WO2010075664A1 - 难溶性药物高效长效缓释制剂及其制法 - Google Patents

难溶性药物高效长效缓释制剂及其制法 Download PDF

Info

Publication number
WO2010075664A1
WO2010075664A1 PCT/CN2009/001299 CN2009001299W WO2010075664A1 WO 2010075664 A1 WO2010075664 A1 WO 2010075664A1 CN 2009001299 W CN2009001299 W CN 2009001299W WO 2010075664 A1 WO2010075664 A1 WO 2010075664A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
sustained
poorly soluble
add
drug
Prior art date
Application number
PCT/CN2009/001299
Other languages
English (en)
French (fr)
Inventor
徐希明
余江南
朱源
曹霞
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US13/126,183 priority Critical patent/US9283190B2/en
Publication of WO2010075664A1 publication Critical patent/WO2010075664A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2077Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds

Definitions

  • the present invention relates to a high-efficiency long-acting sustained-release pharmaceutical preparation and a preparation method thereof, and more particularly to a poorly-soluble drug sustained-release preparation capable of achieving a 72-hour sustained release action and improving the bioavailability of an oral preparation, and a preparation method thereof.
  • the combination of ordered mesoporous nanoparticles preparation technology, hydrophilic gel matrix material preparation technology and solid dispersion technology can achieve 72 hours of sustained release and improve the bioavailability of poorly soluble oral preparations.
  • Sustained or controlled release dosage forms have the advantages of reducing the total dose and the number of medications, avoiding blood-rich peaks and valleys, reducing toxic side effects, and improving patient compliance. They are increasingly used in clinical practice [see: Kathy WY] Lee, Tri-Hung Nguyen, Tracey Hanley, et al. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs.
  • the poorly-soluble drug is difficult to completely dissolve due to its small solubility, and is generally solubilized first, and then the solubilized preparation is used as a raw material for preparing the sustained-release preparation to prepare various sustained-release preparations.
  • the insoluble drug solubilization technology mainly includes: solid dispersion technology, cyclodextrin inclusion technology, micelle solubilization technology, microemulsion solubilization technology, etc. [See: Shen Song, Xu Ximing, Yu Jiangnan. Solubilization of poorly soluble drugs and Research progress of slow/controlled release preparations. Chinese Pharmacy, 2007, 21 (3): 196; Guo Sheng-rong, Guo Li.
  • mesopores are porous materials with a pore size of 2-50 nm. According to the order of mesopores, mesoporous materials can be classified into disordered mesoporous materials and ordered mesoporous materials.
  • the ordered mesoporous material structure has the following characteristics: 1. The long-range structure is ordered; 2. The pore size distribution is narrow and can be adjusted and controlled between 1. 5-10 nm; 3. The specific surface is as high as 1000 m7g; 4. The porosity is high; The surface is rich in unsaturated groups and the like.
  • the ordered mesoporous material has the following advantages as a drug carrier: 1.
  • It is non-toxic, physiologically active, and biocompatible; 2. It has a uniformly adjustable pore, and a rich silicon germanium can be used as a new reaction with organic guest molecules.
  • the active site facilitates the uniform dispersion of the drug at the active site in the pores, so that the ordered mesoporous material adsorbs the drug and has a sustained release effect; 3.
  • the integrity of the drug structure can be maintained.
  • Ordered mesoporous materials can be used as controlled release carriers for hydrophobic drugs to achieve ideal controlled release effects. Ordered mesoporous materials with different pore structures have different controlled release effects.
  • the invention is based on the immediate release of solid dispersion, the general sustained release of hydrophilic gel matrix material, and the long-acting sustained release "triple release" mechanism of ordered mesoporous nanomaterials, and proposes an immediate release and double sustained release.
  • a new preparation method of a poorly soluble drug sustained-release preparation capable of realizing a 72-hour sustained release effect and improving the bioavailability of an oral preparation, with the advantages of characteristics, high efficiency and long-term effect. Summary of the invention
  • High-efficiency long-acting sustained-release preparation of poorly soluble drug which comprises a solid dispersion of a poorly soluble drug, a silica nanoparticle carrying a poorly soluble drug, a sustained release framework material and a release promoting agent, and the mass ratio between them
  • the above-mentioned high-efficiency long-acting sustained-release preparation of poorly soluble drugs is a tablet or a capsule.
  • a method for preparing a high-efficiency long-acting sustained-release preparation of the above-mentioned poorly soluble drug which basically consists of the following steps - Step 1. Weigh the poorly soluble drug lg, PVP-K30 l-3g, and soybean fat 0.3-0.8 g.
  • Step 2 Take 20-80ml of cyclohexane, add NP-10 4-8ml, mix; add l-3ml n-hexanol, 25.6% ammonia water l-3ml, stir at room temperature for lh ; slowly add tetraethyl orthosilicate 3 -5ml, stirred at room temperature for 24h ; added anhydrous ethanol 40-80ml, ultrasonic lh; centrifuged at 15000rpm for 15min, the precipitate was washed three times with distilled water; added with appropriate amount of water to freeze-dry, to obtain silica nanoparticle powder 8g-32g.
  • silica nanoparticles to 1000 ml of 0,6 mol/L Na 2 CO 3 solution, 60-70 ° C, 200 W for 4-5 min, 15000 rpm, centrifuge for 15 min, wash three times with distilled water; add 10 ml of distilled water, freeze-dry, Mesoporous silica nanoparticles were obtained.
  • Step 3 Take the solid dispersion of the poorly soluble drug lg, with 0.2-0.3 g of hypromellose K4M and 0.1-0.2 g of low-substituted hydroxypropylcellulose. After mixing, add 70% of the syrup to prepare the soft material. The wet granules were obtained through a 16-mesh sieve, and were taken out after drying at 60 ° C for 30 minutes, and sieved through a 16-mesh sieve to obtain a sustained-release granule 1.
  • Step 4 Take the solid dispersion of the poorly soluble drug lg, mix with hypromellose K4M0.l-0.2g, low-substituted hydroxypropylcellulose 0.2-0.3g, drug-loaded silica nanoparticles 1.25-2.5g Thereafter, an appropriate amount of 70% syrup was added to prepare a soft material, and a wet granule was obtained through a 16-mesh sieve, which was taken out after baking for 30 minutes at 60 Torr, and sieved through a 16-mesh sieve to obtain a sustained-release granule 2.
  • Step 5 The sustained-release granules 1 and the sustained-release granules 2 are mixed in a ratio of 1: 2.75 to 1:4, tableted, and the pressure is controlled at 40-60 N to prepare tablets.
  • the ratio of 75-1:4 is mixed and filled with capsules to prepare a highly effective long-acting sustained-release capsule of the poorly soluble drug of the present invention.
  • the invention is based on the immediate release of a solid dispersion, the general sustained release of a hydrophilic gel matrix material, and the long-acting sustained-release "triple release" mechanism of ordered mesoporous materials, combined with immediate release and ordinary sustained release.
  • the ordered mesoporous material Based on the preparation technology of "double release drug" sustained-release preparation, the ordered mesoporous material has high specific surface area and large pore volume, which is beneficial to adsorbing drugs, and can release the drug slowly for a long time.
  • Porous silica nanoparticles are used as carrier materials, combining solid dispersion technology, ordered mesoporous nanoparticle preparation technology and hydrophilic gel matrix material preparation technology to prepare first-time release, post-release, and long-lasting
  • the highly effective long-acting sustained-release preparation of the poorly soluble drug has the characteristics of immediate release and double sustained release.
  • the in vivo pharmacokinetic study of the insoluble drug-soluble long-acting sustained-release preparation and the control preparation of the present invention by Beagle dogs showed that: the in vivo half-life of the insoluble long-acting sustained-release preparation of the poorly soluble drug of the invention is extended by 2.3 to 14.8 times, and the MRT is prolonged. 7.94 ⁇ 4.52 times, the drug release curve of poorly soluble drugs in Beagle dogs showed stable release and achieved a long-term sustained release effect of 72 hours. The results are shown in Fig. 3 and Fig. 4.
  • the invention adopts the combination of the solid dispersion technology and the nano technology, and on the one hand, the soybean phospholipid is added in the preparation of the insoluble solid drug immediate release solid dispersion, which can promote the in vivo absorption of the poorly soluble drug; on the other hand, the application of the nanoparticle After nanocrystallization, the rate and extent of absorption of poorly soluble drugs in the body are significantly increased, which is also beneficial to improve the bioavailability of long-acting sustained-release preparations of poorly soluble drugs. Therefore, the poorly soluble drug sustained release preparation obtained by the method of the present invention is both a long-acting sustained-release preparation and a high-efficiency preparation, and is a novel sustained-release preparation having both the advantages of "high efficiency and long-acting effect".
  • silybin long-acting sustained-release preparation prepared by the method of the present invention and the control preparation were subjected to pharmacokinetic studies in Beagle dogs, and the results showed that: the relative bioavailability of the silybin long-acting sustained-release preparation prepared by the method of the invention It is 383%. It can be used for the development of modern high-efficiency long-acting sustained-release preparations administered once a day for 3 days.
  • Figure 1 is a transmission electron micrograph of mesoporous silica nanoparticles prepared by the present invention
  • Fig. 2 is a particle size distribution diagram of mesoporous silica nanoparticles prepared by the present invention
  • Fig. 3 is a time-course curve of the high-efficiency long-acting sustained-release preparation of the silybin prepared by the present invention in the Beagle dog
  • Fig. 4 is a pharmacokinetic curve of the high-efficiency long-acting sustained-release preparation of the silymarin prepared by the present invention.
  • silica nanoparticles were added to 0.6M Na 2 CO 3 3000mL, 60 °C, 65 °C, 70 °C, 200W respectively for 4 minutes and 20 seconds, 4 minutes and 10 seconds, 4 minutes, 15000 rpm, centrifugation for 15 minutes, distilled water Wash three times; add 1 mL of distilled water and freeze-dry to obtain mesoporous silica nanoparticles.
  • sustained-release granules 1 and the sustained-release granules 2 are mixed in a ratio of 1:2, tableted, and the pressure is controlled at 40-60 N to prepare a high-efficiency long-acting sustained-release tablet of silibinin.
  • Embodiment 2
  • silica nanoparticles Take 3g of silica nanoparticles and add 0.6M Na 2 CO 3 3000mL, 60 "C, 65 °C, 70 °C, 200W respectively for 4 minutes and 20 seconds, 4 minutes and 10 seconds, 4 minutes, 15000 ⁇ m, centrifuge for 15 minutes. The distilled water was washed three times; 1 mL of distilled water was added, and lyophilized to obtain mesoporous silica nanoparticles.
  • sustained-release granules 1 and the sustained-release granules 2 are mixed in a ratio of 2:3, and then filled into capsules to prepare a high-efficiency long-acting sustained-release capsule of silybin.
  • Embodiment 3
  • silymarin lg, PVP-K30 1.2g, soybean phospholipid 0.4g, acrylic resin IV 0.3g add 25ml of absolute ethanol to dissolve (if necessary, it can be dissolved in 70 ⁇ water bath), then in 60°C water bath, 90rpm Rotary evaporation to near-dry, completely remove the solvent in a 70 ° C water bath, placed in a 20 ° C refrigerator for 2 h, placed in a 60 ° C oven for 12 h, crushed, passed through a 80 mesh sieve, to obtain a silymarin solid dispersion, ready for use.
  • silymarin 2 g was dissolved in 20 ml of absolute ethanol, and lg mesoporous silica nanoparticles were added to infiltrate for 24 hours, centrifuged at 15,000 rpm for 15 min, and the precipitate was washed three times with absolute ethanol, and lyophilized with 10 ml of distilled water to obtain drug-loaded nanoparticles.
  • sustained-release granules 1 and the sustained-release granules 2 are mixed in a ratio of 2:3, tableted, and the pressure is controlled at 40-60 N to prepare a silymarin high-efficiency long-acting sustained-release tablet.
  • Embodiment 4
  • silymarin lg, PVP-K30 1.5g, soybean phospholipid 0.5g, acrylic resin IV 0.4g add 30ml of absolute ethanol to dissolve (if necessary, put it in a 70 ° C water bath to accelerate dissolution), after 6 (TC water bath) Rotate to near dry at 90 rpm, completely remove the solvent in a 70 ° C water bath, place it in a 20 ° C refrigerator for 2 h, place it in an oven at 60 ° C for 12 h, pulverize, and pass through a 80 mesh sieve to obtain a silymarin solid dispersion, and set aside.
  • silica nanoparticles were added to 0.6 M Na 2 C0 3 lOOOtnl, 65. C, 200W were respectively ultrasonicated for 4.5 min, 15000 rpm, centrifuged for 15 min, and washed three times with distilled water; 10 ml of distilled water was added, and lyophilized to obtain mesoporous silica nanoparticles.
  • silymarin 2 g was dissolved in 20 ml of absolute ethanol, and lg mesoporous silica nanoparticles were added to infiltrate for 24 hours, centrifuged at 15,000 rpm for 15 min, and the precipitate was washed three times with absolute ethanol, and lyophilized with 10 ml of distilled water to obtain drug-loaded nanoparticles.
  • the sustained-release granules 1 and the sustained-release granules 2 were mixed in a ratio of 2:3, and the buccal sac was filled to prepare a silymarin high-efficiency long-acting sustained-release capsule.
  • Embodiment 5
  • silica nanoparticles 2 g were added to 0.6 M Na 2 C0 3 2000 ml, 70 ° C, 200 W respectively for 4.5 min, 15000 rpm, centrifuged for 15 min, and washed three times with distilled water; 10 ml of distilled water was added and lyophilized to obtain mesoporous silica. Nanoparticles.
  • sustained-release granules 1 and the sustained-release granules 2 are mixed in a ratio of 1:1, tableted, and the pressure is controlled at 40-60 N to prepare a high-efficiency long-acting sustained-release tablet of roxithromycin.
  • Embodiment 6
  • nitrendipine lg, PVP-K30 1.8g, soybean phospholipid 0.6g, acrylic resin IV No. 0.2g add 30ml of absolute ethanol to dissolve (if necessary, put it in a 70 ⁇ water bath to accelerate dissolution), after 60 ° C water bath Rotate to near-dry at 90 rpm, completely remove the solvent in a 70 ° C water bath, set to 2 (2 h in a TC refrigerator, place in a 60-inch oven for 12 h, pulverize, pass through a 80 mesh sieve, and obtain a solid dispersion of nitrendipine, and set aside.
  • silica nanoparticles Take 2g of silica nanoparticles and add 0.6M Na 2 CO 3 3000mL, 60°C, 65 °C, 70°C, 200W respectively for 4 minutes and 20 seconds, 4 minutes and 10 seconds, 4 minutes, 15000 rpm, centrifuge for 15 minutes, steam The mixture was washed three times with water; 1 mL of distilled water was added, and lyophilized to obtain mesoporous silica nanoparticles.
  • nitrendipine solid dispersion 0.4 g of hypromellose K4M, 0.3 g of low-substituted hydroxypropylcellulose, 2 g of drug-loaded silica nanoparticles, and then added with an appropriate amount of 70% syrup to prepare soft
  • the material was passed through a 16 mesh sieve to obtain wet granules, which were taken out at 60 ° C for 30 minutes, and then taken out through a 16 mesh sieve to obtain a sustained release granule 2 .
  • sustained-release granules 1 and the sustained-release granules 2 were mixed in a ratio of 1:1, tableted, and the pressure was controlled at 40-60 N to prepare a high-efficiency long-acting sustained-release tablet of nitrendipine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

难溶性药物高效长效缓释制剂及其制法
技术领域
本发明涉及高效长效缓释药物制剂及其制法, 具体地说, 是一种能够实现 72小时 缓释作用、 并提高口服制剂生物利用度的难溶性药物缓释制剂及其制法。 背景技术
将有序介孔纳米粒制备技术、亲水凝胶骨架材料制备技术、固体分散技术三者相结 合, 可以实现 72小时缓释、 并提高难溶性药物口服制剂的生物利用度。
难溶性药物 (poorly water-soluble drug) 因其在水中溶解度小, 药物难以被机体吸 收, 体内消除速度较快, 血药浓度容易出现峰谷现象, 口服制剂生物利用度低, 且难以 实现剂型的多样化。 缓控释制剂 (sustained or controlled release dosage forms)具有减少用 药总剂量和用药次数、 避免血浓峰谷现象、 降低毒副作用、 提高病人顺应性等优点, 在 临床上应用日益广泛 [参见: Kathy W.Y. Lee, Tri-Hung Nguyen, Tracey Hanley, et al. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. International Journal of Pharmaceutics, 2009, 365 (1-2): 190.; Jie-Xin Wang, Zhi-Hui Wang, Jian-Feng Chen, et al. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications. Materials Research Bulletin, 2008, 43 (12): 3374.]。 将难溶性药物增溶后制备 成缓控释制剂, 可以弥补药物增溶后产生的血药浓度波动较大、 频繁给药等缺点。 难溶 性药物在制备缓控释制剂时, 由于其溶解度小, 难以完全溶出, 一般先将其增溶, 再以 增溶后的制剂作为制备缓释制剂的原料制备成各种缓释制剂。难溶性药物增溶技术主要 包括: 固体分散技术、环糊精包合技术、 胶束增溶技术、 微乳增溶技术等 [参见: 沈松, 徐希明,余江南.难溶性药物的增溶及其缓 /控释制剂研究进展.中国药事, 2007, 21 ( 3 ): 196; Guo Sheng-rong, Guo Li. Effects of PVP K30 on Aqueous Solubility and Dissolution Properties of Daidzein. Journal of Chinese Pharmaceutical Sciences, 2004, 13(1): 42; Z. Zuo, Y.K. Tarn, J. Diakur, et al. Hydroxypropyl -beta- cyclidextrin -flutamide inclusion complex. II . Oral and intravenous pharmacokinetics of flutamide in the rat. J Pharm Sci, 2002, 5 (3): 292 ; CM. Fernandes, M.T. Vieira, FJ.B. Veiga. Physicochemical characterization and in vitro dissolution behaviour of nicardipine-cyclodextrins inclusion compounds [J]. European Journal of Pharmaceutical Sciences, 2002, 15(1): 79; Kang Moo Huh, Sang Cheon Lee, Yong Woo Cho. Hydrotropic polymer micelle system for delivery of paclitaxel. Journal of Controlled Release, 2005, 101(1-3):59; ]。 固体分散技术由于其制备方法简单, 增溶效果 显著等优点, 目前, 应用较为广泛 [参见: Zhen-ping Wei, Shi-rui Mao, Dian-zhou Bi, et al. Dissolution improvement of cisapride by solid dispersion with HPMC. Journal of Chinese Pharmaceutical Science, 2004, 13(4): 254.; Fude Cui, Mingshi Yang, Yanyan Jiang. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method. Journal of Controlled Release, 2003, 97(3): 375.]。 难溶药物增溶后, 既可按常规的缓 /控释制剂制备方法加以制备;也可直接与适当比例的 缓 /控释材料混匀制备成骨架型、 渗透泵型或膜控型缓 /控释制剂。
近年来, 具有特殊结构和特殊形貌的介孔材料研究备受关注。 介孔(Mesopore )材 料是孔径为 2-50nm的多孔材料, 根据介孔是否有序, 介孔材料可分为无序介孔材料和 有序介孔材料两类。 有序介孔材料结构具有以下特点: 1.长程结构有序; 2.孔径分布窄 并可在 1. 5- 10nm之间调节和控制; 3.比表面高达 1000m7g; 4.孔隙率高; 5.表面富含 不饱和基团等。 有序介孔材料作为药物载体具有以下优点: 1.本身无毒、 无生理活性, 生物相容; 2.具有均匀可调的孔道, 丰富的硅垸基可作为和有机客体分子反应的新的活 性位点, 有利于结合在活性位点上的药物均匀地分散在孔道内, 使有序介孔材料吸附药 物并具有缓释作用; 3. 能够保持药物结构的完整性。 有序介孔材料作为疏水性药物的 控释载体, 能够获得理想的控释效果; 不同孔道结构的有序介孔材料, 控释效果不同。
本发明基于固体分散体的速释、 亲水凝胶骨架材料的普通缓释、 有序介孔纳米材料 的长效缓释 "三重释药"机理, 提出一种兼具速释与双重缓释特征、 高效与长效双重优 点, 能够实现 72小时缓释作用、 并提高口服制剂生物利用度的难溶性药物缓释制剂的 新的制备方法。 发明内容
将固体分散技术、 有序介孔纳米粒制备技术、 亲水凝胶骨架材料制备技术三者相结 合, 提出一种兼具速释与双重缓释特征、 高效与长效双重优点, 能够实现 72小时缓释 作用、并提高口服制剂生物利用度的难溶性药物缓释制剂的新的制备方法。以水飞蓟宾、 水飞蓟素、 尼群地平、 罗红霉素作为难溶性药物的模型药, 研究高效长效缓释制剂的有 益效果。
本发明的技术方案如下:
一种难溶性药物高效长效缓释制剂, 它由难溶性药物的固体分散体、 载有难溶性药 物的二氧化硅纳米粒、 缓释骨架材料及促释放剂组成, 它们之间的质量比为: 难溶性药 物固体分散体:载有难溶性药物的二氧化硅纳米粒:缓释骨架材料:促释放剂 = 1 : 0. 5-1. 25: 0. 1-0. 3: 0. 1-0. 3, 难溶性药物固体分散体中包含聚维酮 K30、 大豆磷脂、 丙烯酸树脂 IV号,药物与其它辅料的质量比为:难溶性药物 : 聚维酮 Κ30 : 大豆磷脂 : 丙烯酸树脂 iv号 = 1: 1~3: 0. 3~ 0. 8: 0. 2-0. 5。
上述的难溶性药物高效长效缓释制剂为片剂或胶囊。
一种制备上述难溶性药物高效长效缓释制剂的方法, 它基本上由下列步骤组成- 步骤 1. 称取难溶性药物 lg, PVP-K30 l-3g, 大豆磯脂 0.3-0.8g,.丙烯酸树脂 IV号 0.2-0.5g, 加入 20-40ml无水乙醇溶解 (必荽时可置于 70°C水浴中加速溶解) 后, 于 60 °C水浴, 90rpm旋转蒸发至近干, 于 70°C水浴完全挥去溶剂, 置一 20°C冰箱中 2h后, 放置 6(TC供箱 12h, 粉碎, 过 80目筛, 得难溶性药物固体分散体, 备用。
步骤 2. 取 20-80ml环己烷, 加入 NP-10 4-8ml, 混匀; 加入 l-3ml正己醇, 25.6% 氨水 l-3ml, 室温搅拌 lh; 缓慢滴加正硅酸四乙酯 3-5ml, 室温搅拌 24h; 加入无水乙醇 40-80ml, 超声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸馏水洗三次; 加入适量水冷冻 干燥, 得到二氧化硅纳米粒粉末 8g-32g。
取 lg二氧化硅纳米粒加入 0,6mol/L的 Na2C03溶液 1000ml, 60-70 °C , 200W分别 超声 4-5min, 15000rpm, 离心 15min, 蒸馏水洗涤三次; 加入 10ml蒸馏水, 冷冻干燥, 得到介孔二氧化硅纳米粒。
取 2g难溶性药物, 溶于 10-20ml无水乙醇, 加入 lg介孔二氧化硅纳米粒浸润 24 小时, 15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 10ml蒸馏水冷冻干燥得载 药纳米粒 2g。
步骤 3. 取难溶性药物固体分散体 lg, 与羟丙甲纤维素 K4M 0.2-0.3g、 低取代羟丙 基纤维素 0.1-0.2g, 混勾后, 加入适量 70%的糖浆制备软材, 过 16 目筛得到湿颗粒, 于 60°C烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 1。
步骤 4. 取难溶性药物固体分散体 lg, 与羟丙甲纤维素 K4M0.l-0.2g、低取代羟丙基 纤维素 0.2-0.3g,载药二氧化硅纳米粒 1.25-2.5g混匀后,加入适量 70%的糖浆制备软材, 过 16目筛得到湿颗粒, 于 60Ό烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。 步骤 5. 缓释颗粒 1和缓释颗粒 2按照 1 : 2.75~1: 4的比例混合后, 压片, 压力控制 在 40-60N, 制得片剂。
上述的难溶性药物高效长效缓释制剂的制备方法,它可以将步骤 3制得的缓释颗粒 1和步骤 4制得的缓释颗粒 2按照缓释颗粒 1 :缓释颗粒 2 = 1 : 2. 75-1 : 4的比例混合 后灌装胶囊, 制得本发明的难溶性药物高效长效缓释胶囊。 本发明的有益效果:
1. 本发明基于固体分散体的速释、 亲水凝胶骨架材料的普通缓释、 有序介孔材料 的长效缓释 "三重释药"机理, 以速释与普通缓释相结合的 "双释药"缓释制剂制备技 术为基础, 又充分利用有序介孔材料具有高的比表面和大的孔体积, 有利于吸附药物, 能够长时间缓慢释放药物的优点, 选择有序介孔二氧化硅纳米粒为载体材料, 将固体分 散技术、 有序介孔纳米粒制备技术、 亲水凝胶骨架材料制备技术三者相结合, 制备先速 释、 后缓释、 再长效缓释的难溶性药物高效长效缓释制剂, 使其具有速释与双重缓释特 征。 用本发明的难溶性药物高效长效缓释制剂及对照制剂经 Beagle犬体内药动学研究, 结果表明: 本发明的难溶性药物高效长效缓释制剂体内半衰期延长 2.3〜14.8 倍, MRT 延长 7.94~4.52倍, 难溶性药物在 Beagle犬体内释药曲线显示其释放平稳, 实现了 72 小时的长效缓释效果, 结果见图 3和图 4。
2. 本发明采用固体分散技术与纳米技术的结合, 一方面在制备难溶性药物速释固 体分散体时加入了大豆磷脂, 可促进难溶性药物的体内吸收; 另一方面, 由于纳米粒的 运用, 纳米化后显著增加了难溶性药物在机体内吸收的速度和程度, 同样有利于提高难 溶性药物长效缓释制剂的生物利用度。 因此, 用本发明的方法获得的难溶性药物缓释制 剂既是一种长效缓释制剂, 也是一种高效制剂, 是兼具 "高效与长效"双重优点的新型 缓释制剂。用本发明的方法制备的水飞蓟宾长效缓释制剂及对照制剂经 Beagle犬体内药 动学研究, 结果表明: 本发明的方法制备的水飞蓟宾长效缓释制剂相对生物利用度为 383%。 可用于 3天给药 1次的现代高效长效缓释制剂的开发。
3. 二氧化硅生物相容, 安全无毒, 来源广泛; 用本发明的方法制备二氧化硅纳米 粒, 具有制备方法简单、 不需要特殊设备、 制备过程中影响因素少、 重现性好等优点。 附图说明
图 1本发明制备的介孔二氧化硅纳米粒的透射电镜图;
图 2本发明制备的介孔二氧化硅纳米粒的粒径分布图; 图 3 本发明制备的水飞蓟宾高效长效缓释制剂 Beagle犬体内药时曲线; 图 4为本发明制备的水飞蓟素高效长效缓释制剂 Beagle犬体内药时曲线。 具体实施方式
以下实施例所用材料和仪器
实验材料: 聚维酮 K30 (上海胜浦新型材料有限公司); 大豆磷脂 (上海太伟药业 有限公司); IV号丙烯酸树脂(淮南山河药用辅料有限公司); 正硅酸四乙酯(国药集团 化学试剂有限公司); 羟丙甲纤维素 K4M (上海卡乐康包衣技术有限公司); 低取代羟 丙基纤维素 (上海卡乐康包衣技术有限公司);
实验仪器: 旋转蒸发仪(Heidolph公司, 德国); H66025超声清洗机(无锡超声电 子设备厂); ADP单冲压片机 (上海天祥健台制药机械有限公司) 实施例一
称取水飞蓟宾 lg, PVP-K30 lg, 大豆磷脂 0.2g, 丙烯酸树脂 IV号 0.1g, 加入 20ml 无水乙醇溶解 (必要时可置于 70°C水浴中加速溶解) 后, 于 60°C水浴, 90rpm旋转蒸 发至近干, 于 70°C水浴完全挥去溶剂, 置一 20°C冰箱中 2h后, 放置 60°C烘箱 12h, 粉 碎, 过 80目筛, 得水飞蓟宾固体分散体, 备用。
取 30mL环己烷, 加入 NP-10 4mL, 混匀; 加入 lml正己醇, 25.6%氨水 lmL, 室 温搅拌 lh; 缓慢滴加正硅酸四乙酯 3mL, 室温搅拌 24h; 加入无水乙醇 40mL, 超声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸馏水洗三次; 加入适量水冷冻干燥, 得到二氧化硅 纳米粒粉末。
取 2g二氧化硅纳米粒加入 0.6M Na2CO3 3000mL, 60 °C , 65 °C , 70 °C , 200W分别 超声 4分 20秒, 4分 10秒, 4分, 15000rpm, 离心 15min, 蒸馏水洗涤三次; 加入 ImL 蒸熘水, 冷冻干燥, 得到介孔二氧化硅纳米粒。
取 3g水飞蓟宾,溶于 20ml无水乙醇,加入 1.5g介孔二氧化硅纳米粒浸润 24小时,
15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 ImL蒸馏水冷冻干燥得载药纳米 粒。
取水飞蓟宾固体分散体 lg,与羟丙甲纤维素 K4M 0.2g、低取代羟丙基纤维素 0.2g, 混匀后, 加入适量 70%的糖浆制备软材, 过 16目筛得到湿颗粒, 于 60Ό烘 30分钟后 取出, 过 16目筛整粒, 得缓释颗粒 1。 取水飞蓟宾固体分散体 1.8g, 与羟丙甲纤维素 K4M 0.36g、 低取代羟丙基纤维素 0.4g, 载药二氧化硅纳米粒 2g混匀后, 加入适量 70%的糖浆制备软材, 过 16目筛得到 湿颗粒, 于 60Ό烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。
缓释颗粒 1和缓释颗粒 2按照 1 : 2的比例混合后, 压片, 压力控制在 40-60N, 制 得水飞蓟宾高效长效缓释片剂。 实施例二
称取水飞蓟宾 lg, PVP-K30 3g, 大豆磷脂 0.8g, 丙烯酸树脂 IV号 0.5g, 加入 40ml 无水乙醇溶解 (必要时可置于 70°C水浴中加速溶解) 后, 于 60Ό水浴, 90rpm旋转蒸 发至近千, 于 70°C水浴完全挥去溶剂, 置一 20°C冰箱中 2h后, 放置 60°C烘箱 12h, 粉 碎, 过 80目筛, 得水飞蓟宾固体分散体, 备用。
取 80mL环己垸, 加入 NP-10 8mL, 混匀; 加入 3ml正己醇, 25.6%氨水 3mL, 室 温搅泮 lh; 缓慢滴加正硅酸四乙酯 5mL, 室温搅拌 24h; 加入无水乙醇 80mL, 超声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸熘水洗三次; 加入适量水冷冻干燥, 得到二氧化硅 纳米粒粉末。
取 3g二氧化硅纳米粒加入 0.6M Na2CO3 3000mL, 60 "C , 65 °C , 70 °C , 200W分别 超声 4分 20秒, 4分 10秒, 4分, 15000卬 m, 离心 15min, 蒸馏水洗涤三次; 加入 ImL 蒸馏水, 冷冻干燥, 得到介孔二氧化硅纳米粒。
取 3g水飞蓟宾,溶于 20ml无水乙醇,加入 1.5g介孔二氧化硅纳米粒浸润 24小时, 15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 ImL蒸馏水冷冻干燥得载药纳米 粒。
取水飞蓟宾固体分散体 1.8g, 与羟丙甲纤维素 K4M 0.4g、 低取代羟丙基纤维素 0.4g, 混匀后, 加入适量 70%的糖浆制备软材, 过 16 目筛得到湿颗粒, 于 60°C烘 30 分钟后取出, 过 16目筛整粒, 得缓释颗粒 1。
取水飞蓟宾固体分散体 1.8g, 与羟丙甲纤维素 K4M 0.36g、 低取代羟丙基纤维素
0.4g, 载药二氧化硅纳米粒 3g混匀后, 加入适量 70%的糖浆制备软材, 过 16目筛得到 湿颗粒, 于 60Ό烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。
缓释颗粒 1和缓释颗粒 2按照 2: 3的比例混合后灌装胶囊,制得水飞蓟宾高效长效 缓释胶囊。 实施例三
称取水飞蓟素 lg, PVP-K30 1.2g,大豆磷脂 0.4g,丙烯酸树脂 IV号 0.3g,加入 25ml 无水乙醇溶解 (必要时可置于 70Ό水浴中加速溶解) 后, 于 60°C水浴, 90rpm旋转蒸 发至近干, 于 70°C水浴完全挥去溶剂, 置一 20°C冰箱中 2h后, 放置 60°C烘箱 12h, 粉 碎, 过 80目筛, 得水飞蓟素固体分散体, 备用。
取 30ml环己垸, 加入 NP-10 5ml, 混匀; 加入 1.2ml正己醇, 25.6%氨水 1.5ml, 室温搅拌 lh; 缓慢滴加正硅酸四乙酯 3.5ml, 室温搅拌 24h; 加入无水乙醇 50ml, 超声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸馏水洗三次; 加入适量水冷冻干燥, 得到二氧 化硅纳米粒粉末。
取 lg二氧化硅纳米粒加入 0.6M Na2C03 1000ml, 65 °C , 200W分别超声 4.5min,
15000rpm, 离心 15min, 蒸熘水洗涤三次; 加入 10ml蒸馏水, 冷冻干燥, 得到介孔二 氧化硅纳米粒。
取 2g水飞蓟素, 溶于 20ml无水乙醇, 加入 lg介孔二氧化硅纳米粒浸润 24小时, 15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 10ml蒸熘水冷冻干燥得载药纳米 粒。
取水飞蓟素固体分散体 lg,与羟丙甲纤维素 K4M 0.2g、低取代羟丙基纤维素 0.2g, 混匀后, 加入适量 70%的糖浆制备软材, 过 16目筛得到湿颗粒, 于 60°C烘 30分钟后 取出, 过 16目筛整粒, 得缓释颗粒 1。
取水飞蓟素固体分散体 lg,与羟丙甲纤维素 K4M 0.1g、低取代羟丙基纤维素 0.3g, 载药二氧化硅纳米粒 2g混匀后,加入适量 70%的糖浆制备软材,过 16目筛得到湿颗粒, 于 60Ό烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。
缓释颗粒 1和缓释颗粒 2按照 2: 3的比例混合后, 压片, 压力控制在 40-60N, 制 得水飞蓟素高效长效缓释片剂。 实施例四
称取水飞蓟素 lg, PVP-K30 1.5g,大豆磷脂 0.5g, 丙烯酸树脂 IV号 0.4g,加入 30ml 无水乙醇溶解 (必要时可置于 70°C水浴中加速溶解) 后, 于 6(TC水浴, 90rpm旋转蒸 发至近干, 于 70°C水浴完全挥去溶剂, 置一 20°C冰箱中 2h后, 放置 60°C烘箱 12h, 粉 碎, 过 80目筛, 得水飞蓟素固体分散体, 备用。
取 50ml环己烷, 加入 NP-10 6ml, 混匀; 加入 2.2ml正己醇, 25.6%氨水 1.8ml, 室温搅拌 lh; 缓慢滴加正硅酸四乙酯 4.2ml, 室温搅拌 24h; 加入无水乙醇 60ml, 超声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸馏水洗三次; 加入适量水冷冻干燥, 得到二氧 化硅纳米粒粉末。
取 lg二氧化硅纳米粒加入 0.6M Na2C03 lOOOtnl, 65。C, 200W分别超声 4.5min, 15000rpm, 离心 15min, 蒸馏水洗涤三次; 加入 10ml蒸馏水, 冷冻干燥, 得到介孔二 氧化硅纳米粒。
取 2g水飞蓟素, 溶于 20ml无水乙醇, 加入 lg介孔二氧化硅纳米粒浸润 24小时, 15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 10ml蒸镏水冷冻干燥得载药纳米 粒。
取水飞蓟素固体分散体 lg, 与羟丙甲纤维素 K4M 0.22g、 低取代羟丙基纤维素
0.22g, 混匀后, 加入适量 70%的糖浆制备软材, 过 16 目筛得到湿颗粒, 于 60°C烘 30 分钟后取出, 过 16目筛整粒, 得缓释颗粒 1。
取水飞蓟素固体分散体 lg, 与羟丙甲纤维素 K4M 0.15g、 低取代羟丙基纤维素 0.25g, 载药二氧化硅纳米粒 2g混匀后, 加入适量 70%的糖浆制备软材, 过 16目筛得 到湿颗粒, 于 60Ό烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。
缓释颗粒 1和缓释颗粒 2按照 2: 3的比例混合后灌装颊囊,制得水飞蓟素高效长效 缓释胶囊。 实施例五
称取罗红霉素 lg, PVP-K30 2g, 大豆磷脂 0.5g, 丙烯酸树脂 IV号 0.3g, 加入 30ml 无水乙醇溶解 (必要时可置于 70°C水浴中加速溶解) 后, 于 60°C水浴, 90rpm旋转蒸 发至近干, 于 70Ό水浴完全挥去溶剂, 置一 20Ό冰箱中 2h后, 放置 60°C烘箱 12h, 粉 碎, 过 80目筛, 得罗红霉素固体分散体, 备用。
取 70ml环己垸, 加入 NP-10 6ml, 混匀; 加入 lml正己醇, 25.6%氨水 1.5ml, 室 温搅拌 lh; 缓慢滴加正硅酸四乙酯 6ml, 室温搅拌 24h; 加入无水乙醇 60ml, 超声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸熘水洗三次; 加入适量水冷冻干燥, 得到二氧化硅 纳米粒粉末。
取 2g二氧化硅纳米粒加入 0.6M Na2C03 2000ml, 70 °C, 200W分别超声 4.5min, 15000rpm, 离心 15min, 蒸熘水洗涤三次; 加入 10ml蒸馏水, 冷冻干燥, 得到介孔二 氧化硅纳米粒。 取 2g罗红霉素, 溶于 15ml无水乙醇, 加入 lg介孔二氧化硅纳米粒浸润 24小时, 15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 10ml蒸馏水冷冻干燥得载药纳米 粒。
取罗红霉素固体分散体 1.4g,与羟丙甲纤维素 K4M 0.5g、低取代羟丙基纤维素 0.2g, 混匀后, 加入适量 70%的糖浆制备软材, 过 16目筛得到湿颗粒, 于 60Ό洪 30分钟后 取出, 过 16目筛整粒, 得缓释颗粒 1。
取罗红霉素固体分散体 2.1g,与羟丙甲纤维素 K4M 0.4g、低取代羟丙基纤维素 0.4g, 载药二氧化硅纳米粒 2g混匀后,加入适量 70%的糖浆制备软材,过 16目筛得到湿颗粒, 于 60°C烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。
缓释颗粒 1和缓释颗粒 2按照 1 : 1的比例混合后, 压片, 压力控制在 40-60N, 制 得罗红霉素高效长效缓释片剂。 实施例六
称取尼群地平 lg, PVP-K30 1.8g,大豆磷脂 0.6g,丙烯酸树脂 IV号 0.2g,加入 30ml 无水乙醇溶解 (必要时可置于 70Ό水浴中加速溶解) 后, 于 60°C水浴, 90rpm旋转蒸 发至近干, 于 70°C水浴完全挥去溶剂, 置— 2(TC冰箱中 2h后, 放置 60Ό烘箱 12h, 粉 碎, 过 80目筛, 得尼群地平固体分散体, 备用。
取 60mL环己垸, 加入 NP-10 5mL, 混匀; 加入 lml正己醇, 25.6%氨水 1.5mL, 室温搅拌 lh; 缓慢滴加正硅酸四乙酯 5.5mL, 室温搅拌 24h; 加入无水乙醇 70mL, 超 声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸馏水洗三次; 加入适量水冷冻干燥, 得到 二氧化硅纳米粒粉末。
取 2g二氧化硅纳米粒加入 0.6M Na2CO3 3000mL, 60°C, 65 °C , 70°C, 200W分别 超声 4分 20秒, 4分 10秒, 4分, 15000rpm, 离心 15min, 蒸熘水洗涤三次; 加入 ImL 蒸馏水, 冷冻干燥, 得到介孔二氧化硅纳米粒。
取 2g尼群地平, 溶于 15ml无水乙醇, 加入 lg介孔二氧化硅纳米粒浸润 24小时,
15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 ImL蒸馏水冷冻干燥得载药纳米 粒。'
取尼群地平固体分散体 1.4g,与羟丙甲纤维素 K4M 0.5g、低取代羟丙基纤维素 0.2g, 混匀后, 加入适量 70%的糖浆制备软材, 过 16目筛得到湿颗粒, 于 60°C烘 30分钟后 取出, 过 16目筛整粒, 得缓释颗粒 1。 取尼群地平固体分散体 2.1g,与羟丙甲纤维素 K4M 0.4g、低取代羟丙基纤维素 0.3g, 载药二氧化硅纳米粒 2g混匀后,加入适量 70%的糖浆制备软材,过 16目筛得到湿颗粒, 于 60°C烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。
缓释颗粒 1和缓释颗粒 2按照 1: 1的比例混合后, 压片, 压力控制在 40-60N, 制 得尼群地平高效长效缓释片剂。

Claims

权利要求
1.一种难溶性药物高效长效缓释制剂, 其特征是: 它由难溶性药物的固体分散体、 载有难溶性药物的二氧化硅纳米粒、 缓释骨架材料及促释放剂组成, 它们之间的质量比 为: 难溶性药物固体分散体:载有难溶性药物的二氧化硅纳米粒:缓释骨架材料:促释放 剂 = 1 : 0. 5-1. 25: 0. 1-0. 3: 0. 1-0. 3, 难溶性药物固体分散体中包含聚维酮 K30、 大豆磷脂、 丙烯酸树脂 IV号, 药物与其它辅料的质量比为: 难溶性药物 : 聚维酮 Κ30 : 大豆磷脂 : 丙烯酸树脂 iv号 = 1 : 1-3 : 0. 3~ 0. 8: 0. 2-0. 50
2. 根据权利要求 1所述的难溶性药物高效长效缓释制剂,其特征是:为片剂或胶囊。
3. 一种制备上述难溶性药物高效长效缓释制剂的方法,其特征是它基本上由下列步 骤组成:
步骤 1. 称取难溶性药物 lg, PVP-K30 l-3g, 大豆磷脂 0.3-0.8g, 丙烯酸树脂 IV号 0.2-0.5g, 加入 20-40ml无水乙醇溶解 (必要时可置于 70°C水浴中加速溶解) 后, 于 60 V水浴, 90rpm旋转蒸发至近干, 于 70°C水浴完全挥去溶剂, 置一 20°C冰箱中 2h后, 放置 60°C烘箱 12h, 粉碎, 过 80目筛, 得难溶性药物固体分散体, 备用。
步骤 2. 取 20-80ml环己垸, 加入 NP-10 4-8ml, 混匀; 加入 l-3ml正己醇, 25.6% 氨水 l-3ml, 室温搅拌 lh; 缓慢滴加正硅酸四乙酯 3-5ml, 室温搅拌 24h; 加入无水乙醇 40-80ml, 超声 lh; 在 15000rpm, 离心 15min, 沉淀用蒸馏水洗三次; 加入适量水冷冻 干燥, 得到二氧化硅纳米粒粉末 8g-32g。
取 lg二氧化硅纳米粒加入 0.6mol/L的 Na2C03溶液 1000ml, 60-70 °C , 200W分别 超声 4-5min, 15000rpm, 离心 15min, 蒸熘水洗涤三次; 加入 10ml蒸馏水, 冷冻干燥, 得到介孔二氧化硅纳米粒。
取 2g难溶性药物, 溶于 10-20ml无水乙醇, 加入 lg二氧化硅介孔纳米粒浸润 24 小时, 15000rpm离心 15min, 沉淀用无水乙醇洗三次, 加入 10ml蒸馏水冷冻干燥得载 药纳米粒 2g。
步骤 3. 取难溶性药物固体分散体 lg, 与羟丙甲纤维素 K4M 0.2-0.3g、 低取代羟丙 基纤维素 0.1-0.2g, 混勾后, 加入适量 70%的糖浆制备软材, 过 16 目筛得到湿颗粒, 于 60°C烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 1。
步骤 4. 取难溶性药物固体分散体 lg, 与羟丙甲纤维素 K4M0.l-0.2g、低取代羟丙基 纤维素 0.2-0.3g,载药二氧化硅纳米粒 1.25-2.5g混匀后,加入适量 70%的糖浆制备软材, 过 16目筛得到湿颗粒, 于 60Ό烘 30分钟后取出, 过 16目筛整粒, 得缓释颗粒 2。 步骤 5. 缓释颗粒 1和缓释颗粒 2按照 1:2.75~1:4的比例混合后, 压片, 压力控制 在 40-60N, 制得片剂。
4. 根据权利要求 3所述的难溶性药物高效长效缓释制剂的制备方法, 其特征是- 将步骤 3制得的缓释颗粒 1和步骤 4制得的缓释颗粒 2按照缓释颗粒 1:缓释颗粒 2 = 1: 2.75-1: 4的比例混合后灌装胶囊, 制得本发明的难溶性药物高效长效缓释胶囊。
PCT/CN2009/001299 2008-12-31 2009-11-23 难溶性药物高效长效缓释制剂及其制法 WO2010075664A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/126,183 US9283190B2 (en) 2008-12-31 2009-11-23 Highly efficient and long-acting slow-release formulation of poorly soluble drugs and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810242994.2 2008-12-31
CN2008102429942A CN101444494B (zh) 2008-12-31 2008-12-31 难溶性药物高效长效缓释制剂及其制法

Publications (1)

Publication Number Publication Date
WO2010075664A1 true WO2010075664A1 (zh) 2010-07-08

Family

ID=40740575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001299 WO2010075664A1 (zh) 2008-12-31 2009-11-23 难溶性药物高效长效缓释制剂及其制法

Country Status (3)

Country Link
US (1) US9283190B2 (zh)
CN (1) CN101444494B (zh)
WO (1) WO2010075664A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112494421A (zh) * 2020-12-23 2021-03-16 华中科技大学 一种缓释可溶微针、制备方法及应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026698A1 (de) 2000-05-30 2001-12-06 Basf Ag Selbstemulgierende Wirkstoffformulierung und Verwendung dieser Formulierung
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8025899B2 (en) 2003-08-28 2011-09-27 Abbott Laboratories Solid pharmaceutical dosage form
CN102657598B (zh) * 2012-05-09 2014-03-12 上海交通大学 一种基于多孔无机材料二次分散难溶性药物的口服制剂及其制备方法
CN103169666B (zh) * 2012-12-24 2015-06-17 山西医科大学 卤酚类化合物固体分散体的制备方法和应用
CN104415340A (zh) * 2013-08-23 2015-03-18 中国科学院大连化学物理研究所 一种固体药物制剂及其制备方法
CN111937869A (zh) * 2020-08-18 2020-11-17 浙江工业大学 功夫菊酯微球及其制备方法
CN114569784B (zh) * 2022-01-20 2023-02-28 广东省中医院(广州中医药大学第二附属医院、广州中医药大学第二临床医学院、广东省中医药科学院) 负载艾叶提取物水凝胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204255B1 (en) * 1997-03-11 2001-03-20 Hexal Ag Solid, non-deliquescent formulations of sodium valproate
CN1543943A (zh) * 2003-11-26 2004-11-10 沈阳药科大学 口服水飞蓟素缓释制剂及其制备方法
CN1561201A (zh) * 2001-09-28 2005-01-05 诺瓦提斯公司 包含胶态二氧化硅的药物组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845008B1 (ko) * 2006-08-09 2008-07-08 한국생명공학연구원 표면에 나노 구멍 또는 기공을 가지는 실리카 캡슐 및 그제조방법
CN101164537B (zh) * 2006-10-16 2010-08-25 江苏大学 高效口服水飞蓟宾缓释制剂及其制备方法
WO2009078924A2 (en) * 2007-12-06 2009-06-25 The Regents Of The University Of California Mesoporous silica nanoparticles for biomedical applications
CN101444503B (zh) * 2008-12-31 2011-02-02 江苏大学 一种水飞蓟宾高效长效制剂及其制法
CN101439025B (zh) * 2008-12-31 2011-05-11 江苏大学 一种水飞蓟素高效长效制剂及其制法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204255B1 (en) * 1997-03-11 2001-03-20 Hexal Ag Solid, non-deliquescent formulations of sodium valproate
CN1561201A (zh) * 2001-09-28 2005-01-05 诺瓦提斯公司 包含胶态二氧化硅的药物组合物
CN1543943A (zh) * 2003-11-26 2004-11-10 沈阳药科大学 口服水飞蓟素缓释制剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112494421A (zh) * 2020-12-23 2021-03-16 华中科技大学 一种缓释可溶微针、制备方法及应用
CN112494421B (zh) * 2020-12-23 2022-09-20 华中科技大学 一种缓释可溶微针、制备方法及应用

Also Published As

Publication number Publication date
CN101444494B (zh) 2011-03-30
US9283190B2 (en) 2016-03-15
US20110250269A1 (en) 2011-10-13
CN101444494A (zh) 2009-06-03

Similar Documents

Publication Publication Date Title
WO2010075664A1 (zh) 难溶性药物高效长效缓释制剂及其制法
CN103086346B (zh) 一种介孔碳的制备方法与应用
WO2010075663A1 (zh) 一种水飞蓟素高效长效制剂及其制法
US9023388B2 (en) Formulation of silibinin with high efficacy and prolonged action and the preparation method thereof
CN104650091A (zh) 替格瑞洛的微粉化及其晶型,以及制备方法和药物应用
CN102258492B (zh) 溴新斯的明缓释片剂及其制备方法
WO2014090173A1 (zh) 纳米级盐酸阿霉素及其制备方法
CN101401789A (zh) 虫草多糖脂质体药物及其制备工艺
CN106361724B (zh) 一种20(R)-人参皂苷Rg3缓释纳米微球组合及其制备方法
CN102583286A (zh) 一种多孔羟基磷灰石及其制备方法与应用
CN101020060A (zh) 恩替卡韦的环糊精包合物及其制备方法和药物应用
CN1903183A (zh) 替比夫定分散片及其制备方法
CN105796567A (zh) 新利司他固体分散体及其药物制剂
CN101204382A (zh) 植入型抗肿瘤药丝裂霉素双重缓释膜剂及其制备方法
CN100556457C (zh) 含有硝酸酯类药物和伊伐布雷定的药物组合物
CN103007286A (zh) 一种托伐普坦的固体药物组合物
CN102038642A (zh) 一种银杏内酯b固体分散体及其制备方法
CN101301476B (zh) 一种疏水性环糊精包合物及其制备方法和应用
CN104288141A (zh) 一种辛伐他汀固体药物组合物及其制备方法
CN102641253B (zh) 缬沙坦缓释片及其制备方法
CN101002790B (zh) 一种克拉霉素缓释片及其制备方法
CN102552358B (zh) 一种水飞蓟素组合物及其制备方法
CN103040749B (zh) 盐酸沙格雷酯脂质体固体制剂
CN108272745A (zh) 一种二甲双胍/熊果酸纳米口服制剂及其制备方法
CN102526110A (zh) 一种用于强心急救的蟾酥粉末注射剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13126183

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835951

Country of ref document: EP

Kind code of ref document: A1