WO2010070891A1 - 超音波式流量計 - Google Patents

超音波式流量計 Download PDF

Info

Publication number
WO2010070891A1
WO2010070891A1 PCT/JP2009/006907 JP2009006907W WO2010070891A1 WO 2010070891 A1 WO2010070891 A1 WO 2010070891A1 JP 2009006907 W JP2009006907 W JP 2009006907W WO 2010070891 A1 WO2010070891 A1 WO 2010070891A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
flow
measurement
flow path
fluid
Prior art date
Application number
PCT/JP2009/006907
Other languages
English (en)
French (fr)
Inventor
宮田肇
伊藤陽一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/131,456 priority Critical patent/US8701501B2/en
Priority to EP09833199.4A priority patent/EP2351994A4/en
Priority to CN2009801512894A priority patent/CN102257366A/zh
Publication of WO2010070891A1 publication Critical patent/WO2010070891A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/001Flow of fluid from conduits such as pipes, sleeves, tubes, with equal distribution of fluid flow over the evacuation surface

Definitions

  • the present invention relates to an ultrasonic flow meter.
  • FIG. 11 is a cross-sectional view of a flow path of a conventional ultrasonic flow meter.
  • the flow path 30 having a rectangular cross-sectional shape forms a multi-layer flow path 32 by dividing the long side facing direction into a plurality of divided passages via a plurality of partition plates 31.
  • the upstream and downstream sides of the multilayer channel 32 are connected to running channels 33 and 34 having a constant cross section.
  • the leading ends of the run-up flow paths 33 and 34 are positioned in a protruding state by the upstream chamber 35 and the downstream chamber 36 that are U-shaped together with the flow path 30.
  • the folded plates 37 and 38 are provided for flow rectification.
  • a rectifying member 39 made of a porous body is provided for rectification in the multilayer flow path 32.
  • An ultrasonic transducer (not shown) is an ultrasonic transmission / reception means.
  • the ultrasonic transducer is provided on opposite short sides of the flow path 30 such that the ultrasonic wave obliquely crosses the flow direction of the fluid across the flow path 30 with a certain angle with respect to the paper surface.
  • Such an ultrasonic flow meter calculates the flow velocity at each time based on the propagation time of ultrasonic waves transmitted and received by a pair of ultrasonic transducers, and multiplies the cross-sectional area of the flow channel as necessary to obtain the flow rate. It was made to calculate (for example, refer patent document 1).
  • the ultrasonic flowmeter of the present invention is a measurement channel having a rectangular cross section through which a fluid to be measured flows, and an ultrasonic method for measuring the flow velocity of the fluid to be measured by propagating ultrasonic waves to the fluid to be measured flowing through the measurement channel.
  • a flow meter in which a partition plate is arranged in the measurement channel so as to be parallel to the flow direction of the fluid to be measured, and the partition plate measures the flow velocity distribution between the opposing wall surfaces of the measurement channel. It is the structure arrange
  • FIG. 1 is a cross-sectional view of the ultrasonic flowmeter according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the ultrasonic flow meter.
  • FIG. 3 is a cross-sectional view of another configuration of the ultrasonic flowmeter.
  • FIG. 4 is an explanatory diagram of the flow velocity distribution in the multilayer flow path of the ultrasonic flow meter.
  • FIG. 5A is a cross-sectional view illustrating the flow of the ultrasonic flowmeter.
  • FIG. 5B is a plan view for explaining the flow of the ultrasonic flowmeter.
  • FIG. 6 is a cross-sectional view of still another configuration of the ultrasonic flowmeter.
  • FIG. 7A is a flow velocity distribution diagram of a measurement channel cross section (vertical cross section) of the ultrasonic flow meter.
  • FIG. 7B is a flow velocity distribution diagram of a cross section (horizontal cross section) perpendicular to the measurement flow path cross section of FIG. 7A.
  • FIG. 8 is a cross-sectional view of the ultrasonic flowmeter according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of another configuration of the ultrasonic flowmeter.
  • FIG. 10 is a cross-sectional view of still another configuration of the ultrasonic flowmeter.
  • FIG. 11 is a cross-sectional view of a conventional ultrasonic flowmeter.
  • FIG. 1 is a cross-sectional view of the ultrasonic flowmeter according to the first embodiment of the present invention.
  • the ultrasonic flow meter of FIG. 1 is an example applied to a gas meter.
  • the ultrasonic flow meter is composed of an introduction path 1 of a fluid to be measured, an inlet 2, an on-off valve 3 such as an electromagnetic or stepping motor type, an on-off valve downstream side flow path 4, a flow path unit 5, a sensor unit 12, and the like. Has been.
  • the flow path unit 5 includes a bending part 6, a measurement flow path inlet 7, a measurement flow path 8, a discharge bending part 9, and a flow rate measurement part.
  • the bent portion 6 is connected to the on-off valve downstream side flow path 4 of the introduction path 1.
  • the measurement flow path 8 is formed substantially perpendicular to the central axis of the flow path 4 on the downstream side of the opening / closing valve of the introduction path 1 through which the fluid to be measured flows in the pipe wall.
  • the flow path unit 5, the introduction path 1 and the discharge path described later are each constituted by separate units and connected.
  • a first ultrasonic transducer 10 and a second ultrasonic transducer 11 are installed obliquely on the wall surface orthogonal to the introduction path 1 on the upstream side and the downstream side of the measurement flow path 8, and the transmitted waves are measured. It can be reflected and received at the opposing surface of the flow path 8.
  • the first ultrasonic transducer 10 and the second ultrasonic transducer 11 are integrated as a sensor unit 12 and are mounted so as to be combined with the measurement flow path 8. That is, the first ultrasonic transducer 10 and the second ultrasonic transducer 11 are connected to one surface of the tube wall of the measurement flow path 8 along the flow direction of the fluid to be measured flowing through the measurement flow path 8.
  • the first ultrasonic transducer 10 and the second ultrasonic transducer 11 emit ultrasonic waves to the fluid to be measured, and the ultrasonic waves in the forward direction and the reverse direction of the flow direction of the fluid to be measured.
  • the difference in propagation time is transmitted to the flow measurement unit.
  • the ultrasonic flowmeter measures the flow velocity of the fluid to be measured by propagating the ultrasonic wave to the fluid to be measured flowing through the measurement flow path 8.
  • Openings 13 and 14 for propagation are provided at the ultrasonic wave propagation portion, which is a joint between the flow path unit 5 and the sensor unit 12.
  • the opening on the sensor unit 12 side is covered with the metal meshes 15 and 16 so that the fluid in the measurement flow path 8 does not flow into the sensor unit 12 side.
  • the metal meshes 15 and 16 may cover the opening portion on the flow path unit 5 side.
  • a discharge path 17 is connected to the discharge bending portion 9.
  • a fluid to be measured (gas) flows out from the outlet 18 of the discharge path 17.
  • the cross-sectional shape of the ultrasonic flowmeter according to the first embodiment of the present invention is U-shaped.
  • the flow rate measurement unit includes a measurement control unit 19 and a calculation unit 20.
  • the measurement control unit 19 transmits and receives ultrasonic waves alternately between the first ultrasonic transducer 10 and the second ultrasonic transducer 11.
  • the measurement control unit 19 measures the difference in the propagation time of the ultrasonic waves in the forward direction and the reverse direction with respect to the flow of the fluid to be measured, and outputs the difference as a propagation time difference signal.
  • the calculation unit 20 receives the propagation time difference signal from the measurement control unit 19 and measures the flow rate of the gas, and calculates the flow rate by multiplying this flow rate by the cross-sectional area of the measurement channel 8 and the correction coefficient as necessary. .
  • the power supply unit 21 is composed of a lithium battery or the like.
  • the measurement control unit 19, the calculation unit 20, a part of the power supply unit 21, and the drive unit 22 of the on-off valve 3 are mounted in a space inside the ultrasonic flow meter configured in a U shape.
  • the partition plate 24 follows the cross section of the flow path where the first ultrasonic transducer 10 and the second ultrasonic transducer 11 transmit and receive ultrasonic waves along the flow direction of the fluid to be measured.
  • the measurement flow path 8 is partly or entirely divided into two or more layers.
  • the partition plate 24 is arranged in the measurement channel 8 so as to be parallel to the flow direction of the fluid to be measured.
  • the gas that is the fluid to be measured flows from the inlet 2 of the introduction path 1 via an external pipe (not shown). Then, the gas flows from the open / close valve 3 through the valve seat opening 23, flows into the measurement channel 8 through the bent portion 6, and flows to the measurement channel inlet 7 on the downstream side. Further, the gas flows out to an external pipe (not shown) via the discharge bending portion 9 and the discharge path 17. That is, when the introduction path 1 and the measurement flow path 8 are arranged so as to be orthogonal to each other, the piping direction of the introduction path 1 and the discharge path 17 can be configured in the same vertical direction (U-shaped). Therefore, the pipe connection between the introduction path 1 and the discharge path 17 which are external pipes of the fluid to be measured and the measurement flow path 8 becomes easy.
  • the ultrasonic flowmeter according to the embodiment of the present invention has a structure in which the attachment portion of each ultrasonic transducer and the measurement flow path portion are unitized and combined. For this reason, not only is assembly good, but when the specifications of the measuring device are reviewed, it is only necessary to review the unit unit, and the work such as structural change becomes easy.
  • FIG. 2 is an operation explanatory diagram of the ultrasonic flowmeter according to the first embodiment of the present invention.
  • the first ultrasonic transducer 10 and the second ultrasonic transducer 11 are unitized, and the first ultrasonic transducer 10 and the second ultrasonic transducer 11 are arranged on the same cross section of the measurement channel 8.
  • the configuration. Therefore, the ultrasonic wave transmission / reception propagation path is a V-shaped propagation path reflected by the facing surface, and ultrasonic waves are transmitted / received between the first ultrasonic transducer 10 and the second ultrasonic transducer 11. .
  • the ultrasonic flow meter according to the first embodiment of the present invention has the first ultrasonic transducer 10 and the second ultrasonic transducer 10 on the first surface which is one of the two opposing surfaces of the measurement flow path 8.
  • the ultrasonic transducer 11 is installed.
  • the ultrasonic wave transmitted by either one of the first ultrasonic transducer 10 and the second ultrasonic transducer 11 is once or more on the second surface facing the first surface. Reflected and received by the other ultrasonic transducer.
  • the sensor unit configuration becomes easy and reflection is used. Therefore, the ultrasonic wave propagation path becomes longer and the measurement accuracy increases.
  • the ultrasonic wave emitted from the first ultrasonic transducer 10 on the upstream side measures the propagation time T1 until it is received by the second ultrasonic transducer 11 on the downstream side.
  • the ultrasonic wave emitted from the second ultrasonic transducer 11 on the downstream side measures the propagation time T2 until it is received by the first ultrasonic transducer 10 on the upstream side.
  • the flow rate is calculated in the calculation unit 20 by the following calculation formula.
  • the angle between the flow velocity V in the gas flow direction of the measurement flow path 8 and the ultrasonic propagation path is ⁇ , and the distance between the first ultrasonic transducer 10 and the second ultrasonic transducer 11 is 2 ⁇ L.
  • the flow velocity V is calculated by the following equation.
  • T1 2 ⁇ L / (C + V cos ⁇ )
  • T2 2 ⁇ L / (C ⁇ Vcos ⁇ )
  • V (2 ⁇ L / 2 cos ⁇ ) [(1 / T1) ⁇ (1 / T2)]) Since ⁇ and L are known, the flow velocity V can be calculated from the values of T1 and T2.
  • FIG. 3 is a cross-sectional view of another configuration of the ultrasonic flowmeter according to the first embodiment of the present invention. Similar measurement is possible even in the propagation path. That is, the ultrasonic wave propagation path has a W-shape in which the reflection is performed three times on the surface facing the one surface of the wall surface of the measurement channel 8 and the one surface.
  • the W-shaped propagation path takes longer than the V-shaped propagation path, the measurement accuracy can be further improved.
  • the measurement flow path 8 is partitioned and multilayered by the partition plate 24, and the effect will be described.
  • FIG. 4 is an explanatory diagram of the flow velocity distribution in the multilayer flow path of the ultrasonic flow meter according to the first embodiment of the present invention.
  • the Reynolds number is represented by the following equation.
  • R (Reynolds number) L ⁇ V / ⁇ L is a representative length and is determined by the height h and width of the cross section of the channel V is the flow velocity ⁇ is the kinematic viscosity coefficient of the fluid Next, the flow of the channel will be described.
  • FIG. 5A is a cross-sectional view illustrating the flow of the ultrasonic flow meter according to Embodiment 1 of the present invention
  • FIG. 5B is a plan view illustrating the flow of the ultrasonic flow meter.
  • the flow path 8 When the fluid to be measured guided from the introduction path 1 enters the measurement flow path 8, the flow path is largely bent, so that a large deviation occurs in the flow velocity in the vertical direction. At the inlet of the measurement channel 8, the velocity distribution in the vertical direction of the fluid to be measured is not uniform, and deviation occurs in the vertical direction of the measurement channel 8.
  • the rectangular measurement flow path 8 is multilayered by the partition plate 24, a non-uniform flow rate of the fluid to be measured flows into each layer depending on the drift direction.
  • the U-shaped channel is configured by the inlet 2, the on-off valve downstream channel 4, the bending portion 6, the measurement channel 8, the discharge bending portion 9, the discharge channel 17, and the outlet 18.
  • the measurement flow path 8 having a rectangular cross section is divided into multiple layers by a partition plate 24 set up in the vertical direction.
  • the flow rate of some layers can be measured even if ultrasonic waves propagate through all the layers and cannot be measured. This is almost equivalent to measuring the total flow rate. Therefore, it is possible to accurately measure the flow rate, and it is possible to measure the flow rate that is not easily affected by the uneven flow distribution in the vertical direction.
  • FIG. 5A it is an L-shape where the measurement flow path 8 intersects perpendicularly with respect to the on-off valve downstream flow path 4.
  • FIG. 6 is a cross-sectional view of still another configuration of the ultrasonic flowmeter according to the first embodiment of the present invention.
  • FIG. 7A is a flow velocity distribution diagram of the measurement channel cross section (vertical cross section) of the ultrasonic flowmeter according to Embodiment 1 of the present invention
  • FIG. 7B is a cross section (horizontal cross section) perpendicular to the measurement channel cross section of FIG. 7A. It is a flow velocity distribution map.
  • the channel cross-sectional flow velocity distribution A and the channel cross-sectional flow velocity distribution B are flow velocity distributions at the center of each cross section between two pairs of walls with respect to the flow direction of the measurement flow channel 8. Both cross sections of the channel cross-sectional flow velocity distribution A and the channel cross-sectional flow velocity distribution B intersect perpendicularly.
  • the partition plate 24 is arranged so as to be parallel to the wall surface of the two flow velocity distributions between the wall surfaces that have a more uniform flow velocity distribution.
  • FIG. 8 is a cross-sectional view of the ultrasonic flowmeter according to the second embodiment of the present invention.
  • the ultrasonic vibrator is installed at a run-up section (S in FIG. 8) until the flow stabilizes from the inlet of the measurement flow path 8, and after that section. It is desirable to arrange.
  • the above problem is solved by arranging the partition plate 24 after the running section. That is, the partition plate 24 is disposed at a position separated from the running section or more.
  • the run-up section is a length in which separation of the flow of the fluid to be measured from the inlet of the measurement channel 8 from the inner wall surface of the measurement channel 8 occurs.
  • the run-up section is provided five times or more the partition interval by the partition plate 24.
  • FIG. 9 is a cross-sectional view of another configuration of the ultrasonic flowmeter according to the second embodiment of the present invention.
  • a baffle plate 25 that is integral with the measurement flow path 8 side is protruded. That is, at the inlet of the measurement channel 8, the wall surface of the measurement channel 8 has a baffle plate 25 protruding in the direction opposite to the flow of the fluid to be measured.
  • the length of the baffle plate 25 becomes an extension of the run-up section of the measurement flow path 8, and the first ultrasonic vibrator 10 and the second ultrasonic wave are located near the measurement flow path inlet 7 in order to reduce the size of the apparatus. This is effective when the ultrasonic transducer 11 is arranged.
  • FIG. 10 is a cross-sectional view of still another configuration of the ultrasonic flowmeter according to the second embodiment of the present invention.
  • the shape of the front end portion of the baffle plate 25 is a trumpet-shaped arc shape that opens outward from the inside of the measurement flow path 8.
  • the on-off valve downstream flow path 4 and the measurement flow path 8 have an L-shaped connection configuration, when the fluid to be measured flows into the measurement flow path 8, the flow is the arc of the baffle plate 25. It is gently guided along the shape wall.
  • the arcuate curvature radius of the baffle plate 25 is preferably 1 ⁇ 2 or more of the height of the measurement flow path 8.
  • the present invention can be used in a wide range of gas fluids such as gas as well as liquid fluids such as water.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

被計測流体が流れる矩形断面の計測流路と、計測流路に流れる被計測流体に超音波を伝播させることにより被計測流体の流速を計測する超音波式流量計であって、計測流路には、被計測流体の流れ方向に沿って平行となるように仕切り板を配置するとともに、仕切り板は計測流路の対向する壁面間の流速分布が被計測流体の流れ方向の中心に対してより対称形である壁面に平行となるように配置された超音波式流量計。

Description

超音波式流量計
 本発明は、超音波式流量計に関する。
 図11は、従来の超音波式流量計の流路断面図である。図11において、断面形状が長方形の流路30は、その長辺対向方向を複数の仕切り板31を介して多数の分割通路に分割することにより多層流路32を構成している。そして、多層流路32の上流側および下流側には一定断面の助走流路33、34が繋がっている。
 流路30とともにU字形状をなす上流室35と下流室36とにより、助走流路33、34の各先端が突出状態において位置している。折返し板37、38は、流れの整流のため設けられている。また、多孔体よりなる整流部材39が、多層流路32内の整流のために設けられている。
 図示していない超音波振動子は、超音波送受信手段である。超音波振動子は、紙面に対し一定の角度を持って流路30を挟んで超音波が流体の流れ方向を斜めに横切るごとく流路30の相対向する短辺側に設けられている。
 このような超音波式流量計は、一対の超音波振動子の送受信による超音波の伝播時間に基づき、その時々の流速を算出し、必要に応じて流路断面積などを乗じることにより流量を演算するようにしていた(例えば、特許文献1参照)。
 しかしながら従来の超音波式流量計の構成では、流路の屈曲、および局部的な流路30の断面積の変化などがある場合には、屈曲部において偏流が発生する。上流側より計測部に計測流体が流入する際、計測部入口近傍の上下方向において偏流が発生し、各層に均等に流体が流入しなくなる。
 そのため、超音波により流路全体の流量を計測することが困難となり、流速分布の影響が現れ、流速により計測精度が異なる。
 超音波式流量計の計測精度を良くするには、整流のための付加構成が必要となり、超音波式流量計の構造が複雑になる。また、超音波式流量計の量産時の工数の増加等によりコスト増になるという課題があった。
特開2004-132928号公報
 本発明の超音波式流量計は、被計測流体が流れる矩形断面の計測流路と、計測流路に流れる被計測流体に超音波を伝播させることにより被計測流体の流速を計測する超音波式流量計であって、計測流路には、被計測流体の流れ方向に沿って平行となるように仕切り板を配置するとともに、仕切り板は計測流路の対向する壁面間の流速分布が被計測流体の流れ方向の中心に対してより対称形である壁面に平行となるように配置される構成である。
 その結果、計測流路の入口に流れの屈曲部が存在し偏流が発生しても、仕切り板によって分けられたそれぞれの流路には対称な流速分布を有する被計測流体の流れとなるため、計測上の誤差が発生しにくくなる。
図1は本発明の実施の形態1の超音波式流量計の横断面図である。 図2は同超音波式流量計の動作説明図である。 図3は同超音波式流量計の他の構成の横断面図である。 図4は同超音波式流量計の多層流路における流速分布の説明図である。 図5Aは同超音波式流量計の流れを説明する横断面図である。 図5Bは同超音波式流量計の流れを説明する平面図である。 図6は同超音波式流量計のさらに他の構成の横断面図である。 図7Aは同超音波式流量計の計測流路断面(鉛直断面)の流速分布図である。 図7Bは図7Aの計測流路断面と垂直に交わる断面(水平断面)の流速分布図である。 図8は本発明の実施の形態2の超音波式流量計の横断面図である。 図9は同超音波式流量計の他の構成の横断面図である。 図10は同超音波式流量計のさらに他の構成の横断面図である。 図11は従来の超音波式流量計の流路断面図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1の超音波式流量計の横断面図である。図1の超音波式流量計は、ガスメータに適用した例である。超音波式流量計は、被計測流体の導入路1、流入口2、電磁式またはステッピングモーター式などの開閉弁3、開閉弁下流側流路4、流路ユニット5、センサユニット12等から構成されている。
 流路ユニット5は曲げ部6、計測流路入口7、計測流路8、排出曲げ部9、流量計測部よりなる。曲げ部6は、導入路1の開閉弁下流側流路4に接続している。計測流路8は被計測流体が管壁内を流れ、導入路1の開閉弁下流側流路4の中心軸とほぼ直角に形成されている。
 なお流路ユニット5と、導入路1及び後述する排出路とはそれぞれ別体のユニットにより構成されて、接続されている。
 導入路1と直交する壁面には、第一の超音波振動子10、第二の超音波振動子11が計測流路8の上流側と下流側とにおいて斜めに設置され、その送信波が計測流路8の対向面において反射して受信できる。そして第一の超音波振動子10、第二の超音波振動子11は、センサユニット12として一体化され計測流路8に合体するように装着されている。すなわち第一の超音波振動子10、第二の超音波振動子11は、計測流路8を流れる被計測流体の流れ方向に沿って計測流路8の管壁の一面に接続されている。そして第一の超音波振動子10、第二の超音波振動子11は、被計測流体に超音波を発し、被計測流体の流れ方向である順方向、および流れ方向の逆方向の超音波の伝播時間の差を流量計測部に送信する。このように超音波式流量計は、計測流路8に流れる被計測流体に超音波を伝播させることにより、被計測流体の流速を計測する。
 流路ユニット5とセンサユニット12との接合部であり超音波の伝播部分には、伝播のための開口部13、14が設けられている。センサユニット12側の開口部分は、金網15、16により覆われ、計測流路8の流体がセンサユニット12側に流れ込まないようにしている。なお金網15、16は、流路ユニット5側の開口部分を覆ってもよい。
 排出曲げ部9には、排出路17が接続されている。排出路17の流出口18から、被計測流体(ガス)が流れ出す。また本発明の実施の形態1の超音波式流量計の横断面形状はU字型をしている。
 流量計測部は、計測制御部19および演算部20から構成される。計測制御部19は、第一の超音波振動子10、第二の超音波振動子11間において交互に超音波を送受信させる。そして計測制御部19は被計測流体の流れに対し、順方向と逆方向との超音波の伝播時間の差を、一定間隔をおいて計り伝播時間差信号として出力する。
 また演算部20は、計測制御部19からの伝播時間差信号を受けてガスの流速を計測し、必要に応じてこの流速に計測流路8の断面積、および補正係数を乗じて流量を演算する。
 更に電源部21は、リチウム電池などから構成される。計測制御部19、演算部20、電源部21の一部、および開閉弁3の駆動部22は、U字型に構成される超音波式流量計の内側の空間に装着されている。
 矩形断面を有する計測流路8において、仕切り板24は第一の超音波振動子10、第二の超音波振動子11が超音波を送受信する流路の断面を被計測流体の流れ方向に沿って平行に仕切り、計測流路8の一部、または全体を2層以上の多層構成にする。このように仕切り板24は計測流路8に、被計測流体の流れ方向に沿って平行となるように配置されている。
 以下、本発明の実施の形態の超音波式流量計の動作、作用を説明する。
 被計測流体であるガスは、導入路1の流入口2から、図示しない外部配管を経由して流入する。そしてガスは、開放されている開閉弁3から弁座開口部23を通り、曲げ部6を経て計測流路8に流入し、下流側の計測流路入口7へ流れる。さらに、ガスは排出曲げ部9、排出路17を経由し、図示しない外部配管へ流出する。すなわち導入路1と計測流路8とを直交するように配置すると、導入路1と排出路17との配管方向を同じ鉛直方向(U字型)に構成できる。そのため被計測流体の外部配管である導入路1および排出路17と、計測流路8との配管接続が容易となる。
 前述したように本発明の実施の形態の超音波式流量計は、各超音波振動子の取り付け部、および計測流路部分がユニット化され、それを組み合わせる構造となっている。そのため組み立て性が良いばかりでなく、計測装置の仕様を見直す場合、ユニット単位の見直しですむため構造変更等の作業も容易となる。
 図2は、本発明の実施の形態1の超音波式流量計の動作説明図である。第一の超音波振動子10、第二の超音波振動子11をユニット化し、計測流路8の同一断面上に第一の超音波振動子10、第二の超音波振動子11を配置する構成とする。そのため超音波の送受信の伝播経路は、対向面により反射させたV字型の伝播路では、第一の超音波振動子10、第二の超音波振動子11間において超音波の送受が行われる。すなわち本発明の実施の形態1の超音波式流量計は、計測流路8の対向する2面のいずれか1面の側である第一の面に第一の超音波振動子10、第二の超音波振動子11が設置される。そして第一の超音波振動子10、第二の超音波振動子11のうちいずれか一方の超音波振動子の発信した超音波が、第一の面に対向する第二の面において一回以上反射し、他方の超音波振動子が受信する。
 このように第一の超音波振動子10および第二の超音波振動子11を、計測流路8の管壁の同一面側に取り付けることによりセンサユニット構成が容易になるとともに、反射を利用するので超音波の伝播路が長くなり計測精度が上がる。
 上流側の第一の超音波振動子10から発せられた超音波は、下流側の第二の超音波振動子11により受信されるまでの伝播時間T1を計測する。また一方、下流側の第二の超音波振動子11から発せられた超音波は、上流側の第一の超音波振動子10により受信されるまでの伝播時間T2を計測する。
 このようにして測定された伝播時間T1、およびT2を基に、以下の演算式により演算部20において流量が算出される。
 計測流路8のガスの流れ方向の流速Vと、超音波伝播路とのなす角度をθとし、第一の超音波振動子10、第二の超音波振動子11間の距離を2×L、ガス(被計測流体)の音速をCとすると、流速Vは以下の式にて算出される。
 T1=2×L/(C+Vcosθ)
 T2=2×L/(C-Vcosθ)
 T1の逆数から、T2の逆数を引き算する式より音速Cを消去して
 V=(2×L/2cosθ)[(1/T1)-(1/T2)])
 θおよびLは既知なのでT1、およびT2の値より流速Vが算出できる。
 ガスの流量を計ることを考え、角度θ=45度、距離L=35mm、音速C=340m/秒、流速V=8m/秒を想定すると、T1=2.0×10-4秒、T2=2.1×10-4秒であり、瞬時計測できる。
 なおV字型の伝播路でなく、本発明の実施の形態1の超音波式流量計の他の構成の横断面図である図3に示すような、反射を3回利用したW字型の伝播路であっても同様な測定が可能である。すなわち超音波の伝播路は、計測流路8の壁面の一面に対向する面と、その一面とにおいて3回の反射を行うW字形状をなす。
 さらにW字型の伝播路は、V字型の伝播路よりも伝播時間が長く取れるため、より測定精度を上げることができる。
 また、計測流路8の断面形状を超音波伝播路の中心に対し、対称とすることにより、流体の順方向の流れだけでなく、逆方向の流れの場合でも同様の精度による測定が可能である。そのため、脈動などの現象の測定も可能となる。
 なお本発明の実施の形態1において、仕切り板24により計測流路8を仕切り多層化しているが、その効果について説明する。
 図4は本発明の実施の形態1の超音波式流量計の多層流路における流速分布の説明図である。流路を多層化することにより、計測流路8に流れる被計測流体の流量が同じでも、多層部のレイノルズ数は小さくなる。そのため大流量の計測範囲であっても、被計測流体は層流状態を維持するため、流れの乱れの影響を小さくすることができ安定した計測が可能となる。
 図4のhを小さくすることにより、レイノルズ数が小さくなり層流状態を実現できる。なお、レイノルズ数は以下の式により示される。
    R(レイノルズ数)=L×V/ν
      Lは代表長さで流路断面の高さhと幅により決まる値
      Vは流速
      νは流体の動粘性係数
 次に流路の流れに関して説明する。
 図5Aは本発明の実施の形態1の超音波式流量計の流れを説明する横断面図、図5Bは同超音波式流量計の流れを説明する平面図である。
 導入路1より導かれる被計測流体は、計測流路8に入ると大きく流路が屈曲しているため、鉛直方向の流速に大きな偏りが発生する。計測流路8の入口では、被計測流体の鉛直方向の速度分布が均一でなくなり、計測流路8の鉛直方向において偏りが発生する。仕切り板24により矩形の計測流路8を多層化した場合、偏流の方向によっては各層に不均一な被計測流体の流量が流れ込むことになる。
 すなわち図5Aに示すU字型流路における計測流路8の一部、または全体を仕切り板24により紙面に垂直方向に流路を区切り多層化した場合、計測流路8での偏流があると各層において流量が異なってしまう。そのため、超音波伝播が全層にわたる計測ができない場合、誤差が生じてしまう。ここでU字型流路は、流入口2、開閉弁下流側流路4、曲げ部6、計測流路8、排出曲げ部9、排出路17、流出口18により構成される。
 また被計測流体の流量の大きさにより計測流路8入口の流速分布も変わるため、流量によって真値に対する誤差の割合そのものが変わる。そのため、任意の一つの流量だけ計測し、測定仕様範囲全域の計測値を補正することは困難となる。
 本発明の実施の形態1では図5Bに示すように、矩形断面を有する計測流路8を、鉛直方向に立てられた仕切り板24により多層に分割している。
 なお、鉛直方向に対し図5Aの紙面の奥行き方向ではガスの流れの偏りがほとんど発生しない。そして、矩形断面形状である計測流路8の縦方向に仕切り板24によって区切り、多層構造とすることにより、計測流路8の各層に均等にガスが流れ込む。多層化により1層当たりの隙間が小さくなり、流れは2次元化され流速による流速分布の変化も更に抑制される。
 さらに本発明の実施の形態1では、複数枚の仕切り板24の間隔を等しくしているため、全層を超音波が伝播して計測ができなくても一部の層の流量を計測することにより全体の流量を測るのとほぼ同等になる。そのため正確な流量の計測ができ、鉛直方向の流れの分布偏りの影響を受け難い流量の測定が可能となる。
 なお、図5Aでは開閉弁下流側流路4に対して計測流路8が垂直に交わるL字型である。しかし、本発明の実施の形態1の超音波式流量計のさらに他の構成の横断面図である図6に示すようにL字型でなくてもよい。開閉弁下流側流路4に対し計測流路8が所定の角度を有して傾斜している場合、計測流路8の入口では偏流が起こりうるため、仕切り板24による仕切り方向を流速分布がより対称性を有するようにする。このことにより、偏流による計測への影響が小さくなる。すなわち仕切り板24は、計測流路8の対向する壁面間の流速分布が、被計測流体の流れ方向の中心に対してより対称形である壁面に平行となるように配置されている。
 図7Aは本発明の実施の形態1の超音波式流量計の計測流路断面(鉛直断面)の流速分布図、図7Bは図7Aの計測流路断面と垂直に交わる断面(水平断面)の流速分布図である。
 図7Aと図7Bとにおいて、流路断面流速分布Aと流路断面流速分布Bとは計測流路8の流れ方向に対し、2対の壁間のそれぞれ断面の中心の流速分布である。流路断面流速分布Aと流路断面流速分布Bとの双方の断面は、垂直に交わる。
 流路断面流速分布Aと流路断面流速分布Bとのように中心に対し偏りに差が無い場合、すなわち流速分布は中心に対して同程度に対称である場合、流速分布の形がよりフラット(均等)な壁間(図7Bに示す断面)の方を仕切る。このように壁面間の2つの流速分布のうち、流速分布がより均一である方の壁面に対して平行となるように仕切り板24を配置する。
 このことにより、多層間に流れる被計測流体の流量の分布を均一とすることができる。その結果、超音波式流量計の計測ばらつきが小さくなり、より信頼性を高めることができる。
 (実施の形態2)
 図8は、本発明の実施の形態2の超音波式流量計の横断面図である。
 開閉弁下流側流路4と計測流路8とがL字形状にて交わる場合、計測流路8の入口では偏流が発生する。偏流による被計測流体の乱れが大きい場合、被計測流体の流れが計測流路8の入口において流路の壁面からの剥離、および渦の発生など非常に乱れた状態となる。この乱れた流れの中を超音波が伝播した場合、超音波の伝播は流れの影響を受けるため、超音波の伝播波形も不安定になる。すなわち超音波振動子による計測のための超音波の伝播経路は、流れの乱れの小さい領域に持ってくることが精度良い計測には効果的である。
 上述したように超音波振動子の設置場所は、流れの乱れの近傍を避けるため、計測流路8の入口より流れが安定するまでの助走区間(図8中S)を設け、その区間以後に配置することが望ましい。
 なお本発明の実施の形態2では、仕切り板24を助走区間以後に配置することにより、上記課題を解決している。すなわち仕切り板24は、助走区間以上離れた位置に配置されている。助走区間は、計測流路8の入口から被計測流体が計測流路8の内壁面からの流れの剥離が生じる長さである。
 また本発明の実施の形態2では、助走区間を仕切り板24による仕切り間隔の5倍以上設けている。
 図9は、本発明の実施の形態2の超音波式流量計の他の構成の横断面図である。図9に示すように、計測流路8側と一体となった邪魔板25が突き出されている。すなわち計測流路8の入口において、計測流路8の壁面が被計測流体の流れと反対方向に突出する邪魔板25を有する。その結果、邪魔板25の長さの分が計測流路8の助走区間の延長となり、装置の小型化等のために計測流路入口7近くに、第一の超音波振動子10、第二の超音波振動子11を配置する際に有効となる。
 図10は、本発明の実施の形態2の超音波式流量計のさらに他の構成の横断面図である。図10に示すように、邪魔板25の先端部分の形状を、計測流路8の内側より外部に開いたラッパ状の円弧形状とする。その結果、開閉弁下流側流路4と計測流路8とがL字型等の接続構成になっていても、被計測流体が計測流路8に流入する際、流れが邪魔板25の円弧形状の壁面に沿って緩やかに導かれる。そのため、計測流路8壁面での剥離等の乱れが起きにくくなり、第一の超音波振動子10、第二の超音波振動子11の配置の自由度が大きくなり、装置の小型化が容易となる。また計測流路8内の乱れが少なくなるため、計測部における圧力損失の軽減も図れる。
 なお、邪魔板25の円弧状曲率半径は、計測流路8の高さの1/2以上が好ましい。このようにすることにより、計測流路8に入る被計測流体が円弧形状に沿う形で流入する。そのため、流れの計測流路8の壁面からの剥離、および乱れが起きにくくなることにより、計測流路8内の流れが安定する。そして助走区間を短くすることができるため、第一の超音波振動子10、第二の超音波振動子11の配置の自由度が高くなる。また被計測流体の乱れを減らすことにより、被計測流体の圧力損失を減らすことができる。
 以上のように本発明は、ガスなどの気体流体は勿論、水などの液体流体までの広い範囲での利用が可能となる。
1  導入路
2  流入口
3  開閉弁
4  開閉弁下流側流路
5  流路ユニット
6  曲げ部
7  計測流路入口
8  計測流路
9  排出曲げ部
10  第一の超音波振動子
11  第二の超音波振動子
12  センサユニット
13,14  開口部
15,16  金網
17  排出路
18  流出口
19  計測制御部
20  演算部
21  電源部
22  駆動部
23  弁座開口部
24  仕切り板
25  邪魔板

Claims (8)

  1. 被計測流体が流れる矩形断面の計測流路と、前記計測流路に流れる前記被計測流体に超音波を伝播させることにより前記被計測流体の流速を計測する超音波式流量計であって、前記計測流路には、前記被計測流体の流れ方向に沿って平行となるように仕切り板を配置するとともに、前記仕切り板は前記計測流路の対向する壁面間の流速分布が前記被計測流体の流れ方向の中心に対してより対称形である前記壁面に平行となるように配置されることを特徴とする超音波式流量計。
  2. 前記壁面間の2つの流速分布のうち、前記流速分布がより均一である方の壁面に対して平行となるように前記仕切り板を配置したことを特徴とする請求項1記載の超音波式流量計。
  3. 前記仕切り板を等間隔に配置することを特徴とする請求項1記載の超音波式流量計。
  4. 前記被計測流体が曲げ部を経て前記計測流路に流入することを特徴とする請求項1記載の超音波式流量計。
  5. 前記計測流路の入口から前記被計測流体が前記計測流路の内壁面からの流れの剥離を生じる長さである助走区間以上離れた位置に前記仕切り板を配置することを特徴とする請求項4記載の超音波式流量計。
  6. 前記計測流路の入口において前記計測流路の壁面が前記被計測流体の流れと反対方向に突出する邪魔板を有することを特徴とする請求項5記載の超音波式流量計。
  7. 前記邪魔板の先端は前記計測流路の高さの1/2以上の曲率半径の円弧形状であることを特徴とする請求項6記載の超音波式流量計。
  8. 前記計測流路の対向する2面のいずれか1面の側である第一の面に第一の超音波振動子、第二の超音波振動子が設置され、前記第一の超音波振動子、前記第二の超音波振動子のうちいずれか一方の超音波振動子の発信した超音波が前記第一の面に対向する第二の面において一回以上反射し他方の超音波振動子が受信することを特徴とする請求項1記載の超音波式流量計。
PCT/JP2009/006907 2008-12-18 2009-12-16 超音波式流量計 WO2010070891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/131,456 US8701501B2 (en) 2008-12-18 2009-12-16 Ultrasonic flowmeter
EP09833199.4A EP2351994A4 (en) 2008-12-18 2009-12-16 Ultrasonic flowmeter
CN2009801512894A CN102257366A (zh) 2008-12-18 2009-12-16 超声波流量计

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008322153 2008-12-18
JP2008-322153 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010070891A1 true WO2010070891A1 (ja) 2010-06-24

Family

ID=42268571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006907 WO2010070891A1 (ja) 2008-12-18 2009-12-16 超音波式流量計

Country Status (5)

Country Link
US (1) US8701501B2 (ja)
EP (1) EP2351994A4 (ja)
JP (1) JP2010164558A (ja)
CN (1) CN102257366A (ja)
WO (1) WO2010070891A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201599A (zh) * 2010-11-10 2013-07-10 松下电器产业株式会社 超声波流量计量装置
CN103459988A (zh) * 2011-04-05 2013-12-18 松下电器产业株式会社 超声波流量计测装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728639B2 (ja) * 2009-10-01 2015-06-03 パナソニックIpマネジメント株式会社 超音波流量計
US20120272748A1 (en) * 2010-01-07 2012-11-01 Panasonic Corporation Ultrasonic flowmeter
JP5816831B2 (ja) * 2010-09-15 2015-11-18 パナソニックIpマネジメント株式会社 超音波流量計
JP5838292B2 (ja) * 2010-11-11 2016-01-06 パナソニックIpマネジメント株式会社 超音波流量測定装置
JP5793644B2 (ja) 2010-11-11 2015-10-14 パナソニックIpマネジメント株式会社 超音波式流量計測装置
JP2012132801A (ja) * 2010-12-22 2012-07-12 Panasonic Corp 超音波流量計
JP2012247299A (ja) * 2011-05-27 2012-12-13 Panasonic Corp 超音波式流量計測ユニットおよびこれを用いたガス流量計
JP5942085B2 (ja) * 2011-12-26 2016-06-29 パナソニックIpマネジメント株式会社 流量補正係数設定方法とこれを用いた流量計測装置
US10508937B2 (en) * 2012-04-12 2019-12-17 Texas Instruments Incorporated Ultrasonic flow meter
GB2504295B (en) * 2012-07-24 2019-07-31 Titan Entpr Ltd Flowmeter with annular passage
JP6108768B2 (ja) * 2012-10-30 2017-04-05 大阪瓦斯株式会社 超音波式ガスメータ
JP6145645B2 (ja) * 2013-06-19 2017-06-14 パナソニックIpマネジメント株式会社 超音波式流量計測装置
CN105043474A (zh) * 2015-06-03 2015-11-11 成都千嘉科技有限公司 一种用于超声波流量计的新型流道结构
JP2017015475A (ja) * 2015-06-30 2017-01-19 パナソニックIpマネジメント株式会社 計測ユニットおよび流量計
JP6375519B2 (ja) * 2016-01-12 2018-08-22 パナソニックIpマネジメント株式会社 ガスメータ
US10295387B2 (en) 2017-04-25 2019-05-21 Vittorio BONOMI Integrated ball valve and ultrasonic flowmeter
GB201713895D0 (en) * 2017-08-30 2017-10-11 Sentec Ltd Transducer drive and damping technique
GB201808918D0 (en) 2018-05-31 2018-07-18 Sentec Ltd Flow measurement improvement
JP6982737B2 (ja) * 2018-09-10 2021-12-17 パナソニックIpマネジメント株式会社 超音波流量計
KR102065498B1 (ko) * 2018-11-01 2020-02-11 (주)세화하이테크 층류관을 구비한 초음파식 가스유량계측장치
JP7281668B2 (ja) * 2019-08-02 2023-05-26 パナソニックIpマネジメント株式会社 超音波送受信器、および超音波流量計
CN113418571A (zh) * 2021-06-18 2021-09-21 重庆市山城燃气设备有限公司 具有防误接功能的燃气表、防误接方法及燃气管理系统
WO2023048599A1 (en) * 2021-09-23 2023-03-30 Alexandr Mikhailovich Derevyagin Device and method for ultrasonic measurement of the fluid flow velocity and flowrate
KR102478319B1 (ko) * 2021-12-23 2022-12-16 강윤호 유량관용 슬롯부재
US20230228602A1 (en) * 2022-01-19 2023-07-20 International Environmental Corporation Energy metering system for a fan coil
CN219084154U (zh) * 2022-12-08 2023-05-26 四方光电股份有限公司 一种超声波流量计

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101674A (ja) * 1997-09-26 1999-04-13 Matsushita Electric Ind Co Ltd 流量計測装置
JP2001141536A (ja) * 1999-11-18 2001-05-25 Yazaki Corp 流量計測装置
JP2003083791A (ja) * 2001-09-11 2003-03-19 Tokyo Gas Co Ltd 流量計測装置およびガスメータ
JP2004132928A (ja) 2002-10-15 2004-04-30 Matsushita Electric Ind Co Ltd 超音波式流量計
JP2008107287A (ja) * 2006-10-27 2008-05-08 Ricoh Elemex Corp 超音波流量計

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1016750B (it) * 1974-08-01 1977-06-20 Fiat Spa Dispositivo per effettuare median te ultrasuoni la misura della por tata d aria in massa nel condotto di aspirazione di motori a combu stione interna
KR100694937B1 (ko) * 2003-02-24 2007-03-14 마츠시타 덴끼 산교 가부시키가이샤 초음파식 유체 계측 장치
JP4186645B2 (ja) 2003-02-24 2008-11-26 松下電器産業株式会社 超音波流量計測装置
JP2005070007A (ja) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd 流量計測装置
JP4579220B2 (ja) * 2006-11-08 2010-11-10 パナソニック株式会社 超音波式流体計測装置
JP4990655B2 (ja) * 2007-03-22 2012-08-01 アズビル金門株式会社 超音波ガスメーター
JP2009276131A (ja) 2008-05-13 2009-11-26 Ricoh Elemex Corp 超音波式流量計
EP2343516A4 (en) * 2008-11-05 2012-05-02 Panasonic Corp MULTILAYER CHANNEL ELEMENT AND ULTRASONIC LIQUID MEASURING DEVICE THEREWITH

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101674A (ja) * 1997-09-26 1999-04-13 Matsushita Electric Ind Co Ltd 流量計測装置
JP2001141536A (ja) * 1999-11-18 2001-05-25 Yazaki Corp 流量計測装置
JP2003083791A (ja) * 2001-09-11 2003-03-19 Tokyo Gas Co Ltd 流量計測装置およびガスメータ
JP2004132928A (ja) 2002-10-15 2004-04-30 Matsushita Electric Ind Co Ltd 超音波式流量計
JP2008107287A (ja) * 2006-10-27 2008-05-08 Ricoh Elemex Corp 超音波流量計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351994A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201599A (zh) * 2010-11-10 2013-07-10 松下电器产业株式会社 超声波流量计量装置
EP2639560A1 (en) * 2010-11-10 2013-09-18 Panasonic Corporation Ultrasonic flow rate measurement device
EP2639560A4 (en) * 2010-11-10 2014-07-09 Panasonic Corp ULTRASOUND FLOW RATE MEASURING DEVICE
CN103459988A (zh) * 2011-04-05 2013-12-18 松下电器产业株式会社 超声波流量计测装置

Also Published As

Publication number Publication date
US8701501B2 (en) 2014-04-22
US20110238333A1 (en) 2011-09-29
EP2351994A1 (en) 2011-08-03
CN102257366A (zh) 2011-11-23
JP2010164558A (ja) 2010-07-29
EP2351994A4 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
WO2010070891A1 (ja) 超音波式流量計
KR100694937B1 (ko) 초음파식 유체 계측 장치
WO2012063437A1 (ja) 超音波流量計測装置
WO2014057673A1 (ja) 流量計
WO2012086156A1 (ja) 超音波流量計
CN103575378A (zh) 超声楔以及用于确定其中的声速的方法
WO2012164859A1 (ja) 超音波式流量計測ユニットおよびこれを用いたガス流量計
US20140230568A1 (en) Ultrasonic flow-meter
JP2895704B2 (ja) 超音波流量計
JP2010117201A (ja) 流量計
WO2017122239A1 (ja) ガスメータ
JP5816831B2 (ja) 超音波流量計
JP2002520583A (ja) マルチコード流量計
JP5259313B2 (ja) 超音波流量計
JP2001133307A (ja) 流入・流出対称型流量計
JP2014077750A (ja) 超音波メータ
JP2009264906A (ja) 流量計
WO2020054383A1 (ja) 超音波流量計
JPH10239125A (ja) 超音波流量計
JP4453341B2 (ja) 超音波流量計
JP3935069B2 (ja) 流量計測装置
JP4604520B2 (ja) 流れ計測装置
KR100993617B1 (ko) 외벽부착식 초음파 다회선 유량계
JP2000065613A (ja) 超音波流量計
RU2517996C1 (ru) Датчик ультразвукового расходомера

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151289.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009833199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13131456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE