WO2014090173A1 - 纳米级盐酸阿霉素及其制备方法 - Google Patents

纳米级盐酸阿霉素及其制备方法 Download PDF

Info

Publication number
WO2014090173A1
WO2014090173A1 PCT/CN2013/089202 CN2013089202W WO2014090173A1 WO 2014090173 A1 WO2014090173 A1 WO 2014090173A1 CN 2013089202 W CN2013089202 W CN 2013089202W WO 2014090173 A1 WO2014090173 A1 WO 2014090173A1
Authority
WO
WIPO (PCT)
Prior art keywords
doxorubicin hydrochloride
nano
sized
silica aerogel
doxorubicin
Prior art date
Application number
PCT/CN2013/089202
Other languages
English (en)
French (fr)
Inventor
张旭旭
张志安
武超
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2014090173A1 publication Critical patent/WO2014090173A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the invention relates to an antitumor drug doxorubicin hydrochloride, in particular to a nanometer doxorubicin hydrochloride and a preparation method thereof.
  • Doxorubicin, hydroxy daunorubicin, hydroxybutyromycin, doxorubicin, is a commonly used anthracycline anti-malignant antibiotic, which has a wide anti-tumor spectrum, strong activity and good curative effect. Its mechanism of action is mainly The doxorubicin molecule is embedded in DNA to inhibit the synthesis of nucleic acids. Doxorubicin is widely used in the treatment of acute leukemia, non-Hodgkin's lymphoma, breast cancer, lung cancer, stomach cancer, liver cancer, ovarian cancer and sarcoma.
  • the drug after intravenous injection, the drug has a large side effect, in addition to bone marrow suppression, gastrointestinal toxicity and hair loss, it can also cause severe cardiotoxicity, manifested as various arrhythmia, when the accumulation is large, irreversible heart damage can occur. Congestive heart failure, and the molecular structure is unstable, prone to hydrolysis, photolysis and other changes, reducing the efficacy, these toxic side effects make the clinical application of doxorubicin hydrochloride is greatly limited.
  • the first object of the present invention is to provide a novel nano-sized doxorubicin hydrochloride granule for the low oral bioavailability of doxorubicin and the serious toxic side effects of the existing doxorubicin hydrochloride injection.
  • the present invention provides a nano-sized doxorubicin hydrochloride granule, characterized in that: silica aerogel is used as a carrier of doxorubicin hydrochloride, and the porosity of the silica aerogel is 95 ⁇ 99%, pore size 10 ⁇ 50nm, specific surface area of 200 ⁇ 1000m 2 /g, density of 3 ⁇ 300kg / m 3 ,
  • the colloidal particles constituting the network have a diameter of from 1 to 50 nm, and the doxorubicin hydrochloride forms a doxorubicin hydrochloride particle having a diameter of less than 100 nm in a form of being adsorbed in the pores of the silica aerogel.
  • the mass ratio of the doxorubicin hydrochloride to the silica aerogel is 1:0.5-20.
  • the above nano-sized doxorubicin hydrochloride granules can be formulated into pharmaceutically acceptable oral preparations.
  • the oral solid preparation may be a tablet, a pill, a powder, a capsule, a granule or a suspension.
  • the above nano-sized doxorubicin hydrochloride granules can be formulated into pharmaceutically acceptable injectables or suppositories.
  • Another object of the present invention is to provide a process for the preparation of the above-described nano-sized doxorubicin hydrochloride particles, characterized in that the method comprises the following steps:
  • the silica aerogel described in the step (2) is hydrophobic, it is subjected to heat treatment at 300 to 1000 ° C before the addition of the aqueous solution to make the alkyl group on the surface disappear and hydrophilic.
  • the amount of purified water used in the step (1) is 5 to 200 ml/g of doxorubicin hydrochloride.
  • the drying in the step (3) is natural drying, oven drying or freeze drying.
  • the amount of purified water added in the step (4) is 20 to 200 ml/g of doxorubicin hydrochloride.
  • the drying in the step (6) is spray drying.
  • the present invention successfully prepares nanometer doxorubicin hydrochloride with silica aerogel as carrier. Unlike the existing nanometer doxorubicin hydrochloride, the diameter of the nanometer doxorubicin hydrochloride is below 100 nm. The nanometer level of the material science category is the nano-grade doxorubicin hydrochloride. Although particles smaller than ⁇ are called nanoparticles, it is preferred to develop particles with a particle size of less than 100 nm because these particles exhibit some unique physical properties and thus exhibit potentially different and useful biological properties. .
  • the optimal particle size of the drug particles that can enter the blood circulation and be absorbed by the body is 10-100 nm, which is limited by the microcirculation of the capillaries of the body and the cell barrier. Therefore, the present invention Rice-grade doxorubicin hydrochloride has a qualitative leap in bioavailability.
  • the drug-loading amount of the nano-sized doxorubicin hydrochloride granules of the invention can reach more than 90%, which is unmatched by the existing liposome nanoparticles and polymer nanoparticles, and the drug loading amount can be compared with the nanocrystal form. Drug suspensions are comparable, but the method of production is simpler and less expensive.
  • doxorubicin hydrochloride is loaded into numerous nano-scale cavities of silica aerogel to form an independent "nano-dispersion" which does not agglomerate, and the structure is extremely stable. It directly solves the international problem of preparation of micro-nano drug research because agglomeration cannot be established, and difficult-to-dissolve drugs are difficult to improve bioavailability.
  • the nano-grade doxorubicin hydrochloride is a high-efficiency, low-toxic, economical, "targeting function" anti-tumor drug, which utilizes the "nano-dispersion” physical new mechanism to fully exert the efficacy of doxorubicin hydrochloride and orally.
  • the bioavailability has been improved unprecedentedly, and the systemic aggregation from the systemic toxicity to the tumor site in the antitumor drug treatment of doxorubicin hydrochloride has been achieved, and the doxorubicin hydrochloride injection which has been solved for decades in the international and domestic countries has been solved. International pharmaceutical problems with large side effects, poor efficacy, and high treatment costs.
  • the oral dosage form overcomes the complicated manufacturing process of the injection dosage form, high requirements for workshop equipment and packaging, and high production cost defects.
  • the precursor of the silica aerogel used as the carrier in the nanometer doxorubicin hydrochloride of the invention is cheap, easy to obtain, and has been widely used in medicines and foods, and has been used for many years by national and international standards.
  • the silicon-based pharmaceutical edible excipient which is also one of the excipients described in the Handbook of Pharmaceutical Excipients, is therefore reliable in the safety of the nano-sized doxorubicin hydrochloride of the present invention.
  • the antitumor effect of the nanometer doxorubicin hydrochloride of the present invention is demonstrated below by an anti-tumor mouse experiment : the silica aerogels used in the experiments are each selected from silica aerogels having the following properties: Porosity It is 95 ⁇ 99%, the pore diameter is 10 ⁇ 50nm, the specific surface area is 200 ⁇ 1000m 2 /g, the density is 3 ⁇ 300kg / m 3 , and the colloidal particle diameter of the composition network is l ⁇ 50nm.
  • mice were 4 ⁇ 6 mm, grouped according to 5 / group.
  • Doxorubicin injection group once a day, intraperitoneal injection
  • nano-doxorubicin group oral gavage, once a day.
  • VIR ( 1- ) l00%
  • the dosage is designed according to the maximum tolerance (MTD), so that the anti-cancer effect of the positive control commercial drugs reaches the best level. Comparing the anticancer effects of commercial drugs with the oral nano drugs of the present invention, and comparing the safety of the two;
  • Figure 1 is an electron micrograph of a silica aerogel of the present invention
  • Figure 2 is an electron micrograph of the doxorubicin hydrochloride drug substance
  • Figure 3 is an electron micrograph of nanometer-grade doxorubicin hydrochloride of the present invention.
  • Figure 4 is a graph showing the relative tumor inhibition rate of human metastatic rat liver cancer BEL-7402 in an anti-tumor mouse experimental study
  • Fig. 5 is a graph showing the relative tumor inhibition rate of human metastatic rat non-small cell lung cancer NCI-1299 in the results of an anti-tumor mouse experimental study.
  • silica aerogels used in the following examples are all selected from silica aerogels having the following characteristics: porosity of 95 to 99%, pore diameter of 10 to 50 nm, and specific surface area of 200 to 1000 m 2 /g.
  • the density of the colloidal particles of the network is 3 ⁇ 300kg / m 3 , and the diameter of the colloidal particles is 1 ⁇ 50nm.
  • Example 1 The nano-sized doxorubicin hydrochloride of this example was prepared as follows:
  • the nano-sized doxorubicin hydrochloride of this example was prepared as follows:
  • the nano-sized doxorubicin hydrochloride of this example was prepared as follows:
  • the nano-sized doxorubicin hydrochloride of this example was prepared as follows:
  • the nano-sized doxorubicin hydrochloride of this example was prepared as follows:
  • step 3 The solid after lyophilization in step 3 is added to the above ethanol solution of PEG-4000, and the emulsification machine is perforated for 3 minutes;
  • step 6 The emulsion of step 5 is dried in a thermostatic oven at 60 ° C for 12 hours;
  • the nano-sized doxorubicin hydrochloride particles obtained in Examples 1 to 5 were uniformly mixed with an appropriate amount of microcrystalline cellulose, starch and magnesium stearate, and then tableted by a tableting machine to obtain the nano-sized doxorubicin hydrochloride tablets of the present invention.
  • Agent. The nano-sized doxorubicin hydrochloride particles obtained in Examples 1 to 5 were directly loaded into a hard gelatin shell to obtain a nano-sized doxorubicin hydrochloride capsule of the present invention.
  • the nano-sized doxorubicin hydrochloride granules obtained in Examples 1 to 5 were added to an aqueous solution, and stirred to obtain a nano-sized doxorubicin hydrochloride suspension of the present invention.
  • the suspension may be administered orally, or may be prepared as an injection according to the preparation standard of the injection.
  • nano-sized doxorubicin hydrochloride particles obtained in Examples 1 to 5 and an appropriate amount of Witepsol were prepared by a hot melt method to obtain the nano-sized doxorubicin hydrochloride suppository of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种纳米级阿霉素颗粒及其制备方法。该颗粒以二氧化硅气凝胶作为载体,阿霉素吸附在二氧化硅气凝胶的孔洞中,形成直径小于100nm的阿霉素颗粒,其中二氧化硅气凝胶的孔隙率为95-99%、孔径为10-50nm、比表面积为200-1000m2/g、密度为3-300kg/m3,组成网络的胶体颗粒直径为1-50nm。

Description

纳米级盐酸阿霉素及其制备方法 技术领域
本发明涉及抗肿瘤药物盐酸阿霉素, 具体涉及一种纳米级盐酸阿霉素及其 制备方法。
背景技术
阿霉素, 别名羟柔红霉素、 羟正丁霉素、 多柔比星, 是临床常用的蒽环类 抗恶性肿瘤抗生素, 抗肿瘤谱广、 活性强、 疗效好, 其作用机制主要是阿霉素 分子嵌入 DNA, 抑制核酸的合成。 阿霉素对机体可产生广泛的生物化学效应, 因此被广泛用于治疗急性白血病, 非何杰金氏淋巴瘤, 乳腺癌, 肺癌、 胃癌、 肝癌、 卵巢癌以及肉瘤等多种恶性肿瘤。 但是该药静脉注射后, 毒副作用大, 除骨髓抑制, 胃肠道毒性以及脱发外, 还可引起严重的心脏毒性, 表现为各种 心率失常, 累积量大时可发生不可逆的心 几损伤乃至充血性心力衰竭, 且分子 结构不稳定, 易发生水解、 光解等变化, 降低了疗效, 这些毒副作用使盐酸阿 霉素的临床应用受到了很大限制。
为克服上述缺点, 人们一直在寻找降低抗肿瘤药物盐酸阿霉素不良反应的 有效方法, 如改变药物剂型。 纳米药物的研究是药物研究中一个 4艮有生命力的 新方向, 药物主要通过包封和吸附等方法载入纳米药物载体中。 由于纳米药物 的粒径比毛细血管直径 (6-8μηι)还小,因而可以比较容易进入人体的各种组织器 官中进行控制释放, 大幅度提高药物的生物利用度。 研究表明, 肿瘤组织有直 径在 lOOnm到 lOOOnm的微孔, 而在绝大多数正常的健康组织中, 细胞间的连 接缝隙小于 10nm。 因此, 通过制备介于这两种尺寸之间的载药纳米粒子, 就可 能把治疗药物选择性地输送到肿瘤组织中。
发明内容
针对阿霉素口服生物利用度低, 以及现有的盐酸阿霉素注射剂毒副作用严 重的缺陷, 本发明的第一个目的是提供一种新型的纳米级盐酸阿霉素颗粒。
为实现上述目的, 本发明提供了一种纳米级盐酸阿霉素颗粒, 其特征在于: 以二氧化硅气凝胶作为盐酸阿霉素的载体, 所述二氧化硅气凝胶的孔隙率为 95 ~ 99%、孔径为 10 ~ 50nm、 比表面积为 200 ~ 1000m2/g、密度为 3 ~ 300kg/m3、 组成网络的胶体颗粒直径为 l ~50nm, 所述盐酸阿霉素以吸附在所述二氧化硅 气凝胶的孔洞中的形式形成直径小于 lOOnm的盐酸阿霉素颗粒。
进一步地, 所述盐酸阿霉素与所述二氧化硅气凝胶的质量比为 1: 0.5 ~20。 上述纳米级盐酸阿霉素颗粒可制成药学上可接受的口服制剂。
进一步地, 所述口服固体制剂可以是片剂、 丸剂、 散剂、 胶嚢剂、 颗粒剂 或混悬剂。
上述纳米级盐酸阿霉素颗粒可制成药学上可接受的注射剂或栓剂。
本发明的另一个目的是提供上述纳米级盐酸阿霉素颗粒的制备方法, 其特 征在于, 所述方法包括以下步骤:
( 1 )将盐酸阿霉素溶解于纯净水中;
(2) 向上述水溶液中加入二氧化硅气凝胶;
(3)待盐酸阿霉素与二氧化硅气凝胶吸附完全后, 干燥;
(4) 向上述干燥后的产物中加入纯净水, 并送入乳化机中乳化;
(5)将步骤(4)所得乳化液送入高压均质机中均质;
(6) 步骤(5)所得均质液干燥后即得纳米级盐酸阿霉素颗粒。
当步骤(2) 中所述的二氧化硅气凝胶具有疏水性时, 在加入水溶液之前需 先经 300 ~ 1000 °C热处理使其表面的烷基消失而具有亲水性。
进一步地, 步骤(1 ) 中所用的纯净水的量为 5~200ml/g盐酸阿霉素。
进一步地, 步骤(3) 中的干燥为自然干燥、 烘箱干燥或冷冻干燥。
进一步地, 步骤( 4 ) 中纯净水的加入量为 20 ~ 200ml/g盐酸阿霉素。
进一步地, 步骤(6) 中的干燥为喷雾干燥。
有益效果:
1、 本发明首次以二氧化硅气凝胶为载体成功制备了纳米级盐酸阿霉素, 与 现有的纳米级盐酸阿霉素不同, 该纳米级盐酸阿霉素的直径在 lOOnm以下, 达 到了材料学范畴的纳米级别, 是真正意义上的纳米级盐酸阿霉素。 尽管直径小 于 Ιμηι的粒子都被称为纳米粒, 然而人们倾向于研制粒径小于 lOOnm的粒子, 因为这些粒子会表现出一些独特的物理性质, 并因此显示出潜在不同的和有用 的生物学特性。 如, 受机体毛细血管的微循环以及细胞屏障所限, 能够进入血 液循环进而被机体吸收的药物粒子的最佳粒径为 10-100nm。 因此, 本发明的纳 米级盐酸阿霉素在生物利用度方面有了质的飞跃。
2、 本发明的纳米级盐酸阿霉素颗粒的载药量可以达到 90%以上, 是现有的 脂质体纳米粒、 聚合物纳米粒等所望尘莫及的, 其载药量可与纳米晶型药物混 悬剂相媲美, 但制作方法更筒单, 成本更低廉。
3、 本发明的纳米级盐酸阿霉素颗粒中, 盐酸阿霉素被装载在二氧化硅气凝 胶无数的纳米级空穴中, 形成不会团聚的独立 "纳米分散体", 结构极其稳定, 直 接破解了微纳米药物研究中因团聚不能成药、 难溶药物很难提高生物利用度等 制剂学国际难题。 该纳米级盐酸阿霉素是一种高效、 低毒、 经济、 具有"靶向功 能"的抗肿瘤药物,其以"纳米分散"的物理新机制使盐酸阿霉素的药效充分发挥、 口服生物利用度空前提高, 实现了盐酸阿霉素抗肿瘤药物治疗中由全身毒性到 向肿瘤部位的靶向聚集, 解决了国际国内经过数十年的努力但仍未解决的盐酸 阿霉素注射剂毒副作用大、 疗效差、 治疗费用高的国际制药难题。
4、 口服抗肿瘤药物一直被视为制药领域的最高端技术, 数十年久攻不克。 本发明提供的纳米级盐酸阿霉素, 实现了以纳米摄取为主要吸收方式的全新口 服机理,又以"纳米固体分散体"的全新结构使得盐酸阿霉素的口服生物利用度大 大提高。 盐酸阿霉素口服剂型取代注射剂型的出现能使人们多年期待的家庭化 疗真正成为实现, 带来抗肿瘤治疗药物的革命性进步。 而且, 在原临床药物与 原适应症不变或更广谱的前提下, 注射改口服符合用药潮流, 患者顺应性大大 提高, 易于被临床接受。 口服剂型同时克服了注射剂型制造过程复杂、 车间设 备和包装要求高、 生产成本高缺陷。
5、 本发明的纳米级盐酸阿霉素中作为载体所使用的二氧化硅气凝胶的前体 为廉价、 易得、 且已经在药物及食品中广泛应用、 具有国家及国际标准的使用 多年的硅基药食用辅料, 其也是《药用辅料手册》 中记载的辅料之一, 故本发 明的纳米级盐酸阿霉素的安全性是可靠的。
下面通过抗肿瘤棵鼠实验来说明本发明的纳米级盐酸阿霉素的抗肿瘤效果 : 实验中所使用的二氧化硅气凝胶均选自具有以下特性的二氧化硅气凝胶: 孔隙 率为 95 ~ 99%、 孔径为 10 ~ 50nm、 比表面积为 200 ~ 1000m2/g、 密度为 3 ~ 300kg/m3、 组成网络的胶体颗粒直径为 l ~ 50nm。
1. 材料: Balb/c棵鼠, 雌性, 体重为 (18±2 ) g, 购自北京维通利华实验 动物技术有限公司; 实验用盐酸多柔比星注射液, 购自深圳万乐药业有限公 司 (国药准字: H44024359 ); 实验用纳米阿霉素为本发明实施例 1的干粉。
2. 动物模型的建立 收集足量的肿瘤细胞, 用 PBS重悬在离心管中, 以 2xl06 cells/0. lml每点皮下接种于棵鼠背部。
3. 实验分组和给药方案 肿瘤模型建立后, 待棵鼠的肿瘤直径为 4 ~ 6mm, 按 5只 /组, 分组。 参考商品药说明书用法用量、 最新《临床肿瘤内科 手册》相关文献与前期实验结果, 口服生物利用度按照 20% ~ 30%, 确定给 药方案; 空白组(仅设一个, 为各组参考), 多柔比星注射组,每天给药一次, 腹腔注射; 纳米阿霉素设组, 口服灌胃给药, 每天 1次。
4.检测方法 给药后动物正常饲养, 每天观察动物一般状态, 记录动物 的体重。 每周 2次测量肿瘤直径(游标卡尺), 计算肿瘤体积(V ): v= ( ab2 ) /2(式中, a为肿瘤长径, b为肿瘤短径)。比较各组相对肿瘤( RTV ): RTV=vt/v0 , 式中, V。为分笼给药当天(DayO )测量所得肿瘤体积, vt为每一次测量时的 肿瘤体积;
用相对肿瘤体积计算药物对肿瘤体积的抑制率( VIR ): RTV治疗组
VIR= ( 1- ) l00%
RTV阴性对照组
5.实验结果
5.1阿霉素治疗人转移棵鼠肝癌 BEL-7402实验结果见表 1和图 4
表 1
相对肿瘤抑制率%
剂量 时间 4d 7d l id 14d 17d 21d 24d 28d 31d 5mg/kg A 46.42 50.28 69.66 65.71 72.68 68.01 67.36 71.11 59.78 口服纳米阿霉素
20mg/kg B 49.35 59.97 80.77 74.43 75.75 74.78 66.93 66.61 64.81 注射表柔比星 lmg/kg C 42.96 36.98 63.48 59.06 51.39 57.86 49.76 53.11 71.99 注: 口服納米阿霉素 5mg/kg组, 连续给药 14天, 停药 10天, 再给药 7天, 无死亡, 5 只 /组;
口服纳米阿霉素 20mg/kg组, 连续给药 14天, 停药 10天, 再给药 7天, 死亡 1只, 5只 /组;
注射表柔比星 lmg/kg, 连续给药 14天, 停药 10天, 再给药 7天, 一只出现腹水死 亡, 6只 /组。 5.2阿霉素治疗人转移棵鼠非小细胞肺癌 NCI-1299实验结果见表 2和图 5
表 2
相对肿瘤抑制率%
剂量 时间 4d 7d l id 14d 17d 21d 口服纳米阿霉素
10mg/kg 17.65 11.87 -0.77 28.87 注: 口服纳米阿霉素 lOmg/kg, 连续给药 14天, 停药 7天, 死亡 2只, 5只 /组。
5.3结果讨论
1、 实验中根据抗肿瘤药物尽 <量大剂量使用, 以求快速杀灭癌细胞特点, 用 药量按照最大耐受度 (MTD)设计, 使阳性对照商品药物抗癌效果达到最好水平, 在比较商品药物与本发明口服纳米药物抗癌效果的同时, 考察比较两者的安全 性; 寸'
2、 实验结果表明: 本发明口服纳米制剂的相对肿瘤抑制率优于商品注射药 物的水平, 毒副作用也明显降低, 提示了本发明口服纳米药物有提高患者生活 质量和延长生存期的良好效果。
附图说明
图 1是本发明用二氧化硅气凝胶的电镜图片;
图 2是盐酸阿霉素原料药的电镜图片;
图 3是本发明的纳米级盐酸阿霉素的电镜图片;
图 4是抗肿瘤棵鼠实验研究结果中人转移棵鼠肝癌 BEL-7402的相对肿瘤抑 制率曲线图;
图 5是抗肿瘤棵鼠实验研究结果中人转移棵鼠非小细胞肺癌 NCI-1299的相 对肿瘤抑制率曲线图。
具体实施方式
下面结合附图对本发明做进一步的详细说明, 以下实施例是对本发明的解 释, 本发明并不局限于以下实施例。
以下实施例中所使用的二氧化硅气凝胶均选自具有以下特性的二氧化硅气 凝胶: 孔隙率为 95 ~ 99%、 孔径为 10 ~ 50nm、 比表面积为 200 ~ 1000m2/g、 密 度为 3 ~ 300kg/m3、 组成网络的胶体颗粒直径为 1 ~ 50nm。
实施例 1 本实施例的纳米级盐酸阿霉素按以下方法制备:
1、 盐酸阿霉素原料药(武汉大华伟业药物有限公司) lg, 加入纯净水 30ml 溶解;
2、 加入 500 °C热处理后的二氧化硅气凝胶 3g进行吸附;
3、 待吸附完全后, 于 60°C烘箱干燥;
4、 干燥后, 加入 100ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ), 400bar, 循环 6次, lOmin;
6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/h, 喷头: 0.75mm, 干燥后得到纳米级盐酸阿霉素 颗粒。
实施例 2
本实施例的纳米级盐酸阿霉素按以下方法制备:
1、 盐酸阿霉素原料药 (武汉大华伟业药物有限公司) lg, 加入纯净水 5ml 完全溶解;
2、 加入 1000 °C热处理后的二氧化硅气凝胶 0.5g进行吸附;
3、 待吸附完全后, 自然干燥;
4、 干燥后, 力口入 20ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ), 400bar, 循环 8次, lOmin;
6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/h, 喷头: 0.75mm, 干燥后得到纳米级盐酸阿霉素 颗粒。
实施例 3
本实施例的纳米级盐酸阿霉素按以下方法制备:
1、盐酸阿霉素原料药(武汉大华伟业药物有限公司) lg,加入纯净水 150ml 完全溶解;
2、 加入亲水性二氧化硅气凝胶 15g进行吸附;
3、 待吸附完全后, 冷冻干燥;
4、 干燥后, 加入 150ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ), 400bar, 循环 7次, lOmin; 6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/h, 喷头: 0.75mm, 干燥后得到纳米级盐酸阿霉素 颗粒。
实施例 4
本实施例的纳米级盐酸阿霉素按以下方法制备:
1、盐酸阿霉素原料药(武汉大华伟业药物有限公司) lg,加入纯净水 200ml 完全溶解;
2、 加入 300 °C热处理后的二氧化硅气凝胶 20g进行吸附;
3、 待吸附完全后, 于 60°C烘箱干燥;
4、 干燥后, 加入 200ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ), 400bar, 循环 8次, lOmin;
6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/h, 喷头: 0.75mm, 干燥后得到纳米级盐酸阿霉素 颗粒。
实施例 5
本实施例的纳米级盐酸阿霉素按以下方法制备:
1、 盐酸阿霉素原料药(武汉大华伟业药物有限公司) lg, 加入纯净水 70ml 完全溶解;
2、 加入 700°C热处理后的二氧化硅气凝胶 7g进行吸附;
3、 待吸附完全后, 冷冻干燥;
4、 另取 6g的 PEG-4000加入 400ml的无水乙醇中溶解;
5、 将步骤 3冻干后的固体加入上述 PEG-4000的乙醇溶液中, 超声乳化机 孔化 3min;
6、 将步骤 5的乳化液于 60°C电热恒温干燥箱中干燥 12h;
7、研磨步骤 6干燥后的固体, 并过 200目筛,得到纳米级盐酸阿霉素颗粒。 实施例 6
实施例 1至 5得到的纳米级盐酸阿霉素颗粒与适量的微晶纤维素、 淀粉和 硬脂酸镁混合均匀后, 用压片机压片, 得到本发明的纳米级盐酸阿霉素片剂。 将实施例 1至 5得到的纳米级盐酸阿霉素颗粒直接装填入硬胶嚢壳中, 得 到本发明的纳米级盐酸阿霉素胶嚢剂。
实施例 8
实施例 1至 5得到的纳米级盐酸阿霉素颗粒加入水溶液中, 搅拌均勾, 得 到本发明的纳米级盐酸阿霉素混悬液。 该混悬液可以直接口服, 也可以按照注 射剂的制备标准制成注射剂。
实施例 9
实施例 1至 5得到的纳米级盐酸阿霉素颗粒与适量的 Witepsol,采用热熔法 制备得到本发明的纳米级盐酸阿霉素栓剂。

Claims

权 利 要 求 书
1、 一种纳米级盐酸阿霉素颗粒, 其特征在于: 以二氧化硅气凝胶作为盐酸 阿霉素的载体, 所述二氧化硅气凝胶的孔隙率为 95 ~ 99%、 孔径为 10~50nm、 比表面积为 200~ 1000m2/g、 密度为 3 ~300kg/m3、 组成网络的胶体颗粒直径为 1 ~50nm,所述盐酸阿霉素以吸附在所述二氧化硅气凝胶的孔洞中的形式形成直 径小于 lOOnm的盐酸阿霉素颗粒。
2、 根据权利要求 1所述的纳米级盐酸阿霉素颗粒, 其特征在于: 所述盐酸 阿霉素与所述二氧化硅气凝胶的质量比为 1: 0.5 ~20。
3、 根据权利要求 1或 2所述的纳米级盐酸阿霉素颗粒制成的药学上可接受 的口服制剂。
4、 根据权利要求 3所述的口服制剂, 其特征在于: 所述口服制剂为片剂、 丸剂、 散剂、 胶嚢剂、 颗粒剂或混悬剂。
5、 根据权利要求 1或 2所述的纳米级盐酸阿霉素颗粒制成的药学上可接受 的注射剂或栓剂。
6、 权利要求 1至 5任意一项所述的纳米级盐酸阿霉素颗粒的制备方法, 其 特征在于, 所述方法包括以下步骤:
( 1 )将盐酸阿霉素溶解于纯净水中;
(2) 向上述水溶液中加入二氧化硅气凝胶;
(3)待盐酸阿霉素与二氧化硅气凝胶吸附完全后, 干燥;
(4) 向上述干燥后的产物中加入纯净水, 并送入乳化机中乳化;
(5)将步骤(4)所得乳化液送入高压均质机中均质;
(6) 步骤(5)所得均质液干燥后即得纳米级盐酸阿霉素颗粒。
7、 权利要求 6所述的纳米级盐酸阿霉素颗粒的制备方法, 其特征在于: 当 步骤(2) 中所述的二氧化硅气凝胶具有疏水性时, 在加入水溶液之前需先经 300 ~ 1000 °C热处理使其具有亲水性。
8、 权利要求 6所述的纳米级盐酸阿霉素颗粒的制备方法, 其特征在于: 步 骤( 1 ) 中所用的纯净水的量为 5 ~200ml/g盐酸阿霉素。
9、 权利要求 6所述的纳米级盐酸阿霉素颗粒的制备方法, 其特征在于: 步 骤( 4 ) 中纯净水的加入量为 20 ~ 200ml/g盐酸阿霉素。
10、 权利要求 6所述的纳米级盐酸阿霉素颗粒的制备方法, 其特征在于: 步骤(6) 中的干燥为喷雾干燥。
PCT/CN2013/089202 2012-12-13 2013-12-12 纳米级盐酸阿霉素及其制备方法 WO2014090173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210537087.7A CN102961341B (zh) 2012-12-13 2012-12-13 纳米级盐酸阿霉素及其制备方法
CN201210537087.7 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014090173A1 true WO2014090173A1 (zh) 2014-06-19

Family

ID=47791961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089202 WO2014090173A1 (zh) 2012-12-13 2013-12-12 纳米级盐酸阿霉素及其制备方法

Country Status (2)

Country Link
CN (1) CN102961341B (zh)
WO (1) WO2014090173A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037249A1 (pt) * 2014-09-11 2016-03-17 Universidade Estadual De Campinas - Unicamp Processo de obtencão de um sistema híbrido, sistema híbrido e seu uso
CN111991348A (zh) * 2020-09-01 2020-11-27 江西省科达动物药业有限公司 一种多拉菌素缓释微囊注射剂

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961341B (zh) * 2012-12-13 2014-10-08 清华大学深圳研究生院 纳米级盐酸阿霉素及其制备方法
CN102961750B (zh) * 2012-12-13 2015-01-07 清华大学深圳研究生院 二氧化硅气凝胶在制药中的应用
WO2017075777A1 (zh) * 2015-11-05 2017-05-11 清华大学深圳研究生院 一种应用二氧化硅气凝胶制备纳米级农药制剂的方法
CN107604752B (zh) * 2017-09-18 2020-04-03 广西工业职业技术学院 一种显色抗菌蔗糖包装纸的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1175904A (zh) * 1995-02-22 1998-03-11 赫彻斯特股份公司 无机气凝胶在制药中的用途
CN102961341A (zh) * 2012-12-13 2013-03-13 清华大学深圳研究生院 纳米级盐酸阿霉素及其制备方法
CN102961750A (zh) * 2012-12-13 2013-03-13 清华大学深圳研究生院 二氧化硅气凝胶在制药中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082221A1 (en) * 2005-02-03 2006-08-10 Cinvention Ag Drug delivery materials made by sol/gel technology
US9125872B2 (en) * 2009-10-13 2015-09-08 Yosry A. Attia Polyethylene glycol aerogels for targeted delivery of pharmaceutical drubs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1175904A (zh) * 1995-02-22 1998-03-11 赫彻斯特股份公司 无机气凝胶在制药中的用途
CN102961341A (zh) * 2012-12-13 2013-03-13 清华大学深圳研究生院 纳米级盐酸阿霉素及其制备方法
CN102961750A (zh) * 2012-12-13 2013-03-13 清华大学深圳研究生院 二氧化硅气凝胶在制药中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU , YANCHEN ET AL.: "Recent progress of nano-porous silica as drug carrier", JOURNAL OF SHENYANG PHARMACEUTICAL UNIVERSITY, vol. 27, no. 12, December 2010 (2010-12-01), pages 961 - 966 *
ZENG MIAO ET AL.: "Adsorption and release of gentamicin sulfate for silica aerogels", JOURNAL OF THE CHINESE CERAMIC SOCIETY, vol. 35, no. 8, August 2007 (2007-08-01), pages 1081 - 1085 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037249A1 (pt) * 2014-09-11 2016-03-17 Universidade Estadual De Campinas - Unicamp Processo de obtencão de um sistema híbrido, sistema híbrido e seu uso
CN111991348A (zh) * 2020-09-01 2020-11-27 江西省科达动物药业有限公司 一种多拉菌素缓释微囊注射剂
CN111991348B (zh) * 2020-09-01 2023-07-25 江西省科达动物药业有限公司 一种多拉菌素缓释微囊注射剂

Also Published As

Publication number Publication date
CN102961341B (zh) 2014-10-08
CN102961341A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2014090173A1 (zh) 纳米级盐酸阿霉素及其制备方法
Zhou et al. Design and pharmaceutical applications of porous particles
EP2790682B1 (en) Nanoparticles comprising metallic and hafnium oxide materials, preparation and uses thereof
EP2508207B1 (en) Nanoparticles loaded with chemotherapeutic antitumoral Drug
CA2371912A1 (en) Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
Su et al. Treatment of metastatic lung cancer via inhalation administration of curcumin composite particles based on mesoporous silica
Li et al. Temozolomide encapsulated and folic acid decorated chitosan nanoparticles for lung tumor targeting: improving therapeutic efficacy both in vitro and in vivo
CN102078312A (zh) 一种姜黄素类化合物干粉吸入剂及其制备方法和用途
KR20120089735A (ko) 설포부틸 에테르 사이클로덱스트린 염을 함유하는 내부 수상을 갖는 리포좀
Chen et al. Co-delivery of hydrophilic/hydrophobic drugs by multifunctional yolk-shell nanoparticles for hepatocellular carcinoma theranostics
Xu et al. Formulation and characterization of spray-dried powders containing vincristine-liposomes for pulmonary delivery and its pharmacokinetic evaluation from in vitro and in vivo
CN102370622A (zh) 一种载药物纳米粒及其制备方法和应用
WO2010075664A1 (zh) 难溶性药物高效长效缓释制剂及其制法
CN103083235A (zh) 一种杨梅素纳米混悬剂及其制备方法
CN113384530B (zh) 一种多糖核心Nanocells及其制备方法与应用
CN102058566A (zh) 一种冬凌草甲素类成分干粉吸入剂及其制备方法和用途
WO2014090168A1 (zh) 纳米级多烯紫杉醇及其制备方法
WO2010075663A1 (zh) 一种水飞蓟素高效长效制剂及其制法
Ke et al. Preparation and pharmacological effects of minor ginsenoside nanoparticles: a review
WO2014090174A1 (zh) 纳米级卡培他滨及其制备方法
WO2007140681A1 (fr) Utilisation de cucurbitacines ou de compositions à base de cucurbitacine pour la préparation de médicaments destinés à augmenter le nombre de leucocytes
JP2013505291A (ja) オキサリプラチンのナノ粒子及びその製造方法
WO2014090171A1 (zh) 纳米级环磷酰胺及其制备方法
CN110664784A (zh) 一种复合纳米给药系统及其在妇科肿瘤治疗中的应用
WO2014090169A1 (zh) 纳米级紫杉醇及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863318

Country of ref document: EP

Kind code of ref document: A1