WO2010076869A1 - 手術システム及び制御方法 - Google Patents

手術システム及び制御方法 Download PDF

Info

Publication number
WO2010076869A1
WO2010076869A1 PCT/JP2009/071031 JP2009071031W WO2010076869A1 WO 2010076869 A1 WO2010076869 A1 WO 2010076869A1 JP 2009071031 W JP2009071031 W JP 2009071031W WO 2010076869 A1 WO2010076869 A1 WO 2010076869A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
value
impedance
unit
high frequency
Prior art date
Application number
PCT/JP2009/071031
Other languages
English (en)
French (fr)
Inventor
義清 柴田
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN2009801450332A priority Critical patent/CN102209503B/zh
Priority to EP09836208.0A priority patent/EP2371313B1/en
Priority to JP2010516315A priority patent/JP4649545B2/ja
Publication of WO2010076869A1 publication Critical patent/WO2010076869A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound

Definitions

  • the present invention relates to an operation system and a control method for performing an operation by a treatment unit using ultrasonic vibration and high-frequency power.
  • an ultrasonic drive device that can perform an incision treatment while coagulating a living tissue, an organ or the like to be operated using ultrasonic waves (vibration), or a high-frequency current is passed through the living tissue.
  • a high-frequency cautery device high-frequency power supply device or electric knife device that performs cauterization is widely used.
  • ultrasonic impedance is detected, the hardness of the living tissue to be treated is monitored, and the electric knife energy (high-frequency power) is monitored. Thereafter, it is disclosed that when the ultrasonic impedance reaches a predetermined value, control for stopping or changing the supply of high-frequency power is performed.
  • the electrosurgical device in the second prior example of Japanese Patent Laid-Open No. 10-225462 has an impedance detection unit that detects high-frequency impedance of a living tissue between a pair of electrodes, and outputs an output signal of the impedance detection unit. Based on this, the control unit controls energization / cutoff of the high frequency power.
  • the second preceding example discloses the contents for controlling the energization / cutoff of the high frequency power according to the ultrasonic impedance of the living tissue accompanying the cauterization process by the high frequency power.
  • the ultrasonic surgical apparatus according to the third prior example of Japanese Patent Laid-Open No. 2006-288431 has impedance detection means for detecting the electrical impedance of the living tissue, and amplitude control is performed according to the detected electrical impedance.
  • the contents for controlling the means are disclosed.
  • coagulation and incision may be performed by simultaneously supplying ultrasonic waves and high-frequency power to a living tissue via a treatment portion at the distal end of the treatment tool.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a surgical system and a control method suitable for performing a smooth treatment when ultrasonic waves and high-frequency power are used simultaneously.
  • the surgical system of the present invention comprises: A treatment section for treating a living tissue to be treated; An ultrasonic generator for applying ultrasonic waves to the treatment section; An ultrasonic driving power supply unit that supplies ultrasonic driving power for generating ultrasonic waves to the ultrasonic wave generation unit; A high frequency power supply unit that supplies high frequency power to the treatment unit; An ultrasonic impedance detection unit for detecting ultrasonic impedance of the living tissue to which ultrasonic waves are applied via the treatment unit; A high-frequency impedance detection unit that detects a high-frequency impedance of the living tissue to which high-frequency power is supplied via the treatment unit; A first controller that controls an amount of ultrasonic energy generated by the ultrasonic vibration generator according to an ultrasonic impedance value detected by the ultrasonic impedance detector; A second control unit that controls a crest factor value of the high-frequency power amount or the high-frequency power waveform according to a high-frequency impedance value detected by the high-frequency impedance detection unit; It is characterized by providing
  • the control method of the present invention includes an ultrasonic generation unit that applies ultrasonic waves to a treatment unit for treating a biological tissue to be treated; An ultrasonic driving power supply unit that supplies ultrasonic driving power for generating ultrasonic waves to the ultrasonic wave generation unit; A high frequency power supply unit that supplies high frequency power to the treatment unit; An ultrasonic impedance detection unit that detects ultrasonic impedance of the biological tissue to which ultrasonic waves are applied via the treatment unit; A high-frequency impedance detection unit that detects a high-frequency impedance of the living tissue to which high-frequency power is supplied via the treatment unit; A control method for controlling a surgical system comprising: A first control step of controlling an amount of ultrasonic energy generated by the ultrasonic vibration generator in accordance with an ultrasonic impedance value detected by the ultrasonic impedance detector; A second control step of controlling a crest factor value of the high-frequency power amount or the high-frequency power waveform according to a high-frequency impedance value detected by the high-frequency
  • FIG. 1 is a perspective view showing the overall configuration of an ultrasonic & high frequency surgical system according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the internal configuration of the handpiece.
  • FIG. 3 is a block diagram showing a detailed configuration of the ultrasonic & high frequency surgical system.
  • FIG. 4 is a flowchart showing a processing procedure of the surgery control method according to the first embodiment.
  • FIG. 5 is a flowchart showing a processing procedure of another surgical control method according to the first embodiment.
  • FIG. 6 is a flowchart showing an outline of a functional processing procedure in FIG.
  • FIG. 7A is a diagram showing a state of treatment at the start of coagulation and incision.
  • FIG. 7B is a diagram illustrating a state after the treatment has progressed from the start of the coagulation incision in FIG. 7A.
  • FIG. 8A is a diagram showing an example of temporal transition of a high-frequency output value.
  • FIG. 8B is a diagram showing an example of temporal transition of the amplitude of the ultrasonic output.
  • FIG. 9 is a block diagram showing a detailed configuration of the ultrasonic & high frequency surgical system according to the second embodiment of the present invention.
  • FIG. 10A shows a mixed wave.
  • FIG. 10B shows a burst wave.
  • FIG. 11 is a flowchart showing a processing procedure of the surgical control method according to the second embodiment.
  • 12 is a flowchart showing an outline of a functional processing procedure in FIG.
  • FIG. 13 is a diagram showing an example of temporal transition of the crest factor of the high-frequency output.
  • FIG. 14 is a flowchart showing a part of the processing procedure of another surgical control method according
  • FIG. 1 shows an overall configuration of an ultrasonic & high-frequency surgical system 1 according to a first embodiment of the present invention.
  • this ultrasonic & high-frequency surgical system 1 is a surgical instrument for performing a treatment such as a coagulation incision by supplying ultrasonic vibration energy and high-frequency electric energy to a living tissue to be treated. It has a handpiece 2.
  • the ultrasonic & high-frequency surgical system 1 supplies (outputs) ultrasonic driving power for generating ultrasonic waves (vibration) to an ultrasonic transducer (or ultrasonic transducer) 23 built in the handpiece 2.
  • a sonic drive power supply device (abbreviated as an ultrasonic generator) 3 and a high frequency power supply device (abbreviated as a high frequency generator) 4 for supplying high frequency power (high frequency current) to the handpiece 2 are provided.
  • This ultrasonic & high-frequency surgical system 1 has a foot switch 6 that performs an instruction operation to supply / turn off high-frequency power supply and a counter electrode plate 5 for forming a return circuit for high-frequency power.
  • the handpiece 2 has a gripping portion 7 held by an operator and a probe 8 protruding forward from the gripping portion 7, and a treatment portion 9 for performing a treatment such as coagulation incision at the tip of the probe 8. Is provided.
  • the grip portion 7 is provided with a hand switch unit (abbreviated as a hand switch) 11 that performs selection when performing treatment with the treatment portion 9.
  • a hand switch unit abbreviated as a hand switch
  • an incision selection switch 12a, a coagulation selection switch 12b, and a simultaneous output switch 12c for simultaneously outputting ultrasonic waves and high frequencies are provided.
  • a signal cable 13 extends from the rear end side of the gripping portion 7 of the handpiece 2, and the connector 14 at the end of the signal cable 13 is detachably connected to the connector receiver of the ultrasonic generator 3.
  • the ultrasonic generator 3 and the high frequency generator 4 are connected by a communication cable 15 and can transmit and receive signals.
  • the ultrasonic generator 3 and the high frequency generator 4 are connected by a high frequency cable 16.
  • the high frequency generated by the high frequency generator 4 is sent to the ultrasonic generator 3 side via the high frequency cable 16, and high frequency power (high frequency current) is supplied to the handpiece 2 via the connector 14 and the signal cable 13.
  • the end of a counter electrode cable 17 connected to the counter electrode 5 is detachably connected to the high frequency generator 4.
  • the counter electrode plate 5 is disposed so as to come into contact with a patient's buttocks over a wide area.
  • the ultrasonic generator 3 and the high frequency generator 4 are provided with front panels 18 and 19 for performing various operations and displays, for example, on the front surface thereof.
  • the foot switch 6 is connected to the high frequency generator 4 by a foot switch cable 20.
  • FIG. 2 shows the internal structure of the handpiece 2.
  • the handpiece 2 has a substantially cylindrical main case 21 a that forms the grip portion 7, and a sheath 22 is connected to the front end thereof.
  • the main case 21a is pulled in from the rear end portion 21b thereof to the distal end side of the signal cable 13, and the main case 21a has conductors 13a and 13b for transmitting an ultrasonic drive signal output from the ultrasonic generator 3.
  • An ultrasonic transducer 23 is disposed as an ultrasonic wave generating means to be connected.
  • the ultrasonic transducer 23 has a plurality of ring-shaped electrostrictive elements 24 in a laminated structure, and the plurality of electrostrictive elements 24 in the laminated structure are fastened and fixed by bolts 25 and nuts 26.
  • This ultrasonic vibration (also simply referred to as an ultrasonic wave) is enlarged by a horn 27 formed on the flange 25a at the front end of the bolt 25, and further transmitted to the treatment portion 9 at the tip via the probe 8.
  • ultrasonic vibration is applied to the treatment section 9 via the ultrasonic transducer 23 to which the ultrasonic drive signal from the ultrasonic generator 3 is applied.
  • the ultrasonic generator 3 and the ultrasonic transducer 23 form an ultrasonic supply unit or an ultrasonic generation unit that applies ultrasonic waves (vibration) to the treatment unit 9.
  • the operator can perform treatment such as coagulation incision on the treatment target portion by applying the treatment portion 9 that vibrates ultrasonically to the treatment target portion, and frictional heat generated by the ultrasonic vibration at that time.
  • insulating plates 28 are disposed at both ends of the plurality of electrostrictive elements 24.
  • the metal nut 26 forms a conductor portion to which the high-frequency output conductor 13c in the signal cable 13 is connected.
  • a high frequency output signal is applied to the nut 26, the signal is transmitted to the treatment portion 9 at the tip thereof through the metal bolt 25 and the metal probe 8.
  • a high-frequency current that forms high-frequency electric energy flows at a high density in the contacted portion, and cauterization treatment is performed. It can. Then, the high-frequency current returns to the high-frequency generator 4 via the counter electrode plate 5 and the counter electrode plate cable 17 serving as a return path.
  • the probe 8 is inserted into a metal sheath 22 covered with an insulating pipe (not shown).
  • the plurality of signal lines inserted into the hand switch cable 29 inserted into the signal cable 13 are connected to the incision selection switch 12a, the coagulation selection switch 12b, and the simultaneous output switch 12c.
  • the incision selection switch 12a, the coagulation selection switch 12b, and the simultaneous output switch 12c are covered with a rubber cover portion. Each switch can be turned ON / OFF by pressing from above the rubber cover portion.
  • FIG. 3 shows a detailed configuration of the ultrasonic generator 3 and the high-frequency generator 4 of FIG.
  • the ultrasonic generator 3 includes a waveform generation circuit 31 that generates a sine wave signal, for example.
  • the sine wave signal output from the waveform generation circuit 31 is subjected to constant current control by the multiplier 32, further amplified by the amplifier 33, and then applied to the primary winding side of the output transformer 34. Then, an ultrasonic drive signal is applied from the output terminal on the secondary winding side of the output transformer 34 to the ultrasonic transducer 23 in the handpiece 2.
  • the amplitude of the ultrasonic drive signal in other words, the amount of ultrasonic output energy of the ultrasonic transducer 23 is adjusted according to the current value and voltage value from the power supply circuit 35 supplied to the amplifier 33. That is, the ultrasonic output is controlled by the central processing unit (CPU) 36 so as to obtain an appropriate current and voltage by constant current control described later.
  • CPU central processing unit
  • the ultrasonic drive signal output from the ultrasonic generator 3 is converted into ultrasonic waves by the ultrasonic transducer 23
  • the energy amount of the ultrasonic drive signal output from the ultrasonic generator 3 and the ultrasonic transducer 23 are used. It is proportional to the amount of ultrasonic (vibration) energy and is used in the same meaning in this embodiment.
  • the set value of the ultrasonic output by the setting unit 18a of the front panel 18 is input to the CPU 36.
  • the front panel 18 is provided with a display unit 18b for displaying information such as ultrasonic output outputted from the CPU 36.
  • the sine wave signal amplified by the amplifier 33 is input to the voltage detection circuit 37a and the current detection circuit 37b constituting the detection unit 37, and the voltage and current are detected (measured), respectively.
  • the detected voltage and current are converted into digital values by the A / D converters 38 a and 38 b and input to the arithmetic unit 36 a of the CPU 36.
  • the sine wave signal amplified by the amplifier 33 is input to a PLL circuit (Phase39Locked Loop circuit) 39.
  • the PLL circuit 39 performs PLL control so that the ultrasonic transducer 23 is driven by an ultrasonic drive signal having a resonance frequency corresponding to the ultrasonic transducer 23. Further, control is performed so that the phase of the voltage and the current in the ultrasonic drive signal in that case is in phase.
  • the operation of the PLL circuit 39 is controlled by the CPU 36.
  • the CPU 36 has a function of an operation unit 36a that performs an operation of calculating an ultrasonic output value using the voltage and current input via the A / D converters 38a and 38b.
  • the CPU 36 has a function of a determination unit 36b that determines whether or not the ultrasonic output value calculated by the calculation unit 36a matches the set value by the setting unit 18a. Then, the determination information is sent to the current value control unit 36c by the CPU 36, and the current value control unit 36c performs constant current control based on the determination information so that the ultrasonic output value matches the set value.
  • a memory 41 is connected to the current value control unit 36c, and information such as a control value used for the previous control by the current value control unit 36c is stored in the memory 41.
  • the value control unit 36 c performs control with reference to information such as the immediately preceding control value stored in the memory 41.
  • the current value control unit 36c refers to the control value immediately before and determines the current value from the control value.
  • the current is controlled so as to increase.
  • the current value control unit 36c controls the multiplication value of the multiplier 32 so as to compensate for the difference in the comparison result between the ultrasonic output value and the set value.
  • the calculation unit 36a includes the state of the load when the ultrasonic transducer 23 is driven (specifically, the state in which ultrasonic vibration energy is applied from the treatment unit 9 to the living tissue to be ablated). It also has a function of detecting mechanical impedance, that is, ultrasonic load impedance (also referred to as ultrasonic impedance).
  • the current value control unit 36c also performs amplitude control so that the amplitude (or energy amount) of the ultrasonic wave in the treatment unit 9 is maintained within a predetermined range (that is, a range suitable for incision coagulation treatment). That is, the current value control unit 36c also has a function of amplitude control 36d.
  • the frequency of the ultrasonic vibration is 47 kHz.
  • the CPU 36 (the current value control unit 36c) has an amplitude equal to or smaller than a set value with 50 um as a lower limit. Control.
  • the CPU 36 has a function of an impedance determination unit 36e (abbreviated as Z2 determination in FIG. 3) as to whether or not the ultrasonic load impedance detected by the calculation unit 36a is within a predetermined range.
  • Z2 determination an impedance determination unit 36e
  • the current value control unit 36c controls the amplitude (or current value) of the ultrasonic wave based on the determination result by the impedance determination unit 36e.
  • the instruction operation signal by the switch operation of the incision selection switch 12a, the coagulation selection switch 12b, and the simultaneous output switch 12c is input to the CPU. Then, the CPU 36 performs control corresponding to the instruction operation signal.
  • the CPU 36 transmits the instruction operation signal to the CPU 56 of the high-frequency generator 4 via the communication cable 15, and the sine wave as a continuous wave for incision is transmitted via the CPU 56.
  • a high frequency output signal is output.
  • the CPU 36 transmits the instruction operation signal to the CPU 56 of the high-frequency generator 4 through the communication cable 15, and the coagulation wave having an intermittent waveform for coagulation, that is, a burst wave, via the CPU 56.
  • the high frequency output signal is output.
  • the CPU 36 controls the power supply circuit 35 to turn on the ultrasonic drive signal and turns on the high frequency output via the communication cable 15 and the CPU 56 of the high frequency generator 4.
  • the high-frequency generator 4 includes a waveform generation circuit 51 for generating a sine wave and a burst wave, and a signal output from the waveform generation circuit 51 is input to the amplifier 53 via the resonance circuit 52.
  • the signal amplified by the amplifier 53 is applied to the primary winding side of the output transformer 54, and a high frequency output signal for cauterization is generated on the secondary winding side.
  • One end of the secondary winding of the output transformer 54 is electrically connected to a horn 27 or the like that forms a conductor portion in the handpiece 2.
  • the other end of the secondary winding is electrically connected to the counter electrode plate 5 that contacts the patient 40 over a wide area.
  • the resonance circuit 52 is supplied with a power supply voltage from a voltage variable power supply circuit 55, and the waveform generation circuit 51 and the power supply circuit 55 are controlled by the CPU 56.
  • the surgeon can set a high-frequency power setting value and the like by setting by the setting unit 19a.
  • the control unit 56a of the CPU 56 controls the waveform generation circuit 51 and the power supply circuit 55 in accordance with the power setting value from the setting unit 19a.
  • control unit 56a of the CPU 56 causes the waveform generation circuit 51 to output a sine wave as an incision wave.
  • the control unit 56a causes the waveform generation circuit 51 to output a burst wave as a coagulation wave.
  • the control unit 56a When the setting unit 19a sets the output mode for outputting the mixed wave, the control unit 56a outputs a mixed wave (blended wave) obtained by mixing (blending) the sine wave and the burst wave.
  • control information and the like by the control unit 56a of the CPU 56 is displayed on the display unit 19b of the front panel 19.
  • the signal amplified by the amplifier 53 is input to the voltage detection circuit 57a and the current detection circuit 57b in the detection unit 57.
  • the voltage detection circuit 57a and the current detection circuit 57b detect (measure) the voltage and current of the signal amplified by the amplifier 53.
  • the detected voltage and current are converted into digital voltage and current by the A / D converters 58 a and 58 b and input to the CPU 56.
  • the CPU 56 detects (calculates) the high-frequency impedance (also referred to as tissue impedance) of the living tissue in the calculation unit 56b using the input voltage and current. Then, the calculation unit 56b outputs the detected tissue impedance value to an impedance determination unit (abbreviated as Z1 determination in FIG. 3) 56c.
  • Z1 determination in FIG. 3 an impedance determination unit
  • the impedance determination unit 56c determines whether or not it is within a predetermined impedance range by comparing the input impedance value with a threshold impedance.
  • control part 56a adjusts a high frequency output according to the determination result of the impedance determination part 56c.
  • the control unit 56a maintains the output as it is, and when the impedance value is smaller than the lower limit side threshold value, the high frequency output is decreased.
  • the high frequency output is adjusted as follows. When the impedance value is larger than the upper threshold value, the control unit 56a adjusts the high frequency output so as to increase the high frequency output.
  • control unit 56a controls the high-frequency output further adjusted to be equal to or lower than the set value after adjusting the high-frequency output according to the determination result of the impedance determination unit 56c.
  • the output value in the case of a high-frequency output value between 1 ⁇ 2 of the set value and the set value, the output value is maintained as it is and is smaller than the 1 ⁇ 2 value of the set value.
  • the output is adjusted so as to return to half the set value. Further, in the case of a high frequency output value larger than the set value, the output is adjusted so as to be lowered to the set value.
  • an ON / OFF signal from the foot switch 6 is input to the CPU 56.
  • the CPU 36 is instructed to output an ultrasonic drive signal, and the ultrasonic wave and the high frequency are output simultaneously.
  • the high-frequency generator 4 is provided with a timer 59, and when the set time is set by the setting unit 19a, the CPU 56 is set by the timer 59 to start after the set time.
  • the CPU 56 forcibly lowers the set value of the high frequency output at the initial setting and notifies the CPU 36 of the ultrasonic generator 3, and the CPU 36 forcibly sets the set value of the ultrasonic output at the initial setting. Lower.
  • the CPU 36 as the control means of the ultrasonic generator 3 and the CPU 56 as the control means of the high frequency generator 4 simultaneously start the output of ultrasonic waves and high frequencies via the communication cable 15. Control to stop output.
  • the CPU 36 controls the ultrasonic wave output with the current value according to the detection result such as the load impedance (ultrasonic impedance) detected on the ultrasonic generator 3 side. .
  • the CPU 56 controls the high frequency output according to the detection result of the tissue impedance (high frequency impedance) detected on the high frequency generator 4 side.
  • the surgeon connects the handpiece 2 to the ultrasonic generator 3 and the high frequency generator 4 as shown in FIG.
  • the ultrasonic generator 3 and the high frequency generator 4 are turned on. Then, output setting is performed as shown in step S1. For example, the surgeon performs ultrasonic and high frequency output settings. Further, it is assumed that the surgeon selects, for example, an incision mode as the high-frequency output waveform mode.
  • the surgeon sets the treatment portion 9 at the tip of the handpiece 2 at a position for treating the living tissue 61 to be excised. Then, the surgeon turns on the simultaneous output switch 12c of the hand switch 11 as shown in step S2 in FIG.
  • the instruction operation signal is transmitted to the CPU 36 of the ultrasonic generator 3 and further from this CPU 36 to the CPU 56 of the high frequency generator 4. Then, as shown in step S3, the CPU 56 starts high-frequency output. At the same time, the CPU 36 of the ultrasonic generator 3 starts ultrasonic output as shown in step S13.
  • a high frequency is supplied to the treatment unit 9 by the start of the high frequency output. Then, a high-density high-frequency current flows to the treatment target living tissue 61 that contacts the treatment unit 9, and the living tissue 61 is incised while being ablated at high frequency. The high-frequency current that has flowed to the living tissue 61 side returns to the high-frequency generator 4 via the counter electrode plate 5.
  • the calculation unit 56b of the CPU 56 takes in the voltage measured by the voltage detection circuit 57a and the digital value of the current measured by the current detection circuit 57b, and divides the voltage value by the current value to detect the tissue impedance Z1 ( (Measurement) operation starts.
  • the detected tissue impedance Z1 is input to the impedance determination unit 56c, and the impedance determination unit 56c determines whether or not it is within a predetermined impedance range (step S5). Specifically, it is determined whether or not the tissue impedance Z1 is within an impedance range between 300 ⁇ and 500 ⁇ (300 ⁇ ⁇ Z1 ⁇ 500 ⁇ ). Note that 300 ⁇ is a lower limit threshold, and 500 ⁇ is an upper limit threshold.
  • the control unit 56a When the impedance determination unit 56c determines that the detected tissue impedance value Z1 is 500 ⁇ or more, the control unit 56a performs control to increase the high-frequency output by a predetermined amount, for example, 5 W, as shown in step S6. Return to step S5.
  • control unit 56a When the impedance determination unit 56c determines that the detected tissue impedance Z1 is 300 ⁇ or less, the control unit 56a performs control to lower the high-frequency output by a predetermined amount, for example, 5 W, as shown in step S7. Return to step S5.
  • the high frequency output value is continued and the process proceeds to step S8.
  • step S8 the calculation unit 56b starts detecting (measuring) the output value of the power of the product of the voltage value and the current value measured by the voltage detection circuit 57a and the current detection circuit 57b.
  • the detected output value is input to the control unit 56a.
  • the control unit 56a determines whether or not the detected output value is in a range between the set value / 2 and the set value. .
  • control unit 56a When it is determined that the detected output value is greater than or equal to the set value, the control unit 56a performs control to lower the output value to the set value (step S10), and returns to step S9.
  • control unit 56a When it is determined that the detected output value is equal to or less than the set value / 2, the control unit 56a performs control to increase the output value to the set value / 2 (step S11), and returns to step S9.
  • step S12 If it is determined that the detected output value is in the range between the set value / 2 and the set value, the control unit 56a continues the output value as shown in step S12. Then, the process proceeds to step S23.
  • step S13 when ultrasonic output is started as shown in step S13, ultrasonic vibration energy is supplied to the treatment section 9, and the living tissue 61 to be treated is heated by frictional heat due to ultrasonic vibration, and the blood is coagulated while the blood is coagulated. The tissue is incised.
  • the calculation unit 36a of the CPU 36 takes in the voltage measured by the voltage detection circuit 37a and the digital value of the current measured by the current detection circuit 37b, divides the voltage value by the current value, and mechanical impedance of the tissue.
  • detection (measurement) of ultrasonic load impedance hereinafter referred to as load impedance Z2 is started.
  • the detected load impedance Z2 is input to the impedance determination unit 36e, and the impedance determination unit 36e determines whether or not it is within the predetermined impedance range shown in step S14. Specifically, it is determined whether or not the load impedance Z2 is between 200 ⁇ and 800 ⁇ (200 ⁇ ⁇ Z2 ⁇ 800 ⁇ ). In addition, 200 ⁇ is a lower limit side threshold value, and 800 ⁇ is an upper limit side threshold value.
  • the current value control unit 36c sets the amplitude (current value) to a predetermined amount, specifically 10%, as shown in step S16. After performing control to raise the degree, the process returns to step S15. If the detected load impedance Z2 is determined to be 200 ⁇ or less by the impedance determination unit 36e, the current value control unit 36c sets the amplitude (current value) to a predetermined amount, specifically, as shown in step S17. After performing control to lower by about 10%, the process returns to step S15.
  • the load impedance determination unit 36e determines that the detected load impedance Z2 is between 200 ⁇ and 800 ⁇ , the ultrasonic output value is continued and the process proceeds to step S18.
  • step S18 the calculation unit 36a starts detection (measurement) of the current value measured by the current detection circuit 37b.
  • the detected current value is input to the current value control unit 36c (the amplitude control unit 36d based on the current value).
  • the current value control unit 36c sets the detected current value to a current value corresponding to 50 ⁇ m. It is determined whether or not it is in a range between (current) values.
  • the current value control unit 36c performs control to lower the current value to the set value, and returns to step S19.
  • the current value control unit 36d When it is determined that the detected current value is equal to or less than 50 ⁇ m, the current value control unit 36d performs control to increase the current value to 50 ⁇ m, and returns to step S19.
  • the current value control unit 36c when it is determined that the detected current value is in the range between the current value corresponding to 50 ⁇ m and the set value, the current value control unit 36c, as shown in step S22, outputs the current value, that is, its output. The value is controlled to continue, and then the process proceeds to step S23.
  • the amplitude of the treatment section 9 is maintained at an amplitude value within a predetermined range by the processing of steps S18 to S22. By performing this control, the operation of the surgical system 1 can be controlled so as to reduce the sticking of the living tissue to the treatment section 9.
  • step S23 the CPU 56 determines whether or not the simultaneous output switch 12c of the hand switch 11 is turned off. If not, the CPU 56 returns to steps S3 and S13 and repeats the above-described operation. On the other hand, when the simultaneous output switch 12c of the hand switch 11 is turned off, the CPUs 56 and 36 stop the output of high frequency and ultrasonic waves. Then, the process of FIG. 4 ends.
  • a modified surgical control method shown in FIG. 5 may be adopted.
  • the surgical control method shown in FIG. 5 is the same as the surgical control method shown in FIG. 4.
  • the CPUs 56 and 36 reset the output of high frequency and ultrasonic waves after the set time. Process.
  • the CPUs 56 and 36 set the set value of the high frequency and ultrasonic output set in step S1 to a set value that becomes the upper limit value of the standard value, for example. Reset to force down.
  • Other processes are the same as those in FIG.
  • step S31 at the start of the coagulation incision (resection), in the case of an operation in which the operator performs the coagulation incision, the amount of power required for the treatment is large. That is, as shown in FIG. 7A, when the coagulation incision is started, the tissue impedance Z1 and the load impedance Z2 of the living tissue 61 to be treated are high, and it is necessary for the treatment when the operator performs the coagulation incision with the handpiece 2 The ability is large.
  • step S31 high frequency and ultrasonic waves are output at (initial) set values.
  • control is performed so as to perform high frequency and ultrasonic treatment with a (large) set value.
  • the operator can smoothly perform the coagulation / incision at the start of the coagulation / incision. That is, the surgery system 1 is appropriately controlled so that the surgeon can smoothly perform the coagulation and incision.
  • step S32 As the coagulation incision progresses as in step S32, the competence becomes lighter. Therefore, if the set value in the case of step S31 is kept as it is, the amount of energy to be administered to the living tissue of high frequency and ultrasound becomes excessive (possibly).
  • step S33 the CPU 56 of the high-frequency generator 4 detects a change in the tissue impedance Z1 and the CPU 36 of the ultrasonic generator 3 changes the load impedance Z2 so as to correspond to an excessive dose energy amount. Is detected.
  • the tissue impedance Z1 and the load impedance Z2 are lower than at the start.
  • step S34 the CPU 56 controls the high-frequency output value, and the CPU 36 controls the amplitude (current value) of the ultrasonic wave. Specifically, since the tissue impedance Z1 decreases, the CPU 56 controls to decrease the high-frequency output value, and since the load impedance Z2 decreases, the CPU 36 controls to decrease the amplitude (current value) of the ultrasonic wave.
  • step S35 the CPUs 36 and 56 perform control so as to optimize the high frequency and ultrasonic energy administered to the living tissue. Then, the surgeon continues coagulation and incision while preventing sticking with a stable force.
  • the outline of the temporal transition of the electric power (output) after starting the high-frequency output from the high-frequency generator 4 by controlling to perform such treatment is as shown in FIG. 8A.
  • the power value (set value) Wo set at the start of output is output and treatment is performed.
  • the tissue impedance Z1 decreases, and the power is reduced according to the decrease. The value is lowered. Then, for example, stable treatment is performed with the reduced power value Wad (usually 90% to 50% of the set value Wo).
  • the initial setting value can be adjusted to a value close to the standard setting value Wo by the output resetting step S26 in FIG. 5, and the power can be changed with the characteristic as shown in FIG. 8A. .
  • the outline of the temporal transition of the amplitude (current value) after starting the ultrasonic output from the ultrasonic generator 3 is as shown in FIG. 8B.
  • treatment is performed with the amplitude Ao of the set value set at the start of output.
  • the load impedance Z2 decreases, and the amplitude is reduced according to the decrease.
  • a stable treatment is performed at the reduced amplitude value Aad (2.1 m / s to 2.8 m / s in the case of the vibration speed in the treatment unit 9).
  • the vibration speed of the product of the amplitude of the ultrasonic wave and the frequency of the ultrasonic wave is used, stable treatment can be performed when the vibration speed of the ultrasonic wave in the treatment unit 9 is set in the above range.
  • the vibration speed at the treatment section may be controlled instead of the amplitude control.
  • the surgeon can perform a stable coagulation / incision treatment without sticking of the living tissue by the treatment section 9.
  • the initial setting value can be adjusted to a value close to the normal setting value by the output resetting step in FIG. 5, and the amplitude can be changed with the characteristic as shown in FIG. 8B.
  • the function to be treated can be made larger than when only one is used, and the treatment can be performed in a short time.
  • high-frequency impedance and ultrasonic impedance are detected, respectively, and high-frequency power amount (high-frequency energy amount) according to the detected impedance. Since the ultrasonic energy amount is controlled, it is possible to perform control more suitable for treatment than when only one impedance is detected and controlled.
  • the living tissue 61 to be treated is coagulated and incised using the handpiece 2 as a treatment tool (surgical tool)
  • the treatment progresses with the set value at the start of the treatment
  • the high frequency power (output) and / or the ultrasonic amplitude can be automatically reduced to an appropriate value. Therefore, the surgeon can smoothly perform a stable treatment.
  • the high frequency generator 4 and the ultrasonic generator 3 communicate with each other, depending on the detection result detected (measured) by each generator. Since each generator controls almost independently, the control method can be easily realized. That is, the control method can be realized more easily than when both generators are controlled on one generator side.
  • the appearance of the ultrasonic & high frequency surgical system 1B of this embodiment is the same as that of the ultrasonic & high frequency surgical system 1 shown in FIG. 1, and the structure of the handpiece 2 according to this embodiment is the same as that of the first embodiment. The same.
  • FIG. 9 shows a configuration of an ultrasonic & high frequency surgical system 1B according to the second embodiment of the present invention.
  • the ultrasonic & high frequency surgical system 1B of the present embodiment has a peak detection unit (Vp detection unit in FIG. 9) that detects the peak value of the voltage in the CPU 56 in the high frequency generator 4 in the ultrasonic & high frequency surgical system 1 of FIG.
  • a high frequency generator 4B employing a CF control unit 56e that performs control for adjusting the value of a crest factor (abbreviated as CF) is used instead of the control unit 56a.
  • CF crest factor
  • a sine wave serving as an incision wave is used as a high-frequency output signal.
  • a mixed wave having a waveform and characteristics intermediate between a sine wave and a coagulation wave. (Blend wave) and burst wave as coagulation wave are used.
  • the CF value of the mixed wave or burst wave is adjusted (controlled) to a value suitable for treatment according to the detected tissue impedance Z1.
  • the peak detector 56d outputs the detected voltage peak value to the CF controller 56e.
  • the CF control unit 56e also adjusts (controls) the peak value so that the peak value is within the set range.
  • FIG. 10A and 10B show a mixed wave and a burst wave used in this embodiment.
  • the mixed wave shown in FIG. 10A is a sine wave (not shown) formed into an attenuation waveform, and this mixed wave has an intermediate waveform and characteristic between the sine wave and the burst wave of FIG. 10B.
  • the sine wave is a continuous signal waveform of the fundamental wave of the fundamental frequency, but the mixed wave and the burst wave have a repetition frequency period (repetition period) in which a plurality of signal waveforms of the fundamental frequency are repeated. .
  • the effective value (indicated by Vrms) is lower than the peak value or peak voltage (indicated by Vp) of the burst wave. . Therefore, CF obtained by dividing the peak value by the effective value is a large value.
  • the mixed wave shown in FIG. 10A has a large effective value even in the case of a peak value smaller than the peak value in the case of the burst wave because the fundamental wave has a certain value in the entire repetition period.
  • the CF is smaller than the burst wave.
  • the surgical control method shown in FIG. 11 is a processing procedure in which steps S6 and S7 and steps S10 and S11 in the surgical control method of FIG. 4 are changed to steps S46 and S47 and steps S50 and S51, respectively.
  • step S1 it starts from the high frequency and ultrasonic output settings in step S1.
  • the high-frequency output mode will be described in the case where the mixed wave is set to be output.
  • step S3 By the ON operation of the hand switch 11 in step S2, the start of the high frequency output shown in step S3 and the ultrasonic output in step S13 are started.
  • step S3 high-frequency output starts in the mixed wave mode.
  • step S4 the detection of the tissue impedance Z1 is started, and in the next step S5, it is determined whether or not the detected tissue impedance Z1 is in a range between 300 ⁇ and 500 ⁇ .
  • control unit When it is determined that the detected tissue impedance Z1 is 500 ⁇ or more, the control unit lowers the CF by a predetermined amount, for example, 0.5, as shown in step S46, and then returns to step S5.
  • a predetermined amount for example, 0.5
  • the control unit increases the CF by a predetermined amount, for example, 0.5, as shown in step S47, and then returns to step S5.
  • step S9 After the output value measurement in step S8 is started.
  • step S9 the control unit 56a determines whether or not the detected output value is in a range between the set value / 2 and the set value.
  • step S50 the control unit 56a performs control to increase the CF by a predetermined amount, and returns to step S9.
  • control unit 56a When it is determined that the detected output value is equal to or less than the set value / 2, the control unit 56a performs control to return the CF to the default value, and returns to step S9.
  • control unit 56a continues the output value as shown in step S12.
  • step S61 at the start of a coagulation incision (resection), a large amount of force is required when performing a coagulation incision operation. That is, as shown in FIG. 7A, at the start of the coagulation incision, the tissue impedance Z1 and the load impedance Z2 of the living tissue 61 to be treated are high, and the power in the case of the coagulation incision is large.
  • step S61 a high frequency and an ultrasonic wave are output at (initial) set values.
  • control is performed so as to perform high frequency and ultrasonic treatment with the set values.
  • step S62 As the coagulation / incision progresses as in step S62, the ability decreases. Therefore, if the set values in the case of step S61 are kept as they are, the amount of energy to be administered to the living tissue of high frequency and ultrasonic waves becomes excessive (possibly).
  • step S63 the CPU 56 of the high-frequency generator 4 detects a change in the tissue impedance Z1, and the CPU 36 of the ultrasonic generator 3 detects a change in the load impedance Z2.
  • step S64 the CPU 56 controls the CF of the high frequency output, and the CPU 36 controls the amplitude (current value) of the ultrasonic wave.
  • step S65 the high frequency and ultrasonic energy to be administered to the living tissue are optimized as shown in step S65. Then, the coagulation and incision is continued while preventing sticking with a stable force.
  • the outline of the temporal transition of the CF after starting the high-frequency output from the high-frequency generator 4 by performing such treatment is as shown in FIG.
  • treatment is performed with CFO set at the start of output, for example, 2 to 3, and an effective value of 450 to 700V. That is, at the start of output, the treatment is performed in a setting state in which priority is given to the incision function having a low CF value.
  • CFad for example, CFad is 3 to 6, effective value is 270 to 550 V.
  • step S26 for performing output resetting may be added between step S2 and steps S3 and S13 in the same manner as described in the first embodiment in the surgical control method of FIG.
  • the power value is lower than in the case of a sine wave.
  • the setting value is set too large in the case of the initial setting.
  • step S26 for performing output resetting may be added to the ultrasonic output side. This case can be dealt with when the set value of the ultrasonic wave is set larger than the standard value.
  • This embodiment has substantially the same effect as the first embodiment.
  • a mixed wave or a burst wave can be selected and used according to the intended use.
  • the high frequency generator 4B may be configured to have a function of generating a high frequency output signal of a sine wave in the first embodiment in addition to the above-described mixed wave and burst wave. In this way, the surgeon can select and use high-frequency output signals having different treatment functions depending on the treatment.

Abstract

 手術システムは、処置対象の生体組織を処置するための処置部と、処置部に対して超音波を与える超音波発生部と、超音波発生部に対して超音波を発生させる超音波駆動電力を供給する超音波駆動電力供給部と、処置部に対して高周波電力を供給する高周波電力供給部と、生体組織の超音波インピーダンスと、生体組織の高周波インピーダンスを検出するインピーダンス検出部と、検出された超音波及び高周波インピーダンス値に応じて超音波エネルギ量と高周波電力量又はクレストファクタ値を制御する制御部とを備える。

Description

手術システム及び制御方法
 本発明は超音波振動と高周波電力とを用いて処置部によって手術を行う手術システム及び制御方法に関する。
 近年、外科手術においては、超音波(振動)を利用して手術対象の生体組織、臓器等を凝固しながら切開の処置を行うことができる超音波駆動装置や、高周波電流を生体組織に流して焼灼を行う高周波焼灼装置(高周波電力供給装置或いは電気メス装置)が広く用いられるようになっている。
 例えば特開平10-94545号公報の第1の先行例における電気手術装置においては、超音波インピーダンスを検出して、処置対象の生体組織の固さをモニタし、モニタしながら電気メスエネルギ(高周波電力)を供給する。その後、上記超音波インピーダンスが所定値になった時点で、高周波電力の供給を停止、又は変更する制御を行うことが開示されている。
 また、特開平10-225462号公報の第2の先行例における電気手術装置においては、1対の電極間の生体組織の高周波インピーダンスを検出するインピーダンス検出部を有し、インピーダンス検出部の出力信号に基づいて制御部が高周波電力の通電/遮断を制御する。
 また、この第2の先行例は、高周波電力による焼灼過程に伴う生体組織の超音波インピーダンスに応じて、高周波電力の通電/遮断を制御する内容を開示している。
 また、特開2006-288431号公報の第3の先行例の超音波手術装置においては、生体組織の電気的インピーダンスを検出するインピーダンス検出手段を有し、検出された電気的インピーダンスに応じて振幅制御手段を制御する内容が開示されている。
 また、最近においては、処置具の先端の処置部を介して超音波と高周波電力とを同時に生体組織に供給することにより、凝固切開を行う場合がある。
 このように、超音波と高周波電力とを同時に利用する場合、凝固切開等の処置をより円滑に行えるように制御する両エネルギ量等を適切に制御する手術システムが望まれる。
 本発明は、上述した点に鑑みてなされたもので、超音波と高周波電力とを同時に利用する場合、円滑な処置を行うのに適した手術システム及び制御方法を提供することを目的とする。
 本発明の手術システムは、
 処置対象の生体組織を処置するための処置部と、
 前記処置部に対して、超音波を与える超音波発生部と、
 前記超音波発生部に対して、超音波を発生させる超音波駆動電力を供給する超音波駆動電力供給部と、
 前記処置部に対して、高周波電力を供給する高周波電力供給部と、
 前記処置部を介して超音波が印加される前記生体組織の超音波インピーダンスを検出する超音波インピーダンス検出部と、
 前記処置部を介して高周波電力が供給される前記生体組織の高周波インピーダンスを検出する高周波インピーダンス検出部と、
 前記超音波インピーダンス検出部により検出された超音波インピーダンス値に応じて前記超音波振動発生部により発生する超音波エネルギ量を制御する第1の制御部と、
 前記高周波インピーダンス検出部により検出された高周波インピーダンス値に応じて前記高周波電力量又は高周波電力波形のクレストファクタ値を制御する第2の制御部と、
 を備えることを特徴とする。
 本発明の制御方法は、処置対象の生体組織を処置するための処置部に対して、超音波を与える超音波発生部と、
 前記超音波発生部に対して、超音波を発生させる超音波駆動電力を供給する超音波駆動電力供給部と、
 前記処置部に対して、高周波電力を供給する高周波電力供給部と、
 前記処置部を介して超音波印加される前記生体組織の超音波インピーダンスを検出する超音波インピーダンス検出部と、
 前記処置部を介して高周波電力が供給される前記生体組織の高周波インピーダンスを検出する高周波インピーダンス検出部と、
 を備えた手術システムを制御する制御方法であって、
 前記超音波インピーダンス検出部により検出された超音波インピーダンス値に応じて前記超音波振動発生部により発生する超音波エネルギ量を制御する第1の制御ステップと、
 前記高周波インピーダンス検出部により検出された高周波インピーダンス値に応じて前記高周波電力量又は高周波電力波形のクレストファクタ値を制御する第2の制御ステップと、
 を備えることを特徴とする。
図1は本発明の第1の実施形態の超音波&高周波手術システムの全体構成を示す斜視図。 図2はハンドピースの内部構成を示す断面図。 図3は超音波&高周波手術システムの詳細な構成を示すブロック図。 図4は第1の実施形態に係る手術制御方法の処理手順を示すフローチャート。 図5は第1の実施形態に係る他の手術制御方法の処理手順を示すフローチャート。 図6は図4における機能的な処理手順の概要を示すフローチャート。 図7Aは凝固切開開始時における処置の様子を示す図。 図7Bは図7Aの凝固切開開始時から処置が進行した後の様子を示す図。 図8Aは高周波出力値の時間的な推移の1例を示す図。 図8Bは超音波出力の振幅の時間的な推移の1例を示す図。 図9は本発明の第2の実施形態の超音波&高周波手術システムの詳細な構成を示すブロック図。 図10Aは、混合波を示す図。 図10Bは、バースト波を示す図。 図11は第2の実施形態に係る手術制御方法の処理手順を示すフローチャート。 図12は図11における機能的な処理手順の概要を示すフローチャート。 図13は高周波出力のクレストファクタの時間的な推移の1例を示す図。 図14は第2の実施形態に係る他の手術制御方法の処理手順の一部を示すフローチャート。
 以下、図面を参照して本発明の実施形態を説明する。
(第1の実施形態)
 図1から図8を参照して本発明の第1の実施形態を説明する。
 図1は本発明の第1の実施形態の超音波&高周波手術システム1の全体構成を示す。図1に示すようにこの超音波&高周波手術システム1は、処置対象の生体組織に対して、超音波振動エネルギと高周波電気エネルギを供給することにより凝固切開等の処置を行う外科処置具としてのハンドピース2を有する。
 この超音波&高周波手術システム1は、ハンドピース2に内蔵された超音波トランスジューサ(又は超音波振動子)23に対して超音波(振動)を発生させる超音波駆動電力を供給(出力)する超音波駆動電力供給装置(超音波ジェネレータと略記)3と、ハンドピース2に高周波電力(高周波電流)を供給する高周波電力供給装置(高周波ジェネレータと略記)4を有する。
 この超音波&高周波手術システム1は、高周波電力の供給ON/OFFの指示操作を行うフットスイッチ6と、高周波電力のリターン回路を形成するための対極板5とを有する。
 ハンドピース2は、術者が把持する把持部7と、この把持部7から前方に突出するプローブ8を有し、このプローブ8の先端には、凝固切開等の処置を行うための処置部9が設けられている。 
 把持部7には、処置部9で処置する際の選択を行うハンドスイッチユニット(ハンドスイッチと略記)11が設けられている。このハンドスイッチ11として、切開選択スイッチ12a、凝固選択スイッチ12bと、さらに超音波と高周波とを同時に出力する同時出力スイッチ12cとが設けられている。
 ハンドピース2の把持部7の後端側から信号ケーブル13が延出されており、この信号ケーブル13は、その端部のコネクタ14が超音波ジェネレータ3のコネクタ受けに着脱自在に接続される。
 また、超音波ジェネレータ3と高周波ジェネレータ4は、通信ケーブル15により接続され、信号の送受をすることができる。また、超音波ジェネレータ3と高周波ジェネレータ4は、高周波ケーブル16により接続されている。
 そして、高周波ジェネレータ4による発生した高周波をこの高周波ケーブル16を介して超音波ジェネレータ3側に送り、コネクタ14及び信号ケーブル13を介してハンドピース2に高周波電力(高周波電流)を供給する。
 この高周波ジェネレータ4には、対極板5に接続された対極板ケーブル17の端部が着脱自在に接続される。この対極板5は、患者の臀部などに広い面積で接触するように配置される。
 また、超音波ジェネレータ3及び高周波ジェネレータ4は、例えばその前面に各種の操作や表示を行うフロントパネル18,19が設けられている。
 なお、フットスイッチ6は、フットスイッチケーブル20により高周波ジェネレータ4と接続される。
 図2は、ハンドピース2の内部の構造を示す。ハンドピース2は、把持部7を形成する略円筒形状の主ケース21aを有し、その前端にはシース22が連結されている。また、主ケース21a内には、その後端部21bから信号ケーブル13の末端側が引き込まれ、主ケース21a内には、超音波ジェネレータ3から出力される超音波駆動信号を伝達する導線13a、13bと接続される超音波発生手段としての超音波トランスジューサ23が配置されている。
 この超音波トランスジューサ23は、複数のリング形状の電歪素子24が積層構造にされ、積層構造にされた複数の電歪素子24は、ボルト25とナット26により締結して固定されている。
 そして、各電歪素子24の各面に設けた電極に、導線13a、13bを介して、超音波駆動信号が印加されることにより、複数の電歪素子24は、超音波振動する。
 この超音波振動(単に超音波ともいう)は、ボルト25の前端のフランジ部25aに形成されたホーン27により拡大され、さらにプローブ8を経てその先端の処置部9に伝達される。
 つまり、処置部9には、超音波ジェネレータ3からの超音波駆動信号が印加される超音波トランスジューサ23を介して超音波振動が与えられる。換言すると、超音波ジェネレータ3及び超音波トランスジューサ23は、処置部9に超音波(振動)を与える超音波供給部又は超音波発生部を形成する。
 術者は、超音波振動する処置部9を、処置対象部分に当てることにより、その際の超音波振動による摩擦熱により、処置対象部分に対して凝固切開等の処置を行うことができる。
 なお、複数の電歪素子24の両端には、絶縁板28が配置されている。
 金属製のナット26は、信号ケーブル13内の高周波出力用の導線13cが接続される導体部を形成する。そして、このナット26には高周波出力信号が印加されると、その信号は、金属製のボルト25,金属製のプローブ8を経てその先端の処置部9に伝達される。
 この場合、術者は、処置部9を処置対象部分に接触させることにより、その接触した部分に、高周波電気エネルギ(高周波電力)を形成する高周波電流が高密度で流れ、焼灼処置を行うことができる。そして、その高周波電流は、リターン路となる対極板5及び対極板ケーブル17を経て高周波ジェネレータ4に戻る。
 なお、図2に示すようにプローブ8は、図示しない絶縁パイプで覆われた金属製のシース22内に挿通されている。
 また、信号ケーブル13内に挿通されたハンドスイッチケーブル29内に挿通された複数の信号線は、切開選択スイッチ12a、凝固選択スイッチ12b、同時出力スイッチ12cに接続される。なお、切開選択スイッチ12a、凝固選択スイッチ12b、同時出力スイッチ12cは、ゴムカバー部分で覆われている。そして、ゴムカバー部分の上から押圧することにより、各スイッチをON/OFFすることができる。
 図3は図1の超音波ジェネレータ3及び高周波ジェネレータ4の詳細な構成を示す。超音波ジェネレータ3は、例えば正弦波信号を発生する波形生成回路31を内蔵する。
 波形生成回路31から出力される正弦波信号は、乗算器32により定電流制御され、さらにアンプ33で増幅された後、出力トランス34の1次巻線側に印加される。そして、この出力トランス34の2次巻線側の出力端子から超音波駆動信号として、ハンドピース2内の超音波トランスジューサ23に印加される。
 超音波駆動信号の振幅、換言すると超音波トランスジューサ23の超音波出力エネルギ量は、アンプ33に供給される電源回路35からの電流値、電圧値に応じて調整される。つまり超音波出力は、後述する定電流制御により適切な電流、電圧になるように中央処理装置(CPU)36により制御される。
 なお、超音波ジェネレータ3から出力される超音波駆動信号は、超音波トランスジューサ23により超音波に変換されるため、超音波ジェネレータ3から出力される超音波駆動信号のエネルギ量と超音波トランスジューサ23による超音波(振動)エネルギ量とは比例し、本実施形態においては同じ意味で用いる。
 CPU36には、フロントパネル18の設定部18aによる超音波出力の設定値が入力される。
 また、フロントパネル18には、CPU36から出力される超音波出力等の情報を表示する表示部18bが設けられている。
 また、アンプ33で増幅された正弦波信号は、検出部37を構成する電圧検出回路37aと電流検出回路37bとに入力され、それぞれ電圧と電流が検出(測定)される。そして、検出された電圧、電流はA/D変換器38a、38bによりデジタル値に変換されてCPU36の演算部36aに入力される。また、アンプ33で増幅された正弦波信号は、PLL回路(Phase Locked Loop 回路)39に入力される。
 このPLL回路39は、超音波トランスジューサ23を、その超音波トランスジューサ23に対応した共振周波数の超音波駆動信号で駆動させるようにPLL制御する。また、その場合の超音波駆動信号における電圧と電流との位相が同相となるように制御する。このPLL回路39の動作は、CPU36により制御される。
 CPU36は、A/D変換器38a、38bを介して入力された電圧及び電流を用いて、超音波出力値を算出する演算を行う演算部36aの機能を持つ。
 また、CPU36は、演算部36aにより算出された超音波出力値が、設定部18aによる設定値に一致するか否かの判定を行う判定部36bの機能を有する。そして、その判定情報は、CPU36による電流値制御部36cに送られ、この電流値制御部36cは、判定情報により、超音波出力値が設定値に一致するように定電流制御する。
 また、この電流値制御部36cには、例えばメモリ41が接続されており、このメモリ41には、電流値制御部36cによる直前の制御に用いた制御値等の情報が格納されており、電流値制御部36cは、このメモリ41に格納されている直前の制御値等の情報を参照して制御する。
 例えば、電流値制御部36cは、判定部36bから検出された超音波出力値が設定値よりも小さいとの判定情報が入力されると、その直前の制御値を参照して、その制御値よりも大きくするように電流制御する。
 この電流値制御部36cは、この電流制御を行う場合、超音波出力値と設定値との比較結果の差を補うように乗算器32の乗算値を制御する。
 なお、演算部36aは、超音波トランスジューサ23を駆動した際の負荷の状態(具体的には処置部9から超音波振動エネルギを切除の処置対象の生体組織に印加している状態)を含めた機械的インピーダンス、つまり超音波の負荷インピーダンス(超音波インピーダンスとも言う)を検出する機能も持つ。
 また、電流値制御部36cは、処置部9における超音波の振幅(又はエネルギ量)を所定の範囲(つまり切開凝固の処置に適した範囲)を保持するように振幅制御も行う。つまり、電流値制御部36cは、振幅制御36dの機能も持つ。
 実際に処置を行う処置部9の位置における超音波振動の振幅を所定の範囲内に保持する制御を行うことにより、切開凝固の処置の際に、処置部9への生体組織の張り付きを防止して円滑に行うことができる。
 なお、本実施形態においては超音波振動の周波数は、47kHzであり、この場合には後述するように50umを下限として、設定値以下の振幅となるようにCPU36(の電流値制御部36c)は制御する。
 また、CPU36には、演算部36aにより検出された超音波の負荷インピーダンスが所定範囲内にあるか否かのインピーダンス判定部36e(図3ではZ2判定と略記)の機能を有する。
 そして、このインピーダンス判定部36eによる判定結果により、電流値制御部36cは、超音波の振幅(又は電流値)を制御する。
 図3にも示すように切開選択スイッチ12a、凝固選択スイッチ12b及び同時出力スイッチ12cのスイッチ操作による指示操作信号は、CPU36に入力される。そして、CPU36は、指示操作信号に対応した制御を行う。
 例えば、術者が切開選択スイッチ12aをONにすると、CPU36はその指示操作信号を通信ケーブル15を経て高周波ジェネレータ4のCPU56に送信し、このCPU56を介して切開用の連続波としての正弦波の高周波出力信号を出力させる。
 術者が凝固選択スイッチ12bをONにすると、CPU36はその指示操作信号を通信ケーブル15を経て高周波ジェネレータ4のCPU56に送信し、このCPU56を介して凝固用の間欠波形の凝固波、つまりバースト波の高周波出力信号を出力させる。
 術者が同時出力スイッチ12cをONすると、CPU36は電源回路35を制御して超音波駆動信号をONにすると共に、通信ケーブル15を経て高周波ジェネレータ4のCPU56を介して高周波出力をONにする。
 一方、高周波ジェネレータ4は、正弦波及びバースト波を生成するための波形生成回路51を内蔵し、この波形生成回路51から出力される信号は、共振回路52を経てアンプ53に入力される。
 アンプ53により増幅された信号は、出力トランス54の1次巻線側に印加され、2次巻線側に焼灼用の高周波出力信号が発生する。
 この出力トランス54の2次巻線の一端は、ハンドピース2における導体部を形成するホーン27等に導通する。また、2次巻線の他端は、患者40に広い面積で接触する対極板5と導通する。
 また、共振回路52は、電圧可変の電源回路55から電源電圧が供給され、波形生成回路51と電源回路55は、CPU56により制御される。
 術者は、設定部19aによる設定により、高周波の電力設定値等を設定することができる。
 CPU56の制御部56aは、設定部19aからの電力設定値等に対応して、波形生成回路51と電源回路55を制御する。
 また、CPU56の制御部56aは、術者により切開選択スイッチ12aがONされた場合には、波形生成回路51から、切開波としての正弦波を出力させる。
 この制御部56aは、凝固選択スイッチ12bがONされた場合には、制御部56aは、波形生成回路51から凝固波としてのバースト波を出力させる。
 また、設定部19aにより、混合波を出力する出力モードの設定が行われた場合には、制御部56aは正弦波とバースト波を混合(ブレンド)した混合波(ブレンド波)を出力させる。
 なお、CPU56の制御部56a等による制御情報等は、フロントパネル19の表示部19bで表示される。
 上記アンプ53で増幅された信号は、検出部57を構成するで電圧検出回路57aと電流検出回路57bとに入力される。
 電圧検出回路57aと電流検出回路57bは、アンプ53で増幅された信号の電圧及び電流を検出(測定)する。検出された電圧と電流は、A/D変換器58a、58bによりデジタルの電圧及び電流に変換され、CPU56に入力される。
 CPU56は、入力された電圧及び電流を用いて演算部56bにおいて生体組織の高周波インピーダンス(組織インピーダンスとも言う)を検出(算出)する。そして、演算部56bは、検出した組織インピーダンス値を、インピーダンス判定部(図3ではZ1判定と略記)56cに出力する。
 インピーダンス判定部56cは、入力されたインピーダンス値を閾値のインピーダンスと比較することにより、所定のインピーダンス範囲内にあるか否かの判定を行う。
 そして、インピーダンス判定部56cの判定結果に応じて制御部56aは、高周波出力の調整を行う。
 例えば下限側閾値と上限側閾値との間のインピーダンス値の場合には、制御部56aは、そのままの出力を維持し、下限側閾値よりもさらに小さいインピーダンス値の場合には、高周波出力を減少するように高周波出力の調整を行う。また、上限側閾値よりもさらに大きいインピーダンス値の場合には、制御部56aは、高周波出力を増大するように高周波出力の調整を行う。
 また、この制御部56aは、インピーダンス判定部56cの判定結果に応じて、高周波出力の調整を行った後、さらに調整された高周波出力が設定値以下となるように制御する。
 具体的には、後述するように設定値の1/2の値から設定値の間の高周波出力値の場合には、そのままの出力値を維持し、設定値の1/2の値よりも小さいと設定値の1/2の値に戻すように出力の調整を行う。また、設定値よりも大きい高周波出力値の場合には、設定値まで下げるように出力の調整を行う。
 上記のような制御を行うことにより、凝固切開の処置を開始した時から、凝固切開の処置が進行した時まで、処置に円滑に行うのに適した高周波電力量となるようにすることができる(後述)。
 また、CPU56には、フットスイッチ6からのON/OFF信号も入力される。そして、フットスイッチ6により同時出力の指示操作が行われた場合には、CPU36へ超音波駆動信号を出力させる指示を行い、超音波と高周波とが同時に出力される。
 また、本実施形態の変形例においては、超音波と高周波の出力値を、初期状態の設定値(つまり初期設定値)から設定された時間後に、低下ないしは制限する制御を行う機能を有する。
 このため、例えば高周波ジェネレータ4には、タイマ59が設けられており、設定部19aにより設定時間が設定されると、CPU56はタイマ59によりその設定時間後に起動するようにセットする。
 そして、CPU56は、設定時間後には、初期設定時の高周波出力の設定値を強制的に下げると共に、超音波ジェネレータ3のCPU36に通知し、CPU36は初期設定時の超音波出力の設定値を強制的に下げる。
 このような構成の本実施形態においては、超音波ジェネレータ3の制御手段としてのCPU36と、高周波ジェネレータ4の制御手段としてのCPU56とは、通信ケーブル15を介して同時に超音波と高周波の出力開始と出力停止を行うように制御する。
 また、超音波と高周波とが同時に出力された状態において、CPU36は、超音波ジェネレータ3側で検出された負荷インピーダンス(超音波インピーダンス)等の検出結果に応じて超音波出力を電流値で制御する。
 また、超音波と高周波とが同時に出力された状態において、CPU56は、高周波ジェネレータ4側で検出された組織インピーダンス(高周波インピーダンス)の検出結果に応じて高周波出力を制御する。
 このような構成における超音波&高周波手術システム1における患者40の臓器等、処置対象の生体組織61を切除する場合の手術システム1の手術制御方法の手順を図4を参照して説明する。
 術者は、図1に示すようにハンドピース2を超音波ジェネレータ3と高周波ジェネレータ4に接続する。
 そして、超音波ジェネレータ3と高周波ジェネレータ4の電源を投入する。そして、ステップS1に示すように出力設定を行う。例えば、術者は、超音波と高周波の出力設定を行う。また、高周波の出力波形モードとして、術者は、例えば切開モードを選択したとする。
 図3にその概略を示すように術者は、ハンドピース2の先端の処置部9を、切除の処置対象の生体組織61に対して処置する位置にセットする。そして術者は、図4におけるステップS2に示すようにハンドスイッチ11の同時出力スイッチ12cをONにする。
 同時出力スイッチ12cがONになると、その指示操作信号は超音波ジェネレータ3のCPU36と、このCPU36からさらに高周波ジェネレータ4のCPU56に伝達される。 
 そして、ステップS3に示すようにCPU56は、高周波出力を開始させる。また、同時に超音波ジェネレータ3のCPU36は、ステップS13に示すように超音波出力を開始させる。
 ステップS3に示すように高周波出力の開始により、処置部9側に高周波が供給される。そして、処置部9が接触する処置対象の生体組織61側に高密度の高周波電流が流れ、その際、生体組織61が高周波焼灼されながら切開される。なお、生体組織61側に流れた高周波電流は、対極板5を介して高周波ジェネレータ4に戻る。
 次のステップS4においてCPU56の演算部56bは、電圧検出回路57aにより測定した電圧と電流検出回路57bにより測定した電流のデジタル値を取り込み、電圧値を電流値で除算して組織インピーダンスZ1の検出(測定)の動作を開始する。
 検出された組織インピーダンスZ1は、インピーダンス判定部56cに入力され、インピーダンス判定部56cは、所定のインピーダンス範囲内にあるか否かの判定を行う(ステップS5)。 具体的には、組織インピーダンスZ1が300Ωと500Ωとの間のインピーダンス範囲内か否かの判定を行う(300Ω<Z1<500Ω)。なお、300Ωは下限側閾値であり、500Ωは上限側閾値である。
 インピーダンス判定部56cにより、検出された組織インピーダンス値Z1が500Ω以上と判定された場合にはステップS6に示すように制御部56aは、高周波出力を所定量、例えば5W、上げる制御を行った後、ステップS5に戻る。
 また、インピーダンス判定部56cにより、検出された組織インピーダンスZ1が300Ω以下と判定された場合にはステップS7に示すように制御部56aは、高周波出力を所定量、例えば5W、下げる制御を行った後、ステップS5に戻る。
 インピーダンス判定部56cにより、検出された組織インピーダンスZ1が300Ωと500Ωとの間と判定された場合には、その高周波出力値を継続して、ステップS8に進む。
 このステップS8において演算部56bは、電圧検出回路57a及び電流検出回路57bとにより測定された電圧値と電流値の積の電力の出力値の検出(測定)を開始する。
 そして、検出された出力値は制御部56aに入力され、ステップS9において制御部56aは、検出された出力値が設定値/2と設定値との間の範囲にあるか否かの判定を行う。
 検出された出力値が設定値以上と判定した場合には制御部56aは、出力値を設定値まで下げる制御を行い(ステップS10)、ステップS9に戻る。
 検出された出力値が設定値/2以下と判定した場合には制御部56aは、出力値を設定値/2まで上げる制御を行い(ステップS11)、ステップS9に戻る。
 また、検出された出力値が設定値/2と設定値との間の範囲にあると判定した場合には、ステップS12に示すように制御部56aは、その出力値を継続する。そして、ステップS23に進む。
 一方、ステップS13に示すように超音波出力が開始すると、処置部9に超音波振動エネルギが供給され、処置対象の生体組織61は超音波振動による摩擦熱で加熱され、血液が凝固されながら生体組織が切開される。
 そして次のステップS14においてCPU36の演算部36aは、電圧検出回路37aにより測定した電圧と電流検出回路37bにより測定した電流のデジタル値を取り込み、電圧値を電流値で除算して組織の機械的インピーダンス、又は超音波の負荷インピーダンス(以下、負荷インピーダンスZ2と記す)の検出(測定)を開始する。
 検出された負荷インピーダンスZ2は、インピーダンス判定部36eに入力され、インピーダンス判定部36eは、ステップS14に示す所定のインピーダンス範囲内にあるか否かの判定を行う。具体的には、負荷インピーダンスZ2が200Ωと800Ωとの間のインピーダンスか否かの判定を行う(200Ω<Z2<800Ω)。なお、200Ωは下限側閾値であり、800Ωは上限側閾値である。
 インピーダンス判定部36eにより、検出された負荷インピーダンスZ2が800Ω以上と判定された場合にはステップS16に示すように電流値制御部36cは、振幅(電流値)を所定量、具体的には10%程度、上げる制御を行った後、ステップS15に戻る。 また、インピーダンス判定部36eにより、検出された負荷インピーダンスZ2が200Ω以下と判定された場合にはステップS17に示すように電流値制御部36cは、振幅(電流値)を所定量、具体的には10%程度、下げる制御を行った後、ステップS15に戻る。
 負荷インピーダンス判定部36eにより、検出された負荷インピーダンスZ2が200Ωと800Ωとの間と判定された場合には、その超音波出力値を継続して、ステップS18に進む。
 このステップS18において演算部36aは、電流検出回路37bとにより測定された電流値の検出(測定)を開始する。
 そして、検出された電流値は電流値制御部36c(の電流値による振幅制御部36d)に入力され、ステップS19において電流値制御部36cは、検出された電流値が50μm相当の電流値と設定(電流)値との間の範囲にあるか否かの判定を行う。
 検出された電流値が設定値以上と判定した場合には電流値制御部36cは、電流値を設定値まで下げる制御を行い、ステップS19に戻る。
 検出された電流値が50μm相当以下の電流値と判定した場合には電流値制御部36dは、50μm相当の電流値まで上げる制御を行い、ステップS19に戻る。
 また、検出された電流値が50μm相当の電流値と設定値との間の範囲にあると判定した場合には、ステップS22に示すように電流値制御部36cは、その電流値、つまりその出力値を継続するように制御しその後、ステップS23に進む。
 ステップS18~S22の処理により、処置部9の振幅が所定の範囲の振幅値に維持される。この制御を行うことにより、処置部9に生体組織が張り付くことを低減するように手術システム1の動作を制御することができる。
 ステップS23においてCPU56は、ハンドスイッチ11の同時出力スイッチ12cがOFFにされたか否かの判定を行い、OFFにされていない場合には、ステップS3及びS13のステップに戻り、上述した動作を繰り返す。一方、ハンドスイッチ11の同時出力スイッチ12cがOFFにされた場合には、CPU56及び36は、高周波と超音波の出力停止をする。そして、図4の処理を終了する。
 図4に示した手術制御方法の代わりに図5に示す変形例の手術制御方法を採用しても良い。図5に示す手術制御方法は、図4の手術制御方法において、ステップS2と、ステップS3及びS13との間のステップS26においてCPU56及び36は、設定時間以後、高周波と超音波の出力再設定の処理を行う。
 具体的には、CPU56及び36は、タイマ59により予め設定された設定時間が経過すると、ステップS1で設定された高周波と超音波の出力の設定値を、例えば標準値の上限値となる設定値に強制的に下げる再設定を行う。その他の処理は図4の場合と同様である。
 上述した図4による機能的な処理の概要は図6のようになる。ステップS31に示すように凝固切開(切除)の開始時は、術者が凝固切開の処置を行う操作の場合に、処置に必要とされる力量が大きい。つまり、図7Aに示すように凝固切開の開始時は、処置対象の生体組織61の組織インピーダンスZ1,負荷インピーダンスZ2が高く、術者がハンドピース2により凝固切開の処置する場合、その処置に必要な力量が大きい。
 このため、ステップS31に示すように高周波と超音波を(初期の)設定値で出力する。換言すると、(大きな)設定値で高周波と超音波の処置を行うように制御する。この場合には、凝固切開の機能を大きくできるので、術者は凝固切開の開始時に凝固切開を円滑に行うことができる。つまり、術者が凝固切開を円滑に行うことができるように手術システム1を適切に制御する。
 その後、図7Bに示すように凝固切開の処置が進行すると、処置対象の生体組織61の組織インピーダンスZ1,負荷インピーダンスZ2が低下する。そのため、術者がハンドピース2により凝固切開する場合の力量が軽くなる。
 つまり、ステップS32のように凝固切開が進行すると、力量が軽くなる。そのため、ステップS31の場合の設定値のままでは、高周波と超音波の生体組織への投与エネルギ量が過剰になる(可能性がある)。
 投与エネルギ量が過剰になることに対応するように、ステップS33に示すように高周波ジェネレータ4のCPU56は、組織インピーダンスZ1の変化を検出し、かつ超音波ジェネレータ3のCPU36は、負荷インピーダンスZ2の変化を検出する。
 この場合、組織インピーダンスZ1、負荷インピーダンスZ2は、開始時に比較して低下する。
 そして、ステップS33の検出結果に基づいて、ステップS34に示すようにCPU56は、高周波出力値の制御し、またCPU36は、超音波の振幅(電流値)を制御する。具体的には、組織インピーダンスZ1が低下するため、CPU56は高周波出力値を下げるように制御し、また負荷インピーダンスZ2が低下するためCPU36は超音波の振幅(電流値)を下げるように制御する。
 このようにして、ステップS35に示すようにCPU36及び56は、生体組織に投与される高周波及び超音波エネルギの最適化を行うように制御する。そして、術者は、安定した力量で張り付きを防止して凝固切開を継続する。
 このような処置を行うように制御することにより、高周波ジェネレータ4から高周波出力を開始後の電力(出力)の時間的な推移の概要は、図8Aのようになる。
 図8Aに示すように出力開始時には、出力開始時に設定された電力値(設定値)Woが出力されて処置が行われ、凝固切開が進むと組織インピーダンスZ1が低下し、その低下に応じて電力値が下げられる。そして、低下された電力値Wad(通常は、設定値Woの90%~50%)で、例えばで安定した処置が行われる。
 なお、この低下された電力値Wadに関して、術者による初期の設定値が、標準的な初期の設定値Woよりも大きく逸脱して設定される場合には、図4のステップS9~S11の制御ループにおける下限値としての設定値/2でも大きすぎる可能性がある。
 この場合には、図5の出力再設定のステップS26により、初期の設定値を標準的な設定値Woに近い値に調整して、図8Aに示すように特性で電力を推移させることができる。
 また、同様に超音波ジェネレータ3から超音波出力を開始後の振幅(電流値)の時間的な推移の概要は、図8Bのようになる。
 図8Bに示すように出力開始時には、出力開始時に設定された設定値の振幅Aoで処置が行われ、凝固切開が進むと負荷インピーダンスZ2が低下し、その低下に応じて振幅が下げられる。そして、低下された振幅値Aad(処置部9での振動速度で表した場合には、2.1m/s~2.8m/s)で、例えばで安定した処置が行われる。
 上述したように振幅制御36dの機能により超音波の振幅を所定範囲内に制御する場合、超音波の周波数等に応じてこの値は変化する。
 そのため、超音波の振幅と、超音波の周波数との積の振動速度を用いると、処置部9での超音波の振動速度を、上記の範囲に設定すると安定した処置を行うことができる。換言すると、振幅制御の代わりに処置部での振動速度を制御するようにしても良い。
 上記振幅値Aadに維持することにより、術者は、処置部9により生体組織の張り付きの無い安定した凝固切開の処置を行うことができる。
 この場合においても、術者による初期の設定値が、標準的な通常の設定値よりも大きく逸脱して設定された場合には、図4のステップS19~S21の制御ループにおける上限値としての設定値でも大きすぎる可能性がある。この場合には、図5の出力再設定のステップにより、初期の設定値を通常の設定値に近い値に調整して、図8Bに示すように特性で振幅を推移させることができる。
 このように本実施形態によれば、高周波電力及び超音波とを同時に利用することにより、一方のみを利用する場合よりも処置する機能を大きくでき、短時間で処置を行うことができる。
 また、本実施形態によれば、高周波電力及び超音波とを同時に利用した場合、高周波インピーダンスと超音波インピーダンスとをそれぞれ検出して、それぞれ検出されたインピーダンスに応じて高周波電力量(高周波エネルギ量)及び超音波エネルギ量を制御するようにしているので、一方のインピーダンスのみを検出して制御する場合よりも、処置に適した制御ができる。
 また、本実施形態によれば、処置対象の生体組織61を、処置具(手術具)としてのハンドピース2を用いて凝固切開する場合、処置の開始時には設定値で、処置が進行した時には、検出されるインピーダンスに応じて、高周波電力(出力)及び/又は超音波振幅が適正な値に自動的に下げられるようにすることができる。従って、術者は、安定した処置を円滑に行うことができる。
 また、本実施形態の手術システム1における高周波電力及び超音波振幅の制御方法としては、高周波ジェネレータ4と超音波ジェネレータ3とは通信を行うが、それぞれのジェネレータで検出(測定)した検出結果に応じてそれぞれのジェネレータが殆ど独立して制御するため、制御方法を簡単に実現できる。つまり、一方のジェネレータ側で両方のジュネレータの制御を行う場合よりも、制御方法を簡単に実現できる。
 また、両方のジェネレータで通信を行う構成とした場合、一方のジェネレータ側で検出したインピーダンスを他方のジェネレータ側に送って、他方のジェネレータ側で纏めて両方を制御するような制御方法に比較して、上記の制御方法は、より良好な応答性を確保できる。
(第2の実施形態)
 次に図9から図13を参照して本発明の第2の実施形態を説明する。
 本実施形態の超音波&高周波手術システム1Bの外観は、図1に示す超音波&高周波手術システム1と同じであり、また、本実施形態に係るハンドピース2の構造も第1の実施形態と同じである。
 図9は、本発明の第2の実施形態の超音波&高周波手術システム1Bの構成を示す。本実施形態の超音波&高周波手術システム1Bは、図3の超音波&高周波手術システム1における高周波ジェネレータ4において、CPU56内に電圧のピーク値を検出するピーク検出部(図9ではVp検出部)56dを設けると共に、制御部56aの代わりにクレストファクタ(CFと略記)の値を調整する制御を行うCF制御部56eを採用した高周波ジェネレータ4Bを用いている。
 第1の実施形態においては、高周波出力信号として切開波となる正弦波を用いた例で説明したが、本実施形態においては、正弦波と凝固波との中間的な波形及び特性を有する混合波(ブレンド波)と、凝固波としてのバースト波を用いる。
 そして、本実施形態においては、検出された組織インピーダンスZ1に応じて、混合波或いはバースト波のCFの値を処置に適した値となるように調整(制御)する。
 ピーク検出部56dは、検出した電圧のピーク値をCF制御部56eに出力する。CF制御部56eは、入力されたピーク値により、CFの値を調整する場合、その場合のピーク値が設定された範囲内となるようにピーク値の調整(制御)も行う。
 その他の構成は第1の実施形態と同じである。
 図10A及び図10Bは、本実施形態に用いられる混合波とバースト波を示す。図10Aに示す混合波は、図示しない正弦波を減衰波形にしたもので、この混合波は、正弦波と図10Bのバースト波との中間的な波形及び特性を持つ。
 正弦波は、基本周波数の基本波の信号波形が連続したものであるが、混合波とバースト波は、基本周波数の信号波形が複数繰り返された繰り返し周波数の周期(繰り返し周期)が形成されている。
 図10Bに示すようにバースト波は、小数の基本波のみが大きな振幅を有するため、電圧のピーク値又はピーク電圧(Vpで示す)に対してその実効値(Vrmsで示す)は低い値となる。そのため、ピーク値を実効値で除算したCFは、大きな値となる。
 これに対して、図10Aに示す混合波は、基本波が繰り返し周期全体において或る程度の値を持つため、バースト波の場合のピーク値よりも小さいピーク値の場合にも、大きな実効値を持ち、バースト波に比較してCFは小さな値となる。
 次に図11に示す本実施形態の手術制御方法を説明する。図11に示す手術制御方法は、図4の手術制御方法におけるステップS6及びS7と、ステップS10及びS11とをそれぞれ、ステップS46及びS47と、ステップS50及びS51に変更した処理手順となっている。
 図4の場合と同様にステップS1の高周波と超音波の出力設定から開始する。但し、本実施形態においては、高周波の出力モードは、混合波が出力されるように設定されている場合で説明する。ステップS2によるハンドスイッチ11のON操作により、ステップS3に示す高周波出力の開始と、ステップS13の超音波出力が開始する。ステップS3において、混合波モードで高周波出力が開始する。
 そして、ステップS4において組織インピーダンスZ1の検出が開始し、次のステップS5において、検出された組織インピーダンスZ1が300Ωと500Ωとの間の範囲に入っているか否かの判定が行われる。
 検出された組織インピーダンスZ1が500Ω以上と判定された場合には、ステップS46に示すように制御部は、CFを所定量、例えば0.5下げ、その後、ステップS5に戻る。
 一方、検出された組織インピーダンスZ1が300Ω以下と判定された場合には、ステップS47に示すように制御部は、CFを所定量、例えば0.5上げ、その後、ステップS5に戻る。
 検出された組織インピーダンスZ1が300Ωと500Ωとの間の範囲に入っていると判定された場合には、ステップS8の出力値の測定開始の後、ステップS9に進む。
 ステップS9において制御部56aは、検出された出力値が設定値/2と設定値との間の範囲にあるか否かの判定を行う。
 検出された出力値が設定値以上と判定した場合にはステップS50において制御部56aは、CFを所定量上げる制御を行い、ステップS9に戻る。
 検出された出力値が設定値/2以下と判定した場合には制御部56aは、CFをデフォルト値に戻す制御を行い、ステップS9に戻る。
 また、検出された出力値が設定値/2と設定値との間の範囲にあると判定した場合には、ステップS12に示すように制御部56aは、その出力値を継続する。
 その他は図4と同様である。
 次に図11の処理に対する機能的な処理の概要は、図12のようになる。ステップS61に示すように凝固切開(切除)の開始時は、凝固切開の操作を行う場合に必要な力量が大きい。つまり、図7Aに示すように凝固切開の開始時は、処置対象の生体組織61の組織インピーダンスZ1,負荷インピーダンスZ2が高く、凝固切開する場合の力量が大きい。
 このため、ステップS61に示すように高周波と超音波を(初期の)設定値で出力する。換言すると、設定値で高周波と超音波の処置を行うように制御する。
 その後、図7Bに示すように凝固切開が進行すると、処置対象の生体組織61の組織インピーダンスZ1,負荷インピーダンスZ2が低下する。そのため、凝固切開する場合の力量が軽くなる。
 つまり、ステップS62のように凝固切開が進行すると、力量が軽くなる。そのため、ステップS61の場合の設定値のままでは、高周波と超音波の生体組織への投与エネルギ量が過剰な状態になる(可能性がある)。
 ステップS62に対応して、ステップS63に示すように高周波ジェネレータ4のCPU56は、組織インピーダンスZ1の変化を検出し、かつ超音波ジェネレータ3のCPU36は、負荷インピーダンスZ2の変化を検出する。
 そして、ステップS63の検出結果に基づいて、ステップS64に示すようにCPU56は、高周波出力のCFを制御し、またCPU36は、超音波の振幅(電流値)を制御する。
 このようにして、ステップS65に示すように生体組織に投与される高周波及び超音波エネルギの最適化を行う。そして、安定した力量で張り付きを防止して凝固切開を継続する。
 このような処置を行うことにより、高周波ジェネレータ4から高周波出力を開始後のCFの時間的な推移の概要は、図13のようになる。
 図13に示すように出力開始時には、出力開始時に設定されたCFo、例えば2~3、そして実効値は450~700Vの設定値で処置が行われる。つまり、出力開始時には、CFが低い値の切開機能を優先した設定状態で処置が行われる。
 そして、凝固切開が進むと組織インピーダンスZ1が低下し、その低下に応じてCF値が大きくされる。そして、大きくされたCF値CFad(例えばCFadは、3~6、実効値は270~550V)で、安定した処置が行われる。
 なお、図11の手術制御方法において第1の実施形態で説明したのと同様に、ステップS2と、ステップS3及びS13との間に出力再設定を行うステップS26を追加しても良い。
 また、初期設定の際に混合波を出力する設定とした場合には、正弦波の場合よりも電力値は低くなる。換言すると、混合波の場合には、初期設定の場合に、大きすぎる設定値に設定されることは少ない。
 このため、図14に示すように出力再設定を行うステップS26を超音波出力側に追加する構成にしても良い。この場合には、超音波の設定値が標準値よりも大きく設定された場合に、対応できる。
 本実施形態は、第1の実施形態とほぼ同様の効果を有する。また、処置する用途に応じて混合波、バースト波から選択して使用することができる。
 なお、本実施形態と第1の実施形態とを組み合わせたような構成にしても良い。例えば、高周波ジェネレータ4Bが、上述した混合波、バースト波の他に、第1の実施形態における正弦波の高周波出力信号を発生する機能を備えた構成にしても良い。このようにすると、術者は処置に応じて処置機能が異なる高周波出力信号を選択使用できる。
 なお、上述した実施形態等を部分的に組み合わせて構成される実施形態も本発明に属する。
 本出願は、2008年12月31日に米国に出願された出願番号12/347,034を優先権主張の基礎として出願するものであり、上記開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (21)

  1.  処置対象の生体組織を処置するための処置部と、
     前記処置部に対して、超音波を与える超音波発生部と、
     前記超音波発生部に対して、超音波を発生させる超音波駆動電力を供給する超音波駆動電力供給部と、
     前記処置部に対して、高周波電力を供給する高周波電力供給部と、
     前記処置部を介して超音波が印加される前記生体組織の超音波インピーダンスを検出する超音波インピーダンス検出部と、
     前記処置部を介して高周波電力が供給される前記生体組織の高周波インピーダンスを検出する高周波インピーダンス検出部と、
     前記超音波インピーダンス検出部により検出された超音波インピーダンス値に応じて前記超音波振動発生部により発生する超音波エネルギ量を制御する第1の制御部と、
     前記高周波インピーダンス検出部により検出された高周波インピーダンス値に応じて前記高周波電力量又は高周波電力波形のクレストファクタ値を制御する第2の制御部と、
     を備えることを特徴とする手術システム。
  2.  さらに前記処置部における前記超音波の振動速度を所定の範囲内に制御する振動速度制御部を有することを特徴とする請求項1に記載の手術システム。
  3.  さらに前記超音波インピーダンス検出部により検出された前記超音波インピーダンス値が下限側閾値と上限側閾値との間の範囲内にあるか否かを判定する第1判定部を有することを特徴とする請求項1に記載の手術システム。
  4.  さらに前記高周波インピーダンス検出部により検出された前記高周波インピーダンス値が下限側閾値と上限側閾値との間の範囲内にあるか否かを判定する第2判定部を有することを特徴とする請求項1に記載の手術システム。
  5.  さらに前記超音波インピーダンス検出部により検出された前記超音波インピーダンス値が下限側閾値より小さいか否かを判定する第3判定部を有し、前記第3判定部により前記超音波インピーダンス値が下限側閾値より小さいと判定された場合、前記第1の制御部は、前記超音波エネルギ量を下げる制御を行うことを特徴とする請求項1に記載の手術システム。
  6.  さらに前記超音波インピーダンス検出部により検出された前記超音波インピーダンス値が上限側閾値より大きいか否かを判定する第4判定部を有し、前記第4判定部により前記超音波インピーダンス値が上限側閾値より大きいと判定された場合、前記第1の制御部は、前記超音波エネルギ量を上げる制御を行うことを特徴とする請求項1に記載の手術システム。
  7.  さらに前記高周波インピーダンス検出部により検出された前記高周波インピーダンス値が下限側閾値より小さいか否かを判定する第5判定部を有し、前記第5判定部により前記高周波インピーダンス値が下限側閾値より小さいと判定された場合、前記第2の制御部は、前記高周波電力量を下げる制御を行うことを特徴とする請求項1に記載の手術システム。
  8.  さらに前記高周波インピーダンス検出部により検出された前記高周波インピーダンス値が下限側閾値より小さいか否かを判定する第6判定部を有し、前記第6判定部により前記高周波インピーダンス値が下限側閾値より小さいと判定された場合、前記第2の制御部は、前記クレストファクタ値を上げる制御を行うことを特徴とする請求項1に記載の手術システム。
  9.  さらに前記高周波インピーダンス検出部により検出された前記高周波インピーダンス値が上限側閾値より大きいか否かを判定する第7判定部を有し、前記第7判定部により前記高周波インピーダンス値が上限側閾値より大きいと判定された場合、前記第2の制御部は、前記高周波電力量を上げる制御を行うことを特徴とする請求項1に記載の手術システム。
  10.  さらに前記高周波インピーダンス検出部により検出された前記高周波インピーダンス値が上限側閾値より大きいか否かを判定する第8判定部を有し、前記第8判定部により前記高周波インピーダンス値が上限側閾値より大きいと判定された場合、前記第2の制御部は、前記クレストファクタ値を下げる制御を行うことを特徴とする請求項1に記載の手術システム。
  11.  前記超音波インピーダンス検出部により検出された前記超音波インピーダンス値が下限側閾値と上限側閾値との間の範囲内にあると判定された場合、さらに前記超音波のエネルギ量が所定の範囲内か否かを判定し、その判定結果に応じて前記超音波エネルギ量を制御することを特徴とする請求項3に記載の手術システム。
  12.  前記高周波インピーダンス検出部により検出された前記高周波インピーダンス値が下限側閾値と上限側閾値との間の範囲内にあると判定された場合、さらに前記高周波電力量が所定の範囲内か否かを判定し、その判定結果に応じて前記高周波電力量を制御することを特徴とする請求項4に記載の手術システム。
  13.  さらに前記生体組織に前記処置部を介して超音波を与えた開始時から設定時間後に、前記超音波発生部により前記生体組織に与える前記超音波エネルギ量を前記開始時よりも低く設定する設定部を有することを特徴とする請求項1に記載の手術システム。
  14.  さらに前記生体組織に前記処置部を介して高周波電力の供給開始時から設定時間後に、前記供給開始時の高周波電力量よりも低い高周波電力量に設定する高周波電力設定部を有することを特徴とする請求項1に記載の手術システム。
  15.  前記超音波駆動電力供給部と前記高周波電力供給部とは、スイッチのON/OFF操作により、超音波駆動電力供給のON/OFFと高周波電力供給のON/OFFを同時に行うことを特徴とする請求項1に記載の手術システム。
  16.  前記振動速度制御部は、前記振動速度を2.1-2.8m/sとなる所定の範囲内に制御することを特徴とする請求項2に記載の手術システム。
  17.  前記高周波インピーダンス検出部により検出された高周波インピーダンス値が下限側閾値と上限側閾値との間の範囲内にあると判定された場合、前記第2の制御部は、さらに前記高周波電力量を初期設定時の50-90%の範囲を維持するように制御することを特徴とする請求項4に記載の手術システム。
  18.  処置対象の生体組織を処置するための処置部に対して、超音波を与える超音波発生部と、
     前記超音波発生部に対して、超音波を発生させる超音波駆動電力を供給する超音波駆動電力供給部と、
     前記処置部に対して、高周波電力を供給する高周波電力供給部と、
     前記処置部を介して超音波が印加される前記生体組織の超音波インピーダンスを検出する超音波インピーダンス検出部と、
     前記処置部を介して高周波電力が供給される前記生体組織の高周波インピーダンスを検出する高周波インピーダンス検出部と、
     を備えた手術システムを制御する制御方法は、
     前記超音波インピーダンス検出部により検出された超音波インピーダンス値に応じて前記超音波振動発生部により発生する超音波エネルギ量を制御する第1の制御ステップと、
     前記高周波インピーダンス検出部により検出された高周波インピーダンス値に応じて前記高周波電力量又は高周波電力波形のクレストファクタ値を制御する第2の制御ステップと、
     を備えることを特徴とする制御方法。
  19.  さらに前記処置部における前記超音波の振動速度を所定の範囲内に制御する振動速度制御ステップを有することを特徴とする請求項18に記載の制御方法。
  20.  前記超音波インピーダンス検出部により検出された前記超音波インピーダンス値が下限側閾値と上限側閾値との間の範囲内にあると判定された場合、第1の制御ステップは、さらに前記超音波エネルギ量が所定の範囲内か否かを判定し、その判定結果に応じて前記超音波エネルギ量を制御することを特徴とする請求項18に記載の制御方法。
  21.  前記高周波インピーダンス検出部により検出された前記高周波インピーダンス値が下限側閾値と上限側閾値との間の範囲内にあると判定された場合、第2の制御ステップは、さらに前記高周波電力量が所定の範囲内か否かを判定し、その判定結果に応じて前記高周波電力量又は前記クレストファクタ値を制御することを特徴とする請求項18に記載の制御方法。
PCT/JP2009/071031 2008-12-31 2009-12-17 手術システム及び制御方法 WO2010076869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801450332A CN102209503B (zh) 2008-12-31 2009-12-17 手术系统
EP09836208.0A EP2371313B1 (en) 2008-12-31 2009-12-17 System for operation
JP2010516315A JP4649545B2 (ja) 2008-12-31 2009-12-17 手術システム及び制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/347,034 2008-12-31
US12/347,034 US8303579B2 (en) 2008-12-31 2008-12-31 Surgical operation system and surgical operation method

Publications (1)

Publication Number Publication Date
WO2010076869A1 true WO2010076869A1 (ja) 2010-07-08

Family

ID=42285846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071031 WO2010076869A1 (ja) 2008-12-31 2009-12-17 手術システム及び制御方法

Country Status (5)

Country Link
US (1) US8303579B2 (ja)
EP (1) EP2371313B1 (ja)
JP (1) JP4649545B2 (ja)
CN (1) CN102209503B (ja)
WO (1) WO2010076869A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122307A1 (ja) * 2014-02-17 2015-08-20 オリンパス株式会社 把持処置装置
WO2015122306A1 (ja) * 2014-02-17 2015-08-20 オリンパス株式会社 超音波処置装置
JP6257850B1 (ja) * 2016-07-11 2018-01-10 オリンパス株式会社 エネルギー処置システム及び、そのエネルギー処置システムにおけるエネルギー発生装置
WO2018047352A1 (ja) * 2016-09-12 2018-03-15 オリンパス株式会社 エネルギー制御装置及び処置システム
WO2018073915A1 (ja) * 2016-10-19 2018-04-26 オリンパス株式会社 エネルギー処置システム
WO2018105105A1 (ja) * 2016-12-09 2018-06-14 オリンパス株式会社 超音波手術システム及び超音波手術システムの作動方法
JP2018519919A (ja) * 2015-06-30 2018-07-26 エシコン エルエルシーEthicon LLC 組織のパラメータに基づく同時エネルギーモダリティを使用するユーザーが適合可能な技法を有する外科用システム
JP2018527049A (ja) * 2015-06-30 2018-09-20 エシコン エルエルシーEthicon LLC ユーザー適応可能なアルゴリズムを備えた外科用器具
JP2018531071A (ja) * 2015-09-30 2018-10-25 エシコン エルエルシーEthicon LLC ユーザ意図に基づいて外科用器具の動作を選択するための方法及び装置
JPWO2018020553A1 (ja) * 2016-07-25 2019-05-16 オリンパス株式会社 エネルギー制御装置及び処置システム
DE112016007242T5 (de) 2016-10-28 2019-06-06 Olympus Corporation Medizinisches behandlungsgerät und betätigungsverfahren für ein medizinisches behandlungsgerät
WO2019123520A1 (ja) * 2017-12-18 2019-06-27 オリンパス株式会社 制御装置及び処置システム
JP2020505168A (ja) * 2017-01-30 2020-02-20 ソシエテ プール ラ コンセプシオン デ アプリカシオン デ テクニク エレクトロニク−サテレク 設定値を自動で調節する超音波処理装置
JP2020525256A (ja) * 2017-07-04 2020-08-27 ビー.アール.エイチ. メディカル リミテッド 内部器官、傷害、及び痛みの治療
JP2020203216A (ja) * 2020-10-01 2020-12-24 オリンパス株式会社 エネルギー処置システム

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
JP6165780B2 (ja) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ロボット制御式の手術器具
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9788851B2 (en) * 2012-04-18 2017-10-17 Ethicon Llc Surgical instrument with tissue density sensing
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
IN2015DN02432A (ja) 2012-09-28 2015-09-04 Ethicon Endo Surgery Inc
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
DE102013202526A1 (de) * 2013-02-15 2014-08-21 Olympus Winter & Ibe Gmbh Elektrochirurgisches Handinstrument mit erweiterter Funktionalität
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
WO2015122308A1 (ja) * 2014-02-17 2015-08-20 オリンパス株式会社 超音波処置装置
WO2015122309A1 (ja) * 2014-02-17 2015-08-20 オリンパス株式会社 超音波処置装置
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US20170325874A1 (en) * 2014-12-08 2017-11-16 Olympus Winter & Ibe Gmbh A combined ultrasonic and hf surgical system as well as a control device and a method thereof
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
CN106073890A (zh) * 2016-07-11 2016-11-09 北京大学第医院 一种阻抗温度数字化控制式静脉消融仪
WO2018020578A1 (ja) * 2016-07-26 2018-02-01 オリンパス株式会社 エネルギー制御装置及び処置システム
JP6665299B2 (ja) 2016-07-26 2020-03-13 オリンパス株式会社 エネルギー制御装置、処置システム及びエネルギー制御装置の作動方法
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11006997B2 (en) 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
CN106491201A (zh) * 2016-12-06 2017-03-15 北京航空航天大学 一种纵向激励式超声振动辅助高频电刀系统
CN106730429B (zh) * 2016-12-27 2019-02-26 南京师范大学 高强度聚焦超声治疗疗效监测和超声剂量控制系统及方法
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US20210361337A1 (en) * 2020-05-21 2021-11-25 Covidien Lp Independent control of dual rf bipolar electrosurgery
US20210361340A1 (en) * 2020-05-21 2021-11-25 Covidien Lp Independent control of dual rf electrosurgery
US20210361339A1 (en) * 2020-05-21 2021-11-25 Covidien Lp Independent control of dual rf monopolar electrosurgery with shared return electrode
CN112237465A (zh) * 2020-11-04 2021-01-19 安速康医疗(苏州)有限公司 自带超声发生器功能的超声手术刀手柄、超声手术刀系统及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299356A (ja) * 1995-05-11 1996-11-19 Olympus Optical Co Ltd 電気外科手術装置
JPH1094545A (ja) 1996-07-29 1998-04-14 Olympus Optical Co Ltd 電気手術装置
JPH10225462A (ja) 1996-07-29 1998-08-25 Olympus Optical Co Ltd 電気手術装置
JP2006288431A (ja) 2005-04-05 2006-10-26 Olympus Medical Systems Corp 超音波手術装置
JP2007229454A (ja) * 2006-02-16 2007-09-13 Ethicon Endo Surgery Inc エネルギーに基づく治療システムおよび方法
JP2008055151A (ja) * 2006-08-30 2008-03-13 Olympus Medical Systems Corp 手術用処置装置及び、手術用処置装置の駆動方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990452A (en) * 1975-06-13 1976-11-09 Fibra-Sonics, Inc. Medical machine for performing surgery and treating using ultrasonic energy
US4686987A (en) * 1981-06-18 1987-08-18 Cardiac Pacemakers, Inc. Biomedical method and apparatus for controlling the administration of therapy to a patient in response to changes in physiologic demand
US4827927A (en) * 1984-12-26 1989-05-09 Valleylab, Inc. Apparatus for changing the output power level of an electrosurgical generator while remaining in the sterile field of a surgical procedure
US5076276A (en) * 1989-11-01 1991-12-31 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
US5156154A (en) * 1991-03-08 1992-10-20 Telectronics Pacing Systems, Inc. Monitoring the hemodynamic state of a patient from measurements of myocardial contractility using doppler ultrasound techniques
US5190517A (en) * 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
DE19509374C1 (de) * 1995-03-15 1996-07-04 Siemens Ag Verfahren zur adaptiven Optimierung von Ultraschallmeßsignalen
US5733281A (en) 1996-03-19 1998-03-31 American Ablation Co., Inc. Ultrasound and impedance feedback system for use with electrosurgical instruments
US5728130A (en) * 1996-03-22 1998-03-17 Olympus Optical Co., Ltd. Ultrasonic trocar system
US5931836A (en) 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
JP4136118B2 (ja) * 1998-09-30 2008-08-20 オリンパス株式会社 電気手術装置
JP2000271145A (ja) 1999-03-24 2000-10-03 Olympus Optical Co Ltd 治療装置及び治療システム
US6454781B1 (en) * 1999-05-26 2002-09-24 Ethicon Endo-Surgery, Inc. Feedback control in an ultrasonic surgical instrument for improved tissue effects
US6623423B2 (en) * 2000-02-29 2003-09-23 Olympus Optical Co., Ltd. Surgical operation system
US6360611B1 (en) * 2000-04-21 2002-03-26 Kohji Toda Device for ultrasound radiation into a material
JP4582564B2 (ja) * 2001-06-25 2010-11-17 ソニーマニュファクチュアリングシステムズ株式会社 磁束測定装置
DE60329617D1 (de) * 2002-10-18 2009-11-19 Global Monitors Inc Dichte/solut-monitor von multimodalitäten und signalverarbeitungsschema
US6860852B2 (en) * 2002-10-25 2005-03-01 Compex Medical S.A. Ultrasound therapeutic device
JP2004267462A (ja) * 2003-03-07 2004-09-30 Olympus Corp 超音波穿刺システム
JP2007143878A (ja) * 2005-11-28 2007-06-14 Olympus Medical Systems Corp 高周波電源装置及び電気手術装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299356A (ja) * 1995-05-11 1996-11-19 Olympus Optical Co Ltd 電気外科手術装置
JPH1094545A (ja) 1996-07-29 1998-04-14 Olympus Optical Co Ltd 電気手術装置
JPH10225462A (ja) 1996-07-29 1998-08-25 Olympus Optical Co Ltd 電気手術装置
JP2006288431A (ja) 2005-04-05 2006-10-26 Olympus Medical Systems Corp 超音波手術装置
JP2007229454A (ja) * 2006-02-16 2007-09-13 Ethicon Endo Surgery Inc エネルギーに基づく治療システムおよび方法
JP2008055151A (ja) * 2006-08-30 2008-03-13 Olympus Medical Systems Corp 手術用処置装置及び、手術用処置装置の駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2371313A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122307A1 (ja) * 2014-02-17 2015-08-20 オリンパス株式会社 把持処置装置
WO2015122306A1 (ja) * 2014-02-17 2015-08-20 オリンパス株式会社 超音波処置装置
JP5911650B2 (ja) * 2014-02-17 2016-04-27 オリンパス株式会社 把持処置装置
JP5942045B2 (ja) * 2014-02-17 2016-06-29 オリンパス株式会社 超音波処置装置
CN105873532A (zh) * 2014-02-17 2016-08-17 奥林巴斯株式会社 把持处置装置
JPWO2015122307A1 (ja) * 2014-02-17 2017-03-30 オリンパス株式会社 把持処置装置
US9681912B2 (en) 2014-02-17 2017-06-20 Olympus Corporation Grasping treatment apparatus
US9750523B2 (en) 2014-02-17 2017-09-05 Olympus Corporation Ultrasonic treatment apparatus
CN105873532B (zh) * 2014-02-17 2019-01-04 奥林巴斯株式会社 把持处置装置
JP2018527049A (ja) * 2015-06-30 2018-09-20 エシコン エルエルシーEthicon LLC ユーザー適応可能なアルゴリズムを備えた外科用器具
JP2018519919A (ja) * 2015-06-30 2018-07-26 エシコン エルエルシーEthicon LLC 組織のパラメータに基づく同時エネルギーモダリティを使用するユーザーが適合可能な技法を有する外科用システム
JP2018531071A (ja) * 2015-09-30 2018-10-25 エシコン エルエルシーEthicon LLC ユーザ意図に基づいて外科用器具の動作を選択するための方法及び装置
JP2018531684A (ja) * 2015-09-30 2018-11-01 エシコン エルエルシーEthicon LLC 外科用器具用の周波数アジャイル発生器
JP6257850B1 (ja) * 2016-07-11 2018-01-10 オリンパス株式会社 エネルギー処置システム及び、そのエネルギー処置システムにおけるエネルギー発生装置
WO2018011858A1 (ja) * 2016-07-11 2018-01-18 オリンパス株式会社 エネルギー処置システム及びその制御方法
JPWO2018020553A1 (ja) * 2016-07-25 2019-05-16 オリンパス株式会社 エネルギー制御装置及び処置システム
US11399859B2 (en) 2016-09-12 2022-08-02 Olympus Corporation Energy control device and treatment system
WO2018047352A1 (ja) * 2016-09-12 2018-03-15 オリンパス株式会社 エネルギー制御装置及び処置システム
WO2018073915A1 (ja) * 2016-10-19 2018-04-26 オリンパス株式会社 エネルギー処置システム
US11564704B2 (en) 2016-10-19 2023-01-31 Olympus Corporation Energy treatment system
JPWO2018073915A1 (ja) * 2016-10-19 2019-08-15 オリンパス株式会社 エネルギー処置システム、処置具制御装置、及び、処置具の動作制御方法
DE112016007242T5 (de) 2016-10-28 2019-06-06 Olympus Corporation Medizinisches behandlungsgerät und betätigungsverfahren für ein medizinisches behandlungsgerät
JPWO2018105105A1 (ja) * 2016-12-09 2019-10-24 オリンパス株式会社 超音波手術システム及び超音波手術システムの作動方法
WO2018105105A1 (ja) * 2016-12-09 2018-06-14 オリンパス株式会社 超音波手術システム及び超音波手術システムの作動方法
US11426190B2 (en) 2016-12-09 2022-08-30 Olympus Corporation Ultrasonic surgical system and method of operating ultrasonic surgical system
JP2020505168A (ja) * 2017-01-30 2020-02-20 ソシエテ プール ラ コンセプシオン デ アプリカシオン デ テクニク エレクトロニク−サテレク 設定値を自動で調節する超音波処理装置
JP7121021B2 (ja) 2017-01-30 2022-08-17 ソシエテ プール ラ コンセプシオン デ アプリカシオン デ テクニク エレクトロニク-サテレク 設定値を自動で調節する超音波処理装置
JP2020525256A (ja) * 2017-07-04 2020-08-27 ビー.アール.エイチ. メディカル リミテッド 内部器官、傷害、及び痛みの治療
JP7465208B2 (ja) 2017-07-04 2024-04-10 ビー.アール.エイチ. メディカル リミテッド 内部組織/器官上に低エネルギーの超音波(us)を印加するus装置
WO2019123520A1 (ja) * 2017-12-18 2019-06-27 オリンパス株式会社 制御装置及び処置システム
JP2020203216A (ja) * 2020-10-01 2020-12-24 オリンパス株式会社 エネルギー処置システム

Also Published As

Publication number Publication date
CN102209503A (zh) 2011-10-05
EP2371313A4 (en) 2012-07-25
EP2371313A1 (en) 2011-10-05
JP4649545B2 (ja) 2011-03-09
US20100168742A1 (en) 2010-07-01
CN102209503B (zh) 2013-09-11
US8303579B2 (en) 2012-11-06
EP2371313B1 (en) 2013-10-02
JPWO2010076869A1 (ja) 2012-06-21

Similar Documents

Publication Publication Date Title
JP4649545B2 (ja) 手術システム及び制御方法
JP4653259B2 (ja) 手術システム及び制御方法
US8808286B2 (en) Surgical system
JP4398493B2 (ja) 手術用処置装置
JP6321085B2 (ja) 神経筋刺激を最小にするための電気外科手術用ジェネレータ
JP5706603B2 (ja) 予測的的rf供給源制御を伴う電気外科装置
JP5746816B2 (ja) 電気外科用発電器における波高率の向上
US8668690B2 (en) Apparatus and method for optimal tissue separation
EP2080482A1 (en) High frequency cautery electric power source device
JP3989166B2 (ja) 電気手術装置
JP2001269353A (ja) 電気手術装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145033.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010516315

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009836208

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE