WO2010068031A2 - 온도감응형 유체흐름 단속장치 - Google Patents

온도감응형 유체흐름 단속장치 Download PDF

Info

Publication number
WO2010068031A2
WO2010068031A2 PCT/KR2009/007351 KR2009007351W WO2010068031A2 WO 2010068031 A2 WO2010068031 A2 WO 2010068031A2 KR 2009007351 W KR2009007351 W KR 2009007351W WO 2010068031 A2 WO2010068031 A2 WO 2010068031A2
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
temperature
valve
flow
chamber
Prior art date
Application number
PCT/KR2009/007351
Other languages
English (en)
French (fr)
Other versions
WO2010068031A4 (ko
WO2010068031A3 (ko
Inventor
정재영
Original Assignee
(주)수도프리미엄엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080125055A external-priority patent/KR100901269B1/ko
Priority claimed from KR1020090008875A external-priority patent/KR101041100B1/ko
Priority claimed from KR1020090111530A external-priority patent/KR101142059B1/ko
Priority to RU2011128407/06A priority Critical patent/RU2481522C2/ru
Priority to US13/139,088 priority patent/US8561914B2/en
Priority to EP09832116.9A priority patent/EP2369210B1/en
Priority to JP2011540604A priority patent/JP5714500B2/ja
Priority to CN200980149724XA priority patent/CN102245949B/zh
Application filed by (주)수도프리미엄엔지니어링 filed Critical (주)수도프리미엄엔지니어링
Publication of WO2010068031A2 publication Critical patent/WO2010068031A2/ko
Publication of WO2010068031A3 publication Critical patent/WO2010068031A3/ko
Publication of WO2010068031A4 publication Critical patent/WO2010068031A4/ko
Priority to HK12104836A priority patent/HK1164415A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/09Component parts or accessories
    • E03B7/10Devices preventing bursting of pipes by freezing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/12Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid
    • G05D23/125Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid the sensing element being placed outside a regulating fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1189Freeze condition responsive safety systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1189Freeze condition responsive safety systems
    • Y10T137/1353Low temperature responsive drains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7737Thermal responsive

Definitions

  • the present invention relates to a temperature-sensitive fluid flow control device, and more particularly, when the temperature of the temperature-sensitive fluid in the temperature sensitive portion reaches a set temperature, a small amount of flow fluid in the fluid flow pipe is discharged to The present invention relates to a temperature sensitive fluid flow control device capable of preventing freezing waves.
  • the water inside the water pipe which is a representative fluid flow pipe, freezes when the outside temperature becomes very low, such as winter, and thus, when water freezes in the pipe, the volume increases, causing cracks in the water pipe. Accordingly, various apparatuses and methods have been used to prevent this.
  • an object of the present invention is to discharge a small amount of flow fluid to the outside of the fluid flow pipe without supplying power from the outside when the temperature of the temperature sensitive fluid in the temperature sensitive portion disposed in the fluid flow pipe reaches the set temperature.
  • a temperature sensitive fluid flow control device comprising: a housing installed between an inlet and an outlet of a fluid flow tube through which a flow fluid flows; A valve block flowing in the flow fluid in the housing, the valve block being installed in the housing to discharge a part of the flow fluid to the outside of the housing according to a change in an internal pressure; And a temperature regulator generating a pressure difference in the valve block according to a temperature change of the temperature sensitive fluid filled therein.
  • the freezing of the fluid flow pipe is prevented by discharging a small amount of the flow fluid in the housing to the outside.
  • FIG. 1 is a schematic view showing the configuration of a temperature-sensitive fluid flow control device according to a first embodiment of the present invention
  • FIG. 2 is a state diagram illustrating an operation of expanding the temperature regulator when the temperature of the temperature sensitive fluid reaches a set temperature in the temperature sensitive fluid flow control device of FIG. 1;
  • FIG. 3 is a schematic view showing the configuration of a temperature-sensitive fluid flow control device according to a second embodiment of the present invention
  • FIG. 4 is a state diagram illustrating an operation of expanding the thermostat when the temperature of the thermosensitive fluid reaches a set temperature in the thermosensitive fluid flow control device of FIG.
  • FIG. 5 is a detailed view in which a gap chamber is installed in a second flow path between the discharge pipe and the fluid storage chamber in the upper portion of the temperature sensitive fluid flow control device of FIG. 3.
  • FIG. 6 is a schematic view showing the configuration of a temperature-sensitive fluid flow control device according to a third embodiment of the present invention.
  • FIG. 7 is a state diagram illustrating an operation of expanding the temperature regulator when the temperature of the temperature sensitive fluid reaches a set temperature in the temperature sensitive fluid flow control device of FIG. 6.
  • FIG. 8 is a detailed view of a holder for varying a set temperature of a temperature sensitive fluid.
  • FIG. 9 is a schematic diagram showing the configuration of a temperature-sensitive fluid flow control device according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic view illustrating a modified embodiment of the temperature sensitive unit in the temperature sensitive fluid flow control device of FIG. 9.
  • FIG. 11 is an exemplary view in which a one-way valve is attached to the upper inflow passage of FIG. 9.
  • FIG. 12 is an exemplary view in which a fluid outlet port communicates with a fluid flow tube.
  • FIG. 13 is a schematic diagram illustrating a configuration of a set temperature variable device added to the temperature sensitive fluid flow control device of FIG. 9.
  • FIG. 14 is a state diagram illustrating an operation of contracting the bellows when the temperature of the flow fluid in the housing reaches a set temperature in the temperature sensitive fluid flow control device of FIG. 9.
  • FIG. 15 is a state diagram illustrating a state in which the fluid in the pressure release chamber is transferred to the fluid storage tank following the bellows contraction operation of FIG. 14.
  • FIG. 16 is a state diagram illustrating a state in which the fluid in the valve chamber is transferred to the pressure release chamber following the transfer operation of the fluid in the pressure release chamber to the fluid storage tank of FIG. 15.
  • FIG. 17 is a state diagram in which the flow fluid in the fluid storage tank is discharged through the fluid discharge port following the operation of transferring the fluid in the valve chamber to the pressure release chamber of FIG. 16.
  • Figure 1 shows the configuration of a temperature-sensitive fluid flow control device according to a first embodiment of the present invention
  • Figure 2 is a case where the temperature of the temperature-sensitive fluid in the temperature-sensitive fluid flow control device of Figure 1 reaches a set temperature, It shows the action of the thermostat expanding.
  • the temperature-sensitive fluid flow control device As shown in Figure 1, the temperature-sensitive fluid flow control device according to the first embodiment of the present invention is formed with an opening portion 220 is a part of which is exposed to the outside, there is a fluid (hereinafter referred to as flow fluid) Inflow and outflow of the housing 200 is installed between the inlet and the outlet of the fluid flow pipe (120,140) flowing through the housing 200, a small amount of flow fluid in accordance with the change in the internal pressure of the fluid discharge chamber 240 The pressure difference in the valve block 300 and the valve block 300 installed in the housing 200 to communicate with the opening 220 of the housing 200 according to the temperature change of the temperature-sensitive fluid 471 are measured. Generating a thermostat.
  • flow fluid hereinafter referred to as flow fluid
  • the set temperature means the temperature before the flow fluid in the housing 200 freezes.
  • a small amount of the flow fluid in the fluid flow pipe is discharged to the outside, thereby preventing freezing of the fluid flow pipe.
  • the temperature regulator includes a valve block 300 and a cap temperature sensitive part 420.
  • the valve convex 300 includes a valve chamber 340 and a reaction chamber 320 communicating therewith.
  • the temperature sensitive part 420 is filled with a temperature sensitive fluid 471 therein and installed on the valve block 300 by the holder 402.
  • the reaction chamber 320 is in communication with the temperature sensitive portion 420, the wrinkles 440 that is expanded or contracted by the condensation and expansion of the temperature sensitive fluid 471 is installed in the temperature sensitive portion 420, the temperature It is preferable that the temperature of the temperature sensitive fluid 417 filled in the sensitive part 420 is always lower than the temperature of the flow fluid in the housing 200.
  • the inside of the pleats 440 is provided with a piston member 460 which is raised and lowered in accordance with the expansion and contraction of the pleats 440, the spring 480 is fitted to the outer surface of the piston member 460 to the piston member ( 460 is pressed downward.
  • the piston member 460 of the temperature sensitive chamber 420 moves up and down in the reaction chamber 320 of the valve block 300, communicates with the valve chamber 340 through the first flow path 310, and the valve chamber 340.
  • the second flow path 314 is connected between the reaction chamber 320 and the discharge pipe (360).
  • a piston valve 328 is interposed in the valve chamber 340 to provide an upper inflow passage 322 for introducing a flow fluid in the housing 200, a rubber pad valve 324 provided to cover the discharge pipe 360, and a rubber pad.
  • a lower inflow passage 326 is provided that is in communication with the discharge pipe 360 when the valve 324 is opened.
  • reference numeral 316 below the rubber pad valve 324 is a seal ring.
  • the piston valve 328 is preferably always pressed downward by the spring 342.
  • the piston valve 328 must pressurize the rubber pad valve 324 at a predetermined prescribed pressure, for example, 1-3 kgf / m 2 , but below this pressure, for example 0.5 kgf / m 2 .
  • the piston valve 328 is lifted up so that the flow fluid leaks, which is to prevent this.
  • the reaction chamber 320 includes a first valve body 380 provided to open and close the first flow path 310 by raising and lowering as the piston member 460 moves up and down.
  • the first valve body 380 includes a hollow member 382, an elastic rubber member 384 inserted below the hollow member 382, and a spring 386 sequentially inserted above the hollow member 382.
  • a contact member 388 the contact member 388 is in elastic contact with the lower end of the piston member 460.
  • the rubber member 384 is for enhancing the airtightness of the first flow path 310.
  • the piston member 460 is lowered by this expanded pressure, and the rubber member 384 below the first valve body 380. ), The pressure is severely pressed, and the airtightness deteriorates due to the breakage of the rubber member 384 and the discharge timing of the flow fluid by the pressed degree is changed.
  • the spring 386 absorbs and prevents the rubber member 384 from being absorbed. It is possible to prevent damage to the first valve body 380.
  • the fluid discharge chamber 240 is provided with a second valve body 260 installed to open and close the discharge pipe 360, the second valve body 260 is a hollow member 262, the hollow member 262 One end is inserted into the lower end and the other end is attached to the opening part 220 of the housing 200 to be pressed upward, and the elastic rubber member 266 inserted into the upper portion of the hollow member 262. It includes. Rubber member 266 is also to increase the airtightness of the discharge pipe (360).
  • the temperature sensitive portion 420 is filled with gas as the temperature sensitive fluid 471.
  • gas As such gas, Freon-based and non-freon-based refrigerant gases generally used in coolers can be used.
  • the piston member 460 When the outside temperature is lowered and the gas is condensed, as the space is formed in the temperature sensitive portion 420, the piston member 460 is raised by the spring 480 fitted to the piston member 460. As a result, the wrinkles 440 also expands. However, on the contrary, when the temperature increases and the gas expands, the piston member 460 descends and the corrugated portion 440 also contracts.
  • the temperature-sensitive substance other than the above-described gas for example, acetone, alcohol, ethanol, methanol
  • the methanol may be filled in the temperature sensitive part 420.
  • the upper inflow passage 322 is larger than the amount of flow fluid flowing into the reaction chamber 320 from the valve chamber 340 through the first flow passage 310.
  • the amount flowing into the valve chamber 340 through 322 is much less. Accordingly, the water pressure of the valve chamber 340, that is, the pressure of the upper portion of the rubber pad valve 324 is lowered.
  • the rubber pad valve 324 since the lower portion of the rubber pad valve 324 is subjected to hydraulic pressure by the flow fluid introduced through the lower inflow passage 326 formed in the lower portion of the rubber pad valve 324, the rubber pad valve 324 The pressure difference is generated between the upper and lower parts. As a result, the rubber pad valve 324 is raised as shown in FIG.
  • the flow fluid in the housing 200 flows into the discharge pipe 360, lowers the second valve body 260 of the fluid discharge port 240, and opens the discharge pipe 360 through the opening 220. To discharge the flow fluid.
  • the temperature of the flow fluid in the fluid flow tubes 120 and 140 is always maintained above the set temperature to prevent freezing of the fluid flow tubes 120 and 140.
  • the fluid flow pipe is called a water pipe
  • the water pressure of the water pipe is usually about 2-3 kgf / cm 2
  • the flow rate of the flow fluid that is, when water is discharged to the outside, is very fast. Therefore, according to the Bernoulli principle, all the flow fluid flowing into the discharge pipe 360 through the second flow path 314 is also discharged when the flow fluid is discharged, so that the upper inflow path 322 is closed with the valve chamber 340.
  • the interior of the storage compartment 320 and the second flow path 314 are always kept empty without flow fluid.
  • the temperature sensitive fluid 471 in the temperature sensitive part 420 is below the set temperature, a small amount of flow fluid in the fluid flow pipes 120 and 140 is discharged for a predetermined time through the opening 220 of the housing 200. .
  • the discharged flow fluid may be frozen to close the opening 220. Therefore, it would be desirable to close the gap between the timing of preventing the discharge and the timing of discharging and stopping the discharge, i.e., to start and stop the discharge smoothly to minimize the consumption of the discharged water.
  • the first valve body 380 pressed by the piston member 460 in the reaction chamber 320 and the second valve body 260 of the fluid discharge chamber 240 are provided.
  • FIG. 3 illustrates a configuration of a temperature sensitive fluid flow control device according to a second embodiment of the present invention
  • FIG. 4 illustrates a temperature response when the temperature of the temperature sensitive fluid reaches a set temperature in the fluid flow control device of FIG. 3. The operation is shown in which the group is expanded.
  • the temperature sensitive fluid flow control device may control the discharge flow rate when discharging the initial flow fluid. Since the configuration of the discharge flow rate regulator is added instead of the fluid discharge chamber of the embodiment, the same reference numerals are given to the same configuration as the embodiment of FIGS. 1 and 2, and a detailed description thereof is omitted.
  • the discharge flow rate regulator is installed in the second flow passage 314 shown in Figs.
  • the discharge flow rate regulator includes a fluid storage chamber 520 and a second valve chamber 540 in communication with the fluid storage chamber 520.
  • the discharge pipe 360 has a central portion like an orifice tube, an upper portion thereof communicates with the second valve chamber 540, and a lower portion thereof communicate with the fluid storage chamber 520.
  • the fluid storage chamber 520 includes a valve member 522 installed to open and close the second flow path 314 and a spring 524 installed to press the valve member 522 downward, so that the valve member 522 is raised. If so, the flow fluid in the reaction chamber 320 is introduced through the second flow path (314).
  • the fluid storage chamber 520 is provided with a third flow path 362 communicating with the lower discharge pipe 360 at a predetermined height.
  • the valve member 522 rises above the predetermined height, the fluid flow chamber 520 passes through the third flow path 362.
  • the introduced flow fluid is discharged through the discharge pipe 360 in the lower portion.
  • the second valve chamber 540 is configured similar to the valve chamber 340, the communication passage 542 with the fluid storage chamber 520 is interposed with the piston valve 544 flows into the fluid storage chamber 520 And a rubber pad valve 346 installed to cover the second flow path 314.
  • a negative pressure is generated in the second valve chamber 540 due to the flow velocity of the flow fluid discharged through the discharge pipe 360, and a part of the flow fluid is sucked through the second flow path 314.
  • the piston valve 544 is lowered by the spring 524, the rubber pad valve 346 is closed.
  • a resistance shaft 620 is disposed in the second flow path 314 between the upper discharge pipe 360 and the second valve chamber 540 to delay discharge of the flow fluid. It is preferable that a gap chamber 600 in which) operates.
  • the temperature-sensitive fluid flow control device allows the fluid to always flow in the fluid flow pipe by repetition of the above operation, so that even if the outside temperature is low, the fluid flow pipe is not supplied with external power. As the fluid does not freeze, the freezing of the fluid flow pipe is prevented.
  • FIG. 6 shows a configuration of a temperature sensitive fluid flow control device according to a third embodiment of the present invention.
  • an opening part 722 is partially formed to be exposed to the outside, and fluid flow tubes 712 and 714 in which fluid flows therein.
  • the pressure difference in the valve block 730 and the valve block 730 installed in the housing 720 so as to communicate with the opening 722 of the housing 720 and the temperature sensitive fluid 771 according to the temperature change. It includes a thermostat that occurs.
  • the temperature sensitive fluid flow control device when the temperature of the temperature sensitive fluid 771 reaches a set temperature, a pressure difference occurs in the valve block 730 by the temperature sensitive part 774.
  • the flow fluid in the valve block 730 is configured to be discharged to the outside through the fluid outlet 724 in communication with the opening 722 of the housing 720.
  • the set temperature means a temperature before the flow fluid in the housing 720 is frozen, and in the present invention, a small amount of flow fluid is externally supplied whenever the temperature of the temperature sensitive fluid 771 becomes equal to the set temperature because the outside temperature is lowered.
  • the temperature of the flow fluid in the fluid flow pipes 712 and 714 is always maintained above a set temperature to prevent freezing of the fluid flow pipes 712 and 714.
  • the valve block 730 is provided with a temperature sensitive chamber 740, a pressure relief chamber 750, and a valve chamber 760.
  • the temperature sensitive chamber 740 is installed in the open portion 722 of the housing 720, the temperature sensitive portion 774 having a wrinkle portion 772 formed thereon, and the wrinkle portion 772 of the temperature sensitive portion 774.
  • the upper and lower communication pipes 777 and 779 are installed so as to communicate with the fluid discharge port 724, respectively, the holder 776 for partitioning up and down, and the upper and lower portions of the temperature sensitive chamber 740, Acts as a group.
  • the temperature sensitive fluid 771 is filled in the temperature sensitive part 774, and the temperature of the temperature sensitive fluid 771 is always lower than the temperature of the flow fluid in the housing 720.
  • the first piston valve 754 is installed in the pressure releasing chamber 750 to which pressure is applied by the flow fluid introduced into the housing 720 so as to open and close the communication path 752 communicating with the temperature sensitive chamber 740.
  • the valve chamber 760 is provided with a second piston valve 762, the upper inlet passage 764 for introducing the flow fluid in the housing 720, and the connecting pipe 766 connected to the pressure relief chamber 750 and
  • the rubber inlet passage 764 and the rubber pad valve 768 installed at the lower portion of the connecting pipe 766 are connected to the fluid outlet 724 when the rubber pad valve 768 is opened.
  • An installed lower inflow passage 769 is formed.
  • a certain interval is formed between the upper portion of the pleated portion 772 of the temperature sensitive portion 774 and the first piston valve 754, and a flow fluid, for example, as the temperature sensitive fluid 771 in the temperature sensitive portion 774. Filled with water.
  • the temperature sensitive fluid 771 of this embodiment expands when the external temperature decreases, and contracts when the temperature increases. Therefore, when the temperature sensitive fluid 771 expands due to the external temperature being lowered, the pleated portion 772 expands to raise the first piston valve 754. When the temperature becomes high, the temperature sensitive fluid 771 contracts again. The first piston valve 754 is lowered.
  • the temperature sensitive fluid other than the above-described fluid may be filled in the temperature sensitive portion 774.
  • the heat capacity of the temperature sensitive fluid 771 should be smaller than the heat capacity of the flow fluid in the fluid flow tube, when the same heat energy escapes, the temperature of the temperature sensitive fluid in the temperature sensitive portion 774 is the flow fluid inside the fluid flow pipe. Since the temperature is always lower than the temperature, the size of the temperature sensitive portion 774 is preferably smaller than the size of the fluid flow tubes (712,714).
  • the water pressure of the valve chamber 760 that is, the water pressure of the upper portion of the rubber pad valve 768 is lowered, while the lower portion of the rubber pad valve 768 is formed at the lower inflow passage formed at the lower portion of the rubber pad valve 768. Since the hydraulic pressure is applied by the flow fluid introduced through the 769, a hydraulic pressure difference occurs above and below the rubber pad valve 768. As such, when the hydraulic pressure difference occurs, the rubber pad valve 768 expands as shown in FIG. 7 so that the lower inflow passage 769 and the fluid outlet 724 communicate with each other, and thereby the housing 720. The flow fluid therein flows into the fluid outlet 724 and then through the lower inlet passage 769 connected to the fluid outlet 724 to the bottom of the temperature sensitive chamber 740 formed in the opening 722 of the housing 720. Discharged.
  • reference numerals 751 and 761 denote airtight portions at which the first piston valve 754 of the pressure release chamber 750 and the second piston valve 762 of the valve chamber 760 are opened and closed, respectively.
  • the rubber ring provided to provide is shown.
  • a one-way valve is installed in the upper inflow passage 764 of the valve chamber 760 so that the flow fluid flowing through the upper inflow passage 764 flows backward and discharges.
  • a one-way valve is installed in the upper inflow passage 764 of the valve chamber 760 so that the flow fluid flowing through the upper inflow passage 764 flows backward and discharges.
  • the third embodiment of the present invention may further include a setting temperature variable device to change the set temperature, thereby adjusting the opening and closing time of the first piston valve 776.
  • the set temperature variable device 780 includes a holder 776 formed to be screw-adjustable on an inner wall of the temperature sensitive chamber 740, and a thread formed on an outer surface of the holder 776. It includes a configuration coupled to the screw formed on the inner wall of the chamber 58, it is possible to adjust the flow of the flow fluid in the pressure release chamber 750 into the temperature sensitive chamber 740 by adjusting the screw. That is, when the gap between the upper portion of the pleated portion 772 and the first piston valve 754 by screw adjustment is reduced as shown by the solid line in FIG.
  • the temperature sensitive fluid 771 filled in the temperature sensitive portion 774 Even if it expands only a little, the 1st piston valve 754 which closed the communication path 752 is raised by the pressure of a flow fluid. As a result, the flow fluid flowing into the pressure releasing chamber 750 flows into the temperature sensitive chamber 740 faster. On the contrary, when the spacing is widely adjusted as shown by the dotted line in FIG. 8, the first piston valve which is closing the communication path 752 only needs to expand more than the temperature sensitive fluid 771 filled in the temperature sensitive part 774. 754 is raised. Therefore, the time when the flow fluid of the pressure releasing chamber 750 flows into the temperature sensitive chamber 740 is delayed.
  • the fluid flow pipe is called a water pipe
  • the water pressure of the water pipe is usually about 2 to 3 kgf / cm 2 , so the flow rate when the fluid is discharged to the outside is very fast. Therefore, according to Bernoulli's principle, a negative pressure is generated at the fluid outlet 724 after the fluid is discharged. Due to the pressure difference between the upper portion of the temperature sensitive chamber 740 and the upper portion of the temperature sensitive chamber 740, the flow fluid, which is located above the temperature sensitive chamber 740, is also moved to the fluid outlet 724 through the upper communication tube 777, thereby allowing the fluid outlet 724. Is discharged through). In this way, since all the fluid in the temperature sensitive chamber 740 is discharged through the fluid outlet 724, the upper communication tube 777 is always kept clean.
  • the flow fluid introduced into the housing 720 through the inlet 712 of the fluid flow tube is released from the valve chamber 760 by hydraulic pressure. Filled in the chamber 750, the temperature sensitive fluid 771 filled in the temperature sensitive portion 774 is It has a constant volume, the first piston valve 754 maintains a constant gap with the pleated portion 772 of the temperature sensitive portion 774, the rubber ring by the flow fluid filled in the pressure relief chamber 750 In close contact with each other to close the communication path 752.
  • the temperature sensing unit 774 detects this. That is, since the size of the temperature sensitive portion 774 is smaller than that of the fluid flow tube, the temperature of the temperature sensitive fluid 771 in the temperature sensitive portion 774 is lower than the temperature of the flow fluid in the fluid flow tube.
  • the temperature sensitive fluid 771 in the temperature sensitive portion 774 starts to freeze before the flow fluid.
  • the density of the frozen thermosensitive fluid 771 is about 10% lower than the density of the flow fluid (since the volume of ice is about 10% larger than the volume of water at the same mass), the volume increases as ice is produced.
  • the first piston valve 754 is raised by pushing up the first piston valve 754 to open the communication path 752.
  • the flow fluid in the pressure releasing chamber 750 is introduced into the temperature sensitive chamber 740 through the communication path 752, and then discharged to the fluid outlet 724 through the upper communication pipe 777.
  • the pressure releasing chamber 750 communicates with the valve chamber 760 by the connecting pipe 766, the flow fluid filled in the valve chamber 760 is released through the connecting pipe 766. Will be moved to).
  • the amount of fluid flowing into the valve chamber 760 through the upper inflow passage 764 is introduced through the upper inflow passage 764 because the second phyton valve 762 is interposed in the upper inflow passage 764. Fluid enters through a gap with the second piston valve 26. Therefore, the valve chamber 760 flows in much less than the amount moved to the pressure relief chamber 750 through the connecting pipe 766. Accordingly, the water pressure of the valve chamber 760, that is, the pressure of the upper portion of the rubber pad valve 768 is lowered.
  • the rubber pad valve 768 since the lower portion of the rubber pad valve 768 is subjected to hydraulic pressure by the fluid introduced into the lower inflow passage 769 formed at the lower portion of the rubber pad valve 768, the upper and lower portions of the rubber pad valve 768 are centered on the rubber pad valve 768. Hydraulic pressure difference will occur. Accordingly, the rubber pad valve 768 expands as shown in FIG. 7 so that the lower inflow passage 769 and the fluid outlet 724 communicate with each other. As a result, the flow fluid in the housing 720 flows into the lower inflow passage 769 and is discharged into the fluid discharge port 724 and is discharged to the lower portion of the temperature sensitive chamber 740 through the lower communication tube 79.
  • the water pressure of the fluid flow pipe which may be called a water pipe
  • the flow rate when the fluid is discharged to the outside is very fast. Therefore, according to Bernoulli's principle, the negative pressure is generated in the fluid outlet 724 after the fluid is discharged.
  • the upper portion of the fluid outlet 724 and the temperature sensitive chamber 740 are communicated by the upper communication tube 777, the temperature is sensed by the pressure difference between the fluid outlet 724 and the upper part of the temperature sensitive chamber 740.
  • the fluid in the upper portion of the chamber 740 is also moved to the fluid outlet 724 through the upper communication tube 777 and is discharged to the lower portion of the temperature sensitive chamber 740 through the lower communication tube 79.
  • the fluid in the upper portion of the temperature sensitive chamber 740 and the flow fluid in the housing 720 are discharged to the fluid discharge port 724, and the flow fluid discharged to the lower portion of the temperature sensitive chamber 740 through the lower communication pipe 779.
  • the lower portion of the temperature sensitive portion 774 is in contact. Since the temperature of the flow fluid discharged is higher than the temperature of the temperature sensitive fluid 771 in the temperature sensitive part 774, the contact of the discharge fluid with the lower part of the temperature sensitive part 774 causes the discharge fluid to enter the temperature sensitive part 774. Frozen ice melts.
  • the volume of the flow fluid inside the temperature sensitive portion 774 is reduced, so that the corrugated portion 772 is also contracted, and as a result, the first piston valve 754 is no longer pushed up. Therefore, the first piston valve 754 closes the communication path 752 again.
  • the rubber pad valve 768 returns to its original state and closes the fluid outlet 724, thereby providing Stop discharging.
  • the temperature-sensitive fluid flow control device of the present invention does not freeze the fluid inside the fluid flow tube without external power supply even when the outside temperature is lowered by allowing the fluid to always flow in the fluid flow tube by the repetition of the above operation. To prevent freezing of the fluid flow tube.
  • FIG. 9 is a view illustrating a configuration of a temperature sensitive fluid flow control device according to a fourth embodiment of the present invention
  • FIG. 10 is a modified embodiment of the temperature sensitive device of FIG. 9 attached to the shaft such that the shaft is elevated according to temperature change.
  • 11 is an exemplary view in which a one-way valve is attached to the upper inlet passage of FIG. 9
  • FIG. 12 is an exemplary view in which a fluid outlet port is connected to the faucet, and FIG. 13 may be added to the configuration of FIG. 9.
  • the configuration of the set temperature variable device is shown.
  • the temperature-sensitive fluid flow control device is provided between an inlet part 812 and an outlet part 814 of fluid flow pipes 812 and 814 through which fluid flows.
  • the communication tube 882 to introduce the housing 820 and the flow fluid in the housing 820 to discharge the small amount of the flow fluid to the outside of the housing 820 through the fluid discharge port 822 according to the change in the internal pressure.
  • the pressure in the valve block 880 is caused by contraction of the temperature regulator 890. It is configured to increase the flow fluid in the valve block 880 to the outside of the housing 820 through the fluid outlet 822.
  • the set temperature means a temperature before the flow fluid in the housing 200 freezes.
  • the temperature of the fluid in the fluid flow pipes (812,814) is always above the set temperature It is to be maintained to prevent the freezing of the fluid flow pipe (812,814).
  • the valve block 880 has a fluid storage tank 830 in communication with the communication tube 882, a pressure release chamber 840 communicating with the fluid storage tank 830 and the communication unit 832, and a communication unit.
  • the flow fluid in the housing 820 flows through the upper inflow passage 872 formed at one side of the valve chamber 870 and is filled in the valve chamber 870, the connection pipe 836, and the pressure releasing chamber 840.
  • the pressure releasing chamber 840 is provided with a first piston valve 842 to open and close the communicating portion 832, and one end 852 of the seesaw member 850 opens and closes the communicating portion 832. In conjunction with the contraction expansion of 890, the other end 854 is linked to the opening and closing of the first piston valve 842 of the pressure release chamber 840.
  • the temperature regulator 890 includes a shaft 892 installed to move up and down through the communication tube 882 of the valve block 880, a pressure compensation spring 894 for pressing the shaft 892 in one direction, and the temperature change.
  • a gas storage chamber 896 that stores gas as a temperature sensitive fluid 871 that contracts and expands, and a bellows 898 attached to the shaft such that the shaft 892 moves up and down as the temperature sensitive fluid 871 contracts and expands. It includes.
  • the bellows 898 is preferably installed to be sealed so that the gas stored in the gas storage chamber 896 does not pass through the communication tube 882.
  • the housing 820 has been described as being sensitive to the temperature of the flow fluid.
  • the fluid flow may be interrupted by being sensitive to the temperature of the external remote location.
  • the gas 871 stored in the gas storage chamber 896 is supplied through the gas connection pipe 895 from the temperature sensitive gas source 910 located at a remote location.
  • the gas stored in the gas storage chamber 896 may use any gas whose pressure varies in principle depending on the temperature, and the gas that is in a saturated state (the state in which the liquid and the gas exist together) is used in the operating temperature range. desirable.
  • Freon-type and non-freon type refrigerant gas generally used by a cooler can be used.
  • the temperature sensitive fluid 871 filled in the gas storage chamber 896 is condensed. Accordingly, as the pressure compensation spring 894 and the bellows 898 are extended to unfold the bellows 898, one end 852 of the shaft 892 and the seesaw member 850 is centered on the hinge shaft 851. To go up. On the other hand, as the other end 854 of the seesaw member 850 descends about the hinge shaft 851, the first piston valve (closed) of the communication unit 832 by the inflow pressure of the flow fluid ( 842). Accordingly, by opening the communication unit 832, the flow fluid filled in the pressure release chamber 840 flows into the fluid storage tank 830 through the communication unit 832 and is stored.
  • the first piston valve 842 opened is raised by the inflow pressure of the flow fluid to close the communication section 832, so that the flow fluid filled in the pressure releasing chamber 840 communicates with the communication section 832. Through the fluid storage tank 830 is prevented from entering.
  • the temperature sensor 890 of the modified embodiment attaches and deforms the deformable member 900 to the shaft 892 and the support member 902, which are deformed according to the temperature change. Since the operation is the same as possible, detailed description thereof will be omitted.
  • the deforming member 900 for example, a bimetal, a shape memory alloy, or a material having a high coefficient of thermal expansion may be used.
  • the shaft 892 and the first piston valve 842 are interlocked by the seesaw member 850.
  • the deformation member 900 is not directly shown. Since the direction of movement can be changed up and down during contraction and expansion, the shaft 892 and the first piston valve 842 may be interlocked without configuring the seesaw member 850.
  • the valve chamber 870 has an upper inflow passage 872 having a second piston valve 876 interposed therebetween, and is connected to the pressure relief chamber 840 through a connection pipe 836.
  • a rubber pad valve 860 is installed at the lower portion of the upper inflow passage 872 and the connection pipe 836 and the connection pipe 836 to open and close the fluid outlet 822.
  • the lower inlet passage 858 is formed to communicate with the outlet 822.
  • the second piston valve 876 moves up and down along the upper inflow passage 872 in conjunction with opening and closing of the rubber pad valve 860. Between the second piston valve 876 and the wall surface of the upper inlet passage 872 by the lifting and lowering of the upper inlet passage 872 of the second piston valve 876 in conjunction with the opening and closing of the rubber pad valve 860 as described above. Foreign matter that may accumulate can also be removed, thereby improving the lifespan and reliability of operation of the freeze protection device of the present invention.
  • reference numerals 744 and 778 denote airtightness in portions where the first piston valve 842 of the pressure release chamber 840 and the second piston valve 876 of the valve chamber 870 are opened and closed, respectively.
  • the rubber ring provided to provide is shown.
  • the one-way valve 862 is provided in the upper inflow passage 872 of the valve chamber 870 to prevent the flow fluid flowing through the upper inflow passage 872 from flowing backward.
  • the one-way valve 862 is composed of a valve and a spring supporting the valve, wherein the spring used is a fluid having a low modulus of elasticity so that the fluid in the housing 820 is introduced through the upper inflow passage 872, but the valve chamber The fluid in 870 is prevented from flowing back into the housing 820 to improve the reliability of the device.
  • the fluid outlet 822 may be connected to the faucet 810 provided in the inlet 812 or the outlet 814 of the fluid flow tube without passing through the housing 820.
  • the temperature-sensitive fluid flow control device may vary the set temperature at which the flow fluid in the housing 820 is discharged.
  • the simplest method is to use pressure compensation springs 894 having different modulus values.
  • the temperature-sensitive fluid flow control device further includes a setting temperature variable device capable of varying the setting temperature. You may.
  • the set temperature variable device 920 adjusts the inclination of the seesaw member 850 of the valve block 880 coupled to the lower end of the shaft 892 of the temperature sensor 890.
  • One end 852 of the seesaw member 850 is inserted into the guide hole 884 formed on the lower side of the 892, and the adjustment screw 922 screwed into the screw groove 886 formed on the lower end of the shaft 892.
  • the adjusting screw 922 As the adjusting screw 922 is screwed, one end of the seesaw member 850 inserted into the hole 884 of the shaft 892 is guided and lowered in the hole 884 so that the seesaw member 850 is moved. The inclination is adjusted about the hinge axis 851.
  • the adjusting screw 922 is adjusted such that one end 852 of the seesaw member 850 is further inclined about the hinge axis 851 so that the one end 851 rises upward, the other end 854 Goes further down. Accordingly, the outside of the fluid flow tubes 812 and 814 becomes slightly cold, so that the rising time of the shaft 892 is accelerated even if the temperature of the flow fluid in the housing 820 is slightly lowered.
  • the opening timing of the first piston valve 842 in the state where the communication portion 832 is closed by the pressure of the flow fluid is accelerated.
  • the adjusting screw 922 is adjusted such that the inclination of the seesaw member 850 is lowered, the opening timing of the first piston valve 842 is delayed.
  • the fluid storage tank 830 communicates with the outside air through an air passage 834 communicating with the outside air, and communicates with the fluid outlet 822 through the discharge passage 838 to generate a negative pressure at the fluid outlet 822.
  • the flow fluid inside the fluid storage tank 830 flows into the fluid outlet 822 through the discharge passage 838 and is discharged.
  • the discharge passage 838 is always kept clean because all of the fluid remaining in the discharge passage 838 is discharged.
  • Fluid inside the housing 820 is filled in the valve chamber 870 and the pressure release chamber 840 by hydraulic pressure.
  • the temperature sensor 890 senses this. That is, the gas 871 in the gas storage chamber 896 is condensed, and the pressure compensation spring 894 and the bellows 98 are extended as shown in FIG. 14, and at the same time, the shaft 892 and the seesaw member 850 One end 852 rises up, as shown in FIG.
  • the other end 854 of the seesaw member 850 descends about the hinge shaft 851 so as to close the communication part 832 by the pressure of the flow fluid flowing into the pressure releasing chamber 840.
  • the piston valve 842 is pressed to lower the first piston valve 842 as shown in FIG. 16 to open the communication portion 832.
  • the pressure release chamber 840 is in communication with the fluid storage tank 830 through the communication unit 832 as the first piston valve 842 descends, so that the fluid in the pressure release chamber 840 is stored in the fluid storage tank ( 830).
  • the fluid in the valve chamber 870 also moves to the pressure relief chamber 840 through the connection pipe 836.
  • the amount of fluid flowing into the valve chamber 870 through the upper inlet passage 872 is the second piston valve 876 is interposed in the upper inlet passage 872, the inflow through the upper inlet passage 872
  • the fluid to be introduced flows through the gap with the second piston valve 876. Therefore, the valve chamber 870 flows much less than the amount that is moved to the pressure relief chamber 830 through the connecting pipe 836. Accordingly, the water pressure of the valve chamber 870, that is, the pressure of the upper portion of the rubber pad valve 860 is lowered.
  • the rubber pad valve 860 since the lower portion of the rubber pad valve 860 is subjected to hydraulic pressure by the fluid introduced into the lower inflow passage 874 formed at the lower portion of the rubber pad valve 860, the upper and lower portions of the rubber pad valve 860 are centered. Hydraulic pressure difference will occur. Accordingly, the rubber pad valve 860 expands upward as shown in FIG. 17 so that the lower inflow passage 874 and the fluid outlet 822 communicate with each other, whereby the flow fluid in the housing 820 flows downward. Flow into the passage 874 causes the fluid to be discharged to the outside through the fluid outlet 822.
  • the fluid flow pipe is called a water pipe
  • the water pressure of the water pipe is usually about 2 to 3 kgf / cm 2 , so the flow rate when the fluid is discharged to the outside is very fast. Therefore, according to Bernoulli's principle, the negative pressure is generated in the fluid outlet 822 after the fluid is discharged.
  • the fluid outlet 822 and the fluid storage tank 830 communicate with each other through the discharge passage 838, the fluid outlet 822 and the fluid storage tank 830 are in the fluid storage tank 830 due to the pressure difference between the fluid outlet 822 and the fluid storage tank 830. Fluid is also moved to the fluid outlet 822 through the discharge passage 838 is discharged through the fluid outlet 822.
  • the fluid storage tank 830 when all the fluid in the fluid storage tank 830 is discharged through the fluid outlet 822, the fluid storage tank 830 is in communication with the external air by the discharge passage 838, so that the external air is the air passage 834. Through) to the fluid outlet 822. Since the fluid remaining in the discharge passage 838 is cleaned in accordance with the flow of air, the discharge passage 838 is always kept clean.
  • the temperature-sensitive fluid flow control device of the present invention does not freeze the fluid inside the fluid flow tube without external power supply even when the outside temperature is lowered by allowing the fluid to always flow in the fluid flow tube by the repetition of the above operation. To prevent freezing of the fluid flow tube.
  • the present invention is not limited to this, it is interpreted to have the broadest range in accordance with the basic idea disclosed herein
  • those skilled in the art can easily change the material, size, etc. of each component according to the application. It is also possible to adopt a structure not shown by combining / substituting the disclosed embodiments, which again does not depart from the scope of the invention.
  • those skilled in the art can easily change or modify the disclosed embodiments based on the present specification, it is apparent that such changes or modifications belong to the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Temperature-Responsive Valves (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

온도감응형 유체흐름 단속장치는 내부에 흐름 유체가 흐르는 유체흐름관의 유입부와 배출부사이에 설치되는 하우징과, 상기 하우징내의 흐름유체를 유입하되, 내부압력의 변화에 따라 상기 흐름유체의 일부를 상기 하우징의 외부로 배출하도록 상기 하우징내에 설치되는 밸브 블록, 및 내부에 충진된 온도감응유체의 온도변화에 따라 상기 밸브 블록 내에 압력차를 발생하는 온도감응기를 포함한다. 외부의 기온이 낮아져서 온도감응유체의 온도가 설정온도에 도달하면, 하우징 내 흐름유체일부를 외부로 배출시킴으로써 유체흐름관의 동파를 방지한다.

Description

온도감응형 유체흐름 단속장치
본 발명은 온도감응형 유체흐름 단속장치에 관한 것으로, 더욱 상세하게는 온도감응부내의 온도감응유체의 온도가 설정온도에 도달하면, 유체흐름관 내부의 흐름유체의 소량을 배출시켜 유체흐름관의 동파를 방지할 수 있는 온도감응형 유체흐름 단속장치에 관한 것이다.
일반적으로, 대표적인 유체흐름관인 수도 배관 내부의 물은 동절기와 같이 외부의 기온이 매우 낮아지게 되면 얼게 되고, 이와 같이 배관내에서 물이 얼게 되면 부피가 증가하게 되어 수도 배관에 균열이 생기게 된다. 이에 따라 이를 방지하기 위한 다양한 장치 및 방법이 사용되어 왔다.
유체흐름관의 동파방지를 위한 대부분의 장치 및 방법은 유체흐름관 내부의 온도를 감지하여, 그 온도가 소정 온도이하일 경우, 외부로부터 동력, 예를 들어 전원을 유체흐름관에 설치한 히터에 공급하여 유체흐름관이 얼지않도록 가열하는 것이다. 그러나, 이러한 장치 및 방법은 그 구성이 복잡하고, 전력소모가 심하여 유지관리비용이 많이 드는 문제점이 있다.
그러므로, 본 발명의 목적은 유체흐름관에 배치된 온도감응부내의 온도감응유체의 온도가 설정온도에 도달하면, 외부로부터 동력 공급없이 소량의 흐름유체를 유체흐름관의 외부로 배출함으로서 유체흐름관의 동파를 방지하는 온도감응형 유체흐름 단속장치를 제공하는데 있다.
전술한 목적을 달성하기 위한 본 발명의 양태에 따른 온도감응형 유체흐름 단속장치는, 내부에 흐름 유체가 흐르는 유체흐름관의 유입부와 배출부사이에 설치되는 하우징; 상기 하우징내의 흐름유체를 유입하되, 내부압력의 변화에 따라 상기 흐름유체의 일부를 상기 하우징의 외부로 배출하도록 상기 하우징내에 설치되는 밸브 블록; 및 내부에 충진된 온도감응유체의 온도변화에 따라 상기 밸브 블록 내에 압력차를 발생하는 온도감응기를 포함하는 것을 특징으로 한다.
본 발명에 의하면, 외부의 기온이 낮아져서 온도감응부 내부에 충진된 온도감응유체의 온도가 설정온도에 도달하면, 하우징 내 소량의 흐름유체를 외부로 배출시킴으로써 유체흐름관의 동파를 방지한다.
도 1은 본 발명의 제1 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 나타내는 개략도이고,
도 2은 도 1의 온도감응형 유체흐름 단속장치에서 온도감응유체의 온도가 설정온도에 달하는 경우, 온도감응기가 팽창되는 작동을 나타내는 상태도이고,
도 3은 본 발명의 제2 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 나타내는 개략도이고,
도 4는 도 3의 온도감응형 유체흐름 단속장치에서 온도감응유체의 온도가 설정온도에 달하는 경우, 온도감응기가 팽창되는 작동을 나타내는 상태도이고,
도 5는 도 3의 온도감응형 유체흐름 단속장치의 상부의 배출관과 유체저장실사이의 제 2 유로에 간극실이 설치된 상세도이다.
도 6은 본 발명의 제3 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 나타내는 개략도이다.
도 7은 도 6의 온도감응형 유체흐름 단속장치에서 온도감응유체의 온도가 설정온도에 달하는 경우, 온도감응기가 팽창되는 작동을 나타내는 상태도이다.
도 8은 온도감응유체의 설정온도를 가변하는 홀더의 상세도이다.
도 9는 본 발명의 제4 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 나타내는 개략도이다.
도 10은 도 9의 온도감응형 유체흐름 단속장치 내 온도감응부의 변형 실시예를 나타내는 개략도이다.
도 11은 도 9의 상부 유입 통로에 일방향밸브가 부착된 예시도이다.
도 12는 유체배출구가 유체흐름관에 연통되는 예시도이다.
도 13은 도 9의 온도감응형 유체흐름 단속장치에 추가된 설정온도 가변장치의 구성을 나타내는 개략도이다.
도 14는 도 9의 온도감응형 유체흐름 단속장치에서 하우징내의 흐름유체의 온도가 설정온도에 달하는 경우, 벨로우즈가 수축되는 작동을 나타내는 상태도이다.
도 15는 도 14의 벨로우즈 수축 작동에 이어, 압력해제실내의 유체가 유체저장탱크로 이송되는 상태를 나타내는 상태도이다.
도 16은 도 15의 압력해제실 내 유체의 유체저장탱크로의 이송 작동에 이어, 밸브실내의 유체가 압력해제실로 이송되는 상태를 나타내는 상태도이다.
도 17는 도 16의 밸브실내 유체의 압력해제실로의 이송 작동에 이어, 유체저장탱크내의 흐름유체가 유체배출구를 통해 배출되는 상태도이다.
이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 본 발명의 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 더욱 상세히 설명하기로 하지만, 이는 예시에 불과한 것이며, 본 발명이 이에 제한되는 것은 아니다.
도 1은 본 발명의 제1 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 나타내며, 도 2는 도 1의 온도감응형 유체흐름 단속장치에서 온도감응유체의 온도가 설정온도에 달하는 경우, 온도감응기가 팽창되는 작동을 나타내고 있다.
도 1에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 온도감응형 유체흐름 단속장치는 일부가 외부에 노출되는 개방부(220)가 형성되어, 내부에 유체(이하 흐름유체라 함)가 흐르는 유체흐름관(120,140)의 유입부와 배출부사이에 설치되는 하우징(200)과, 하우징(200)내의 흐름유체를 유입하되, 내부압력의 변화에 따라 소량의 흐름유체를 유체배출실(240)을 통해 하우징(200)의 개방부(220)와 연통되도록 하우징(200)내에 설치되는 밸브 블록(300)과, 온도감응유체(471)의 온도변화에 따라 밸브 블록(300)내에 압력차이를 발생시키는 온도감응기를 포함한다. 본 발명의 실시예에서, 하우징(200)내의 흐름유체가 외부로 배출되는 설정온도에 온도감응유체(471)의 온도가 도달되면 밸브 블록(300)내에 압력차이가 발생하여 밸브 블록(300)내의 흐름유체를 하우징(200)의 개방부(220)와 연통된 유체배출실(240)을 통해 외부로 배출한다. 여기서, 설정온도란 하우징(200)내의 흐름유체가 얼기 전의 온도를 의미한다. 본 발명에서는 외부의 기온이 낮아져서 온도감응유체의 온도가 설정온도와 같아질 때마다 유체흐름관 내 흐름유체의 소량을 외부로 배출함으로서, 유체흐름관의 동파를 방지하는 것이다.
온도감응기는 밸브 블록(300)과 캡 형상의 온도 감응부(420)를 포함한다. 밸브 볼록(300)은 그의 내부에 서로 연통하는 밸브실(340)과 반응실(320)을 포함한다. 온도 감응부(420)는 그 내부에 온도감응유체(471)가 충진되어 홀더(402)에 의해 밸브 블록(300)의 상부에 설치된다. 반응실(320)은 온도감응부(420)와 연통하며, 온도감응부(420)내에는 온도감응유체(471)의 응축과 팽창에 따라 팽창되거나 수축되는 주름부(440)가 설치되며, 온도감응부(420)내에 충진되는 온도감응유체(417)의 온도는 하우징(200)내의 흐름유체의 온도보다 항상 낮은 상태인 것이 바람직하다. 주름부(440)의 내부에는 주름부(440)의 팽창과 수축에 따라 승하강하는 피스톤 부재(460)가 설치되며, 피스톤 부재(460)에는 스프링(480)가 외부면에 감합되어 피스톤 부재(460)를 하방으로 가압하도록 되어 있다.
밸브 블록(300)의 반응실(320)에는 온도감응실(420)의 피스톤 부재(460)가 승하강하며, 제 1 유로(310)를 통해 밸브실(340)과 연통되고, 밸브실(340)은 배출관(360)을 통해 유체배출실(240)과 연통되며, 반응실(320)과 배출관(360)사이에는 제 2 유로(314)가 연결되어 있다.
밸브실(340)에는 피스톤 밸브(328)가 개재되어 하우징(200)내의 흐름유체를 유입하는 상부 유입통로(322)와, 배출관(360)을 덮도록 설치된 고무패드밸브(324)와, 고무패드밸브(324)의 개방시 배출관(360)과 연통되도록 설치된 하부 유입통로(326)가 제공된다. 도면 중 고무패드밸브(324)하부의 미 설명부호 (316)은 시일링이다. 피스톤 밸브(328)는 스프링(342)에 의해 항상 하방으로 가압되는 것이 바람직하다. 피스톤 밸브(328)는 소정의 규정 압력, 예를 들면, 1-3 kgf/m2의 압력으로 고무패드밸브(324)를 가압해야 하는 바, 이 압력 이하, 예를 들어 0.5 kgf/m2의 압력으로 고무패드밸브(324)를 누르게 되면 피스톤 밸브(328)가 들어올려져서 흐름유체가 새는 현상이 발생하므로, 이를 방지하기 위한 것이다.
또한 반응실(320)에는 피스톤 부재(460)의 승하강에 따라 승하강함으로써 제 1 유로(310)를 개폐하도록 설치된 제 1 밸브체(380)가 개재되어 있다. 제 1 밸브체(380)는 중공부재(382)와, 이 중공부재(382)의 하부에 삽입된 탄성의 고무부재(384)와, 중공부재(382)의 상부에 순차적으로 삽입된 스프링(386) 및 접촉부재(388)를 포함하며, 접촉부재(388)는 피스톤 부재(460)의 하단부와 탄성적으로 접하고 있다. 고무부재(384)는 제 1 유로(310)의 기밀성을 높이기 위한 것이다.
한편, 온도감응부(420)내의 온도감응유체(471)가 과도하게 팽창하게 되면, 이 팽창된 압력에 의해 피스톤 부재(460)가 하강하게 되어 제 1 밸브체(380) 하부의 고무부재(384)를 심하게 누르게 되는 현상이 발생하여, 고무부재(384)의 파손으로 인한 기밀성의 저하와 눌린 정도만큼의 흐름유체의 배출시점이 달라지게 된다. 본 발명은 온도감응유체(471)의 과도한 팽창으로 인하여 피스톤 부재(460)가 제1 밸브체(380)를 필요이상의 압력으로 누르더라도 스프링(386)이 흡수하여 이를 방지함으로써 고무부재(384)와 제 1 밸브체(380)의 손상을 방지하게 된다.
한편, 유체배출실(240)에는 배출관(360)을 개폐하도록 설치된 제 2 밸브체(260)가 제공되며, 제 2 밸브체(260)는 중공부재(262)와, 이 중공부재(262)의 하부에 일단이 삽입되고 하우징(200)의 개방부(220)에 타단이 부착되어 상방으로 가압하도록 부착된 스프링(264)과, 중공부재(262)의 상부에 삽입된 탄성의 고무부재(266)를 포함한다. 고무부재(266) 역시 배출관(360)의 기밀성을 높이기 위한 것이다.
[규칙 제91조에 의한 정정 05.04.2010] 
온도감응부(420)에는 온도감응유체(471)로서 가스가 채워져 있다. 이러한 가스로서 일반적으로 냉각기에서 사용되는 프레온계, 비프레온계 냉매가스를 사용할 수 있다. 외부의 온도가 낮아져서 가스가 응축되면, 온도감응부(420)내에 공간이 생김에 따라, 피스톤 부재(460)에 감합되어 있던 스프링(480)에 의해 피스톤 부재(460)가 상승하게 된다. 그 결과 주름부(440)도 팽창하게 된다. 그러나, 이와 반대로 온도가 높아져서 가스가 팽창되면, 피스톤 부재(460)가 하강하여 주름부(440)도 수축된다. 이와 같이 온도가 높아지면 팽창하고, 온도가 낮아지면 수축하는 성질을 가진다면, 전술한 가스 이외의 다른 온도감응 물질, 예를 들면, 아세톤(acetone), 알콜(alcohol), 에탄올(ethanol), 메탄올(methanol) 등이 온도감응부(420)내에 채워져 있을 수 있음은 물론이다. 이와 같이 구성된 본 발명의 온도감응형 유체흐름 단속장치는 온도감응부(420)에 충진된 온도감응유체(471)의 온도가 설정온도에 도달하여 응축하게 되면, 도 2에 도시된 바와 같이, 스프링(480)의 탄성에 의해 피스톤 부재(460)가 상승하게 됨에 따라 주름부(440)가 펴지게 되는 동시에, 제 1 유로(310)를 폐쇄하고 있던 제 1 밸브체(380)가 반응실(320)내에서 상승하여 제 1 유로(310)가 개방되어, 밸브실(340)의 상부 유입통로(322)를 통해 유입되어, 밸브실(340)과, 제 1 유로(310)에 충진되어 있던 흐름유체가 반응실(320)로 유입되기 시작한다.
그런데, 상부 유입통로(322)에는 피스톤 밸브(328)가 개재되어 있기 때문에, 밸브실(340)로부터 제 1 유로(310)를 통해 반응실(320)로 유입되는 흐름유체의 량보다 상부 유입통로(322)를 통해 밸브실(340)로 유입되는 양이 훨씬 적다. 이에 따라 밸브실(340)의 수압, 즉 고무패드밸브(324) 상부의 수압은 낮아지게 된다. 반면, 고무패드밸브(324)의 하부는 고무패드밸브(324)의 하부에 형성된 하부 유입통로(326)를 통해 유입되어 있던 흐름유체에 의해 수압이 걸려 있으므로, 고무패드밸브(324)를 중심으로 그 상하부사이에 압력차이가 발생하게 된다. 그 결과 고무패드밸브(324)가 도 2에 도시된 바와 같이 상승하게 되어 하부의 유입통로(326)와 배출관(360)이 서로 연통하게 된다. 이에 의해 하우징(200)내의 흐름유체가 배출관(360)으로 유입되어 유체배출구(240)의 제 2 밸브체(260)를 하강시켜서, 배출관(360)을 개방시킴에 따라 개방부(220)를 통해 흐름유체를 배출하게 된다. 그 결과, 유체흐름관(120,140)내의 흐름유체의 온도를 항상 설정온도 이상으로 유지하게 되어 유체흐름관(120,140)의 동파를 방지하는 것이다.
한편, 고무패드밸브(324)가 상승하게 됨에 따라, 상부 유입통로(322)에 개재되어 있는 피스톤 밸브(328)를 밀어올려서, 상부 유입통로(322)를 폐쇄한다. 그리고, 제 1 밸브체(380)가 점차 상승하여 제 2 유로(314)를 개방하게 되면, 밸브실(340)로부터 반응실(320)로 유입되는 흐름유체는 제 2 유로(314)를 통해 배출관(360)으로 유입된다.
대표적으로 유체흐름관을 수도관이라 하면, 통상 수도관의 수압은 2-3 kgf/cm2 정도의 값이므로, 흐름유체, 즉, 물이 외부로 배출될 때의 유속은 매우 빠르다. 따라서, 베르누이의 원리에 의해 흐름유체의 배출 시에 제 2 유로(314)를 통해 배출관(360)으로 유입되는 흐름유체 역시 모두 배출되므로, 상부 유입통로(322)가 폐쇄된 밸브실(340)과, 저장실(320) 및 제 2 유로(314)의 내부는 항상 흐름유체가 없는 비어있는 상태로 유지된다.
그런데 온도감응부(420)내의 온도감응유체(471)가 설정온도 이하가 되면, 하우징(200)의 개방부(220)를 통해 유체흐름관(120,140)내의 흐름유체가 일정시간동안 소량이 배출된다. 그러나, 배출 초기에 규정된 배출량의 100%가 배출되지 않게 되면, 배출되는 흐름유체가 동결되어 개방부(220)를 폐쇄할 수도 있다. 그러므로, 이를 방지하는 시점과, 배출되는 시점과 배출을 멈추는 시점의 간극을 좁히는 것, 즉 배출을 원활하게 시작하고 멈추게 하는 것이 배출수의 소모를 최소화할 수 있다는 점이 바람직할 것이다. 이는 본 발명의 제1 실시예에 있어서, 반응실(320)내에서 피스톤 부재(460)에 눌려있던 제 1 밸브체(380)와, 유체배출실(240)의 제 2 밸브체(260)에 의해 달성된다. 즉 제 1 밸브체(380)의 접촉부재(388)가 스프링(386)에 탄지된 상태로 피스톤 부재(460)에 의해 눌려있으므로, 피스톤 부재(460)를 빠르게 상승하도록 함으로써 배출의 시작을 원활하게 할 수 있다. 또한, 제 2 밸브체(260) 역시 스프링(264)에 의해 상방향으로 가압됨에 따라 배출관(360)을 신속하게 폐쇄하여 흐름유체의 배출의 멈춤을 원활하게 행할 수 있는 것이다.
도 3은 본 발명의 제2 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 나타내고 있고, 도 4는 도 3의 유체흐름 단속장치에서 온도감응유체의 온도가 설정온도에 달하는 경우, 온도감응기가 팽창되는 작동을 나타내고 있다.
도 3 및 도 4에 도시된 본 발명의 제2 실시예에 따른 온도감응형 유체흐름 단속장치는 초기의 흐름유체를 배출할 때 그 배출유량을 조절할 수 있도록 도 1 및 도 2에 도시된 제1 실시예의 유체 배출실 대신에 배출유량 조절기의 구성이 추가된 것이므로, 도 1 및 도 2의 실시예와 동일한 구성에는 동일한 도면부호를 병기하였고, 그에 대한 상세한 설명은 생략하였다.
본 제2 실시예에 있어서, 도 1 및 도 2에 도시된 제 2 유로(314)에 배출유량 조절기가 설치된다. 배출유량 조절기는 유체저장실(520)과 이 유체저장실(520)과 연통하는 제 2 밸브실(540)로 이루어진다. 본 실시예에 있어서, 배출관(360)은 중앙이 오리피스관과 같이 구성되며, 상부가 제 2 밸브실(540)과 연통되어 있고, 하부는 유체저장실(520)과 연통되어 있다.
유체저장실(520)에는 제 2 유로(314)를 개폐하도록 설치된 밸브부재(522)와 이 밸브부재(522)를 하방으로 가압하도록 설치된 스프링(524)을 포함하며, 밸브부재(522)가 상승하게 되면, 반응실(320)내의 흐름유체가 제 2 유로(314)를 통해 유입된다.
또한 유체저장실(520)에는 소정의 높이에 하부의 배출관(360)과 연통하는 제 3 유로(362)가 제공되어, 밸브부재(522)가 소정의 높이 이상 상승하면 제 3 유로(362)를 통해 유입된 흐름유체를 하부의 배출관(360)을 통해 배출한다.
한편, 제 2 밸브실(540)은 밸브실(340)과 유사하게 구성되는 것으로, 유체저장실(520)과의 연통로(542)에는 피스톤 밸브(544)가 개재되어 유체저장실(520)에 유입된 흐름유체를 유입하고, 제 2 유로(314)를 덮도록 설치된 고무패드밸브(346)를 포함한다. 그런데 고무패드밸브(346)가 개방되면, 배출관(360)을 통해 배출되는 흐름유체의 유속으로 인해 제 2 밸브실(540)에 부압이 생겨 흐름유체의 일부가 제2유로(314)를 통해 빨려 들어온다. 이후 스프링(524)에 의해 피스톤 밸브(544)가 내려오면서 고무패드밸브(346)가 닫힌다.
이 과정에서, 유체의 속도가 빠르면 하부유입통로(326)를 통해 배출관(360)으로 유입되는 흐름유체가 충분치 않아 하우징(200)내부의 흐름유체의 온도가 점차 낮아져 동결이 일어난다. 이를 방지하기 위한 방법으로, 도 5에 도시된 바와 같이, 흐름유체의 배출을 지연시키기 위해 상부 배출관(360)과 제 2 밸브실(540)사이의 제 2 유로(314)에는 저항용 샤프트(620)가 작동하는 간극실(600)이 형성되는 것이 바람직하다.
본 발명의 실시예들에 따른 온도감응형 유체흐름 단속장치는 이상과 같은 동작의 반복에 의해 유체흐름관에서 항상 유체가 흐르도록 함으로써 외부의 기온이 낮아지더라도 외부의 동력공급없이 유체흐름관 내부의 유체가 얼지 않음에 따라 유체흐름관의 동파를 방지한다.
도 6은 본 발명의 제3 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 도시한다.
도 6에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 온도감응형 유체흐름 단속장치는 일부가 외부에 노출되는 개방부(722)가 형성되어, 내부에 유체가 흐르는 유체흐름관(712,714)의 유입부(712)와 배출부(714)사이에 설치되는 하우징(720)과, 하우징(720)내의 흐름유체를 유입하되, 내부압력의 변화에 따라 소량의 흐름유체를 유체배출구(724)를 통해 하우징(720)의 개방부(722)와 연통되도록 하우징(720)내에 설치되는 밸브 블록(730)과, 온도감응유체(771)의 온도변화에 따라 상기 밸브 블록(730)내에 압력차이를 발생하는 온도감응기를 포함한다.
본 발명의 제3 실시예에 따른 온도감응형 유체흐름 단속장치는 설정온도에 온도감응유체(771)의 온도가 도달되면 온도감응부(774)에 의해 밸브 블록(730)내에 압력차이가 발생하여 밸브 블록(730)내의 흐름유체를 하우징(720)의 개방부(722)와 연통된 유체배출구(724)를 통해 외부로 배출하도록 구성되어 있다. 여기서, 설정온도란 하우징(720)내의 흐름유체가 얼기 전의 온도를 의미하며, 본 발명에서는 외부의 기온이 낮아져서 온도감응유체(771)의 온도가 설정온도와 같아질 때마다 소량의 흐름유체를 외부로 배출함으로서, 유체흐름관(712,714)내의 흐름유체의 온도를 항상 설정온도 이상으로 유지하게 되어 유체흐름관(712,714)의 동파를 방지하는 것이다.
밸브 블록(730)에는 온도감응실(740)과, 압력해제실(750) 및 밸브실(760)이 제공된다. 온도감응실(740)은 하우징(720)의 개방부(722)에 설치되며, 상부에 주름부(772)가 형성된 온도감응부(774)와, 온도감응부(774)의 주름부(772)를 중심으로 상하로 구획하는 홀더(776)와, 온도감응실(740)의 상부와 하부의 각각을 유체배출구(724)와 연통되도록 설치된 상부 및 하부 연통관(777, 779)을 포함하여, 온도감응기로서 작용한다. 온도감응부(774)의 내부에는 온도감응유체(771)가 충진되며, 온도 감응유체(771)의 온도는 하우징(720)내의 흐름유체의 온도보다 항상 낮은 상태인 것이 바람직하다.
하우징(720)내에 유입된 흐름유체에 의해 압력이 가해지는 압력해제실(750)에는 온도감응실(740)과 연통되는 연통로(752)를 개폐하도록 제 1 피스톤밸브(754)가 설치된다. 한편 밸브실(760)에는 제 2 피스톤 밸브(762)가 개재되어 하우징(720)내에 흐름유체를 유입하는 상부 유입 통로(764)와, 압력해제실(750)과 연결되는 연결관(766)과, 유체배출구(724)를 덮도록 상부 유입 통로(764)와 연결관(766)의 하부에 설치된 고무패드밸브(768)와, 고무패드밸브(768)의 개방시 유체배출구(724)와 연통되도록 설치된 하부 유입 통로(769)가 형성된다.
[규칙 제91조에 의한 정정 05.04.2010] 
온도감응부(774)의 주름부(772) 상부와 제 1 피스톤 밸브(754) 사이에는 일정한 간격이 형성되어 있으며, 온도감응부(774)내에는 온도감응유체(771)로서 흐름유체, 예컨대, 물이 채워져 있다. 본 실시예의 온도감응유체(771)는 외부의 온도가 낮아지면 팽창하고, 온도가 높아지면 수축하는 특성을 갖는다. 따라서, 외부의 온도가 낮아져서 온도감응유체(771)가 팽창 되면 주름부(772)가 팽창하게 되어 제 1 피스톤 밸브(754)를 상승시키고, 온도가 높아지면, 온도감응유체(771)가 다시 수축하게 되어 제 1 피스톤 밸브(754)가 하강하게 된다. 이와 같이, 온도가 낮아지면 팽창하고, 온도가 높아지면 수축하는 성질을 가진다면, 전술한 유체 이외의 다른 온도감응유체가 온도감응부(774)내에 채워져 있을 수 있음은 물론이다. 또한, 온도감응유체(771)의 열용량이 유체름관내의 흐름유체의 열용량보다 작아야지만, 동일한 열에너지가 빠져나가는 경우, 온도감응부(774)내의 온도감응유체의 온도가 유체흐름관 내부의 흐름유체의 온도보다 항상 낮은 상태로 되기 때문에, 온도감응부(774)의 크기는 유체흐름관(712,714)의 크기보다 작은 것이 바람직하다.
한편, 제 1 피스톤 밸브(754)가 상승되어 압력해제실(750)의 압력이 해제되면, 연결관(766)을 통해 압력해제실(750)과 연결된 밸브실(760)에는 상부 유입 통로(764)를 통해 하우징(720)내의 흐름유체가 유입된다. 그러나, 상부 유입 통로(764)에서 미세한 간극을 두고 제 2 피스톤 밸브(762)가 개재되어 있으므로, 상부 유입 통로(764)를 통해 밸브실(760)로 유입되는 흐름유체의 양은 미세하다. 그 결과, 밸브실(760)에서는 연결관(766)을 통해 압력해제실(750)로 이동되는 양보다 훨씬 적은 양이 유입된다. 이에 따라, 밸브실(760)의 수압, 즉 고무패드밸브(768) 상부의 수압은 낮아지게 되는 반면, 고무패드밸브(768)의 하부는 고무패드밸브(768)의 하부에 형성된 하부 유입 통로(769)를 통해 유입되어 있던 흐름유체에 의해 수압이 걸려 있으므로, 고무패드밸브(768)를 중심으로 그 상하에 수압차이가 발생하게 된다. 이와 같이 수압차이가 발생하면, 고무패드밸브(768)는 도 7에 도시된 바와 같이 위로 팽창하게 되어 하부 유입 통로(769)와 유체배출구(724)가 서로 연통하게 되고, 이에 의해 하우징(720)내의 흐름유체는 유체배출구(724)로 유입되며, 이어서 유체배출구(724)에 연결된 하부 유입 통로(769)를 통해 하우징(720)의 개방부(722)에 형성된 온도감응실(740)의 하부로 배출된다.
이와 같은 고무패드밸브(768)의 개폐와 연동하여 제 2 피스톤 밸브(762)가 상부 유입 통로(764)를 따라 승하강한다. 따라서, 상부 유입 통로(764)의 벽면과 제 2 피스톤 밸브(762)사이에 축적될 수 있는 이물질이 제거될 수 있으므로 본 발명 흐름유체 단속장치의 수명 및 작동의 신뢰성을 향상하게 된다. 도면 중, 미설명 부호 (751)과 (761)은 각각 압력해제실(750)의 제 1 피스톤 밸브(754)와 밸브실(760)의 제 2 피스톤 밸브(762)가 개폐되는 부분에 기밀을 제공하고자 구비되는 고무링을 나타내고 있다.
본 발명의 제3 실시예에 있어서, 구체적으로 도시하지는 않았지만, 밸브실(760)의 상부 유입 통로(764)에는 일방향 밸브를 설치하여 상부 유입 통로(764)를 통해 유입되는 흐름유체가 역류하여 배출되는 것을 방지하여 장치의 신뢰성을 향상할 수 있음은 물론이다.
또한 본 발명의 제3 실시예는 설정온도를 가변할 수 있도록 설정온도 가변장치를 더 포함하여 제 1 피스톤 밸브(776)의 개폐시기를 조절할 수 있다. 설정온도 가변장치(780)는, 도 8에 도시된 바와 같이, 온도감응실(740)의 내벽에 나사조절가능하도록 형성된 홀더(776)와, 홀더(776)의 외측면에 형성된 나사부가 온도감응실(58)의 내벽에 형성된 나사부에 결합된 구성을 포함하며, 나사조절에 의해 압력해제실(750)내의 흐름유체가 온도감응실(740)로 유입되는 시기를 조절할 수 있다. 즉 나사조절에 의해 주름부(772) 상부와 제 1 피스톤 밸브(754)사이의 간격을 도 8에서 실선으로 도시된 바와 같이 줄이게 되면, 온도감응부(774)내에 충진된 온도감응유체(771)가 조금만 팽창하더라도 흐름유체의 압력에 의해 연통로(752)를 폐쇄하고 있던 제 1 피스톤 밸브(754)가 상승된다. 그 결과, 압력해제실(750)에 유입된 흐름유체가 온도감응실(740)로 유입되는 시기가 빨라지게 된다. 이와 반대로 간격을 도 8에서 점선으로 도시된 바와 같이 넓게 조절하면, 온도감응부(774)내에 충진된 온도감응유체(771)가 더 많이 팽창해야만 연통로(752)를 폐쇄하고 있던 제 1 피스톤 밸브(754)가 상승된다. 그러므로, 압력해제실(750)의 흐름유체가 온도감응실(740)로 유입되는 시기가 늦어지게 된다.
대표적으로 유체흐름관을 수도관이라 하면, 통상 수도관의 수압은 2~3 kgf/cm2 정도의 값이므로 유체가 외부로 배출될 때의 유속은 매우 빠르다. 따라서, 베르누이의 원리에 의해 유체 배출후의 유체배출구(724)에는 부압이 발생하게 되고, 이때 유체배출구(724)와 온도감응실(740)의 상부는 상부연통관(777)에 의해 연통되어 있으므로 유체배출구(724)와 온도감응실(740) 상부와의 사이의 압력차에 의해 온도감응실(740) 상부에 있던 흐름유체 역시 상부연통관(777)을 통해 유체배출구(724)로 이동되어 유체배출구(724)를 통해 배출된다. 이와 같이 온도감응실(740)내의 유체가 유체배출구(724)를 통해 모두 배출되므로, 상부연통관(777)은 항상 깨끗한 상태로 유지된다.
이하 상술한 바와 같이 구성된 본 발명의 제3 실시예에 따른 온도감응형 유체흐름 단속장치의 작동을 설명하면 다음과 같다.
외부의 온도가 설정온도 이상일 경우에는 도 6에 도시된 바와 같이, 유체흐름관의 유입부(712)를 통해 하우징(720) 내부에 유입된 흐름유체는 수압에 의해 밸브실(760)과 압력해제실(750)에 충진되며, 온도감응부(774)내에 충진된 온도감응유체(771)는 일정한 부피를 가지고 있으며, 제 1 피스톤 밸브(754)는 온도감응부(774) 상부의 주름부(772)와 일정한 간극을 유지하고 있고, 압력해제실(750)에 충진된 흐름유체에 의해 고무링과 밀착되어 연통로(752)를 폐쇄하고 있다. 이 상태에서, 외부의 기온이 낮아져서 온도감응부(774)내에 충진된 온도감응유체(771)의 온도가 하우징(720)내의 흐름유체, 즉, 물이 얼기 전에 배출되도록 하는 설정온도에 달하게 되면, 이를 온도감응부(774)가 감지한다. 즉 온도감응부(774)의 크기가 유체흐름관의 크기보다 작게 되어 있으므로, 온도감응부(774)내의 온도감응유체(771)의 온도가 유체흐름관내의 흐름유체의 온도보다 낮은 상태에서, 외부의 온도가 낮아져서 흐름유체가 어는 온도(0 ℃)가 되면, 온도감응부(774)내의 온도감응유체(771)가 흐름유체보다 먼저 얼기 시작한다. 그런데 얼은 온도감응유체(771)의 밀도가 흐름유체의 밀도보다 약 10% 정도 낮으므로(같은 질량에서 얼음의 부피가 물의 부피보다 약 10% 정도 크므로), 얼음이 생성되는 만큼 부피가 증가되어 주름부(772)를 팽창시킨다. 이와 같이 주름부(772)의 소정의 간극 이상의 팽창에 의해, 제 1 피스톤 밸브(754)를 밀어올림으로서 제 1 피스톤 밸브(754)가 상승하여 연통로(752)를 개방하게 된다. 그러면, 압력해제실(750)내의 흐름유체는 연통로(752)를 통해 온도감응실(740)내로 유입되고, 이어서 상부연통관(777)을 통해 유체배출구(724)로 배출된다. 이때, 압력해제실(750)은 밸브실(760)과 연결관(766)에 의해 연통되어 있으므로, 밸브실(760)내에 충진되어 있던 흐름유체는 연결관(766)을 통해 압력해제실(750)로 이동하게 된다.
한편, 상부 유입 통로(764)를 통해 밸브실(760)로 유입되는 유체량은 제 2 피톤 밸브(762)가 상부 유입 통로(764)에 개재되어 있으므로, 상부 유입 통로(764)를 통해 유입되는 유체는 제 2 피스톤 밸브(26)와의 간극을 통해서 유입된다. 그러므로, 밸브실(760)에서는 연결관(766)을 통해 압력해제실(750)로 이동되는 양보다 훨씬 적은 양이 유입된다. 이에 따라 밸브실(760)의 수압, 즉 고무패드밸브(768) 상부의 수압은 낮아지게 된다. 하지만, 고무패드밸브(768)의 하부는 고무패드밸브(768)의 하부에 형성된 하부 유입 통로(769)에 유입되어 있던 유체에 의해 수압이 걸려 있으므로, 고무패드밸브(768)를 중심으로 그 상하에 수압차이가 발생하게 된다. 이에 따라 고무패드밸브(768)는 도 7에 도시된 바와 같이 위로 팽창하게 되어 하부 유입 통로(769)와 유체배출구(724)가 서로 연통하게 된다. 이에 의해 하우징(720)내의 흐름유체는 하부 유입 통로(769)로 유입되어 유체배출구(724)으로 배출되어 하부연통관(79)을 통해 온도감응실(740)의 하부로 배출된다.
이때, 통상 수도관이라 할 수 있는 유체흐름관의 수압은 2~3 kgf/cm2 정도이므로 유체가 외부로 배출될 때의 유속은 매우 빠르다. 따라서, 베르누이의 원리에 의해 유체 배출후의 유체배출구(724)에는 부압이 발생하게 된다. 이때 유체배출구(724)와 온도감응실(740)의 상부는 상부연통관(777)에 의해 연통되어 있으므로, 유체배출구(724)와 온도감응실(740) 상부와의 사이의 압력차에 의해 온도감응실(740) 상부에 있던 유체 역시 상부연통관(777)을 통해 유체배출구(724)로 이동되어 하부연통관(79)을 통해 온도감응실(740)의 하부로 배출된다.
이와 같이 온도감응실(740) 상부의 유체와 하우징(720) 내의 흐름유체가 유체배출구(724)로 배출되어, 하부연통관(779)을 통해 온도감응실(740)의 하부로 배출되는 흐름유체는 온도감응부(774)의 하부를 접촉하게 된다. 배출되는 흐름유체의 온도는 온도감응부(774)내의 온도감응유체(771)의 온도보다 높기 때문에, 이와 같은 배출 유체의 온도감응부(774) 하부와의 접촉에 의해 온도감응부(774)내에 얼어있던 얼음이 녹게 된다. 이에 따라, 온도감응부(774) 내부의 흐름유체의 부피가 줄게 되어 주름부(772)도 수축하게 되며, 그 결과 더 이상 제 1 피스톤 밸브(754)를 밀어올리지 않게 된다. 따라서, 제 1 피스톤 밸브(754)는 연통로(752)를 다시 폐쇄하게 된다. 또한 밸브실(760)의 수압도 점차 증가하게 되어 고무패드밸브(768) 상하의 수압차가 없어지게 되면, 고무패드밸브(768)는 원래의 상태로 돌아가서 유체배출구(724)를 폐쇄하게 되어 흐름유체의 배출을 중단한다.
본 발명의 온도감응형 유체흐름 단속장치는 이상과 같은 동작의 반복에 의해 유체흐름관에서 항상 유체가 흐르도록 함으로써 외부의 기온이 낮아지더라도 외부의 동력공급없이 유체흐름관 내부의 유체가 얼지 않음에 따라 유체흐름관의 동파를 방지한다.
도 9는 본 발명의 제4 실시예에 따른 온도감응형 유체흐름 단속장치의 구성을 나타내며, 도 10은 도 9의 온도감응기의 변형 실시예로서 온도변화에 따라 샤프트가 승강되도록 샤프트에 부착된 변형부재를 나타내며, 도 11은 도 9의 상부 유입 통로에 일방향밸브가 부착된 예시도이고, 도 12는 유체배출구가 수도꼭지에 연통되는 예시도이고, 도 13은 도 9의 구성에 추가될 수 있는 설정온도 가변장치의 구성을 나타내고 있다.
도 9에 도시된 바와 같이, 본 발명의 제4 실시예에 따른 온도감응형 유체흐름 단속장치는 내부에 유체가 흐르는 유체흐름관(812,814)의 유입부(812)와 배출부(814)사이에 설치되는 하우징(820)과, 하우징(820)내의 흐름유체를 유입하되, 내부압력의 변화에 따라 소량의 흐름유체를 유체배출구(822)를 통해 하우징(820)의 외부로 배출하도록 연통관(882)이 형성되어 하우징(820)내에 설치되는 밸브 블록(880)과, 하우징(820)내의 흐름유체의 온도변화에 따라 밸브 블록(880)내의 압력을 증감하도록 밸브 블록(880)의 연통관(882)에 설치되는 온도감응기(890)를 포함한다.
본 발명의 제4 실시예에 따른 온도감응형 유체흐름 단속장치는 하우징(820)내의 흐름유체의 온도가 설정온도에 도달되면, 온도감응기(890)의 수축에 의해 밸브 블록(880)내의 압력을 증가하여 밸브 블록(880)내의 흐름유체를 유체배출구(822)를 통해 하우징(820)의 외부로 배출하도록 구성되어 있다. 여기서, 설정온도란 하우징(200)내의 흐름유체가 얼기 전의 온도를 의미한다. 본 발명에서는 외부의 기온이 낮아져서 하우징(820)내의 흐름유체의 온도가 설정온도와 같아질 때마다 소량의 흐름유체를 외부로 배출함으로서, 유체흐름관(812,814)내의 유체의 온도를 항상 설정온도 이상으로 유지하게 되어 유체흐름관(812,814)의 동파를 방지하는 것이다.
밸브 블록(880)의 내부에는 연통관(882)과 연통되는 유체저장탱크(830)와, 이 유체저장탱크(830)와 연통부(832)를 통해 연통되는 압력해제실(840)과, 연통부(832)에 힌지고정된 시소부재(850)와, 압력해제실(840)과 연결관(836)을 통해 연결된 밸브실(870)을 포함한다. 하우징(820)내의 흐름유체는 밸브실(870) 일측에 형성된 상부 유입 통로(872)를 통해 유입되어 밸브실(870), 연결관(836) 및 압력해제실(840)에 충진되어 있다.
압력해제실(840)에는 연통부(832)를 개폐하도록 제 1 피스톤 밸브(842)가 구비되어 있고, 시소부재(850)는 연통부(832)를 개폐하도록 그 일단(852)은 온도감응부(890)의 수축팽창과 연동되고, 타단(854)은 압력해제실(840)의 제 1 피스톤 밸브(842)의 개폐에 연동된다.
온도감응기(890)는 밸브 블록(880)의 연통관(882)을 통해 승하강되도록 설치된 샤프트(892)와, 샤프트(892)를 일방향으로 가압하는 압력보상스프링(894)과, 온도변화에 따라 수축 및 팽창되는 온도감응유체(871)로서 가스가 저장되는 가스저장실(896)과, 온도감응유체(871)의 수축 및 팽창에 따라 샤프트(892)가 승하강하도록 샤프트에 부착된 벨로우즈(898)를 포함한다. 벨로우즈(898)는 가스저장실(896)내에 저장된 가스가 연통관(882)으로 통하지 않도록 밀봉되게 설치되는 것이 바람직하다.
본 실시예에서는 하우징(820)내의 흐름유체의 온도에 감응되는 것으로 설명하였으나, 이와 달리, 외부 원격지의 온도에 감응하여 유체의 흐름을 단속할 수도 있다. 이 경우에는 가스저장실(896)에 저장되는 가스(871)는 원격지에 위치되는 온도감응 가스원(910)으로부터 가스연결관(895)을 통해 공급된다. 본 발명에서 가스저장실(896)내에 저장되는 가스는 원리적으로는 온도에 따라 압력이 변하는 모든 가스를 사용할 수 있으며, 사용온도 범위에서 포화상태(액체와 기체가 같이 존재하는 상태)로 있는 가스가 바람직하다. 이러한 가스로서 일반적으로 냉각기에서 사용되는 프레온계, 비프레온계 냉매가스를 사용할 수 있다.
유체흐름관(812,814) 외부의 기온이 낮아져서 하우징(820)내의 흐름유체의 온도가 설정온도가 되면, 가스저장실(896)내부에 충진된 온도감응유체(871)가 응축된다. 그에 따라, 압력보상 스프링(894)과 벨로우즈(898)가 신장되어 벨로우즈(898)의 주름이 펴짐에 따라 샤프트(892)와 시소부재(850)의 일단(852)이 힌지축(851)을 중심으로 위로 올라가게 된다. 반면, 시소부재(850)의 타단(854)은 힌지축(851)을 중심으로 아래로 내려가게 됨에 따라 흐름유체의 유입압력에 의해 연통부(832)를 폐쇄하고 있던 상태의 제 1 피스톤 밸브(842)를 누르게 된다. 그에 따라, 연통부(832)를 개방함으로서, 압력해제실(840)내에 충진되어 있던 흐름유체가 연통부(832)를 통해서 유체저장탱크(830)로 유입되어 저장된다.
이와 반대로, 유체흐름관(812,814) 외부의 기온이 높아져서 하우징(820)내의 흐름유체의 온도가 설정온도보다 높아지게 되면, 가스저장실(896)내부에 충진된 온도감응유체(871)가 팽창된다. 그에 따라, 압력보상스프링(894)과 벨로우즈(898)가 다시 압축되어 벨로우즈(898)의 주름이 잡힘에 따라 샤프트(892)와 시소부재(850)의 일단(852)이 힌지축(851)을 중심으로 다시 내려가게 되는 반면, 시소부재(850)의 타단(854)은 힌지축(851)을 중심으로 위로 올라가게 된다. 이에 따라 개방되어 있던 제 1 피스톤 밸브(842)는 흐름유체의 유입압력에 의해 상승되어 연통부(832)를 폐쇄함으로서, 압력해제실(840)내에 충진되어 있던 흐름유체가 연통부(832)를 통해서 유체저장탱크(830)로 유입되는 것이 저지된다.
도 10은 가스를 온도감응 유체로서 사용하는 온도감응기의 변형 실시예를 도시한다. 도 10에 도시된 바와 같이, 변형 실시예의 온도감응기(890)는 온도변화에 따라 변형되는 변형부재(900)를 샤프트(892) 및 지지부재(902)에 부착하여 샤프트(892)를 승하강되도록 하여도 마찬가지로 작동되므로, 그 상세한 설명은 생략한다. 변형부재(900)로는 예를 들어 바이메탈, 형상기억합금, 또는 열팽창 계수가 큰 재료를 사용할 수 있을 것이다.
또한 도 10에 있어서, 샤프트(892)와 제 1 피스톤 밸브(842)가 시소부재(850)에 의해 연동되도록 되어 있는 것과 달리, 본 변형 실시예의 경우에는 직접적으로 도시하지는 않았지만, 변형부재(900)의 수축 및 팽창 시 그 움직임의 방향을 상하로 바꿀 수 있으므로 시소부재(850)의 구성없이 샤프트(892)와 제 1 피스톤 밸브(842)가 연동하도록 할 수도 있음은 물론이다.
다시 도 9를 참조하면, 밸브실(870)에는 제 2 피스톤 밸브(876)가 개재되어 있는 상부 유입 통로(872)가 형성되고, 압력해제실(840)과 연결관(836)을 통해 연결되어 있다. 이러한 상부 유입 통로(872)와 연결관(836)연결관(836)의 하부에는 유체배출구(822)를 개폐하도록 고무패드밸브(860)가 설치되며, 이 고무패드밸브(860)의 개방시 유체배출구(822)와 연통되도록 하부 유입 통로(858)가 형성되어 있다. 상부 유입 통로(872)를 통해 하우징(820)내의 흐름유체가 밸브실(870)로 유입되지만, 상부 유입 통로(872)에서 미세한 간극으로 두고 제 2 피스톤 밸브(876)가 개재되어 있다. 그러므로, 상부 유입 통로(872)를 통해서 밸브실(870)로 유입되는 흐름유체의 량은 미세하다. 이때 고무패드밸브(860)의 개폐와 연동하여 제 2 피스톤 밸브(876)가 상부 유입 통로(872)를 따라 승하강하는 것이 바람직하다. 이와 같은 고무패드밸브(860)의 개폐와 연동되는 제 2 피스톤 밸브(876)의 상부 유입 통로(872)의 승하강에 의해 상부 유입 통로(872)의 벽면과 제 2 피스톤 밸브(876)사이에 축적될 수 있는 이물질도 제거될 수 있으므로 본 발명 동파방지장치의 수명 및 작동의 신뢰성을 향상하게 된다. 도면 중, 미설명 부호(744)와 (778)은 각각 압력해제실(840)의 제 1 피스톤 밸브(842)와 밸브실(870)의 제 2 피스톤 밸브(876)가 개폐되는 부분에 기밀을 제공하고자 구비되는 고무링을 나타내고 있다.
밸브실(870)의 상부 유입 통로(872)에는 도 11에 도시된 바와 같이, 일방향밸브(862)가 제공되어 상부 유입 통로(872)를 통해 유입되는 흐름유체가 역류하여 배출되는 것을 방지한다. 이러한 일방향밸브(862)는 밸브와 이를 지지하는 스프링으로 구성되며, 이때 사용되는 스프링은 탄성계수가 낮은 것을 사용함으로써 하우징(820)내의 유체가 상부 유입 통로(872)를 통해 유입은 되지만, 밸브실(870)내의 유체는 하우징(820)으로 역류되는 것을 방지함으로서 장치의 신뢰성을 향상한다.
도 12에서와 같이, 유체배출구(822)가 하우징(820)의 외부로 통하지 않고, 유체흐름관의 유입부(812) 또는 배출부(814)에 제공된 수도꼭지(810)에 연결될 수도 있다.
한편, 본 발명의 실시예들에 따른 온도감응형 유체흐름 단속장치는 하우징(820)내의 흐름유체가 배출되는 설정온도를 가변할 수 있다. 가장 간단한 방법으로 서로 다른 탄성계수값을 가지는 압력보상스프링(894)을 사용하는 것이다. 그러나, 소정의 탄성계수값을 가지는 압력보상스프링(894)이 이미 설치된 경우, 본 발명의 실시예들에 따른 온도감응형 유체흐름 단속장치는 설정온도를 가변할 수 있는 설정온도 가변장치를 더 포함할 수도 있다.
설정온도 가변장치(920)는 도 13에 도시된 바와 같이, 온도감응기(890)의 샤프트(892)의 하단부에 결합된 밸브 블록(880)의 시소부재(850)의 기울기를 조정하도록 샤프트(892)의 하부측면에 형성된 가이드구멍(884)에 시소부재(850)의 일단(852)이 삽입되고, 샤프트(892)의 하단에 형성된 나사홈(886)에 나사조립된 조절스크류(922)로 구성될 수 있다.
조절스크류(922)를 나사조절함에 따라, 샤프트(892)의 구멍(884)에 삽입된 시소부재(850)의 일단은 구멍(884)내에서 가이드되어 승하강되므로서, 시소부재(850)는 그 힌지축(851)을 중심으로 기울기가 조절된다. 이러한 구성에 따라 시소부재(850)의 일단(852)을 힌지축(851)을 중심으로 더 기울어져서 그 일단(851)이 위로 더 올라가도록 조절스크류(922)를 조절하면, 그 타단(854)은 아래로 더 내려가 있게 된다. 그에 따라, 유체흐름관(812)(814)외부가 조금 추워져서 하우징(820)내의 흐름유체의 온도가 약간만 내려가더라도 샤프트(892)의 상승 시점이 빨라지게 된다. 따라서, 흐름유체의 압력에 의해 연통부(832)를 폐쇄하고 있던 상태의 제 1 피스톤 밸브(842)의 개방 시점이 빨라지게 된다. 반대로 시소부재(850)의 기울기가 낮아지도록 조절스크류(922)를 조절하면, 제 1 피스톤 밸브(842)의 개방 시점이 늦어지게 된다.
유체저장탱크(830)는 외부공기와 연통되는 공기 통로(834)를 통해 외부공기와 연통되며, 배출 통로(838)를 통해 유체배출구(822)와 연통되어 유체배출구(822)에서 부압이 발생되면 유체저장탱크(830)내부의 흐름유체는 배출 통로(838)를 통해 유체배출구(822)로 유입되어 배출된다. 유체저장탱크(830)내부의 배출이 완료되면, 공기 통로(834)를 통해 유입되는 외부공기는 배출 통로(838)를 통해 유체배출구(822)로 흐르게 된다. 그러므로, 배출 통로(838)에 잔류하는 유체까지 모두 배출하기 때문에 배출 통로(838)는 항상 깨끗한 상태로 유지된다.
이하 전술한 바와 같이 구성된 본 발명의 제4 실시예에 따른 온도감응형 유체흐름 단속장치의 작동을 도 14 내지 도 17을 참조하여 설명하면 다음과 같다.
하우징(820) 내부의 유체는 수압에 의해 밸브실(870)과 압력해제실(840)에 충진되어 있다. 이 상태로 도시된 도 9의 장치에서 외부의 기온이 낮아져서 하우징(820)내의 흐름유체의 온도가 설정온도에 달하게 되면, 이를 온도감응기(890)가 감지한다. 즉 가스저장실(896)내의 가스(871)가 응축되어 압력보상스프링(894)과 밸로우즈(98)는 도 14에 도시된 바와 같이 신장되고, 이와 동시에 샤프트(892)와 시소부재(850)의 일단(852)은 도 15에 도시된 바와 같이, 위로 올라가게 된다. 반면, 시소부재(850)의 타단(854)은 힌지축(851)을 중심으로 내려가게 되어 압력해제실(840)에 유입되는 흐름유체의 압력에 의해 연통부(832)를 폐쇄하고 있던 제 1 피스톤 밸브(842)를 누루게 되어 제 1 피스톤 밸브(842)는 도 16에 도시된 바와 같이 하강하여 연통부(832)를 개방하게 된다. 그러면, 제 1 피스톤 밸브(842)의 하강에 따라 압력해제실(840)은 연통부(832)를 통해 유체저장탱크(830)와 통하게 되므로, 압력해제실(840)내의 유체가 유체저장탱크(830)로 이송된다. 이와 동시에 밸브실(870)내의 유체도 연결관(836)을 통해 압력해제실(840)로 이동하게 된다.
한편, 상부 유입 통로(872)를 통해 밸브실(870)로 유입되는 유체량은 제 2 피스톤 밸브(876)가 상부 유입 통로(872)에 개재되어 있는 바, 상부 유입 통로(872)를 통해 유입되는 유체는 제 2 피스톤 밸브(876)와의 간극을 통해서 유입된다. 그러므로, 밸브실(870)에서는 연결관(836)을 통해 압력해제실(830)로 이동되는 량보다 훨씬 적은 양이 유입된다. 이에 따라 밸브실(870)의 수압, 즉 고무패드밸브(860) 상부의 수압은 낮아지게 된다. 하지만, 고무패드밸브(860)의 하부는 고무패드밸브(860)의 하부에 형성된 하부 유입 통로(874)에 유입되어 있던 유체에 의해 수압이 걸려 있으므로, 고무패드밸브(860)를 중심으로 그 상하에 수압차이가 발생하게 된다. 이에 따라 고무패드밸브(860)는 도 17에 도시된 바와 같이 위로 팽창하게 되어 하부 유입 통로(874)와 유체배출구(822)가 서로 연통하게 되고, 이에 의해 하우징(820)내의 흐름유체는 하부 유입 통로(874)로 유입되어 유체배출구(822)를 통해 외부로의 유체배출이 일어나게 된다.
대표적으로 유체 흐름관을 수도관이라 하면, 통상 수도관의 수압은 2~3 kgf/cm2 정도의 값이므로 유체가 외부로 배출될 때의 유속은 매우 빠르다. 따라서, 베르누이의 원리에 의해 유체 배출후의 유체배출구(822)에는 부압이 발생하게 된다. 이때 유체배출구(822)와 유체저장탱크(830)는 배출 통로(838)를 통해 연통되어 있으므로 유체배출구(822)와 유체저장탱크(830)사이의 압력차에 의해 유체저장탱크(830)에 있던 유체 역시 배출 통로(838)를 통해 유체배출구(822)로 이동되어 유체배출구(822)를 통해 배출된다. 이와 같이 유체저장탱크(830)내의 유체가 유체배출구(822)를 통해 모두 배출되면, 유체저장탱크(830)는 배출 통로(838)에 의해 외부공기와 연통되어 있으므로, 외부공기가 공기 통로(834)를 통하여 유체배출구(822)로 통하게 된다. 이와 같은 공기의 흐름에 따라 배출 통로(838)에 잔류하는 유체를 모두 청소하기 때문에 배출 통로(838)는 항상 깨끗한 상태로 유지된다.
외부의 기온이 상승되거나, 압력해제실(840)에 충분히 흐름유체가 유입되거나, 또한 벨로우즈(898)내의 압력보상스프링(894)의 탄성에 의해 펴져있던 벨로우즈(898)가 수축되면, 제 1 피스톤 밸브(842)는 연통관(832)를 점차적으로 폐쇄하게 된다. 이에 따라 밸브실(870)의 수압도 점차 상승하게 되고, 고무패드밸브(860) 하단의 수압과 같아져서 수압차이가 없게 되면, 고무패드밸브(860)가 수축됨에 따라 하부 유입 통로(874)와 유체배출구(822)와의 연통을 차단하게 되므로, 유체의 배출이 중단된다.
본 발명의 온도감응형 유체흐름 단속장치는 이상과 같은 동작의 반복에 의해 유체흐름관에서 항상 유체가 흐르도록 함으로써 외부의 기온이 낮아지더라도 외부의 동력공급없이 유체흐름관 내부의 유체가 얼지 않음에 따라 유체흐름관의 동파를 방지한다.
이상 본 발명에 따른 온도감응형 유체흐름 단속장치의 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 하는 것으로, 당업자라면 각 구성요소의 재질, 크기 등을 적용 분야에 따라 용이하게 변경할 수 있다. 또한 개시된 실시형태들을 조합/치환하여 적시되지 않은 구조를 채택할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.

Claims (24)

  1. 온도감응형 유체흐름 단속장치에 있어서,
    내부에 흐름 유체가 흐르는 유체흐름관의 유입부와 배출부사이에 설치되는 하우징;
    상기 하우징내의 흐름유체를 유입하되, 내부압력의 변화에 따라 상기 흐름유체의 일부를 상기 하우징의 외부로 배출하도록 상기 하우징내에 설치되는 밸브 블록; 및
    내부에 충진된 온도감응유체의 온도변화에 따라 상기 밸브 블록 내에 압력차를 발생하는 온도감응기를 포함하는 온도감응형 유체흐름 단속장치.
  2. 제 1 항에 있어서,
    상기 온도감응기는
    온도감응유체가 충진되어 상기 밸브 블록의 상부에 설치된 온도감응부와, 상기 온도감응부와 연통하도록 상기 밸브 블록의 내부에 설치된 반응실과, 상기 하우징에 유입된 흐름유체를 유입하도록 상기 밸브 블록의 내부에 설치된 밸브실과, 상기 하우징과 연통하는 밸브관과, 상기 반응실과 상기 밸브실을 연통하는 제 1 유로와, 상기 반응실과 상기 배출관을 연통하는 제 2 유로를 포함하되,
    상기 온도감응유체가 설정온도에 도달하면, 상기 밸브실로 유입된 흐름유체를 상기 온도감응부의 작동에 의해 상기 반응실로 유입하여, 상기 밸브실에 발생된 압력차에 의해 상기 밸브실로 유입되는 상기 하우징내의 흐름유체를 상기 배출관으로 배출하는 온도감응형 유체흐름 단속장치.
  3. 제 2 항에 있어서,
    상기 온도감응부는
    상기 온도감응유체의 응축과 팽창에 따라 팽창되거나 수축되도록 설치된 주름부와,
    상기 주름부의 내부에는 상기 주름부의 팽창과 수축에 따라 승하강하도록 설치된 피스톤 부재와,
    상기 피스톤 부재의 외부면에 감합되어 상기 피스톤 부재를 하방으로 가압하는 스프링을 포함하는 온도감응형 유체흐름 단속장치.
  4. 제 2 항에 있어서, 상기 반응실은,
    중공부재와, 상기 중공부재의 하부에 삽입된 탄성의 고무부재와, 상기 중공부재의 상부에 순차적으로 삽입된 스프링 및 접촉부재로 구성되어, 상기 피스톤 부재의 승하강에 따라 승하강하여 상기 제 1 유로를 개폐하도록 설치된 제 1 밸브체를 포함하되, 상기 접촉부재는 상기 피스톤 부재의 하단부와 탄성적으로 접하고, 상기 제 1 밸브체의 승하강에 따라 상기 제 2 유로가 개폐되는 온도감응형 유체흐름 단속장치.
  5. 제 2 항에 있어서, 상기 밸브실은,
    피스톤 밸브가 개재되어 상기 하우징내의 유체를 유입하는 상부 유입통로와,
    상기 배출관을 개폐하도록 설치된 고무패드밸브와,
    상기 고무패드밸브의 개방시 상기 배출관과 연통되도록 설치된 하부 유입통로로 구성되는 온도감응형 유체흐름 단속장치.
  6. 제 2 항에 있어서,
    상기 온도감응유체는 온도가 낮아지면 수축하고, 온도가 높아지면 팽창하는 유체를 포함하는 온도감응형 유체흐름 단속장치.
  7. 제 2 항에 있어서,
    상기 배출관은 중공부재와, 상기 중공부재의 하부에 일단이 삽입되고 상기 하우징의 개방부에 타단이 부착되어 상방으로 가압하도록 부착된 스프링과, 상기 중공부재의 상부에 삽입된 탄성의 고무부재로 구성되는 제 2 밸브체가 상기 배출관을 개폐하도록 설치된 유체배출관을 포함하는 온도감응형 유체흐름 단속장치.
  8. 제 2 항에 있어서,
    상기 제 2 유로는 유체저장실과 이 유체저장실과 연통하는 제 2 밸브실로 이루어진 배출유량 조절기를 포함하고,
    상기 배출관은 중앙이 오리피스관과 같이 구성되며, 상부가 상기 제 2 밸브실과 연통되어 있고, 하부는 상기 유체저장실과 연통되는 온도감응형 유체흐름 단속장치.
  9. 제 8 항에 있어서,
    상기 유체저장실에는 상기 제 2 유로를 개폐하도록 설치된 밸브부재와 이 밸브부재를 하방으로 가압하도록 설치된 스프링과, 상기 하부의 배출관과 연통하는 제 3 유로가 제공되어,
    상기 반응실내의 유체에 일정압력이 생겨 상기 밸브부재의 상승 시, 상기 반응실내의 유체가 상기 제 2 유로를 통해 유입되거나, 상기 제 3 유로를 통해 상기 하부의 배출관을 통해 배출되는 온도감응형 유체흐름 단속장치.
  10. 제 8 항에 있어서,
    상기 제 2 밸브실은 상기 유체저장실과의 연통로에 개재된 피스톤 밸브와, 상기 제 2 유로를 개폐하도록 설치된 고무패드밸브를 포함하는 온도감응형 유체흐름 단속장치.
  11. 제1 항에 있어서, 상기 온도감응기는,
    상기 온도감응유체가 충진되며, 상기 온도감응유체의 온도가 상기 하우징내의 흐름유체의 온도보다 낮도록 주름부가 형성되어, 상기 충진된 온도감응유체의 온도변화에 따라 상기 밸브 블록내에 압력차를 발생하는 온도감응부를 포함하는 온도감응형 유체흐름 단속장치.
  12. 제 11 항에 있어서,
    상기 밸브 블록은
    상기 온도감응부의 주름부를 중심으로 상하로 구획되도록 상기 온도감응부를 지지하는 홀더, 및 상부와 하부가 각각 상기 유체배출구와 연통되도록 설치된 상부 및 하부 연통관을 포함하여, 상기 온도감응부가 설치되는 온도감응실;
    상기 온도감응실과 연통되는 연통로를 개폐하도록 설치된 제 1 피스톤밸브를 구비하여, 상기 하우징내에 유입된 흐름유체에 의해 압력이 가해지는 압력해제실; 및
    제 2 피스톤 밸브가 개재되어 상기 하우징내에 흐름유체를 유입하는 상부 유입 통로와, 상기 압력해제실과 연결되는 연결관과, 상기 유체배출구를 덮도록 상기 상부 유입 통로와 상기 연결관의 하부에 설치된 고무패드밸브 및 상기 고무패드밸브의 개방시 상기 유체배출구와 연통되도록 설치된 하부 유입 통로가 형성된 밸브실을 포함하는 온도감응형 흐름유체 단속장치.
  13. 제 11 항에 있어서,
    상기 흐름유체의 온도보다 상기 온도감응유체의 온도가 낮게 유지되도록 상기 온도감응부의 크기를 상기 흐름유체관의 크기보다 작게 형성하는 온도감응형 흐름유체 단속장치.
  14. 제 12 항에 있어서,
    설정온도를 가변할 수 있도록 설정온도 가변장치를 더 포함하는 온도감응형 흐름유체 단속장치.
  15. 제 14 항에 있어서,
    상기 설정온도 가변장치는 상기 온도감응실의 내벽에 나사조절가능하도록 형성된 홀더인 것을 특징으로 하는 온도감응형 흐름유체 단속장치.
  16. 제 11 항에 있어서,
    상기 온도감응유체는 온도가 낮아지면 팽창하고, 온도가 높아지면 수축하는 유체를 포함하는 온도감응형 유체흐름 단속 장치.
  17. 제 1 항에 있어서,
    상기 밸브 블록은,
    상기 하우징의 외부로 상기 온도감응유체를 배출하도록 형성된 연통관과,
    상기 연통관에 연통되며, 상기 하우징내에 유입된 흐름유체를 저장하는 유체저장탱크와,
    상기 하우징내에 유입된 흐름유체가 충진되어, 상기 유체저장탱크와 연통되는 연통부를 개폐하도록 설치된 제 1 피스톤밸브를 구비하는 압력해제실과,
    일단은 상기 온도감응부의 수축팽창과 연동되고, 타단은 상기 압력해제실의 제 1 피스톤 밸브의 개폐에 연동되도록 상기 연통부내에 힌지고정된 시소부재와,
    제 2 피스톤 밸브가 개재되어 상기 하우징내의 흐름유체를 유입하는 상부 유입 통로와, 상기 압력해제실과 연결되는 연결관과, 상기 유체배출구를 덮도록 상기 상부 유입 통로와 상기 연결관의 하부에 설치된 고무패드밸브와, 상기 고무패드밸브의 개방시 상기 유체배출구와 연통되도록 설치된 하부 유입 통로가 형성된 밸브실을 포함하는 온도감응형 유체흐름 단속장치.
  18. 제 17 항에 있어서,
    상기 온도감응기는 상기 연통관에 설치되며,
    상기 연통관을 통해 승하강되도록 설치된 샤프트와,
    상기 샤프트을 일방향으로 가압하는 압력보상스프링과,
    온도변화에 따라 수축 및 팽창하는 가스가 저장되는 가스저장실과,
    상기 가스의 수축 및 팽창에 따라 상기 샤프트가 승하강하도록 상기 샤프트에 부착된 벨로우즈를 포함하는 온도감응형 유체흐름 단속장치.
  19. 제 17 항에 있어서,
    상기 온도감응기는 상기 연통관에 설치되며,
    상기 연통관을 통해 승하강되도록 설치된 샤프트와,
    온도변화에 따라 상기 샤프트가 승하강되도록 상기 샤프트에 부착된 변형부재를 포함하는 온도감응형 유체흐름 단속 장치.
  20. 제 19 항에 있어서,
    상기 변형부재는 바이메탈, 형상기억합금, 또는 큰 열팽창 계수를 갖는 물질중의 어느 하나인 온도감응형 유체흐름 단속장치.
  21. 제 17 항에 있어서,
    상기 온도감응유체는 온도가 낮아지면 수축하고, 온도가 높아지면 팽창하는 유체를 포함하는 온도감응형 유체흐름 단속장치.
  22. 제 18 항에 있어서,
    상기 설정온도를 가변할 수 있도록 설정온도 가변장치를 더 포함하는 온도감응형 유체흐름 단속장치.
  23. 제 22 항에 있어서,
    상기 설정온도 가변장치는 상기 온도감응부의 샤프트의 하단부에 결합된 상기 밸브 블록의 시소부재의 기울기를 조정하는 조절스크류인 온도감응형 유체흐름 단속장치.
  24. 제 17 항에 있어서,
    상기 유체저장탱크에는 외부공기와 연통되는 공기 통로와, 상기 유체배출구와 연통되는 배출 통로가 제공되며, 그 내부에 저장한 흐름유체는 상기 유체배출구에서 발생되는 부압에 의해 상기 배출 통로를 통해 유체배출구로 유입되어 배출되는 온도감응형 유체흐름 단속장치.
PCT/KR2009/007351 2008-12-10 2009-12-09 온도감응형 유체흐름 단속장치 WO2010068031A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2011128407/06A RU2481522C2 (ru) 2008-12-10 2009-12-09 Устройство для управления потоком термочувствительной текучей среды
US13/139,088 US8561914B2 (en) 2008-12-10 2009-12-09 Temperature-responsive fluid flow control apparatus
EP09832116.9A EP2369210B1 (en) 2008-12-10 2009-12-09 Temperature-responsive fluid flow control apparatus
JP2011540604A JP5714500B2 (ja) 2008-12-10 2009-12-09 温度感応型流体流れ断続装置
CN200980149724XA CN102245949B (zh) 2008-12-10 2009-12-09 温度感应型流体流动控制设备
HK12104836A HK1164415A1 (en) 2008-12-10 2012-05-16 Temperature-responsive fluid flow control apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0125055 2008-12-10
KR1020080125055A KR100901269B1 (ko) 2008-12-10 2008-12-10 온도감응형 유체흐름 단속장치
KR10-2009-0008875 2009-02-04
KR1020090008875A KR101041100B1 (ko) 2009-02-04 2009-02-04 온도감응형 유체흐름 단속장치
KR1020090111530A KR101142059B1 (ko) 2009-11-18 2009-11-18 온도감응형 유체흐름 단속장치
KR10-2009-0111530 2009-11-18

Publications (3)

Publication Number Publication Date
WO2010068031A2 true WO2010068031A2 (ko) 2010-06-17
WO2010068031A3 WO2010068031A3 (ko) 2010-08-05
WO2010068031A4 WO2010068031A4 (ko) 2010-09-23

Family

ID=42243212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007351 WO2010068031A2 (ko) 2008-12-10 2009-12-09 온도감응형 유체흐름 단속장치

Country Status (7)

Country Link
US (1) US8561914B2 (ko)
EP (1) EP2369210B1 (ko)
JP (1) JP5714500B2 (ko)
CN (1) CN102245949B (ko)
HK (1) HK1164415A1 (ko)
RU (1) RU2481522C2 (ko)
WO (1) WO2010068031A2 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236821B1 (ko) 2011-03-15 2013-03-11 (주)수도프리미엄엔지니어링 동파방지 장치
CA2884392C (en) * 2013-05-16 2018-01-30 O2I Ltd. Regulating apparatus for a pressure activated one-way valve
CN103556681A (zh) * 2013-11-15 2014-02-05 卢云飞 供水管网区间压力智能补偿系统
CN104676091B (zh) * 2015-03-13 2017-03-29 佛山市顺德区美的洗涤电器制造有限公司 用于进水阀的开关组件和进水阀
CN104879544B (zh) * 2015-05-27 2019-01-04 中国科学院等离子体物理研究所 大型低温系统用快速切断阀门
CN104989868B (zh) * 2015-06-21 2017-10-31 门立山 一种温控伸缩管
KR102394995B1 (ko) * 2016-08-11 2022-05-04 도쿄엘렉트론가부시키가이샤 고순도 분배 유닛
US11521757B2 (en) * 2018-05-25 2022-12-06 Curtiss-Wright Flow Control Corporation Inadvertent actuation block valve for a small modular nuclear reactor
CN110081210B (zh) * 2019-04-30 2023-12-08 浙江师范大学 一种气液混输负压磁力气控复合阀及其控制方法
FR3105337B1 (fr) * 2019-12-18 2022-03-25 Vernet Dispositif de commande de l’écoulement d’un fluide
CN116025755A (zh) * 2022-04-27 2023-04-28 宁波方太厨具有限公司 防冻裂阀体及包含其的燃气热水器

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397711A (en) * 1965-09-20 1968-08-20 Charles H. Strange Device for releasing water to prevent freezing
US3642015A (en) * 1969-06-27 1972-02-15 William R Walters Temperature controlling liquid valve
JPS5055226U (ko) * 1973-09-17 1975-05-26
JPS5243725U (ko) * 1975-09-25 1977-03-28
DE2544556C3 (de) 1975-10-04 1978-09-21 Demag Ag, 4100 Duisburg Stützrollengerüst für Staht-Brammenstranggießanlagen, insbesondere für Bogen-Brammenstranggießanlagen
US4320872A (en) * 1979-11-05 1982-03-23 The Garrett Corporation Anti-ice control system
US4286613A (en) * 1980-01-16 1981-09-01 Marvin Lacoste Apparatus for and method of freeze protecting plumbing
JPS57179481A (en) * 1981-04-27 1982-11-05 Saginomiya Seisakusho Inc Freeze proofing valve
US4557252A (en) * 1983-04-15 1985-12-10 Pulstar Corporation Freeze protection valve and system
SU1252439A1 (ru) * 1984-03-28 1986-08-23 Orenbojm Boris D Устройство дл предохранени трубопровода от разрушени при замерзании воды
US4763682A (en) * 1988-01-12 1988-08-16 Drain Brain, Inc. Thermally responsive valve activating assembly
US4815491A (en) * 1988-05-16 1989-03-28 Prikle Fred L Freeze protection device
FR2632704B1 (fr) * 1988-06-09 1990-09-28 Debeaux Michel Appareil thermostatique a incorporer dans une canalisation de liquide
RU1770529C (ru) * 1989-12-20 1992-10-23 Хабаровский Институт Инжененров Железнодорожного Транспорта Устройство дл защиты трубопровода от замерзани
JP3636377B2 (ja) * 1994-07-22 2005-04-06 正文 南 凍結防止装置
DE19529463A1 (de) * 1995-08-10 1996-09-19 Sbs Sondermaschinen Gmbh Solaranlage mit temperaturgesteuertem Entlastungsventil
KR980010218A (ko) 1996-07-23 1998-04-30 이영서 가스보일러의 수관의 동결방지장치 및 그 방법
FR2754282B1 (fr) * 1996-10-03 2000-06-09 Fournier Andre Dispositif de manoeuvre fonctionnant grace a la variation de volume d'un liquide lors de son changement d'etat
KR100422811B1 (ko) 1996-10-05 2004-06-16 주식회사 하이닉스반도체 전자빔장치를이용한패턴형성방법
US5692535A (en) * 1996-12-03 1997-12-02 Walters; William R. Icing preventer with temperature adjustment washer
KR19980060074U (ko) 1997-03-04 1998-11-05 김진천 아날로그식 밸브 구동장치
JPH10281320A (ja) * 1997-04-08 1998-10-23 Paloma Ind Ltd 水栓の凍結破壊防止装置
JPH11148576A (ja) 1997-11-17 1999-06-02 Denso Corp 圧力制御弁
RU9236U1 (ru) * 1998-06-25 1999-02-16 Климовицкий Михаил Давидович Автоматическое электронезависимое устройство защиты от замерзания отопительных и других водопроводных систем
US6374848B1 (en) * 1999-04-15 2002-04-23 Mcghee John D. Automatic mechanism for cut-off and drainage of under low-freezing ambient temperature conditions
JP2002004348A (ja) 2000-06-15 2002-01-09 Suganuma Ryosuke 水道管の凍結防止方法およびそれに使用するベローズ弁
KR20010100106A (ko) 2001-09-29 2001-11-14 김철빈 수도관의 동파방지장치
KR100499258B1 (ko) * 2002-01-15 2005-07-01 주식회사 동남 동파방지기
JP4400909B2 (ja) * 2003-04-04 2010-01-20 日本サーモスタット株式会社 サーモスタット装置
US6805154B1 (en) * 2003-12-05 2004-10-19 Wcm Industries, Inc. Freeze protection device for wall hydrants/faucets
KR100716544B1 (ko) * 2006-03-14 2007-05-10 (주)수도프리미엄엔지니어링 동파방지 장치
RU2326290C2 (ru) * 2006-07-17 2008-06-10 Кирилл Сергеевич Дивщепольский Устройство, предотвращающее замерзание системы отопления здания
US20080196773A1 (en) * 2007-02-16 2008-08-21 Honeywell International, Inc. Ventline control valve assembly
KR100849915B1 (ko) * 2007-03-30 2008-08-04 강흥묵 동파방지장치
US7845575B2 (en) * 2007-07-16 2010-12-07 Honeywell International Inc. Temperature-actuated valve assembly

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2369210A4

Also Published As

Publication number Publication date
EP2369210B1 (en) 2018-03-28
WO2010068031A4 (ko) 2010-09-23
CN102245949B (zh) 2013-11-06
RU2011128407A (ru) 2013-01-20
EP2369210A4 (en) 2014-07-02
CN102245949A (zh) 2011-11-16
WO2010068031A3 (ko) 2010-08-05
JP2012511650A (ja) 2012-05-24
JP5714500B2 (ja) 2015-05-07
RU2481522C2 (ru) 2013-05-10
HK1164415A1 (en) 2012-09-21
US20110240144A1 (en) 2011-10-06
EP2369210A2 (en) 2011-09-28
US8561914B2 (en) 2013-10-22

Similar Documents

Publication Publication Date Title
WO2010068031A2 (ko) 온도감응형 유체흐름 단속장치
WO2017095080A1 (ko) 벨로우즈형 스팀 트랩
WO2010095828A2 (ko) 온열매트용 이동식 보일러
US4341000A (en) Method of charging heat pipe
CN113758307B (zh) 一种伸缩式换热器
WO2018221925A1 (ko) 전기 온수기
KR100901269B1 (ko) 온도감응형 유체흐름 단속장치
CN108054005A (zh) 电容器散热方法
CN113701405A (zh) 一种过热保护的制冷系统热力膨胀阀感温包
CN219572391U (zh) 一种应用于冷库的压力平衡调节装置
KR101142059B1 (ko) 온도감응형 유체흐름 단속장치
CN1670444B (zh) 带有防热膨胀滴水装置的出口敞开式热水器
JP3030530B2 (ja) フロ―ト式スチ―ムトラップ
JPH10325697A (ja) 熱交換器の容量調整装置
CN215738457U (zh) 一种储热式饮水机系统
WO2010095829A2 (ko) 온열매트용 이동식 보일러
CN216009569U (zh) 一种用于壁挂炉的新型节能阀
CN217303195U (zh) 氮气加热器
CN111174003B (zh) 一种防爆裂的管道连接器及其工作方法
CN111288245B (zh) 一种防爆裂的管道连接器的组成部件
RU2382395C1 (ru) Регулятор температуры системы отопления зданий
JPH09303692A (ja) フロ―ト式スチ―ムトラップ
JPS6036891A (ja) 蒸気加熱機器の排気装置
KR200187105Y1 (ko) 압력 변환장치
CN117489465A (zh) 一种发动机电子节温器总成

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149724.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832116

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009832116

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13139088

Country of ref document: US

Ref document number: 2011540604

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011128407

Country of ref document: RU