WO2010072139A1 - 超厚竹木复合板材和超厚实木复合板材及其制造方法 - Google Patents

超厚竹木复合板材和超厚实木复合板材及其制造方法 Download PDF

Info

Publication number
WO2010072139A1
WO2010072139A1 PCT/CN2009/075823 CN2009075823W WO2010072139A1 WO 2010072139 A1 WO2010072139 A1 WO 2010072139A1 CN 2009075823 W CN2009075823 W CN 2009075823W WO 2010072139 A1 WO2010072139 A1 WO 2010072139A1
Authority
WO
WIPO (PCT)
Prior art keywords
veneer
bamboo
thick
layer
core
Prior art date
Application number
PCT/CN2009/075823
Other languages
English (en)
French (fr)
Inventor
于文吉
余养伦
周月
祝荣先
任丁华
Original Assignee
中国林业科学研究院木材工业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200810240988 external-priority patent/CN101524858B/zh
Priority claimed from CN 200810240989 external-priority patent/CN101524859B/zh
Priority claimed from CNU2009201059083U external-priority patent/CN201353809Y/zh
Application filed by 中国林业科学研究院木材工业研究所 filed Critical 中国林业科学研究院木材工业研究所
Priority to US13/142,111 priority Critical patent/US8747987B2/en
Publication of WO2010072139A1 publication Critical patent/WO2010072139A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D1/00Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
    • B27D1/04Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets
    • B27D1/06Manufacture of central layers; Form of central layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D1/00Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
    • B27D1/04Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/14Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood board or veneer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24066Wood grain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface
    • Y10T428/24537Parallel ribs and/or grooves

Definitions

  • the invention relates to a wood-based composite board and a manufacturing field thereof, and provides an ultra-thick bamboo and solid wood composite board, and also provides a manufacturing method of the ultra-thick bamboo and solid wood composite board.
  • solid wood composite panels mainly include two types of products, such as blockboard and multi-layer solid wood composite plywood.
  • the blockboard is covered with a veneer on the upper and lower surfaces of the core board made of small wooden blocks.
  • the core board is usually a jigsaw or a wooden structural board which is formed by cutting a log saw into a (2 ⁇ 10) cm wide (1 ⁇ 5) mm thick wooden strip.
  • the use of this method to manufacture the core board has the disadvantages of more sawing loss and low wood utilization rate when the saw is cut.
  • the plantation wood Based on the current situation that the Chinese commercial timber is mainly fast-growing plantation wood, the plantation wood generally has small diameter and density. Low, scarred, loose structure, low strength and other defects.
  • bamboo-wood composites Regardless of the content, scope, and depth of research, China's research on bamboo-wood composites is at the leading position in the world. According to incomplete statistics, there are nearly 1,000 bamboo-based wood-based panel processing enterprises in China, and dozens of products are widely used in automobile compartment floor, container floor, building cement formwork, floor, decorative materials, furniture and other fields (Zhang Yinghe) Thinking of the development of bamboo wood-based panels. Wood Processing Machinery, 2004). If the small-diameter wood is processed into a veneer, the plywood or veneer lumber is used alone or in combination with the bamboo production structure, which greatly improves the utilization of the wood.
  • the multi-layer solid wood or bamboo-wood composite plywood in the prior art is a veneer made of logs, such as artificial fast-growing forest wood, of lmm ⁇ 3mm, and is made into a plywood by drying, gluing, bloc, hot pressing and the like.
  • Veneer lumber or solid wood, bamboo-wood composite material This composite sheet is made of a composite sheet of the same thickness because of the thinness of the veneer used. The thinner the veneer, the more the rubber layer, the more adhesive used.
  • Many of the adhesives used are generally thermosetting aldehyde adhesives such as phenolic resin or urea-formaldehyde resin, resulting in an increase in formaldehyde emission and an increase in cost.
  • Chinese Patent No. 01 133469.X proposes a multi-layer solid wood composite material which is made of a three-layer plywood made of a single plate of 4 mm to 10 mm as a core plate, and then pasted on the upper and lower surfaces after sanding.
  • the composite sheet composed of the thick veneer can solve the problem caused by the large amount of the thin plastic material of the single veneer.
  • it is difficult to produce the rotary cut veneer of more than 5 mm by the conventional rotary cutting device mainly due to the fact that the wood is in the wood.
  • the veneer is originally circular in shape on the wood segment, and is flattened when it is rotated, and is bent in the opposite direction. As a result, compressive stress is generated on the surface of the veneer, and tensile stress is generated on the back side of the veneer:
  • A is the original state of the board curvature radius (mm)
  • A is a reverse bend radius of curvature of the board (mm)
  • E is the direction of the wood grain by elastic modulus (MPa)
  • MPa elastic modulus
  • S For the thickness of the veneer (mm) (wood-based panel technology, p46, China Forestry Publishing House, Hua Qiankun). It can be seen from the formula that the smaller the diameter of the log, the larger the thickness of the veneer, the greater the internal stress of the veneer, and the more easily the warp deformation occurs during the drying process of the veneer (even causing the curl deformation as shown in the figure). 1 shown). When the stress is greater than the tensile or compressive strength of the wood grain, the veneer will crack.
  • the appearance of these defects will seriously affect the yield of the veneer and the subsequent processing steps such as coating, blanking and so on.
  • the use of the single-plate of such a structure as the core plate is caused by excessive stress of the veneer, which causes the manufactured composite plate to be easily warped and deformed.
  • the secondary veneer processing process is used to increase the veneer process.
  • the forming method of the existing composite sheet generally adopts the hot press forming method, and the bamboo/wood is a poor heat conductor, and it is difficult to produce the thick sheet by the hot pressing method, and the thickness of the conventional sheet is generally less than 30 mm.
  • the object of the present invention is to improve the deficiencies in the prior art technology, and provide an ultra-thick bamboo-wood composite board, which has a glue amount much less than that of the existing equivalent board thickness, and has the advantages of no deformation, no warpage, and the like. .
  • Another object of the present invention is to provide a method of manufacturing the ultra thick bamboo-wood composite panel.
  • Still another object of the present invention is to provide an ultra-thick solid wood composite panel made of an ultra-thick veneer whose strength in all directions conforms to national standards, is not easy to warp and deform, is convenient to process, and has a low amount of adhesive to reduce cost.
  • Still another object of the present invention is to provide a method of manufacturing the ultra-thick solid wood composite panel.
  • the ultra-thick bamboo-wood composite board provided by the invention comprises a core board, a panel and a back board, wherein the core board has a thickness of several pieces (6 ⁇ 12) mm Rotary cut super thick veneer; the panel and back plate are made of bamboo.
  • the veneers in the adjacent layers of the core plate are formed by a combination of a grain or a cross structure, and the super-thick veneers constituting the core plate are stress-degraded veneers, that is, the veneers in each layer.
  • the direction of the grain of the loose surface forms a bit-shaped or line-like crack.
  • a glue layer is disposed between adjacent single boards.
  • the average spacing is from 0.5 cm to 5 cm.
  • the ultra-thick bamboo-wood composite board has a total thickness of 45 mm to 90 mm.
  • the super-thick bamboo-wood composite board has a thickness ratio of 1 : 10 to 2: 1 as the thickness of the bamboo of the panel and the back sheet and the wood as the core material.
  • the bamboo material may be (5 ⁇ 20) mm thick reconstituted bamboo, or may be a bamboo laminated material of the same thickness.
  • the adhesive layer is provided between the layers of the super-thick bamboo-wood composite board, and the adhesive used is an aqueous polymer isocyanate adhesive, and the coating amount is 80 g/m 2 to 300 g/m 2 .
  • the adhesive used is a resorcinol adhesive, and the coating amount is 150 g/m 2 to 300 g/m 2 .
  • the above-mentioned method for manufacturing an ultra-thick bamboo-wood composite panel includes a preparation process, a gluing process, a sizing process, a molding process, and a curing process.
  • Preparation process including the preparation of a bamboo board as a panel and a back sheet, the veneer cutting and stress degradation treatment of the core sheet, and the preparation of an adhesive.
  • the preparation of bamboo veneers includes the preparation of recombinant veneers and the preparation of bamboo laminates.
  • the bamboo is processed into a recombinant bamboo or bamboo laminated material as a panel and a bottom plate, and the method is prior art.
  • the adhesive used is an aqueous polymer isocyanate adhesive composed of a main agent and a crosslinking agent.
  • the main agent may be styrene-butadiene latex (SBR), vinyl acetate-ethylene copolymer emulsion (EVA) or polyacrylic acid emulsion.
  • the crosslinking agent is a polymeric isocyanate (P-MDI), and the amount of the crosslinking agent is 5% to 20% (by weight) of the main agent, and after being stirred, the aqueous polymer isocyanate adhesive is formed.
  • the adhesive consists of a main agent and a curing agent.
  • the main agent is a linear resorcinol resin containing an alcohol, wherein the content of the alcohol is between 1% and 5%
  • the curing agent is a poly Formaldehyde powder, the amount of polyoxymethylene used as the main agent of 8% to 15% (% by weight), after stirring and hooking, to form a resorcinol adhesive.
  • the aqueous polymer isocyanate adhesive or resorcinol adhesive is applied to the surface of the stress-degraded ultra-thick veneer and the surface of the reconstituted bamboo or bamboo laminated material. If the aqueous polymer isocyanate adhesives, the amount of adhesive which is between 2 80g / m 2 ⁇ 300g / m , if the resorcinol adhesive, which adhesive in an amount of 150g / m 2 ⁇ 300g / m 2 between.
  • the reconstituted bamboo or bamboo laminated material and the stress-degraded veneer are combined in a straight or cross structure, and the plurality of veneers subjected to stress degradation are combined to form a core plate, and the reconstituted bamboo or bamboo laminated material is used as a panel and a back plate. Placed on both sides of the core sheet to form a slab.
  • the lamellae are symmetrically oriented toward the core layer.
  • the combined slabs are sent to a cold press for cold pressing at a pressure of (1 to 5) Mpa for a time of (20 to 60) min and a temperature of room temperature.
  • a fifth process can be provided after the forming process: a curing process.
  • the above slabs were stacked in an oven at a temperature of (60 to 120) °C and a humidity of (60 to 98%) for a curing time of (1 to 5) h and a curing pressure of (0.6 to 2) MPa.
  • the solid wood composite board made of the ultra-thick veneer provided by the invention is composed of a surface layer comprising two outer surfaces and a core layer therebetween, and an adhesive is disposed between the veneers of each layer;
  • the core layer is composed of an ultra-thick veneer of 6 mm to 12 mm, and the surface layer is composed of a veneer of 0.2 mm to 1.5 mm;
  • the super-thick veneer used for the core layer is a veneer that is cut by a log, in which the pine is The direction of the surface of the surface is provided with a dot-like or line-like crack.
  • Thick pine veneer core cracks the surface, having an average length between 2.0 C m ⁇ 5.0cm, the average depth of thickness 1 / 6 ⁇ 1 / 2, or
  • the average length is between 2.0 cm and 5.0 cm, the average depth is 1/6 to 1/2 of the sheet thickness, the average width is 0.2 mm to 3 mm, and the average spacing between the cracks is 0.5 cm to 5 cm.
  • the core layer may be composed of even-thick super-thick veneers such as 2, 4, 6, 8 and the like, and a parallel or cross-structure blank is used.
  • the two veneers in the center are intermediate core plates
  • the loose faces of the veneers are oppositely joined
  • the loose faces of the outer veneers are oriented toward the intermediate core plates
  • the symmetrical blanks are formed in two layers.
  • the intermediate core plates are parallel, and may also be arranged perpendicularly or in error with the central core plates of the two central layers;
  • a secondary surface layer may also be included between the core layer and the surface layer, and the secondary surface layer is a secondary core layer, also referred to as a balancing layer,
  • the balance layer is made of a single plate having a thickness of 1 mm to 3 mm, and the veneer of the core plate layer is perpendicular or dislocated with the texture of the core layer and the surface veneer, and the function thereof is to prevent lateral warpage of the core layer plate.
  • the core layer may also be composed of odd-numbered single-layer boards such as 3, 5, and 7, and adopt parallel or cross-structured structural blanks.
  • the center is provided with a veneer as the intermediate core plate, and the loose faces of the outer veneers are oriented toward the intermediate core plate, and the symmetrical blanks may have a texture parallel to the intermediate core plate, or may be in the middle
  • the core plate is arranged vertically or in phase; the outer surface layer may also be provided with a secondary surface layer, and the secondary surface layer is a secondary core layer, also referred to as a balance layer, and the balance layer is made of a single plate having a thickness of 1 mm to 3 mm.
  • the veneers of the layers are oriented perpendicular or offset from the texture of the core and surface veneers.
  • the above-mentioned solid wood composite board made of ultra-thick veneer, wherein the core layer can use low-quality wood such as poplar, Chinese fir, cedar, metasequoia, spruce, etc., and is rotated to form an ultra-thick single sheet of 6 mm to 12 mm.
  • the surface layer can be made of a decorative veneer having a thickness of 0.2 mm to 1.5 mm which is cut from precious hardwood leaves such as teak, rosewood, and cloned wood.
  • the veneer of the sub-surface layer may be made of a common veneer having a thickness of lmm to 3 mm which is formed by cutting a plantation of poplar, birch or eucalyptus.
  • the manufacturing method of the solid wood composite board manufactured by the ultra thick board provided by the invention comprises the following steps:
  • the wood for making the core veneer is subjected to rotary cutting to form an ultra-thick veneer of 6 mm to 12 mm, and after the veneer is disintegrated in the disintegration device, dots and/or line segments are formed in the direction of the loose surface of the loose surface. Crack as a core layer.
  • the wood for the surface veneer is formed by spin-cutting into a veneer of 0.2 mm to 1.5 mm as a decorative veneer;
  • the ultra-thick veneer used in the core layer is sized, and the thin veneer used in the surface layer is not sized;
  • the sizing ultra-thick veneer is assembled into a blank, and then two thin veneers are laid on the upper and lower layers of the core slab;
  • the billet is hot pressed to make it integrated
  • the hot pressing temperature, the hot pressing pressure, and the hot pressing time are set depending on the type of the adhesive to be used.
  • the sub-surface wood is spin-cut into a lmm ⁇ 3 mm veneer, and in the B drying process, it is also dried to a moisture content. 8 % -15%, in C
  • the glue is applied in the glue coating process, and then in the D-component process, the sub-surface veneer is arranged such that the wood grain and the core layer and the surface wood grain are vertically or dislocated in the core layer and the surface veneer. .
  • the adhesive used may be one of a urea-formaldehyde adhesive, a melamine-modified urea-formaldehyde adhesive, a phenolic adhesive, and an isocyanate. If the adhesive is urea-formaldehyde adhesive or melamine-modified urea-formaldehyde adhesive, the amount of sizing is (150 ⁇ 300) g/m 2 , the hot pressing time is (0.5 ⁇ 1.6) min/mm, and the hot pressing temperature is ( 120 ⁇ 160) V, hot pressing pressure is (0.7 ⁇ 2) MPa.
  • the amount of sizing is (150 ⁇ 300) g/m 2 , the hot pressing time is (0.5 ⁇ 2) min/mm, and the hot pressing temperature is (130 ⁇ -180) °C, heat.
  • the pressure is (0.7 to 2) MPa.
  • the adhesive is isocyanate, the amount of sizing is (20 ⁇ 50) g/m 2 , the hot pressing time is (0.5 ⁇ 1.2) min/mm, the hot pressing temperature is (90 ⁇ 130) °C, and the hot pressing pressure is ( 0.7 ⁇ 2) MPa.
  • one or two veneers placed in the center are the intermediate core plates, and if the two veneers are the intermediate core plates, the two veneers
  • the loose joints are relatively joined, and the veneers on the outer side of the intermediate core plate may have their loose faces joined to the intermediate core plate, and the symmetrical blanks may have a texture parallel to the intermediate core plates, or may be combined with the central core plates of the center two layers.
  • Vertical or phase-shift setting loose face towards the core, symmetrical blank.
  • the ultra-thick bamboo and solid wood composite board provided by the invention can spin out (6 ⁇ 12) mm ultra-thick veneer from the plantation fast-growing wood by rotary cutting technology, and then use the stress degradation treatment technology to loose the surface of the veneer
  • the formation of point-like or line-like cracks has obvious advantages: First, after the stress release treatment, the lateral stress of the super-thick veneer is weakened, thereby avoiding problems such as warpage and deformation of the veneer; After the stress release treatment, the surface stress of the veneer is released, which can reduce the loss caused by the rupture of the veneer in the subsequent drying, sizing, and slab, thereby improving the utilization rate of the wood; After the stress relief treatment, the veneer forms a point-like or line-like crack, which increases the specific surface area of the veneer, greatly reduces the resistance of the moisture discharge of the wood, thereby increasing the drying rate of the veneer, that is, reducing the drying of the veneer.
  • the ultra-thick bamboo and solid wood composite board which is made of the artificial forest quick-growing material and reduces the number of the rubber layer is realized. Since the core board in the middle of the bamboo wood and the solid wood composite board is an ultra-thick single board, the amount of glue can be greatly reduced compared with the existing ordinary composite board, and cracks are formed on the single board through a special stress degradation process. It can also solve the problems of warpage, deformation and cracking of thick veneers.
  • the composite board applies a relatively high cost water-based polymer isocyanate adhesive or resorcinol adhesive to the bamboo-wood composite structural material by using an ultra-thick veneer and the choice of the type of the adhesive and the special design of the amount of the glue applied.
  • the invention uses an ultra-thick veneer of 6mm ⁇ 12mm, which has another obvious advantage compared with a common veneer having a thickness of lmm ⁇ 3mm: Compared with ordinary multi-layer solid wood composite plywood, the solid wood feel of the plate is increased. Compared with the blockboard, it reduces the loss of the sawing road when the saw is cut into solid wood strips, improves the utilization rate of the wood, and improves the production efficiency by adopting the rotary cutting process.
  • the thick decorative veneer is made of solid wood composite board with a target thickness of 18mm, indicating the relationship between the thickness of the veneer used and the amount of glue applied. It can be seen from Table 1 that as the thickness of the veneer increases, the amount of sizing decreases, and the 18 mm thick plate is also produced. If the 6 mm thick veneer is used, the sizing amount is only 21.05% of the 1.5 mm thick veneer; If a 9mm thick veneer is used, the amount of glue applied is only 15.79% of the 1.5mm thick veneer. The reduction in the amount of glue applied greatly reduces the production cost of the sheet.
  • Figure 1 shows the warpage deformation of (6 ⁇ 12) mm thick veneers without stress degradation.
  • Figure 2 shows the stress-degraded (6 ⁇ 12) mm thick veneer
  • Figure 3 is a bamboo laminated timber and poplar composite sheet
  • Figure 4 shows the composite bamboo and eucalyptus composite sheet of the cross-structured composite
  • Figure 5 is a solid wood composite panel made of even-numbered super-thick veneers
  • Figure 6 is a solid wood composite board made of odd-numbered super-thick veneer
  • 1 is a point-like or line-like crack which is obtained by degradation on an ultra-thick veneer
  • 2 is a bamboo layer
  • 3 is a veneer (6 to 12) mm thick veneer
  • 4 For the reorganization of bamboo
  • 5 is a (6 ⁇ 12) mm thick veneer of the slab
  • 6 is a horizontal slab (6 ⁇ 12) mm thick veneer
  • 3 is an ultra-thick stencil
  • 4' 5'
  • the upper and lower plates are respectively
  • 7 and 8 are core thick super-strand core plates
  • 9, 10 are upper and lower plates.
  • the ultra-thick bamboo-wood composite board provided by the invention comprises a core board, a panel and a back board, and the core board is a plurality of (6 ⁇ 12) mm ultra-thick rotary-cut veneers; the panel and the back board are composed of bamboo.
  • the core board includes a plurality of layers of the super-thick veneers which are formed by combining adjacent layers in a pattern (as shown in FIG. 3) or a cross-over structure (as shown in FIG. 4) between adjacent boards.
  • the rubber layer is provided, and the core super-thick veneer is a stress-degraded veneer (as shown in FIG. 2 ), that is, a bit shape or a line segment is formed in the direction of the loose surface of the veneer of each layer.
  • the adhesive of the adhesive layer is an aqueous polymer isocyanate adhesive or a resorcinol adhesive.
  • the average width of the cracks is 0.2 mm to 3 mm, and the average pitch between the cracks is 0.5 cm to 5 cm.
  • the width and spacing of the cracks are such that the stress degradation effect is better.
  • the elastic modulus of the transverse direction of the ultra-thick veneer is not reduced.
  • the stress release is not complete, and the subsequent drying is performed. Warpage and deformation occur during the coating process; however, if the degree of crack degradation is too large, the veneer tears and the roughness of the veneer surface are directly caused during the degradation process, thereby destroying the mechanical properties of the veneer and increasing The amount of sizing increases the performance of the composite panel.
  • the ultra-thick bamboo-wood composite board has a total thickness of 45 mm to 90 mm.
  • the super-thick bamboo-wood composite board has a thickness ratio of 1 : 10 to 2: 1 as the thickness of the bamboo material of the panel and the back sheet and the wood material as the heart material.
  • the bamboo material may be a recombinant bamboo of 5 mm to 20 mm thick, or may be a bamboo laminated material of the same thickness.
  • the adhesive having a rubber layer between the layers of the super-thick bamboo-wood composite board is an aqueous polymer isocyanate adhesive, and the coating amount is 80 g/m 2 to 300 g/m 2 .
  • the adhesive layer provided with the adhesive layer between the super-thick bamboo-wood composite board layers is a resorcinol adhesive, and the coating amount is 150g/m 2 ⁇ 300g/m
  • the above-mentioned method for manufacturing an ultra-thick bamboo-wood composite panel includes a preparation process, a gluing process, a sizing process, a molding process, and a curing process.
  • Preparation process including bamboo sheet preparation, veneer rotary cutting and stress degradation treatment, and adhesive preparation steps.
  • the preparation of bamboo veneers includes the preparation of recombinant veneers and the preparation of bamboo glulam.
  • Adhesives can be as follows:
  • Aqueous macromolecular isocyanate adhesive consisting of a main agent and a cross-linking agent, the main agent is styrene-butadiene latex (SBR), vinyl acetate-ethylene copolymer emulsion (EVA) or polyacrylic acid emulsion, cross-linking agent
  • SBR styrene-butadiene latex
  • EVA vinyl acetate-ethylene copolymer emulsion
  • P-MDI polyacrylic acid emulsion
  • the amount of the crosslinking agent is 5%-20% of the main agent, and after stirring at room temperature, the aqueous polymer isocyanate adhesive is formed.
  • Resorcinol adhesive which consists of a main agent and a curing agent
  • the main agent is a linear resorcinol resin liquid containing alcohol
  • the curing agent is polyoxymethylene
  • the amount of polyoxymethylene is 8% ⁇ 15 of the main agent. %, after stirring at room temperature, a resorcinol adhesive is formed.
  • the aqueous polymer isocyanate adhesive or resorcinol adhesive is applied to the surface of the stress-degraded ultra-thick veneer and the surface of the reconstituted bamboo or bamboo laminated material.
  • resorcinol adhesive which adhesive in an amount of 150g / m 2 ⁇ 300g / m; if an aqueous polymer isocyanate adhesives, which adhesive in an amount of between 2 80g / m 2 ⁇ 300g / m.
  • the reconstituted bamboo or bamboo laminated material and the stress-degraded veneer are formed into a smooth or cross structure, the reconstituted bamboo or bamboo integrated material is used as a panel and a back plate, and the stress-degraded veneer is used as a core plate.
  • the combined slabs are sent to a cold press for cold pressing at a pressure of (1 to 5) MPa ; time (20 to 60) min, and the temperature is room temperature.
  • a fifth process can be provided after the forming process: a curing process.
  • the invention adopts a special bamboo-wood composite structure, and the basic constituent unit is composed of a bamboo/wood unit composed of a wood veneer of 6 to 12 mm thick and a bamboo material, which has high strength, high surface hardness and special texture.
  • the bamboo board is paved on the surface layer, and the ultra-thick veneer which is made of wood with a low density, low strength and thrifty defects is paved in the core layer, which means that the bamboo has high strength and decorative effect. It also exerts the characteristics of high utilization rate and high production efficiency of plantation forest.
  • bamboo-wood composite structure is used to improve production efficiency and reduce production cost compared with ordinary bamboo laminated materials.
  • the density of fast-growing material is lower than that of bamboo, and the composite structure of bamboo and wood is beneficial to reduce the density of the sheet, thereby reducing the weight of the material itself.
  • bamboo-wood composite structure fully utilizes the characteristics of high strength and hardness of the bamboo, improves the physical and mechanical properties of the sheet, and makes the performance index of the composite sheet reach the performance index of the structural material. Requirements.
  • the invention has obvious advantages compared with the specification material, and adopts the rotary cutting method to reduce the loss of the sawing road, thereby improving the utilization rate of the wood.
  • the ultra-thick bamboo-wood composite board provided by the invention can be used for building materials such as beams, columns and girders, instead of real Wood specifications; can also be used for decorative materials such as furniture, doors and windows.
  • the aqueous polymer isocyanate adhesive or resorcinol adhesive used in the present invention is an adhesive which cures at room temperature, and the bamboo-wood composite material can be produced by using the adhesive. Therefore, the present invention employs a cold pressing method.
  • the advantages of curing at room temperature are: the energy consumption of hot pressing during hot pressing is reduced, and the color change or carbonization caused by heat on the surface plate is eliminated, and the natural color of the plate is maintained. At the same time, it avoids the elimination of the temperature difference between the watch and the core plate, improves the stability of the performance of the plate, and can fully cure the core layer adhesive of the ultra-thick plate.
  • the invention adopts an ultra-thick veneer of (6 ⁇ 12) mm, and compared with a common veneer with a thickness of (1-3) mm, the composite plate of the same thickness is pressed, the number of layers of the rubber layer is reduced, and the sizing is reduced. Quantity, which reduces costs. It is precisely because the number of layers of the rubber layer is reduced, the reduction of the amount of the glue is such that the higher cost water-based polymer isocyanate adhesive or resorcinol adhesive can be applied to the ultra-thick bamboo-wood composite board, thereby improving the quality of the board.
  • Table 1 shows the relationship between the thickness of the veneer used and the amount of sizing.
  • the water-based polymer isocyanate adhesive compared with the phenolic resin adhesive or the urea-formaldehyde resin adhesive used in the ordinary bamboo-wood composite board, first: the water-based polymer isocyanate adhesive belongs to the aldehyde-free adhesive, and the formaldehyde emission amount of the sheet produced by the same is Substrate used: The formaldehyde emission of bamboo and wood is the same; secondly, the water-based polymer isocyanate adhesive is light yellow or milky white after curing, similar to the color of wood and bamboo, compared with the reddish brown phenolic resin adhesive after curing.
  • the water-based polymer isocyanate adhesive is an adhesive that cures at room temperature and achieves room temperature curing.
  • the present invention stress-degrades the ultra-thick veneer, and after stress degradation treatment, a dot-like or line-like crack is formed in the direction of the loose surface of the veneer, which has a crack compared with the untreated veneer.
  • A is the original state of the board curvature radius (mm)
  • A is a reverse bend radius of curvature of the board (mm)
  • E is the direction of the wood grain by elastic modulus (MPa)
  • MPa elastic modulus
  • S For the thickness of the veneer (mm) (wood-based panel technology, p46, China Forestry Publishing House, Hua Qiankun).
  • the transverse elastic modulus of the ultra-thick veneer is weakened, the compressive stress is generated on the surface of the veneer, and the tensile stress is generated on the back surface, thereby avoiding problems such as warpage and deformation of the veneer;
  • stress degradation After the treatment, the internal stress of the veneer is degraded, which can reduce the loss caused by the rupture of the veneer in the subsequent drying, sizing, stacking and the like, thereby improving the utilization rate of the wood;
  • a punctiform or line-like crack is formed on the surface of the veneer, which increases the specific surface area of the veneer, greatly reduces the resistance of the moisture discharge of the wood, thereby increasing the drying rate of the veneer and reducing the energy consumption of the veneer during drying. .
  • the invention adopts a combined pressure, temperature and humidity curing method, and adopts an environment with a temperature of (60 ⁇ 120) V and a humidity of (60 ⁇ 98)%.
  • the curing method has obvious advantages, and the aqueous polymer isocyanate adhesive or resorcinol adhesive is fully cured under the moist heat treatment, further improving the physical and mechanical properties of the sheet, further releasing the stress existing in the sheet, and improving the sheet. Dimensional stability.
  • the manufacturing technology of bamboo laminated timber is a well-known technology (Zhao Renjie, Yu Yunshui, Bamboo Wood-based Panel Technology, China Forestry Press, 2002).
  • the bamboo is cut into 2500mm long bamboo segments by a cutting machine; Cut into bamboo pieces with a width of 20mm; use a rough planer to remove part of the surface of bamboo green and bamboo yellow; cook the above-mentioned rough bamboo strips, and carry out mildew and anti-corrosion treatment; dry it to a water content of 7 % ⁇ 9%;
  • the dried bamboo strips are finely planed with a fine planer, the thickness precision is kept at ⁇ 0.2mm, and the aqueous polymer isocyanate adhesive is applied on the side and surface of the bamboo strip, according to a predetermined width and After the thickness is passed through the cross-stitch and the slab, the press is processed to a thickness of 5, 6, 7.5, 10, 15 and 20 mm and a width of 1300 mm using a press having a positive pressure of 2.0 MPa and
  • the poplar is cut into an ultra-thick veneer having a thickness of 8, 9 or 10 mm, a width of 1300 mm and a length of 2500 mm, as described in ZL01280006.6.
  • the stress degrading machine performs stress degradation treatment on the veneer to form a single-plate with a point or a line-like crack in the longitudinal direction of the loose surface of the veneer after the veneer is processed, and the veneer of the veneer.
  • the average length of the crack is about 3.0 cm, the average depth is 1/4 of the plate thickness, the average width is 1 mm, and the average spacing between the cracks is 1.0 cm (see Figure 2).
  • the cardless shaft rotary cutting machine adopts a universal joint shaft as a transmission mechanism, and the two universal joints used are the same
  • the heart rotates; at the same time, the friction shaft adopts a roller shaft with a tightening nut at both ends and a plurality of ball bearings and a bearing supported by the roller cone bearings arranged at both ends, adopting a rolling fit, when all the bearings and the roller body are After the spacer is installed on the bearing in turn, tighten the shrink nut at both ends of the bearing so that the end faces of the bearing, the roller body and the spacer sleeve abut each other to ensure that the friction shaft is on the same linear axis;
  • the implementation of the technology increases the precision of the rotary cutting while reducing the friction between the wood and the friction roller, reduces the resistance of the rotary cutting, and achieves the purpose of rotating the small-diameter artificial fast-growing wood into an ultra-thick veneer.
  • the rotary cutting process is the same as the conventional conventional cardless shaft cutting process
  • the single-plate stress degradation machine adopts an active rotary feed friction roller shaft system and a special-shaped superimposed gear shaft system, so that the friction roller is the driving shaft, the stress degradation roller is the passive shaft, and the transverse direction of the wood is utilized by the splitting degradation method.
  • the stress is degraded, and the purpose of stress degradation of the wood is completed without destroying the longitudinal strength of the wood.
  • the disintegration process turns the loose surface of the veneer toward the stress degradation roller, the tight edge toward the friction roller, and the gap between the degradation roller and the friction roller. According to the degree of degradation adjustment, stress degradation can be completed after degradation.
  • the veneers described above were dried in a dryer to a moisture content of 7 % to 25%.
  • the aqueous polymer isocyanate adhesive is composed of a main agent and a crosslinking agent, and the amount of the crosslinking agent is 5% to 20% of the main agent, and after being stirred, the aqueous polymer isocyanate adhesive is formed.
  • the main component of the aqueous polymeric isocyanate adhesive is styrene-butadiene latex (SBR), vinyl acetate-ethylene copolymer emulsion (EVA) or polyacrylic acid emulsion.
  • the crosslinking agent of the aqueous polymer isocyanate adhesive is a polymeric isocyanate (P-MDI).
  • the aqueous polymer isocyanate adhesive is evenly coated on the surface of the stress-degraded ultra-thick veneer and the surface of the reconstituted bamboo or bamboo laminated material, and the adhesive amount of each adhesive layer is between 80g/m 2 and 300g/m 2 .
  • the ratio of the main agent to the cross-linking agent can be: 5% of the crosslinking agent is used as the main agent, and the amount of the glue corresponding to each adhesive layer is 200 g/m 2 ; 20% of the agent, the amount of glue applied to each layer is 100g/m 2 ; the amount of crosslinking agent is 12% of the main agent, and the amount of glue corresponding to each layer is 150g/m 2 .
  • the ratio of the main agent to the curing agent may be 10% of the amount of the curing agent polyoxymethylene, and the amount of the glue corresponding to each adhesive layer is 270 g/m 2 .
  • the amount of the curing agent is 15% of the main agent, and the amount of the glue corresponding to each layer is 160 g/m 2 .
  • the amount of the crosslinking agent is 12% of the main agent, and the amount of the glue corresponding to each layer is 230 g/m 2 .
  • the glued recombinant bamboo is laid on the upper and lower layers in the direction of the grain, and the plurality of coated poplar veneers are laid in the core layer in the direction of the grain (see Fig. 3).
  • the paved slab is sent to a cold press for cold pressing at a pressure of (1 to 5) Mpa.
  • the pressure may be 1.5 Mpa, or 5 Mpa, or 3 Mpa; 20 ⁇ 60) min, for example, when the corresponding pressure is 1.5 MPa, the time is 55min; when the corresponding pressure is 5 MPa, the time is 23min, corresponding to 3 MPa, the time is 45min; the temperature is room temperature.
  • the above slabs After the above slabs are taken out, they should be stacked immediately, and a pressure of (1 ⁇ 2) MPa is applied to the surface of each stack.
  • the force, stacking time is (1 ⁇ 5) days, the purpose is to continue to cure the incompletely cured adhesive, further degrading the inside of the slab due to the stress formed by compression.
  • the poplar was cut into 8 mm, 9 mm and 10 mm poplar super-thick veneers and compounded with bamboo laminated material with a thickness of 6mm ⁇ 12mm.
  • the amount of sizing was 200g/m 2 , which was based on the proportion of bamboo and wood in Table 2 It is pressed into an ultra-thick bamboo-yang composite board, and its main physical and mechanical indexes are shown in Table 2.
  • the thickness of the slab is 60mm
  • the compression ratio is 16.66%
  • the thickness of the product is 50mm.
  • the manufacturing technology of recombinant bamboo is a well-known technology (Zhao Renjie, Yu Yunshui, Bamboo Wood-based Panel Technology, China Forestry Press, 2002).
  • the cold pressing drying method and the hot pressing method wherein the cold pressing drying method is processing a bamboo material into a bamboo wire or a bamboo bundle, which is dipped, dried, molded, cold pressed, high temperature dried and glued to form a plate;
  • the pressing method is to process bamboo into bamboo or bamboo bundles, which are dipped, dried, paved, and hot pressed; the above-mentioned reconstituted bamboo is sawn, cross-cut, Finger joints are formed into reconstituted bamboo veneers having a thickness of 5 6 7.5 10 15 and 20 mm, a width of 50 mm and a length of 4000 mm.
  • the spin-cutting, degrading and gluing process of the Chinese fir veneer was the same as in Example 1.
  • the above-mentioned coated and reconstituted bamboo veneer and Chinese fir super-thick veneer are laid on the upper and lower surfaces according to the reconstituted bamboo plate, and the super-thick veneer of the fir is laid on the core layer, paved in the mold of ZL200720141772.2, pressure 5MPa, when it is pressed to a prescribed thickness, a pin is inserted, the above-mentioned mold and bamboo-wood composite slab are sent to a curing room, and the above-mentioned slabs are stacked in an oven at a temperature of (60 120 ° C). The humidity is (60 98 ) % for maintenance, and the time is (1 5 ) h.
  • the bamboo-wood composite ratio in Table 3 is super thick bamboo composite sheet, and its main physical and mechanical indexes are shown in Table 3.
  • the thickness of the slab is 60mm
  • the compression ratio is 16.66%
  • the thickness of the product is 50mm.
  • the sapling veneer is cut and the stress degradation is the same as in the first embodiment.
  • the thickness of the veneer is 8mm.
  • Resorcinol adhesive is mainly composed of a curing agent and a curing agent.
  • the amount of the curing agent is (8 15 %) as the main agent, and after stirring, the resorcinol adhesive is formed.
  • the main agent is a linear resorcinol resin liquid containing alcohol
  • the curing agent is polyoxymethylene
  • the amount of polyoxymethylene is (8 15 %) as the main agent, and after stirring, the resorcinol adhesive is formed.
  • Resorcinol adhesive are coated on the hook 2 passes between stress and degraded wood veneer surface recombination bamboo or bamboo timber surface, the amount of adhesive in the adhesive layer of each 150 g / m 2 ⁇ 300g / m .
  • the glued recombinant bamboo or bamboo laminated material is laid in the upper and lower layers in the direction of the grain, and the 9 layers of the glued eucalyptus veneer are laid on the core layer in a cross structure.
  • the combined slabs are sent to a cold press for cold pressing at a pressure of 1 to 5 MPa; time (20 to 60) min, and the temperature is room temperature.
  • the above slabs are taken out, they are immediately stacked, and a pressure of (1 to 2) MPa is applied to the surface of each stack, and the stacking time is (1 to 5) days, and the purpose is to make the rubbers which are not completely cured.
  • the adhesive continues to solidify, further degrading the interior of the slab due to the stresses formed by compression.
  • Eucalyptus plywood 90 0.60 4000 9000 45.1 70 1.21
  • bamboo laminated timber eucalyptus composite sheet 90 0.70 4078 10000 45.3 90 1.21
  • Reconstituted bamboo eucalyptus composite sheet 90 0.8 4143 12000 46.7 120 1.23
  • bamboo laminated timber and reconstituted bamboo and eucalyptus are used. After compounding, the elastic modulus and static bending strength of the sheet are increased.
  • the following embodiments provided by the present invention are solid wood composite boards made of even-numbered super-thick veneers.
  • the solid wood composite board manufactured by the invention is composed of an even number of veneers, comprising a surface layer of two outer surfaces and a core layer therebetween, and an adhesive is disposed between the veneers of each layer;
  • the core layer may be composed of an even-numbered super-thick veneer of 2 layers, 4 layers, 6 layers, 8 layers, etc., and adopts a parallel or cross structure, wherein the two central boards are intermediate core boards, and the pine layer is loose.
  • the surface is oppositely joined, and the loose faces of the outer layers of the veneers are all oriented toward the intermediate core plate, and the symmetrical blanks may have a texture parallel to the central core plates of the two central layers, or may be perpendicular to the central core plates of the central two layers.
  • the core layer and the surface layer may further include a sub-surface layer, which is also called a balance layer, and the balance layer is made of a veneer having a thickness of 1 mm to 3 mm, and the texture of the veneer and the core layer and the surface veneer of the subsurface layer They are perpendicular to each other and function to prevent lateral warpage of the core sheet.
  • a sub-surface layer which is also called a balance layer
  • the balance layer is made of a veneer having a thickness of 1 mm to 3 mm, and the texture of the veneer and the core layer and the surface veneer of the subsurface layer They are perpendicular to each other and function to prevent lateral warpage of the core sheet.
  • the core layer is composed of two layers of 6 mm to 12 mm thick super-thick veneers 3, which are made of low-quality wood such as poplar, Chinese fir, cedar, metasequoia, and spruce.
  • the surface layer (decorative layer) is composed of veneers 4', 5' having a thickness of 0.2 mm to 1.5 mm, and is made of precious hardwood leaves such as teak, rosewood, and cloned wood.
  • the sub-surface layer is composed of two layers of 1 mm to 3 mm thick veneers, that is, one layer is provided on both sides of the core layer, which is poplar and birch. Or artificial forest quick-growing materials such as eucalyptus (not shown).
  • the super-thick veneer used in the core layer is a veneer which is cut by logs, and has a dot-like or line-like crack 1 in the direction of the loose surface of the loose surface (see Fig. 2).
  • the cracking of the core layer thick pine board surface with an average length of between 2.0 C m ⁇ 5.0cm, its average depth of thickness 1 / 6 ⁇ 1 / 2, the average width of 0.2mm ⁇ 3mm, The average spacing between the cracks is 0.5 cm to 5 cm.
  • the manufacturing method of the solid wood composite board manufactured by the ultra thick board provided by the invention comprises the following steps:
  • the low-quality wood such as poplar, Chinese fir, cedar, metase or spruce is cut into 6mm ⁇ 12mm super-thick veneers, and the veneer is then dissipated by the disintegration device to form the loose surface.
  • a dot-like and/or line-like crack is used as a veneer for the core layer.
  • Precious hardwood leaves such as teakwood, Dalbergia or cloned wood are cut into 0.2mm ⁇ 1.5mm veneers as decorative veneers for surface layer;
  • the adhesive used may be one of a urea-formaldehyde adhesive, a melamine-modified urea-formaldehyde adhesive, a phenolic adhesive or an isocyanate;
  • the core layer super-thick veneer and the sub-surface ordinary veneer are sized.
  • the adhesive used is urea-formaldehyde adhesive, melamine-modified urea-formaldehyde adhesive or phenolic adhesive
  • the sizing amount is (150 ⁇ 300) g/m 2 ; when the adhesive used is isocyanate, the amount of sizing is (20 to 50) g/m 2 .
  • the surface thin veneer is not glued.
  • the sizing of the veneer is oriented toward the center of symmetry, symmetrically splicing, all the super-thick veneers are laid in the core layer of the plate in the direction of the grain; the two veneers are symmetrically laid in the direction of the grain Upper and lower layers.
  • two ordinary veneers are used as the sub-surface layer symmetrically laid on the outer sides of the core veneer in the horizontal direction.
  • the preform is hot pressed to make it integrated.
  • an appropriate hot pressing temperature, hot pressing pressure, and hot pressing time are set depending on the type of the adhesive to be used.
  • the amount of sizing is (150-300) g/m 2 , the hot pressing temperature is (120 ⁇ 160) °C, and the hot pressing pressure is (0.7 ⁇ 2) MPa, hot pressing time is (0.5 ⁇ 1.6) min/mm;
  • the adhesive is phenolic adhesive, the sizing amount is (150-300) g/m 2 and the hot pressing temperature is (130-180) °C, hot pressing pressure is (0.7 ⁇ 2) MPa, hot pressing time is (0.5 ⁇ 2) min/mm;
  • the adhesive is isocyanate, the sizing amount is (20 ⁇ 50) g/m 2 , hot pressing temperature (90 ⁇ 130) V, hot pressing pressure is (0.7 ⁇ 2) MPa, hot pressing The time is (0.5 to 1.2) min/mm.
  • the core layer is made of ultra-thick veneer, which reduces the number of layers, saves the amount of adhesive and reduces the cost. If an aldehyde-based adhesive is used, the amount of the formaldehyde can be reduced as compared with the existing plywood because the adhesive layer can be reduced at the same thickness;
  • Rotary low-quality wood is cut into 6mm ⁇ 12mm thick super-thick veneer, which is used to make solid wood composite board. Compared with blockboard, it reduces the loss of wood sawing road and improves the utilization rate of wood. Compared with the finished plywood, it gives people a feeling of being closer to solid wood.
  • the even-layered symmetrical structure is used, and the ultra-thick veneer of the core layer is subjected to spalling treatment, which is beneficial to balance the internal stress of the plate, thereby reducing defects such as warpage of the composite plate.
  • the lateral stress of the super-thick veneer is weakened, thereby avoiding the problems of warpage and deformation of the veneer.
  • the surface stress of the veneer is released, which can be reduced.
  • the loss caused by the rupture of the veneer thereby improving the utilization rate of the wood;
  • the eucalyptus veneer forms a point-like or line-like crack, increasing The specific surface area of the veneer greatly reduces the resistance of the moisture discharge of the wood, thereby increasing the drying rate of the veneer and reducing the energy consumption when the veneer is dried.
  • the following examples are solid wood composite panels made of odd-numbered super-thick veneers.
  • the low-quality wood such as masson pine, eucalyptus or hemlock is cut into 6mm ⁇ 12mm super-thick veneers (as shown in Figure 6). 6, 7, 8.
  • the veneers 6, 7, and 8 are passed.
  • the disintegration device performs disintegration, and forms a dot-like and/or line-like crack in the direction of the loose surface of the loose surface as a veneer for the core layer.
  • the broadleaf wood such as paulownia, birch, teak, Dalbergia or cloned wood is spin-cut to form a veneer of 0.6 mm to 1.5 mm, 8, 9 as a decorative veneer;
  • the secondary surface layer is composed of 2 layers of 1 mm to 3 mm, and a layer is provided on both sides of the core layer, which is poplar, birch or eucalyptus. It is made of artificial forest fast-growing material (not shown in the figure).
  • the adhesive used may be one of a urea-formaldehyde adhesive, a melamine-modified urea-formaldehyde adhesive, a phenolic adhesive or an isocyanate;
  • the ultra-thick veneer used in the core layer and the ordinary veneer used in the sub-surface layer are sized.
  • the adhesive used is urea-formaldehyde adhesive, melamine-modified urea-formaldehyde adhesive or phenolic adhesive
  • the amount of sizing is It is (150 ⁇ 300) g/m 2 ; when the adhesive used is isocyanate, the amount of sizing is (20 ⁇ 50) g/m 2 .
  • the surface thin veneer is not glued.
  • the above-mentioned glued ultra-thick veneer is used as a core layer, and the cross-structured bunker is composed of odd-numbered layers of 3, 5, and 7 layers, and the surface layer is composed of uncoated rubber sheets of 0.6 mm to 1.5 mm.
  • a cross-structure assembly is formed with the veneer of the sub-surface layer.
  • the core layer is three layers 6, 7, and 8, which are formed into cross-structured panels, and surface veneers 9 and 10 are disposed on the outside, as shown in FIG.
  • a sub-surface layer (not shown) may also be disposed between the core layer and the surface layer, and the wood grain of the sub-layer and the core layer and the surface veneer are perpendicular or offset from each other.
  • the hot pressing process and other processes are the same as those of the solid wood composite sheet manufactured by the previous even layer super thick veneer.

Description

技术领域
本发明涉及木基复合板材及其制造领域, 提供一种超厚竹木和实木复合板材, 还提 供该超厚竹木和实木复合板材的制造方法。
背景技术
随着中国木结构建筑应用的快速发展, 带动了中国对结构材需求的增加, 据住房与 城乡建设部统计, 2007年中国结构材缺口为 4000万 m3, 随着中国木结构房屋及建筑的 不断发展, 加上四川地震重建用材约需 2000万 m3, 至 2010年, 中国的结构材缺口将达 到 9000万 m3。 据加拿大联邦政府官员称, 加拿大目前在中国内地已建成的木结构房屋 约为 300栋, 计划再建 9000栋, 估计中国内地未来五年内每年建造的木结构房屋数量将 达到 15000栋左右, 这将为结构用材带来巨大的市场前景。 如果通过工艺技术的突破, 将中国的人工林小径级木材制成实木复合板或者将其与竹材通过合理的工艺技术制造成 满足结构使用要求的超厚竹木复合材料, 从而替代大径级的优质木材, 对缓解中国木材 供应紧张的局面具有重要的意义和广阔的市场前景。
目前, 实木复合板材主要包括细木工板和多层实木复合胶合板等两大类产品, 细木 工板是在小木方块拼成的芯板的上下表面各覆盖一层单板, 经胶压而成的一种特殊的胶 合板, 芯板通常是将原木锯截成 (2〜10 ) cm宽、 (l〜5)mm厚的木条而组成的拼板或木 格结构板。 采用这种方法制造芯板存在着原木锯裁时锯路损耗多, 木材利用率低的不足, 基于中国商品材主要以速生人工林木材为主的现状, 人工林木材普遍存在径级小、 密度 低、 结疤多、 结构疏松、 强度低等缺陷。 若直接经过锯解当作规格材使用, 则存在边角 料较多和由于节子及幼龄材等缺陷而造成规格材不合格比例高等问题, 导致用人工速生 林木材生产规格材的木材利用率较低, 另外, 并且因为组合起来的细木工板中的木条, 其横向间采用胶拼连接, 导致芯板的横向静曲强度主要取决于胶粘剂的连接强度, 所以 细木工板通常由于横向强度低而达不到国家标准的要求 (邹林林,吕斌,杨娜.我国细木工板 发展现状和质量问题分析,林业机械与木工设备 ,2006,34(5):4-6.)。
无论从研究的内容、 范围, 还是从研究的深度来看, 中国对竹木复合材料的研究水 平均处于世界领先地位。 据不完全统计, 中国各种竹类人造板加工企业已近千家, 产品 达数十种, 产品广泛地应用于汽车车厢底板、 集装箱底板、 建筑水泥模板、 地板、 装饰 材料、 家具等领域 (张应鹤.竹材人造板发展的思考.木材加工机械, 2004 ) 。 若将小径级 木材加工成单板, 单独或结合竹材生产结构用胶合板或单板层积材, 则可大大提高木材 的利用率。 现有技术中的多层实木或竹木复合胶合板是将原木例如人工速生林木材制成 lmm〜 3mm 的单板作为芯层, 经过干燥、 涂胶、 组坯 、 热压等工序制成胶合板、 单板层积材 或实木、 竹木复合材料, 这种复合板材由于所用的单板较薄, 生产相同厚度的复合板材, 单板越薄, 胶层越多, 所使用的胶黏剂就越多, 所采用的胶黏剂一般为酚醛树脂或脲醛 树脂等热固型醛类胶黏剂, 从而造成甲醛释放量增多和成本的增加。
中国专利 01 133469.X提出了一种采用 4mm〜10mm的单板制造的三层胶合板作为芯 板, 经砂光后, 在上、 下表面再贴上面皮而成的多层实木复合材料。 这种厚单板构成的 复合板材, 可以解决前述单板薄用胶量大带来的问题, 但是, 采用传统的旋切设备生产 超过 5mm的旋切单板困难较大, 主要是由于在木材旋切成单板时, 单板在木段上原为圆 弧形, 而旋切时被拉平, 并相继反向弯曲。 结果在单板的表面产生压应力, 在单板的背 面产生拉应力:
E - S E - S 式中: A为单板原始状态的曲率半径(mm), A为单板反向弯曲的曲率半径(mm), E为木材横纹方向的弹性模量 (MPa) , S为单板的厚度 (mm) (人造板工艺学, p46, 中国林业出版社, 华毓坤) 。 从式中可以看出, 原木的直径越小, 单板厚度越大, 则板 材的这种内应力越大, 在单板的干燥过程中就越容易产生翘曲变形 (甚至引起卷曲变形 如图 1 所示) 。 当应力大于木材横纹抗拉或抗压强度时, 单板就会产生开裂现象, 这些 缺陷的出现将严重影响单板的出材率和后序加工工序如涂胶、 组坯等工序。 其次, 采用 这种结构的单板作为芯板由于单板的应力过大, 导致制造出来的复合板材容易产生翘曲 变形; 再者, 采用二次贴面加工工艺, 增加了贴面工序。
再有, 现有复合板材的成型方法一般采用热压成型法此外, 而竹 /木材均为热不良导 体, 采用热压法生产厚板材的难度较大, 一般现有的板材厚度小于 30mm。
发明内容
本发明的目的在于改进现有工艺技术中的不足, 提供一种超厚竹木复合板材, 其用 胶量大大少于现有同等板厚的复合板, 且具有不变形、 不翘曲等优点。
本发明的另一个目的在于提供所述超厚竹木复合板材的制造方法。
本发明还有一个目的在于提供一种其各向强度均符合国家标准、 不易翘曲变形、 加 工方便、 胶黏剂用量较低可降低成本的用超厚单板制造的超厚实木复合板材。
本发明还有另一个目的在于提供所述超厚实木复合板材的制造方法。
为实现上述目的, 本发明采取以下工艺技术方案:
本发明提供的超厚竹木复合板材包括芯板、 面板和背板, 所述芯板为若干块厚度为 ( 6〜12 ) mm旋切超厚单板组成; 所述面板和背板均由竹材制成。 所述芯板中相邻层所 述单板为顺纹或交叉结构组合而成, 构成芯板的所述超厚单板为经过应力降解处理的单 板, 即在每层所述单板的松面的顺纹方向形成有点状或线段状的裂纹。 在相邻所述单板 之间设置胶层。
所述单板松面上的所述裂纹的平均长度在 2.0Cm〜5.0cm 之间, 平均深度为板厚的 1/4〜1/2; 或者,
所述单板松面上的所述裂纹的平均长度在 2.0Cm〜5.0cm 之间, 平均深度为板厚的 1/4〜1/2, 平均宽度为 0.2mm〜3mm, 裂纹之间的平均间距为 0.5cm〜5cm。
所述的超厚竹木复合板材: 其总厚度可达到 45mm〜90mm。
所述的超厚竹木复合板材, 作为面板和背板的竹材与作为芯材的木材的厚度比为 1 : 10〜2: 1。
所述的竹材可以为 (5〜20 ) mm厚的重组竹, 也可以为相同厚度的竹集成材。 所述超厚竹木复合板板层间设有的胶层, 所用的胶粘剂为水性高分子异氰酸酯胶粘 剂, 涂胶量为 80g/m2〜300g/m2
或所述超厚竹木复合板板层间设有的胶层, 其所用的胶粘剂为间苯二酚胶粘剂, 涂 胶量在 150g/m2〜300g/m2
上述超厚竹木复合板材的制造方法, 包括备料工序、 涂胶工序、 组坯工序、 成型工 序和养护工序。
1 . 备料工序: 包括作为面板和背板的竹板材的制备、 作为芯板的所述单板旋切及应 力降解处理和胶粘剂的调制等步骤。 其中: 竹单板的制备包括重组单板的制备和竹集成 材的制备。
1.1 将竹材加工成重组竹或竹集成材, 作为面板和底板, 该方法为现有技术。
1.2 将原木旋切成 (6〜12)mm 超厚单板, 在单板的松面通过应力降解机降解形成具 有点状或线段状裂纹的单板, 经过干燥处理后, 使已降解应力的超厚单板的含水率达到
7 %〜25%。
1.3所用的胶粘剂为水性高分子异氰酸酯胶粘剂, 由主剂和交联剂组成, 主剂可以为 苯乙烯一丁二烯乳胶 (SBR) , 乙酸乙烯酯一乙烯共聚乳液 (EVA) 或聚丙烯酸乳液, 交联剂为聚合异氰酸酯 (P-MDI ) , 交联剂用量为主剂的 5%〜20% (重量百分比) , 经 搅拌均勾后, 形成水性高分子异氰酸酯胶粘剂。
若是使用间苯二酚胶粘剂, 此种胶粘剂由主剂和固化剂组成, 主剂为含有醇的线型 间苯二酚树脂, 其中醇的含量为 1%-5%之间, 固化剂为聚甲醛粉末, 聚甲醛的用量为主 剂的 8 %〜15 % (重量百分比) , 经搅拌均勾后, 形成间苯二酚胶粘剂。 2.. 涂胶工序
将水性高分子异氰酸酯胶粘剂或间苯二酚胶粘剂均勾地涂布在经过应力降解的超厚 单板表面和重组竹或竹集成材表面。 若为水性高分子异氰酸酯胶粘剂, 其涂胶量为 80g/m2〜300g/m2之间, 若为间苯二酚胶粘剂, 其涂胶量为 150g/m2〜300g/m2之间。
3. 组坯工序
将重组竹或竹集成材和经过应力降解的单板按顺纹或交叉结构组坯, 经过应力降解 的若干所述单板组合在一起形成芯板, 重组竹或竹集成材作为面板和背板置于芯板的两 个侧面, 形成板坯。
该单板叠合时, 对于松面的朝向向芯层, 对称组坯。
4.成型工序
将上述组合好的板坯送入冷压机中进行冷压, 压力为 (1〜5 ) Mpa, 时间为 (20〜 60 ) min, 温度为室温。
在成型工序后面还可以设置第五道工序: 养护工序。
5.养护工序
这是一个备选工序。
将上述的板坯堆叠在温度为 (60〜120 ) °C, 湿度为 (60〜98 ) %的烘箱中进行养 护, 养护时间为 (1〜5 ) h, 养护压力 (0.6〜2 ) MPa。
本发明提供的用超厚单板制造的实木复合板材, 是由包括两个外表面的表层和其间 的芯层构成, 各层单板之间设有胶粘剂;
所述芯层由 6mm〜12mm的超厚单板组成, 表层则用 0.2mm〜1.5mm的单板组成; 所用的芯层超厚单板为经原木旋切而成的单板, 在其松面的顺纹方向设有点状或线 段状的裂纹。
上述芯层超厚单板松面上的裂纹, 其平均长度在 2.0Cm〜5.0cm之间, 平均深度为板 厚的 1/6〜1/2, 或者
其平均长度在 2.0cm〜5.0cm之间,平均深度为板厚的 1/6〜 1/2,平均宽度为 0.2mm〜 3mm, 裂纹之间的平均间距为 0.5cm〜5cm。
更进一步地, 所述芯层可以是由 2、 4、 6、 8 等偶数层超厚单板组成, 采用平 行或交叉结构组坯。
更具体地, 其中, 中心的两块单板为中间芯板, 其松面相对接合, 其外面的各层单 板的松面均朝向中间芯板, 对称组坯, 其纹理可以与中心两层的中间芯板平行, 也可以 与中心两层的中间芯板垂直或相错设置;
在所述芯层和表层之间还可以包括次表层, 次表层为次芯板层, 也称为平衡层, 该 平衡层用厚度为 lmm〜3mm的单板制成,该次芯板层的单板与芯层和表层单板的纹理走 向垂直或相错设置, 其作用是防止芯层板材的横向翘曲。
更进一步地, 所述芯层也可以是由 3、 5、 7 等奇数层单板组成, 采用平行或交 叉结构组坯。
更具体地, 其中, 中心设有一块单板为中间芯板, 其外面的各层单板的松面均朝向 中间芯板, 对称组坯, 其纹理可以与中间芯板平行, 也可以与中间芯板垂直或相错设置; 其外面也可以设有次表层, 次表层为次芯板层, 也称为平衡层, 该平衡层用厚度为 lmm〜3mm的单板制成, 该次表板层的单板与芯层和表层单板的纹理走向垂直或相错设 置。
前述的用超厚单板制造的实木复合板材, 其中所述的芯层可以使用杨木、 杉木、 柳 杉、 水杉、 云杉等低质木材, 经过旋切而成 6mm〜12mm的超厚单板制成; 所述表层可 以由柚木、 黄檀、 克隆木等珍贵硬阔叶材旋切而成的厚度为 0.2mm〜 1.5mm的装饰贴面 板制成。
如果包括所述的次表层, 则所述次表层的单板可以由杨木、 桦木或桉树等人工林速 生材旋切而成的厚度为 lmm〜3mm的普通单板制成。
本发明提供的用超厚单板制造的实木复合板材的制造方法包括如下步骤:
A. 单板制作:
将制作芯层单板的木材, 经过旋切而成 6mm〜12mm的超厚单板, 经过将所述单板 在疏解装置中疏解, 则在其松面顺纹方向形成点状和 /或线段状裂纹, 作为芯层。
制作表层单板的木材, 经旋切而成 0.2mm〜1.5mm的单板, 作为表层装饰性单板;
B.干燥:
将上述的单板干燥至含水率为 8 %〜15%;
C.涂胶:
将芯层所用的超厚单板进行施胶, 而表层所用的薄单板不施胶;
D.组坯:
将施胶后的超厚单板进行组坯, 再将 2张薄单板铺装在芯层板坯的上、 下表层;
E.热压:
对于组坯进行热压, 使其成为一体;
热压工序中根据所使用的粘接剂的种类设定与之相适应的热压温度、 热压压力和热 压时间。
在上述工艺中, 如果包含次表层, 则在 A单板制作工序中, 将制作次表层的木材经 旋切而成 lmm〜3mm的单板, 在 B干燥工序中同样将其干燥至含水率为 8 % -15%, 在 C 涂胶工序中对其涂胶, 然后在 D组坯工序中, 将次表层单板使其木纹与芯层和表层木纹 均垂直或相错地设置在芯层和表层单板之间组合。
在上述工艺中, 所用的胶黏剂可以为脲醛胶黏剂、 三聚氰胺改型的脲醛胶黏剂、 酚 醛胶黏剂和异氰酸酯等其中的一种。 如果胶粘剂为脲醛胶黏剂或三聚氰胺改型的脲醛胶 黏剂, 其施胶量为(150〜300)g/m2, 热压时间为 (0.5〜1.6 ) min/mm, 热压温度为 ( 120〜 160 ) V, 热压压力为 (0.7〜2)MPa。 如果胶粘剂为酚醛胶黏剂, 其施胶量为 (150〜300 ) g/m2,热压时间为(0.5〜2 ) min/mm,热压温度为(130〜- 180) °C,热压压力为(0.7〜2)MPa。 如果胶粘剂为异氰酸酯, 其施胶量为 (20〜50 ) g/m2, 热压时间为 (0.5〜1.2 ) min/mm, 热压温度为 (90〜130 ) °C, 热压压力为 (0.7〜2 ) MPa。
在组坯工序中, 多层超厚单板组成的芯板中, 置于中心的一块或两块单板为中间芯 板, 如果是两块单板为中间芯板的, 该两块单板松面相对接合, 在中间芯板外面的各层 单板可以是其松面均朝向中间芯板接合, 对称组坯, 其纹理可以与中间芯板平行, 也可 以与中心两层的中间芯板垂直或相错设置; 松面朝向板芯, 对称组坯。
本发明提供的超厚竹木和实木复合板材可以从人工林速生木材上通过旋切技术旋切 出 (6〜12 ) mm的超厚单板, 再利用应力降解处理技术, 在单板松面上制出点状或线段 状的裂纹, 具有明显的优点: 首先, 经过应力释放处理后, 削弱了超厚单板的横向应力 作用, 因而避免了单板的翘曲、 变形等问题; 其次, 经过应力释放处理后, 单板的表面 应力得到释放, 可以减小在后续干燥、 施胶、 组坯等工序中因单板破裂而造成的损失, 从而提高了木材的利用率; 再者, 经过应力释放处理后, 单板形成了点状或线段状的裂 纹, 增加了单板的比表面积, 使木材的水分排出的阻力大大减少, 从而提高了单板的干 燥速率, 即减少了单板干燥时的能耗; 从而实现了用人工林速生材制成减少了胶层的数 量的超厚竹木和实木复合板。 由于竹木和实木复合板中间的芯板是超厚单板, 所以与现 有的普通复合板相比可以大大减少施胶量, 而经过特殊的应力降解处理过程在单板上制 出裂纹, 又可以很好地解决厚单板的翘曲、 变形和开裂等问题。 本复合板通过使用超厚 的单板和对于粘接剂种类的选择及对涂胶量的特殊设计, 将成本较高的水性高分子异氰 酸酯胶粘剂或间苯二酚胶粘剂应用到竹木复合结构材中, 而且由于采用水性高分子异氰 酸酯胶粘剂或间苯二酚胶粘剂, 可以实现冷压固化成型, 解决了超厚复合板由于热传导 性较差难以用热压法生产的问题, 从而实现了超厚竹木和实木复合材料的制造。
本发明使用 6mm〜12mm的超厚单板, 与普通的厚度为 lmm〜3mm的单板相比, 具 有的另一个明显的优点: 与普通多层实木复合胶合板相比, 增加了板材的实木感; 与细 木工板相比, 减少了将原木锯截成实木条时锯路的损耗, 提高了木材的利用率, 同时因 采用旋切工艺, 提高了生产效率。
以下以芯层为 1.5mm,3mm , 6mm和 9mm厚的单板,背板和面板分别采用一层 1mm 厚的装饰单板, 制成目标厚度为 18mm的实木复合板材, 说明所用单板厚度与施胶量之 间的关系。 从表 1 中可以看出, 随着单板厚度的增加, 施胶量减小, 同样生产 18mm厚 的板材, 若采用 6mm厚的单板施胶量仅为 1.5mm厚单板的 21.05%; 若采用 9mm厚的单 板, 其施胶量仅为 1.5mm厚单板的 15.79%。 施胶量的减少大大降低了板材的生产成本。
表 1 单板厚度与施胶量之间的关系
Figure imgf000009_0001
下面结合附图和具体实施例对本发明作进一步说明, 并非对本发明的限制, 照本发明公开内容所进行的任何本领域的等同替换, 均属于本发明的保护范围。
附图说明
图 1为未经过应力降解的 (6〜12)mm厚单板产生的翘曲变形图
图 2为经过应力降解的 (6〜12)mm 厚单板
图 3 为顺纹结构组坯的竹材集成材与杨木复合板材
图 4 为交叉结构组坯的重组竹与桉树复合板材
图 5为偶数层超厚单板制造的实木复合板材
图 6为奇数层超厚单板制造的实木复合板材
附图中, 1为在超厚单板上经过降解制得的点状或线段状的裂纹, 2 为竹层积材, 3 为顺纹铺装(6〜12 ) mm厚的单板, 4为重组竹, 5 为顺纹组坯的 (6〜12 ) mm厚单板, 6为横纹组坯(6〜12 ) mm厚单板 3为超厚顺纹芯板, 4'、 5 '分别为下上下表板, 7、 8 为 芯层超厚横纹芯板, 9、 10为上下表板。
具体实施方式
本发明提供的超厚竹木复合板材包括芯板、面板和背板,所述芯板为若干块(6〜12 ) mm超厚旋切单板; 所述面板和背板是由竹材组成。 所述芯板包括相邻层为顺纹(如图 3 所示) 或交叉结构 (如图 4所示) 组合而成的若干层所述超厚单板, 在相邻所述单板之 间设置胶层, 所用的芯层超厚单板为经过应力降解处理后的单板 (如图 2所示) , 即在 每层所述单板的松面的顺纹方向形成有点状或线段状的裂纹; 所述胶层的胶粘剂为水性 高分子异氰酸酯胶粘剂或间苯二酚胶粘剂。 上述单板松面上的所述裂纹的平均长度在 2.0Cm〜5.0cm 之间, 平均深度为板厚的 1/4〜1/2。
进一步地, 所述裂纹的平均宽度为 0.2mm〜3mm, 裂纹之间的平均间距为 0.5cm〜 5cm。 裂纹的宽度和间距如此, 应力降解效果更佳。
如果降解应力的裂纹长度较短、 深度较浅, 或者更稀疏, 达不到减小超厚单板横纹 方向的弹性模量, 根据单板应力公式可知, 则应力释放不彻底, 在后续干燥和涂胶过程 中会产生翘曲、 变形; 但是, 如果裂纹降解程度过大, 在降解过程中会直接造成单板撕 裂和增加单板表面的粗糙度, 从而破坏单板的力学性能, 增加了施胶量, 使得复合板的 性能降低。
所述的超厚竹木复合板材: 其总厚度可达到 45mm〜90mm。
所述的超厚竹木复合板材, 作为面板和背板的竹材与作为心材的木材的厚度比为 1 : 10〜2: 1。
所述的竹材可以为 5mm〜20mm厚的重组竹, 也可以为相同厚度的竹集成材。
所述超厚竹木复合板层间设有胶层的胶粘剂为水性高分子异氰酸酯胶粘剂, 涂胶量 为 80g/m2〜300g/m2
或所述超厚竹木复合板层间设有胶层的胶粘剂为间苯二酚胶粘剂, 涂胶量为 150g/m2~ 300g/m
上述超厚竹木复合板材的制造方法, 包括备料工序、 涂胶工序、 组坯工序、 成型工 序和养护工序。
1 . 备料工序: 包括竹板材的制备、 单板旋切及应力降解处理、 胶粘剂调制步骤。 其 中: 竹单板的制备包括重组单板的制备和竹集成材的制备。
1.1 将竹材加工成重组竹或竹集成材, 作为面板和底板。
1.2 将原木旋切成 6mm〜12mm超厚单板, 在单板的松面通过应力降解机降解形成 点状或线段状裂纹的单板, 经过干燥处理后, 使单板的含水率达到 7%〜25%, 作为芯板。
1.3胶粘剂可以是如下两种:
a.水性高分子异氰酸酯胶粘剂, 其由主剂和交联剂组成, 主剂为苯乙烯一丁二烯乳胶 ( SBR) , 乙酸乙烯酯 _乙烯共聚乳液 (EVA) 或聚丙烯酸乳液, 交联剂为聚合异氰酸 酯 (P-MDI ) , 交联剂的用量为主剂的 5%-20%, 经在常温下搅拌均勾后, 形成水性高分 子异氰酸酯胶粘剂。
b . 间苯二酚胶粘剂, 其由主剂和固化剂组成, 主剂为含有醇的线型间苯二酚树脂液 体, 固化剂为聚甲醛, 聚甲醛的用量为主剂的 8%〜15%, 在常温下搅拌均勾后, 形成间 苯二酚胶粘剂。 2. 涂胶工序
将水性高分子异氰酸酯胶粘剂或间苯二酚胶粘剂均勾地涂布在经过应力降解的超厚 单板表面和重组竹或竹集成材表面。
若为水性高分子异氰酸酯胶粘剂,其涂胶量在 80g/m2〜300g/m2之间; 若为间苯二酚 胶粘剂, 其涂胶量在 150g/m2〜300g/m2之间。
3 . 组坯工序
将重组竹或竹集成材和经过应力降解的单板按顺纹或交叉结构组坯, 重组竹或竹集 成材作为面板和背板, 经过应力降解的单板作为芯板。
4. 成型工序
将上述组合好的板坯送入冷压机中进行冷压, 压力为 (1〜5 ) MPa; 时间 (20〜60 ) min, 温度为室温。
在成型工序后面还可以设置第五道工序: 养护工序。
5 . 养护工序
这是一个备选工序。 将上述的板坯堆叠在温度为 (60〜120 ) °C, 湿度为 (60〜98 ) %的烘箱中进行养护, 养护时间为 (1〜5 ) h, 养护压力 (0.6〜2 ) MPa。
本发明采用了特殊的竹木复合结构, 其基本组成单元由 (6〜12 ) mm厚的木单板和 竹材组合起来的竹 /木单元组成, 将强度高、 表面硬度大且具有特殊纹理的竹材板铺装在 表层, 将密度较低、 强度低且具有节疤等缺陷的以木材旋切而成的超厚单板铺装在芯层, 即发挥了竹材的强度高、 装饰效果等特点, 又发挥了人工林木材利用率和生产效率高等 特点。
随着竹材价格的不断增加, 又由于竹材具有利用率和生产效率低等缺点, 与普通的 竹材层积材相比, 采用竹木复合结构, 提高了生产效率, 降低了生产成本; 此外, 人工 速生材的密度比竹材低, 采用竹木复合结构, 有利于减少了板材的密度, 从而减少了材 料自身的重量。
随着大径级木材的减少, 目前中国的单板层积材主要是由人工林木材生产的, 而速 生人工林木材普遍存在着组织疏松、 强度低、 节子多及生产应力大等缺陷, 利用这些木 材生产的单板层积材往往很难满足结构用材的性能指标。 而采用竹木复合结构, 与普通 的单板层积材相比, 充分发挥了竹材强度高、 硬度大的特点, 提高了板材的物理力学性 能, 使复合板材的性能指标达到了结构用材性能指标的要求。
本发明与规格材相比具有明显的优点, 采用旋切方法, 减少了锯路的损失, 从而提 高了木材的利用率。
本发明提供的超厚竹木复合板材, 即可以用于梁、 柱、 隔栅等建筑结构材, 替代实 木规格材; 也可以用于家具、 门窗等装饰用材。
传统的竹木复合材料通常采用热压法, 由于表、 芯层之间存在温度梯度, 特别是厚 板通常存在着表层由于在高温条件下引起变色甚至发生炭化而芯层由于温度较低还未能 使胶粘剂完全固化的矛盾, 板材厚度越厚, 这种矛盾越突出, 其后果是表面板材由于在 热的作用下发生变色和降解, 影响了板材的装饰效果和力学强度, 而芯层的胶粘剂又由 于温度低尚未完全固化, 达不到胶合的效果, 从而影响板材的胶结强度。 而本发明采用 的水性高分子异氰酸酯胶粘剂或间苯二酚胶粘剂属于常温下固化的胶粘剂, 利用这种胶 粘剂生产竹木复合材料, 可以采用常温固化。 因此, 本发明采用了冷压法。 采用常温固 化优点: 减少了热压过程中热压的能耗, 消除了表面板材因热引发的色变或炭化, 保持 了板材的本色。 同时避免了消除了表、 芯板间的温度差, 提高了板材性能的稳定性, 可 以实现超厚板材的芯层胶粘剂的充分固化。
本发明采用 (6〜12 ) mm的超厚单板, 与厚度为 (1-3 ) mm的普通单板相比, 压制 相同厚度的复合板材, 减少了胶层的层数, 减少了施胶量, 从而降低了成本。 正是由于 胶层的层数减少, 施胶量的减少才使得成本较高的水性高分子异氰酸酯胶粘剂或间苯二 酚胶粘剂可以应用到超厚竹木复合板材上, 提高了板材的胶结质量。 下面以制造 45mm 厚的竹木复合板材为例, 通过表 1说明所用单板的厚度与施胶量的关系。
表 1 单板厚度与施胶量之间的关系
Figure imgf000012_0001
从表 1 中可以看出, 随着单板厚度的增加, 总施胶量减小, 同样生产 45mm厚的板 材,若采用 6mm厚的单板, 总施胶量仅为采用 1.5mm厚单板时的 22.85%; 若采用 1 1mm 厚的超厚单板, 其总施胶量仅为采用 1.5mm厚单板时的 1 1.43 %。 施胶量的减少大大降 低了板材的生产成本。
本发明选用水性高分子异氰酸酯胶粘剂时, 与普通竹木复合板材所用的酚醛树脂胶 粘剂或脲醛树脂胶粘剂相比, 首先: 水性高分子异氰酸酯胶粘剂属于无醛胶粘剂, 用其 生产的板材的甲醛释放量与所用基材: 竹材和木材的甲醛释放量相同; 其次, 水性高分 子异氰酸酯胶粘剂固化后颜色为淡黄色或乳白色, 与木材和竹材的颜色相近, 与固化后 为红褐色的酚醛树脂胶粘剂相比, 使人们更有实木的感觉; 再者, 水性高分子异氰酸酯 胶粘剂属于常温下固化的胶粘剂, 实现常温固化。 本发明对超厚单板进行了应力降解处理, 与未处理的单板相比, 经过应力降解处理 后, 在单板的松面的顺纹方向形成了点状或线段状的裂纹, 其具有明显的优点: 首先, 根据单板表面产生压应力, 背面产生拉应力公式:
E - S E - S 式中: A为单板原始状态的曲率半径 (mm) , A为单板反向弯曲的曲率半径 (mm) , E为木材横纹方向的弹性模量 (MPa) , S为单板的厚度 (mm) (人造板工艺学, p46, 中国林业出版社, 华毓坤) 。 经过应力降解处理后, 削弱了超厚单板的横向弹性模量, 降低了单板表面产生压应力, 背面产生拉应力, 因而避免了单板的翘曲、 变形等问题; 其次, 经过应力降解处理后, 单板的内应力得到降解, 可以减小在后续干燥、 施胶、 组 坯等工序中因单板破裂而造成的损失, 从而提高木材的利用率; 再者, 经过应力降解处 理后, 单板表面上形成了点状或线段状的裂纹, 增加了单板的比表面积, 使木材的水分 排出的阻力大大减少, 从而增加单板的干燥速率, 减少了单板干燥时的能耗。
本发明采用了加压、 温湿联合养护法, 采用温度为 (60〜120) V, 湿度为 (60〜98 ) %的环境中进行养护。 此养护法具有明显的优点, 使水性高分子异氰酸酯胶粘剂或间苯 二酚胶粘剂在湿热的处理下充分固化, 进一步调高板材的物理力学性能, 进一步对板材 存在的应力进行释放, 提高了板材的尺寸稳定性。
实施例 1
竹材层积材的制造技术属于公知技术 (赵仁杰, 喻云水, 竹材人造板工艺学, 中国 林业出版社, 2002) , 将竹材通过踞截机锯截成 2500mm长的竹段; 采用剖竹机将其剖 成宽为 20mm的竹片; 用粗刨机刨去部分表面的竹青和竹黄; 对上述的粗刨竹条进行蒸 煮, 并进行防霉、 防腐处理; 将其干燥至含水率为 7%〜9%; 将干燥后的竹条用精刨机 对其进行精刨, 厚度精度保持在 ±0.2mm, 将水性高分子异氰酸酯胶粘剂涂布在竹条的侧 面和表面, 按预定的宽度和厚度通过横拼和顺纹组坯后, 利用正压力为 2.0MPa, 侧向压 力为 0.2MPa的压机, 将其加工成厚度为 5、 6、 7.5、 10、 15和 20mm, 宽度为 1300 mm, 长度为 2500mm的竹材集成材。
利用专利(ZL00106076.7)所述的无卡轴旋切机,将杨木旋切成厚度为 8、9或 10 mm、 宽度为 1300mm、 长度为 2500mm的超厚单板, 利用 ZL01280006.6所述的应力降解机, 对上述的单板进行应力降解处理, 使所述的单板经过处理后在单板的松面纵向形成点状 或线段状的裂纹的单板, 上述单板松面上的所述裂纹的平均长度在 3.0 cm左右, 平均深 度为板厚的 1/4, 平均宽度为 l mm, 裂纹之间的平均间距为 1.0 cm (参见图 2) 。
所述的无卡轴旋切机采用万向传动轴作为传动机构, 并且所采用的两个万向结为同 心转动; 同时在摩擦轴采用一根两端带有缩紧螺母的辊轴和若干个滚珠轴承和布置在两 端的辊锥轴承支撑的轴承上, 采用滚动配合, 当将所有的轴承、 辊身和隔套依次安装在 轴承上后, 拧紧轴承两端的缩紧螺母, 使得轴承、 辊身和隔套的端面相互紧靠成为一个 整体, 保证了摩擦轴是同一直线轴上; 通过以上两个关键技术的实施, 在增加旋切的精 度同时减少了木材与摩擦辊之间的摩擦力, 减小了旋切的阻力, 达到了将小径级人工速 生材木材旋切成超厚单板的目的, 其旋切工艺与现有普通无卡轴的旋切工艺相同。
所述的单板应力降解机采用主动旋转进给的摩擦滚轮轴系和异型叠加齿轮轴系相结 合, 使摩擦辊为主动轴, 应力降解辊为被动轴, 利用劈裂降解方式对木材的横向应力进 行降解, 达到了不破坏木材纵向强度的前提下, 完成了木材的应力降解的目的, 其疏解 工艺将单板松面朝向应力降解辊, 紧边朝向摩擦辊, 降解辊与摩擦辊的间隙根据降解程 度调整, 经过降解后即可完成应力降解。
将上面所述的单板在干燥机中干燥至含水率为 7 %〜25 %。
所述的水性高分子异氰酸酯胶粘剂由主剂和交联剂组成,交联剂用量为主剂的 5%〜 20%, 经搅拌均勾后, 形成水性高分子异氰酸酯胶粘剂。
所述的水性高分子异氰酸酯胶粘剂的主剂为苯乙烯_丁二烯乳胶 (SBR) , 乙酸乙 烯酯 _乙烯共聚乳液 (EVA) 或聚丙烯酸乳液。
所述的水性高分子异氰酸酯胶粘剂的交联剂为聚合异氰酸酯 (P-MDI ) 。
将水性高分子异氰酸酯胶粘剂均勾地涂布在经过应力降解的超厚单板表面和重组竹 或竹集成材表面, 每个胶层的涂胶量在 80g/m2〜300g/m2之间。
使用水性高分子异氰酸酯胶粘剂, 主剂和交联剂的比例可以是: 交联剂用量为主剂 的 5%, 对应每个胶层的涂胶量在 200g/m2 ; 交联剂用量为主剂的 20%, 对应每个胶层的 涂胶量在 100g/m2 ; 交联剂用量为主剂的 12%, 对应每个胶层的涂胶量在 150g/m2
使用间苯二酚胶粘剂, 主剂和固化剂的比例可以是, 固化剂聚甲醛用量为主剂的 10%, 对应每个胶层的涂胶量在 270g/m2。 固化剂用量为主剂的 15%, 对应每个胶层的涂 胶量在 160g/m2。 交联剂用量为主剂的 12%, 对应每个胶层的涂胶量在 230g/m2
将已涂胶的重组竹按顺纹方向铺装在上、 下表层, 将已涂胶的多张杨木单板按顺纹 方向铺装在芯层 (参见图 3 ) 。
将上述铺装好的板坯送入冷压机中进行冷压, 压力为 (1〜5 ) Mpa, 例如, 具体的, 压力可以是 1.5 Mpa, 或者是 5 Mpa, 或者是 3 Mpa; 时间 (20〜60 ) min, 例如, 对应 压力 1.5 MPa时, 时间是 55min; 对应压力为 5 MPa时, 时间是 23min, 对应 3 MPa时, 时间是 45min; 温度为室温。
将上述的板坯取出后, 应立即进行堆垛, 在每个堆垛的表面施加 (l〜2 ) MPa的压 力, 堆垛时间为 (1〜5 ) 天, 其目的是使未完全固化的胶黏剂继续固化, 使板坯内部由 于压缩形成的应力进一步降解。
将杨木旋切成厚度为 8mm、 9mm和 10 mm的杨木超厚单板, 与厚度为 6mm〜12mm 的竹材层积材复合, 施胶量为 200g/m2,分别以表 2 中的竹木复合比例将其压制成超厚竹 杨复合板材, 其主要物理力学指标如表 2所示。
不同竹木复合比例的竹木复合板材性能指标比较
竹材层 单 板 杨木单 密度 弹性 静曲强 胶层剪切强度
竹木比
原料 积材厚 厚 度 板层数 / /g/c 模量 /MPa
例 /%
度 /mm /mm 层 m3 /MPa /MPa 竹木层 木木层 杨木层
10 6 0.45 8900 64.9 7.23 积材
竹杨复
5 10 5 1 :5 0.51 9297 82.5 8.23 7.25 合板材
竹杨复
6 8 6 1 :4 0.56 9534 91.8 8.43 7.29 合板材
竹杨复
7.5 9 5 1 :3 0.59 9615 97.9 8.45 7.39 合板材
竹杨复
10 8 5 1 :2 0.63 10074 103.4 8.34 7.33 合板材
竹杨复
15 10 3 1 : 1 0.71 10380 109.6 8.53 7.23 合板材
竹杨复
20 10 2 2: 1 0.78 10540 1 12.4 8.34 7.32 合板材
竹材层
0.80 10562 120 9.6
积材
注: 板坯厚度为 60mm, 压缩比为 16.66%, 产品的厚度为 50mm。
从表 2可以看出, 随着竹材比例的增加, 板材的密度增加, 板材的静曲强度也随之 增加, 当竹木比例为 1 : 5 时, 其静曲强度比杨木单板层积材分别增加了 27.18%, 随着 竹木比例的继续增加, 板材的静曲强度增加速度减缓。 从表 2可以看出, 随竹材比例的 增加, 板材的弹性模量和胶层剪切强度略有所增加, 但是增加幅度不大。 竹木层的胶层 剪切强度大于木木层的胶层剪切强度, 由于木材的渗透性比竹材好, 竹木层的胶黏剂主 要渗透到木材界面, 在木材胶合界面形成增强层。
实施例 2
重组竹的制造技术属于公知技术, (赵仁杰, 喻云水, 竹材人造板工艺学, 中国林 业出版社, 2002 ) 。 分冷压烘干法和热压法, 其中冷压烘干法是将竹材加工成竹丝或竹 束, 经浸胶、 干燥、 装模, 冷压、 高温烘干胶合制成的板材; 热压法是将竹材加工成竹 丝或竹束, 经浸胶、 干燥、 铺装, 热压制成的板材; 将上述的重组竹经过锯切, 横拼、 指接形成厚度为 5 6 7.5 10 15和 20mm, 宽度为 50 mm, 长度为 4000mm的重组竹 单板。 杉木单板的旋切, 降解和涂胶工艺与实施例 1相同。
将上述涂完胶的重组竹单板和杉木超厚单板按重组竹板铺装在上、 下表面, 杉木超 厚单板铺装在芯层, 铺装在 ZL200720141772.2 的模具中, 压力为 5MPa, 将其压制到规 定的厚度时, 插上销, 将上述的模具和竹木复合板坯送入养护室, 将上述的板坯堆叠在 烘箱中, 温度为 (60 120 ) °C, 湿度为 (60 98 ) %中进行养护, 时间为 (1 5 ) h 表 3中的竹木复合比例将其超厚竹杉复合板材, 其主要物理力学指标如表 3
重组竹 单板 杨木单 竹木 胶层剪切强度 弹性模 静曲强
原料 厚度 厚度 板层数 比例 /MPa
/g/cm3 S/MPa 度 /MPa
/mm /mm /层 /% 竹木层 木木层 杉木层
10 6 0.40 5453 54.7 4.23 积材
竹杉复
5 10 5 1 :5 0.48 10897 83.9 5.54 4.45 合板材
竹杉复
6 8 6 1 :4 0.61 1 1234 89.8 5.45 4.84 合板材
竹杉复
7.5 9 5 1 :3 0.66 12086 90.8 5.57 4.37 合板材
竹杉复
10 8 5 1 :2 0.76 12217 95.5 5.84 4.53 合板材
竹杉复
15 10 3 1 : 1 0.95 14328 127.4 5.33 4.56 合板材
竹杉复
20 10 2 2: 1 1.15 14123 130.5 5.36 4.32 合板材
重组竹 1.30 15321 139.7 9.6
注: 板坯厚度为 60mm, 压缩比为 16.66%, 产品的厚度为 50mm
从表 3可以看出, 随着竹木比例的增加, 板材的弹性模量和静曲强度增加。 而板材 的密度比重组竹的密度减低, 大大降低了材料本身的自重。
实施例 3
竹集成材和重组竹的制造工艺如实施例 1和实施例 2, 将其锯切成厚度为 8mm厚的 板材 0
桉树单板的旋切, 应力降解与实施例 1相同, 单板的厚度为 8mm
间苯二酚胶粘剂为主剂和固化剂组成, 固化剂的用量为主剂的 (8 15 ) %, 经搅拌 均勾后, 形成间苯二酚胶粘剂。
主剂为含有醇的线型间苯二酚树脂液体, 固化剂为聚甲醛, 聚甲醛的用量为主剂的 ( 8 15 ) %, 经搅拌均勾后, 形成间苯二酚胶粘剂。 将间苯二酚胶粘剂均勾地涂布在经过应力降解的木质单板表面和重组竹或竹集成材 表面, 每个胶层的涂胶量在 150 g/m2〜300g/m2之间。
将涂胶的重组竹或竹集成材按顺纹方向铺装在上下表层, 将 9层涂胶后的桉树单板 按交叉结构铺装在芯层。
将上述组合好的板坯送入冷压机中进行冷压, 压力为 l〜5MPa; 时间(20〜60 ) min, 温度为室温。
将上述的板坯取出后, 立即进行堆垛, 在每个堆垛的表面施加 (l〜2 ) MPa的压力, 堆垛时间为 (1〜5 ) 天, 其目的是使未完全固化的胶黏剂继续固化, 使板坯内部由于压 缩形成的应力进一步降解。
表 4中的交叉结构组坯的超厚竹桉复合板材, 其主要物理力学指标如表 4。
板材厚度 τ¾ 1 弹性模 j t/MPa 静曲强度 /MPa
原料 胶合强度
/mm /g/cm3 横纹 顺纹 横纹 顺纹
桉树胶合板 90 0.60 4000 9000 45.1 70 1.21 竹集成材桉树复合板材 90 0.70 4078 10000 45.3 90 1.21 重组竹桉树复合板材 90 0.8 4143 12000 46.7 120 1.23 从表 4可以看出, 采用竹集成材和重组竹与桉树复合后, 板材的顺纹的弹性模量和 静曲强度增加。
本发明提供的如下实施例为偶数层超厚单板制造的实木复合板材
本发明提供的用超厚单板制造的实木复合板材, 是由偶数层单板组成, 包括两个外 表面的表层和其间的芯层, 各层单板之间设有胶粘剂;
所述芯层可以是由 2层、 4层、 6层、 8层 等偶数层超厚单板组成, 采用平行 或交叉结构组坯, 其中, 中心的两块单板为中间芯板, 其松面相对接合, 其外面的各层 单板的松面均朝向中间芯板, 对称组坯, 其纹理可以与中心两层的中间芯板平行, 也可 以与中心两层的中间芯板垂直, 在所述芯层和表层之间还可以包括次表层, 也称为平衡 层, 该平衡层用 lmm〜3mm厚度的单板制成, 该次表层的单板与芯层和表层单板的纹理 走向相互垂直, 其作用是防止芯层板材的横向翘曲。
在本实施例中, 如图 5所示, 所述芯层由 2层 6mm〜12mm厚的超厚单板 3组成, 其为杨木、 杉木、 柳杉、 水杉、 云杉等低质木材制成, 表层 (装饰层)用 0.2mm〜1.5mm 厚的单板 4'、 5 '组成, 其为柚木、 黄檀、 克隆木等珍贵硬阔叶材制作。
如果在芯层和表层之间还设置次表层, 则次表层 (平衡层)用 lmm〜3mm厚的单板 两层组成, 即在芯层的两侧各设一层, 其为杨木、 桦木或桉树等人工林速生材制成 (图 中未示出) 。
所用的芯层超厚单板为经原木旋切而成的单板, 在其松面的顺纹方向设有点状或线 段状的裂纹 1 (见图 2所示) 。 上述芯层所用超厚单板松面上的裂纹, 其平均长度在 2.0Cm〜5.0cm之间, 平均深度 为其板厚的 1/6〜1/2, 平均宽度为 0.2mm〜3mm, 裂纹之间的平均间距为 0.5cm〜5cm。 本发明提供的用超厚单板制造的实木复合板材的制造方法包括如下步骤:
A. 单板制作:
将杨木、 杉木、 柳杉、 水杉或云杉等低质木材, 经过旋切而成 6mm〜 12mm的超厚 单板, 该单板再经过疏解装置进行疏解, 使其松面顺纹方向形成点状和 /或线段状裂纹, 作为芯层用单板。
将杨木、桦木或桉树等人工林速生材旋切而成 lmm〜3mm的普通单板, 作为次表层 用单板;
将柚木、 黄檀或克隆木等珍贵硬阔叶材, 经旋切而成 0.2mm〜1.5mm的单板, 作为 表层用装饰性单板;
B.干燥:
将上述的单板干燥至含水率为 8 %〜15%;
C.涂胶:
所用的胶黏剂可以为脲醛胶黏剂、 三聚氰胺改性脲醛胶黏剂、 酚醛胶黏剂或异氰酸 酯等其中的一种;
将芯层超厚单板和次表层普通单板进行施胶, 当所用胶黏剂为脲醛胶黏剂、 三聚氰 胺改性脲醛胶黏剂或酚醛胶黏剂时, 其施胶量为 (150〜300) g/m2 ; 当所用胶黏剂为异 氰酸酯时, 其施胶量为 (20〜50) g/m2
表层薄单板不施胶。
D.组坯:
将施胶后的单板松面朝向对称中心, 对称组坯, 所有的超厚单板按顺纹方向铺装在 板材的芯层; 将 2张薄单板按顺纹方向对称地铺装在上、 下表层。
如果包括次表层, 则将 2张普通单板 (厚度为 lmm〜3mm) 作为次表层按横纹方向 对称地铺装在芯层厚单板两侧的外面作为次表层。
E.热压:
对于组坯进行热压, 使其成为一体。
热压工序中根据所使用的粘接剂的种类设定合适的热压温度、热压压力和热压时间。 如果胶粘剂为脲醛胶黏剂或三聚氰胺改性脲醛胶黏剂, 其施胶量为(150-300 ) g/m2, 热压温度为(120〜160 ) °C, 热压压力为(0.7〜2) MPa, 热压时间为(0.5〜1.6) min/mm; 如果胶粘剂为酚醛胶黏剂, 其施胶量为为 (150-300) g/m2, 热压温度为 (130-180 ) °C, 热压压力为 (0.7〜2) MPa, 热压时间为 (0.5〜2)min/mm; 如果胶粘剂为异氰酸酯, 其施 胶量为 (20〜50 ) g/m2, 热压温度为 (90〜130) V, 热压压力为 (0.7〜2 ) MPa, 热压 时间为 ( 0.5〜 1.2 ) min/mm。
本发明提供的用超厚单板制造的实木复合板材具有如下优点:
芯层采用超厚单板, 减少了胶层数, 节约了胶黏剂的用量, 降低了成本。 如果采用 醛类胶黏剂, 与现有的胶合板相比, 由于相同厚度下胶粘剂层可以减少, 因此, 还可以 减少甲醛等气体的释放量;
将低质木材旋切成 6mm〜 12mm厚的超厚单板, 用其制造实木复合板材, 与细木工 板相比, 减少了木材锯路的损失, 提高了木材的利用率; 与普通单板制成的胶合板相比, 使人有更接近实木的感觉。
采用偶数层对称结构, 并将芯层的超厚单板经过疏解处理, 有利于平衡板材的内部 应力, 从而减少复合板材的翘曲变形等缺陷。
单板经过疏解处理, 首先, 削弱了超厚单板的横向应力作用, 因而避免了单板的翘 曲、 变形等问题; 其次, 经过疏解处理后, 单板的表面应力得到释放, 可以减小在后续 干燥、 施胶、 组坯等工序中因单板破裂而造成的损失, 从而提高木材的利用率; 再者, 经过疏解处理后, 桉树单板形成了点状或线段状的裂纹, 增加了单板的比表面积, 使木 材的水分排出的阻力大大减小, 从而增加了单板的干燥速率, 减少单板干燥时的能耗。
下面的实施例为奇数层超厚单板制造的实木复合板材
A. 单板制作:
将马尾松、 桉树或铁杉等低质木材, 经过旋切而成 6mm〜 12mm的超厚单板 (如图 6所示) 6、 7、 8, 将所述单板 6、 7、 8经过疏解装置进行疏解, 在其松面顺纹方向形成 点状和 /或线段状裂纹, 作为芯层用单板。
将泡桐、 桦木、 柚木、 黄檀或克隆木等阔叶材, 经旋切而成 0.6mm〜 1.5mm的单板 8、 9, 作为表层装饰性单板;
如果在芯层和表层之间还设置次表层, 则次表层 (平衡层) 用 lmm〜3mm的单板 2层 组成, 在芯层的两侧各设一层, 其为杨木、 桦木或桉树等人工林速生材制成 (图中未示 出) 。
B.干燥:
将上述的单板干燥至含水率为 8 %〜15%;
C.涂胶:
所用的胶黏剂可以为脲醛胶黏剂、 三聚氰胺改性脲醛胶黏剂、 酚醛胶黏剂或异氰酸 酯等其中的一种;
将芯层所用的超厚单板和次表层用的普通单板进行施胶, 当所用胶黏剂为脲醛胶黏 剂、 三聚氰胺改性脲醛胶黏剂或酚醛胶黏剂时, 其施胶量为 (150〜300 ) g/m2 ; 当所用 胶黏剂为异氰酸酯时, 其施胶量为 (20〜50 ) g/m2。 表层薄单板不施胶。
D.组坯:
将上述涂胶后的超厚单板作为芯层, 采用交叉结构组坯, 由 3层、 5层、 7层 等 奇数层组成, 表层为未涂胶的 0.6mm〜1.5mm的单板组成, 采用与次表层的单板成交叉 结构组坯。 本实施例芯层为三层 6、 7、 8, 成交叉结构组坯, 在其外面设置表层单板 9、 10, 如图 6所示。 也可以在芯层与表层之间设置次表层 (图中未示出) , 该次表层的单 板与芯层和表层单板的木纹走向相互垂直或相错设置。
E.热压:
热压工序以及其他工艺与前面的偶数层超厚单板制造的实木复合板材的实施例相 同。

Claims

权 利 要 求
1.一种超厚竹木复合板材, 包括芯板、 面板和背板, 其特征在于: 所述芯板为若干 块厚度为 6mm〜12mm超厚旋切单板组成; 所述面板和背板均由竹材制成, 所述芯板中 相邻层所述单板为平行或交叉结构组合而成, 构成芯板的所述超厚单板为经过应力降解 处理后的单板, 即在每层所述单板的松面的顺纹方向形成有点状或线段状的裂纹; 在相 邻所述单板之间设置胶层。
2.根据权利要求 1 所述的超厚竹木复合板材, 其特征在于: 所述单板松面上的所述 裂纹的平均长度在 2.0cm-5.0cm之间, 平均深度为板厚的 1/4-1/2 ; 或者,
所述单板松面上的所述裂纹的平均长度在 2.0Cm-5.0cm 之间, 平均深度为板厚的 1/4-1/2, 平均宽度为 0.2mm-3mm, 裂纹之间的平均间距为 0.5cm-5cm。
3.根据权利要求 1 所述的超厚竹木复合板材, 其特征在于: 所述的超厚竹木复合板 材: 其总厚度 45mm-90mm。
4.根据权利要求 1 所述的超厚竹木复合板材, 其特征在于: 所述的超厚竹木复合板 材, 作为面板和背板的竹材与木材的厚度比为 1 : 10-2: 1。
5.根据权利要求 1所述的超厚竹木复合板材, 其特征在于: 所述的竹材为 5-20mm厚 的重组竹, 或为同等厚度的为竹集成材。
6.根据权利要求 1 所述的超厚竹木复合板材, 其特征在于: 所述超厚竹木复合板板 层间设有的胶层为水性高分子异氰酸酯胶粘剂, 涂胶量在 80g/m2-300g/m2
7.根据权利要求 1 所述的超厚竹木复合板材, 其特征在于: 所述超厚竹木复合板板 层间设有的胶层为间苯二酚胶粘剂, 涂胶量在 150g/m2-300g/m2
8.—种超厚竹木复合板材的制造方法, 包括备料工序, 涂胶工序、 组坯工序、 成型 工序和养护工序,
( 1 )备料工序:包括竹板材的制备、单板旋切及应力降解处理和胶粘剂的调配步骤。 其中: 竹材的制备包括重组竹的制备和竹集成材的制备;
1.1 将竹材加工成重组竹或竹集成材, 作为面板和底板;
1.2 将原木旋切成 6-12mm超厚单板,在单板的松面通过应力降解机降解形成点状或 线段状裂纹的单板, 经过干燥处理后, 使单板的含水率达到 7-25%;
1.3所用的胶粘剂为水性高分子异氰酸酯胶粘剂, 由主剂和交联剂组成, 主剂为苯乙 烯_丁二烯乳胶, 乙酸乙烯酯 _乙烯共聚乳液或聚丙烯酸乳液, 交联剂为聚合异氰酸酯, 交联剂用量为主剂的 5%-20%, 经搅拌均勾后, 形成水性高分子异氰酸酯胶粘剂;
或者, 所用的胶粘剂为间苯二酚胶粘剂, 由主剂和固化剂组成, 主剂为含有醇的线 型间苯二酚树脂液体, 固化剂为聚甲醛, 聚甲醛的用量为主剂的 8-15%, 经搅拌均勾后, 形成间苯二酚胶粘剂;
( 2 ) 涂胶工序
将水性高分子异氰酸酯胶粘剂或间苯二酚胶粘剂均勾的涂布在经过降解的木质单板 表面和重组竹或竹集成材表面, 每个胶层的涂胶量在: 对应水性高分子异氰酸酯胶粘剂, 为 80g/m2-300g/m2之间; 对应间苯二酚胶粘剂, 为 150g/m2〜300g/m2之间;
( 3 ) 组坯工序
将重组竹或竹集成材和经过应力降解的单板按顺纹或交叉结构组坯, 经过应力降解 的若干所述单板组合在一起形成芯板, 重组竹或竹集成材作为面板和背板置于芯板的两 个侧面, 形成板坯;
( 4 ) 成型工序
将上述板坯送入冷压机中进行冷压, 冷压压力为 l-5Mpa; 冷压时间 20-60min, 冷压 温度为室温。
9.根据权利要求 8 所述的超厚竹木复合板材的制造方法, 其特征在于: 在成型工序 后面还设置第五道工序:
( 5 ) 养护工序
将上述的板坯堆叠在温度为 60-120°C, 湿度为 60-98%烘箱中进行养护, 养护时间 为 l-5h, 养护压力 0.6-2MPa。
10.—种用超厚单板制造的实木复合板材, 包括两个外表面的表层和其间的芯层, 各 层单板之间设有胶粘剂; 其特征在于:
所述芯层由 6mm〜 12mm厚的超厚单板组成,表层用 0.2mm〜1.5mm厚的单板组成; 所用的芯层超厚单板为经原木旋切而成的单板, 在其松面的顺纹方向设有点状或线 段状的裂纹。
1 1.根据权利要求 10 所述的用超厚单板制造的实木复合板材, 其特征在于: 上述芯 层所用的超厚单板松面上的裂纹, 其平均长度在 2.0Cm〜5.0cm之间, 平均深度为其板厚 的 1/6〜1/2; 或者, 其平均长度在 2.0cm〜5.0cm之间, 平均深度为其板厚的 1/6〜1/2; 平均宽度为 0.2mm〜3mm, 裂纹之间的平均间距为 0.5cm〜5cm。
12.根据权利要求 10或 1 1所述的用超厚单板制造的实木复合板材, 其特征在于: 所 述芯层是由偶数层单板组成, 是由 2层、 4层、 6层、 8层、 或 ......层组成, 采用平行或 交叉结构组坯; 或者
所述芯层是由偶数层单板组成, 是由 2层、 4层、 6层、 8层、 或 ......层组成, 采用 平行或交叉结构组坯, 在所述芯层和表层单板之间设置次表层, 也称为平衡层, 该平衡 层用 lmm〜3mm厚度的单板制成,该次表层的单板与芯层和表层单板的木纹走向相互垂 直或相错设置; 或者,
所述芯层是由奇数层单板组成, 是由 3层、 5层、 7层、 或 ......层组成, 芯层采用平 行或交叉结构组坯; 或者
所述芯层是由奇数层单板组成, 是由 3层、 5层、 7层、 或 ......层组成, 芯层采用平 行或交叉结构组坯, 在所述芯层与表层之间设置次表层, 也称为平衡层, 该平衡层用 lmm〜3mm厚的单板制成, 该次表层的单板与芯层和表层单板的木纹走向垂直或相错设 置。
13.根据权利要求 12所述的用超厚单板制造的实木复合板材, 其特征在于: 所述芯 层对称中心的其松面相对接合的两块单板或一块单板为中间芯板, 其外面的各层单板松 面均朝向中间芯板, 对称组坯, 其纹理与中心两层平行, 或者与中心两层垂直或相错接 合。
14.根据权利要求 10所述的用超厚单板制造的实木复合板材, 其特征在于: 所述的 芯层由杨木、 杉木、 柳杉、 水杉或云杉低质木材制成; 所述表层由柚木、 黄檀或克隆木 木材制成。
15.根据权利要求 12或 13所述的用超厚单板制造的实木复合板材, 其特征在于: 所 述的次表层, 由杨木、 桦木或桉树木材制成的普通单板构成。
16. 一种用超厚单板制造的实木复合板材制造方法, 包括如下步骤:
A. 单板制作:
将制作芯层单板的木材, 经过旋切而成 6mm〜12mm厚的超厚单板, 经过将所述单 板在疏解装置中疏解, 在其松面顺纹方向形成点状和 /或线段状裂纹, 作为芯层用单板; 将制作表层单板的木材, 经旋切而成 0.2mm〜1.5mm的单板, 作为表层装饰性单板;
B.干燥:
将上述的单板干燥至含水率为 8 %〜15%;
C.涂胶:
将芯层的超厚单板进行双面施胶, 表层单板不施胶;
D.组坯:
将施胶后的所有的超厚单板组坯形成芯层; 将 2张薄的表层单板按与芯板木纹垂直 或相错的方向对称地铺装在板坯的上、 下表层。 E.热压:
对于组坯进行热压, 使其成为一体;
17.根据权利要求 16所述的用超厚单板制造的实木复合板材制造方法, 其特征在于, 在所述的芯层和表层之间还包含次表层, 则在 A单板制作工序中, 将制作次表层的木材 经旋切而成 lmm〜3mm的单板, 在 B干燥工序中同样将其干燥至含水率为 8 %〜15%, 在 C涂胶工序中对其双面涂胶, 然后在 D组坯工序中, 使次表层单板的木纹与芯层和表 层木纹相互垂直或相错地设置在芯层和表层单板之间组合。
18. 根据权利要求 16所述的用超厚单板制造的实木复合板材制造方法,其特征在于, 在组坯工序中, 所述芯层是这样组坯的: 所述芯层对称中心的其松面相对接合的两块单 板或一块单板为中间芯板, 其外面的各层单板松面均朝向中间芯板, 对称组坯, 其纹理 与中心两层平行, 或者与中心两层垂直或相错接合。
19.根据权利要求 16所述的用超厚单板制造的实木复合板材制造方法, 其特征在于, 在上述工艺中, 所用的胶黏剂为脲醛胶黏剂或三聚氰胺改性脲醛胶黏剂, 其热压时间为
( 0.5〜1.6 ) min/mm, 热压温度为 (120〜160 ) °C, 热压压力为 (0.7〜2 ) MPa, 其施胶 量为为 (150〜300 ) g/m2; 或者,
在上述工艺中, 所用的胶粘剂为酚醛胶黏剂, 其施胶量为为 (150〜300 ) g/m2 , 热 压时间为 (0.5〜2 ) min/mm, 热压温度为 (130〜180 ) °C, 热压压力为 (0.7〜2 ) MPa; 或者,
在上述工艺中, 所用的胶粘剂为异氰酸酯, 其施胶量为 (20〜50 ) g/m2, 热压时间 为 (0.5〜1.2 ) min/mm, 热压温度为 (90〜130 ) °C, 热压压力为 (0.7〜2 ) MPa。
PCT/CN2009/075823 2008-12-24 2009-12-22 超厚竹木复合板材和超厚实木复合板材及其制造方法 WO2010072139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/142,111 US8747987B2 (en) 2008-12-24 2009-12-22 Ultra thick bamboo-wood composite panel, ultra thick solid wood composite panel and manufacturing methods thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN 200810240988 CN101524858B (zh) 2008-12-24 2008-12-24 一种超厚竹木复合板材及其制造方法
CN200810240988.3 2008-12-24
CN200810240989.8 2008-12-24
CN 200810240989 CN101524859B (zh) 2008-12-24 2008-12-24 一种用超厚单板制造的实木复合板材及其制造方法
CNU2009201059083U CN201353809Y (zh) 2009-02-13 2009-02-13 一种用超厚旋切单板制造的竹木复合板材
CN200920105908.3 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010072139A1 true WO2010072139A1 (zh) 2010-07-01

Family

ID=42286898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075823 WO2010072139A1 (zh) 2008-12-24 2009-12-22 超厚竹木复合板材和超厚实木复合板材及其制造方法

Country Status (2)

Country Link
US (1) US8747987B2 (zh)
WO (1) WO2010072139A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708687A (zh) * 2015-01-09 2015-06-17 浙江可信竹木有限公司 一种竹木复合建筑模板的生产工艺
CN104708683A (zh) * 2015-01-09 2015-06-17 浙江可信竹木有限公司 一种用于集装箱的竹木复合底板的生产工艺
CN105150333A (zh) * 2015-08-25 2015-12-16 广德竹之韵工艺品厂 重竹文化墙的加工工艺
CN108214710A (zh) * 2017-12-29 2018-06-29 广州珠江恺撒堡钢琴有限公司 钢琴键子的夹板中座板
CN109130394A (zh) * 2018-09-11 2019-01-04 嘉善塘尧装饰材料有限公司 一种多层实木复合板
CN110421655A (zh) * 2019-07-22 2019-11-08 石家庄华杰木业有限公司 复合一次成型双层胶板生态板及制作方法
CN111648552A (zh) * 2020-06-02 2020-09-11 大亚(江苏)地板有限公司 高稳定性两层实木复合地板及其制备工艺
CN111660630A (zh) * 2020-06-17 2020-09-15 扬州工业职业技术学院 曲面交错层积材及其生产方法
CN112936497A (zh) * 2021-02-10 2021-06-11 山东农业大学 一种一次成型饰面无醛生物质复合板材及其制备方法
CN113043410A (zh) * 2021-02-23 2021-06-29 江苏诚品环保科技有限公司 一种同向全桉芯胶合板基材及其生产方法
CN115070885A (zh) * 2022-05-20 2022-09-20 国际竹藤中心 一种竹木复合胶合材的制造方法及应用

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010072139A1 (zh) 2008-12-24 2010-07-01 中国林业科学研究院木材工业研究所 超厚竹木复合板材和超厚实木复合板材及其制造方法
BRPI1105978B1 (pt) * 2011-12-22 2021-08-31 Universidade Federal De Minas Gerais - Ufmg Barra de esterilhas de bambu coladas e seu processo de fabricação
EP2617911B1 (en) * 2012-01-23 2016-04-20 Vastint Hospitality B.V. Method and system for construction of a building
PL2617912T3 (pl) 2012-01-23 2016-11-30 Prefabrykowany moduł do budynku
CN102581890A (zh) * 2012-03-15 2012-07-18 诸暨市光裕竹业有限公司 一种以碾压丛生竹为原材料的竹木复合集装箱底板的制造方法
USD731798S1 (en) * 2012-06-07 2015-06-16 Kone Corporation Wall of an escalator, moving walkway, elevator, or lifting apparatus
CN103231425B (zh) * 2013-04-25 2016-08-31 安徽宏宇竹木制品有限公司 一种大规格重组复合结构材及其制造方法
CA154777S (en) 2013-07-22 2015-06-25 Inter Hospitality Holding B V Prefabricated module
CN103600382A (zh) * 2013-10-28 2014-02-26 黄山市永锦工艺品有限公司 一种指接细木工板的生产工艺
US20150125652A1 (en) * 2013-11-01 2015-05-07 Greene Rev Llc Underlayment with improved vapor barrier
DE102013113109A1 (de) 2013-11-27 2015-06-11 Guido Schulte Fußbodendiele
DE102013113130B4 (de) 2013-11-27 2022-01-27 Välinge Innovation AB Verfahren zur Herstellung einer Fußbodendiele
DE102013113125A1 (de) 2013-11-27 2015-05-28 Guido Schulte Fußboden-, Wand- oder Deckenpaneel und Verfahren zu dessen Herstellung
HRP20231029T1 (hr) 2014-01-10 2023-12-22 Välinge Innovation AB Ploča na bazi drvenih vlakana s površinskim slojem
WO2015174909A1 (en) 2014-05-12 2015-11-19 Välinge Innovation AB A method of producing a veneered element and such a veneered element
WO2016098221A1 (ja) * 2014-12-18 2016-06-23 株式会社プロポライフ 木質板及び木質扉
CN104468898B (zh) * 2014-12-22 2017-06-20 福建农林大学 一种防电磁辐射竹制手机外壳的加工方法
TWI546103B (zh) * 2014-12-30 2016-08-21 Zhong-Fu Zhang Treadmill of the buffer plate structure
CN104924370B (zh) * 2015-05-19 2017-06-16 詹雄光 一种环保型免漆多层实木复合板
EP3310580A4 (en) 2015-06-16 2019-02-13 Välinge Innovation AB METHOD FOR PRODUCING A BUILDING PLATE OR A SURFACE AREA ELEMENT AND SUCH A BUILDING PLATE AND SURFACE ELEMENT
US9724842B2 (en) * 2015-09-14 2017-08-08 Chung-Fu Chang Method of making a buffer board of a treadmill
US20170120565A1 (en) * 2015-10-30 2017-05-04 Matthew Luciano Abbondanzio Natural fiber veneer composite material
CN105397893A (zh) * 2015-11-19 2016-03-16 福建农林大学 一种防电磁幅射的山纹木制手机外壳的加工方法
JP6595347B2 (ja) * 2016-01-08 2019-10-23 ヤマハ株式会社 音響材料及び楽器
PL3448674T3 (pl) 2016-04-25 2021-08-02 Välinge Innovation AB Element fornirowany i sposób wytwarzania takiego elementu fornirowanego
AU2017280089A1 (en) * 2016-06-19 2018-12-20 Marcel Eric Morokutti Construction apparatus and method
CN106514799A (zh) * 2016-11-02 2017-03-22 佛山格罗利智能家居有限公司 复合板材
JP6899576B2 (ja) * 2016-11-30 2021-07-07 株式会社バンブーケミカル研究所 竹材を用いた直交集成板
US20190118491A1 (en) * 2017-10-24 2019-04-25 Log Floors Inc. Stone-plastic composite real wood veneer floor and method
PL3737559T3 (pl) 2018-01-11 2024-01-22 Välinge Innovation AB Sposób wykonania elementu fornirowanego i element fornirowany
WO2019139523A1 (en) 2018-01-11 2019-07-18 Välinge Innovation AB A method to produce a veneered element and a veneered element
CN108297204A (zh) * 2018-03-30 2018-07-20 东莞市挪亚家家具有限公司 绿色环保实木复合板及其生产工艺
CN109514657A (zh) * 2018-11-15 2019-03-26 浙江升华云峰新材股份有限公司 一种阻燃型浸渍胶膜纸饰面细木工板
WO2020145870A1 (en) 2019-01-09 2020-07-16 Välinge Innovation AB A method to produce a veneer element and a veneer element
CN109808257A (zh) * 2019-03-14 2019-05-28 湖南桃花江竹材科技股份有限公司 一种无限任意长竹片集成材及其制造方法
CN109822694A (zh) * 2019-04-06 2019-05-31 重庆冠欧科技有限公司 一种实木积层饰面线条及制作方法
JP6887175B2 (ja) * 2019-10-31 2021-06-16 株式会社名南製作所 単板選別制御装置、単板選別制御方法および単板選別制御用プログラム
CN116390838A (zh) * 2020-10-16 2023-07-04 尤尼伍德株式会社 含有不燃处理药剂的木材及其生产方法
GB202020124D0 (en) * 2020-12-18 2021-02-03 Court Of Edinburgh Napier Univ Bamboo construction element
CN114536485A (zh) * 2022-02-21 2022-05-27 南宁科天新材料科技有限责任公司 一种新型结构复合板材及其制备方法
DE102022204906A1 (de) 2022-05-17 2023-11-23 Doka Gmbh Werkstoffplatte
CN115042279A (zh) * 2022-07-04 2022-09-13 福建和其祖林业科技有限公司 一种轻质高模板材及其制备方法和应用
CN115431375B (zh) * 2022-08-09 2024-03-01 福建省永安林业(集团)股份有限公司 一种竹杉复合定向结构刨花板及其制造方法
CN115464723B (zh) * 2022-10-08 2023-10-27 西南林业大学 一种并联式同步预制胶合板生产线及生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643983A (en) * 1995-08-30 1997-07-01 Ashland Inc. Moisture curable 100% solids one component plywood adhesive
CN1177677C (zh) * 2001-11-20 2004-12-01 滕恩荣 一种胶合板及其生产工艺
CN1995656A (zh) * 2006-12-26 2007-07-11 浙江久盛地板有限公司 一种实木复合地板
CN200974273Y (zh) * 2006-11-08 2007-11-14 吕渭滨 一种竹木复合板
CN101224590A (zh) * 2008-02-01 2008-07-23 中国林业科学研究院木材工业研究所 一种人造板单板单元及其制备方法
CN101524858A (zh) * 2008-12-24 2009-09-09 中国林业科学研究院木材工业研究所 一种超厚竹木复合板材及其制造方法
CN101524859A (zh) * 2008-12-24 2009-09-09 中国林业科学研究院木材工业研究所 一种用超厚单板制造的实木复合板材及其制造方法
CN201353809Y (zh) * 2009-02-13 2009-12-02 中国林业科学研究院木材工业研究所 一种用超厚旋切单板制造的竹木复合板材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200860C (zh) * 2003-08-27 2005-05-11 南京林业大学 一种集装箱底板及其制造方法
CN201059051Y (zh) 2007-05-17 2008-05-14 上海浦江联合木材有限公司 实木复合板材
WO2010072139A1 (zh) 2008-12-24 2010-07-01 中国林业科学研究院木材工业研究所 超厚竹木复合板材和超厚实木复合板材及其制造方法
US20110293880A1 (en) 2009-02-13 2011-12-01 Yanglun Yu Bamboo artificial board and producing method thereof
US20110293885A1 (en) 2009-02-13 2011-12-01 Wenji Yu Bamboo artificial board unit, manufacturing method thereof and apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643983A (en) * 1995-08-30 1997-07-01 Ashland Inc. Moisture curable 100% solids one component plywood adhesive
CN1177677C (zh) * 2001-11-20 2004-12-01 滕恩荣 一种胶合板及其生产工艺
CN200974273Y (zh) * 2006-11-08 2007-11-14 吕渭滨 一种竹木复合板
CN1995656A (zh) * 2006-12-26 2007-07-11 浙江久盛地板有限公司 一种实木复合地板
CN101224590A (zh) * 2008-02-01 2008-07-23 中国林业科学研究院木材工业研究所 一种人造板单板单元及其制备方法
CN101524858A (zh) * 2008-12-24 2009-09-09 中国林业科学研究院木材工业研究所 一种超厚竹木复合板材及其制造方法
CN101524859A (zh) * 2008-12-24 2009-09-09 中国林业科学研究院木材工业研究所 一种用超厚单板制造的实木复合板材及其制造方法
CN201353809Y (zh) * 2009-02-13 2009-12-02 中国林业科学研究院木材工业研究所 一种用超厚旋切单板制造的竹木复合板材

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104708687A (zh) * 2015-01-09 2015-06-17 浙江可信竹木有限公司 一种竹木复合建筑模板的生产工艺
CN104708683A (zh) * 2015-01-09 2015-06-17 浙江可信竹木有限公司 一种用于集装箱的竹木复合底板的生产工艺
CN105150333A (zh) * 2015-08-25 2015-12-16 广德竹之韵工艺品厂 重竹文化墙的加工工艺
CN108214710A (zh) * 2017-12-29 2018-06-29 广州珠江恺撒堡钢琴有限公司 钢琴键子的夹板中座板
CN109130394A (zh) * 2018-09-11 2019-01-04 嘉善塘尧装饰材料有限公司 一种多层实木复合板
CN110421655A (zh) * 2019-07-22 2019-11-08 石家庄华杰木业有限公司 复合一次成型双层胶板生态板及制作方法
CN111648552A (zh) * 2020-06-02 2020-09-11 大亚(江苏)地板有限公司 高稳定性两层实木复合地板及其制备工艺
CN111660630A (zh) * 2020-06-17 2020-09-15 扬州工业职业技术学院 曲面交错层积材及其生产方法
CN112936497A (zh) * 2021-02-10 2021-06-11 山东农业大学 一种一次成型饰面无醛生物质复合板材及其制备方法
CN112936497B (zh) * 2021-02-10 2022-07-22 山东农业大学 一种一次成型饰面无醛生物质复合板材及其制备方法
CN113043410A (zh) * 2021-02-23 2021-06-29 江苏诚品环保科技有限公司 一种同向全桉芯胶合板基材及其生产方法
CN115070885A (zh) * 2022-05-20 2022-09-20 国际竹藤中心 一种竹木复合胶合材的制造方法及应用

Also Published As

Publication number Publication date
US20110274872A1 (en) 2011-11-10
US8747987B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
WO2010072139A1 (zh) 超厚竹木复合板材和超厚实木复合板材及其制造方法
CN101524858B (zh) 一种超厚竹木复合板材及其制造方法
CN201353809Y (zh) 一种用超厚旋切单板制造的竹木复合板材
CN101890739B (zh) 对称结构的复合板材的制造方法
EP2255937B1 (en) Manufacturing method for a surface-strengthened solid wood floor board
CN101524859B (zh) 一种用超厚单板制造的实木复合板材及其制造方法
CN106827109B (zh) 一种胶合板及其制备方法
WO2010094237A1 (zh) 一种无醛重组材及其制造方法
CN201385339Y (zh) 一种偶数层对称结构实木复合板材
WO2012167468A1 (zh) 一种制作胶合板的方法
CN201385341Y (zh) 一种用超厚旋切单板制造的实木复合板材
WO2018061923A1 (ja) 木質積層材及びその製造方法
CN101811313B (zh) 金属增强木材复合板
CN101250937A (zh) 表面贴有木材层的竹木复合地板
CN106217506A (zh) 一种新型板材及其制备方法
WO2021189625A1 (zh) 一种防火防水生物质地板及其制备方法
CN100494606C (zh) 一种以定向结构刨花板为基材的建筑模板及其制造方法
CN109434975A (zh) 综合速生材材质特征及建筑结构需求的正交胶合木及其制备方法
JPH0716964A (ja) 積層材及びその製造方法
CN209665647U (zh) 综合速生材材质特征及建筑结构需求的正交胶合木
CN103586944B (zh) 一种采用杨木或速生单板制造非对称结构车厢底板的方法
CN1544219A (zh) 以稻草板为芯板的仿细木工板制造方法
KR102221539B1 (ko) 고단열 내화구조 하이브리드 목질코어 집성재 및 그 제조방법
KR102072913B1 (ko) 수직격막부재용 다중접합 구조용 집성판, 그 제조방법 및 이에 의해 제조된 집성판의 접합방법
CN113619244A (zh) 一种新型负离子净醛耐磨生态板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13142111

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09834092

Country of ref document: EP

Kind code of ref document: A1