WO2016121638A1 - 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体 - Google Patents

面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体 Download PDF

Info

Publication number
WO2016121638A1
WO2016121638A1 PCT/JP2016/051821 JP2016051821W WO2016121638A1 WO 2016121638 A1 WO2016121638 A1 WO 2016121638A1 JP 2016051821 W JP2016051821 W JP 2016051821W WO 2016121638 A1 WO2016121638 A1 WO 2016121638A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface shape
stress distribution
shape defect
region
stress
Prior art date
Application number
PCT/JP2016/051821
Other languages
English (en)
French (fr)
Inventor
卓也 桑山
高 有賀
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112017013734-8A priority Critical patent/BR112017013734A2/ja
Priority to US15/537,956 priority patent/US10713401B2/en
Priority to EP16743241.8A priority patent/EP3251769B1/en
Priority to RU2017124979A priority patent/RU2677123C1/ru
Priority to CA2971561A priority patent/CA2971561C/en
Priority to EP20180657.7A priority patent/EP3736059A1/en
Priority to CN201680005686.0A priority patent/CN107249772B/zh
Priority to JP2016571991A priority patent/JP6350681B2/ja
Priority to KR1020177019164A priority patent/KR101953501B1/ko
Priority to ES16743241T priority patent/ES2812453T3/es
Priority to MX2017009261A priority patent/MX2017009261A/es
Publication of WO2016121638A1 publication Critical patent/WO2016121638A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/08Detecting presence of flaws or irregularities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/24Sheet material

Definitions

  • the present invention relates to a method, an apparatus, a program, and a recording medium for estimating a generation area or a cause area of a surface shape defect that occurs when a workpiece is plastically processed.
  • Patent Documents 1 to 3 as a method for identifying the cause region of springback, the stress state at the bottom dead center of molding is divided into a plurality of specific regions by a finite element method, and the stress of the specific region is numerically calculated. A method for specifying a springback cause area by executing a springback calculation is described.
  • Patent Documents 1 to 3 Although a method for estimating the occurrence region and the cause region of “spring back” by an objective index such as residual stress has been studied, “wrinkles” and A technique for quantitatively estimating the occurrence area and the cause area of surface shape defects such as “surface distortion” has not yet been examined, and establishment of the technique has been required. Similar problems exist not only in the press forming of steel plates, but also in the case of roll forming of long steel materials and hydroforming of steel pipes. Further, the material of the workpiece is not limited to steel, but the same problem exists in the case of metal materials such as aluminum and titanium, glass fiber reinforced resin materials such as FRP and FRTP, and composite materials thereof. .
  • the present invention has been made in view of the above circumstances, and a method, apparatus, program, and recording for estimating a generation area and a cause area of a surface shape defect that occurs when a workpiece is plastically processed.
  • the purpose is to provide a medium.
  • the gist of the present invention aimed at solving the above problems is as follows.
  • the first aspect of the present invention estimates the occurrence region of surface shape defects of a plastic work product obtained by plastic working a workpiece from the plastic working start time T START to the plastic working completion time T END.
  • a surface shape defect occurrence region estimation method that performs a first machining time T after the plastic working start time T START and before the plastic working completion time T END by a finite element method.
  • the comparison stress distribution acquisition step of acquiring comparison stress distribution is a distribution of comparison stress of the workpiece ⁇ (T1, T2)
  • the comparison stress distribution acquisition step of acquiring comparison stress distribution is a distribution of comparison stress of the workpiece ⁇ (T1, T2)
  • the comparative stress distribution ⁇ (T1, T2) By dividing the comparative stress distribution ⁇ (T1, T2) into a plurality of divided regions D k , divided comparative stress distribution ⁇ DIV (T1, T2) which is a distribution of the comparative stress of each divided region D k is obtained.
  • the surface shape defect occurrence evaluation index ⁇ may be a minimum value of comparative stress.
  • the surface shape defect occurrence evaluation index ⁇ may be a maximum value of a difference in comparative stress between two elements that are separated from each other.
  • the surface shape defect occurrence evaluation index ⁇ is obtained by dividing a difference in comparative stress between two elements separated from each other by the distance. It may be the maximum value of the difference gradient to be obtained.
  • a first divided region D 1 including an element having a minimum comparative stress is defined as one of the plurality of divided regions D k , and the first divided region D 1 is calculated from the comparative stress distribution ⁇ (T1, T2).
  • the among excluded compared stress distribution ⁇ (T1, T2), may define a second divided region D 2 comprises an element comparison stress is minimum as one of the plurality of divided regions D k.
  • a first divided region D 1 including two elements in a combination that maximizes a difference in comparative stress between two elements spaced apart from each other is defined as one of the plurality of divided regions D k
  • the comparative stress distribution sigma comparison stress distribution excluding the first divided area D 1 from (T1, T2) ⁇ (T1 , T2) of the two elements the difference between the comparison stress of combinations having a maximum between two elements away from each other a second divided region D 2 may be defined as one of the plurality of divided regions D k encompasses.
  • a first divided region D 1 including two elements of a combination having a maximum difference gradient obtained by dividing a difference in comparative stress between two elements separated from each other by the separated distance is defined as the plurality of divided regions D k.
  • a second divided region D2 including two elements in a combination that maximizes the difference gradient obtained by dividing the difference in stress by the separation distance may be defined as one of the plurality of divided regions Dk. .
  • the second processing time T 2 may be the plastic working at the time of completion T END.
  • the workpiece may be a metal.
  • the plastic working may be press molding.
  • the surface shape defect may be wrinkled.
  • a distribution obtaining step said modified first stress distribution ⁇ '(T1) for the second working point T 2 to fix by performing forming analysis by the finite element method the second stress distribution ⁇ ' (T2) of each peripheral area m Modified second stress acquisition step acquired every k, and the peripheral region m k Based on the comparison between the corrected first stress distribution ⁇ ′ (T1) and the corrected second stress distribution ⁇ ′ (T2) , the corrected comparative stress distribution that is the corrected comparative stress distribution of the workpiece is obtained.
  • the surface shape defect cause evaluation indices ⁇ (mk) and ⁇ (m0) may be the minimum value of the corrected comparison stress.
  • the surface shape defect cause evaluation index ⁇ (mk) , ⁇ (m0) is a difference in corrected comparison stress between two elements that are separated from each other. May be the maximum value.
  • the surface shape defect cause evaluation index ⁇ (mk) , ⁇ (m0) is a difference in corrected comparison stress between two elements spaced apart from each other. May be the maximum value of the differential gradient obtained by dividing by the separation distance.
  • the third aspect of the present invention estimates the occurrence region of the surface shape defect of the plastic work product obtained by plastic working the workpiece from the plastic working start time T START to the plastic working completion time T END.
  • a surface shape defect occurrence region estimation device that performs a first machining time T after the plastic working start time T START and before the plastic working completion time T END by a finite element method.
  • a first stress distribution acquisition unit that acquires a first stress distribution ⁇ (T1) that is a stress distribution of the workpiece in 1 and a finite element method, after the first processing time T 1 , and, second stress distribution obtaining unit configured to obtain the plastic working at the time of completion T END second stress distribution wherein the distribution of stress of the workpiece in the second processing time T 2 is before or simultaneously than sigma (T2)
  • the comparison stress distribution obtaining unit for obtaining a distribution of comparison stress is compared stress distribution of the workpiece ⁇ (T1, T2)
  • the comparative stress distribution ⁇ (T1, T2) By dividing the comparative stress distribution ⁇ (T1, T2) into a plurality of divided regions D k , divided comparative stress distribution ⁇ DIV (T1, T2) which is a distribution of the comparative stress of each divided region D k is obtained.
  • each of the divided regions D k A surface shape defect occurrence region estimation unit that estimates whether or not the region is a surface shape defect occurrence region.
  • the surface shape defect occurrence evaluation index ⁇ may be a minimum value of comparative stress.
  • the surface shape defect occurrence evaluation index ⁇ may be a maximum value of a difference in comparative stress between two elements that are separated from each other.
  • the surface shape defect occurrence evaluation index ⁇ is obtained by dividing a difference in comparative stress between two elements separated from each other by the separation distance. It may be the maximum value of the difference gradient to be obtained.
  • a first divided region D 1 including an element having a minimum comparative stress is defined as one of the plurality of divided regions D k , and the first divided region D 1 is calculated from the comparative stress distribution ⁇ (T1, T2).
  • the among excluded compared stress distribution ⁇ (T1, T2), may define a second divided region D 2 comprises an element comparison stress is minimum as one of the plurality of divided regions D k.
  • a first divided region D 1 including two elements in a combination that maximizes a difference in comparative stress between two elements spaced apart from each other is defined as one of the plurality of divided regions D k
  • the comparative stress distribution sigma comparison stress distribution excluding the first divided area D 1 from (T1, T2) ⁇ (T1 , T2) of the two elements the difference between the comparison stress of combinations having a maximum between two elements away from each other a second divided region D 2 may be defined as one of the plurality of divided regions D k encompasses.
  • a first divided region D 1 including two elements of a combination having a maximum difference gradient obtained by dividing a difference in comparative stress between two elements separated from each other by the separated distance is defined as the plurality of divided regions D k.
  • a second divided region D2 including two elements in a combination that maximizes the difference gradient obtained by dividing the difference in stress by the separation distance may be defined as one of the plurality of divided regions Dk. .
  • said second processing time T 2 may be the plastic working at the time of completion T END.
  • the workpiece may be a metal.
  • the plastic working may be press molding.
  • the surface shape defect may be wrinkled.
  • a distribution obtaining unit the corrected first stress distribution ⁇ '(T1) for the second working point T 2 to fix by performing forming analysis by the finite element method the second stress distribution ⁇ ' (T2) of each peripheral area m
  • the corrected second stress acquisition unit acquired for each k and the peripheral region m k Based on the comparison between the modified first stress distribution ⁇ ′ (T1) and the modified second stress distribution ⁇ ′ (T2) , the modified comparative stress distribution ⁇ ′ that is the modified comparative stress distribution of the workpiece.
  • the surface shape defect cause evaluation indices ⁇ (mk) and ⁇ (m0) may be the minimum value of the corrected comparison stress.
  • the surface shape defect cause evaluation index ⁇ (mk) , ⁇ (m0) is a difference in corrected comparison stress between two elements spaced apart from each other. May be the maximum value.
  • the surface shape defect cause evaluation index ⁇ (mk) , ⁇ (m0) is a difference in corrected comparison stress between two elements that are separated from each other. May be the maximum value of the differential gradient obtained by dividing by the separation distance.
  • a fifth aspect of the present invention is a program for executing the surface shape defect occurrence region estimation method according to (1) above.
  • a sixth aspect of the present invention is a program for executing the surface shape defect cause region estimation method described in (12) above.
  • a seventh aspect of the present invention is a computer-readable recording medium on which the program according to (31) is recorded.
  • An eighth aspect of the present invention is a computer-readable recording medium on which the program according to (32) is recorded.
  • the present invention it is possible to provide a method, an apparatus, a program, and a recording medium for estimating an occurrence area or a cause area of a surface shape defect of a plastic processed product that occurs when a workpiece is plastic processed.
  • FIG. 1 A first contour diagram of one stress distribution sigma (T1) of the steel sheet S in the first working point T 1. It is a contour view of a second stress distribution sigma (T2) of the steel sheet S in the second processing time T 2.
  • FIG. 6 is a diagram showing positions of divided regions D 0 to D 10 in the contour diagram of the comparative stress distribution ⁇ (T1, T2) shown in FIG.
  • FIG. 7 is a diagram showing divided comparison stress distribution ⁇ DIV (T1, T2) individually for divided regions D 0 to D 10 shown in FIG. 6. It is a flowchart which shows the process order of the surface shape defect cause area
  • FIG. 5 is a diagram in which a divided region D 0 estimated as a surface shape defect occurrence region is specified as a reference region m 0 and its periphery is divided into peripheral regions m 1 to m 10 .
  • the first stress distribution sigma of (T1), the stress value of the peripheral area m 1 is a contour diagram of the approximate fix first stress are obtained distributed 0 ⁇ '(T1). It is a contour diagram of the 'modified are acquired and continue the forming analysis from state to the second work point T 2 second stress distribution ⁇ of (T1)' (T2) modified first stress shown in FIG. 10 distribution ⁇ .
  • FIG. 16A and FIG. 16B show shading diagrams of a press-formed product (steel plate S) that has been press-formed using the press die model of FIG. 1 described in detail later.
  • FIG. 16A is a shading diagram of the steel sheet S when the upper die 101 is 5 mm before the bottom dead center
  • FIG. 16B is a shading diagram of the steel plate S when the upper die 101 is at the bottom dead center.
  • the part where the density is confirmed is a part where the shape of the steel sheet S has changed from before the press to 5 mm before the bottom dead center.
  • the shaded portion is a portion where the shape of the steel sheet S has changed, and can be estimated as a bent portion, It is also estimated as the product shape.
  • the shading diagram when the upper die 101 is at the bottom dead center is not clear, and it is difficult to estimate the wrinkle occurrence region. That is, with the estimation method using the shading diagram as described above, it is difficult to quantitatively estimate the wrinkle occurrence region.
  • the product shape is complicated, it is extremely difficult to determine whether it is a bent portion or a wrinkle or a shape (design) to be processed from a shading diagram.
  • the present inventors pay attention to the fact that wrinkles generated in a steel sheet are more likely to occur as the amount of processing of the steel sheet increases, and are most likely to occur immediately before the upper mold reaches the bottom dead center. It was found that the comparison of stress distribution of steel sheets at the time of processing is important in predicting wrinkling. Furthermore, the present inventors pay attention to the fact that when the upper die reaches the bottom dead center and press molding is finished, the bent portion that is the source of wrinkles is crushed by the die, resulting in stress distribution, It was found that comparing the stress distribution of the steel plate before reaching the bottom dead center with the stress distribution of the steel plate after reaching the bottom dead center is important for predicting wrinkle generation more accurately.
  • the surface shape defect occurrence area estimation method the surface shape defect cause area estimation method, the surface shape defect occurrence area estimation apparatus, the surface shape defect cause area estimation apparatus, the program, and the recording according to the present invention based on the above-described knowledge
  • the medium will be described in detail based on the embodiment.
  • a press mold model described later is used for a steel sheet S which is a 440 MPa class cold-rolled steel sheet having a tensile strength of 462 MPa and a yield stress of 360 MPa as a workpiece.
  • a case where a wrinkle generation region or a wrinkle-causing region is predicted will be described as an example by numerically analyzing press molding using a finite element method using a finite element method. Specifically, the numerical analysis is performed using a press die model including an upper die (punch) 101, a wrinkle holding die 102, and a lower die (die) 103 shown in FIG.
  • the upper mold 101 is placed with the steel sheet S placed on the lower mold 103, the wrinkle holding mold 102 is lowered, and the steel sheet S is sandwiched between the lower mold 103 and the wrinkle pressing mold 102.
  • the time point at which plastic deformation of the work material starts is defined as the plastic working start time T START
  • plastic processing completion plastic deformation the time to complete the workpiece T END (3)
  • a time after the plastic working start time T START and before the plastic working completion time T END is defined as the first working time T 1
  • a time point after the first processing time point T 1 and before or simultaneously with the plastic processing time point T END is defined as the second processing time point T 2 .
  • the “region” is a minute region composed of one or more elements in the finite element method, or a collection of continuous elements.
  • press forming obtained by press forming a steel sheet S from the start point of press forming (plastic processing start point T START ) to the completion point of press forming (plastic processing end point T END ).
  • This is a surface shape defect occurrence region estimation method for estimating a wrinkle occurrence region (surface shape defect occurrence region) of a product (plastic processed product).
  • the surface shape defect occurrence region estimation method according to the present embodiment includes a first stress distribution acquisition step S11, a second stress distribution acquisition step S12, a comparative stress distribution acquisition step S13, and a divided comparative stress.
  • a distribution acquisition step S14 and a surface shape defect occurrence region estimation step S15 are provided.
  • First stress distribution acquisition step S11 In the first stress distribution acquisition step S11, by means of numerical analysis employing the finite element method, to obtain a first stress distribution is stress distribution in the first working point T 1 of the steel sheet S which is the subject press forming sigma (T1). Specifically, at the first processing time T 1 , that is, after the upper mold 101 comes into contact with the steel sheet S and the deformation of the steel sheet S starts, but before the upper mold 101 reaches the bottom dead center.
  • the stress distribution of the steel sheet S is acquired as a first stress distribution ⁇ (T1) by numerical analysis using a finite element method.
  • FIG. 3 shows a contour diagram (contour map) of the first stress distribution ⁇ (T1) acquired in the first stress distribution acquisition step S11.
  • This part is a part where the degree of processing is high and severe molding is performed, and the material flows from the peripheral part. In other words, the possibility that wrinkles (or flexures) have occurred in the part cannot be denied, but as with the estimation method based on the conventional shading diagram, it is determined whether it is a wrinkle or a shape (design) to be processed. I can't do it. Even if it is estimated that wrinkles are generated, it is difficult to quantitatively estimate the size of the wrinkles.
  • the numerical analysis by the finite element method is performed using a commercially available finite element method (FEM) analysis system (for example, commercially available software PAM-STAMP, LS-DYNA, Autoform, OPTRIS, ITAS-3D, ASU / P-FORM, ABAQUS, ANSYS). , MARC, HYSTAMP, Hyperform, SIMEX, Fastform3D, and Quikstamp).
  • FEM finite element method
  • finite element method FEM analysis systems, based on the shape data (sheet thickness, length, width, etc.) of the steel sheet S to be pressed and the steel sheet characteristics such as strength and elongation, the mold shape ( Set molding conditions such as die and punch shape, curvature, lubrication conditions), press pressure (temperature, pressure, etc.), perform press molding analysis, and quantitatively estimate the stress distribution of the molded product after press molding be able to.
  • Comparative stress distribution acquisition step S13 In the comparative stress distribution acquisition step S13, based on the comparison between the first stress distribution ⁇ (T1) and the second stress distribution ⁇ (T2) , the comparative stress distribution that is the distribution of the comparative stress between the first stress and the second stress. Obtain ⁇ (T1, T2) . More specifically, the first stress distribution ⁇ (T1) and the second stress distribution ⁇ (T2) are compared, and the difference or change rate of the stress for each finite element is obtained, whereby the comparative stress distribution ⁇ ( T1, T2) can be obtained.
  • FIG. 5 shows a contour diagram of the comparative stress distribution ⁇ (T1, T2) acquired in the comparative stress distribution acquisition step S13.
  • a divided comparative stress distribution ⁇ DIV (T1, T2) that is a distribution of k comparative stress is acquired.
  • FIG. 6 shows an example in which the comparative stress distribution ⁇ (T1, T2) is divided into divided regions D 0 to D 10 .
  • FIG. 7 shows the divided comparative stress distribution ⁇ DIV (T1, T2) of each of the divided regions D 0 to D 10 shown in FIG. In FIG.
  • Min is “minimum value of comparative stress (GPa)”
  • Max is “maximum value of comparative stress (GPa)”
  • Max ⁇ Min is “difference of comparative stress between two elements separated from each other”.
  • Maximum value (GPa) ",
  • Grad. Max indicates “the maximum value (GPa / mm) of the differential gradient obtained by dividing the difference in comparative stress between two elements that are separated from each other by the distance between them”. Note that a method for demarcating the divided region Dk is not particularly limited, but a method described later may be used.
  • each of the divided regions D k is wrinkled based on the surface shape defect occurrence evaluation index ⁇ obtained for each of the divided regions D k using the divided comparison stress distribution ⁇ DIV (T1, T2). It is estimated whether it is a generation
  • the surface shape defect occurrence evaluation index ⁇ for example, the following evaluation index can be used.
  • the divided area D 0 , the divided area D 5 , and the divided area D 7 are wrinkled. It can be estimated as a generation area.
  • the threshold when the surface shape defect occurrence evaluation index ⁇ 1 is used may be determined according to what height of wrinkles can be allowed in the final product (press-molded product). That is, for example, in the case of a press-molded product used in a harsher environment, even a small wrinkle greatly affects the product performance. Therefore, the generation of wrinkles can be evaluated more strictly by setting the threshold to “low”.
  • k is estimated as a wrinkle generation region.
  • the flexible portion comprising a wrinkle former, generated in the first processing time T 1, then crushed him to molding proceeds, the second work point T 2, Crushed flexure (wrinkles) Or the compressive residual stress resulting from the bending part (wrinkle) being crushed arises. Further, a tensile residual stress is generated around the compressive residual stress.
  • the divided area D 0 , the divided area D 5 , and the divided area D 7 are It can be estimated as a wrinkle occurrence region.
  • the threshold in the case of using the surface shape defect occurrence evaluation index ⁇ 2 may be determined according to what height of wrinkles can be allowed in the final product (press-molded product), similarly to the surface shape defect occurrence evaluation index ⁇ 1.
  • the surface shape defect occurrence evaluation index ⁇ 2 is used, the occurrence of wrinkles can be more strictly evaluated by setting the threshold value to “high”.
  • the surface shape defect occurrence evaluation index ⁇ 1 is used in order to consider the value of the tensile residual stress around the wrinkles as compared with the case where the surface shape defect occurrence evaluation index ⁇ 1 is used. It is possible to estimate the wrinkle occurrence region more accurately.
  • the divided area D 0 , the divided area D 9 , and the divided area D are set. 10 can be estimated as the wrinkle generation region.
  • the threshold when the surface shape defect occurrence evaluation index ⁇ 3 is used may be determined according to what height of wrinkles can be allowed in the final product (press-molded product), similarly to the surface shape defect occurrence evaluation indices ⁇ 1 and ⁇ 2.
  • the surface shape defect occurrence evaluation index ⁇ 3 is used, like the surface shape defect occurrence evaluation index ⁇ 2, the occurrence of wrinkles can be more strictly evaluated by setting the threshold value to “high”.
  • the difference gradient is taken into consideration as compared with the case where the surface shape defect occurrence evaluation indices ⁇ 1 and ⁇ 2 are used. It is possible to accurately estimate the wrinkle generation area.
  • the method of demarcating the divided region Dk may be mechanically equally divided (for example, in a dice shape), where wrinkles are likely to occur, and wrinkles are generated. A difficult part may be estimated from experience values and determined based on the prediction.
  • the divided regions Dk may be defined as follows in consideration of the above-described surface shape defect occurrence evaluation indexes ⁇ 1 to ⁇ 3.
  • the divided area demarcation technique 1 In the divided area defining method 1, first, the first divided area D 1 including “the element having the smallest comparative stress” in the comparative stress distribution ⁇ (T1, T2) is set as one of the divided areas D k . Define. Of the comparison stress distribution ⁇ (T1, T2) comparison stress distribution excluding the first divided area D 1 from sigma (T1, T2), the second divided region D includes "element comparison stress is minimal" 2 is defined as one of the plurality of divided regions Dk .
  • the divided region Dk can be mechanically defined.
  • the number of times of repeating the same defining method is not particularly limited.
  • the “minimum value of comparative stress” in the comparative stress distribution ⁇ (T1, T2) excluding the defined divided region D k is the first divided region D 1.
  • the above-described method may be repeated until the “minimum value of the comparative stress” is doubled.
  • a first divided portion including “two elements of a combination in which the difference in the comparative stress between two elements spaced apart from each other” is included in the comparative stress distribution ⁇ (T1, T2).
  • Region D1 is defined as one of a plurality of divided regions Dk .
  • comparison stress distribution ⁇ (T1, T2) comparison stress excluding the first divided area D 1 from the distribution sigma (T1, T2) the difference between the comparison stress between two elements away "from each other is maximized defining a second divided region D 2 as one of the plurality of divided regions D k includes two elements "in combination.
  • the divided region Dk can be mechanically defined.
  • the number of times of repeating the same definition method is not particularly limited.
  • “maximum difference in comparative stress between two elements separated from each other” value is, until 50% or less of the first divided area D 1" maximum difference in comparison stress between two elements away from each other ", may repeat the above procedure.
  • the divided area defining method 3 First, among the comparative stress distributions ⁇ (T1, T2) , “the difference gradient obtained by dividing the difference of the comparative stress between two elements separated from each other by the distance is maximized. A first divided region D 1 including “two elements of the combination” is defined as one of the plurality of divided regions D k .
  • comparison stress distribution ⁇ (T1, T2) comparison stress excluding the first divided area D 1 from the distribution sigma (T1, T2), "the distance difference of the comparison stress between two elements away from each other in defining a second divided region D 2 differential gradient obtained by dividing encompasses two elements "in combination with the maximum as one of the plurality of divided regions D k.
  • the divided region Dk can be mechanically defined.
  • the number of times of repeating the same definition method is not particularly limited.
  • the difference of the comparative stress between two elements separated from each other is expressed as the maximum value of the difference gradients obtained by dividing the distance "is the maximum difference gradients obtained by difference of the comparison stress divided by the distance between the two elements to be" separated from each other in the first divided area D 1 is You may repeat said method until it becomes 50% or less of "value”.
  • the divided area defining method 1 is a method considering the surface shape defect occurrence evaluation index ⁇ 1
  • the divided area defining method 2 is a method considering the surface shape defect occurrence evaluation index ⁇ 2
  • the divided area defining method 3 is This is a method considering the surface shape defect occurrence evaluation index ⁇ 3. Therefore, when the divided area is defined using the divided area defining method 1, it is preferable to use the surface shape defect occurrence evaluation index ⁇ 1.
  • the first working point T 1 for the present embodiment, the shape of the steel sheet S to be press-formed, steel properties, die shape, may be appropriately determined based on the press conditions. For example, the wrinkle height at which the separation distance from the bottom dead center of the upper mold 101 is greater than 0 mm and 5 mm or less, or the separation distance from the bottom dead center of the upper mold 101 is allowed for each part of the press-formed product.
  • the processing time may be 1 to 5 times the height.
  • the second processing time T 2 are, processing time of the upper mold 101 is the bottom dead center, i.e., is preferably a plastic working at the time of completion T END.
  • the wrinkle generation area of the press-formed product can be estimated quantitatively, and the man-hours and costs at the design stage for examining the molding method of the press-formed product can be reduced.
  • the second embodiment of the present invention is a surface shape defect cause area estimation method for estimating the cause area of a wrinkle occurrence area estimated by the above-described “surface shape defect occurrence area estimation method”.
  • the surface shape defect cause region estimation method according to the present embodiment includes a region dividing step S21, a corrected first stress distribution acquiring step S22, a corrected second stress acquiring step S23, and a corrected comparative stress distribution.
  • An acquisition step S24 and a surface shape defect cause region estimation step S25 are provided.
  • each process is explained in full detail.
  • the demarcation method of the peripheral area m k is not particularly limited, Mechanically, it may be equally divided (for example, in a dice shape), and a part that is likely to cause wrinkles and a part that is unlikely to cause wrinkles may be estimated from experience values and determined based on the prediction. Further, the peripheral region m k may be defined along the divided region defining methods 1 to 3 described in the first embodiment. Note that the peripheral region m k in the vicinity of the creasing region (limit smaller finite elements) finely define the area that is, it is possible to accurately estimate the wrinkles cause regions.
  • Modified first stress distribution acquisition step S22 Change in modified first stress distribution acquisition step S22, the first stress distribution sigma (T1) of the steel sheet S in the first working point T 1, the stress value of an arbitrary peripheral region m k among the peripheral region m k 0 Then, the corrected first stress distribution ⁇ ′ (T1) , which is the stress distribution in the case of the above, is acquired for each region m k .
  • the term "(T1) has been modified first stress distribution obtained by changing the stress on the peripheral region m 1 sigma modified first stress distribution around the region m 1 sigma"' means (T1).
  • FIG. 10 shows a contour diagram of the corrected first stress distribution ⁇ ′ (T1) of the peripheral region m 1 obtained by changing the stress value of the peripheral region m 1 to 0.
  • the stress value is changed to 0 for each of the peripheral areas m 1 to m 10, but the stress value may be changed to a predetermined value other than 0, for example, a value approximate to 0. Further, for example, the comparison stress value may be changed to 10 times or 1/10 times the maximum value of the comparison stress value. Further, the comparative stress value of each element in the peripheral region m k may be increased or decreased at a constant magnification. As will be described later, by changing the comparative stress value of each element in the peripheral region m k in this way, it becomes possible to verify the degree of influence on the stress value of the reference region m 0 due to the change.
  • Modified second stress distribution acquisition step S23 Fixes second stress distribution acquisition step S23, the corrected first stress distribution ⁇ '(T1) the second work to the point T 2 is a stress distribution obtained by performing forming analysis using the finite element method modified based on the second
  • the stress distribution ⁇ ′ (T2) is acquired for each peripheral region m k . That is, by continuing the numerical analysis from the stress state in which the stress value of each peripheral region m k is changed to a predetermined value and analyzing until the second processing time T 2 , the corrected second stress for each peripheral region m k is obtained.
  • a distribution ⁇ ′ (T2) is acquired.
  • the peripheral region is obtained by performing forming analysis using the finite element method to the second processing time T 2 on the basis of the peripheral corrected first stress distribution region m 1 ⁇ '(T1) shown in FIG. 10 modifications m 1 second stress distribution sigma 'shows a contour plot of the (T2).
  • the corrected comparative stress distribution acquisition step S24 In the corrected comparative stress distribution acquisition step S24, the corrected first stress distribution ⁇ ′ (T1) acquired in the corrected first stress distribution acquisition step S22 and the corrected second stress distribution ⁇ ′ acquired in the corrected second stress distribution acquisition step S23.
  • a corrected comparative stress distribution ⁇ ′ (T1, T2) which is a corrected comparative stress distribution obtained based on the comparison with (T2), is obtained for each peripheral region m k . More specifically, the modified first stress distribution ⁇ ′ (T1) and the modified second stress distribution ⁇ ′ (T2) of each peripheral region m k are compared, and the difference or rate of change in stress for each finite element.
  • the corrected comparative stress distribution ⁇ ′ (T1, T2) can be acquired.
  • FIG. 12 shows the following data in the reference region m 0 of the modified comparative stress distribution ⁇ ′ (T1, T2) in the peripheral region m 1 .
  • Min “Minimum value of corrected comparative stress (GPa)”
  • Max “maximum value of corrected comparative stress (GPa)”
  • Max-Min “Maximum value (GPa) of difference in corrected comparative stress between two elements spaced apart from each other”
  • Grad. Max “Maximum difference gradient (GPa / mm) obtained by dividing the difference in corrected comparative stress between two elements separated from each other by the distance between them”
  • Both “surface shape defect cause evaluation index ⁇ (m0) ” and “surface shape defect cause evaluation index ⁇ (mk) ” are preferably the same type of surface shape defect cause evaluation index.
  • types of surface shape defect cause evaluation index “minimum value of corrected comparative stress”, “maximum value of difference of corrected comparative stress between two elements separated from each other”, or “between two elements separated from each other” The maximum difference gradient obtained by dividing the difference of the corrected comparative stress by the separation distance can be used.
  • the comparison value ⁇ (mk, m0) is “the value of the surface shape defect cause evaluation index ⁇ (mk) of the reference region m 0 in the corrected comparative stress distribution ⁇ ′ (T1, T2) of the peripheral region m k ” and “comparison” Any difference or change rate value from the value of the surface shape defect cause evaluation index ⁇ (m0 ) of the reference region m 0 in the stress distribution ⁇ (T1, T2) may be used. Then, based on whether the comparison value is larger or smaller than a predetermined threshold, the surrounding area m k is estimated as a wrinkle-causing area.
  • peripheral area m k estimated as the wrinkle-causing area it is possible to prevent wrinkles by installing pads at corresponding locations of the mold, changing the material design, and changing the mold in anticipation of wrinkles. It can be performed.
  • Table 1 shows the values of Min, Max, and Max-Min for each of the peripheral regions m 1 to m 10 .
  • the column of the row of Max column of m 1 denotes the maximum value of the correction comparison stress of the reference area m 0 in the modified comparison stress distribution in the peripheral region m 1 ⁇ '(T1, T2 ) and (GPa).
  • Table 1 also shows comparative values.
  • the maximum value of the difference of the comparative stress between the two elements separated from each other is used, so (1) correction of the peripheral region m k
  • the “maximum value of the difference in comparative stress between two elements spaced apart from each other” in the reference region m 0 in the comparative stress distribution ⁇ ′ (T1, T2) is referred to as (2) the reference in the comparative stress distribution ⁇ (T1, T2) .
  • the rate of change between the two is used as a comparison value, but may be a difference.
  • the surrounding area m k whose comparison value (change rate) is larger than the threshold value is estimated as the wrinkle-causing area.
  • the threshold is set to 1.10 (110%)
  • the peripheral area m 2 is estimated as the wrinkle-causing area.
  • the “threshold value”, which is an evaluation criterion for estimating the wrinkle-causing region, may be determined depending on what height of wrinkles can be allowed in the final product (press-molded product), as in the first embodiment.
  • the surface shape defect cause region estimation method As described above, according to the surface shape defect cause region estimation method according to the present embodiment, attention is paid to the variation of the residual stress in the reference region m 0 including the wrinkle generation site at the second machining time point T 2. Thus, it is possible to quantitatively evaluate how much the peripheral area m k in which the stress is changed to a predetermined value affects the wrinkle generation area, and which peripheral area m k is the wrinkle-causing area of the press-formed product. Can be estimated. As a result, the wrinkle-causing region of the press-formed product can be estimated quantitatively, and the man-hours and costs at the design stage for examining the molding method of the press-formed product can be reduced.
  • the third embodiment of the present invention is a press obtained by press-molding a steel sheet from the time when press forming starts (plastic processing start time T START ) to the time when press forming is completed (plastic processing complete time T END ).
  • This is a surface shape defect occurrence region estimation device 10 that estimates a wrinkle occurrence region (surface shape defect occurrence region) of a molded product (plastic processed product).
  • the surface shape defect occurrence region estimation device 10 includes a first stress distribution acquisition unit 11, a second stress distribution acquisition unit 12, a comparative stress distribution acquisition unit 13, and a divided comparison.
  • a stress distribution acquisition unit 14 and a surface shape defect occurrence region estimation unit 15 are provided. Since the description of each configuration is the same as that in the method for estimating a surface shape defect occurrence region according to the first embodiment, a duplicate description is omitted.
  • the first stress distribution acquisition unit 11 uses a finite element method to process the workpiece at the first machining time T 1 that is after the plastic working start time T START and before the plastic working completion time T END.
  • the first stress distribution ⁇ (T1) which is the stress distribution of
  • the finite element method is applied at the second processing time T 2 after the first processing time T 1 and before or simultaneously with the plastic processing completion time T END.
  • a second stress distribution ⁇ (T2) that is a stress distribution of the workpiece is obtained.
  • the comparative stress distribution acquisition unit 13 based on the comparison between the first stress distribution ⁇ (T1) and the second stress distribution ⁇ (T2) , the comparative stress distribution ⁇ (T1, T2), which is the comparative stress distribution of the workpiece. To get.
  • the surface shape defect occurrence region estimating unit 15 using the divided comparison stress distribution ⁇ DIV (T1, T2), on the basis of the divided regions D k plane defective shape evaluation index calculated for each alpha, respectively divided regions D k wrinkles occur It is estimated whether it is a region.
  • the wrinkle occurrence portion of the press-formed product can be quantitatively estimated, similarly to the surface shape defect occurrence region estimation method described in the first embodiment. It is possible to reduce the man-hours and costs at the design stage for examining the molding method of the press-formed product.
  • the fourth embodiment of the present invention is a surface shape defect cause area estimation device 20 that estimates a cause area of a wrinkle occurrence area estimated by the above-described “surface shape defect occurrence area estimation device 10”.
  • the surface shape defect cause region estimation device 20 includes a region dividing step S21, a corrected first stress distribution acquiring step S22, a corrected second stress acquiring step S23, and a corrected comparative stress.
  • a distribution acquisition step S24 and a surface shape defect cause region estimation step S25 are provided. Since the description of each configuration is the same as that of the surface shape defect cause region estimation method according to the second embodiment, a duplicate description is omitted.
  • the corrected first stress distribution acquisition unit 22 in the first stress distribution ⁇ (T1) , the corrected first stress distribution ⁇ ′ (when the stress value of an arbitrary peripheral region mn out of the plurality of peripheral regions m k is changed. the T1) to get in each peripheral region m k.
  • the corrected comparative stress distribution acquisition unit 24 compares the corrected first stress distribution ⁇ ′ (T1) and the corrected second stress distribution ⁇ ′ (T2) for each of the peripheral regions m k to correct the corrected comparative stress distribution ⁇ ′ ( T1, T2) are acquired.
  • the surface shape defect cause region estimation unit 25 compares the surface shape defect cause evaluation index ⁇ (mk) in the reference region m 0 obtained using the corrected comparative stress distribution ⁇ ′ (T1, T2) of each of the peripheral regions m k. Based on the comparison value ⁇ (mk, m0) with the surface shape defect cause evaluation index ⁇ (m0) in the reference region m 0 obtained using the stress distribution ⁇ (T1, T2) , each of the peripheral regions m k has a surface shape defect. Estimate whether it is a cause area or not.
  • the wrinkle cause part of the press-formed product can be quantitatively estimated as in the surface shape defect cause area estimation method described in the second embodiment. It is possible to reduce the man-hours and costs at the design stage for examining the molding method of the press-formed product.
  • FIG. 15 shows a system bus for running a computer program.
  • each unit constituting the surface shape defect occurrence region estimation device 10 or the surface shape defect cause region estimation device 20 described above can be realized by operating a program stored in a RAM or ROM of a computer.
  • each step of the surface shape defect occurrence region estimation method or the surface shape defect cause region estimation method can be realized by operating a program stored in a RAM or ROM of a computer.
  • This program and a computer-readable storage medium storing the program are included in the present invention.
  • the program is recorded on a recording medium such as a CD-ROM or provided to a computer via various transmission media.
  • a recording medium for recording the program besides a CD-ROM, a flexible disk, a hard disk, a magnetic tape, a magneto-optical disk, a nonvolatile memory card, or the like can be used.
  • the program transmission medium a communication medium in a computer network system for propagating and supplying program information as a carrier wave can be used.
  • the computer network is a WAN such as a LAN or the Internet, a wireless communication network, or the like
  • the communication medium is a wired line such as an optical fiber or a wireless line.
  • the program included in the present invention is not limited to the one in which the functions of the above-described embodiments are realized by the computer executing the supplied program.
  • a program is also included in the present invention when the function of the above-described embodiment is realized in cooperation with an OS (operating system) or other application software running on the computer.
  • OS operating system
  • the program is also included in the present invention.
  • FIG. 15 is a schematic diagram showing an internal configuration of a personal user terminal device.
  • reference numeral 1200 denotes a personal computer (PC) having a CPU 1201.
  • the PC 1200 executes device control software stored in the ROM 1202 or the hard disk (HD) 1211 or supplied from the flexible disk (FD) 1212.
  • the PC 1200 generally controls each device connected to the system bus 1204.
  • Each procedure in the present embodiment is realized by a program stored in the CPU 1201, the ROM 1202, or the hard disk (HD) 1211 of the PC 1200.
  • a keyboard controller (KBC) 1205 controls instruction input from a keyboard (KB) 1209, a device (not shown), or the like.
  • CRT controller 1206 is a CRT controller (CRTC), which controls display on a CRT display (CRT) 1210.
  • Reference numeral 1207 denotes a disk controller (DKC).
  • the DKC 1207 controls access to a hard disk (HD) 1211 and a flexible disk (FD) 1212 that store a boot program, a plurality of applications, an editing file, a user file, a network management program, and the like.
  • the boot program is a startup program: a program for starting execution (operation) of hardware and software of a personal computer.
  • NIC network interface card
  • region of a press molded product can be estimated quantitatively.
  • the present invention provides a program for executing the surface shape defect occurrence region estimation method described in the first embodiment, a program for executing the surface shape defect occurrence region estimation method described in the second embodiment, and these A computer-readable recording medium on which the program is recorded.
  • press forming of a steel plate is taken as an example, but the present invention is not limited to this example, and can be applied to roll form forming of a long steel material, hydroforming of a steel pipe, and the like.
  • the material of the workpiece is not limited to steel, but may be a metal material such as aluminum or titanium, a glass fiber reinforced resin material such as FRP or FRTP, or a composite material thereof.
  • wrinkles are exemplified as surface shape defects, but the present invention can also be applied to methods for estimating surface shape defects such as surface distortion.
  • a method, an apparatus, a program, and a recording medium for estimating a generation region and a cause region of a surface shape defect of a plastic processed product that occurs when plastically processing a workpiece. Can do.

Abstract

 この面形状不良発生領域推定方法は、被加工材を塑性加工して得られる塑性加工品の面形状不良の発生領域を推定する面形状不良発生領域推定方法であって、第一応力分布σ(T1)を取得する第一応力分布取得工程と、第二応力分布σ(T2)を取得する第二応力分布取得工程と、比較応力分布σ(T1,T2)を取得する比較応力分布取得工程と、分割比較応力分布σDIV(T1,T2)を取得する分割比較応力分布取得工程と、分割領域Dそれぞれが面形状不良の発生領域であるか否かを推定する面形状不良発生領域推定工程と、を備える。

Description

面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体
 本発明は、被加工材を塑性加工した際に発生する面形状不良について、その発生領域又は原因領域を推定するための方法、装置、プログラム、及び、記録媒体に関する。
 本願は、2015年1月26日に、日本に出願された特願2015-012325号に基づき優先権を主張し、その内容をここに援用する。
 ドアやバンパーなど多くの自動車用部材、家電部材、建材等は鋼板のプレス成形により製造されている。近年、それらの部材(プレス成形品)に対する軽量化の要求が高まっており、その要求を実現するために高強度を有する鋼材を使用することによって鋼材を薄手化するなどの対応が図られている。
 しかしながら、鋼板の高強度化に伴い、プレス成形による部材形状の確保には厳しい管理が必要となっている。このような管理において重要な項目として、プレス成形時に鋼板に生じた残留応力を駆動力として鋼板の弾性変形分が弾性回復する変形であるスプリングバックの発生や、プレス成形中の撓みに起因するシワの発生が挙げられる。
 特に、昨今は、自動車等の開発工数及びコスト削減のため、デザイン段階と同時に、その成形部材の成形方法を検討する設計段階が開始される傾向にある。しかしながら、デザイン段階でデザイン変更が生じると、それと同時に設計段階での成形部材の変更をも生じるため、成形部材の成形方法を検討する設計段階での工数やコストは、自動車等の開発工程や開発費において、より大きな問題となっている。
 以上のことから、近年では、成形方法を検討する設計段階つまり実際に成形を行う事前の段階にて、前述のような「スプリングバック」や「シワ」の発生領域や原因領域を推定できる方法が望まれている。
 特許文献1~3には、スプリングバックの原因領域を特定する方法として、有限要素法により、成形下死点における応力状態を複数の特定領域に分割し、当該特定領域の応力を数値演算し、スプリングバック計算を実行することで、スプリングバックの原因領域を特定する方法が記載されている。
日本国特許第5068783号公報 日本国特許第4894294号公報 日本国特開2009-286351号公報
 従来では、特許文献1~3のように、「スプリングバック」の発生領域や原因領域を残留応力等の客観的な指標によって推定する手法は検討されているものの、プレス成形時に生じる「シワ」や「面ひずみ」などの面形状不良の発生領域や原因領域を定量的に推定する手法については、未だ検討されておらず、その手法の確立が要求されてきている。
 同様の課題は、鋼板のプレス成形に限らず、長手形状の鋼材のロールフォーム成形や鋼管のハイドロフォームなどの場合においても存在する。また、被加工材の素材も鋼に限らず、アルミやチタン等の金属材料、FRPやFRTP等のガラス繊維強化樹脂材料、更にはこれらの複合材料などの場合にも、同様の課題が存在する。
 本発明は上記事情に鑑みてなされたものであって、被加工材を塑性加工した際に発生する面形状不良について、その発生領域および原因領域を推定するための方法、装置、プログラム、及び記録媒体を提供することを目的とする。
 上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
(1)本発明の第一の態様は、塑性加工開始時点TSTARTから塑性加工完了時点TENDに至るまで被加工材を塑性加工して得られる塑性加工品の面形状不良の発生領域を推定する面形状不良発生領域推定方法であって、有限要素法により、前記塑性加工開始時点TSTARTよりも後であって、且つ、前記塑性加工完了時点TENDよりも前である第一加工時点Tにおける前記被加工材の応力の分布である第一応力分布σ(T1)を取得する第一応力分布取得工程と、有限要素法により、前記第一加工時点Tよりも後であって、且つ、前記塑性加工完了時点TENDよりも前又は同時である第二加工時点Tにおける前記被加工材の応力の分布である第二応力分布σ(T2)を取得する第二応力分布取得工程と、前記第一応力分布σ(T1)と前記第二応力分布σ(T2)との比較に基づき、前記被加工材の比較応力の分布である比較応力分布σ(T1,T2)を取得する比較応力分布取得工程と、前記比較応力分布σ(T1,T2)を、複数の分割領域Dに分割することで、それぞれの分割領域Dの比較応力の分布である分割比較応力分布σDIV(T1,T2)を取得する分割比較応力分布取得工程と、前記分割比較応力分布σDIV(T1,T2)を用い、前記分割領域Dそれぞれについて求めた面形状不良発生評価指標αに基づき、前記分割領域Dそれぞれが面形状不良の発生領域であるか否かを推定する面形状不良発生領域推定工程と、を備える。
(2)上記(1)に記載の面形状不良発生領域推定方法では、前記面形状不良発生評価指標αが比較応力の最小値であってもよい。
(3)上記(1)に記載の面形状不良発生領域推定方法では、前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分の最大値であってもよい。
(4)上記(1)に記載の面形状不良発生領域推定方法では、前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値であってもよい。
(5)上記(1)~(4)のいずれか一項に記載の面形状不良発生領域推定方法では、前記分割比較応力分布取得工程において、前記比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定してもよい。
(6)上記(1)~(4)のいずれか一項に記載の面形状不良発生領域推定方法では、前記分割比較応力分布取得工程において、前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定してもよい。
(7)上記(1)~(4)のいずれか一項に記載の面形状不良発生領域推定方法では、前記分割比較応力分布取得工程において、前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定してもよい。
(8)上記(1)~(7)のいずれか一項に記載の面形状不良発生領域推定方法では、前記第二加工時点Tが前記塑性加工完了時点TENDであってもよい。
(9)上記(1)~(8)のいずれか一項に記載の面形状不良発生領域推定方法では、前記被加工材が金属であってもよい。
(10)上記(1)~(9)のいずれか一項に記載の面形状不良発生領域推定方法では、前記塑性加工がプレス成形であってもよい。
(11)上記(1)~(10)のいずれか一項に記載の面形状不良発生領域推定方法では、前記面形状不良がシワであってもよい。
(12)本発明の第二の態様は、上記(1)~(11)のいずれか一項に記載の面形状不良発生領域推定方法によって推定された前記面形状不良の発生領域を基準領域mとして特定するとともに、前記基準領域mの周囲を複数の周辺領域m(k=1、2、3、・・・n)に分割する領域分割工程と、前記第一応力分布σ(T1)において、前記複数の周辺領域mのうち任意の周辺領域mの応力値を変更した場合の修正第一応力分布σ’(T1)を各周辺領域m毎に取得する修正第一応力分布取得工程と、前記修正第一応力分布σ’(T1)について前記第二加工時点Tまで有限要素法により成形解析を行うことで修正第二応力分布σ’(T2)を各周辺領域m毎に取得する修正第二応力取得工程と、前記周辺領域mそれぞれについて、前記修正第一応力分布σ’(T1)と、前記修正第二応力分布σ’(T2)との比較に基づき、前記被加工材の修正比較応力の分布である修正比較応力分布σ’(T1,T2)を取得する修正比較応力分布取得工程と、前記周辺領域mそれぞれの前記修正比較応力分布σ’(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(mk)と、前記比較応力分布σ(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(m0)との比較値β(mk,m0)に基づき、前記周辺領域mそれぞれが面形状不良原因領域であるか否かを推定する面形状不良原因領域推定工程と、を備える面形状不良原因領域推定方法である。
(13)上記(12)に記載の面形状不良原因領域推定方法では、前記面形状不良原因評価指標β(mk)、β(m0)が、修正比較応力の最小値であってもよい。
(14)上記(12)に記載の面形状不良原因領域推定方法では、前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分の最大値であってもよい。
(15)上記(12)に記載の面形状不良原因領域推定方法では、前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分をその離間距離で除して得られる差分勾配の最大値であってもよい。
(16)本発明の第三の態様は、塑性加工開始時点TSTARTから塑性加工完了時点TENDに至るまで被加工材を塑性加工して得られる塑性加工品の面形状不良の発生領域を推定する面形状不良発生領域推定装置であって、有限要素法により、前記塑性加工開始時点TSTARTよりも後であって、且つ、前記塑性加工完了時点TENDよりも前である第一加工時点Tにおける前記被加工材の応力の分布である第一応力分布σ(T1)を取得する第一応力分布取得部と、有限要素法により、前記第一加工時点Tよりも後であって、且つ、前記塑性加工完了時点TENDよりも前又は同時である第二加工時点Tにおける前記被加工材の応力の分布である第二応力分布σ(T2)を取得する第二応力分布取得部と、前記第一応力分布σ(T1)と前記第二応力分布σ(T2)との比較に基づき、前記被加工材の比較応力の分布である比較応力分布σ(T1,T2)を取得する比較応力分布取得部と、前記比較応力分布σ(T1,T2)を、複数の分割領域Dに分割することで、それぞれの分割領域Dの比較応力の分布である分割比較応力分布σDIV(T1,T2)を取得する分割比較応力分布取得部と、前記分割比較応力分布σDIV(T1,T2)を用い、前記分割領域Dそれぞれについて求めた面形状不良発生評価指標αに基づき、前記分割領域Dそれぞれが面形状不良の発生領域であるか否かを推定する面形状不良発生領域推定部と、を備える。
(17)上記(16)に記載の面形状不良発生領域推定装置では、前記面形状不良発生評価指標αが比較応力の最小値であってもよい。
(18)上記(16)に記載の面形状不良発生領域推定装置では、前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分の最大値であってもよい。
(19)上記(16)に記載の面形状不良発生領域推定装置では、前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値であってもよい。
(20)上記(16)~(19)のいずれか一項に記載の面形状不良発生領域推定装置では、前記分割比較応力分布取得部において、前記比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定してもよい。
(21)上記(16)~(19)のいずれか一項に記載の面形状不良発生領域推定装置では、前記分割比較応力分布取得部において、前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定してもよい。
(22)上記(16)~(19)のいずれか一項に記載の面形状不良発生領域推定装置では、前記分割比較応力分布取得部において、前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定してもよい。
(23)上記(16)~(22)のいずれか一項に記載の面形状不良発生領域推定装置では、前記第二加工時点Tが前記塑性加工完了時点TENDであってもよい。
(24)上記(16)~(23)のいずれか一項に記載の面形状不良発生領域推定装置では、前記被加工材が金属であってもよい。
(25)上記(16)~(24)のいずれか一項に記載の面形状不良発生領域推定装置では、前記塑性加工がプレス成形であってもよい。
(26)上記(16)~(25)のいずれか一項に記載の面形状不良発生領域推定装置では、前記面形状不良がシワであってもよい。
(27)本発明の第四の態様は、上記(16)~(26)のいずれか一項に記載の面形状不良発生領域推定装置によって推定された前記面形状不良の発生領域を基準領域mとして特定するとともに、前記基準領域mの周囲を複数の周辺領域m(k=1、2、3、・・・n)に分割する領域分割部と、前記第一応力分布σ(T1)において、前記複数の周辺領域mのうち任意の周辺領域mの応力値を変更した場合の修正第一応力分布σ’(T1)を各周辺領域m毎に取得する修正第一応力分布取得部と、前記修正第一応力分布σ’(T1)について前記第二加工時点Tまで有限要素法により成形解析を行うことで修正第二応力分布σ’(T2)を各周辺領域m毎に取得する修正第二応力取得部と、前記周辺領域mそれぞれについて、前記修正第一応力分布σ’(T1)と、前記修正第二応力分布σ’(T2)との比較に基づき、前記被加工材の修正比較応力の分布である修正比較応力分布σ’(T1,T2)を取得する修正比較応力分布取得部と、前記周辺領域mそれぞれの前記修正比較応力分布σ’(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(mk)と、前記比較応力分布σ(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(m0)との比較値β(mk,m0)に基づき、前記周辺領域mそれぞれが面形状不良原因領域であるか否かを推定する面形状不良原因領域推定部と、を備える面形状不良原因領域推定装置である。
(28)上記(27)に記載の面形状不良原因領域推定装置では、前記面形状不良原因評価指標β(mk)、β(m0)が、修正比較応力の最小値であってもよい。
(29)上記(27)に記載の面形状不良原因領域推定装置では、前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分の最大値であってもよい。
(30)上記(27)に記載の面形状不良原因領域推定装置では、前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分をその離間距離で除して得られる差分勾配の最大値であってもよい。
(31)本発明の第五の態様は、上記(1)に記載の面形状不良発生領域推定方法を実行するプログラムである。
(32)本発明の第六の態様は、上記(12)に記載の面形状不良原因領域推定方法を実行するプログラムである。
(33)本発明の第七の態様は、上記(31)に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体である。
(34)本発明の第八の態様は、上記(32)に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体である。
 本発明によれば、被加工材を塑性加工した際に発生する塑性加工品の面形状不良の発生領域又は原因領域を推定する方法、装置、プログラム、及び記録媒体を提供できる。
本発明の第一実施形態に係る面形状不良発生領域推定方法、および本発明の第二実施形態に係る面形状不良原因領域推定方法の数値解析に用いられるプレス金型モデルの説明模式図である。 本発明の第一実施形態に係る面形状不良発生領域推定方法の処理順序を示すフローチャートである。 第一加工時点Tにおける鋼板Sの第一応力分布σ(T1)のコンター図である。 第二加工時点Tにおける鋼板Sの第二応力分布σ(T2)のコンター図である。 第一応力分布σ(T1)と第二応力分布σ(T2)との差分に基づき取得された比較応力分布σ(T1,T2)のコンター図である。 図5に示す比較応力分布σ(T1,T2)のコンター図において、分割領域D~D10の位置を示す図である。 図6に示す分割領域D~D10について、分割比較応力分布σDIV(T1,T2)を個別に示す図である。 本発明の第二実施形態に係る面形状不良原因領域推定方法の処理順序を示すフローチャートである。 面形状不良発生領域として推定された分割領域Dを基準領域mとして特定するとともに、その周囲を周辺領域m~m10に分割した図である。 第一応力分布σ(T1)のうち、周辺領域mの応力値を0に近似して取得される修正第一応力分布σ’(T1)のコンター図である。 図10に示す修正第一応力分布σ’(T1)の状態から第二加工時点Tに至るまで成形解析を続行して取得される修正第二応力分布σ’(T2)のコンター図である。 修正第一応力分布σ’(T1)と修正第二応力分布σ’(T2)との差分に基づき取得される修正比較応力分布σ’(T1,T2)のコンター図である。 本発明の第三実施形態に係る面形状不良発生領域推定装置10を示す模式図である。 本発明の第四実施形態に係る面形状不良原因領域推定装置20を示す模式図である。 コンピュータープログラムを稼働させるシステムバスを示す図である。 第一加工時点Tにおける鋼板Sにシェーディングした図である。 第二加工時点Tにおける鋼板Sにシェーディングした図である。
 まず、従来に採用されていたシワ発生領域の推定方法について説明する。
 図16A、図16Bに、後に詳しく説明する図1のプレス金型モデルを用いてプレス成形を行ったプレス成形品(鋼板S)のシェーディング図を示す。図16Aは、上型101が下死点の5ミリ手前にあるときの鋼板Sのシェーディング図、図16Bは、上型101が下死点にあるときの鋼板Sのシェーディング図である。
 図16Aにおいて、濃淡が確認される部位はプレス前から下死点5ミリ手前までの間に鋼板Sの形状が変化した部位である。すなわち、当該部位にシワの元になる撓み部が発生しているとも推定できるが、濃淡がついている部位はあくまで、鋼板Sの形状が変化した部位であり、撓み部であるとも推定できるし、製品形状とも推定される。
 さらに、図16Bに示すように、上型101が下死点にあるときのシェーディング図からは、濃淡がはっきりせず、シワ発生領域を推定することは困難である。
 つまり、前述のようなシェーディング図を用いた推定方法では、シワ発生領域を定量的に推定することは困難であった。特に、製品形状が複雑な場合は、撓み部又はシワであるのか加工すべき形状(デザイン)であるのかをシェーディング図から判別することは極めて困難であった。
 また、鋼板における応力分布を求める手法として、FEM解析法を利用した鋼板のプレス成形の解析法がある。この解析法では、鋼板を複数の有限要素に分割し、各有限要素ごとに応力を推測し、鋼板における応力分布を求めることが可能である。しかしながら、応力分布からシワ発生領域を直接予測することは困難である。応力分布が発生する原因は、シワの発生以外にも種々の要因が考えられ、一義的に応力分布の発生をシワの発生に結びつけられないためである。
 本発明者らは、鋼板に発生するシワは、鋼板の加工量が大きくなるに連れて発生しやすくなり、上型が下死点に到達する直前において最も発生しやすくなることに着目し、異なる加工時点における鋼板の応力分布の比較はシワ発生の予測において重要であることを知見した。
 更に本発明者らは、上型が下死点に到達してプレス成形が終了すると、シワの元になる撓み部が金型によって潰され、その結果、応力の分布が生じることに着目し、下死点到達前の鋼板の応力分布と、下死点到達後の鋼板の応力分布とを比較することがシワ発生を更に正確に予測する上で重要であることを知見した。
 以下、上述の知見に基づきなされた本発明に係る面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体について、実施形態に基づき詳細に説明する。
 尚、いずれの実施形態についても、本発明をより分かりやすく説明するために、被加工材として引張強さ462MPa、降伏応力360MPaの440MPa級冷延鋼板である鋼板Sについて、後述するプレス金型モデルを用いたプレス成形を有限要素法により数値解析し、シワ発生領域又はシワ原因領域を予測する場合を例に挙げて説明する。
 具体的に、当該数値解析は、図1に示す上型(パンチ)101、しわ押さえ金型102及び下型(ダイス)103を備えたプレス金型モデルを用いて行われる。このプレス金型モデルは、鋼板Sを下型103の上に置き、しわ押さえ金型102を下降させて鋼板Sを下型103としわ押さえ金型102とで挟んだ状態で、上型101を相対的に下降させることによりプレス成形を行うモデルとする。
 また、本明細書においては、
(1)被加工材の塑性変形が開始する時点を塑性加工開始時点TSTART
(2)被加工材の塑性変形が完了する時点を塑性加工完了時点TEND
(3)塑性加工開始時点TSTARTよりも後であって、且つ、塑性加工完了時点TENDよりも前の時点を第一加工時点T
(4)第一加工時点Tよりも後であって、且つ、塑性加工完了時点TENDよりも前又は同時である時点を第二加工時点T
と定義する。
 尚、以下に示す図面においては、図示される部材の形状や大きさ、寸法等は、実際の部材の寸法等とは異なる場合がある。
 「領域」とは、有限要素法における1個以上の要素からなる微小領域、又は、要素が連続した集合体などである。
<第一実施形態>
 本発明の第一実施形態は、プレス成形の開始時点(塑性加工開始時点TSTART)からプレス成形の完了時点(塑性加工完了時点TEND)に至るまで鋼板Sをプレス成形して得られるプレス成形品(塑性加工品)のシワ発生領域(面形状不良発生領域)を推定する面形状不良発生領域推定方法である。
 本実施形態に係る面形状不良発生領域推定方法は、図2に示すように、第一応力分布取得工程S11と、第二応力分布取得工程S12と、比較応力分布取得工程S13と、分割比較応力分布取得工程S14と、面形状不良発生領域推定工程S15と、を備える。
 以下、各工程について詳述する。
(第一応力分布取得工程S11)
 第一応力分布取得工程S11では、有限要素法による数値解析によって、プレス成形の対象である鋼板Sの第一加工時点Tにおける応力分布である第一応力分布σ(T1)を取得する。具体的には、第一加工時点T、すなわち、上型101が鋼板Sに接触して鋼板Sの変形が開始した後であって、上型101が下死点に到達する前の時点における鋼板Sの応力分布を、有限要素法による数値解析により、第一応力分布σ(T1)として取得する。
 図3に、第一応力分布取得工程S11によって取得された第一応力分布σ(T1)のコンター図(等高線図)を示す。
(第二応力分布取得工程S12)
 第二応力分布取得工程S12では、有限要素法による数値解析によって、プレス成形の対象である鋼板Sの第二加工時点Tにおける応力分布である第二応力分布σ(T2)を取得する。具体的には、第二加工時点T、すなわち、第一加工時点Tの後であって、且つ、塑性加工完了時点TENDよりも前または同時である時点における鋼板Sの応力分布を、有限要素法による数値解析により、第二応力分布σ(T2)として取得する。
 図4に、第二応力分布取得工程S12によって取得された第二応力分布σ(T2)のコンター図を示す。
 第一加工時点T、及び、第二加工時点Tにおいては、図3および図4に示すように、部分的に残留応力が高くなっている部位(例えば図4に示す矢印)が確認できる。この部位は、加工度が高く、過酷な成形が施されている部位であり、周辺部位から材料が流入している部位である。つまり、当該部位にシワ(又は撓み部)が発生している可能性も否定できないが、従来のシェーディング図による推定法と同様に、シワであるのか加工すべき形状(デザイン)であるのかを判別することはできない。また、シワが発生していると推定したとしても、シワの大きさ等を定量的に推定することは困難である。
 なお、有限要素法による数値解析は、市販の有限要素法(FEM)解析システム(例えば市販のソフトウェアPAM-STAMP、LS-DYNA、Autoform、OPTRIS、ITAS-3D、ASU/P-FORM、ABAQUS、ANSYS、MARC、HYSTAMP、Hyperform、SIMEX、Fastform3D、Quikstamp)を用いて行うことができる。これらの有限要素法(FEM)解析システムを用いることで、プレス成形する鋼板Sの形状データ(板厚、長さ、幅等)及び、強度や伸び等の鋼板特性に基づいて、金型形状(ダイ及びパンチ形状、曲率、潤滑条件)、プレス圧力(温度、圧力等)などの成形条件を設定し、プレス成形解析を行い、かつ、プレス成形後の成形品の応力分布を定量的に推定することができる。
(比較応力分布取得工程S13)
 比較応力分布取得工程S13では、第一応力分布σ(T1)と、第二応力分布σ(T2)との比較に基づき、第一応力と第二応力との比較応力の分布である比較応力分布σ(T1,T2)を取得する。
 より具体的には、第一応力分布σ(T1)と、第二応力分布σ(T2)とを比較し、各有限要素毎の応力の差分又は変化率を求めることで、比較応力分布σ(T1,T2)を取得することができる。
 図5に、比較応力分布取得工程S13によって取得された比較応力分布σ(T1,T2)のコンター図を示す。
 塑性加工の進行に伴い撓み部が潰されていくため、シワの発生部位には圧縮残留応力が、そしてその周辺部位には引張残留応力が発生する。そのため、図5で示すように、第一加工時点Tにおける鋼板Sの第一応力分布σ(T1)と、第一加工時点Tよりも塑性加工が進行した第二加工時点Tにおける鋼板Sの第二応力分布σ(T2)との間の応力値の差分又は変化率を算出し、コンター図により表示させることで、シワの発生部位(図中の矢印)を明瞭に観察することができる。
(分割比較応力分布取得工程S14)
 分割比較応力分布取得工程S14では、比較応力分布σ(T1,T2)を複数の分割領域D(k=1、2、3、・・・n)に分割することで、それぞれの分割領域Dの比較応力の分布である分割比較応力分布σDIV(T1,T2)を取得する。
 図6に、比較応力分布σ(T1,T2)を分割領域D~D10に分割する場合の一例を示す。
 また、図7に、図6に示す分割領域D~D10それぞれの分割比較応力分布σDIV(T1,T2)を示す。
 尚、図7において、Minは「比較応力の最小値(GPa)」、Maxは「比較応力の最大値(GPa)」、Max-Minは「互いに離間する二つの要素間の比較応力の差分の最大値(GPa)」、Grad.Maxは「互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値(GPa/mm)」を示す。
 尚、分割領域Dの画定手法については特に限定されるものではないが、後述する手法を用いてもよい。
(面形状不良発生領域推定工程S15)
 面形状不良発生領域推定工程S15では、分割比較応力分布σDIV(T1,T2)を用い、分割領域Dそれぞれについて求めた面形状不良発生評価指標αに基づき、前記分割領域Dそれぞれがシワ発生領域であるか否かを推定する。
 面形状不良発生評価指標αとしては、例えば下記の評価指標を用いることができる。
面形状不良発生評価指標α1:比較応力の最小値
面形状不良発生評価指標α2:互いに離間する二つの要素間の比較応力の差分の最大値
面形状不良発生評価指標α3:互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値
(面形状不良発生評価指標α1)
 面形状不良発生評価指標α1を用いる場合、分割比較応力分布σDIV(T1,T2)のそれぞれにおける「比較応力の最小値」が閾値よりも小さい分割領域Dをシワ発生領域として推定する。
 シワの元になる撓み部は、第一加工時点Tにおいて発生し、その後、成形が進むに連れて潰されていく。従って、第二加工時点Tでは、潰された撓み部(シワ)又は潰されつつある撓み部(シワ)に起因する圧縮残留応力が生じる。
 従って、圧縮残留応力が大きい分割領域Dにおいて、シワが発生している可能性が高いと言える。
 そのため、「比較応力の最小値」が閾値よりも小さい分割領域Dをシワ発生領域と推定することができる。
 具体例を挙げると、図7に示す「Min」の値を考慮し、例えば閾値を-0.700(GPa)と設定する場合、分割領域D、分割領域D、分割領域Dをシワ発生領域として推定することができる。
 面形状不良発生評価指標α1を用いる場合の閾値は、最終製品(プレス成形品)において如何なる高さのシワを許容しうるかにより決定してよい。つまり、例えば、より苛酷な環境で用いるプレス成形品の場合は、小さなシワでも製品性能に大きく作用するため、閾値を「低く」設定することで、シワの発生をより厳しく評価できる。
(面形状不良発生評価指標α2)
 面形状不良発生評価指標α2を用いる場合、分割比較応力分布σDIV(T1,T2)のそれぞれにおける「互いに離間する二つの要素間の比較応力の差分の最大値」が閾値よりも大きい分割領域Dをシワ発生領域として推定する。
 上述の通り、シワの元になる撓み部は、第一加工時点Tにおいて発生し、その後、成形が進むに連れて潰され、第二加工時点Tでは、潰された撓み部(シワ)又は潰されつつある撓み部(シワ)に起因する圧縮残留応力が生じる。更に、この圧縮残留応力の周囲には、引張残留応力が発生する。
 従って、残留応力の最大値と最小値との差分が大きい分割領域Dにおいて、シワが発生している可能性が高いと言える。
 そのため、「互いに離間する二つの要素間の比較応力の差分の最大値」が閾値よりも大きい分割領域Dをシワ発生領域と推定することが好ましい。
 具体例を挙げると、図7に示す「Max-Min」の値を考慮し、例えば閾値を1.500(GPa)と設定する場合、分割領域D、分割領域D、分割領域Dをシワ発生領域として推定することができる。
 面形状不良発生評価指標α2を用いる場合の閾値も、面形状不良発生評価指標α1と同様、最終製品(プレス成形品)において如何なる高さのシワを許容しうるかにより決定してよい。面形状不良発生評価指標α2を用いる場合、閾値を「高く」設定することで、シワの発生をより厳しく評価できる。
 尚、面形状不良発生評価指標α2を用いる場合、面形状不良発生評価指標α1を用いる場合に比べ、シワの周囲の引張残留応力の値も考慮するため、面形状不良発生評価指標α1を用いる場合よりも正確にシワ発生領域を推定することが可能である。
(面形状不良発生評価指標α3)
 面形状不良発生評価指標α3を用いる場合、分割比較応力分布σDIV(T1,T2)のそれぞれにおける「互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値」が閾値よりも大きい分割領域Dをシワ発生領域として推定する。
 上述の通り、残留応力の最大値と最小値との差分が大きい分割領域Dにおいて、シワが発生している可能性が高い。ただし、分割領域Dの画定の仕方によっては、一つの分割領域Dにおいて複数のシワ発生部位が含まれる場合がある。その場合、一つのシワ発生部位に起因する残留応力の最大値と、他のシワ発生部位に起因する残留応力の最小値との差分が算出される可能性がある。
 従って、より確実にシワ発生領域の推定を行うためには、「一つ」のシワ発生部位に起因する圧縮残留応力と引張残留応力との差分を評価指標とすることが好ましいと言える。
 そのため、「互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値」が閾値よりも大きい分割領域Dをシワ発生領域と推定することがより好ましい。
 具体例を挙げると、図7に示す「Grad.Max」の値を考慮し、例えば閾値を0.260(GPa/mm)と設定する場合、分割領域D、分割領域D、分割領域D10をシワ発生領域として推定することができる。
 面形状不良発生評価指標α3を用いる場合の閾値も、面形状不良発生評価指標α1、α2と同様、最終製品(プレス成形品)において如何なる高さのシワを許容しうるかにより決定してよい。面形状不良発生評価指標α3を用いる場合、面形状不良発生評価指標α2と同様に、閾値を「高く」設定することで、シワの発生をより厳しく評価できる。
 尚、面形状不良発生評価指標α3を用いる場合、面形状不良発生評価指標α1、α2を用いる場合に比べ、差分勾配を考慮するため、面形状不良発生評価指標α1、α2を用いる場合よりも更に正確にシワ発生領域を推定することが可能である。
 尚、上述の分割比較応力分布取得工程S14に関し、分割領域Dの画定手法については、機械的に、等分割(例えばサイコロ状)してもよく、シワが発生しやすい箇所と、シワが発生しにくい箇所を経験値から推測し、その予測に基づいて決定してもよい。
 ただし、より精度を高めるために、上記の面形状不良発生評価指標α1~α3を考慮し、下記のように分割領域Dを画定してもよい。
(分割領域画定手法1)
 分割領域画定手法1では、まず、比較応力分布σ(T1,T2)のうち、「比較応力が最小である要素」を包含する第一分割領域Dを複数の分割領域Dの一つとして画定する。
 そして、比較応力分布σ(T1,T2)から第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、「比較応力が最小である要素」を包含する第二分割領域Dを複数の分割領域Dの一つとして画定する。
 同様の画定方法を繰り返していくことで、分割領域Dを機械的に画定することができる。同様の画定方法を繰り返す回数は特に制限されないが、例えば、画定された分割領域Dを除外した比較応力分布σ(T1,T2)における「比較応力の最小値」が、第一分割領域Dの「比較応力の最小値」の2倍以上となるまで、上記の手法を繰り返してもよい。
(分割領域画定手法2)
 分割領域画定手法2では、まず、比較応力分布σ(T1,T2)のうち、「互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素」を包含する第一分割領域Dを複数の分割領域Dの一つとして画定する。
 そして、比較応力分布σ(T1,T2)から第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、「互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素」を包含する第二分割領域Dを複数の分割領域Dの一つとして画定する。
 同様の画定方法を繰り返していくことで、分割領域Dを機械的に画定することができる。同様の画定方法を繰り返す回数は特に制限されないが、例えば、画定された分割領域Dを除外した比較応力分布σ(T1,T2)における「互いに離間する二つの要素間の比較応力の差分の最大値」が、第一分割領域Dの「互いに離間する二つの要素間の比較応力の差分の最大値」の50%以下となるまで、上記の手法を繰り返してもよい。
(分割領域画定手法3)
 分割領域画定手法3では、まず、比較応力分布σ(T1,T2)のうち、「互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素」を包含する第一分割領域Dを複数の分割領域Dの一つとして画定する。
 そして、比較応力分布σ(T1,T2)から第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、「互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素」を包含する第二分割領域Dを複数の分割領域Dの一つとして画定する。
 同様の画定方法を繰り返していくことで、分割領域Dを機械的に画定することができる。同様の画定方法を繰り返す回数は特に制限されないが、例えば、画定された分割領域Dを除外した比較応力分布σ(T1,T2)における「互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値」が、第一分割領域Dの「互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大値」の50%以下となるまで、上記の手法を繰り返してもよい。
 尚、分割領域画定手法1は、面形状不良発生評価指標α1を考慮した方法であり、分割領域画定手法2は、面形状不良発生評価指標α2を考慮した方法であり、分割領域画定手法3は、面形状不良発生評価指標α3を考慮した方法である。従って、分割領域画定手法1を用いて分割領域を画定した場合には、面形状不良発生評価指標α1を用いることが好ましい。
 尚、第一加工時点Tは、本実施形態については、プレス成形する鋼板Sの形状や、鋼板特性、金型形状、プレス条件等に基づき適宜決定してよい。例えば、上型101の下死点からの離間距離が0mm超5mm以下となる加工時点、あるいは、上型101の下死点からの離間距離がプレス成形品の部位毎に許容されるシワ高さの1~5倍の高さとなる加工時点としてもよい。
 また、第二加工時点Tは、上型101が下死点となる加工時点、すなわち、塑性加工完了時点TENDであることが好ましい。
 以上説明した各ステップによって、プレス成形品のシワ発生領域を定量的に推定することができ、プレス成形品の成形方法を検討する設計段階での工数やコストを低減することができる。
<第二実施形態>
 本発明の第二実施形態は、上述した「面形状不良発生領域推定方法」によって推定されたシワ発生領域について、その原因領域を推定する面形状不良原因領域推定方法である。
 本実施形態に係る面形状不良原因領域推定方法は、図8に示すように、領域分割工程S21と、修正第一応力分布取得工程S22と、修正第二応力取得工程S23と、修正比較応力分布取得工程S24と、面形状不良原因領域推定工程S25と、を備える。
 以下、各工程について詳述する。
(領域分割工程S21)
 領域分割工程S21では、上述した「面形状不良発生領域推定方法」によって推定されたシワ発生領域の一つを基準領域mとして特定するとともに、その基準領域mの周囲を複数の周辺領域m(k=1、2、3、・・・n)に分割する。
 以下、具体例として、図6に示す分割領域Dを基準領域mとして特定し、その周囲を周辺領域m~m10に分割する場合に基づき説明する。
 尚、この例では、図6に示す分割領域D~D10と同様に周辺領域m~m10を画定しているが、周辺領域mの画定手法は特に限定されるものではなく、機械的に、等分割(例えばサイコロ状)してもよく、シワの原因となりやすい箇所と、シワの原因となりにくい箇所とを経験値から推測し、その予測に基づいて決定してもよい。また、上記第一実施形態で説明した分割領域画定手法1~3に沿って周辺領域mを画定してもよい。
 尚、シワ発生領域の近傍の周囲領域mについてはその領域を細かく画定する(有限要素を小さく限定する)ことで、シワ原因領域を精度良く推定することができる。
(修正第一応力分布取得工程S22)
 修正第一応力分布取得工程S22では、第一加工時点Tにおける鋼板Sの第一応力分布σ(T1)において、各周辺領域mのうち任意の周辺領域mの応力値を0に変更した場合の応力分布である修正第一応力分布σ’(T1)を各領域m毎に取得する。
 尚、「周辺領域mの修正第一応力分布σ’(T1)」とは、周辺領域mについて応力を変更して取得された修正第一応力分布σ’(T1)を意味する。同様に、「周辺領域mの修正第一応力分布σ’(T1)」とは、周辺領域mについて応力を変更して取得された修正第一応力分布σ’(T1)を意味する。本実施形態では10個の周辺領域m~m10が存在するため、修正第一応力分布σ’(T1)を10個取得する。
 図10に、周辺領域mの応力値を0に変更して取得される周辺領域mの修正第一応力分布σ’(T1)のコンター図を示す。
 尚、本実施形態では周辺領域m~m10それぞれについて応力値を0に変更しているが、応力値は0以外の所定の値、例えば0に近似した値に変更してもよい。また、例えば、比較応力値の最大値の10倍、或いは1/10倍の比較応力値に変更してもよい。更には、周辺領域mの各要素の比較応力値を、一定の倍率で増大又は減少させてもよい。後述するが、このように周辺領域mの各要素の比較応力値を変更することで、その変更に伴う基準領域mの応力値への影響度を検証することが可能となる。
(修正第二応力分布取得工程S23)
 修正第二応力分布取得工程S23では、前記修正第一応力分布σ’(T1)に基づいて第二加工時点Tまで有限要素法による成形解析を行うことで得られる応力分布である修正第二応力分布σ’(T2)を各周辺領域m毎に取得する。すなわち、各周辺領域mの応力値を所定値に変更した応力状態から数値解析を継続し、第二加工時点Tに至るまで解析することで、各周辺領域mごとの修正第二応力分布σ’(T2)を取得する。
 尚、「周辺領域mの修正第二応力分布σ’(T2)」とは、周辺領域mの修正第一応力分布σ’(T1)に基づいて第二加工時点Tまで有限要素法により成形解析を行うことで得られる修正第二応力分布σ’(T2)を意味する。同様に、「周辺領域mの修正第二応力分布σ’(T2)」とは、周辺領域mの修正第一応力分布σ’(T1)に基づいて第二加工時点Tまで有限要素法により成形解析を行うことで得られる修正第二応力分布σ’(T2)を意味する。本実施形態では10個の周辺領域m~m10が存在するため、修正第二応力分布σ’(T1)を10個取得する。
 図11に、図10に示された周辺領域mの修正第一応力分布σ’(T1)に基づいて第二加工時点Tまで有限要素法による成形解析を行うことで取得される周辺領域mの修正第二応力分布σ’(T2)のコンター図を示す。
(修正比較応力分布取得工程S24)
 修正比較応力分布取得工程S24では、修正第一応力分布取得工程S22で取得した修正第一応力分布σ’(T1)と、修正第二応力分布取得工程S23で取得した修正第二応力分布σ’(T2)との比較に基づき得られる修正比較応力の分布である修正比較応力分布σ’(T1,T2)を周辺領域m毎に取得する。
 より具体的には、各周辺領域mの修正第一応力分布σ’(T1)と、修正第二応力分布σ’(T2)とを比較し、各有限要素毎の応力の差分又は変化率を求めることで、修正比較応力分布σ’(T1,T2)を取得することができる。
 尚、「周辺領域mの修正比較応力分布σ’(T1,T2)」とは、周辺領域mの修正第一応力分布σ’(T1)と周辺領域mの修正第二応力分布σ’(T2)との比較に基づき取得される修正比較応力分布σ’(T1,T2)を意味する。同様に、「周辺領域mの修正比較応力分布σ’(T1,T2)」とは、周辺領域mの修正第一応力分布σ’(T1)と周辺領域mの修正第二応力分布σ’(T2)との比較に基づき取得される修正比較応力分布σ’(T1,T2)を意味する。本実施形態では10個の周辺領域m~m10が存在するため、修正比較応力分布σ’(T1,T2)を10個取得する。
 図12に、図10に示された周辺領域mの修正第一応力分布σ’(T1)と図11に示された周辺領域mの修正第二応力分布σ’(T2)とを比較し、各有限要素毎の修正比較応力の差分を求めることで取得される周辺領域mの修正比較応力分布σ’(T1,T2)のコンター図を示す。図12には、周辺領域mの修正比較応力分布σ’(T1,T2)の基準領域mにおける下記のデータを示している。
Min:「修正比較応力の最小値(GPa)」、
Max:「修正比較応力の最大値(GPa)」、
Max-Min:「互いに離間する二つの要素間の修正比較応力の差分の最大値(GPa)」、
Grad.Max:「互いに離間する二つの要素間の修正比較応力の差分をその離間距離で除して得られる差分勾配の最大値(GPa/mm)」
(面形状不良原因領域推定工程S25)
 面形状不良原因領域推定工程S25では、周辺領域mの修正比較応力分布σ’(T1,T2)における基準領域mの面形状不良原因評価指標β(mk)の値と、比較応力分布σ(T1,T2)における基準領域mの面形状不良原因評価指標β(m0)の値との比較値β(mk,m0)に基づき、前記周辺領域mそれぞれがシワ原因領域であるか否かを推定する。
 本実施形態では、10個の周辺領域m~m10が存在するため、10個の周辺領域それぞれについて、面形状不良原因評価指標β(mk)の値を取得する。
 「面形状不良原因評価指標β(m0)」及び「面形状不良原因評価指標β(mk)」は、共に同じ種類の面形状不良原因評価指標であることが好ましい。面形状不良原因評価指標の種類としては、「修正比較応力の最小値」、「互いに離間する二つの要素間の修正比較応力の差分の最大値」、又は、「互いに離間する二つの要素間の修正比較応力の差分をその離間距離で除して得られる差分勾配の最大値」、を用いることができる。
 比較値β(mk,m0)は、「周辺領域mの修正比較応力分布σ’(T1,T2)における基準領域mの面形状不良原因評価指標β(mk)の値」と、「比較応力分布σ(T1,T2)における基準領域mの面形状不良原因評価指標β(m0)の値」との差分又は変化率の値であればよい。
 そして、その比較値が所定の閾値よりも大きいか小さいかに基づき、周辺領域mをシワ原因領域として推定する。
 尚、シワ原因領域として推定された周辺領域mに対しては、金型の対応箇所へのパッドの設置、材料設計変更、シワ発生を見込んだ金型変更等を行うことにより、シワ発生対策を行うことができる。
 以下、面形状不良原因評価指標β(m0)、β(mk)して、例えば「互いに離間する二つの要素間の修正比較応力の差分の最大値」を用いる場合を例に挙げて説明する。
 表1に、各周辺領域m~m10についてのMin、Max、及び、Max-Minの値を示す。例えば、mの列のMaxの行の欄は、周辺領域mの修正比較応力分布σ’(T1,T2)における基準領域mの修正比較応力の最大値(GPa)を意味する。
 表1には更に比較値を示している。ここでは面形状不良原因評価指標β(m0)、β(mk)して、「互いに離間する二つの要素間の比較応力の差分の最大値」を用いるため、(1)周辺領域mの修正比較応力分布σ’(T1,T2)における基準領域mの、「互いに離間する二つの要素間の比較応力の差分の最大値」を、(2)比較応力分布σ(T1,T2)における基準領域mの、「互いに離間する二つの要素間の比較応力の差分の最大値」(=1.528GPa)で割った値を変化率として算出している。
 尚、ここでは両者の変化率を比較値とするが、差分であってもよい。
Figure JPOXMLDOC01-appb-T000001
 
 そして、その比較値(変化率)が閾値よりも大きい周辺領域mをシワ原因領域として推定する。例えば、閾値を1.10(110%)と設定する場合、周辺領域mがシワ原因領域として推定される。
 なお、シワ原因領域と推定するための評価基準である「閾値」は、第一実施形態と同様に、最終製品(プレス成形品)において如何なる高さのシワを許容しうるかにより決定してよい。
 以上説明したように、本実施形態に係る面形状不良原因領域推定方法によれば、第二加工時点Tにある際のシワ発生部位を含む基準領域mの残留応力の変動に着目することで、応力を所定値に変化させた周辺領域mがシワ発生領域に対してどのくらい影響を与えているかを定量的に評価することができ、どの周辺領域mがプレス成形品のシワ原因領域であるかを推定することができる。その結果、プレス成形品のシワ原因領域を定量的に推定することができ、プレス成形品の成形方法を検討する設計段階での工数やコストを低減することができる。
<第三実施形態>
 本発明の第三実施形態は、プレス成形が開始する時点(塑性加工開始時点TSTART)からプレス成形が完了する時点(塑性加工完了時点TEND)に至るまで鋼板をプレス成形して得られるプレス成形品(塑性加工品)のシワ発生領域(面形状不良発生領域)を推定する面形状不良発生領域推定装置10である。
 本実施形態に係る面形状不良発生領域推定装置10は、図13に示すように、第一応力分布取得部11と、第二応力分布取得部12と、比較応力分布取得部13と、分割比較応力分布取得部14と、面形状不良発生領域推定部15と、を備える。
 各構成の説明については第一実施形態に係る面形状不良発生領域推定方法と同様であるため、重複する説明は省略する。
 第一応力分布取得部11では、有限要素法により、塑性加工開始時点TSTARTよりも後であって、且つ、塑性加工完了時点TENDよりも前である第一加工時点Tにおける被加工材の応力の分布である第一応力分布σ(T1)を取得する。
 第二応力分布取得部12では、有限要素法により、第一加工時点Tよりも後であって、且つ、塑性加工完了時点TENDよりも前又は同時である第二加工時点Tにおける被加工材の応力の分布である第二応力分布σ(T2)を取得する。
 比較応力分布取得部13では、第一応力分布σ(T1)と第二応力分布σ(T2)との比較に基づき、被加工材の比較応力の分布である比較応力分布σ(T1,T2)を取得する。
 分割比較応力分布取得部14では、比較応力分布σ(T1,T2)を、複数の分割領域Dに分割することで、それぞれの分割領域Dの比較応力の分布である分割比較応力分布σDIV(T1,T2)を取得する。
 面形状不良発生領域推定部15では、分割比較応力分布σDIV(T1,T2)を用い、分割領域Dそれぞれについて求めた面形状不良発生評価指標αに基づき、分割領域Dそれぞれがシワ発生領域であるか否かを推定する。
 本実施形態に係る面形状不良発生領域推定装置10によれば、第一実施形態で説明した面形状不良発生領域推定方法と同様、プレス成形品のシワ発生部位を定量的に推定することができ、プレス成形品の成形方法を検討する設計段階での工数やコストを低減することができる。
<第四実施形態>
 本発明の第四実施形態は、上述した「面形状不良発生領域推定装置10」によって推定されたシワ発生領域について、その原因領域を推定する面形状不良原因領域推定装置20である。
 本実施形態に係る面形状不良原因領域推定装置20は、図13に示すように、領域分割工程S21と、修正第一応力分布取得工程S22と、修正第二応力取得工程S23と、修正比較応力分布取得工程S24と、面形状不良原因領域推定工程S25と、を備える。
 各構成の説明については第二実施形態に係る面形状不良原因領域推定方法と同様であるため、重複する説明は省略する。
 領域分割部21では、第三実施形態で説明した面形状不良発生領域推定装置10によって推定されたシワ発生領域を基準領域mとして特定するとともに、基準領域mの周囲を複数の周辺領域mに分割する。
 修正第一応力分布取得部22では、第一応力分布σ(T1)において、複数の周辺領域mのうち任意の周辺領域mの応力値を変更した場合の修正第一応力分布σ’(T1)を各周辺領域m毎に取得する。
 修正第二応力取得部23では、修正第一応力分布σ’(T1)について第二加工時点Tまで有限要素法により成形解析を行うことで修正第二応力分布σ’(T2)を各周辺領域m毎に取得する。
 修正比較応力分布取得部24では、周辺領域mそれぞれについて、修正第一応力分布σ’(T1)と、修正第二応力分布σ’(T2)とを比較して修正比較応力分布σ’(T1,T2)を取得する。
 面形状不良原因領域推定部25では、周辺領域mそれぞれの修正比較応力分布σ’(T1,T2)を用いて求めた基準領域mにおける面形状不良原因評価指標β(mk)と、比較応力分布σ(T1,T2)を用いて求めた基準領域mにおける面形状不良原因評価指標β(m0)との比較値β(mk,m0)に基づき、周辺領域mそれぞれが面形状不良原因領域であるか否かを推定する。
 本実施形態に係る面形状不良原因領域推定装置20によれば、第二実施形態で説明した面形状不良原因領域推定方法と同様、プレス成形品のシワ原因部位を定量的に推定することができ、プレス成形品の成形方法を検討する設計段階での工数やコストを低減することができる。
 図15に、コンピュータープログラムを稼働させるシステムバスを示す。
 上述した面形状不良発生領域推定装置10又は面形状不良原因領域推定装置20を構成する各ユニットの機能は、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。同様に、面形状不良発生領域推定方法又は面形状不良原因領域推定方法の各ステップは、コンピュータのRAMやROM等に記憶されたプログラムが動作することによって実現できる。このプログラム及び当該プログラムを記録したコンピュータ読み取り可能な記憶媒体は本発明に含まれる。
 具体的に、前記プログラムは、例えばCD-ROMのような記録媒体に記録し、或いは各種伝送媒体を介し、コンピュータに提供される。前記プログラムを記録する記録媒体としては、CD-ROM以外に、フレキシブルディスク、ハードディスク、磁気テープ、光磁気ディスク、不揮発性メモリカード等を用いることができる。他方、前記プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワークシステムにおける通信媒体を用いることができる。ここで、コンピュータネットワークとは、LAN、インターネットの等のWAN、無線通信ネットワーク等であり、通信媒体とは、光ファイバ等の有線回線や無線回線等である。
 また、本発明に含まれるプログラムとしては、供給されたプログラムをコンピュータが実行することにより上述の実施形態の機能が実現されるようなもののみではない。例えば、そのプログラムがコンピュータにおいて稼働しているOS(オペレーティングシステム)或いは他のアプリケーションソフト等と共同して上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。また、供給されたプログラムの処理の全て或いは一部がコンピュータの機能拡張ボードや機能拡張ユニットにより行われて上述の実施形態の機能が実現される場合にも、かかるプログラムは本発明に含まれる。
 例えば、図15は、パーソナルユーザ端末装置の内部構成を示す模式図である。この図15において、1200はCPU1201を備えたパーソナルコンピュータ(PC)である。PC1200は、ROM1202またはハードディスク(HD)1211に記憶された、又はフレキシブルディスク(FD)1212より供給されるデバイス制御ソフトウェアを実行する。このPC1200は、システムバス1204に接続される各デバイスを総括的に制御する。
 PC1200のCPU1201、ROM1202またはハードディスク(HD)1211に記憶されたプログラムにより、本実施形態における各手順が実現される。
 1203はRAMであり、CPU1201の主メモリ、ワークエリア等として機能する。1205はキーボードコントローラ(KBC)であり、キーボード(KB)1209や不図示のデバイス等からの指示入力を制御する。
 1206はCRTコントローラ(CRTC)であり、CRTディスプレイ(CRT)1210の表示を制御する。1207はディスクコントローラ(DKC)である。DKC1207は、ブートプログラム、複数のアプリケーション、編集ファイル、ユーザファイルそしてネットワーク管理プログラム等を記憶するハードディスク(HD)1211、及びフレキシブルディスク(FD)1212とのアクセスを制御する。ここで、ブートプログラムとは、起動プログラム:パソコンのハードやソフトの実行(動作)を開始するプログラムである。
 1208はネットワーク・インターフェースカード(NIC)で、LAN1220を介して、ネットワークプリンタ、他のネットワーク機器、或は他のPCと双方向のデータのやり取りを行う。
 上記のパーソナルユーザ端末装置によれば、プレス成形品のシワ発生領域又はシワ原因領域を定量的に推定することができる。
 このように、本発明は、第一実施形態で説明した面形状不良発生領域推定方法を実行するプログラム、第二実施形態で説明した面形状不良発生領域推定方法を実行するプログラム、更には、これらのプログラムを記録したコンピュータで読み取り可能な記録媒体を含む。 
 以上、実施形態に基づき本発明について詳細に説明したが、上記実施形態は、本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらのみによって本発明の技術的範囲が限定的に解釈されてはならない。
 例えば、上記実施形態の説明においては、鋼板のプレス成形を例に挙げたが、本発明はこの例に限らず、長手形状の鋼材のロールフォーム成形や鋼管のハイドロフォームなどにも適用できる。また、被加工材の素材も鋼に限らず、アルミやチタン等の金属材料、FRPやFRTP等のガラス繊維強化樹脂材料、更にはこれらの複合材料などであってもよい。
 また、面形状不良としてシワを例に挙げたが、面ひずみなどの面形状不良の推定方法にも適用できる。
 本発明によれば、被加工材を塑性加工した際に発生する塑性加工品の面形状不良について、その発生領域および原因領域を推定するための方法、装置、プログラム、及び記録媒体を提供することができる。
S  鋼板
101  上型(パンチ)
102  しわ押さえ金型
103  下型(ダイス)
S11  第一応力分布取得工程
S12  第二応力分布取得工程
S13  比較応力分布取得工程
S14  分割比較応力分布取得工程
S15  面形状不良発生領域推定工程
S21  領域分割工程
S22  修正第一応力分布取得工程
S23  修正第二応力取得工程
S24  修正比較応力分布取得工程
S25  面形状不良原因領域推定工程
11  第一応力分布取得部
12  第二応力分布取得部
13  比較応力分布取得部
14  分割比較応力分布取得部
15  面形状不良発生領域推定部
21  領域分割部
22  修正第一応力分布取得部
23  修正第二応力取得部
24  修正比較応力分布取得部
25  面形状不良原因領域推定部

Claims (34)

  1.  塑性加工開始時点TSTARTから塑性加工完了時点TENDに至るまで被加工材を塑性加工して得られる塑性加工品の面形状不良の発生領域を推定する面形状不良発生領域推定方法であって、
     有限要素法により、前記塑性加工開始時点TSTARTよりも後であって、且つ、前記塑性加工完了時点TENDよりも前である第一加工時点Tにおける前記被加工材の応力の分布である第一応力分布σ(T1)を取得する第一応力分布取得工程と、
     有限要素法により、前記第一加工時点Tよりも後であって、且つ、前記塑性加工完了時点TENDよりも前又は同時である第二加工時点Tにおける前記被加工材の応力の分布である第二応力分布σ(T2)を取得する第二応力分布取得工程と、
     前記第一応力分布σ(T1)と前記第二応力分布σ(T2)との比較に基づき、前記被加工材の比較応力の分布である比較応力分布σ(T1,T2)を取得する比較応力分布取得工程と、
     前記比較応力分布σ(T1,T2)を、複数の分割領域Dに分割することで、それぞれの分割領域Dの比較応力の分布である分割比較応力分布σDIV(T1,T2)を取得する分割比較応力分布取得工程と、
     前記分割比較応力分布σDIV(T1,T2)を用い、前記分割領域Dそれぞれについて求めた面形状不良発生評価指標αに基づき、前記分割領域Dそれぞれが面形状不良の発生領域であるか否かを推定する面形状不良発生領域推定工程と、
    を備えることを特徴とする面形状不良発生領域推定方法。
  2.  前記面形状不良発生評価指標αが比較応力の最小値である
    ことを特徴とする請求項1に記載の面形状不良発生領域推定方法。
  3.  前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分の最大値である
    ことを特徴とする請求項1に記載の面形状不良発生領域推定方法。
  4.  前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値である
    ことを特徴とする請求項1に記載の面形状不良発生領域推定方法。
  5.  前記分割比較応力分布取得工程では、
     前記比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定する
    ことを特徴とする請求項1~4のいずれか一項に記載の面形状不良発生領域推定方法。
  6.  前記分割比較応力分布取得工程では、
     前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定する
    ことを特徴とする請求項1~4のいずれか一項に記載の面形状不良発生領域推定方法。
  7.  前記分割比較応力分布取得工程では、
     前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定する
    ことを特徴とする請求項1~4のいずれか一項に記載の面形状不良発生領域推定方法。
  8.  前記第二加工時点Tが前記塑性加工完了時点TENDである
    ことを特徴とする請求項1~7のいずれか一項に記載の面形状不良発生領域推定方法。
  9.  前記被加工材が金属である
    ことを特徴とする請求項1~8のいずれか一項に記載の面形状不良発生領域推定方法。
  10.  前記塑性加工がプレス成形である
    ことを特徴とする請求項1~9のいずれか一項に記載の面形状不良発生領域推定方法。
  11.  前記面形状不良がシワである
    ことを特徴とする請求項1~10のいずれか一項に記載の面形状不良発生領域推定方法。
  12.  請求項1~11のいずれか一項に記載の面形状不良発生領域推定方法によって推定された前記面形状不良の発生領域を基準領域mとして特定するとともに、前記基準領域mの周囲を複数の周辺領域m(k=1、2、3、・・・n)に分割する領域分割工程と、
     前記第一応力分布σ(T1)において、前記複数の周辺領域mのうち任意の周辺領域mの応力値を変更した場合の修正第一応力分布σ’(T1)を各周辺領域m毎に取得する修正第一応力分布取得工程と、
     前記修正第一応力分布σ’(T1)について前記第二加工時点Tまで有限要素法により成形解析を行うことで修正第二応力分布σ’(T2)を各周辺領域m毎に取得する修正第二応力取得工程と、
     前記周辺領域mそれぞれについて、前記修正第一応力分布σ’(T1)と、前記修正第二応力分布σ’(T2)との比較に基づき、前記被加工材の修正比較応力の分布である修正比較応力分布σ’(T1,T2)を取得する修正比較応力分布取得工程と、
     前記周辺領域mそれぞれの前記修正比較応力分布σ’(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(mk)と、前記比較応力分布σ(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(m0)との比較値β(mk,m0)に基づき、前記周辺領域mそれぞれが面形状不良原因領域であるか否かを推定する面形状不良原因領域推定工程と、
    を備えることを特徴とする面形状不良原因領域推定方法。
  13.  前記面形状不良原因評価指標β(mk)、β(m0)が、修正比較応力の最小値である
    ことを特徴とする請求項12に記載の面形状不良原因領域推定方法。
  14.  前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分の最大値である
    ことを特徴とする請求項12に記載の面形状不良原因領域推定方法。
  15.  前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分をその離間距離で除して得られる差分勾配の最大値である
    ことを特徴とする請求項12に記載の面形状不良原因領域推定方法。
  16.  塑性加工開始時点TSTARTから塑性加工完了時点TENDに至るまで被加工材を塑性加工して得られる塑性加工品の面形状不良の発生領域を推定する面形状不良発生領域推定装置であって、
     有限要素法により、前記塑性加工開始時点TSTARTよりも後であって、且つ、前記塑性加工完了時点TENDよりも前である第一加工時点Tにおける前記被加工材の応力の分布である第一応力分布σ(T1)を取得する第一応力分布取得部と、
     有限要素法により、前記第一加工時点Tよりも後であって、且つ、前記塑性加工完了時点TENDよりも前又は同時である第二加工時点Tにおける前記被加工材の応力の分布である第二応力分布σ(T2)を取得する第二応力分布取得部と、
     前記第一応力分布σ(T1)と前記第二応力分布σ(T2)との比較に基づき、前記被加工材の比較応力の分布である比較応力分布σ(T1,T2)を取得する比較応力分布取得部と、
     前記比較応力分布σ(T1,T2)を、複数の分割領域Dに分割することで、それぞれの分割領域Dの比較応力の分布である分割比較応力分布σDIV(T1,T2)を取得する分割比較応力分布取得部と、
     前記分割比較応力分布σDIV(T1,T2)を用い、前記分割領域Dそれぞれについて求めた面形状不良発生評価指標αに基づき、前記分割領域Dそれぞれが面形状不良の発生領域であるか否かを推定する面形状不良発生領域推定部と、
    を備えることを特徴とする面形状不良発生領域推定装置。
  17.  前記面形状不良発生評価指標αが比較応力の最小値である
    ことを特徴とする請求項16に記載の面形状不良発生領域推定装置。
  18.  前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分の最大値である
    ことを特徴とする請求項16に記載の面形状不良発生領域推定装置。
  19.  前記面形状不良発生評価指標αが、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配の最大値である
    ことを特徴とする請求項16に記載の面形状不良発生領域推定装置。
  20.  前記分割比較応力分布取得部では、
     前記比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、比較応力が最小である要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定する
    ことを特徴とする請求項16~19のいずれか一項に記載の面形状不良発生領域推定装置。
  21.  前記分割比較応力分布取得部では、
     前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定する
    ことを特徴とする請求項16~19のいずれか一項に記載の面形状不良発生領域推定装置。
  22.  前記分割比較応力分布取得部では、
     前記比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第一分割領域Dを前記複数の分割領域Dの一つとして画定するとともに、前記比較応力分布σ(T1,T2)から前記第一分割領域Dを除外した比較応力分布σ(T1,T2)のうち、互いに離間する二つの要素間の比較応力の差分をその離間距離で除して得られる差分勾配が最大となる組合せの二つの要素を包含する第二分割領域Dを前記複数の分割領域Dの一つとして画定する
    ことを特徴とする請求項16~19のいずれか一項に記載の面形状不良発生領域推定装置。
  23.  前記第二加工時点Tが前記塑性加工完了時点TENDである
    ことを特徴とする請求項16~22のいずれか一項に記載の面形状不良発生領域推定装置。
  24.  前記被加工材が金属である
    ことを特徴とする請求項16~23のいずれか一項に記載の面形状不良発生領域推定装置。
  25.  前記塑性加工がプレス成形である
    ことを特徴とする請求項16~24のいずれか一項に記載の面形状不良発生領域推定装置。
  26.  前記面形状不良がシワである
    ことを特徴とする請求項16~25のいずれか一項に記載の面形状不良発生領域推定装置。
  27.  請求項16~26のいずれか一項に記載の面形状不良発生領域推定装置によって推定された前記面形状不良の発生領域を基準領域mとして特定するとともに、前記基準領域mの周囲を複数の周辺領域m(k=1、2、3、・・・n)に分割する領域分割部と、
     前記第一応力分布σ(T1)において、前記複数の周辺領域mのうち任意の周辺領域mの応力値を変更した場合の修正第一応力分布σ’(T1)を各周辺領域m毎に取得する修正第一応力分布取得部と、
     前記修正第一応力分布σ’(T1)について前記第二加工時点Tまで有限要素法により成形解析を行うことで修正第二応力分布σ’(T2)を各周辺領域m毎に取得する修正第二応力取得部と、
     前記周辺領域mそれぞれについて、前記修正第一応力分布σ’(T1)と、前記修正第二応力分布σ’(T2)との比較に基づき、前記被加工材の修正比較応力の分布である修正比較応力分布σ’(T1,T2)を取得する修正比較応力分布取得部と、
     前記周辺領域mそれぞれの前記修正比較応力分布σ’(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(mk)と、前記比較応力分布σ(T1,T2)を用いて求めた前記基準領域mにおける面形状不良原因評価指標β(m0)との比較値β(mk,m0)に基づき、前記周辺領域mそれぞれが面形状不良原因領域であるか否かを推定する面形状不良原因領域推定部と、
    を備えることを特徴とする面形状不良原因領域推定装置。
  28.  前記面形状不良原因評価指標β(mk)、β(m0)が、修正比較応力の最小値である
    ことを特徴とする請求項27に記載の面形状不良原因領域推定装置。
  29.  前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分の最大値である
    ことを特徴とする請求項27に記載の面形状不良原因領域推定装置。
  30.  前記面形状不良原因評価指標β(mk)、β(m0)が、互いに離間する二つの要素間の修正比較応力の差分をその離間距離で除して得られる差分勾配の最大値である
    ことを特徴とする請求項27に記載の面形状不良原因領域推定装置。
  31.  請求項1に記載の面形状不良発生領域推定方法を実行するプログラム。
  32.  請求項12に記載の面形状不良原因領域推定方法を実行するプログラム。
  33.  請求項31に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体。
  34.  請求項32に記載のプログラムを記録したコンピュータで読み取り可能な記録媒体。
PCT/JP2016/051821 2015-01-26 2016-01-22 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体 WO2016121638A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112017013734-8A BR112017013734A2 (ja) 2015-01-26 2016-01-22 A field shape poor generating field estimation method, a field shape poor cause field estimation method, a field shape poor generating field estimating device, a field shape poor cause field estimating device, a program, and a recording medium
US15/537,956 US10713401B2 (en) 2015-01-26 2016-01-22 Surface shape defect generating region estimating method, surface shape defect source region estimating method, surface shape defect generating region estimating device, surface shape defect source region estimating device, program, and recording medium
EP16743241.8A EP3251769B1 (en) 2015-01-26 2016-01-22 Method for estimating surface shape defect generating regions, method for estimating surface shape defect source regions, surface shape defect generating region estimating device, shape defect source region estimating device, program and recording media
RU2017124979A RU2677123C1 (ru) 2015-01-26 2016-01-22 Способ оценки областей образования дефекта формы поверхности, способ оценки областей источников дефекта формы поверхности, устройство оценки областей образования дефекта формы поверхности, устройство оценки областей источников дефекта формы поверхности, программа и носитель записи
CA2971561A CA2971561C (en) 2015-01-26 2016-01-22 A method for press forming a metal workpiece with controlled wrinkling
EP20180657.7A EP3736059A1 (en) 2015-01-26 2016-01-22 Method for estimating surface shape defect generating regions, method for estimating surface shape defect source regions, surface shape defect generating region estimating device, shape defect source region estimating device, program and recording media
CN201680005686.0A CN107249772B (zh) 2015-01-26 2016-01-22 面形状不良产生或原因区域推断方法、装置及记录介质
JP2016571991A JP6350681B2 (ja) 2015-01-26 2016-01-22 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体
KR1020177019164A KR101953501B1 (ko) 2015-01-26 2016-01-22 면 형상 불량 발생 영역 추정 방법, 면 형상 불량 원인 영역 추정 방법, 면 형상 불량 발생 영역 추정 장치, 면 형상 불량 원인 영역 추정 장치, 프로그램, 및 기록 매체
ES16743241T ES2812453T3 (es) 2015-01-26 2016-01-22 Método de estimación de regiones generadoras de defectos de forma de superficie, método de estimación de regiones de origen de defectos de forma de superficie, dispositivo de estimación de regiones generadoras de defectos de forma de superficie, dispositivo de estimación de regiones de origen de defectos de forma de superficie, programa y medios de grabación
MX2017009261A MX2017009261A (es) 2015-01-26 2016-01-22 Metodo de estimacion de la region generadora de defectos de forma superficial, metodo de estimacion de la region de la fuente de defectos de forma superficial, dispositivo de estimacion de la region generadora de defectos de forma superficial, dispositivo de estimacion de la region de fuente de defectos de forma superficial, programa y medio de registro.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015012325 2015-01-26
JP2015-012325 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016121638A1 true WO2016121638A1 (ja) 2016-08-04

Family

ID=56543251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051821 WO2016121638A1 (ja) 2015-01-26 2016-01-22 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体

Country Status (11)

Country Link
US (1) US10713401B2 (ja)
EP (2) EP3736059A1 (ja)
JP (1) JP6350681B2 (ja)
KR (1) KR101953501B1 (ja)
CN (1) CN107249772B (ja)
BR (1) BR112017013734A2 (ja)
CA (1) CA2971561C (ja)
ES (1) ES2812453T3 (ja)
MX (1) MX2017009261A (ja)
RU (1) RU2677123C1 (ja)
WO (1) WO2016121638A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008660A1 (ja) * 2018-07-04 2020-01-09 本田技研工業株式会社 応力解析装置
JP2020144819A (ja) * 2019-03-08 2020-09-10 日本製鉄株式会社 形状不良発生原因分析方法、形状不良修正方法、形状不良発生原因分析装置、形状不良発生原因を分析するためのプログラムおよび記録媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519639B1 (ja) 2017-12-07 2019-05-29 Jfeスチール株式会社 スプリングバック量変動要因部位特定方法
CN114511534B (zh) * 2022-01-28 2023-05-05 江苏泰和木业有限公司 一种基于图像处理的pc板裂纹判断方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319971A (ja) * 1998-05-11 1999-11-24 Nissan Motor Co Ltd プレス成形における皺発生予測方法
JP2004209500A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 成形加工シミュレーションにおける面形状不良有無判定方法及びその装置
JP2005177837A (ja) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd 成形加工シミュレーションにおける面形状歪み量演算方法及びその装置
JP2009286351A (ja) * 2008-05-30 2009-12-10 Nippon Steel Corp 耐座屈性に優れた車両用耐衝突補強材及びその製造方法
WO2010073756A1 (ja) * 2008-12-25 2010-07-01 新日本製鐵株式会社 スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体
JP4894294B2 (ja) * 2006-02-27 2012-03-14 Jfeスチール株式会社 プレス成形解析方法
JP5068783B2 (ja) * 2009-04-06 2012-11-07 新日本製鐵株式会社 スプリングバック発生原因部位特定方法、その装置、及びそのプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894294A (ja) 1972-03-15 1973-12-05
NL7314466A (nl) 1973-10-20 1975-04-22 Philips Nv Halfgeleiderinrichting.
JP2006075884A (ja) 2004-09-10 2006-03-23 Nippon Steel Corp プレス成形加工システム、プレス成形加工方法、及びコンピュータプログラム
JP4739147B2 (ja) * 2006-08-28 2011-08-03 トヨタ自動車株式会社 形状不良要因特定方法、装置及びプログラム
US9767234B2 (en) * 2006-08-31 2017-09-19 Nippon Steel & Sumitomo Metal Corporation Method of identification of cause and/or location of cause of occurrence of springback
JP4410833B2 (ja) * 2007-12-25 2010-02-03 新日本製鐵株式会社 スプリングバック発生原因分析方法、その装置、そのプログラム及び記録媒体
CN102395973B (zh) 2009-04-20 2013-08-28 新日铁住金株式会社 成形模拟方法、成形模拟装置、成形模拟程序及其记录介质
CA2822206C (en) 2011-02-24 2016-09-13 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
JP6013985B2 (ja) 2013-06-26 2016-10-25 日本電信電話株式会社 クロストーク測定装置及びクロストーク測定方法
CN104001811B (zh) 2014-06-13 2016-01-20 沈阳飞机工业(集团)有限公司 一种tc4钛合金角形薄壁零件用热成型模具及成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319971A (ja) * 1998-05-11 1999-11-24 Nissan Motor Co Ltd プレス成形における皺発生予測方法
JP2004209500A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 成形加工シミュレーションにおける面形状不良有無判定方法及びその装置
JP2005177837A (ja) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd 成形加工シミュレーションにおける面形状歪み量演算方法及びその装置
JP4894294B2 (ja) * 2006-02-27 2012-03-14 Jfeスチール株式会社 プレス成形解析方法
JP2009286351A (ja) * 2008-05-30 2009-12-10 Nippon Steel Corp 耐座屈性に優れた車両用耐衝突補強材及びその製造方法
WO2010073756A1 (ja) * 2008-12-25 2010-07-01 新日本製鐵株式会社 スプリングバック発生原因分析方法、スプリングバック発生原因分析装置、スプリングバック発生原因分析プログラム及び記録媒体
JP5068783B2 (ja) * 2009-04-06 2012-11-07 新日本製鐵株式会社 スプリングバック発生原因部位特定方法、その装置、及びそのプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008660A1 (ja) * 2018-07-04 2020-01-09 本田技研工業株式会社 応力解析装置
JP2020008973A (ja) * 2018-07-04 2020-01-16 本田技研工業株式会社 応力解析装置
JP2020144819A (ja) * 2019-03-08 2020-09-10 日本製鉄株式会社 形状不良発生原因分析方法、形状不良修正方法、形状不良発生原因分析装置、形状不良発生原因を分析するためのプログラムおよび記録媒体
JP7216913B2 (ja) 2019-03-08 2023-02-02 日本製鉄株式会社 形状不良修正方法、形状不良発生原因分析装置、形状不良発生原因を分析するためのプログラムおよび記録媒体

Also Published As

Publication number Publication date
ES2812453T3 (es) 2021-03-17
EP3251769A1 (en) 2017-12-06
RU2677123C1 (ru) 2019-01-15
MX2017009261A (es) 2017-10-11
KR101953501B1 (ko) 2019-02-28
EP3251769B1 (en) 2020-07-01
US10713401B2 (en) 2020-07-14
US20180004873A1 (en) 2018-01-04
BR112017013734A2 (ja) 2018-03-13
CN107249772A (zh) 2017-10-13
CA2971561C (en) 2020-07-21
EP3736059A1 (en) 2020-11-11
EP3251769A4 (en) 2019-01-02
KR20170094366A (ko) 2017-08-17
JPWO2016121638A1 (ja) 2017-10-12
CN107249772B (zh) 2019-06-14
JP6350681B2 (ja) 2018-07-04
CA2971561A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6350681B2 (ja) 面形状不良発生領域推定方法、面形状不良原因領域推定方法、面形状不良発生領域推定装置、面形状不良原因領域推定装置、プログラム、及び、記録媒体
JP5445381B2 (ja) 材料の曲げ破断予測方法および装置、ならびにプログラムおよび記録媒体
Neto et al. Influence of the plastic anisotropy modelling in the reverse deep drawing process simulation
JP4894294B2 (ja) プレス成形解析方法
CA2683640C (en) Fracture prediction method, processing device, program product and recording medium
JP6314626B2 (ja) プレス成形性の評価方法、装置、プログラム及びコンピュータ読み取り可能な記憶媒体
JP2008055476A (ja) スプリングバック発生原因部位特定方法、その装置、及びそのプログラム
JP6123951B2 (ja) ブランク形状決定方法、ブランク製造方法、プレス成形方法、プレス成形品製造方法、コンピュータプログラム、および記録媒体
JP6852426B2 (ja) 成形性評価方法、プログラム及び記録媒体
JP6897413B2 (ja) 成形性評価方法、プログラム及び記録媒体
JP6176410B2 (ja) 破断予測方法、プログラム、記録媒体及び演算処理装置
WO2018123989A1 (ja) 金属板の成形方法、中間形状の設計方法、金属板の成形用金型、コンピュータプログラム、及び記録媒体
Azaouzi et al. Optimal design of multi-step stamping tools based on response surface method
Luyen et al. Investigating the impact of yield criteria and process parameters on fracture height of cylindrical cups in the deep drawing process of SPCC sheet steel
JP5839323B2 (ja) 金属板体の金型寸法自動探索システム
JP2009148838A (ja) スプリングバック発生原因部位特定方法、その装置、及びそのプログラム
JP4987789B2 (ja) プレス成形方法
Qian et al. Numerical and experimental investigation of the bending zone in free U-bending
Qin et al. Analytical solutions of strain of axisymmetric curved part in sheet metal forming process using direct integral method
CN115169027A (zh) 一种材料安全裕度的预测方法和装置
Lin et al. Theoretical and experimental research on a novel bending process for high-strength steel thin-walled tubes
Dou et al. Numerical Analysis of Elliptical Flange Hole Forming Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571991

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2971561

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15537956

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013734

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2016743241

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177019164

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009261

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017124979

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017013734

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170623