WO2010073919A1 - 試験装置の制御方法 - Google Patents

試験装置の制御方法 Download PDF

Info

Publication number
WO2010073919A1
WO2010073919A1 PCT/JP2009/070681 JP2009070681W WO2010073919A1 WO 2010073919 A1 WO2010073919 A1 WO 2010073919A1 JP 2009070681 W JP2009070681 W JP 2009070681W WO 2010073919 A1 WO2010073919 A1 WO 2010073919A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
inspection
test
standard
under
Prior art date
Application number
PCT/JP2009/070681
Other languages
English (en)
French (fr)
Inventor
小野晴義
馬場功
杉山誠
Original Assignee
住友電工デバイス・イノベーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工デバイス・イノベーション株式会社 filed Critical 住友電工デバイス・イノベーション株式会社
Publication of WO2010073919A1 publication Critical patent/WO2010073919A1/ja
Priority to US13/168,726 priority Critical patent/US20110252860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station

Definitions

  • the present invention relates to a test apparatus control method.
  • the network type test apparatus has a structure in which a plurality of device stations to be tested and a plurality of measuring instruments are connected by a connecting portion.
  • a device under test station on which a standard sample is mounted is inspected by a plurality of measurement stations (see, for example, Patent Document 1).
  • the network-type test equipment inspection work has not been proposed so far.
  • the inspection work refers to work for mounting a standard device in a device under test station, measuring the characteristics of the standard device at the measurement station, and confirming that an expected value is obtained.
  • the device station under test and the measurement station are connected one-to-one. For this reason, if the standard device is mounted on the device under test station and measured by the measurement station to obtain the expected value, the inspection of the test apparatus is completed.
  • network-type test equipment is equipped with multiple measurement stations that can measure the same items. Which of these is connected to the device under test station is undefined.
  • connection is established with only one of a plurality of the same measurement stations. Cannot check when connected.
  • this inspection operation is performed on another device-under-test station, there is no guarantee that all measurement stations will be subjected to inspection.
  • An object of the present invention is to provide a control method for a test apparatus that can perform a normal inspection using any of a plurality of measurement stations.
  • the test apparatus control method can change a plurality of device-under-test stations, a plurality of measurement units capable of measuring the same item, and a connection combination of the plurality of device-under-test stations and the plurality of measurement units.
  • a test apparatus comprising a matrix switch, a first step for performing a measurement unit inspection step for inspecting a measurement unit by measuring a standard device using a plurality of measurement units, and a plurality of measurement units A device under test inspecting a standard sample using a measuring unit connected to the device station under test in which the standard sample is mounted on the device station is performed for a plurality of device devices under test. And a second step.
  • the device under test is inspected using a plurality of inspected measuring units by performing the measurement unit inspection step and the device under test station inspection step separately. can do. In this case, even if the device under test station to be inspected is connected to any of the inspected measuring units, the inspection can be performed normally.
  • the second step may be performed after the first step.
  • the device under test station can be inspected using the inspected measuring unit. Thereby, the inspection accuracy of the device under test station is improved.
  • the measurement unit inspection step may be performed on a part of the plurality of measurement units, and the measurement unit inspection step may be performed on the remaining measurement units simultaneously with the second step or after the second step. In this case, the time required to complete the device under test station inspection step is shortened.
  • the first step may be performed after the second step.
  • the device under test station inspection step is performed on a part of the plurality of device under test stations, and the device under test station inspection step is performed simultaneously with the first step or after the first step for the remaining device under test stations. You may implement.
  • the measurement unit inspection step may be performed by mounting a standard device on the device under test station and connecting it to the measurement unit. In this case, there is no need to newly provide a station for mounting the standard device. Thereby, the test apparatus is simplified.
  • the test apparatus includes a standard station on which a standard device and a drive unit that drives the standard device are mounted separately from the device under test station, and the measuring unit inspection step is a step of measuring the standard device mounted on the standard station. It may be.
  • a dedicated station for mounting a standard device is arranged. Thereby, the man-hour for mounting a standard device can be reduced.
  • the method according to the present invention performs a device under test station inspection step using a set of a measurement unit and a device under test station that are not subjected to inspection while performing the first step or the second step. May further be included. In this case, the inspection efficiency is improved.
  • the inspection can be normally carried out using any of a plurality of measuring instruments.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a test apparatus according to Example 1.
  • FIG. (A) is a detailed view of a device-under-test station to be described later, (b) is a detailed view of a measurement station to be described later, and (c) is a detailed view of a standard station to be described later.
  • It is a flowchart which shows an example of the control method of a test device performed by the external controller. It is a flowchart which shows the other example of the control method of a test apparatus. It is a flowchart which shows the other example of the control method of a test apparatus. It is a flowchart which shows the other example of the control method of a test apparatus. It is a flowchart which shows the other example of the control method of a test apparatus.
  • FIG. 10 is a schematic diagram illustrating an overall configuration of a test apparatus according to Example 5.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a test apparatus 100 according to the first embodiment.
  • FIG. 2A is a detailed view of the device under test station 30 described later.
  • FIG. 2B is a detailed view of the measurement station 20 described later.
  • FIG. 2C is a detailed view of the standard station 50 described later.
  • the test apparatus 100 includes an external controller 10, a plurality of measurement stations 20, a plurality of device under test stations 30, a matrix switch 40, a standard station 50, and the like.
  • the matrix switch 40 is provided with a controller 41.
  • the external controller 10 and the controller 41 are composed of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory) and the like.
  • the external controller 10 controls the measurement station 20, the device under test station 30, the controller 41 and the standard station 50.
  • the controller 41 controls the matrix switch 40 in accordance with an instruction from the external controller 10.
  • the matrix switch 40 changes the connection combination of each measurement station 20, each device under test station 30, and the standard station 50 in accordance with an instruction from the controller 41.
  • each measurement station 20 is connected to any one of a plurality of device under test stations 30 and a standard station 50.
  • each device under test station 30 includes a mounting unit 31, a driver 32, and a controller 33 on which devices can be mounted.
  • the controller 33 includes a CPU, a ROM, a RAM, and the like, and controls the operation of the driver 32.
  • the driver 32 drives a device mounted on the mounting unit 31 in accordance with an instruction from the controller 33.
  • a semiconductor laser is mounted on the mounting portion 31 as an example.
  • each measurement station 20 includes a measurement device 21 and a controller 22.
  • the controller 22 includes a CPU, a ROM, a RAM, and the like, and controls the operation of the measuring instrument 21.
  • the measuring instrument 21 is a device that measures the characteristics of a device mounted on the device under test station 30 or the standard station 50 connected via the matrix switch 40 in accordance with instructions from the controller 22. Each measuring instrument 21 can measure the same characteristic.
  • the measurement station 20 can measure using, for example, any one of an optical oscilloscope, a power meter, a wavelength meter, a BER measurement device, a spectrum measurement device, and the like as the measurement device 21.
  • Each of the measuring devices may be composed of a single measuring device or a plurality of measuring devices.
  • the measurement station 20 may include a plurality of sets each using the above-described measuring devices 21.
  • the standard station 50 includes one or more standard light source units 51, a controller 52, and an optical switch 53.
  • Each standard light source unit 51 includes a standard device 54 and a driver 55.
  • the controller 52 includes a CPU, a ROM, a RAM, and the like, and controls operations of the drivers 55 and the optical switch 53.
  • Each driver 55 drives the standard device 54 in accordance with an instruction from the controller 52.
  • the standard device 54 is a device that has been confirmed in advance to realize predetermined characteristics. In this embodiment, a semiconductor laser is used as the standard device 54.
  • the optical switch 53 is a switch for switching which standard device 54 is output as a light source in accordance with an instruction from the controller 52.
  • FIG. 3 is a flowchart illustrating an example of a control method of the test apparatus 100 executed by the external controller 10.
  • the external controller 10 substitutes “1” for the variable “n” (step S1).
  • the external controller 10 performs an inspection of the nth measurement station 20 using the standard device 54 of the standard station 50 (step S2).
  • the external controller 10 controls the matrix switch 40 via the controller 41 so that the standard device 54 and the nth measurement station are connected.
  • step S2 it is confirmed whether or not the nth measurement station 20 is operating normally and whether or not the path from the measurement station 20 to the matrix switch 40 is normal.
  • the external controller 10 determines whether or not the inspection of all the measurement stations 20 has been completed (step S3). If it is not determined in step S3 that the inspection has been completed, the external controller 10 substitutes “n + 1” for the variable “n” (step S4). Thereafter, the external controller 10 executes Step S2 again.
  • the external controller 10 waits until a standard sample is mounted on the mounting unit 31 of the device station 30 to be tested (step S5).
  • the standard sample is a device of the same type as the standard device, and is a device that has been confirmed in advance to achieve predetermined characteristics.
  • the standard sample is a semiconductor laser.
  • the external controller 10 measures the standard sample using the inspected measurement station 20 (step S6).
  • the external controller 10 controls the matrix switch 40 via the controller 41 so that the standard device sample and the inspected measurement station 20 are connected.
  • step S6 it is possible to detect whether or not there is a defect in the device under test 30 and the devices, paths, and the like from the device under test station 30 to the matrix switch 40.
  • step S7 determines whether or not the inspection of all device under test stations has been completed. If it is not determined in step S7 that the inspection has been completed, the external controller 10 executes step S5 again. If it is determined in step S7 that the inspection has been completed, the external controller 10 ends the execution of the flowchart.
  • the inspection frequency of the device under test station and the measurement station may be the same or different.
  • the inspection guarantee can be sufficiently ensured at any measurement station. This has the effect of eliminating the inspection waiting time of the measuring station when inspecting the device under test station.
  • the device under test station 30 is inspected using the inspected measurement station 20. be able to. In this case, even if the device under test station 30 to be inspected is connected to any of the inspected measuring stations 20, the inspection can be normally performed.
  • the step of inspecting the measurement station and the device under test It is not necessary to carry out it separately from the station inspection step.
  • a dedicated standard station 50 for mounting a standard device is arranged.
  • the man-hour for mounting a standard device in the device under test station 30 can be reduced.
  • the device-under-test station has a different jig for device connection for each model. Therefore, if the replacement work of each jig is included, the number of man-hours increases.
  • a standard station is provided, a dedicated standard device can be built in the standard station 50. Therefore, the number of man-hours required for replacing each jig can be reduced.
  • the inspection of the measurement station can be carried out fully automatically if a standard station is used. Accordingly, since the measurement station can be inspected at night when the actual test is not performed, an effect of preventing the inspection of the measurement station from hindering the operation of the actual test can be obtained.
  • FIG. 4 is a flowchart showing an example of a control method of the test apparatus 100 in this case. Steps S11 and S12 in FIG. 4 are the same as steps S1 and S2 in FIG. After execution of step S12, the external controller 10 determines whether inspection of all the measurement stations 20 has been completed (step S13). At the same time, the external controller 10 determines whether or not the variable “n” exceeds the threshold value “m ( ⁇ n)” (step S15).
  • the threshold “m” is arbitrary, but may be a value of about n / 2, for example.
  • step S13 If it is not determined in step S13 that all the measurement stations 20 have been inspected, the external controller 10 substitutes “n + 1” for the variable “n” (step S14). Thereafter, the external controller 10 executes Step S12 again. If it is determined in step S13 that the inspection of the measurement station 20 has been completed, the inspection of the measurement station 20 ends.
  • step S15 If it is not determined in step S15 that the variable “n” has exceeded the threshold value “m”, the external controller 10 waits. If it is determined in step S15 that the variable “n” exceeds the threshold value “m”, the external controller 10 waits until a standard sample is mounted on the mounting unit 31 of the device station 30 to be tested (see FIG. Step S16). In this case, the external controller 10 performs the inspection of the measurement stations 20 in parallel until the inspection of all the measurement stations 20 is completed. Steps S17 and S18 are the same as steps S6 and S7 in FIG.
  • the inspection of the device under test station 30 can be started before the inspection of all the measurement stations 20 is completed. In this case, the time until the inspection of the device under test station 30 is completed can be shortened. In addition, when one or more inspections of the device station under test 30 are completed, the actual test can be started in advance in a group in which the inspection of the measurement station 20 is completed.
  • FIG. 5 is a flowchart showing an example of a control method of the test apparatus 100 in this case.
  • the external controller 10 stands by until a standard sample is mounted on the mounting portion 31 of the device station 30 to be tested (step S21).
  • the external controller 10 measures this standard sample using any one of the measuring devices 21 (step S22). Next, the external controller 10 determines whether or not the inspection of all device-under-test stations has been completed (step S23). If it is not determined in step S23 that the inspection has been completed, the external controller 10 executes step S21 again.
  • step S23 When it is determined in step S23 that the inspection is completed, the external controller 10 substitutes “1” for the variable “n” (step S24).
  • the external controller 10 checks the measuring device 21 of the nth measuring station 20 using the standard device 54 of the standard station 50 (step S25). Next, the external controller 10 determines whether or not inspection of all measurement stations 20 has been completed (step S26). If it is not determined in step S26 that the inspection has been completed, the external controller 10 substitutes “n + 1” for the variable “n” (step S27). Thereafter, the external controller 10 executes Step S25 again.
  • step S26 If it is determined in step S26 that the inspection has been completed, the external controller 10 ends the execution of the flowchart.
  • the device under test station 30 can be inspected prior to the inspection of the measurement station 20.
  • this is an effective inspection method when the reliability of the measurement station 20 is relatively high.
  • FIG. 6 is a flowchart showing an example of a control method of the test apparatus 100 in this case. Steps S31 and S32 in FIG. 6 are the same as steps S21 and S22 in FIG. After execution of step S32, the external controller 10 determines whether or not the inspection of all the device under test stations 30 has been completed (step S33), and at the same time whether the inspection of a predetermined number of device under test stations 30 has been completed. It is determined whether or not (step S34).
  • step S33 If it is not determined in step S33 that the inspection of all the device under test stations 30 has been completed, the external controller 10 executes step S31 again. If it is determined in step S33 that all the device under test stations 30 have been inspected, the inspection of the device under test stations 30 ends.
  • step S34 If it is not determined in step S34 that the inspection of the predetermined number of device under test stations 30 has been completed, the external controller 10 stands by. When it is determined in step S34 that the inspection of the predetermined number of device under test stations 30 has been completed, the external controller 10 executes step S35. Steps S35 to S38 are the same as steps S24 to S27 in FIG.
  • the inspection of the measuring device 21 can be started before the inspection of all the device-under-test stations 30 is completed. In this case, the time until the inspection of the measuring instrument 21 is completed can be shortened.
  • FIG. 7 is a schematic diagram illustrating an overall configuration of a test apparatus 100a according to the fifth embodiment. As shown in FIG. 7, the test apparatus 100 a does not include the standard station 50. In this case, each measurement station 20 can be inspected by mounting a standard device on any of the device-under-test stations 30 and measuring the standard device using a plurality of measurement stations 20.
  • one type of measurement station 20 capable of measuring the same characteristics is provided, but the present invention is not limited to this. If there are a plurality of measurement stations that can measure other characteristics, the measurement station check step and the device under test check step for each type of measurement station group, as in the flowcharts of FIGS. Can be implemented separately. When only one measuring station capable of measuring other characteristics is provided, inspection of a plurality of device under test stations may be performed using this one measuring station.
  • test apparatus 100 is controlled using the external controller 10, but the present invention is not limited to this. Any of the controllers 11, 22, 33, 52 may substitute for the external controller 10.
  • the external controller 10 may be provided with a table for managing the inspection history of each of the measurement station 20 and the device under test station 30, the state of inspection execution, and the like. In the inspection according to the present invention, the external controller 10 may refer to this table and perform control such as necessity of inspection or rejection of a request for a normal test during the inspection.
  • a normal inspection with a one-to-one connection is performed using the measuring device 21 that has not been subjected to the measuring device inspection step and the device under test station 30 that has not been subjected to the device under test inspection step. May be implemented. In this case, the inspection efficiency is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 試験装置の制御方法は、複数の被試験デバイスステーションと、同じ項目を測定可能な複数の測定部と、複数の被試験デバイスステーションと複数の測定部との接続組合せを変更可能なマトリクススイッチと、を備える試験装置において、複数の測定部を用いて標準デバイスを測定することによって測定部の点検を行う測定部点検ステップを複数の測定部に対して行う第1ステップと、被試験デバイスステーションに標準サンプルを搭載し標準サンプルが搭載された被試験デバイスステーションと接続された測定部を用いて標準サンプルの点検を行う被試験デバイスステーション点検ステップを複数の被試験デバイスステーションに対して行う第2ステップと、を含む。

Description

試験装置の制御方法
 本発明は、試験装置の制御方法に関する。
 ネットワーク型試験装置は、複数の被試験デバイスステーションと、複数の測定器とが接続部によって接続された構造を有している。このネットワーク型試験装置においては、複数の測定ステーションによって、標準サンプルが搭載された被試験デバイスステーションの点検が行われる(例えば、特許文献1参照)。
特開2007-271588号公報
 ネットワーク型試験装置の点検作業については、これまでのところ提唱されていない。ここで、点検作業とは、被試験デバイスステーションに標準デバイスを搭載し、この標準デバイスの特性を測定ステーションで測定し、期待値が得られることを確認する作業のことをいう。
 通常の試験装置では、被試験デバイスステーションと測定ステーションとが1対1で接続されている。このため、標準デバイスを被試験デバイスステーションに搭載しこれを測定ステーションで測定して期待値が得られれば、試験装置の点検は完了する。
 しかしながら、ネットワーク型試験装置には、同じ項目を測定可能な測定ステーションが複数搭載されている。これらのうちいずれが被試験デバイスステーションと接続されるかは不定である。
 このため、ネットワーク型試験装置において被試験デバイスステーションの1つに標準デバイスを搭載して点検作業を行った場合、複数の同じ測定ステーションのうち1つとしか接続が成立しないため、その他の測定ステーションと接続した場合の点検ができない。もちろん、この点検作業を他の被試験デバイスステーションに対して実施しても、すべての測定ステーションが点検に供される保証はない。
 本発明の目的は、複数の測定ステーションのいずれを用いても正常に点検を実施することができる、試験装置の制御方法を提供することを目的とする。
 本発明に係る試験装置の制御方法は、複数の被試験デバイスステーションと、同じ項目を測定可能な複数の測定部と、複数の被試験デバイスステーションと複数の測定部との接続組合せを変更可能なマトリクススイッチと、を備える試験装置において、複数の測定部を用いて標準デバイスを測定することによって測定部の点検を行う測定部点検ステップを複数の測定部に対して行う第1ステップと、被試験デバイスステーションに標準サンプルを搭載し標準サンプルが搭載された被試験デバイスステーションと接続された測定部を用いて標準サンプルの点検を行う被試験デバイスステーション点検ステップを複数の被試験デバイスステーションに対して行う第2ステップと、を含むことを特徴とするものである。
 本発明に係る試験装置の制御方法においては、測定部点検ステップと被試験デバイスステーション点検ステップとを分けて実施することによって、点検済みの複数の測定部を用いて被試験デバイスステーションの点検を実施することができる。この場合、点検対象となる被試験デバイスステーションが点検済みのいずれの測定部と接続されても、正常に点検を実施することができる。
 第2ステップは、第1ステップ後に実施されてもよい。この場合、点検済みの測定部を用いて被試験デバイスステーションの点検を実施することができる。それにより、被試験デバイスステーションの点検精度が向上する。
 複数の測定部のうち一部に対して測定部点検ステップを実施し、残りの測定部については第2ステップと同時または第2ステップ後に測定部点検ステップを実施してもよい。この場合、被試験デバイスステーション点検ステップが完了するまでの時間が短縮化される。
 第1ステップは、第2ステップ後に実施されてもよい。また、複数の被試験デバイスステーションのうち一部に対して被試験デバイスステーション点検ステップを実施し、残りの被試験デバイスステーションについては第1ステップと同時または第1ステップ後に被試験デバイスステーション点検ステップを実施してもよい。
 測定部点検ステップは、被試験デバイスステーションに標準デバイスを搭載して測定部と接続することによって実施されてもよい。この場合、標準デバイスを搭載するためのステーションを新たに設ける必要がない。それにより、試験装置が簡略化される。
 試験装置は、被試験デバイスステーションとは別に、標準デバイスと標準デバイスを駆動する駆動部とが搭載された標準ステーションを備え、測定部点検ステップは、標準ステーションに搭載された標準デバイスを測定するステップであってもよい。この場合、標準デバイスを搭載するための専用のステーションが配置される。それにより、標準デバイスを搭載するための工数を削減することができる。
 本発明に係る方法は、第1ステップまたは第2ステップを実施する間、点検に供されない測定部と被試験デバイスステーションとの組を利用して被試験デバイスステーション点検ステップを実施する、第3ステップをさらに含んでいてもよい。この場合、点検効率が向上する。
 本発明によれば、複数の測定器のいずれを用いても正常に点検を実施することができる。
実施例1に係る試験装置の全体構成を示す模式図である。 (a)は後述する被試験デバイスステーションの詳細図であり、(b)は後述する測定ステーションの詳細図であり、(c)は後述する標準ステーションの詳細図である。 外部コントローラによって実行される、試験装置の制御方法の一例を示すフローチャートである。 試験装置の制御方法の他の例を示すフローチャートである。 試験装置の制御方法の他の例を示すフローチャートである。 試験装置の制御方法の他の例を示すフローチャートである。 実施例5に係る試験装置の全体構成を示す模式図である。
 以下、本発明を実施するための最良の形態を説明する。
 図1および図2(a)~図2(c)を参照しつつ、実施例1に係る試験装置100について説明する。図1は、実施例1に係る試験装置100の全体構成を示す模式図である。図2(a)は、後述する被試験デバイスステーション30の詳細図である。図2(b)は、後述する測定ステーション20の詳細図である。図2(c)は、後述する標準ステーション50の詳細図である。
 図1を参照して、試験装置100は、外部コントローラ10、複数の測定ステーション20、複数の被試験デバイスステーション30、マトリクススイッチ40、標準ステーション50等を備える。なお、マトリクススイッチ40には、コントローラ41が設けられている。
 外部コントローラ10およびコントローラ41は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)等から構成される。外部コントローラ10は、測定ステーション20、被試験デバイスステーション30、コントローラ41および標準ステーション50を制御する。
 コントローラ41は、外部コントローラ10の指示に従って、マトリクススイッチ40を制御する。マトリクススイッチ40は、コントローラ41の指示に従って、各測定ステーション20と、各被試験デバイスステーション30および標準ステーション50との接続組合せを変更する。この場合、各測定ステーション20は、複数の被試験デバイスステーション30および標準ステーション50のうちいずれか1つと接続される。
 図2(a)を参照して、各被試験デバイスステーション30は、デバイスを搭載可能な搭載部31、ドライバ32およびコントローラ33を備える。コントローラ33は、CPU、ROM、RAM等から構成され、ドライバ32の動作を制御する。ドライバ32は、コントローラ33の指示に従って、搭載部31に搭載されたデバイスを駆動する。本実施例においては、搭載部31には、一例として半導体レーザが搭載される。
 図2(b)を参照して、各測定ステーション20は、測定器21およびコントローラ22を備える。コントローラ22は、CPU、ROM、RAM等から構成され、測定器21の動作を制御する。測定器21は、マトリクススイッチ40を介して接続された被試験デバイスステーション30または標準ステーション50に搭載されるデバイスの特性を、コントローラ22の指示に従って測定する装置である。各測定器21は、同じ特性を測定可能である。また、測定ステーション20は、例えば、光オシロスコープ、パワーメータ、波長計、BER測定器、スペクトラム測定器等のいずれかを測定器21として用いて測定することができる。なお、上記各測定器は、単体もしくは複数の測定機器から構成されていてもよい。また、測定ステーション20は、上記の各測定器21を複数用いた組を複数備えていてもよい。
 図2(c)を参照して、標準ステーション50は、1以上の標準光源部51、コントローラ52および光スイッチ53を備える、各標準光源部51は、標準デバイス54およびドライバ55を備える。コントローラ52は、CPU、ROM、RAM等から構成され、各ドライバ55および光スイッチ53の動作を制御する。各ドライバ55は、コントローラ52の指示に従って、標準デバイス54を駆動する。標準デバイス54は、あらかじめ所定の特性を実現することが確認されたデバイスである。本実施例においては、標準デバイス54として、半導体レーザを用いる。光スイッチ53は、コントローラ52の指示に従って、いずれの標準デバイス54を光源として出力するか切り替えるスイッチである。
 続いて、試験装置100の制御方法について説明する。図3は、外部コントローラ10によって実行される、試験装置100の制御方法の一例を示すフローチャートである。まず、外部コントローラ10は、変数「n」に「1」を代入する(ステップS1)。
 次に、外部コントローラ10は、標準ステーション50の標準デバイス54を用いて、n番目の測定ステーション20の点検を実施する(ステップS2)。この場合、外部コントローラ10は、標準デバイス54とn番目の測定ステーションとが接続されるように、コントローラ41を介してマトリクススイッチ40を制御する。ステップS2の実行によって、n番目の測定ステーション20が正常に動作しているか否かが確認されるとともに、測定ステーション20からマトリクススイッチ40までの経路が正常であるか否かが確認される。
 次いで、外部コントローラ10は、すべての測定ステーション20の点検が完了したか否かを判定する(ステップS3)。ステップS3において点検が完了したと判定されなかった場合、外部コントローラ10は、変数「n」に「n+1」を代入する(ステップS4)。その後、外部コントローラ10は、ステップS2を再度実行する。
 ステップS3において点検が完了したと判定された場合、外部コントローラ10は、未点検の被試験デバイスステーション30の搭載部31に標準サンプルが搭載されるまで待機する(ステップS5)。ここで、標準サンプルは、標準デバイスと同じ種類のデバイスであり、あらかじめ所定の特性を実現することが確認されたデバイスである。本実施例においては、標準サンプルは、半導体レーザである。
 未点検の被試験デバイスステーション30の搭載部31に標準サンプルが搭載された後、外部コントローラ10は、点検済みの測定ステーション20を用いて、この標準サンプルを測定する(ステップS6)。この場合、外部コントローラ10は、標準デバイスサンプルと点検済みの測定ステーション20とが接続されるように、コントローラ41を介してマトリクススイッチ40を制御する。ステップS6の実行によって、被試験デバイスステーション30、ならびに、被試験デバイスステーション30からマトリクススイッチ40までの機器、経路等に不具合が生じていないか否かを検出することができる。
 次に、外部コントローラ10は、すべての被試験デバイスステーションの点検が完了したか否かを判定する(ステップS7)。ステップS7において点検が完了したと判定されなかった場合、外部コントローラ10は、ステップS5を再度実行する。ステップS7において点検が完了したと判定された場合、外部コントローラ10は、フローチャートの実行を終了する。
 なお、被試験デバイスステーションおよび測定ステーションの点検頻度は同じでもよく、異なっていてもよい。例えば、測定ステーションの点検頻度を被試験デバイスステーションの点検頻度よりも高めておくことで、被試験デバイスステーションの点検時には、いずれの測定ステーションにおいても点検保証が十分確保された状態にできる。このことは、被試験デバイスステーションの点検時に、測定ステーションの点検待ち時間を解消する効果を有する。
 本実施例によれば、測定ステーション20の点検ステップと被試験デバイスステーション30の点検ステップとを分けて実施することによって、点検済みの測定ステーション20を用いて被試験デバイスステーション30の点検を実施することができる。この場合、点検対象となる被試験デバイスステーション30が点検済みのいずれの測定ステーション20と接続されても、正常に点検を実施することができる。なお、被試験デバイスステーションと測定ステーションとが1対1で接続される一般の試験装置においては、被試験デバイスステーションと測定ステーションとの組が固定されるため、測定ステーションの点検ステップと被試験デバイスステーションの点検ステップとを分けて実施する必要はない。
 また、本実施例によれば、標準デバイスを搭載するための専用の標準ステーション50が配置される。この場合、被試験デバイスステーション30に標準デバイスを搭載するための工数を削減することができる。一般に、被試験デバイスステーションは、型格ごとにデバイス接続のための治具が異なる。したがって、各治具の交換作業を含めると、工数が増大してしまう。しかしながら、標準ステーションを設ければ、専用の標準デバイスを標準ステーション50に内蔵しておくことができる。したがって、各治具の交換作業に要する工数を削減することができる。
 また、標準ステーションを使用すれば、被試験デバイスステーションの治具部分に標準デバイスを脱着することによる特性への影響を抑制することができる。なお、本発明に関する点検のうち、特に測定ステーションの点検は、標準ステーションを使用すれば、全自動で実施することができる。したがって、実試験が行われない夜間などに測定ステーションの点検を行うことができるので、測定ステーションの点検が実試験の稼動を阻害することを防止できる効果が得られる。
 一部の測定ステーション20の点検が終了した後に、被試験デバイスステーション30の点検を開始してもよい。図4は、この場合の試験装置100の制御方法の一例を示すフローチャートである。図4のステップS11およびS12は、図3のステップS1およびS2と同様のため、説明を省略する。ステップS12の実行後、外部コントローラ10は、すべての測定ステーション20の点検が完了したか否かを判定する(ステップS13)。それと同時に、外部コントローラ10は、変数「n」がしきい値「m(<n)」を上回った否かを判定する(ステップS15)。しきい値「m」は、任意であるが、例えばn/2程度の値とすることができる。
 ステップS13においてすべての測定ステーション20の点検が完了したと判定されなかった場合、外部コントローラ10は、変数「n」に「n+1」を代入する(ステップS14)。その後、外部コントローラ10は、ステップS12を再度実行する。ステップS13において測定ステーション20の点検が完了したと判定された場合、測定ステーション20の点検は終了する。
 ステップS15において変数「n」がしきい値「m」を上回ったと判定されなかった場合、外部コントローラ10は待機する。ステップS15において変数「n」がしきい値「m」を上回ったと判定された場合、外部コントローラ10は、未点検の被試験デバイスステーション30の搭載部31に標準サンプルが搭載されるまで待機する(ステップS16)。なお、この場合、外部コントローラ10は、すべての測定ステーション20の点検が完了するまで測定ステーション20の点検を平行して実施する。ステップS17およびS18は、図3のステップS6およびS7と同様のため、説明を省略する。
 本実施例によれば、すべての測定ステーション20の点検が完了する前に被試験デバイスステーション30の点検を開始することができる。この場合、被試験デバイスステーション30の点検が完了するまでの時間を短縮することができる。また、被試験デバイスステーション30の点検が1つ以上完了することで、測定ステーション20の点検が完了している組で先行して実試験を開始することができる。
 測定ステーション20の点検前に被試験デバイスステーション30の点検を開始してもよい。図5は、この場合の試験装置100の制御方法の一例を示すフローチャートである。まず、外部コントローラ10は、未点検の被試験デバイスステーション30の搭載部31に標準サンプルが搭載されるまで待機する(ステップS21)。
 未点検の被試験デバイスステーション30の搭載部31に標準サンプルが搭載された後、外部コントローラ10は、いずれかの測定器21を用いて、この標準サンプルを測定する(ステップS22)。次に、外部コントローラ10は、すべての被試験デバイスステーションの点検が完了したか否かを判定する(ステップS23)。ステップS23において点検が完了したと判定されなかった場合、外部コントローラ10は、ステップS21を再度実行する。
 ステップS23において点検が完了したと判定された場合、外部コントローラ10は、変数「n」に「1」を代入する(ステップS24)。
 次に、外部コントローラ10は、標準ステーション50の標準デバイス54を用いて、n番目の測定ステーション20の測定器21の点検を実施する(ステップS25)。次いで、外部コントローラ10は、すべての測定ステーション20の点検が完了したか否かを判定する(ステップS26)。ステップS26において点検が完了したと判定されなかった場合、外部コントローラ10は、変数「n」に「n+1」を代入する(ステップS27)。その後、外部コントローラ10は、ステップS25を再度実行する。
 ステップS26において点検が完了したと判定された場合、外部コントローラ10は、フローチャートの実行を終了する。
 本実施例によれば、測定ステーション20の点検に先行して被試験デバイスステーション30の点検を実施することができる。例えば、測定ステーション20の信頼性が比較的高い場合に有効な点検方法である。
 一部の被試験デバイスステーション30の点検が終了した後に、測定ステーション20の点検を開始してもよい。図6は、この場合の試験装置100の制御方法の一例を示すフローチャートである。図6のステップS31およびS32は、図5のステップS21およびS22と同様のため、説明を省略する。ステップS32の実行後、外部コントローラ10は、すべての被試験デバイスステーション30の点検が完了したか否かを判定する(ステップS33)と同時に、所定数の被試験デバイスステーション30の点検が完了したか否かを判定する(ステップS34)。
 ステップS33においてすべての被試験デバイスステーション30の点検が完了したと判定されなかった場合、外部コントローラ10は、ステップS31を再度実行する。ステップS33においてすべての被試験デバイスステーション30の点検が完了したと判定された場合、被試験デバイスステーション30の点検が終了する。
 ステップS34において所定数の被試験デバイスステーション30の点検が完了したと判定されなかった場合、外部コントローラ10は、待機する。ステップS34において所定数の被試験デバイスステーション30の点検が完了したと判定された場合、外部コントローラ10は、ステップS35を実行する。なお、ステップS35~ステップS38は、図5のステップS24~ステップS27と同様のため、説明を省略する。
 本実施例によれば、すべての被試験デバイスステーション30の点検が完了する前に測定器21の点検を開始することができる。この場合、測定器21の点検が完了するまでの時間を短縮することができる。
 標準ステーション50は必ずしも備わっていなくてもよい。図7は、実施例5に係る試験装置100aの全体構成を示す模式図である。図7に示すように、試験装置100aは、標準ステーション50を備えていない。この場合、いずれかの被試験デバイスステーション30に標準デバイスを搭載し、この標準デバイスを複数の測定ステーション20を用いて測定することによって、各測定ステーション20を点検することができる。
 なお、上記各実施例においては同じ特性を測定可能な1種類の測定ステーション20が備わっているが、それに限られない。他の特性を測定可能な測定ステーションが複数備わっていれば、各種類の測定ステーション群に対して、図3~図6のフローチャートと同様に測定ステーションの点検ステップと被試験デバイスステーションの点検ステップとを分けて実施すればよい。他の特性を測定可能な測定ステーションが1台しか備わっていない場合には、この1台の測定ステーションを用いて複数の被試験デバイスステーションの点検を実施すればよい。
 また、上記各実施例においては外部コントローラ10を用いて試験装置100を制御したが、それに限られない。コントローラ11,22,33,52のいずれかが外部コントローラ10を代用してもよい。
 なお、外部コントローラ10は、測定ステーション20および被試験デバイスステーション30の各々の点検履歴、点検実施の状態等を管理するためのテーブルを備えていてもよい。本発明の点検においては、外部コントローラ10は、このテーブルを参照して、点検要否あるいは点検中における通常試験のリクエストの拒否などのコントロールを実施してもよい。
 また、上記各実施例において、測定器点検ステップに供されていない測定器21と被試験デバイスステーション点検行程に供されていない被試験デバイスステーション30とを用いて、1対1接続の通常の点検を実施してもよい。この場合、点検効率が向上する。

 

Claims (8)

  1.  複数の被試験デバイスステーションと、同じ項目を測定可能な複数の測定部と、前記複数の被試験デバイスステーションと前記複数の測定部との接続組合せを変更可能なマトリクススイッチと、を備える試験装置において、
     標準デバイスを測定することによって前記測定部の点検を行う測定部点検ステップを、前記複数の測定部に対して行う第1ステップと、
     前記被試験デバイスステーションに標準サンプルを搭載し、前記標準サンプルが搭載された前記被試験デバイスステーションと接続された測定部を用いて前記標準サンプルの点検を行う被試験デバイスステーション点検ステップを、前記複数の被試験デバイスステーションに対して行う第2ステップと、を含むことを特徴とする試験装置の制御方法。
  2.  前記第2ステップは、前記第1ステップ後に実施されることを特徴とする請求項1記載の試験装置の制御方法。
  3.  前記複数の測定部のうち一部に対して前記測定部点検ステップを実施し、残りの測定部については前記第2ステップと同時または前記第2ステップ後に前記測定部点検ステップを実施することを特徴とする請求項1記載の試験装置の制御方法。
  4.  前記第1ステップは、前記第2ステップ後に実施されることを特徴とする請求項1記載の試験装置の制御方法。
  5.  前記複数の被試験デバイスステーションのうち一部に対して前記被試験デバイスステーション点検ステップを実施し、残りの被試験デバイスステーションについては前記第1ステップと同時または前記第1ステップ後に前記被試験デバイスステーション点検ステップを実施することを特徴とする請求項1記載の試験装置の制御方法。
  6.  前記測定部点検ステップは、前記被試験デバイスステーションに前記標準デバイスを搭載して前記測定部と接続することによって実施されることを特徴とする請求項1記載の試験装置の制御方法。
  7.  前記試験装置は、前記被試験デバイスステーションとは別に、標準デバイスと前記標準デバイスを駆動する駆動部とが搭載された標準ステーションを備え、
     前記測定部点検ステップは、前記標準ステーションに搭載された前記標準デバイスを測定するステップであることを特徴とする請求項1記載の試験装置の制御方法。
  8.  前記第1ステップまたは前記第2ステップを実施する間、点検に供されない前記測定部と前記被試験デバイスステーションとの組を利用して前記被試験デバイスステーション点検ステップを実施する、第3ステップをさらに含むことを特徴とする請求項1記載の試験装置の制御方法。
PCT/JP2009/070681 2008-12-26 2009-12-10 試験装置の制御方法 WO2010073919A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/168,726 US20110252860A1 (en) 2008-12-26 2011-06-24 Method for controlling testing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-333509 2008-12-26
JP2008333509A JP5425462B2 (ja) 2008-12-26 2008-12-26 試験装置の制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/168,726 Continuation US20110252860A1 (en) 2008-12-26 2011-06-24 Method for controlling testing apparatus

Publications (1)

Publication Number Publication Date
WO2010073919A1 true WO2010073919A1 (ja) 2010-07-01

Family

ID=42287535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070681 WO2010073919A1 (ja) 2008-12-26 2009-12-10 試験装置の制御方法

Country Status (3)

Country Link
US (1) US20110252860A1 (ja)
JP (1) JP5425462B2 (ja)
WO (1) WO2010073919A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252095A (zh) * 2021-04-30 2021-08-13 联合汽车电子有限公司 一种利用标准工件对并行工位进行校验的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040795A (ja) * 2013-08-22 2015-03-02 住友電工デバイス・イノベーション株式会社 試験装置
JP6201233B2 (ja) * 2013-08-30 2017-09-27 住友電工デバイス・イノベーション株式会社 試験装置
JP6966039B2 (ja) * 2017-10-25 2021-11-10 住友電工デバイス・イノベーション株式会社 試験装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224635A (ja) * 1988-01-25 1989-09-07 Hewlett Packard Co <Hp> 校正方法および光部品測定システム
JPH09264765A (ja) * 1996-03-29 1997-10-07 Hitachi Ltd 計測器精度管理システム
JP2004061514A (ja) * 2002-07-25 2004-02-26 Faztec Optronics Corp 光トランシーバ用テストシステムおよびテスト方法
JP2007271590A (ja) * 2006-03-31 2007-10-18 Eudyna Devices Inc 試験システムおよびその制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298073A (ja) * 1987-05-29 1988-12-05 Asia Electron Kk Dcパラメ−タテストシステム
JP3626161B2 (ja) * 2002-09-12 2005-03-02 ダイトロンテクノロジー株式会社 電子素子の動作特性測定装置
US7474851B2 (en) * 2004-09-24 2009-01-06 Intel Corporation Optical transceiver tester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224635A (ja) * 1988-01-25 1989-09-07 Hewlett Packard Co <Hp> 校正方法および光部品測定システム
JPH09264765A (ja) * 1996-03-29 1997-10-07 Hitachi Ltd 計測器精度管理システム
JP2004061514A (ja) * 2002-07-25 2004-02-26 Faztec Optronics Corp 光トランシーバ用テストシステムおよびテスト方法
JP2007271590A (ja) * 2006-03-31 2007-10-18 Eudyna Devices Inc 試験システムおよびその制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252095A (zh) * 2021-04-30 2021-08-13 联合汽车电子有限公司 一种利用标准工件对并行工位进行校验的方法及装置
CN113252095B (zh) * 2021-04-30 2022-08-12 联合汽车电子有限公司 一种利用标准工件对并行工位进行校验的方法及装置

Also Published As

Publication number Publication date
JP2010156553A (ja) 2010-07-15
US20110252860A1 (en) 2011-10-20
JP5425462B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2010073919A1 (ja) 試験装置の制御方法
JP6104578B2 (ja) 検査装置および検査方法
JP2008002900A (ja) 半導体装置のスクリーニング方法と装置並びにプログラム
JP2010133817A (ja) 絶縁検査装置および絶縁検査方法
JP4748181B2 (ja) 半導体装置の試験装置および試験方法
TW552424B (en) Screening of semiconductor integrated circuit devices
US20120179410A1 (en) Voltage driver for a voltage-driven intelligent characterization bench for semiconductor
KR20050121376A (ko) 반도체 장치의 테스트 장치 및 이를 이용한 반도체 장치테스트 방법
EP1649299A2 (en) System and method for optimized test and configuration throughput of electronic circuits
KR101599459B1 (ko) 반도체 소자 테스트 시스템 및 방법
KR100750397B1 (ko) 웨이퍼 검사장치의 멀티 테스트 구현시스템
JP2010002315A (ja) 半導体試験装置とそのdc特性試験方法
US20150185277A1 (en) Voltage-driven intelligent characterization bench for semiconductor
JP2009288064A (ja) 半導体試験装置及び方法
KR101153339B1 (ko) 반도체 발광소자 검사 방법
JP2004163194A (ja) Icテスタ及び試験モジュール
JP2010165819A (ja) 半導体集積回路の試験装置、試験方法
JP2010014597A (ja) 可動式コンタクト検査装置
US20120179943A1 (en) Method for information transfer in a voltage-driven intelligent characterization bench for semiconductor
JP5496599B2 (ja) 絶縁検査装置および絶縁検査方法
US20050285612A1 (en) Apparatus for measuring DC parameters in a wafer burn-in system
Titu-Marius Environmental Stress Screening and Burn-in.
KR100738956B1 (ko) 웨이퍼 레벨 번인 테스트 장치
CN117310589A (zh) 一种晶圆测试系统的异常检测方法、装置及介质
KR20130068574A (ko) 계측 장치 및 계측 장치에서의 자가 진단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834722

Country of ref document: EP

Kind code of ref document: A1