WO2014090169A1 - 纳米级紫杉醇及其制备方法 - Google Patents

纳米级紫杉醇及其制备方法 Download PDF

Info

Publication number
WO2014090169A1
WO2014090169A1 PCT/CN2013/089181 CN2013089181W WO2014090169A1 WO 2014090169 A1 WO2014090169 A1 WO 2014090169A1 CN 2013089181 W CN2013089181 W CN 2013089181W WO 2014090169 A1 WO2014090169 A1 WO 2014090169A1
Authority
WO
WIPO (PCT)
Prior art keywords
paclitaxel
nanoscale
silica aerogel
particles according
nano
Prior art date
Application number
PCT/CN2013/089181
Other languages
English (en)
French (fr)
Inventor
张旭旭
蒋宇扬
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Publication of WO2014090169A1 publication Critical patent/WO2014090169A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention relates to an antitumor drug paclitaxel, in particular to a nanometer paclitaxel and a preparation method thereof. Background technique
  • Paclitaxel is a diterpenoid compound extracted from the bark of the Taxus genus Taxus. It is a new kind of microtubule stabilizer, and it is also the best anti-tumor drug with the best efficacy and clinical use in the world. It is considered by the National Cancer Institute to be the most important progress in tumor chemotherapy in the past 15-20 years. The drug has been listed as a first-line drug for a variety of tumors.
  • paclitaxel Although paclitaxel has good antitumor activity, its solubility in water is small. According to reports in the literature, paclitaxel is soluble in organic solvents such as sterol, ethanol, and dimethyl sulfoxide, and the solubility in water is ⁇ 3 ( ⁇ g/mL. Such a small solubility makes paclitaxel a dosage form for antitumor drugs. The restriction, because paclitaxel oral preparations can not be absorbed, paclitaxel has been used intravenously since ancient times.
  • Nanoparticles also known as millipellets (including nanospheres and nanoquinones), are nanoscale colloidal drug delivery systems. Drug-loaded nanosystems should meet the following criteria: Can be aggregated and maintained at designated sites, with appropriate release rates It is stable in nature and convenient to use. The ideal nanoparticle should have a higher drug loading and encapsulation efficiency, suitable preparation conditions and purification methods.
  • the carrier can be biodegradable, low toxicity or non-toxic, and has appropriate particle shape and particle size, and long Body cycle time.
  • a first object of the present invention is to provide a novel nano-scale paclitaxel granule.
  • the present invention provides a nano-scale paclitaxel granule, characterized in that: silica aerogel is used as a carrier of paclitaxel, and the porosity of the silica aerogel is 95 to 99%, and the pore diameter is a colloidal particle having a specific surface area of 200 to 1000 m 2 /g and a density of 3 to 300 kg/m 3 and a network having a diameter of 1 to 50 nm, wherein the paclitaxel is adsorbed on the silica aerogel The form in the pores forms paclitaxel particles having a diameter of less than 100 nm.
  • the mass ratio of the paclitaxel to the silica aerogel is 1:0.5-20.
  • the above nanoscale paclitaxel granules can be formulated into pharmaceutically acceptable oral preparations.
  • the oral preparation is a tablet, a pill, a powder, a capsule, a granule or a suspension.
  • the above nanoscale paclitaxel granules can be formulated into pharmaceutically acceptable injectables or suppositories.
  • Another object of the present invention is to provide a method for producing the above-described nano-scale paclitaxel particles, characterized in that the method comprises the following steps:
  • the silica aerogel described in the step (2) is hydrophobic, it is subjected to heat treatment at 300 to 1000 ° C before the addition of the ethanol solution to cause the alkyl group on the surface to disappear and be hydrophilic.
  • the ratio of the mass of the paclitaxel to the volume of the anhydrous ethanol is 1:5 to 200.
  • the drying in the step (3) is natural drying, oven drying or freeze drying.
  • the amount of purified water added in the step (4) is 20 to 200 ml/g of paclitaxel.
  • the drying in the step (6) is spray drying.
  • the present invention successfully prepares nanometer paclitaxel by using silica aerogel as a carrier. Unlike the existing nanometer paclitaxel, the nanometer paclitaxel has a diameter of less than 100 nm and reaches the nanometer level of the material science category. Nano-level paclitaxel in the true sense. Although particles smaller than ⁇ are called nanoparticles, it is preferred to develop particles with a particle size of less than 100 nm because these particles exhibit some unique physical properties and thus exhibit potentially different and useful biological properties. . For example, due to the microcirculation of the capillaries of the body and the restriction of the cell barrier, the optimal particle size of the drug particles that can enter the blood circulation and be absorbed by the body is 10 to 100 nm. Therefore, the nano-scale paclitaxel of the present invention has a qualitative leap in bioavailability.
  • the nanometer paclitaxel granules of the invention can be loaded with more than 90%, which is unmatched by the existing liposome nanoparticles, polymer nanoparticles, etc., and the drug loading amount can be suspended with the nanocrystalline drug.
  • the agent is comparable, but the production method is more simple and cheaper.
  • nano-scale paclitaxel particles of the invention paclitaxel is loaded into numerous nano-scale cavities of silica aerogel, forming an independent "nano-dispersion" which does not agglomerate, and the structure is extremely stable, directly cracking micro
  • nano-drug research it is difficult to improve the bioavailability and other international problems in preparation due to agglomeration and insoluble drugs.
  • the nano-level paclitaxel is a highly effective, low-toxic, economical, "targeting function", anti-tumor drug.
  • this low-toxicity is derived from two aspects: First, the use of the harmful solvent polyoxyethylene castor oil in the injection form is avoided, so that the bioavailability of the drug is increased and the toxicity is greatly reduced; The targeting effect of the systemic action of the paclitaxel drug on the tumor site reduces systemic toxicity.
  • nanometer paclitaxel provided by the invention realizes a new oral mechanism with nano-uptake as the main absorption mode, and the new structure of "nano-solid dispersion" makes the solubility of paclitaxel greatly increased, and can be absorbed orally, breaking through the paclitaxel oral absorption.
  • the international exclusion zone for the first time, directly achieved the bioavailability of oral replacement injections at the material level. Since the oral dosage form does not require the use of a cosolvent polyoxyethylene castor oil, it reduces toxic side effects and expands the applicable population.
  • Paclitaxel oral dosage form can replace the emergence of injection forms Description
  • the family chemotherapy that people have been expecting for many years has truly become a reality, bringing revolutionary advances in anti-cancer therapeutics.
  • the injection is changed to the oral administration trend, and the patient compliance is greatly improved, and it is easy to be clinically accepted.
  • the oral dosage form overcomes the defects of the injection molding type, the manufacturing process is complicated, the workshop equipment and packaging requirements are high, and the production cost is high.
  • the precursor of the silica aerogel used as a carrier in the nanometer paclitaxel of the present invention is a silicon base which is inexpensive, readily available, and has been widely used in medicines and foods, and has many years of use in national and international standards.
  • the medicinal edible excipient which is also one of the excipients described in the Handbook of Pharmaceutical Excipients, is therefore reliable in the safety of the nanometer paclitaxel of the present invention.
  • the inventors conducted a comparative study on the bioavailability of animals compared with the commercial injection dosage form, which was in accordance with the pharmacopoeia without the participation of excipients such as castor oil and high molecular polymer.
  • the standard method determines that the absolute bioavailability exceeds 20%, and the release behavior is equivalent to the injection dosage form.
  • the silica aerogel is used as a drug delivery system to solve the problem of the bioavailability of paclitaxel.
  • the oral inhibition rate of oral nano-formulations reached 80%, and its toxicity was much less than that of the similar anti-tumor injections of comparative studies.
  • the pharmacological action of the nano-scale paclitaxel of the present invention is illustrated by experiments.
  • the silica aerogels used in the experiments are all selected from silica aerogels having the following characteristics: porosity of 95 to 99%, and pore diameter 10 ⁇ 50nm, specific surface area of 200 ⁇ 1000m 2 /g, density of 3 ⁇ 300kg / m 3 , the colloidal particles of the network are 1 ⁇ 50nm.
  • the bioavailability study result of the preparation is the final standard for evaluating the preparation.
  • the clinical use of paclitaxel injection is a reference preparation, and the detection is large.
  • the paclitaxel concentration in rat plasma was investigated for the bioavailability of paclitaxel oral administration system using silica aerogel as a basic excipient in rats. The purpose of this study was to investigate whether the nanometer paclitaxel oral dosage form can promote the oral absorption of paclitaxel.
  • Paclitaxel bulk drug (Yunnan Hande Pharmaceutical Co., Ltd.); paclitaxel injection (Huangshi Feiyun Pharmaceutical Co., Ltd.); nano-level paclitaxel (Example 1); sterol (chromatographic grade); acetonitrile (chromatographic grade); diazepam ( Diazepam, DZP, China Biological Products Testing and Inspection Institute; other reagents were of analytical grade; 15 healthy male SD rats, weighing (210 soil 20) g, Guangdong Medical Laboratory Animal Center. Instruction manual
  • High performance liquid chromatography (Dalian Elite); vortex mixer; benchtop high speed centrifuge; benchtop ultrasound system; electronic analytical balance; high speed homogenizer (Shanghai Sower Instrument Co., Ltd.); ultrasonic cleaner; .
  • Preparation of paclitaxel stock solution accurately weigh 10 mg of paclitaxel, place it in a 50 ml volumetric flask, dissolve it with acetonitrile and dilute to the mark, and shake it to obtain a paclitaxel stock solution of 200 g/ml.
  • the amount of the stock solution was accurately weighed and gradually diluted with decyl alcohol to a standard solution of paclitaxel at concentrations of 2.5, 5.0, 10.0, 20.0, 40.0 g/ml, and stored in a refrigerator at 4 ° C for use.
  • Preparation of internal standard solution Weigh about 10mg of diazepam reference substance, accurately weighed, placed in a 100ml volumetric flask, dissolved in decyl alcohol and diluted to the mark, shake well to obtain an internal standard stock solution with a concentration of lOO g/ml . Precisely measure the appropriate amount of the stock solution, dilute with sterol to make lO g / ml of the internal standard reference solution, store in a refrigerator at 4 ° C, ready for use.
  • the blank rat plasma ⁇ was added, and the paclitaxel series concentration solution was added to prepare paclitaxel plasma standard samples with the concentration of 2.5, 5.0, 10.0, 20.0, 40.0 g/ml. Others were operated according to the method of “pretreatment of plasma samples”. curve.
  • Group 1 Twelve healthy male Sprague-Dawley rats were randomly divided into 4 groups, 3 in each group.
  • group 1 the injection of paclitaxel was injected into the tail vein at 10 mg/kg; in group 2, the nanometer paclitaxel suspension was administered at a dose of 40 mg/kg; and the third group was administered with paclitaxel at a dose of 40 mg/kg.
  • Drug solution; Group 4 blank serum group was collected at 1, 3, 6, 8, 24 h after administration. 0.5 ml of blood was taken each time, placed in a heparin-coated EP tube, and the plasma was immediately centrifuged and stored in a refrigerator at -20 ° C for testing.
  • the standard curve of paclitaxel content in plasma was obtained by linear regression of the peak area ratio of paclitaxel to diazepam A TAX /A DAP (Y).
  • the results showed that the paclitaxel concentration ranged from 2.5 to 40.0 g/ml, and the peak area ratio of paclitaxel to diazepam A TAX /A DAP (Y) had a good linear relationship with paclitaxel concentration C (X).
  • the mean blood concentration-time curve of the rat paclitaxel suspension after intragastric administration and intravenous administration is shown in Fig. 4 to Fig. 6.
  • mice Balb/c rats, female, weighing (18 ⁇ 2) g, purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd.; experimental paclitaxel injection purchased from Huangshi Feiyun Pharmaceutical Co., Ltd. Word: H20056466); Experimental nano-paclitaxel is the dry powder obtained in Example 1 of the present invention.
  • mice were 4 ⁇ 6 mm, grouped according to 5 / group.
  • the paclitaxel group was administered once a day for 3 days, intraperitoneal injection; paclitaxel raw material group, oral gavage, once a day; nano-paclitaxel group, oral gavage, once a day.
  • VIR tumor inhibition rate
  • VIR ( 1- ) 100%
  • Paclitaxel injection lOmg/kg C 34.37 12.7 37.57 50.99 Note: Oral nano paclitaxel 80mg/kg, continuous administration for 14 days, no death, 5 / group;
  • the anti-tumor drugs should be used as large as possible in order to quickly kill the characteristics of the cancer cells.
  • the dosage is designed according to the maximum tolerance (MTD), so that the anti-cancer effect of the positive control commercial drugs reaches the best level. While the anti-cancer effect of the drug and the oral nano-drug of the present invention is compared, the safety of the two drugs is compared, and the therapeutic dose of the human tumor-bearing tumor-bearing mouse is the most direct method for examining the safety of the drug in preclinical studies of anti-tumor drugs;
  • the tumor-inhibiting contrast test of the commercial paclitaxel injection and the oral nano-paclitaxel of the present invention was carried out by using three kinds of human transplanted tumor cells respectively, and the mortality rate of the commercial paclitaxel injection group was higher than that of the oral nano-paclitaxel group, and the therapeutic effect was obtained. Lower than the oral group;
  • Paclitaxel injection Sichuan Taiji Group Co., Ltd., batch number: 12100031, specifications: 30mg/5ml. Dilute to the desired concentration with physiological saline at the time of use.
  • Nano-paclitaxel The dry powder obtained in the examples of the present invention is now used for current use. After being weighed with an analytical balance, distilled water is added thereto, and ultrasonically dissolved into a suspension, and then administered by intragastric administration.
  • Source, germline, strain BALB/c mice, provided by the Experimental Animal Center of the Chinese Academy of Military Medical Sciences.
  • Model control group oral administration, normal saline, 1 day/time
  • the cultured human lung cancer A549 suspension was collected at a concentration of 1 ⁇ 10 7 cells/ml, and each of 0.1 ml was inoculated subcutaneously in the right axilla of the mouse.
  • the diameter of the transplanted tumor was measured with a vernier caliper. After 11 days of inoculation, the animals were randomly divided into groups of 6 animals each growing to 50-75 mm 3 . At the same time, the rats in each group were started to be administered. The dosing regimen and the group were shown in the dosing regimen. The antitumor effect of the test samples was dynamically observed using the method of measuring the tumor diameter. After the end of the administration, the mice were sacrificed and the tumor pieces were surgically removed and weighed.
  • the formula for calculating tumor volume (TV) is:
  • TV l/2xaxb 2 where a and b represent the length and width, respectively.
  • V t V /V. V.
  • V t the tumor volume at each measurement.
  • Evaluation index of antitumor activity Relative tumor growth rate T/C (%), calculated as follows:
  • T/C (%) lOO T
  • RTV treatment group RTV
  • C RTV model group RTV
  • Tumor growth inhibition rate (%) Tumor growth inhibition rate (%), the calculation formula is as follows:
  • Model group mean tumor weight - mean tumor weight of the drug-administered group
  • Tumor growth inhibition rate l 00%
  • Model group mean tumor weight
  • Figure 1 is an electron micrograph of a silica aerogel of the present invention
  • Figure 2 is an electron micrograph of a paclitaxel bulk drug
  • Figure 3 is an electron micrograph of nanoscale paclitaxel of the present invention.
  • Fig. 4 is a graph showing the concentration of paclitaxel blood after injection of a paclitaxel injection preparation at a dose of 10 mg/kg;
  • Figure 5 is a graph showing the blood concentration of paclitaxel after administration of the nano-taxol oral suspension of the present invention at 40 mg/kg-times;
  • Figure 6 is a graph showing the blood concentration of paclitaxel after administration of a drug solution of paclitaxel at a dose of 40 mg/kg;
  • Figure 7 is a graph showing the relative tumor inhibition rate of human metastatic rat liver cancer BEL-7402 in an anti-tumor mouse experimental study
  • Figure 8 is a graph showing the relative tumor inhibition rate of human metastatic rat non-small cell lung cancer NCI-1299 in the experimental results of anti-tumor mice;
  • Figure 9 is a graph showing the relative tumor inhibition rate of human metastatic rat breast cancer MCF-7 in the results of an anti-tumor mouse experimental study.
  • silica aerogels used in the following examples are all selected from silica aerogels having the following characteristics: porosity of 95 to 99%, pore diameter of 10 to 50 nm, and specific surface area of 200 to 1000 m 2 /g.
  • the density of the colloidal particles of the network is 3 ⁇ 300kg / m 3 , and the diameter of the colloidal particles is 1 ⁇ 50nm.
  • nanoscale paclitaxel of this example was prepared as follows:
  • the homogenized liquid was spray-dried in an experimental spray dryer (Shanghai Shunyi Science and Technology SP-1500), parameters: temperature 130 ° C, flow rate 500 ml / h, nozzle: 0.75 mm, dried to obtain nano-level paclitaxel particles.
  • nanoscale paclitaxel of this example was prepared as follows:
  • Paclitaxel bulk drug (Yunnan Hande Pharmaceutical Co., Ltd.) lg, dissolved in 5 ml of absolute ethanol; 2. Add 0.5 g of silica aerogel after heat treatment at 1000 °C for adsorption;
  • the homogenized liquid was spray-dried in an experimental spray dryer (Shanghai Shunyi Science and Technology SP-1500), parameters: temperature 130 ° C, flow rate 500 ml / h, nozzle: 0.75 mm, dried to obtain nano-level paclitaxel particles.
  • nanoscale paclitaxel of this example was prepared as follows:
  • Paclitaxel bulk drug (Yunnan Hande Pharmaceutical Co., Ltd.) lg, dissolved in 150 ml of absolute ethanol;
  • the homogenized liquid was spray dried in an experimental spray dryer (Shanghai Shunyi Science and Technology SP-1500), parameters: temperature 130 ° C, flow rate 500 ml / H, nozzle: 0.75 mm, dried to obtain nano-level paclitaxel particles.
  • nanoscale paclitaxel of this example was prepared as follows:
  • Paclitaxel bulk drug (Yunnan Hande Pharmaceutical Co., Ltd.) lg, dissolved in 200 ml of absolute ethanol;
  • the homogenized liquid was spray-dried in an experimental spray dryer (Shanghai Shunyi Science and Technology SP-1500), parameters: temperature 130 ° C, flow rate 500 ml / h, nozzle: 0.75 mm, dried to obtain nano-level paclitaxel particles.
  • nanoscale paclitaxel of this example was prepared as follows:
  • step 3 The solid after lyophilization in step 3 is added to the above ethanol solution of PEG-4000, and the emulsification machine is perforated for 3 minutes;
  • step 6 The emulsion of step 5 is dried in a thermostatic oven at 60 ° C for 12 hours;
  • nano-sized paclitaxel granules obtained in Examples 1 to 5 were uniformly mixed with an appropriate amount of microcrystalline cellulose, starch and magnesium stearate, and then tableted by a tableting machine to obtain a nano-sized paclitaxel tablet of the present invention.
  • nano-sized paclitaxel granules obtained in Examples 1 to 5 were directly loaded into a hard capsule, to obtain a nano-sized paclitaxel capsule of the present invention.
  • the nano-sized paclitaxel granules obtained in Examples 1 to 5 were added to an aqueous solution and stirred to obtain a nano-scale paclitaxel suspension of the present invention.
  • the suspension may be administered orally, or may be prepared as an injection according to the preparation standard of the injection.
  • nano-scale paclitaxel particles obtained in Examples 1 to 5 and an appropriate amount of Witepsol were prepared by a hot melt method to obtain a nano-scale paclitaxel suppository of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

纳米级紫杉醇颗粒及其制备方法,所述纳米级紫杉醇颗粒以二氧化硅气凝胶作为紫杉醇的载体,制备方法如下:先将紫杉醇溶解于无水乙醇中,再加入二氧化硅气凝胶,待吸附完全后,干燥,之后加入纯净水,并送入乳化机中乳化,再经高压均质机均质,所得均质液干燥后即得纳米级紫杉醇颗粒。

Description

说 明 书
纳米级紫杉醇及其制备方法 技术领域
本发明涉及抗肿瘤药物紫杉醇, 具体涉及一种纳米级紫杉醇及其制备方法。 背景技术
紫杉醇是从红豆杉科红豆杉属植物的树皮中提取得到的二萜类化合物。 它 是一种新型的微管稳定剂, 也是目前国际上疗效最好、 临床使用量最大的抗肿 瘤药物, 被美国国立癌症研究所认为是近 15 ~ 20年来肿瘤化疗的最重要进展, 目前美国已经将该药列为多种肿瘤的一线药物。
尽管紫杉醇具有良好的抗肿瘤活性, 但其在水中的溶解度 4艮小。 据文献报 道, 紫杉醇在曱醇、 乙醇、 二曱基亚砜等有机溶剂中可溶, 而在水中的溶解度 < 3(^g/mL。如此小的溶解度使紫杉醇作为抗肿瘤药物的使用剂型受到了限制, 由于紫杉醇口服制剂无法吸收, 自古以来, 紫杉醇一直沿用静脉注射的给药方 式。 现用于临床的紫杉醇制剂多用聚氧乙烯蓖麻油- 乙醇(1 : 1)配制的溶液, 用 前先稀释, 此时因溶剂的转换, 紫杉醇易析出沉淀, 所用的增溶剂聚氧乙烯蓖 麻油易致高敏性、 神经毒性、 肾毒性、 心脏毒性等不良反应, 且在给药过程中 能溶解静脉输液管中的增塑剂, 即使同时使用氢化可的松, 过敏反应的发生率 仍达到 10% ~ 30%, 大大限制了其临床应用。
近年来, 通过修饰或将紫杉醇包裹于不同载体材料中制成不含聚氧乙烯蓖 麻油的并能显著提高紫杉醇溶解度的纳米粒的研究已成为当前的热点。 纳米粒 又称毫敫粒 (;包括纳米球和纳米嚢)是纳米级的胶态给药系统, 载药纳米体系应 符合以下标准: 能聚集和保持在指定的部位、 有适宜的释药速率、 性质稳定、 用药方便。 理想的纳米粒应有较高的载药量及包封率、 有适宜的制备条件及提 纯方法, 载体可生物降解、 低毒或无毒性、 并有适当的粒形与粒径、 较长的体 循环时间。
目前有关紫杉醇纳米粒的研究报道虽不少, 但都未能从根本上解决紫杉醇 的口服生物利用度低的问题, 口服后, 很大一部分纳米粒不被吸收而直接排出 体外, 只有小部分纳米粒被吸收, 如果药物吸收在低水平波动, 那么其吸收剂 量的百分误差将是显著的, 对于一个给定剂量来说, 如果微粒的摄取超过了预 说 明 书
期值, 那么毒性将会产生; 而如果吸收的量较少或使药物浓度低于治疗的剂量 范围, 导致治疗失败。
发明内容
针对紫杉醇溶解度低、 口服生物利用度低, 以及现有的紫杉醇注射剂毒副 作用严重的缺陷, 本发明的第一个目的是提供一种新型的纳米级紫杉醇颗粒。
为实现上述目的, 本发明提供了一种纳米级紫杉醇颗粒, 其特征在于: 以 二氧化硅气凝胶作为紫杉醇的载体, 所述二氧化硅气凝胶的孔隙率为 95~99%、 孔径为 10~50nm、 比表面积为 200 ~ 1000m2/g、 密度为 3 ~ 300kg/m3、 组成网络 的胶体颗粒直径为 l ~50nm, 所述紫杉醇以吸附在所述二氧化硅气凝胶的孔洞 中的形式形成直径小于 lOOnm的紫杉醇颗粒。
进一步地, 所述紫杉醇与所述二氧化硅气凝胶的质量比为 1: 0.5 ~20。 上述纳米级紫杉醇颗粒可制成药学上可接受的口服制剂。
进一步地, 所述口服制剂为片剂、 丸剂、 散剂、 胶嚢剂、 颗粒剂或混悬剂。 上述纳米级紫杉醇颗粒可制成药学上可接受的注射剂或栓剂。
本发明的另一个目的是提供上述纳米级紫杉醇颗粒的制备方法, 其特征在 于, 所述方法包括以下步骤:
( 1 )将紫杉醇溶解于无水乙醇中;
(2) 向上述乙醇溶液中加入二氧化硅气凝胶;
(3)待紫杉醇与二氧化硅气凝胶吸附完全后, 干燥;
(4) 向上述干燥后的产物中加入纯净水, 并送入乳化机中乳化;
(5)将步骤(4)所得乳化液送入高压均质机中均质;
(6) 步骤(5)所得均质液干燥后即得纳米级紫杉醇颗粒。
当步骤(2) 中所述的二氧化硅气凝胶具有疏水性时, 在加入乙醇溶液之前 需先经 300 ~ 1000 °C热处理使其表面的烷基消失而具有亲水性。
进一步地, 所述紫杉醇的质量与所述无水乙醇的体积之比为 1: 5~200。 进一步地, 步骤(3) 中的干燥为自然干燥、 烘箱干燥或冷冻干燥。
进一步地, 步骤(4) 中纯净水的加入量为 20~200ml/g紫杉醇。
进一步地, 步骤(6) 中的干燥为喷雾干燥。
有益效果: 说 明 书
1、 本发明首次以二氧化硅气凝胶为载体成功制备了纳米级紫杉醇, 与现有 的纳米级紫杉醇不同, 该纳米级紫杉醇的直径在 lOOnm以下, 达到了材料学范 畴的纳米级别, 是真正意义上的纳米级紫杉醇。 尽管直径小于 Ιμηι的粒子都被 称为纳米粒, 然而人们倾向于研制粒径小于 lOOnm的粒子, 因为这些粒子会表 现出一些独特的物理性质, 并因此显示出潜在不同的和有用的生物学特性。 如, 受机体毛细血管的微循环以及细胞屏障所限, 能够进入血液循环进而被机体吸 收的药物粒子的最佳粒径为 10 ~ 100nm。 因此, 本发明的纳米级紫杉醇在生物 利用度方面有了质的飞跃。
2、 本发明的纳米级紫杉醇颗粒的载药量可以达到 90%以上, 是现有的脂质 体纳米粒、 聚合物纳米粒等所望尘莫及的, 其载药量可与纳米晶型药物混悬剂 相媲美, 但制作方法更筒单, 成本更低廉。
3、 本发明的纳米级紫杉醇颗粒中, 紫杉醇被装载在二氧化硅气凝胶无数的 纳米级空穴中, 形成不会团聚的独立 "纳米分散体,,, 结构极其稳定, 直接破解了 微纳米药物研究中因团聚不能成药、 难溶药物很难提高生物利用度等制剂学国 际难题。 该纳米级紫杉醇是一种高效、 低毒、 经济、 具有"靶向功能,,的抗肿瘤药 物,其以"纳米分散"的物理新机制解决了紫杉醇的溶解与吸收难题,使其药效充 分发挥、 口服生物利用度空前提高, 实现了紫杉醇抗肿瘤药物治疗中由全身毒 性到向肿瘤部位的靶向聚集, 解决了国际国内经过数十年的努力但仍未解决的 紫杉醇注射剂生物利用率低, 毒副作用大、 疗效差、 治疗费用高的国际制药难 题。 在该纳米级紫杉醇药物中这种低毒特点来自两个方面: 一是避免了注射剂 型中的有害溶剂聚氧乙烯蓖麻油的使用, 使得成药生物利用度空前提高而毒性 大大降低; 二是化疗中紫杉醇药物全身作用向肿瘤部位聚集的靶向作用, 使全 身毒性降低。
4、 口服抗肿瘤药物一直被视为制药领域的最高端技术, 数十年久攻不克。 本发明提供的纳米级紫杉醇, 实现了以纳米摄取为主要吸收方式的全新口服机 理,又以"纳米固体分散体"的全新结构使得紫杉醇的溶解度大大增加,得以口服 吸收, 突破了紫杉醇口服无法吸收的国际禁区, 首次在材料层面直接实现了口 服取代注射的生物利用度。 由于该口服剂型不需使用助溶剂聚氧乙烯蓖麻油, 减少了毒副作用, 扩大了适用人群。 紫杉醇口服剂型取代注射剂型的出现能使 说 明 书
人们多年期待的家庭化疗真正成为实现, 带来抗肿瘤治疗药物的革命性进步。 而且, 在原临床药物与原适应症不变或更广谱的前提下, 注射改口服符合用药 潮流, 患者顺应性大大提高, 易于被临床接受。 口服剂型同时克服了注射剂型 制造过程复杂、 车间设备和包装要求高、 生产成本高缺陷。
5、 本发明的纳米级紫杉醇中作为载体所使用的二氧化硅气凝胶的前体为廉 价、 易得、 且已经在药物及食品中广泛应用、 具有国家及国际标准的使用多年 的硅基药食用辅料, 其也是《药用辅料手册》 中记载的辅料之一, 故本发明的 纳米级紫杉醇的安全性是可靠的。
6、 在对该纳米级紫杉醇口服剂型的研究中, 发明人对比商品注射剂型进行 了动物生物利用度对比研究, 该口服剂型在无蓖麻油、 无高分子聚合物等辅料 的参与下, 按照药典标准方法测定, 绝对生物利用度超过 20%, 释放行为等同 注射剂型。 这表明以二氧化硅气凝胶作为给药系统, 能够很好解决紫杉醇的生 物利用度问题。 在以人移植肿瘤为对象的研究中, 口服纳米制剂肿瘤抑制率达 到 80%, 其毒性远小于比较研究的同类抗肿瘤注射药物。
下面通过实验来说明本发明的纳米级紫杉醇的药学作用,实验中所使用的二 氧化硅气凝胶均选自具有以下特性的二氧化硅气凝胶: 孔隙率为 95 ~ 99%、 孔 径为 10 ~ 50nm、 比表面积为 200 ~ 1000m2/g、 密度为 3 ~ 300kg/m3、 组成网络的 胶体颗粒直径为 1 ~ 50nm。
一、 对本发明的纳米级紫杉醇口服剂型的大鼠体内生物利用度研究 目的: 制剂的生物利用度研究结果是评价制剂的最终标准, 本实验以临床 用紫杉醇注射液为参比制剂, 通过检测大鼠血浆中紫杉醇浓度, 考察了以二氧 化硅气凝胶为基本辅料的紫杉醇口服给药系统在大鼠体内的生物利用度, 旨在 研究该纳米级紫杉醇口服剂型是否能促进紫杉醇的口服吸收。
1材料与仪器
1.1材料
紫杉醇原料药 (云南汉德药物有限公司);紫杉醇注射液(黄石飞云制药有限 公司);纳米级紫杉醇 (实施例 1);曱醇(色谱级);乙腈(色谱级);地西泮 (Diazepam, DZP, 中国生物制品检定检验所);其他试剂均为分析纯;健康雄性 SD大鼠 15只, 体重 (210土 20)g, 广东省医学实验动物中心。 说 明 书
1.2仪器
高效液相色语仪 (大连依利特公司);漩涡混合器;台式高速离心机;台式超声 仪;电子分析天平;高速均浆机 (上海索维仪器有限公司);超声波清洗器;台式离心 机。
2实验方法
2.1血桨中紫杉醇测定方法的建立
2.1.1色谱条件
色谱条件 : 依利特 SinoChrom 300A ODS-AP 5μηι 4.6x250mm
流动相: 曱醇: 水: 乙腈 =23 : 41 : 36 ;流速 1.0 ml/min; 检测波长为 227nm; 进样量 20μ1。
2.1.2标准溶液的配制
紫杉醇储备液的配制:精密称定紫杉醇 10mg, 置 50ml量瓶中,加乙腈溶解 并稀释至刻度, 摇匀, 即得 200 g/ml的紫杉醇储备液。精密量取该储备液适量, 分别用曱醇逐渐稀释成浓度分别为 2.5 , 5.0, 10.0, 20.0, 40.0 g/ml的紫杉醇系 列标准溶液, 于 4°C冰箱保存, 备用。
内标溶液的制备:称取地西泮对照品约 10mg,精密称定, 置 100ml量瓶中, 用曱醇溶解并稀释至刻度, 摇匀, 得浓度为 lOO g/ml的内标储备液。 精密量取 储备液适量, 用曱醇稀释制成 lO g/ml的内标对照品溶液, 于 4°C冰箱保存, 备 用。
2.1.3血样供试品的处理
取血浆样品 ΙΟΟμΙ于 ΕΡ管中, 加入内标溶液地西泮 5μ1 ( lOug/ml )及 40μ1 NaHC03 (l mol/L), 涡旋 lmin, 加入提取溶剂乙醚 lml, 涡旋 2min, 3500r/min 离心 lOmin, 取上清液于 40 °C气流下吹干, 残余物用 40μ1流动相溶解, 涡旋 lmin, 3500r/min离心 lOmin, 取上清液 20μ1进样分析。
2.1.4标准曲线的制备
取空白大鼠血浆 ΙΟΟμΙ, 加入紫杉醇系列浓度溶液, 配制质量浓度为 2.5 , 5.0, 10.0, 20.0, 40.0 g/ml的紫杉醇血浆标准样品, 其它按 "血浆样品预处理" 项下方法操作, 制备标准曲线。
2.2大鼠体内生物利用度研究 说 明 书
取健康雄性 SD大鼠 12只, 随机分成 4组,每组 3只。 第 1组, 按 10mg/kg 尾静脉注射紫杉醇注射制剂; 第 2组, 按 40mg/kg—次性灌胃纳米级紫杉醇混 悬液; 第 3组, 按照 40mg/kg—次性灌胃紫杉醇原料药溶液; 第 4组 空白血清 组 于给药后 1 , 3 , 6, 8, 24h采血。 每次取血 0.5ml, 置于涂有肝素的 EP管 中, 并立即离心分离血浆, 置 -20°C冰箱中冷冻保存, 备测。
3结果与讨论
3.1血桨中紫杉醇测定方法的建立
3.1.1方法专属性考察
空白血浆、 空白血浆 +地西泮、 空白血浆 +紫杉醇、 待测生物样品按" 2.1.3 项"下所述步骤处理后进行检测, HPLC测定的结果表明, 紫杉醇的保留时间约 为 12.0min, 内标物的保留时间为 9min, 色语峰分离良好, 无杂峰干扰测定。
3.1.2标准曲线和线性范围
以紫杉醇与地西泮的峰面积比值 ATAX/ADAP(Y)对紫杉醇的浓度 C(X)进行线 性回归, 制得血浆中紫杉醇含量的标准曲线, 所得标准曲线为 Y=0.5136X+0.3 , R2=0.9998。 结果表明, 紫杉醇浓度在 2.5-40.0 g/ml范围内, 紫杉醇和地西泮的 峰面积比值 ATAX/ADAP(Y)与紫杉醇浓度 C(X)具有良好的线性关系。
3.2大鼠体内生物利用度研究
大鼠紫杉醇混悬液灌胃和静脉注射给药后平均血药浓度一时间曲线见图 4 至图 6。
按下式计算紫杉醇纳米粒的绝对生物利用度。
F(%)=(AUC 。 X静注剂量) /(AUC 静注 X口服剂量) X 100%
Fl=(34.275xl0mg/kg)/(42.34x40mg/kg)xl00%=20.24% (纳米紫杉醇 )
F2=(4.89xl0mg/kg)/(42.34x40mg/kg)xl00%=2.89% (紫杉醇原料药 ) 紫杉醇原料药的口服生物利用度仅为 2.89%, 二氧化硅气凝胶 +紫杉醇口服 给药系统的绝对生物利用度为 20.24%, 说明二氧化硅气凝胶载药系统能显著提 高难溶性药物紫杉醇口服给药的生物利用度, 促进其吸收。 实验结果表明二氧 化硅气凝胶 +紫杉醇口服给药系统可以大大提高紫杉醇的口服生物利用度。
二、 本发明的纳米级紫杉醇抗肿瘤棵鼠实验 说 明 书
1. 材料: Balb/c棵鼠, 雌性, 体重为 (18±2 ) g, 购自北京维通利华实验 动物技术有限公司; 实验用紫杉醇注射液购自黄石飞云制药有限公司 (国药 准字: H20056466 ) ; 实验用纳米紫杉醇为本发明实施例 1得到的干粉。
2. 动物模型的建立 收集足量的肿瘤细胞, 用 PBS重悬在离心管中, 以 2x l06 cells/0. lml每点皮下接种于棵鼠背部。
3. 实验分组和给药方案 肿瘤模型建立后, 待棵鼠的肿瘤直径为 4 ~ 6mm, 按 5只 /组, 分组。 参考商品药说明书用法用量、 最新《临床肿瘤内科 手册》相关文献与前期实验结果, 口服生物利用度按照 20% ~ 30%, 确定给 药方案; 空白组(仅设一个, 为各组参考) , 注射紫杉醇组, 3天给药一次, 腹腔注射; 紫杉醇原料药组, 口服灌胃给药, 每天 1次; 纳米紫杉醇组, 口 服灌胃给药, 每天 1次。
4.检测方法 给药后动物正常饲养, 每天观察动物一般状态, 记录动物 的体重。每周 2次测量肿瘤直径(游标卡尺 ) , 计算肿瘤体积( V ): v= ( ab2 ) /2 (式中, a为肿瘤长径, b为肿瘤短径) 。 比较各组相对肿瘤 (RTV ): RTV=vt/v。, 式中, V。为分笼给药当天(DayO )测量所得肿瘤体积, vt为每 一次测量时的肿瘤体积;
用相对肿瘤体积计算药物对肿瘤体积的抑制率(VIR ) :
RTV治疗组
VIR= ( 1- ) 100%
RTV阴性对照组
5.实验结果
5.1紫杉醇治疗人转移棵鼠肝癌 BEL-7402的实验结果见表 1和图 7
表 1
相对肿瘤抑制率%
剂量 时间 4d 7d l id 14d 17d 21d 24d 28d 31d
40mg/kg A 28.91 33.65 60.15 46.54 46.9 43.64 47.94 42.97 47.82 口服纳米紫杉
80mg/kg B 47.75 32.88 37.28 29 17.58 35.99 30.18 31.08 34.57 醇
160mg/kg C 49.09 52.71 80.27 79.47 72.91 71.03 71.52 67.64 75.14 紫杉醇注射液 2mg/kg D 40.54 53.46 49.85 35.93 18.76 24.83 13.47 -3.55 7.57 说 明 书
注: 口服纳米紫杉醇 40mg/kg, 连续给药 14天, 停药 10天, 再给药 5天, 死亡 1只, 5只 /组; 口服纳米紫杉醇 80mg/kg, 连续给药 14天, 停药 10天, 再给药 5天, 死亡 1只, 5只 /组; 口服纳米紫杉醇 160mg/kg, 连续给药 14天, 停药 10天, 再给药 5天, 死亡 1只, 5只 /组; 注射紫杉醇注射液 2mg/kg, 连续给药 14天, 停药 10天, 再给药 5天, 无死亡, 5只 /组。
5.2紫杉醇治疗人转移棵鼠非小细胞肺癌 NCI-1299的实验结果见表 2和图 8
表 2
相对肿瘤抑制率%
剂量 时间 4d 7d l id 14d 17d 21d 口服纳米紫杉醇 80mg/kg A 26.1 37.81 21.33 34.14 48.4 33.78 紫杉醇注射液 2mg/kg B 13.98 24.44 14.16 26.06 -35.75
注: 口服纳米紫杉醇 80mg/kg, 连续给药 14天, 死亡 1只, 5只 /组;
紫杉醇注射液组 2mg/kg, 连续给药 14天, 陆续出现腹水, 17天全部死亡, 5只 /组。
5.3紫杉醇治疗人转移棵鼠乳腺癌 MCF-7的实验结果见表 3和图 9
表 3
相对肿瘤抑制率%
剂量 时间 4d 7d l id 14d
80mg/kg A 37.66 -1.81 28.37 27.47
口服纳米紫杉醇
160mg/kg B 52.46 42.7 58.28 52.42
紫杉醇注射液 lOmg/kg C 34.37 12.7 37.57 50.99 注: 口服納米紫杉醇 80mg/kg, 连续给药 14天, 无死亡, 5只 /组;
口服纳米紫杉醇 160mg/kg, 连续给药 14天, 无死亡, 5只 /组; 紫杉醇注射液组 10mg/kg, 3天给药 1次, 共给药 5次, 无死亡, 5只 /组。
5.4结果讨论
1、 实验中根据抗肿瘤药物尽量大剂量使用, 以求快速杀灭癌细胞特点, 用 药量按照最大耐受度 (MTD)设计, 使阳性对照商品药物抗癌效果达到最好水平, 在比较商品药物与本发明口服纳米药物抗癌效果的同时, 考察比较两者的安全 性, 而人转移肿瘤荷瘤棵鼠的治疗剂量大小是抗肿瘤药物临床前研究考察药物 安全性最直接的方法;
2、 分别用三种人移植肿瘤细胞对荷瘤棵鼠进行商品紫杉醇注射液与本发明 口服纳米紫杉醇的抑瘤对比试验, 商品紫杉醇注射液组的死亡率高于口服纳米 紫杉醇组, 且治疗效果低于口服组;
3、 实验结果表明: 本发明口服纳米制剂的相对肿瘤抑制率优于商品注射药 物的水平, 安全性也优于商品药物, 提示了本发明口服纳米药物有提高患者生 说 明 书
活质量和延长生存期的良好效果。
三、 委托南京凯基生物科技发展有限公司的药效实验
1、 实验目的:
根据《抗肿瘤药物药效学指导原则》和《细胞毒类抗肿瘤药物非临床研究 技术指导原则》的要求, 测试受试样品对人肺癌细胞 A549棵鼠异种移植肿瘤生 长有无抑制作用及作用强度。
2、 受试样品:
紫杉醇注射液:四川太极集团有限公司,批号: 12100031 ,规格为: 30mg/5ml。 使用时生理盐水稀释至所需浓度。
纳米紫杉醇: 为本发明实施例得到的干粉, 现称现配现用, 用分析天平秤 好后加蒸馏水, 超声溶解成混悬液后, 灌胃给药。
3、 受试动物:
来源、 种系、 品系: BALB/c棵小鼠, 由中国人民解放军军事医学科学院实 验动物中心提供。
实验动物生产许可证: SCXK (军 ) 2007-004
合格证编号: 0001015
实验动物使用许可证: SYXK (苏 ) 2012-010
日龄: 4-5w
体重: 18-22g
性别: 雄性
动物数: 每组 6只, 共 30只。
4、 组别与给药方案见表 4
表 4
给药方案
组别 给药剂量 给药周
给药方式 ( mg/Kg ) 期 给药频率
模型对照组 灌胃口服 生理盐水 一 1天 /次
商品紫杉醇 腹腔注射 10 mg/kg 2周 3天 /次 自制纳米紫杉醇 灌胃口服 50 mg/kg 2周 每天 说 明 书
Figure imgf000011_0003
5、 实验方法:
5.1模型的制备
收集培养的人肺癌 A549悬液, 浓度为 1X107个 /ml, 以每只 0.1ml接种于棵 小鼠右侧腋窝皮下。
5.2分组与给药
棵鼠移植瘤用游标卡尺测量移植瘤直径,接种 11天后,肿瘤生长至 50-75mm3 时将动物随机分组, 每组 6只。 同时, 各组棵鼠开始给药, 给药方案与组别见 给药方案, 使用测量瘤径的方法, 动态观察受试样品的抗肿瘤效应。 给药结束 后, 小鼠处死, 手术剥取瘤块称重。
5.3观测指标
肿瘤体积 (tumor volume ,TV)的计算公式为:
TV=l/2xaxb2 其中 a、 b分别表示长宽。
根据测量的结果计算出相对肿瘤体积( relative tumor volume , RTV ) , 计算 公式为:
RTV=Vt/V。 V。为分笼给药时 (即 d0)测量所得肿瘤体积, Vt为每一次测量 时的肿瘤体积。
抗肿瘤活性的评价指标: 相对肿瘤增殖率 T/C ( % ) , 计算公式如下:
Figure imgf000011_0001
T/C ( % ) = lOO TRTV: 治疗组 RTV ; CRTV: 模型组 RTV
Figure imgf000011_0002
抗肿瘤活性的评价指标: 肿瘤生长抑制率(%) , 计算公式如下:
模型组平均瘤重-给药组平均瘤重
肿瘤生长抑制率 = l 00%
模型组平均瘤重
5.4统计处理
均值用 X±SD表示, 组间分析用 t检验进行统计学处理, 应用 SPSS ( Staffstical Package for the Social Science) 17.0对结果进行统计分析。 说 明 书
6、 实验结果:
表 5
受试样品对人肺癌细胞 A549棵鼠异种移植瘤棵鼠体重的影响
(X士 SD, n=6, 单位: g)
Figure imgf000012_0001
表 6
受试样品对人肺癌细胞 A549棵鼠异种移植瘤生长体积变化的影响
(X士 SD, n=6, 单位: cm3)
Figure imgf000012_0002
Figure imgf000012_0003
说 明 书
Figure imgf000013_0001
Figure imgf000013_0002
表 7
受试样品对人肺癌细胞 A549棵鼠异种移植瘤生长的抑制作用
(X士 SD, n=6)
Figure imgf000013_0003
说 明 书
Figure imgf000014_0002
Figure imgf000014_0001
本实验建立了人肺癌细胞 A549棵鼠异种移植瘤模型,利用该模型评价了受 试样品纳米紫杉醇的抗肿瘤活性。 实验结果为: 受试样品纳米紫杉醇低剂量 50mg/kg组、中剂量 100mg/kg组和高剂量 200mg/kg组的抑瘤率分别为 33.67%, 42.21%和 34.67%。 而阳性对照组商品紫杉醇的抑瘤率为。 结论为: 纳米紫杉醇 有一定的抗肿瘤作用。
附图说明
图 1是本发明用二氧化硅气凝胶的电镜图片;
图 2是紫杉醇原料药的电镜图片;
图 3是本发明的纳米级紫杉醇的电镜图片;
图 4是按 10mg/kg尾静脉注射紫杉醇注射制剂, 大鼠给药后紫杉醇血药浓 度曲线图;
图 5是按 40mg/kg—次性灌胃本发明的纳米级紫杉醇口服混悬液, 大鼠给 药后紫杉醇血药浓度曲线图;
图 6是按照 40mg/kg—次性灌胃紫杉醇原料药溶液, 大鼠给药后紫杉醇血 药浓度曲线图;
图 7是抗肿瘤棵鼠实验研究结果中人转移棵鼠肝癌 BEL-7402的相对肿瘤抑 制率曲线图;
图 8是抗肿瘤棵鼠实验研究结果中人转移棵鼠非小细胞肺癌 NCI-1299的相 对肿瘤抑制率曲线图;
图 9是抗肿瘤棵鼠实验研究结果中人转移棵鼠乳腺癌 MCF-7的相对肿瘤抑 制率曲线图。 说 明 书
具体实施方式
下面结合附图对本发明做进一步的详细说明, 以下实施例是对本发明的解 释, 本发明并不局限于以下实施例。
以下实施例中所使用的二氧化硅气凝胶均选自具有以下特性的二氧化硅气 凝胶: 孔隙率为 95 ~ 99%、 孔径为 10 ~ 50nm、 比表面积为 200 ~ 1000m2/g、 密度 为 3 ~ 300kg/m3、 组成网络的胶体颗粒直径为 1 ~ 50nm。
实施例 1
本实施例的纳米级紫杉醇按以下方法制备:
1、 紫杉醇原料药 (云南汉德药物有限公司) lg, 加入无水乙醇 20ml溶解;
2、 加入 500 °C热处理后的二氧化硅气凝胶 2g进行吸附;
3、 待吸附完全后, 于 60°C烘箱干燥;
4、 干燥后, 加入 100ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ) , 400bar, 循环 6次, lOmin;
6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/h, 喷头: 0.75mm, 干燥后得到纳米级紫杉醇颗粒。
实施例 2
本实施例的纳米级紫杉醇按以下方法制备:
1、 紫杉醇原料药 (云南汉德药物有限公司) lg, 加入无水乙醇 5ml溶解; 2、 加入 1000 °C热处理后的二氧化硅气凝胶 0.5g进行吸附;
3、 待吸附完全后, 自然干燥;
4、 干燥后, 力口入 20ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ) , 400bar, 循环 8次, lOmin;
6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/h, 喷头: 0.75mm, 干燥后得到纳米级紫杉醇颗粒。
实施例 3
本实施例的纳米级紫杉醇按以下方法制备:
1、 紫杉醇原料药(云南汉德药物有限公司) lg, 加入无水乙醇 150ml溶解;
2、 加入亲水性二氧化硅气凝胶 15g进行吸附;
3、 待吸附完全后, 冷冻干燥; 说 明 书
4、 干燥后, 加入 150ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ) , 400bar, 循环 7次, lOmin;
6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/H, 喷头: 0.75mm, 干燥后得到纳米级紫杉醇颗粒。
实施例 4
本实施例的纳米级紫杉醇按以下方法制备:
1、 紫杉醇原料药(云南汉德药物有限公司) lg, 加入无水乙醇 200ml溶解;
2、 加入 300 °C热处理后的二氧化硅气凝胶 20g进行吸附;
3、 待吸附完全后, 于 60°C烘箱干燥;
4、 干燥后, 加入 200ml纯净水, 25000rpm/min普通乳化机乳化, 5min;
5、 高压均质机(上海东华 GYB 30-6S ) , 400bar, 循环 8次, lOmin;
6、 将均质液于实验型喷雾干燥机(上海顺仪科技 SP-1500 )喷雾干燥, 参 数: 温度 130°C , 流速 500ml/h, 喷头: 0.75mm, 干燥后得到纳米级紫杉醇颗粒。
实施例 5
本实施例的纳米级紫杉醇按以下方法制备:
1、 紫杉醇原料药 (云南汉德药物有限公司) lg, 加入无水乙醇 70ml溶解;
2、 加入 700°C热处理后的二氧化硅气凝胶 7g进行吸附;
3、 待吸附完全后, 冷冻干燥;
4、 另取 6g的 PEG-4000加入 400ml的无水乙醇中溶解;
5、 将步骤 3冻干后的固体加入上述 PEG-4000的乙醇溶液中, 超声乳化机 孔化 3min;
6、 将步骤 5的乳化液于 60°C电热恒温干燥箱中干燥 12h;
7、 研磨步骤 6干燥后的固体, 并过 200目筛, 得到纳米级紫杉醇颗粒。 实施例 6
实施例 1至 5得到的纳米级紫杉醇颗粒与适量的微晶纤维素、 淀粉和硬脂 酸镁混合均匀后, 用压片机压片, 得到本发明的纳米级紫杉醇片剂。
实施例 7
将实施例 1至 5得到的纳米级紫杉醇颗粒直接装填入硬胶嚢壳中, 得到本 发明的纳米级紫杉醇胶嚢剂。 说 明 书
实施例 8
实施例 1至 5得到的纳米级紫杉醇颗粒加入水溶液中, 搅拌均勾, 得到本 发明的纳米级紫杉醇混悬液。 该混悬液可以直接口服, 也可以按照注射剂的制 备标准制成注射剂。
实施例 9
实施例 1至 5得到的纳米级紫杉醇颗粒与适量的 Witepsol,采用热熔法制备 得到本发明的纳米级紫杉醇栓剂。

Claims

权 利 要 求 书
1、 一种纳米级紫杉醇颗粒, 其特征在于: 以二氧化硅气凝胶作为紫杉醇的 载体, 所述二氧化硅气凝胶的孔隙率为 95 ~ 99%、 孔径为 10~50nm、 比表面积 为 200 ~ 1000m2/g、 密度为 3 ~ 300kg/m3、组成网络的胶体颗粒直径为 1 ~ 50nm, 所述紫杉醇以吸附在所述二氧化硅气凝胶的孔洞中的形式形成直径小于 lOOnm 的紫杉醇颗粒。
2、 根据权利要求 1所述的纳米级紫杉醇颗粒, 其特征在于: 所述紫杉醇与 所述二氧化硅气凝胶的质量比为 1: 0.5 ~ 20。
3、 根据权利要求 1或 2所述的纳米级紫杉醇颗粒制成的药学上可接受的口 服制剂。
4、 根据权利要求 3所述的口服制剂, 其特征在于: 所述口服制剂为片剂、 丸剂、 散剂、 胶嚢剂、 颗粒剂或混悬剂。
5、 根据权利要求 1或 2所述的纳米级紫杉醇颗粒制成的药学上可接受的注 射剂或栓剂。
6、 权利要求 1至 5任意一项所述的纳米级紫杉醇颗粒的制备方法, 其特征 在于, 所述方法包括以下步骤:
( 1 )将紫杉醇溶解于无水乙醇中;
(2) 向上述乙醇溶液中加入二氧化硅气凝胶;
(3)待紫杉醇与二氧化硅气凝胶吸附完全后, 干燥;
(4) 向上述干燥后的产物中加入纯净水, 并送入乳化机中乳化;
(5)将步骤(4)所得乳化液送入高压均质机中均质;
(6) 步骤(5)所得均质液干燥后即得纳米级紫杉醇颗粒。
7、 权利要求 6所述的纳米级紫杉醇颗粒的制备方法, 其特征在于: 当步骤 ( 2 )中所述的二氧化硅气凝胶具有疏水性时,在加入乙醇溶液之前需先经 300 ~
1000 °c热处理使其具有亲水性。
8、 权利要求 6所述的纳米级紫杉醇颗粒的制备方法, 其特征在于: 所述紫 杉醇的质量与所述无水乙醇的体积之比为 1: 5~200。
9、权利要求 6所述的纳米级紫杉醇颗粒的制备方法,其特征在于: 步骤(4) 中纯净水的加入量为 20 ~ 200ml/g紫杉醇。 权 利 要 求 书
、 权利要求 6所述的纳米级紫杉醇颗粒的制备方法, 其特征在于: 步骤 的干燥为喷雾干燥。
PCT/CN2013/089181 2012-12-13 2013-12-12 纳米级紫杉醇及其制备方法 WO2014090169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210537240.6A CN102973491B (zh) 2012-12-13 2012-12-13 纳米级紫杉醇及其制备方法
CN201210537240.6 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014090169A1 true WO2014090169A1 (zh) 2014-06-19

Family

ID=47848028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089181 WO2014090169A1 (zh) 2012-12-13 2013-12-12 纳米级紫杉醇及其制备方法

Country Status (2)

Country Link
CN (1) CN102973491B (zh)
WO (1) WO2014090169A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102973491B (zh) * 2012-12-13 2014-09-17 清华大学深圳研究生院 纳米级紫杉醇及其制备方法
WO2017075777A1 (zh) * 2015-11-05 2017-05-11 清华大学深圳研究生院 一种应用二氧化硅气凝胶制备纳米级农药制剂的方法
CN107375244A (zh) * 2017-09-12 2017-11-24 吉林大学珠海学院 一种纳米级紫杉醇及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676125A (zh) * 2004-03-31 2005-10-05 张昊 含有紫杉碱类或难溶药物的纳米级乳剂
CN102973491A (zh) * 2012-12-13 2013-03-20 清华大学深圳研究生院 纳米级紫杉醇及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19506141A1 (de) * 1995-02-22 1996-08-29 Hoechst Ag Verwendung von Aerogelen in der Pharmazie, in der Kosmetik und im Pflanzenschutz

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676125A (zh) * 2004-03-31 2005-10-05 张昊 含有紫杉碱类或难溶药物的纳米级乳剂
CN102973491A (zh) * 2012-12-13 2013-03-20 清华大学深圳研究生院 纳米级紫杉醇及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU YANCHEN ET AL.: "Recent progress of nano-porous silica as drug carrier", JOURNAL OF SHENYANG PHARMACEUTICAL UNIVERSITY, vol. 27, no. 12, 2010, pages 933 - 967 *

Also Published As

Publication number Publication date
CN102973491A (zh) 2013-03-20
CN102973491B (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
US20170088430A1 (en) Application of silicon dioxide aerogel as nano-drug carrying system in pharmacy
Gao et al. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions
Han et al. Honokiol nanosuspensions: preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system
Zhu et al. Preparation, characterization, and anti-tumor property of podophyllotoxin-loaded solid lipid nanoparticles
Huang et al. Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo
Wang et al. Amino functionalized mesoporous silica with twisted rod-like shapes: Synthetic design, in vitro and in vivo evaluation for ibuprofen delivery
He et al. Antioxidant biodegradable covalent cyclodextrin frameworks as particulate carriers for inhalation therapy against acute lung injury
WO2014090168A1 (zh) 纳米级多烯紫杉醇及其制备方法
CN113384530B (zh) 一种多糖核心Nanocells及其制备方法与应用
CN102058566A (zh) 一种冬凌草甲素类成分干粉吸入剂及其制备方法和用途
WO2014090173A1 (zh) 纳米级盐酸阿霉素及其制备方法
CN106361724B (zh) 一种20(R)-人参皂苷Rg3缓释纳米微球组合及其制备方法
CN101683322A (zh) 超临界二氧化碳法制备纳米盐酸小檗碱脂质体的方法
WO2014090169A1 (zh) 纳米级紫杉醇及其制备方法
CN103933016B (zh) 一种辣椒碱三元纳米胶束及其制法和用途
CN106265624B (zh) 治疗乳腺癌的药物组合物、药物传递系统及其制备方法
CN103768022B (zh) 一种用作靶向性输送紫杉醇的自组装纳米粒、其制备方法和用途
CN107137349B (zh) 一种藤黄酸纳米混悬剂及其制备方法
WO2014090174A1 (zh) 纳米级卡培他滨及其制备方法
CN110960491B (zh) 一种负载丹参酮ⅡA的水溶性壳聚糖/γ-聚谷氨酸纳米复合物的制备方法及应用
WO2014090171A1 (zh) 纳米级环磷酰胺及其制备方法
CN102961336B (zh) 纳米级铂类药物及其制备方法
CN114042046B (zh) 一种可溶性注射用伊布替尼白蛋白纳米制剂及其制备方法和应用
CN108837157A (zh) 一种双载多西紫杉醇和黄酮类化合物的聚合物纳米粒及其制备方法
WO2017107895A1 (zh) 口服制剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863557

Country of ref document: EP

Kind code of ref document: A1