WO2010073756A1 - スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体 - Google Patents

スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体 Download PDF

Info

Publication number
WO2010073756A1
WO2010073756A1 PCT/JP2009/061474 JP2009061474W WO2010073756A1 WO 2010073756 A1 WO2010073756 A1 WO 2010073756A1 JP 2009061474 W JP2009061474 W JP 2009061474W WO 2010073756 A1 WO2010073756 A1 WO 2010073756A1
Authority
WO
WIPO (PCT)
Prior art keywords
springback
stress
data
molding
component
Prior art date
Application number
PCT/JP2009/061474
Other languages
English (en)
French (fr)
Inventor
隆司 宮城
田中 康治
操 小川
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008329099A external-priority patent/JP4410833B2/ja
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to ES09834562T priority Critical patent/ES2711923T3/es
Priority to CN2009801522311A priority patent/CN102264486B/zh
Priority to RU2011125636/02A priority patent/RU2477663C2/ru
Priority to BRPI0923582A priority patent/BRPI0923582B8/pt
Priority to MX2011006832A priority patent/MX2011006832A/es
Priority to KR1020117014506A priority patent/KR101368108B1/ko
Priority to US13/132,637 priority patent/US8589132B2/en
Priority to EP09834562.2A priority patent/EP2371464B1/en
Publication of WO2010073756A1 publication Critical patent/WO2010073756A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/24Sheet material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a springback cause analysis method and a springback cause analysis for analyzing the cause of the occurrence of springback occurring in a molded product when automobile parts, home appliance parts, etc. are press-formed from steel plates or other metal plates.
  • the present invention relates to a device, a springback cause analysis program, and a recording medium.
  • a steel plate the present invention can also be applied to other metal plates, plastic plates, wire rods, and the like.
  • Patent Document 1 or Non-Patent Document 1 discloses a method for determining a mold shape in anticipation of springback as described above. Specifically, the steel plate pressed into the mold is analyzed by the finite element method for the residual stress of the steel plate at the bottom dead center of the press. Numerically analyze the type. As a result, a mold shape that easily considers the spring back is obtained.
  • a method has been proposed in which the springback is reduced by modifying the shape of the steel material or molded product, not the mold shape, to remove residual stress.
  • An example of such a correction method is a method in which a part of the springback occurrence portion of the molded product is formed into a perforated shape or a slitted shape.
  • the residual stress that causes the spring back is reduced by taking measures against the portion where the spring back is generated.
  • the rigidity of the member itself is reduced by cutting or drilling, a large springback tends to occur even with a slight residual stress. For this reason, this method also does not lead to the root cause investigation.
  • such a measure actually requires a test using a test mold and a steel plate, there arises a problem of an increase in man-hours and costs at the design stage.
  • Patent Documents 2 to 5 also disclose simulations using the finite element method.
  • the methods of Patent Documents 2 to 4 use partial stress release and change methods.
  • Patent Document 2 for example, only the amount of change in angle before and after the springback of each portion, that is, the twist is considered as an evaluation target. For this reason, no consideration is given to deformation factors other than torsion.
  • patent document 2 all the components of the stress of an open part are set to 0 at the time of stress relief
  • the press forming process and the press-formed product have been conventionally analyzed by a numerical analysis method.
  • the object of the present invention is to enable the analysis of the location causing the spring back of the press-formed product by numerical analysis more accurately than before, thereby reducing the examination time and examination cost of the molding method of the molded part. It is to provide a technique for analyzing the cause of the occurrence of springback.
  • a springback occurrence cause analysis method of the present invention includes a molding analysis step of performing molding analysis by numerical simulation based on molding conditions of a molded product molded by plastic processing, and calculating molding data of the molded product.
  • the first independent decomposition data having only an in-plane stress component for the decomposed stress of the direction component, and only the bending moment component for the stress of the decomposed direction component.
  • 2nd independent decomposition data having and at least one independent decomposition molding data to be generated as independent decomposition molding data before calculation.
  • a shape data generation step ; dividing the region of the molded product, and performing independent processing after calculation by performing calculation processing on at least one direction component of the stress of the pre-calculation independent decomposition molding data for each region for each region
  • the molding analysis step is performed by a numerical simulation by a finite element method using a plurality of elements, and for each element in the molding data of the molded product.
  • the plate thickness direction average of each directional component of stress is defined as the in-plane stress component of the directional component, and the value obtained by subtracting the in-plane average stress from each directional component of the stress value at all integration points generated for each element in the direction.
  • the bending moment component of the component may be used.
  • the calculation processing is performed such that ⁇ 2 ⁇ k ⁇ 2 with respect to at least one of the directional components of the stress of the independent decomposition molding data before calculation.
  • the calculation may be performed by multiplying the range coefficient k.
  • the range of the coefficient k may be 0 ⁇ k ⁇ 1.
  • the range of the coefficient k may be 0.5 ⁇ k ⁇ 0.95.
  • the molded product may be a press-molded product.
  • a springback generation cause analysis apparatus of the present invention includes a molding analysis unit that performs molding analysis by numerical simulation based on molding conditions of a molded product molded by plastic processing, and calculates molding data of the molded product.
  • a component decomposing portion that decomposes the stress data included in the molding data of the molded product into an in-plane stress component and a bending moment component with respect to at least one direction component of each direction component of stress throughout the molded product.
  • the first independent decomposition data having only an in-plane stress component for the decomposed stress of the direction component, and only the bending moment component for the stress of the decomposed direction component.
  • 2nd independent decomposition data possessed and at least one independent decomposition molding data is generated as independent decomposition molding data before calculation.
  • a data generation unit dividing the region of the molded product, and performing independent processing after calculation by performing calculation processing on at least one direction component of the stress of the independent decomposition molding data before calculation for each region for each region
  • An arithmetic processing unit for generating molding data; a first springback shape obtained by numerical simulation with respect to the independent decomposition molding data before computation; a second springback shape obtained by numerical simulation with respect to the independent decomposition molding data after computation; A stress of each region calculated from the shape before spring back, the first spring back shape, and the second spring back shape included in the molding data of the molded product;
  • An influence calculating unit for obtaining an influence on the spring back deformation of For each area, and a display unit for displaying the influence on springback deformation the calculated; having.
  • a springback occurrence cause analysis program includes a molding analysis step of performing molding analysis by numerical simulation based on molding conditions of a molded product molded by plastic processing, and calculating molding data of the molded product.
  • the first independent decomposition data having only an in-plane stress component for the decomposed stress of the direction component, and only the bending moment component for the stress of the decomposed direction component.
  • the second independent decomposition data having and at least one independent decomposition molding data as the pre-computation independent decomposition molding data.
  • a decomposition molding data generation step ; dividing the area of the molded product, and performing calculation processing on at least one direction component of the stress of the independent decomposition molding data before calculation for each area for each area.
  • a springback analysis step for analyzing the shape; each of the shapes calculated from the shape before the springback included in the molding data of the molded product, the first springback shape, and the second springback shape. Determine the degree of influence of stress in the region on springback deformation And Hibikido calculation step; having; the each area, and a display step of displaying the influence on springback deformation the calculated.
  • the molding analysis step is performed by numerical simulation by a finite element method using a plurality of elements, and each element in the molding data of the molded product
  • the value obtained by subtracting the in-plane average stress from each direction component of the stress value of all integration points generated for each element is the plate thickness direction average of each direction component of each stress as the in-plane stress component of the direction component. It may be a bending moment component of the directional component.
  • a computer-readable recording medium of the present invention records the springback occurrence cause analysis program described in (9) above.
  • the springback generation cause analysis method of the present invention includes a molding analysis step of performing molding analysis by numerical simulation based on molding conditions of a molded product molded by plastic working, and calculating molding data of the molded product.
  • the first independent decomposition data having only an in-plane stress component for the decomposed stress of the direction component, and only the bending moment component for the stress of the decomposed direction component.
  • 2nd independent decomposition data possessed and at least one independent decomposition molding data is generated as independent decomposition molding data before calculation.
  • a molding data generation step ; dividing the region of the molded product, and performing independent processing after calculation by performing calculation processing on at least one directional component of the stress of the independent decomposition molding data before calculation for each region for each region
  • a calculation processing step for generating molding data a springback analysis step for analyzing a springback shape obtained by numerical simulation with respect to the post-computation independent decomposition molding data; a shape before springback included in the molding data of the molded product;
  • An influence degree calculating step for obtaining an influence degree of the stress of each area calculated from the spring back shape with respect to the spring back deformation; a display for displaying the influence degree with respect to the calculated spring back deformation for each area; And a process.
  • the present invention it is possible to accurately analyze the cause of the occurrence of springback, and the time for studying the molding method of the molded product can be shortened.
  • the press-molded product is divided into regions, and for each region, calculation processing for multiplying at least one of the directional components of the stress in the independent decomposition molding data for the region is performed.
  • the coefficient k is preferably ⁇ 2 ⁇ k ⁇ + 2 (including zero).
  • the coefficient k is zero, the calculation is simplified, and the influence of the stress in each region on the springback deformation can be clearly evaluated based on the calculated influence degree.
  • the coefficient k is a value close to +1, it is possible to calculate and evaluate the degree of influence with higher accuracy. The reason that the evaluation accuracy is improved when the coefficient k takes a value closer to 1 than zero is that there is actually a nonlinearity between stress and displacement.
  • the stress gradient before and after editing with respect to the displacement has almost no difference between the linear approximation and the actual non-linear case.
  • the value of the degree of influence of stress on the surface can be obtained with sufficient accuracy for analysis and evaluation.
  • the difference in stress gradient before and after editing with respect to the displacement becomes large between the case of linear approximation and the case of actual non-linearity.
  • the stress after editing is a value close to the stress before editing (coefficient k is close to 1), the stress gradient before and after editing for deformation is close to the case of actual nonlinearity.
  • the calculation processing is performed in the state, and the evaluation accuracy of the value of the degree of influence of the stress on the springback in each region is improved as compared with the case where the coefficient k is zero (FIG. 10).
  • the coefficient k is advantageously a value close to +1.
  • FIG. 1 It is a figure which shows the structure of the springback generation
  • FIG. 16B is a sectional view taken along line FF in FIG. 16A. It is a figure which shows the local coordinate of the press-formed product in Example 9. It is GG sectional drawing of FIG. 17A.
  • the present invention will be described by taking as an example an analysis of the cause of springback occurrence for a product made by press-molding a thin plate material, but the scope of application of the present invention is not limited to this.
  • the present invention can be applied to, for example, molding by roll forming or molding a wire rod.
  • FIG. 1 shows a functional configuration diagram of a springback generation cause analyzer 1 of the present invention.
  • This springback generation cause analysis apparatus 1 includes a molding condition input unit 2, a press molding analysis unit 3, an exploded molding data generation unit 4, a region division and calculation processing unit 5, a springback analysis unit 6, an influence degree calculation unit 19, and a display.
  • the forming condition input unit 2 includes shape data (plate thickness, length, width, curvature, distortion, etc.) and properties (strength, elongation, etc.) of the steel plate to be analyzed in the press forming analysis unit 3 and the springback analysis unit 6. ), Mold shape (die and punch shape, curvature, diameter, clearance, lubrication conditions), input conditions for inputting molding conditions such as pressing conditions (wrinkle presser load, pad load, bead tension, press pressure, temperature) .
  • a data area in the molding analysis, a data area in the decomposition molding data generation unit 4, a data area in the area division and calculation processing unit 5, a division area when the analysis result is displayed on the output screen, and the like are separately set and input. You can also.
  • the press molding analysis unit 3 obtains the shape, stress, strain, plate thickness, and the like of the molded product to be press molded based on the input information from the molding condition input unit 2 by numerical analysis.
  • a numerical analysis method an elastic-plastic finite element method, a rigid-plastic finite element method, a one-step finite element method, a boundary element method, or the like may be used.
  • the press forming analysis unit 3 outputs a numerical analysis result in the form of a plate thickness of the workpiece, a stress component value, a strain component value variable, and a distribution of the variable.
  • the output data (original data) is output, for example, as the file “P org.k” to the decomposition molding data generation unit 4, the region division and calculation processing unit 5, the springback analysis unit 6, and the influence degree calculation unit 19. It is stored in the file storage unit S.
  • the numerical analysis in the press molding analysis unit 3 uses the finite element method to set molding conditions such as the above-described shape data, properties, mold shape, and press conditions, perform molding analysis, and perform stress after molding. Distribution of distortion and the like can be obtained numerically.
  • software for performing numerical analysis by the finite element method for example, commercially available software such as PAM-STAMP, LS-DYNA, AUTOFORM, OPTRIS, ITAS-3D, ASU / P-FORM, ABAQUS, MARC, HYSTAMP, HYPERFORM, SIMEX, FASTFORM-3D, QUICKSTAMP, etc. may be used.
  • the decomposition molding data generation unit 4 provides in-plane molding data of the press molded product obtained by the press molding analysis unit 3 with respect to at least one of the directions of each direction component of the stress of each element over the entire press molded product. Decomposes into stress component and bending moment component. And, regarding the stress of the decomposed direction component of the molding data of the press molded product obtained by the press molding analysis unit 3, the independent decomposition data having only the in-plane stress component and the independent decomposition data having only the bending moment component. And generate
  • the in-plane stress component is an average stress component in the thickness direction distribution of the in-plane direction stress of the molded product.
  • the bending moment component is a stress component having a thickness direction distribution obtained by subtracting the average stress component from the deviation stress of the thickness direction distribution of the in-plane direction stress of the molded product, that is, the thickness direction distribution of the in-plane direction stress.
  • the average stress in the thickness direction distribution is assigned to each element of the forming analysis result, and all the integration points in the thickness direction are assigned to each element to generate in-plane stress component decomposition data.
  • the bending moment component decomposition data is generated by subtracting the average stress extracted from the original forming analysis result from the stress value of all the integration points in the thickness direction generated for each element. That is, the average stress in the molding data is used as the in-plane stress component, and the value obtained by subtracting the in-plane average stress from the stress value at all integration points in the thickness direction generated for each element may be used as the bending moment component.
  • each direction component may be decomposed into each direction component based on the global coordinate system.
  • each element may be decomposed with reference to a local coordinate system based on the coordinates of the nodes constituting the element.
  • a local coordinate system is set for each element based on the overall coordinate system, and this local coordinate system set for each element is used for each element in press molding. It may be disassembled based on a coordinate system after press molding that is moved and rotated following the deformation.
  • the area division and calculation processing unit 5 inputs the output data files “P rem.hei.k” and “P rem.hen.k” of the decomposition molding data generation unit 4 and inputs the shape data of the press-formed product. Based on the above, the image is divided into a plurality of areas, and an arithmetic process is performed for each area. As a result, “P rem2.hei.k” and “P rem2.hen.k” for each area are converted into a springback analysis unit 6. Are stored in the file storage unit S. Note that the arithmetic processing means that for each area divided into “P rem.hei.k” and “P rem.hen.k”, at least one of the directional components of stress for only that area.
  • the coefficient k is preferably ⁇ 2 ⁇ k ⁇ + 2.
  • the coefficient k is more preferably 0 ⁇ k ⁇ 1, and the coefficient k is further preferably 0.5 ⁇ k ⁇ 0.95.
  • the previous stress component at the integration point of the selected region is expressed as ( ⁇ x0, ⁇ y0, ⁇ z0, ⁇ xy0, ⁇ yz0, ⁇ zx0).
  • the stress component after the arithmetic processing is expressed as ( ⁇ x, ⁇ y, ⁇ z, ⁇ xy, ⁇ yz, ⁇ zx).
  • the coefficient k i is ⁇ 2 ⁇ k i ⁇ + 2, and all of k i may be zero, at least one may be zero, and the other may be a non-zero value within the above range.
  • the area division and calculation processing unit 5 acquires the data of the press-formed product from the input data, and performs a process of dividing the data of the press-formed product into a plurality of areas.
  • the area may be divided by an equal dimension based on the shape of the press-molded product.
  • a method for determining a divided region of a molded product there are a method for determining a divided region based on the curvature and the magnitude of stress of a press molding analysis result, and a method by designation by an analysis operator.
  • the springback analysis unit 6 outputs the output data files “P rem.hei.k” and “P rem.hen.k” of the decomposition molding data generation unit 4 and the output data file “P rem2” of the region division and arithmetic processing unit 5. .hei.k ”and“ P rem2.hen.k ”are used as input data for springback analysis. Then, the shape after springback is calculated, and the data of the calculation result is “SB rem.hei.k”, “SB rem.hen.k”, “SB rem2.hei.k”, and “SB rem2. hen.k ”is output to the influence calculation unit 19 and stored in the file storage unit S.
  • the springback analysis is based on the elastic finite element method based on the distribution of variable and variable values such as plate thickness, stress component value, strain component value obtained by the decomposition molding data generation unit 4 and the region division and calculation processing unit 5.
  • the unloading process is calculated by the elasto-plastic finite element method, the one-step finite element method, etc., and the shape after the springback generated in the molded product is numerically analyzed.
  • the springback shape is obtained as finite element analysis data (each element data and node data constituting each element).
  • the influence degree calculation unit 19 includes press forming data that is an analysis result of the press forming analysis unit 3 and “SB rem.hei.k” and “SB rem.hen.k” that are analysis results of the springback analysis unit 6. Then, the degree of influence on the springback is calculated for each area divided based on “SB rem2.hei.k” and “SB rem2.hen.k”.
  • the degree of influence on the springback includes the amount of springback using the independent decomposition data “P rem.hei.k” and “P rem.hen.k” generated by the decomposition molding data generation unit 4 as input data, It is calculated by comparing with the amount of springback using the output data files “P rem2.hei.k” and “P rem2.hen.k” of the arithmetic processing unit 5 as input data.
  • the springback amount of the independent decomposition data “P rem.hei.k” and “P rem.hen.k” is obtained as follows. That is, the shape of the press molding data as the analysis result of the press molding analysis unit 3 is the shape before the springback, and the analysis results of the springback analysis unit 6 are “SB rem.hei.k” and “SB rem.hei. This is obtained by taking the difference of k ′′ as the shape after springback.
  • the springback amount of “P rem2.hei.k” and “P rem2.hen.k” that has been calculated for each divided area is obtained as follows. That is, the shape of the press molding data as an analysis result of the press molding analysis unit 3 is the shape before the springback, and the analysis results of the springback analysis unit 6 are “SB rem2.hei.k” and “SB rem2.hen. k ′′ is determined as the shape after the springback, and the difference is taken.
  • the degree of influence on the springback is the amount of springback of the independent decomposition data “P rem.hei.k” and “P rem.hen.k”, and “P rem2.hei.k” which is calculated for each divided area. And the difference between the spring back amount of “Pkrem2.hen.k” and the reciprocal of “coefficient k ⁇ 1 at the time of calculation processing” is obtained. Further, when the area of the divided area is not uniform, it is possible to calculate the influence per unit area by dividing the area of the area.
  • the amount of springback described above was calculated based on a springback analysis with a fixed point set in the original data file “P org.k”.
  • the amount of springback varies greatly depending on how the fixed point is taken. Accordingly, when the influence of the springback is obtained at another fixed point, the press forming data that is the analysis result of the press forming analysis unit 3 and the analysis result of the spring back analysis unit 6 are “SB rem.hei.k”. , “SB ⁇ rem.hei.k”, “SB rem2.hei.k”, “SB rem2.hei.k”, after positioning (moving, rotating) at the fixed point to be evaluated, It is preferable to calculate the degree of influence on the aforementioned springback. Thereby, the springback influence degree at another fixed point can be easily obtained without performing the molding analysis and the springback analysis again.
  • the influence degree calculation unit 19 can obtain the distribution of the influence degree on the spring back over the entire press-formed product by sequentially performing the above-described calculation of the influence degree on the spring back for each divided area.
  • the influence degree display part output screen 20 displays the influence degree of each divided area with respect to the springback in a contour display.
  • Spring-back analysis is performed on the independent decomposition data that has been subjected to the calculation process of multiplying at least one direction by the coefficient k.
  • the degree of influence of the stress of each direction component in each region on the springback is calculated.
  • the degree of influence calculated in this way may be displayed separately, or may be displayed in contour over the entire part. Moreover, you may display those displays for every stress component. With such a display, the cause of the occurrence of springback is analyzed more easily and accurately than in the past.
  • FIG. 2 is a diagram showing the flow of the springback generation cause analysis method of the present invention described above.
  • the molding condition is input from the molding condition input unit 2 in S1.
  • the press molding analysis unit 3 performs numerical analysis based on the molding conditions of the press molded product, and performs press molding analysis processing for calculating molding data of the press molded product.
  • the decomposition molding data generation unit 4 decomposes the stress into an in-plane stress component and a bending moment component to generate independent decomposition data.
  • the area division and calculation processing unit 5 divides the data of the press-molded product into a plurality of areas, performs calculation processing for at least one direction of the stress data for each area, and calculates the calculation processing data. Generate.
  • the springback analysis unit 6 performs a springback analysis, and calculates the shape after the springback.
  • the influence degree calculation unit 7 calculates the influence degree of each divided region on the spring back based on the shape after the spring back.
  • the display unit 8 displays the result on the screen of the display unit or outputs it to a printer.
  • the fixed condition change processing unit 9 changes the fixed point of the spring back and calculates the degree of influence on the spring back to perform detailed evaluation in S9.
  • a molded product can be molded based on the springback generation cause analysis method as described above. For example, based on the result of the springback generation cause analysis method, it is possible to specify a divided region having a high influence on the springback. When either one of the in-plane average stress or the deviation stress that is the cause of the springback is high in the springback cause area thus identified, a separate countermeasure can be taken depending on the cause of the occurrence. . Thus, it becomes possible to manufacture the molded product which suppressed spring back by adding an appropriate design change to a metal mold
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of an apparatus that performs the above-described springback generation cause analysis processing.
  • Each process in the press molding analysis unit 3, the decomposition molding data generation unit 4, the area division and calculation processing unit 5, and the spring back analysis unit 6 is defined in the spring back generation cause analysis program 10 and is executed by a computer.
  • the computer includes a CPU 11, a memory 12 for storing processing results, a display 13 as a display unit, an input device 14 such as a keyboard and a mouse, a hard disk 15, an external storage device 16 such as a CD / DVD drive, a NIC (network interface card). ) 17, a printer 18 and the like.
  • the springback occurrence cause analysis program 10 can be recorded on a computer-readable recording medium and distributed.
  • the present invention will be described more specifically with reference to examples.
  • FIG. 4 is a perspective view showing the shape of a press-formed product in Example 1 of the present invention.
  • press forming analysis processing was performed using commercially available plate forming simulation analysis software LS-DYNA based on the finite element method.
  • properties of the metal plate data on a high-strength steel plate having a plate thickness of 1.6 mm and a tensile strength of 590 MPa was used.
  • the shape of the die was modeled as a shell element and analyzed assuming a rigid body.
  • the mold clearance was set to 0 mm.
  • the friction coefficient was set to 0.15.
  • the molding load was set to 3000 kN.
  • the program that generates independent decomposition data that is decomposed into in-plane stress component (average stress) and bending moment component (deviation stress) imports a file that outputs stress and strain obtained from press forming analysis as input information. Then, independent decomposition data is generated from the input information.
  • the average stress for each element extracted from the original forming analysis result is assigned to all integration points in the plate thickness direction for each element to generate in-plane stress component decomposition data.
  • the bending moment component decomposition data is generated by subtracting the average stress extracted from the original forming analysis result from the stress values of all the integration points in the thickness direction generated for each element.
  • the program for executing the region division and calculation processing takes in a file in which stress or strain obtained from the independent decomposition data is output as input data, and divides the area of the press-formed product for calculation processing.
  • FIG. 5 is a diagram showing a divided region when the press-formed product shown in FIG. 4 is divided in Example 1 of the present invention.
  • the stress component before calculation at the integration point of the selected region is expressed as ( ⁇ x0, ⁇ y0, ⁇ z0, ⁇ xy0, ⁇ yz0, ⁇ zx0).
  • the stress component after the arithmetic processing at the integration point of the selected region is expressed as ( ⁇ x, ⁇ y, ⁇ z, ⁇ xy, ⁇ yz, ⁇ zx).
  • the calculated stress was output as a calculation result file by file output.
  • the springback analysis process was performed using the above-described software LS-DYNA.
  • the output result of the above-mentioned area division and arithmetic processing execution program was input to software LS-DYNA, and a springback analysis was performed.
  • the springback analysis used the elastic analysis by the static implicit method. The calculation process and springback analysis in each area were repeated for the number of area divisions.
  • FIG. 6 shows the result of performing the springback analysis based on the original data obtained from the press forming analysis according to Example 1 of the present invention.
  • FIG. 7A shows the amount of springback in each region where arithmetic processing is performed on the bending moment component (deviation stress) decomposition data according to Example 1 of the present invention.
  • FIG. 7B shows the amount of springback in each region where arithmetic processing was performed on the in-plane stress component (average stress) decomposition data according to Example 1 of the present invention.
  • the cause of the springback occurrence with respect to the displacement in the Y direction (Vmax) at the maximum displacement position in the Y direction in FIG. 6 is separated into the influence of the in-plane stress component and the influence of the bending moment component.
  • the degree of influence could be specified.
  • FIG. 7A showing the influence of the deviation stress the influence amount at the location indicated by A is +0.28 mm
  • the influence amount at the location indicated by B is ⁇ 0.43 mm
  • the influence amount at the location indicated by C is +0.21 mm
  • the amount of influence at the location indicated by D was +0.34 mm.
  • FIG. 7B which shows the influence of average stress the influence amount of the location shown by E was +0.10 mm. From FIG. 7A and FIG. 7B, it has been found that the influence of the in-plane stress component and the bending moment component is mixed in the amount of springback in the Y direction.
  • the cause of the occurrence of springback is quantitatively analyzed, and whether the part is caused by the in-plane stress component or the bending moment stress. It is possible to easily and accurately analyze whether it is due to the component by numerical analysis. Further, by visually displaying the result, it is possible to easily identify the location causing the springback.
  • This analysis can be performed on a computer without using an actual mold or steel plate. Therefore, the molding method can be easily examined at the design stage.
  • Example 2 Example in which only ⁇ y of in-plane stress component is zero
  • the arithmetic processing for multiplying all stress components at all integration points of elements belonging to each region by a coefficient of zero was performed.
  • FIG. 8A shows the shape of the press-formed product in Example 2.
  • FIG. 8B shows a divided region of the press-formed product shown in FIG. 8A.
  • the points indicated by three circles are fixed points, independent decomposition data having only an in-plane stress component is generated from the original data, and the in-plane stress is analyzed.
  • the amount of displacement in the Z-axis direction (direction perpendicular to the paper surface) at the location indicated by Za as the springback amount was evaluated.
  • the results of the springback analysis based on the calculated stress obtained in this way are shown in the lower part of Table 1. From Table 1, it can be seen that the influence ratio when the ⁇ y of the region 804 is zero is the maximum.
  • Example 2 it can be seen that the in-plane stress component in the Y-axis direction in the region 803 and the region 804 is the main cause of the springback amount of the Z-direction displacement in the Za portion caused by the in-plane stress.
  • the springback amount of the tip (Za) calculated based on the independent decomposition data having only the in-plane stress component was 23.292 mm. Since the sum of the influence amounts of the respective regions shown in Table 1 is 26.44 mm, it can be confirmed that almost accurate analysis is performed by the present invention.
  • Example 3 Example of changing the fixed point
  • Example 3 the press-formed product shown in FIG. 9A having the same shape as the press-formed product used in Example 2 was used.
  • the position of the fixed point shown in FIG. 8B of Example 2 was changed as shown in FIG. 9B.
  • Example 2 a calculation process for multiplying all stress components at all integration points of elements belonging to each region by a coefficient of zero was performed.
  • Table 2 The analytical results thus obtained are shown in Table 2.
  • Example 4 Example of multiplying overall surface stress component by coefficient 0.5
  • the press-formed product having the shape shown in FIG. 8A was analyzed based on independent decomposition data having only in-plane stress components generated from the original data.
  • the springback amount was evaluated with the stress component in the entire area of the analysis region set to zero.
  • the springback amount of the independent decomposition data as shown in Table 3 is 26.76 mm, while the springback amount when the stress component in the entire surface of the region 801 is zero is, for example, It was 26.59. Therefore, the difference which is an influence degree is 0.17 mm.
  • the total amount of influence on the springback in each of the regions 801 to 805 was 32.63 mm, and the error was 21.93%.
  • the spring back amount of the press-formed product having the shape shown in FIG. When evaluated in this way, the springback amount of the independent decomposition data is 26.76 mm, while the springback amount when the stress component in the entire area 801 is multiplied by 0.5 is 27.07, for example. there were.
  • the total amount of influence in the areas 801 to 805 calculated was 27.50 mm, and the error was reduced from 21.93% to 2.78%. It can be seen that the in-plane stress component in the region 803 and the region 804 is the main cause of the amount of springback at the tip.
  • the reason why the evaluation accuracy can be improved by setting the coefficient to 0.5 rather than zero in this way is that the relationship between stress and displacement is not actually linear. That is, when the relationship between stress and displacement is linear, the calculation may be performed with the coefficient applied to the stress component in a certain region being zero, but in reality, the relationship between stress and displacement is as shown in FIG. Non-linear. For this reason, the gradient between the original stress ⁇ 0 and the edited stress ⁇ is different, and an error increases when linear approximation is performed. On the other hand, if the coefficient is set to 0.5, for example, the edited value of the stress ⁇ can be brought close to the actual stress value.
  • Example 5 Example of multiplying the total bending moment stress component by a coefficient of 0.5
  • Example 5 the influence of the bending moment component (deviation stress component) was analyzed on the torsion angle around the X axis at the tip of the press-formed product shown in FIG. 11A.
  • independent decomposition molding data having only a bending moment component is created from the original data, and is divided into five areas 1101 to 1105 as shown in FIG. 11B, and the relative torsion angles of all the bending moment components in each area. The degree of influence on was evaluated.
  • the twist angle ⁇ around the X axis in the press-formed product of Example 5 is the sum of ⁇ 1 and ⁇ 2 shown in FIG. 11C.
  • the springback amount (relative twist amount) of the independent decomposition molding data was 4.48 degrees.
  • the springback amount is 3.75 degrees.
  • the total was 4.19 degrees, and the error was minus 6.60%.
  • the evaluation was performed using the coefficient 0.5 as the coefficient k.
  • the springback amount is 4.09 degrees
  • the influence degree is 4.48 degrees of the springback amount of the independent decomposition molding data.
  • the total amount of influence on the twist angle of each region was 4.40 degrees, and the error was reduced from minus 6.60% to minus 1.81%. Also, from the results in Table 6, it can be seen that the region 1103 has the greatest influence on the occurrence of twist.
  • Example 6 Example of changing evaluation items
  • Example 6 the surface generated from the original data with the average value of the displacement of the two nodes (N1 point, N2 point) at the tip of the press-formed product having the same shape as Example 2 shown in FIG.
  • the analysis was performed based on independent decomposition data with only internal stress components.
  • FIG. 12B shows the divided areas. The calculation results are shown in Table 7.
  • Example 7 Evaluation item change example
  • the displacement of the two nodes (N3 point, N4 point) of the OLE_LINK1 tip is based on the independent decomposition data having only the in-plane stress component generated from the OLE_LINK1 original data. Relative displacement was used as an evaluation item. The amount of springback was calculated with the stress component in the entire surface being zero, and the relative displacement (that is, the difference between N3 and N4) between the two nodes (N3 point and N4 point) shown in FIG. 13A was evaluated.
  • FIG. 13B shows divided areas. The calculation results are shown in Table 8.
  • Example 8 Evaluation item change example
  • the bending moment component (deviation stress component) of the relative displacement around the X axis based on the independent decomposition data having only the moment stress component generated from the original data for the press-formed product shown in FIG. 14A.
  • the impact was analyzed.
  • FIG. 14B a fixed point was set at the center of the press-formed product.
  • the relative displacement around was evaluated.
  • the calculation results are shown in Table 9.
  • the evaluation items can be changed variously.
  • Example 9 An example in which a global (overall) coordinate system is converted to a local (local) coordinate system for evaluation
  • a springback analysis was performed on the press-formed product shown in FIG. 15A.
  • the evaluation is performed by converting the global coordinate system shown in FIG. 16A to the local coordinate system shown in FIG. 17A.
  • 16B is a sectional view taken along line FF in FIG. 16A
  • FIG. 17B is a sectional view taken along line GG in FIG. 17A.
  • the present invention it is possible to accurately analyze the cause of the occurrence of springback, and the time for studying the molding method of the molded product can be shortened.

Abstract

 本発明のスプリングバック発生原因分析方法は、成形品の成形データを算出する成形解析工程と;面内応力成分と曲げモーメント成分とに分解する成分分解工程と;演算前独立分解成形データを生成する演算前独立分解成形データ生成工程と;演算後独立分解成形データを生成する演算処理工程と;第1のスプリングバック形状と、第2のスプリングバック形状と、を解析するスプリングバック解析工程と;前記成形データに含まれるスプリングバック前の形状と、前記第1スプリングバック形状と、前記第2スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出工程と;スプリングバック変形に対する影響度を表示する表示工程と;を有する。

Description

スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体
 本発明は、自動車用部品や家電部品などを鋼板その他の金属板からプレス成形した際に、成形品に発生するスプリングバックの発生原因を分析するための、スプリングバック原因分析方法、スプリングバック原因分析装置、スプリングバック原因分析プログラム及び記録媒体に関する。以下の説明は鋼板について行うが、本発明は他の金属板やプラスチック板、線材等にも適用することができる。
 本願は、2008年12月25日に、日本に出願された特願2008-329099号に基づき優先権を主張し、その内容をここに援用する。
 ドアやバンパーなどの多くの自動車用部品や、冷蔵庫のパネルなどの家電部品は、鋼板又は他の金属板をプレス成形する方法で製造されている。近年それらの部材に対する軽量化の要求が高まっている。そのため、高強度を有する鋼板を使用することによって、それらの部材の薄肉化と軽量化が図られている。しかし鋼板を高強度化すると変形抵抗が高まる。そのため、プレス成形時に生じた残留応力によるスプリングバックが生じやすくなる。
 特に最近では、開発工数及びコスト削減のため、自動車等のデザイン段階の開始と同時に、成形部材の成形方法を検討する設計段階が開始される傾向にある。このためコンピュータを用いてプレス成形品の形状及びその成形データを解析することが行われている。この解析で、成形後の残留応力から予想されるプレス成形品のスプリングバック量を演算する。そして、演算したスプリングバック量の分だけ金型形状を補正することが行われている。
 特許文献1又は非特許文献1には、上述したような、スプリングバックを予想して金型形状を決定する方法を開示している。具体的には、金型にプレスされた鋼板の、プレス下死点における鋼板の残留応力を有限要素法により解析し、その残留応力と反対向きの残留応力により生じる変形(スプリングフォワード)形状の金型を数値解析する。これにより、簡易にスプリングバックを考慮した金型形状を得る。
 しかし、スプリングバックを完全に考慮した金型を数値解析により設計することは、非線形問題であるため非常に困難である。従って上記文献に開示されている方法は、有限要素法によりスプリングバックを考慮した簡易的な金型形状を得る方法でしかない。従って、得られた金型によってプレス成形された成形品がスプリングバックの許容値を満たさない場合の対策については、数値的に解析することが困難であるから、何の解決方法も示されていない。
 そのため、スプリングバックを考慮した金型でスプリングバックの許容値を満たす成形品が得られない場合、どのような対策を取るかは技術者の経験に依存する。従って、実際に金型を製作し、実際の鋼板をプレスしながら金型形状の修正を繰り返さなくてはならない。
 このほか、金型形状ではなく鋼材や成形品の形状に残留応力を除去するための修正を加えることにより、スプリングバックを少なくする方法も提案されている。このような修正方法の一例は、成形品のスプリングバック発生部位の一部を穴明き形状としたり、スリット入り形状とする方法である。
 このような方法によれば、スプリングバック発生部位への対策によりスプリングバックの原因となる残留応力は低減される。ところが、切断や穴あけにより部材自体の剛性が低下するので、わずかな残留応力によっても大きなスプリングバックが発生するという傾向が生じる。このため、この方法も根本的な原因究明には至らない。さらに、このような対策は実際に試験金型と鋼板によるテストを必要とするため、設計段階の工数とコストの増大という問題が生じる。
 特許文献2から5にも、有限要素法によるシミュレーションが開示されている。このうち、特許文献2から4の方法では、部分応力開放および変更の手法が用いられる。しかし、例えば特許文献2では、各部分のスプリングバック前後における角度変化量、即ち、捩れについてのみが評価対象とされている。このため、捩れ以外の変形要因に関しては全く考慮されていない。また、特許文献2では、応力開放時に開放部位の応力の全成分を0とする。このため、大変形を伴う場合、応力勾配を線形近似すると、実際の非線形の変移との食い違いが大きくなるという問題がある。 
特開2003-33828号公報 特開2007-229724号公報 特開2008-49389号公報 特開2008-55476号公報 特開2004-148381号公報
三菱自動車テクニカルレビュー(2006年No.18、126~131頁)
 上記したように、従来から数値解析法によってプレス成形工程及びプレス成形品を解析することは行われていた。しかしながら、プレス成形品のスプリングバックの発生原因を、実際の成形テストを行う以前の設計段階で正確に把握することは困難である。
 従って本発明の目的は、数値解析によりプレス成形品のスプリングバックの発生原因となる箇所を従来よりも正確に分析することを可能とし、それにより成形部材の成形方法の検討時間や検討コストを削減することができるスプリングバック発生原因分析技術を提供することである。
 本発明は、上記課題を解決するために以下の手段を採用した。
(1)本発明のスプリングバック発生原因分析方法は、塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析工程と;前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解工程と;前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成工程と;前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理工程と;前記演算前独立分解成形データに対する数値シミュレーションにより求められる第1のスプリングバック形状と、前記演算後独立分解成形データに対する数値シミュレーションにより求められる第2のスプリングバック形状と、を解析するスプリングバック解析工程と;前記成形品の成形データに含まれるスプリングバック前の形状と、前記第1スプリングバック形状と、前記第2スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出工程と;前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示工程と;を有する。
(2)上記(1)のスプリングバック発生原因分析方法では、前記成形解析工程は、複数の要素を用いた有限要素法による数値シミュレーションにより行なわれ、前記成形品の成形データ中の各要素毎の応力の各方向成分の板厚方向平均を前記方向成分の面内応力成分とし、各要素ごとに発生する全積分点の応力値の各方向成分から前記面内平均応力を減算した値を前記方向成分の曲げモーメント成分としても良い。
(3)上記(1)に記載のスプリングバック発生原因分析方法では、前記演算処理は、前記演算前独立分解成形データの応力の各方向成分の少なくとも1つに対して-2≦k≦2の範囲の係数kを掛ける演算であっても良い。
(4)上記(3)に記載のスプリングバック発生原因分析方法では、前記係数kの範囲は0<k≦1であっても良い。
(5)上記(4)に記載のスプリングバック発生原因分析方法では、前記係数kの範囲は0.5≦k≦0.95であっても良い。
(6)上記(1)に記載のスプリングバック発生原因分析方法では、前記成形品は、プレス成形品であっても良い。
(7)本発明のスプリングバック発生原因分析装置は、塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析部と;前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解部と;前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成部と;前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理部と;前記演算前独立分解成形データに対する数値シミュレーションにより求められる第1スプリングバック形状と、前記演算後独立分解成形データに対する数値シミュレーションにより求められる第2スプリングバック形状と、を解析するスプリングバック解析部と;前記成形品の成形データに含まれるスプリングバック前の形状と、前記第1スプリングバック形状と、前記第2スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出部と;前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示部と;を有する。
(8)上記(7)に記載のスプリングバック発生原因分析装置では、前記表示部は、前記各領域毎に、前記算出したスプリングバック変形に対する影響度をコンタ表示しても良い。
(9)本発明のスプリングバック発生原因分析プログラムは、塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析工程と;前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解工程と;前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成工程と;前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理工程と;前記演算前独立分解成形データに対する数値シミュレーションにより求められる第1のスプリングバック形状と、前記演算後独立分解成形データに対する数値シミュレーションにより求められる第2のスプリングバック形状と、を解析するスプリングバック解析工程と;前記成形品の成形データに含まれるスプリングバック前の形状と、前記第1スプリングバック形状と、前記第2スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出工程と;前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示工程と;を有する。
(10)上記(9)に記載のスプリングバック発生原因分析プログラムでは、前記成形解析工程は、複数の要素を用いた有限要素法による数値シミュレーションにより行なわれ、前記成形品の成形データ中の各要素毎の応力の各方向成分の板厚方向平均を前記方向成分の面内応力成分とし、各要素ごとに発生する全積分点の応力値の各方向成分から前記面内平均応力を減算した値を前記方向成分の曲げモーメント成分としても良い。
(11)本発明のコンピュータ読み取り可能な記録媒体は、上記(9)に記載のスプリングバック発生原因分析プログラムを記録する。
(12)本発明のスプリングバック発生原因分析方法は、塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析工程と;前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解工程と;前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成工程と;前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理工程と;前記演算後独立分解成形データに対する数値シミュレーションにより求められるスプリングバック形状を解析するスプリングバック解析工程と;前記成形品の成形データに含まれるスプリングバック前の形状と、前記スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出工程と;前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示工程と;を有する。
 本発明によれば、スプリングバック発生原因を正確に分析することが可能となり、成形品の成形方法の検討時間を短縮することができる。
 また、本発明により、実際の部品では不可能な発生原因の分析ができ、スプリングバック対策を検討する手段を詳細に分解して検討することが可能となる。
 本発明においては、プレス成形品について領域分割を行い、各領域毎に当該領域について前記の独立分解成形データの応力の各方向成分の少なくとも一つに対して係数kを掛ける演算処理を行う。上記の係数kは-2≦k≦+2(ゼロを含む)とすることが好ましい。係数kがゼロの場合、演算が簡略化され、算出された影響度によってスプリングバック変形に対する各領域の応力の影響を明確に評価することができる。また係数kが+1に近い値の場合、より精度の高い影響度の算出ならびに評価が可能となる。係数kがゼロより1に近い値を取る方が評価精度が向上するのは、実際上応力と変位の間に非線形性を持つためである。変形が小さい場合には、変位に対する編集前後の応力勾配が、線形近似した場合と、実際の非線形の場合とではほとんど差がなく、係数kをゼロとして演算処理しても、各領域のスプリングバックに対する応力の影響度の値は分析評価を行ううえで十分な精度の値が得られる。これに対し、大変形を伴う場合は、変位に対する編集前後の応力勾配が、線形近似した場合と、実際の非線形の場合との差が大きくなり、線形近似を行うと誤差を伴う。これに対して、編集後の応力を編集前の応力に近い値(係数kが1に近似)と取るように演算処理することで、変形に対する編集前後の応力勾配が実際の非線形の場合に近い状態で演算処理することとなり、各領域のスプリングバックに対する応力の影響度の値は係数kがゼロの場合よりも評価精度が向上する(図10)。特に係数kは+1に近い値を採用することが有利である。
本発明のスプリングバック発生原因分析装置の構成を示す図である。 本発明のスプリングバック発生原因分析方法の概要を示す図である。 スプリングバック発生原因分析処理を行わせる装置のハードウエア構成の一例を示す図である。 実施例1におけるプレス成形品の形状を示す斜視図である。 実施例1におけるプレス成形品を分割した場合の分割領域を示す図である。 プレス成形解析から得られたオリジナルデータに基づいてスプリングバック解析した結果を示す図である。 曲げモーメント成分(偏差応力)分解データに対し、演算処理を行った各領域でのスプリングバック量を示す図である。 面内応力成分(平均応力)分解データに対し、演算処理を行った各領域でのスプリングバック量を示す図である。 実施例2におけるプレス成形品の形状の説明図である。 実施例2におけるプレス成形品の分割領域と固定点とを示す図である。 実施例3におけるプレス成形品の形状の説明図である。 実施例3におけるプレス成形品の分割領域と固定点とを示す図である。 応力と変位との関係を示すグラフである。 実施例5におけるプレス成形品の形状の説明図である。 実施例5におけるプレス成形品の分割領域と固定点とを示す図である。 実施例5におけるプレス成形品に関連する、X軸廻りのねじれ角を説明する図である。 実施例6におけるプレス成形品の形状の説明図である。 実施例6におけるプレス成形品の分割領域と固定点とを示す図である。 実施例7におけるプレス成形品の形状の説明図である。 実施例7におけるプレス成形品の分割領域と固定点とを示す図である。 実施例8におけるプレス成形品の形状の説明図である。 実施例8におけるプレス成形品の分割領域と固定点とを示す図である。 実施例5におけるプレス成形品に関連する、4節点の相対変位(ねじれ)を説明する図である。 実施例9におけるプレス成形品の形状の説明図である。 実施例9におけるプレス成形品の分割領域と固定点とを示す図である。 実施例9におけるプレス成形品のグローバル座標を示す図である。 図16AのF-F断面図である。 実施例9におけるプレス成形品のローカル座標を示す図である。 図17AのG-G断面図である。
 以下、薄板材料をプレス成形して作られる製品に対するスプリングバック発生原因分析を例にとって本発明の好ましい実施形態を説明するが、本発明の適応対象はこれに限られるものではない。本発明は、例えば、ロールフォーミングによる成形や、線材等を成形する場合にも適用できる。
 先ず図1に、本発明のスプリングバック発生原因分析装置1の機能構成図を示す。このスプリングバック発生原因分析装置1は、成形条件入力部2、プレス成形解析部3、分解成形データ生成部4、領域分割及び演算処理部5、スプリングバック解析部6、影響度算出部19、表示部である影響度出力画面20、ファイル格納部Sを有する。
 成形条件入力部2は、プレス成形解析部3、スプリングバック解析部6において解析対象となる鋼板の形状データ(板厚、長さ、幅、曲率、歪みなど)、性状(強度、伸びなどの材質)、金型形状(ダイ及びパンチ形状、曲率、径、クリアランス、潤滑条件)、プレス条件(しわ押え荷重、パッド荷重、ビード張力、プレス圧力、温度)などの成形条件を入力する入力部である。また、成形解析におけるデータ領域、分解成形データ生成部4におけるデータ領域、領域分割及び演算処理部5におけるデータ領域、分析結果を出力画面上に表示する際の分割領域などを別個に設定し入力することもできる。
 プレス成形解析部3は、成形条件入力部2からの入力情報に基づいてプレス成形される成形品の形状、応力、歪み、板厚等を数値解析により求める。数値解析の手法として、弾塑性有限要素法、剛塑性有限要素法、ワンステップ有限要素法、境界要素法等を利用しても良い。プレス成形解析部3は、被加工物の板厚、応力の成分値、歪の成分値の変数や、その変数の分布という形式で数値解析結果を出力する。その出力データ(オリジナルデータ)は、例えばファイル“P org.k”として分解成形データ生成部4、領域分割及び演算処理部5、スプリングバック解析部6、影響度算出部19に出力されるとともに、ファイル格納部Sに格納される。
 なお、このプレス成形解析部3における数値解析は、有限要素法を用いて、前記した形状データ、性状、金型形状、プレス条件などの成形条件を設定し、成形解析を行い、成形後の応力、歪などの分布を数値的に得ることができる。ここで、有限要素法による数値解析を行うソフトウェアとしては、例えば市販のソフトウェアである、PAM-STANP、LS-DYNA、AUTOFORM、OPTRIS、ITAS-3D、ASU/P-FORM、ABAQUS、MARC、HYSTAMP、HYPERFORM、SIMEX、FASTFORM-3D、QUICKSTAMP等を利用しても良い。
 分解成形データ生成部4は、プレス成形解析部3により得られたプレス成形品の成形データを、プレス成形品全体にわたり、各要素の応力の各方向成分の方向の少なくとも一つに対して面内応力成分と曲げモーメント成分とに分解する。そして、プレス成形解析部3により得られたプレス成形品の成形データの、分解された方向成分の応力については、面内応力成分のみを持つ独立分解データと、曲げモーメント成分のみを持つ独立分解データとを生成する。ここで、面内応力成分は、成形品の面内方向応力の板厚方向分布の平均応力成分である。曲げモーメント成分は、成形品の面内方向応力の板厚方向分布の偏差応力すなわち面内方向応力の板厚方向分布から平均応力成分を減算した板厚方向分布を持つ応力成分である。
 そこで、成形解析結果の各要素ごとに板厚方向分布の平均応力を、各要素ごとに板厚方向の全積分点に対して、割付けを行い、面内応力成分分解データを生成する。また、オリジナル成形解析結果から抽出される平均応力を、要素ごとに発生する板厚方向の全積分点の応力値より、減算することで、曲げモーメント成分分解データを生成する。すなわち、成形データ中の平均応力を面内応力成分とし、要素ごとに発生する板厚方向の全積分点の応力値から面内平均応力を減算した値を曲げモーメント成分とすればよい。
 ここで、応力の各方向成分への分解については、全体座標系を基準にして分解してもよい。また、各要素ごとに当該要素を構成する節点の座標に基づく局所座標系を基準にして分解してもよい。また、各要素のプレス成形解析における初期状態すなわちプレスにおける初期ブランクの状態で、全体座標系に基づき各要素に局所座標系を設定し、各要素に設定したこの局所座標系をプレス成形における各要素の変形に追従させて移動、回転させたプレス成形後の座標系にもとづき分解してもよい。
 このようにして、データ“P rem.hei.k”と、データ“P rem.hen.k”と、を得ることが出来る。尚、“P rem.hei.k”は、プレス成形品の成形条件を数値解析して得られた成形解析結果データを、プレス成形品全体にわたり応力の各方向成分の方向の少なくとも一つに対して面内応力成分に分解した独立分解データである。一方、“P rem.hen.k”は、プレス成形品の成形条件を数値解析して得られた成形解析結果データを、プレス成形品全体にわたり応力の各方向成分の方向の少なくとも一つに対して曲げモーメント成分に分解した独立分解データである。これらの独立分解データは領域分割及び演算処理部5およびスプリングバック解析部6に出力されるとともに、ファイル格納部Sに格納される。
 領域分割及び演算処理部5は、分解成形データ生成部4の出力データファイル“P rem.hei.k”と、“P rem.hen.k”と、を入力し、プレス成形品の形状データをもとに複数領域に分割を行い、領域毎に演算処理を行い、その結果として各領域に対する“P rem2.hei.k”と、“P rem2.hen.k”と、をスプリングバック解析部6に出力するとともに、ファイル格納部Sに格納する。なお、演算処理とは、“P rem.hei.k”と、“P rem.hen.k”と、に対し領域分割した各領域ごとに、当該領域のみについて応力の各方向成分の少なくとも一つに対して演算を行うことである。具体的な演算の方法としては、係数kを掛ける演算が挙げられる。係数kは-2≦k≦+2とすることが好ましい。係数kは0<k≦1とすると更に好ましく、係数kは0.5≦k≦0.95とすると更に好ましい。
 上記の演算処理とは、領域分割したうちの特定領域のみの応力成分に下記の係数k(i=1~6)を掛け算することである。
 σx=k×σx0
 σy=k×σy0
 σz=k×σz0
 τxy=k×τxy0
 τyz=k×τyz0
 τzx=k×τzx0
 ここで、選択された領域の積分点における前の応力成分を(σx0、σy0、σz0、τxy0、τyz0、τzx0)と表す。一方、演算処理後の応力成分を(σx、σy、σz、τxy、τyz、τzx)と表す。係数kは-2≦k≦+2であり、kの全てをゼロとしても、少なくとも1つをゼロとし、他は上記範囲内でゼロ以外の値としてもよい。
 領域分割及び演算処理部5は、入力データからプレス成形品のデータを取得し、プレス成形品のデータを複数の領域に分割する処理を行う。領域分割方法に関しては、プレス成型品の形状に基づき均等な寸法により領域を分割しても良い。また、プレス成形前のプランク材の状態での形状に基づき均等な寸法により分割しても良い。また、成形品の分割領域を決定するための方法として、曲率やプレス成形解析結果の応力の大きさに基づいて、分割領域を決定する方法や解析オペレーターによる指定による方法もある。
 スプリングバック解析部6は、分解成形データ生成部4の出力データファイル“P rem.hei.k”及び“P rem.hen.k”、並びに領域分割及び演算処理部5の出力データファイル“P rem2.hei.k”及び“P rem2.hen.k”を入力データとして用いてスプリングバック解析を行う。そして、スプリングバック後の形状を算出し、算出結果のデータとして“SB rem.hei.k”と、“SB rem.hen.k”と、“SB rem2.hei.k”と、“SB rem2.hen.k”と、を影響度算出部19に出力するとともに、ファイル格納部Sに格納する。スプリングバック解析は、分解成形データ生成部4および領域分割及び演算処理部5により得られた板厚、応力成分値、歪の成分値等の変数及び変数の分布に基づいて、弾性有限要素法、弾塑性有限要素法、ワンステップ有限要素法などにより除荷過程の計算を行い、成形品に生ずるスプリングバック後の形状を数値解析する。そのスプリングバック形状は有限要素解析データ(各要素データおよび各要素を構成する節点データ)として得られる。
 影響度算出部19は、プレス成形解析部3の解析結果であるプレス成形データおよび、スプリングバック解析部6の解析結果である“SB rem.hei.k”と、“SB rem.hen.k”と、“SB rem2.hei.k”と、“SB rem2.hen.k”をもとに領域分割された各領域ごとにスプリングバックに対する影響度を算出する。
 スプリングバックに対する影響度は、分解成形データ生成部4で生成された独立分解データ“P rem.hei.k”及び“P rem.hen.k”を入力データとしたスプリングバック量と、領域分割及び演算処理部5の出力データファイル“P rem2.hei.k”及び“P rem2.hen.k”を入力データとしたスプリングバック量と、の比較により算出される。
 影響度の評価対象としてのスプリングバック量は、特定のポイント(有限要素データの特定の節点)のスプリングバック前後の座標の差(=変位)や、特定の2つのポイントを結ぶ線のスプリングバック前後の角度の差(=ねじれ)や、特定の2つのポイントの相対変位の差のスプリングバック前後の差(=相対変位)や、特定の2つのポイントを結ぶ線と別の特定の2つのポイントを結ぶ線のなす角度のスプリングバック前後の差(=相対ねじれ)等であっても良い。
 独立分解データ“P rem.hei.k”及び“P rem.hen.k”のスプリングバック量は、以下のように求める。即ち、プレス成形解析部3の解析結果であるプレス成形データの形状をスプリングバック前の形状とし、スプリングバック解析部6の解析結果である“SB rem.hei.k”及び“SB rem.hei.k”をスプリングバック後の形状として、その差をとることにより求める。
 分割領域毎に演算処理を行った“P rem2.hei.k”及び“P rem2.hen.k”のスプリングバック量は、以下のように求める。即ち、プレス成形解析部3の解析結果であるプレス成形データの形状をスプリングバック前の形状とし、スプリングバック解析部6の解析結果である“SB rem2.hei.k”及び“SB rem2.hen.k”、をスプリングバック後の形状として、その差をとることにより求める。
 スプリングバックに対する影響度は、独立分解データ“P rem.hei.k”及び“P rem.hen.k”のスプリングバック量と、分割領域毎に演算処理を行った“P rem2.hei.k”及び“P rem2.hen.k”のスプリングバック量と、の差に、“演算処理を行った際の係数k-1”の逆数を掛け算することにより求められる。また、分割した領域の面積が不均等な場合などには、さらに領域の面積で割り単位面積あたりの影響度として算出することも可能である。
 また、前述したスプリングバック量は、オリジナルデータファイル“P org.k”で設定された固定点によるスプリングバック解析に基づいて算出された。しかしながら、スプリングバック量は固定点の取り方により大きく変化する。従って、別の固定点でスプリングバック影響度を求める場合には、プレス成形解析部3の解析結果であるプレス成形データと、スプリングバック解析部6の解析結果である“SB rem.hei.k”、“SB rem.hei.k”、“SB rem2.hei.k”、“SB rem2.hei.k”と、について、評価したい固定点での位置合わせ(移動、回転)を行った上で、前述のスプリングバックに対する影響度の算出を行うことが好ましい。これにより、再度の成形解析やスプリングバック解析を行うことなく容易に別の固定点でのスプリングバック影響度を求めることが出来る。
 影響度算出部19では、前述のスプリングバックへの影響度の算出を分割した各領域毎に順次行うことによりプレス成形品の全体にわたるスプリングバックへの影響度の分布を求めることができる。
 影響度表示部出力画面20では、スプリングバックに対する各分割領域の影響度をコンタ表示することが好ましい。後記する実施例に示されるように、本発明によれば、面内応力成分及び曲げモーメント成分に分解した独立分解データと、プレス成形品を元に分割した各領域毎に当該領域の応力成分の少なくとも一つの方向に対して係数kを掛ける演算処理行った独立分解データと、についてスプリングバック解析を行う。そして、各領域の各方向成分の応力のスプリングバックへの影響度を算出する。本発明では、このように算出された影響度を、それぞれ別個に表示しても良く、部品全体にわたりコンタ表示しても良い。また、それらの表示を応力成分毎に表示しても良い。このような表示により、スプリングバックの発生原因の分析は、従来よりも容易かつ正確に行われる。
 図2は以上に説明した本発明のスプリングバック発生原因分析方法の流れを示す図である。図2に示すように、S1で成形条件入力部2から成形条件の入力を行う。次にS2でプレス成形解析部3によりプレス成形品の成形条件をもとに数値解析して、プレス成形品の成形データを算出するプレス成形解析処理を行う。次にS3で、分解成形データ生成部4により応力を面内応力成分と曲げモーメント成分とに分解して独立分解データを生成する。次にS4で領域分割及び演算処理部5により、プレス成形品のデータを複数の領域に分割し、各領域毎に応力データの少なくとも一つの方向に対して演算処理を実施し、演算処理データを生成する。次にS5でスプリングバック解析部6によりスプリングバック解析を行いスプリングバック後の形状を算出する。次にS6で影響度算出部7により、スプリングバック後の形状を基に各分割領域のスプリングバックへの影響度を算出する。そしてS7で表示部8により、その結果を表示部の画面にコンタ表示、またはプリンタに出力する。このようにして得られた出力結果にもとづき必要であればS9で固定条件変更処理部9により、スプリングバックの固定点を変更してスプリングバックへの影響度を算出して詳細な評価を行うことができる。
 上記のようなスプリングバック発生原因分析方法に基づき、成形品の成形を行うことができる。例えば、上記スプリングバック発生原因分析方法結果に基づき、スプリングバックへの影響度の高い分割領域を特定できる。このように特定されたスプリングバック原因領域において、スプリングバック発生原因である面内平均応力、偏差応力の何れか一方が高い場合、発生原因のそれぞれに応じて、別個の対応策を講じることができる。このようにして適切な設計変更を金型に加えることで、スプリングバックを抑えた成形品を製造することが可能となる。
 図3は、上記したスプリングバック発生原因分析処理を行う装置のハードウエア構成の一例を示す図である。プレス成形解析部3、分解成形データ生成部4、領域分割及び演算処理部5、スプリングバック解析部6における各処理はスプリングバック発生原因分析プログラム10に規定されており、コンピュータにより実行される。コンピュータはCPU11、処理結果を格納するメモリ12、表示部であるディスプレイ13、キーボードやマウスなどの入力装置14、ハードディスク15、CD/DVDドライブのような外部記憶装置16、NIC(ネットワーク・インターフェース・カード)17、プリンタ18等を備えている。なお上記のスプリングバック発生原因分析プログラム10は、コンピュータが読み取り可能な記録媒体に記録し、流通させることができる。以下に本発明を実施例によってさらに具体的に説明する。
 (実施例1:全応力成分をゼロとした例)
 図4は、本発明の実施例1におけるプレス成形品の形状を示す斜視図である。まず、有限要素法に基づく市販の板成形シミュレーション解析ソフトウェアLS-DYNAを使用してプレス成形解析処理を行った。金属板の性状として、板厚1.6mm、引張強さ590MPa級の高強度鋼板のデータを用いた。また、金型(ダイ、パンチ、ホルダー)の形状をシェル要素にモデリングし、剛体と仮定して解析した。金型クリアランスは0mmに設定した。摩擦係数は0.15に設定した。成形荷重は3000kNに設定した。
 面内応力成分(平均応力)と曲げモーメント成分(偏差応力)とに分解した独立分解データを生成するプログラムは、プレス成形解析から得られた応力や歪が出力されたファイルを、入力情報として取り込み、この取り込まれた入力情報から独立分解データを生成する。ここで、オリジナル成形解析結果から抽出される要素ごとの平均応力を、当該要素ごとに板厚方向の全積分点に対して、割付けを行い、面内応力成分分解データを生成する。また、オリジナル成形解析結果から抽出される平均応力を、要素ごとに発生する板厚方向の全積分点の応力値から減算することで、曲げモーメント成分分解データを生成する。
 領域分割及び演算処理を実行するプログラムは、独立分解データから得られた応力や歪が出力されたファイルを、入力データとして取り込み、演算処理を行うためにプレス成形品の領域を分割する。図5は、本発明の実施例1における、図4に示したプレス成形品を分割した場合の分割領域を示す図である。ここでは、各領域に属する要素の全積分点に演算処理を行った。演算処理では全応力成分に係数ゼロを掛け算することで、σx=0、σy=0、σz=0、τxy=0、τyz=0、τzx=0とした。
 ここで、選択された領域の積分点における演算前の応力成分を(σx0、σy0、σz0、τxy0、τyz0、τzx0)と表す。一方、選択された領域の積分点における演算処理後の応力成分を(σx、σy、σz、τxy、τyz、τzx)と表す。演算された応力はファイル出力により演算結果ファイルとして出力した。
 次に、スプリングバック解析処理を、上述のソフトウェアLS-DYNAを使用して行った。上記領域分割及び演算処理実行プログラムの出力結果を、ソフトウェアLS-DYNAに入力してスプリングバック解析を実施した。スプリングバック解析は静的陰解法による弾性解析を用いた。各領域での演算処理・スプリングバック解析を領域分割数繰り返した。
 図6は、本発明の実施例1によるプレス成形解析から得られたオリジナルデータに基づいてスプリングバック解析を実施した結果を示す。この図6はY方向の変位を評価した図である。図中のVmax=0.49mmは、Y方向の変位が最大となる位置におけるスプリングバック量が0.49mmであることを示す。
 図7A、図7Bは、図6でのVmax=0.49mmのスプリングバック量に対する曲げモーメント成分(偏差応力)及び面内応力成分(平均応力)の影響が部品全面にわたりどの様に影響しているか分析した例である。
 図7Aは、本発明の実施例1による曲げモーメント成分(偏差応力)分解データに対し、演算処理を行った各領域でのスプリングバック量を示す。
 図7Bは、本発明の実施例1による面内応力成分(平均応力)分解データに対し、演算処理を行った各領域でのスプリングバック量を示す。
  図7A、及び図7Bに示されるように、図6のY方向最大変位位置おけるY方向変位(Vmax)に対するスプリングバック発生原因箇所を面内応力成分の影響と曲げモーメント成分の影響に分離し、その影響度合いを特定することができた。偏差応力の影響を示す図7A中、Aで示される箇所の影響量は+0.28mm、Bで示される箇所の影響量は-0.43mm、Cで示される箇所の影響量は+0.21mm、Dで示される箇所の影響量は+0.34mmであった。また、平均応力の影響を示す図7B中、Eで示される箇所の影響量は+0.10mmであった。図7A、図7Bから、Y方向のスプリングバック量は、面内応力成分及び曲げモーメント成分の影響が混在していることが判明した。
 上記の実施例1に示されるように、本発明によればスプリングバックの発生原因箇所を定量的に分析し、更に、その箇所が面内応力成分に起因しているものであるのか曲げモーメント応力成分に起因しているものであるのかを数値解析によって容易にかつ正確に分析することが可能である。更にその結果を視覚的に表示することにより、スプリングバック発生原因箇所を容易に特定することが可能となる。この分析は実際の金型や鋼板を用いることなくコンピュータ上で実行可能である。従って、設計段階において成形方法の検討が容易に行える。
 (実施例2:面内応力成分のσyのみをゼロとした例)
 上記した実施例1では、各領域に属する要素の全積分点における全応力成分に、係数ゼロを掛ける演算処理を行ったが、以下に各種のバリエーションを示す。図8Aは、実施例2におけるプレス成形品の形状を示す。図8Bは、図8Aで示すプレス成形品の分割領域を示す。図8B中、3つの丸印で示す点を固定点とし、オリジナルデータから面内応力成分のみを持つ独立分解データを生成し、面内応力に対する分析を行った。スプリングバック量としてZaで示す箇所におけるZ軸方向(紙面に垂直方向)変位量を評価した。
 プレス成形品の全体を領域801~領域805の5つの領域に分割し、表1に示すように各領域における面内応力成分のうち、この実施例2では最も影響があると思われるσyのみにゼロを掛け、その他の応力成分は元のまま(即ち、係数k=1)とした。このようにして得られた演算応力に基づいてスプリングバック解析を行った結果を表1の下段に示す。表1から、領域804のσyをゼロにした場合の影響割合が最大であることが分かる。即ち実施例2においては、領域803と領域804とにおけるY軸方向の面内応力成分が、面内応力起因のZa部におけるZ方向変位のスプリングバック量の主要な発生原因であることが分かる。なお、面内応力成分のみを持つ独立分解データに基づいて演算された先端部(Za)のスプリングバック量は23.292mmであった。表1に示された各領域の影響量の和は26.44mmであるから、本発明によってほぼ正確な解析が行われていることを確認できる。
Figure JPOXMLDOC01-appb-T000001
 (実施例3:固定点を変えた例)
 実施例3にいては、実施例2で用いたプレス成形品と同一形状の、図9Aに示すプレス成形品を用いた。この実施例3においては、実施例2の図8Bに示した固定点の位置を、図9Bに示すように変更した。まず、実施例1と同様に、各領域に属する要素の全積分点における全応力成分に、係数ゼロを掛ける演算処理を行った。このようにして得られた分析結果を表2に示した。固定点の位置の変更によって、元々形状に起因して反っているように見えるのか、実際に反っているのか、を判別することが可能となる。尚、固定点の変更は演算の最終段階において行われ、最初から演算をやり直す必要はない。
Figure JPOXMLDOC01-appb-T000002
 (実施例4:全面内応力成分に係数0.5を掛けた例)
 この実施例4では、図8Aに示した形状のプレス成形品について、オリジナルデータより生成した面内応力成分のみを持つ独立分解データをもとに分析を行った。最初に、分析領域の全面内応力成分をゼロとしてスプリングバック量を評価した。このように評価した場合、表3に示すように持つ独立分解データのスプリングバック量が26.76mmであるのに対して、例えば領域801の全面内応力成分をゼロとした場合のスプリングバック量は26.59であった。従って、影響度であるその差は0.17mmである。領域801から805の各領域のスプリングバックへの影響量の合計が32.63mmとなり、誤差が21.93%となった。
 そこで、図8Aに示した形状のプレス成形品について、表4に示すように全面内応力成分に係数0.5を掛けてスプリングバック量の評価を行った。このように評価した場合、独立分解データのスプリングバック量が26.76mmであるのに対して、例えば領域801の全面内応力成分に0.5を掛けた場合のスプリングバック量は27.07であった。ここで、影響度は、その差の-0.32mmに対して(1-k)の逆数すなわち1/(1-0.5)=2.0を掛けた値-0.63となる。同様にして計算された領域801から805の影響度の量の合計は27.50mmとなり、誤差が21.93%から2.78%に減少した。なお、領域803と領域804とにおける面内応力成分が、先端部のスプリングバック量の主要な発生原因であることが分かる。
 このように係数をゼロとするよりも0.5とした方が評価精度を向上できるのは、実際には応力と変位との関係が線形ではないからである。すなわち、応力と変位との関係が線形である場合には、ある領域の応力成分に掛ける係数をゼロとして演算を行えばよいが、実際には図10に示すように応力と変位との関係は非線形である。このため元々の応力σ0と編集された応力σとの勾配が異なることとなり、線形近似を行うと誤差が大きくなる。これに対して係数を例えば0.5とすれば、編集された応力σの値を実際の応力値に近づけることができる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (実施例5:全曲げモーメント応力成分に係数0.5を掛けた例)
 この実施例5では、図11Aに示すプレス成形品先端のX軸回りのねじれ角について、曲げモーメント成分(偏差応力成分)の影響を分析した。最初に、オリジナルデータから曲げモーメント成分のみを持つ独立分解成形データを作成し、図11Bに示すように領域1101から領域1105の5つの領域に分割し、各領域の全曲げモーメント成分の相対ねじれ角に対する影響度を評価した。尚、実施例5のプレス成形品におけるX軸廻りのねじれ角θは、図11Cに示されるθ1とθ2との和である。ここでは係数kとして0を用いた。このように評価した場合、表5に示されるように、独立分解成形データのスプリングバック量(相対ねじれ量)は4.48度であった。そして、例えば領域1101のモーメント力成分をゼロとした場合のスプリングバック量は3.75度であった。その差0.74度に(1-k)の逆数、すなわち1/(1-0)=1を掛けた値である0.74度が影響度である。このようにして領域1101から領域1105の相対ねじれ角への影響を求めると合計が4.19度となり、誤差がマイナス6.60%となった。
 そこで、表6に示すように係数kとして係数0.5を用いて評価を行った。このように評価した場合、例えば領域1101のモ-メント成分に0.5を掛けた場合のスプリングバック量は4.09度であり、影響度は独立分解成形データのスプリングバック量が4.48度に対する差-0.39度に(1-k)の逆数すなわち1/(1-0.5)=2.0を掛けた値は-0.78度となる。同様にして求めた、各領域のねじれ角への影響量の合計は4.40度となり、誤差がマイナス6.60%からマイナス1.81%に減少した。また、表6の結果から、領域1103がねじれ発生に最も影響していることが分かる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 (実施例6:評価項目の変更例)
 この実施例6では、図12Aに示す、実施例2と同一形状のプレス成形品について、先端の2節点(N1点、N2点)の変位の平均値を評価項目として、オリジナルデータより生成した面内応力成分のみを持つ独立分解データをもとに分析を行った。全面内応力成分に係数k=0としてスプリングバック量の演算を行い、図12Aに示す先端の2節点(N1点、N2点)の変位の平均値を評価した。尚、図12Bは分割領域を示す。演算結果を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 (実施例7:評価項目の変更例)
 この実施例7では、図13Aに示すプレス成形品について、OLE_LINK1オリジナルデータより生成した面内応力成分のみを持つ独立分解データをもとにOLE_LINK1先端の2節点(N3点、N4点)の変位の相対変位を評価項目とした。全面内応力成分をゼロとしてスプリングバック量の演算を行い、図13Aに示す先端の2節点(N3点、N4点)の間の相対変位(即ち、N3とN4との差)を評価した。尚、図13Bは分割領域を示す。演算結果を表8に示した。
Figure JPOXMLDOC01-appb-T000008
 (実施例8:評価項目の変更例)
 この実施例8では、図14Aに示すプレス成形品について、オリジナルデータから生成したモーメント応力成分のみを持つ独立分解データをもとにX軸回りの相対変位について、曲げモーメント成分(偏差応力成分)の影響を分析した。図14Bに示す通りプレス成形品の中央部に固定点を設定した。そして、図14Cに示すように、端部の4点Z1,Z2,Z3,Z4についてZ軸方向の変位を演算し、Δ=(Z2-Z1)+(Z3-Z4)を4節点のX軸回りの相対変位として評価した。その演算結果を表9に示した。このように本発明では、評価項目を様々に変化させることも可能である。
Figure JPOXMLDOC01-appb-T000009
 (実施例9:グローバル(全体)座標系からローカル(局所)座標系へ転換して評価した例)
 この実施例9では、図15Aに示すプレス成形品について、スプリングバック解析を行った。この実施例9では、図16Aに示されるグローバル座標系を図17Aに示されるローカル座標系に転換して評価を行う。尚、図16Bは、図16AのF-F断面図であり、図17Bは図17AのG-G断面図である。オリジナルデータより生成した面内応力成分のみを持つ独立分解データをもとに、座標系をグローバル(全体)座標系から変換されたローカル(局所)座標系でのσylのみに0.5を掛け、その他の応力成分は元のまま(すなわち、係数k=1)とした。図15Aに示すZa部の最大変位を評価項目とした。このようにして得られた演算応力に基づいてスプリングバック解析を行った結果を表10に示した。
Figure JPOXMLDOC01-appb-T000010
 本発明によれば、スプリングバック発生原因を正確に分析することが可能となり、成形品の成形方法の検討時間を短縮することができる。
1:スプリングバック発生原因分析装置
2:成形条件入力部
3:プレス成形解析部
4:分解成形データ生成部
5:領域分割及び演算処理部
6:スプリングバック解析部
7:影響度算出部
8:表示部
9:固定条件変更処理部
10:プログラム
11:CPU
12:メモリ
13:ディスプレイ
14:入力装置
15:ハードディスク
16:外部記憶装置
17:NIC(ネットワーク・インターフェース・カード)
18:プリンタS:ファイル格納部 

Claims (12)

  1. 塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析工程と;
     前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解工程と;
     前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成工程と; 
     前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理工程と;
     前記演算前独立分解成形データに対する数値シミュレーションにより求められる第1のスプリングバック形状と、前記演算後独立分解成形データに対する数値シミュレーションにより求められる第2のスプリングバック形状と、を解析するスプリングバック解析工程と;
     前記成形品の成形データに含まれるスプリングバック前の形状と、前記第1スプリングバック形状と、前記第2スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出工程と;
     前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示工程と;
    を有することを特徴とするスプリングバック発生原因分析方法。
  2.  前記成形解析工程は、複数の要素を用いた有限要素法による数値シミュレーションにより行なわれ、
     前記成形品の成形データ中の各要素毎の応力の各方向成分の板厚方向平均を前記方向成分の面内応力成分とし、各要素ごとに発生する全積分点の応力値の各方向成分から前記面内平均応力を減算した値を前記方向成分の曲げモーメント成分とする
    ことを特徴とする請求項1記載のスプリングバック発生原因分析方法。
  3.  前記演算処理は、前記演算前独立分解成形データの応力の各方向成分の少なくとも1つに対して-2≦k≦2の範囲の係数kを掛ける演算である
    ことを特徴とする請求項1に記載のスプリングバック発生原因分析方法。
  4.  前記係数kの範囲は0<k≦1である
    ことを特徴とする請求項3に記載のスプリングバック発生原因分析方法。
  5.  前記係数kの範囲は0.5≦k≦0.95である
    ことを特徴とする請求項1に記載のスプリングバック発生原因分析方法。
  6.  前記成形品は、プレス成形品である
    ことを特徴とする請求項1に記載のスプリングバック発生原因分析方法。
  7. 塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析部と;
     前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解部と;
     前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成部と;
     前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理部と;
     前記演算前独立分解成形データに対する数値シミュレーションにより求められる第1スプリングバック形状と、前記演算後独立分解成形データに対する数値シミュレーションにより求められる第2スプリングバック形状と、を解析するスプリングバック解析部と;
     前記成形品の成形データに含まれるスプリングバック前の形状と、前記第1スプリングバック形状と、前記第2スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出部と;
     前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示部と;
    を有することを特徴とするスプリングバック発生原因分析装置。
  8.  前記表示部は、前記各領域毎に、前記算出したスプリングバック変形に対する影響度をコンタ表示するものである
    ことを特徴とする請求項7に記載のスプリングバック発生原因分析装置。
  9. 塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析工程と;
     前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解工程と;
     前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成工程と; 
     前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理工程と;
     前記演算前独立分解成形データに対する数値シミュレーションにより求められる第1のスプリングバック形状と、前記演算後独立分解成形データに対する数値シミュレーションにより求められる第2のスプリングバック形状と、を解析するスプリングバック解析工程と;
     前記成形品の成形データに含まれるスプリングバック前の形状と、前記第1スプリングバック形状と、前記第2スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出工程と;
     前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示工程と;
    を有することを特徴とするスプリングバック発生原因分析プログラム。
  10.  前記成形解析工程は、複数の要素を用いた有限要素法による数値シミュレーションにより行なわれ、
     前記成形品の成形データ中の各要素毎の応力の各方向成分の板厚方向平均を前記方向成分の面内応力成分とし、各要素ごとに発生する全積分点の応力値の各方向成分から前記面内平均応力を減算した値を前記方向成分の曲げモーメント成分とする
    ことを特徴とする請求項9記載のスプリングバック発生原因分析プログラム。
  11.  請求項9に記載のスプリングバック発生原因分析プログラムを記録した
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  12.  塑性加工して成形した成形品の成形条件をもとに数値シミュレーションにより成形解析を行い、前記成形品の成形データを算出する成形解析工程と;
     前記成形品の成形データに含まれる応力データについて、前記成形品の全体にわたり、応力の各方向成分の少なくとも一つの方向成分に対して面内応力成分と曲げモーメント成分とに分解する成分分解工程と;
     前記成形品の成形データから、分解された前記方向成分の応力については面内応力成分のみを持つ第1の独立分解データと、分解された前記方向成分の応力については曲げモーメント成分のみを持つ第2の独立分解データと、の少なくとも一つの独立分解成形データを演算前独立分解成形データとして生成する、演算前独立分解成形データ生成工程と; 
     前記成形品について領域分割を行い、各領域毎に当該領域について前記演算前独立分解成形データの応力の少なくとも一つの方向成分に対して演算処理を行うことで演算後独立分解成形データを生成する演算処理工程と;
     前記演算後独立分解成形データに対する数値シミュレーションにより求められるスプリングバック形状を解析するスプリングバック解析工程と;
     前記成形品の成形データに含まれるスプリングバック前の形状と、前記スプリングバック形状と、から算出された前記各領域の応力のスプリングバック変形に対する影響度を求める影響度算出工程と;
     前記各領域毎に、前記算出したスプリングバック変形に対する影響度を表示する表示工程と;
    を有することを特徴とするスプリングバック発生原因分析方法。
PCT/JP2009/061474 2007-12-25 2009-06-24 スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体 WO2010073756A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES09834562T ES2711923T3 (es) 2007-12-25 2009-06-24 Método, dispositivo, programa y soporte de registro del análisis de la causa de la retracción
CN2009801522311A CN102264486B (zh) 2008-12-25 2009-06-24 回弹发生原因分析方法、回弹发生原因分析装置、回弹发生原因分析程序及记录媒体
RU2011125636/02A RU2477663C2 (ru) 2008-12-25 2009-06-24 Способ, устройство, программа и носитель записи анализа причины упругой отдачи
BRPI0923582A BRPI0923582B8 (pt) 2008-12-25 2009-06-24 método e dispositivo para análise de uma causa de recuperação elástica em um produto formado
MX2011006832A MX2011006832A (es) 2008-12-25 2009-06-24 Metodo, dispositivo, programa, y medio de registro para analizar la causa de recuperacion elastica.
KR1020117014506A KR101368108B1 (ko) 2008-12-25 2009-06-24 스프링백 발생 원인 분석 방법, 스프링백 발생 원인 분석 장치, 스프링백 발생 원인 분석 프로그램을 기록한 컴퓨터 판독 가능 기록 매체
US13/132,637 US8589132B2 (en) 2007-12-25 2009-06-24 Method, device, program, and recording medium of analyzing cause of springback
EP09834562.2A EP2371464B1 (en) 2008-12-25 2009-06-24 Method, device, program and recording medium of analyzing cause of springback

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-329099 2008-12-25
JP2008329099A JP4410833B2 (ja) 2007-12-25 2008-12-25 スプリングバック発生原因分析方法、その装置、そのプログラム及び記録媒体

Publications (1)

Publication Number Publication Date
WO2010073756A1 true WO2010073756A1 (ja) 2010-07-01

Family

ID=42288500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061474 WO2010073756A1 (ja) 2007-12-25 2009-06-24 スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体

Country Status (7)

Country Link
EP (1) EP2371464B1 (ja)
KR (1) KR101368108B1 (ja)
CN (1) CN102264486B (ja)
BR (1) BRPI0923582B8 (ja)
MX (1) MX2011006832A (ja)
RU (1) RU2477663C2 (ja)
WO (1) WO2010073756A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164709A (ja) * 2010-02-04 2011-08-25 Hokkaido Univ プレス成型金型のスプリングバック見込み形状生成方法及び装置
CN103747890A (zh) * 2011-08-22 2014-04-23 杰富意钢铁株式会社 冲压成形品的反冲对策效果确认方法以及装置
WO2016121638A1 (ja) * 2015-01-26 2016-08-04 新日鐵住金株式会社 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体
CN110457851A (zh) * 2019-08-20 2019-11-15 吉林大学 型材滚弯动态回弹有限元分析方法
JP6939962B1 (ja) * 2020-08-17 2021-09-22 Jfeスチール株式会社 プレス成形品の形状変化予測方法
CN114441351A (zh) * 2022-01-28 2022-05-06 江苏瑞构新型材料有限公司 密封门胶条磨损度检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102601202B (zh) * 2012-03-09 2014-01-15 重庆大学 一种减小正向渐进成形加工回弹的方法
CN104106067B (zh) * 2012-03-30 2016-11-09 新日铁住金株式会社 解析装置以及解析方法
JP6064447B2 (ja) * 2012-08-31 2017-01-25 Jfeスチール株式会社 スプリングバック抑制対策部品製造方法
WO2014122695A1 (ja) 2013-02-08 2014-08-14 Jfeスチール株式会社 プレス成形解析方法
CN104919460B (zh) * 2013-05-10 2019-01-22 新日铁住金株式会社 变形解析装置、变形解析方法及程序
CN104636534B (zh) * 2014-12-08 2017-12-15 浙江工业大学 一种提高管材弯曲成型过程仿真效率的方法及仿真方法
DE102022102378A1 (de) 2022-02-02 2023-08-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Stabilitätskontrolle einer Serienherstellung von Blechformteilen, Computerprogramm sowie elektronisch lesbarer Datenträger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033828A (ja) 2001-07-23 2003-02-04 Toyota Motor Corp 金型モデル成形方法およびプログラム
JP2004148381A (ja) 2002-10-31 2004-05-27 Japan Research Institute Ltd プレス成形シミュレーションシステム、プレス成形シミュレーション用プログラム、及びそのプログラムを記録した記録媒体
JP2007229724A (ja) 2006-02-27 2007-09-13 Jfe Steel Kk プレス成形解析方法
JP2008049389A (ja) 2006-08-28 2008-03-06 Toyota Motor Corp 形状不良要因特定方法、装置及びプログラム
JP2008055476A (ja) 2006-08-31 2008-03-13 Nippon Steel Corp スプリングバック発生原因部位特定方法、その装置、及びそのプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1021983A1 (ru) * 1982-01-07 1983-06-07 Специальное Проектно-Конструкторское Бюро По Микропроводам Производственного Объединения "Москабель" Способ испытани провода на упругость
JP4352658B2 (ja) * 2002-05-29 2009-10-28 Jfeスチール株式会社 プレス成形品のスプリングバック解析方法
EP1908539B1 (en) * 2005-06-30 2021-09-22 Nippon Steel Corporation Method and device for designing member, computer program, and computer-readable recording medium
MX2009002150A (es) * 2006-08-31 2009-03-12 Nippon Steel Corp Metodo para identificar la causa de ocurrencia de retraccion, metodo de exhibicion de grado de influencia de retraccion, metodo de identificacion de porcion de causa de ocurrencia de retraccion, metodo que especifica la posicion de medicion de retrac
RU2333471C2 (ru) * 2006-10-09 2008-09-10 Открытое акционерное общество "АВТОВАЗ" Штамп-прибор для испытания и способ испытания листового материала на пружинение и предельные параметры при двухугловой гибке (варианты)
JP5070859B2 (ja) * 2007-01-31 2012-11-14 Jfeスチール株式会社 自動車用ドアアウターパネルの面ひずみ予測・評価方法
RU2344406C2 (ru) * 2007-02-13 2009-01-20 Открытое акционерное общество "АВТОВАЗ" Способ испытания листового материала на пружинение и предельные параметры при четырехугловой гибке с прижимом краев образца (варианты)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033828A (ja) 2001-07-23 2003-02-04 Toyota Motor Corp 金型モデル成形方法およびプログラム
JP2004148381A (ja) 2002-10-31 2004-05-27 Japan Research Institute Ltd プレス成形シミュレーションシステム、プレス成形シミュレーション用プログラム、及びそのプログラムを記録した記録媒体
JP2007229724A (ja) 2006-02-27 2007-09-13 Jfe Steel Kk プレス成形解析方法
JP2008049389A (ja) 2006-08-28 2008-03-06 Toyota Motor Corp 形状不良要因特定方法、装置及びプログラム
JP2008055476A (ja) 2006-08-31 2008-03-13 Nippon Steel Corp スプリングバック発生原因部位特定方法、その装置、及びそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUBISHI MOTORS CORPORATION TECHNICAL REVIEW, 2006, pages 126 - 131

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164709A (ja) * 2010-02-04 2011-08-25 Hokkaido Univ プレス成型金型のスプリングバック見込み形状生成方法及び装置
CN103747890A (zh) * 2011-08-22 2014-04-23 杰富意钢铁株式会社 冲压成形品的反冲对策效果确认方法以及装置
WO2016121638A1 (ja) * 2015-01-26 2016-08-04 新日鐵住金株式会社 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体
JPWO2016121638A1 (ja) * 2015-01-26 2017-10-12 新日鐵住金株式会社 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体
CN107249772A (zh) * 2015-01-26 2017-10-13 新日铁住金株式会社 面形状不良产生区域推断方法、面形状不良原因区域推断方法、面形状不良产生区域推断装置、面形状不良原因区域推断装置、程序、以及记录介质
RU2677123C1 (ru) * 2015-01-26 2019-01-15 Ниппон Стил Энд Сумитомо Метал Корпорейшн Способ оценки областей образования дефекта формы поверхности, способ оценки областей источников дефекта формы поверхности, устройство оценки областей образования дефекта формы поверхности, устройство оценки областей источников дефекта формы поверхности, программа и носитель записи
US10713401B2 (en) 2015-01-26 2020-07-14 Nippon Steel Corporation Surface shape defect generating region estimating method, surface shape defect source region estimating method, surface shape defect generating region estimating device, surface shape defect source region estimating device, program, and recording medium
CN110457851A (zh) * 2019-08-20 2019-11-15 吉林大学 型材滚弯动态回弹有限元分析方法
JP6939962B1 (ja) * 2020-08-17 2021-09-22 Jfeスチール株式会社 プレス成形品の形状変化予測方法
WO2022038836A1 (ja) * 2020-08-17 2022-02-24 Jfeスチール株式会社 プレス成形品の形状変化予測方法
JP2022033452A (ja) * 2020-08-17 2022-03-02 Jfeスチール株式会社 プレス成形品の形状変化予測方法
CN114441351A (zh) * 2022-01-28 2022-05-06 江苏瑞构新型材料有限公司 密封门胶条磨损度检测方法

Also Published As

Publication number Publication date
EP2371464A4 (en) 2017-05-17
MX2011006832A (es) 2011-08-03
RU2011125636A (ru) 2013-01-27
BRPI0923582B8 (pt) 2021-08-17
CN102264486A (zh) 2011-11-30
CN102264486B (zh) 2013-11-06
KR101368108B1 (ko) 2014-02-27
RU2477663C2 (ru) 2013-03-20
EP2371464A1 (en) 2011-10-05
KR20110097899A (ko) 2011-08-31
BRPI0923582B1 (pt) 2020-05-19
BRPI0923582A2 (pt) 2016-01-26
EP2371464B1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP4410833B2 (ja) スプリングバック発生原因分析方法、その装置、そのプログラム及び記録媒体
WO2010073756A1 (ja) スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体
KR101088115B1 (ko) 스프링백 발생 원인 특정 방법, 스프링백 영향도 표시 방법, 스프링백 발생 원인 부위 특정 방법, 스프링백 대책 위치 특정 방법, 그 장치, 및 그 프로그램
JP6060591B2 (ja) プレス成形品のスプリングバック要因特定方法および装置
JP4964988B2 (ja) 成形シミュレーション方法、成形シミュレーション装置、プログラム、記録媒体、及びシミュレーション結果に基づいた成形方法
US7870792B2 (en) Forming limit strain analysis
JP5941320B2 (ja) 金型形状シミュレーションシステム、プログラム及び方法
JP2008055476A (ja) スプリングバック発生原因部位特定方法、その装置、及びそのプログラム
JP2008197852A (ja) 塑性加工における被加工材の組織発展の解析装置、解析システムおよび記録媒体
EP2423840A1 (en) Molding simulation method, molding simulation device, molding simulation program, and recording medium therefor
Mole et al. A 3D forming tool optimisation method considering springback and thinning compensation
JP2008087035A (ja) スプリングバック発生原因部位特定方法、その装置、及びそのプログラム
JP5068783B2 (ja) スプリングバック発生原因部位特定方法、その装置、及びそのプログラム
Peng et al. Comparison of material models for spring back prediction in an automotive panel using finite element method
JP5737059B2 (ja) プレス成形シミュレーション解析方法及び装置
KR102549984B1 (ko) 스프링 백량 괴리 요인 부위 특정 방법 및 장치, 그리고 스프링 백량 괴리 요인 부위 특정 프로그램을 기록한 컴퓨터로 판독 가능한 매체
JP5389841B2 (ja) スプリングバック解析方法、スプリングバック解析装置、プログラム、及び記憶媒体
JP6841295B2 (ja) スプリングバック量乖離要因部位特定方法および装置
JP5462201B2 (ja) 成形解析方法、成形解析装置、プログラム、及び記憶媒体
JP4308239B2 (ja) スプリングバック影響度表示方法、その装置、及びそのプログラム
Ihlenfeldt et al. Characterization of generic interactive digital twin for increased agility in forming
JP4418449B2 (ja) スプリングバック発生原因部位特定方法、その装置、及びそのプログラム
WO2020153494A1 (ja) 剛性影響度分析方法、剛性影響度分析装置およびプログラム
Strano et al. A Method for Benchmarking of FEM Packages for Multi-Stage Sheet Metal Forming Simulations
JP2023134063A (ja) 性能予測システムおよび性能予測方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152231.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009834562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13132637

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3905/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117014506

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/006832

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011125636

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0923582

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0923582

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110622