method |
US14/575,298 US9136926B2 (en) | 2009-01-07 | 2014-12-18 | Wireless communication apparatus, wireless communication system and wireless communication method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009001352 | 2009-01-07 | ||
JP2009-001352 | 2009-01-07 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/141,743 A-371-Of-International US8737509B2 (en) | 2009-01-07 | 2010-01-06 | Wireless communication apparatus, wireless communication system and wireless communication method |
US14/252,000 Continuation US8953704B2 (en) | 2009-01-07 | 2014-04-14 | Wireless communication apparatus, wireless communication system and wireless communication method |
US14/251,955 Continuation US8923428B2 (en) | 2009-01-07 | 2014-04-14 | Wireless communication apparatus, wireless communication system and wireless communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010079748A1 true WO2010079748A1 (ja) | 2010-07-15 |
Family
ID=42316514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/000048 WO2010079748A1 (ja) | 2009-01-07 | 2010-01-06 | 無線通信装置、無線通信システム及び無線通信方法 |
Country Status (10)
Country | Link |
---|---|
US (4) | US8737509B2 (ja) |
EP (2) | EP2660991B1 (ja) |
JP (4) | JP5372963B2 (ja) |
CN (1) | CN102273115B (ja) |
DK (1) | DK2375604T3 (ja) |
ES (1) | ES2691037T3 (ja) |
HU (1) | HUE040750T2 (ja) |
PL (1) | PL2375604T3 (ja) |
PT (1) | PT2375604T (ja) |
WO (1) | WO2010079748A1 (ja) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4730677B1 (ja) * | 2011-01-27 | 2011-07-20 | 日本電気株式会社 | 情報処理装置及び情報処理方法並びに情報処理プログラム |
CN102231661A (zh) * | 2011-07-22 | 2011-11-02 | 电信科学技术研究院 | 一种信息传输方法、系统及装置 |
JP2012015920A (ja) * | 2010-07-02 | 2012-01-19 | Nippon Hoso Kyokai <Nhk> | 偏波mimo伝送システムにおける送信装置及び受信装置 |
JP2012015922A (ja) * | 2010-07-02 | 2012-01-19 | Nippon Hoso Kyokai <Nhk> | 偏波mimo伝送システムにおける送信装置及び受信装置 |
KR20120013120A (ko) * | 2010-08-04 | 2012-02-14 | 삼성전자주식회사 | 개 루프 멀티 셀 미모 시스템에서 성능 향상을 위한 장치 및 방법 |
JP2012049740A (ja) * | 2010-08-25 | 2012-03-08 | Nippon Hoso Kyokai <Nhk> | 偏波mimo−ofdm伝送方式の送信装置及び受信装置 |
WO2012155493A1 (zh) * | 2011-09-21 | 2012-11-22 | 中兴通讯股份有限公司 | 一种实现信道信息反馈的方法和装置 |
CN103141035A (zh) * | 2010-10-05 | 2013-06-05 | 瑞典爱立信有限公司 | 用于通信系统中极化控制的方法和设备 |
CN103493393A (zh) * | 2011-04-21 | 2014-01-01 | 中兴通讯股份有限公司 | 用于多输入多输出(mimo)的空间信道状态信息反馈的方法和系统 |
WO2014021008A1 (ja) * | 2012-07-30 | 2014-02-06 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局装置、ユーザ端末、通信システム及び通信制御方法 |
JP2014504068A (ja) * | 2010-11-22 | 2014-02-13 | ノキア シーメンス ネットワークス オサケユキチュア | 部分的チャンネル状態情報による多層ビーム成形 |
JP2014506426A (ja) * | 2011-01-04 | 2014-03-13 | アルカテル−ルーセント | 交差偏波アンテナ・アレイ(cross−polarizedantennaarray)のためのプリコーディング方法およびプリコーダ |
JP2014513482A (ja) * | 2011-04-28 | 2014-05-29 | アルカテル−ルーセント | ネットワーク・デバイスにおいてコードブックおよび関連データを生成するための方法および装置 |
WO2014088003A1 (ja) * | 2012-12-06 | 2014-06-12 | シャープ株式会社 | 基地局装置、端末装置、無線通信システムおよび集積回路 |
JP2014519242A (ja) * | 2011-05-02 | 2014-08-07 | アルカテル−ルーセント | 多入力多出力ワイヤレス通信のためにプリコードされた信号を変換する方法 |
JP2015503305A (ja) * | 2011-12-23 | 2015-01-29 | 華為技術有限公司Huawei Technologies Co.,Ltd. | チャネル状態情報をフィードバックするための方法及び装置 |
JP2015518671A (ja) * | 2012-03-30 | 2015-07-02 | サムスン エレクトロニクス カンパニー リミテッド | 次世代無線ネットワークのためのチャンネル状態情報パイロット設計のための装置及び方法 |
JP2015536099A (ja) * | 2012-09-28 | 2015-12-17 | インターデイジタル パテント ホールディングス インコーポレイテッド | 多次元アンテナ構成を使用する無線通信 |
JP2016511566A (ja) * | 2013-01-28 | 2016-04-14 | 富士通株式会社 | チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局 |
WO2016163543A1 (ja) * | 2015-04-09 | 2016-10-13 | 株式会社Nttドコモ | 移動局、無線基地局及び無線通信方法 |
US9559763B2 (en) | 2010-10-05 | 2017-01-31 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for polarization control in a communication system |
US10938457B2 (en) | 2011-02-21 | 2021-03-02 | Sun Patent Trust | Precoding method, precoding device |
US11184062B2 (en) | 2013-04-15 | 2021-11-23 | Huawei Technologies Co., Ltd. | Method for reporting channel state information, user equipment, and base station |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101555820B1 (ko) * | 2009-12-02 | 2015-10-06 | 삼성전자주식회사 | 접속망의 클래스에 따라 비대칭적인 피드백 기법을 사용하는 계층 셀 통신 시스템 |
US9148205B2 (en) * | 2010-01-25 | 2015-09-29 | Qualcomm Incorporated | Feedback for supporting SU-MIMO and MU-MIMO operation in wireless communication |
US9071285B2 (en) | 2011-05-26 | 2015-06-30 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
US9130638B2 (en) | 2011-05-26 | 2015-09-08 | Cohere Technologies, Inc. | Modulation and equalization in an orthonormal time-frequency shifting communications system |
EP2445131B1 (en) * | 2010-06-17 | 2016-02-10 | Panasonic Intellectual Property Corporation of America | Pre-coding method and transmitter |
KR20120002875A (ko) * | 2010-07-01 | 2012-01-09 | 주식회사 팬택 | 채널정보 송수신방법 및 그 단말, 그 기지국 |
KR20120009649A (ko) * | 2010-07-20 | 2012-02-02 | 삼성전자주식회사 | 다중 사용자 다중안테나 시스템에서 채널 직교화를 이용한 선처리 방법 및 장치 |
US8934560B2 (en) * | 2010-10-07 | 2015-01-13 | Qualcomm Incorporated | Method and apparatus of using CDD like schemes with UE-RS based open loop beamforming |
US8948305B2 (en) | 2010-11-16 | 2015-02-03 | Panasonic Intellectual Property Corporation Of America | Transmission method, transmission apparatus, reception method and reception apparatus |
EP3232590B1 (en) | 2011-04-19 | 2018-12-05 | Sun Patent Trust | Communication method and device |
EP2701327B1 (en) | 2011-04-19 | 2024-05-29 | Sun Patent Trust | Pre-coding method and pre-coding device |
WO2012144205A1 (ja) | 2011-04-19 | 2012-10-26 | パナソニック株式会社 | 信号生成方法及び信号生成装置 |
US8971432B2 (en) | 2011-04-19 | 2015-03-03 | Panasonic Intellectual Property Corporation Of America | Signal generating method and signal generating device |
EP2769516B1 (en) * | 2011-10-18 | 2016-09-21 | Telefonaktiebolaget LM Ericsson (publ) | Methods and devices for determining a transmission rank |
EP2777203A4 (en) * | 2011-11-08 | 2015-07-08 | Xg Technology Inc | INTERFERENCE MITIGATION METHOD FOR DEVICES AT A SINGLE RECEIVER OR MULTIPLE RECEIVER DEVICES (MIMO, EG) |
US9148780B2 (en) * | 2012-03-15 | 2015-09-29 | Lg Electronics Inc. | Method and apparatus for secure data transmission |
KR20130106236A (ko) * | 2012-03-19 | 2013-09-27 | 한국전자통신연구원 | 이종 무선 통신 시스템간 간섭분석 방법 |
CN103378890B (zh) * | 2012-04-24 | 2016-12-07 | 中兴通讯股份有限公司 | 一种阵列天线的端口映射方法及该阵列天线端口 |
US10469215B2 (en) | 2012-06-25 | 2019-11-05 | Cohere Technologies, Inc. | Orthogonal time frequency space modulation system for the Internet of Things |
US10411843B2 (en) | 2012-06-25 | 2019-09-10 | Cohere Technologies, Inc. | Orthogonal time frequency space communication system compatible with OFDM |
US9240853B2 (en) | 2012-11-16 | 2016-01-19 | Huawei Technologies Co., Ltd. | Systems and methods for sparse code multiple access |
WO2014129799A1 (ko) * | 2013-02-19 | 2014-08-28 | 엘지전자 주식회사 | 다중 안테나 무선 통신 시스템에서 신호 전송 방법 및 이를 위한 장치 |
US9876655B2 (en) * | 2013-08-16 | 2018-01-23 | Mediatek Singapore Pte. Ltd. | Precoding-codebook-based secure uplink in LTE |
US10469139B2 (en) | 2013-10-18 | 2019-11-05 | Qualcomm Incorporated | Method and apparatus for configuration of CSI-RS for 3D-MIMO |
KR102285852B1 (ko) * | 2013-12-17 | 2021-08-05 | 삼성전자 주식회사 | 전차원 다중입력 다중출력 이동통신 시스템에서 통신방법 및 장치 |
US9419770B2 (en) | 2014-03-31 | 2016-08-16 | Huawei Technologies Co., Ltd. | Method and apparatus for asynchronous OFDMA/SC-FDMA |
US10531432B2 (en) | 2015-03-25 | 2020-01-07 | Huawei Technologies Co., Ltd. | System and method for resource allocation for sparse code multiple access transmissions |
US10701685B2 (en) | 2014-03-31 | 2020-06-30 | Huawei Technologies Co., Ltd. | Method and apparatus for asynchronous OFDMA/SC-FDMA |
EP2945299B1 (en) * | 2014-05-15 | 2018-04-04 | Alcatel Lucent | Apparatus, method and computer program for a transceiver of a mobile communication system |
WO2016014598A1 (en) * | 2014-07-21 | 2016-01-28 | Cohere Technologies, Inc. | Otfs methods of data channel characterization and uses thereof |
WO2016148262A1 (ja) * | 2015-03-17 | 2016-09-22 | 日本電気株式会社 | 通信装置、方法及びシステムと端末とプログラム |
JP7050410B2 (ja) * | 2015-06-09 | 2022-04-08 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 送信装置、及び送信方法 |
US10574317B2 (en) | 2015-06-18 | 2020-02-25 | Cohere Technologies, Inc. | System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators |
WO2017071586A1 (en) | 2015-10-30 | 2017-05-04 | Huawei Technologies Co., Ltd. | System and method for high-rate sparse code multiple access in downlink |
CN106341168B (zh) * | 2015-12-31 | 2019-12-03 | 北京智谷睿拓技术服务有限公司 | 预编码方法、信息发送方法、及其装置 |
CN107863995B (zh) * | 2016-09-21 | 2020-09-11 | 华为技术有限公司 | 数据发送方法、数据接收方法、设备及系统 |
WO2019201928A1 (en) * | 2018-04-16 | 2019-10-24 | Sony Corporation | Methods and devices for configuring multiple input multiple output wireless transmission |
US11522600B1 (en) | 2018-08-01 | 2022-12-06 | Cohere Technologies, Inc. | Airborne RF-head system |
CN111628807A (zh) * | 2019-02-28 | 2020-09-04 | 英国电讯有限公司 | Mimo系统中的信道估计 |
US11641269B2 (en) | 2020-06-30 | 2023-05-02 | Rampart Communications, Inc. | Modulation-agnostic transformations using unitary braid divisional multiplexing (UBDM) |
US10951442B2 (en) | 2019-07-31 | 2021-03-16 | Rampart Communications, Inc. | Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security |
US10735062B1 (en) | 2019-09-04 | 2020-08-04 | Rampart Communications, Inc. | Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices |
US10965352B1 (en) | 2019-09-24 | 2021-03-30 | Rampart Communications, Inc. | Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations |
EP4094398A4 (en) * | 2020-01-25 | 2024-03-06 | Qualcomm Incorporated | SOUNDING REFERENCE SIGNAL CONFIGURATION |
US11159220B2 (en) | 2020-02-11 | 2021-10-26 | Rampart Communications, Inc. | Single input single output (SISO) physical layer key exchange |
CN113206716B (zh) * | 2021-04-23 | 2022-06-24 | 成都坤恒顺维科技股份有限公司 | 正交信道矩阵的建模方法 |
KR102557491B1 (ko) * | 2021-11-12 | 2023-07-19 | 한국과학기술원 | 기술간 교차 통신 방법 및 교차 통신 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000165339A (ja) * | 1998-11-27 | 2000-06-16 | Nec Corp | 送信lo同期方式を用いた両偏波伝送システム |
JP2007214780A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信装置システム、無線通信方法、基地局装置及び端末装置 |
US20080037681A1 (en) | 2003-11-21 | 2008-02-14 | Qualcomm Incorporated | Multi-antenna transmission for spatial division multiple access |
JP2008211476A (ja) * | 2007-02-26 | 2008-09-11 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信装置及び無線通信システム |
JP2009001352A (ja) | 2007-06-19 | 2009-01-08 | Mitsui Eng & Shipbuild Co Ltd | 原料投入装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6859503B2 (en) * | 2001-04-07 | 2005-02-22 | Motorola, Inc. | Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel |
BRPI0618243A2 (pt) | 2005-11-04 | 2011-08-23 | Matsushita Electric Ind Co Ltd | aparelho de transmissão por rádio, aparelho de recepção de rádio, método de comunicação sem fio e sistema de comunicação sem fio |
KR20080073624A (ko) * | 2007-02-06 | 2008-08-11 | 삼성전자주식회사 | 다중 편파 다중 입출력 시스템을 위한 코드북 생성 방법 및그 장치 |
US7995671B2 (en) | 2007-02-09 | 2011-08-09 | Qualcomm Incorporated | Multiple-input multiple-output (MIMO) transmission with rank-dependent precoding |
ES2407118T3 (es) * | 2007-04-30 | 2013-06-11 | Telefonaktiebolaget L M Ericsson (Publ) | Método y disposición para adaptar una transmisión multi-antena |
CN101316130B (zh) * | 2007-06-01 | 2014-06-11 | 中国移动通信集团公司 | 闭环模式下共用天线系统和方法 |
US7629902B2 (en) * | 2007-06-08 | 2009-12-08 | Samsung Electronics Co., Ltd. | MIMO wireless precoding system robust to power imbalance |
CN102938665B (zh) * | 2007-06-19 | 2015-09-30 | 株式会社Ntt都科摩 | 发送装置以及发送方法 |
KR101306713B1 (ko) * | 2007-08-14 | 2013-09-11 | 엘지전자 주식회사 | 다중 안테나 시스템에서 피드백 방법 및 코드북 구성 방법 |
US8989285B2 (en) * | 2007-09-26 | 2015-03-24 | Samsung Electronics Co., Ltd. | Efficient MIMO precoding feedback scheme |
KR101373951B1 (ko) * | 2008-01-30 | 2014-03-13 | 엘지전자 주식회사 | 다중안테나 시스템에서 프리코딩 정보 전송방법 |
KR20100013251A (ko) * | 2008-07-30 | 2010-02-09 | 엘지전자 주식회사 | 다중안테나 시스템에서 데이터 전송방법 |
US7764746B2 (en) * | 2008-08-19 | 2010-07-27 | Samsung Electronics Co., Ltd. | User terminal and base station using adapted codebook according to polarization |
-
2010
- 2010-01-06 PL PL10729168T patent/PL2375604T3/pl unknown
- 2010-01-06 PT PT10729168T patent/PT2375604T/pt unknown
- 2010-01-06 HU HUE10729168A patent/HUE040750T2/hu unknown
- 2010-01-06 JP JP2010545746A patent/JP5372963B2/ja active Active
- 2010-01-06 EP EP13178557.8A patent/EP2660991B1/en active Active
- 2010-01-06 US US13/141,743 patent/US8737509B2/en active Active
- 2010-01-06 DK DK10729168.4T patent/DK2375604T3/en active
- 2010-01-06 ES ES10729168.4T patent/ES2691037T3/es active Active
- 2010-01-06 WO PCT/JP2010/000048 patent/WO2010079748A1/ja active Application Filing
- 2010-01-06 EP EP10729168.4A patent/EP2375604B1/en active Active
- 2010-01-06 CN CN201080004076.1A patent/CN102273115B/zh active Active
-
2013
- 2013-07-18 JP JP2013149490A patent/JP5451932B2/ja active Active
- 2013-12-16 JP JP2013259344A patent/JP5697116B2/ja active Active
-
2014
- 2014-04-14 US US14/252,000 patent/US8953704B2/en active Active
- 2014-04-14 US US14/251,955 patent/US8923428B2/en active Active
- 2014-12-18 US US14/575,298 patent/US9136926B2/en active Active
-
2015
- 2015-01-30 JP JP2015017541A patent/JP5877254B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000165339A (ja) * | 1998-11-27 | 2000-06-16 | Nec Corp | 送信lo同期方式を用いた両偏波伝送システム |
US20080037681A1 (en) | 2003-11-21 | 2008-02-14 | Qualcomm Incorporated | Multi-antenna transmission for spatial division multiple access |
JP2007214780A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信装置システム、無線通信方法、基地局装置及び端末装置 |
JP2008211476A (ja) * | 2007-02-26 | 2008-09-11 | Nippon Telegr & Teleph Corp <Ntt> | 無線通信装置及び無線通信システム |
JP2009001352A (ja) | 2007-06-19 | 2009-01-08 | Mitsui Eng & Shipbuild Co Ltd | 原料投入装置 |
Non-Patent Citations (1)
Title |
---|
NTT DOCOMO, INVESTIGATIONS ON PRE-CODING SCHEMES FOR MIMO IN E-UTRA DOWNLINK, R1-063311, 10 November 2006 (2006-11-10), XP050103756 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012015920A (ja) * | 2010-07-02 | 2012-01-19 | Nippon Hoso Kyokai <Nhk> | 偏波mimo伝送システムにおける送信装置及び受信装置 |
JP2012015922A (ja) * | 2010-07-02 | 2012-01-19 | Nippon Hoso Kyokai <Nhk> | 偏波mimo伝送システムにおける送信装置及び受信装置 |
KR20120013120A (ko) * | 2010-08-04 | 2012-02-14 | 삼성전자주식회사 | 개 루프 멀티 셀 미모 시스템에서 성능 향상을 위한 장치 및 방법 |
KR101701896B1 (ko) | 2010-08-04 | 2017-02-02 | 삼성전자주식회사 | 개 루프 멀티 셀 미모 시스템에서 성능 향상을 위한 장치 및 방법 |
JP2012049740A (ja) * | 2010-08-25 | 2012-03-08 | Nippon Hoso Kyokai <Nhk> | 偏波mimo−ofdm伝送方式の送信装置及び受信装置 |
CN103141035B (zh) * | 2010-10-05 | 2017-02-15 | 瑞典爱立信有限公司 | 用于通信系统中极化控制的方法和设备 |
US9559763B2 (en) | 2010-10-05 | 2017-01-31 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for polarization control in a communication system |
CN103141035A (zh) * | 2010-10-05 | 2013-06-05 | 瑞典爱立信有限公司 | 用于通信系统中极化控制的方法和设备 |
JP2014504068A (ja) * | 2010-11-22 | 2014-02-13 | ノキア シーメンス ネットワークス オサケユキチュア | 部分的チャンネル状態情報による多層ビーム成形 |
US8989295B2 (en) | 2010-11-22 | 2015-03-24 | Nokia Solutions And Networks Oy | Multi-layer beamforming with partial channel state information |
JP2014506426A (ja) * | 2011-01-04 | 2014-03-13 | アルカテル−ルーセント | 交差偏波アンテナ・アレイ(cross−polarizedantennaarray)のためのプリコーディング方法およびプリコーダ |
US8942310B2 (en) | 2011-01-27 | 2015-01-27 | Nec Corporation | Information processing apparatus and information processing method, and non-transitory computer readable medium storing information processing program |
WO2012101703A1 (ja) * | 2011-01-27 | 2012-08-02 | 日本電気株式会社 | 情報処理装置及び情報処理方法並びに情報処理プログラムが格納された非一時的なコンピュータ可読媒体 |
JP4730677B1 (ja) * | 2011-01-27 | 2011-07-20 | 日本電気株式会社 | 情報処理装置及び情報処理方法並びに情報処理プログラム |
US10938457B2 (en) | 2011-02-21 | 2021-03-02 | Sun Patent Trust | Precoding method, precoding device |
US11863263B2 (en) | 2011-02-21 | 2024-01-02 | Sun Patent Trust | Precoding method, precoding device |
US11563471B2 (en) | 2011-02-21 | 2023-01-24 | Sun Patent Trust | Precoding method, precoding device |
US11218200B2 (en) | 2011-02-21 | 2022-01-04 | Sun Patent Trust | Precoding method, precoding device |
EP2700177A2 (en) * | 2011-04-21 | 2014-02-26 | ZTE Corporation | Method and system for spatial channel state information feedback for multiple-input multiple-output (mimo) |
JP2014515907A (ja) * | 2011-04-21 | 2014-07-03 | ゼットティーイー コーポレイション | 多重入出力(mimo)のための空間チャネル状態情報のフィードバック方法およびシステム |
CN103493393B (zh) * | 2011-04-21 | 2018-02-09 | 中兴通讯股份有限公司 | 用于多输入多输出(mimo)的空间信道状态信息反馈的方法和系统 |
EP2700177A4 (en) * | 2011-04-21 | 2014-10-08 | Zte Corp | METHOD AND SYSTEM FOR RETURNING SPATIAL CHANNEL STATUS INFORMATION FOR MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) SYSTEM |
CN103493393A (zh) * | 2011-04-21 | 2014-01-01 | 中兴通讯股份有限公司 | 用于多输入多输出(mimo)的空间信道状态信息反馈的方法和系统 |
JP2014513482A (ja) * | 2011-04-28 | 2014-05-29 | アルカテル−ルーセント | ネットワーク・デバイスにおいてコードブックおよび関連データを生成するための方法および装置 |
JP2014519242A (ja) * | 2011-05-02 | 2014-08-07 | アルカテル−ルーセント | 多入力多出力ワイヤレス通信のためにプリコードされた信号を変換する方法 |
CN102231661A (zh) * | 2011-07-22 | 2011-11-02 | 电信科学技术研究院 | 一种信息传输方法、系统及装置 |
WO2012155493A1 (zh) * | 2011-09-21 | 2012-11-22 | 中兴通讯股份有限公司 | 一种实现信道信息反馈的方法和装置 |
US9455856B2 (en) | 2011-12-23 | 2016-09-27 | Huawei Technologies Co., Ltd. | Method and apparatus for feeding back channel state information |
JP2015503305A (ja) * | 2011-12-23 | 2015-01-29 | 華為技術有限公司Huawei Technologies Co.,Ltd. | チャネル状態情報をフィードバックするための方法及び装置 |
USRE47879E1 (en) | 2012-03-30 | 2020-02-25 | Samsung Electronics Co., Ltd. | Apparatus and method for channel-state-information pilot design for an advanced wireless network |
JP2015518671A (ja) * | 2012-03-30 | 2015-07-02 | サムスン エレクトロニクス カンパニー リミテッド | 次世代無線ネットワークのためのチャンネル状態情報パイロット設計のための装置及び方法 |
JP2014027608A (ja) * | 2012-07-30 | 2014-02-06 | Ntt Docomo Inc | 基地局装置、ユーザ端末、通信システム及び通信制御方法 |
WO2014021008A1 (ja) * | 2012-07-30 | 2014-02-06 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局装置、ユーザ端末、通信システム及び通信制御方法 |
JP2017139804A (ja) * | 2012-09-28 | 2017-08-10 | インターデイジタル パテント ホールディングス インコーポレイテッド | 多次元アンテナ構成を使用する無線通信 |
JP2018198428A (ja) * | 2012-09-28 | 2018-12-13 | インターデイジタル パテント ホールディングス インコーポレイテッド | 多次元アンテナ構成を使用する無線通信 |
US9918240B2 (en) | 2012-09-28 | 2018-03-13 | Interdigital Patent Holdings, Inc. | Wireless communication using multi-dimensional antenna configuration |
JP2015536099A (ja) * | 2012-09-28 | 2015-12-17 | インターデイジタル パテント ホールディングス インコーポレイテッド | 多次元アンテナ構成を使用する無線通信 |
US11546027B2 (en) | 2012-12-06 | 2023-01-03 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Base station apparatus, terminal apparatus, wireless communication system and integrated circuit |
WO2014088003A1 (ja) * | 2012-12-06 | 2014-06-12 | シャープ株式会社 | 基地局装置、端末装置、無線通信システムおよび集積回路 |
JP2016511566A (ja) * | 2013-01-28 | 2016-04-14 | 富士通株式会社 | チャネル状態情報のフィードバック方法、チャネル状態情報参照信号の伝送方法、ユーザ装置及び基地局 |
US11184062B2 (en) | 2013-04-15 | 2021-11-23 | Huawei Technologies Co., Ltd. | Method for reporting channel state information, user equipment, and base station |
US10270501B2 (en) | 2015-04-09 | 2019-04-23 | Ntt Docomo, Inc. | Mobile station, radio base station, and radio communication method |
WO2016163543A1 (ja) * | 2015-04-09 | 2016-10-13 | 株式会社Nttドコモ | 移動局、無線基地局及び無線通信方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013225934A (ja) | 2013-10-31 |
CN102273115B (zh) | 2015-06-17 |
US20140226742A1 (en) | 2014-08-14 |
JP5372963B2 (ja) | 2013-12-18 |
US20140219381A1 (en) | 2014-08-07 |
US9136926B2 (en) | 2015-09-15 |
EP2375604B1 (en) | 2018-07-25 |
JP5877254B2 (ja) | 2016-03-02 |
JP2015119493A (ja) | 2015-06-25 |
EP2375604A4 (en) | 2014-07-30 |
US8737509B2 (en) | 2014-05-27 |
EP2660991A3 (en) | 2014-07-30 |
EP2660991A2 (en) | 2013-11-06 |
PL2375604T3 (pl) | 2019-01-31 |
ES2691037T3 (es) | 2018-11-23 |
EP2660991B1 (en) | 2020-07-29 |
DK2375604T3 (en) | 2018-11-19 |
JP5697116B2 (ja) | 2015-04-08 |
US20110261894A1 (en) | 2011-10-27 |
JP5451932B2 (ja) | 2014-03-26 |
HUE040750T2 (hu) | 2019-03-28 |
EP2375604A1 (en) | 2011-10-12 |
US20150103939A1 (en) | 2015-04-16 |
JP2014112841A (ja) | 2014-06-19 |
PT2375604T (pt) | 2018-11-14 |
US8923428B2 (en) | 2014-12-30 |
CN102273115A (zh) | 2011-12-07 |
US8953704B2 (en) | 2015-02-10 |
JPWO2010079748A1 (ja) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5877254B2 (ja) | 端末装置及び通信方法 | |
EP2494730B1 (en) | Multi-granular feedback reporting and feedback processing for precoding in telecommunications | |
US8619641B2 (en) | Single-user beamforming method and apparatus suitable for frequency division duplex system | |
WO2010032385A1 (ja) | 無線通信装置、無線通信システム及び無線通信方法 | |
JP2015053681A (ja) | クロネッカー積に基づく空間的チャンネル状態情報フィードバックのための方法及びシステム | |
US9008008B2 (en) | Method for communicating in a MIMO context | |
US8942305B2 (en) | Method for communicating in a network | |
CN102064919A (zh) | 一种信道质量信息的修正方法及装置 | |
JP4698346B2 (ja) | 無線伝送システム、基地局及び無線伝送方法 | |
EP2557720B1 (en) | Transformation device and method | |
JP5777092B2 (ja) | 無線通信装置、無線伝送システム及び無線伝送方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080004076.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10729168 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010545746 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13141743 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010729168 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |