WO2010064617A1 - 浸炭窒化部材および浸炭窒化部材の製造方法 - Google Patents

浸炭窒化部材および浸炭窒化部材の製造方法 Download PDF

Info

Publication number
WO2010064617A1
WO2010064617A1 PCT/JP2009/070152 JP2009070152W WO2010064617A1 WO 2010064617 A1 WO2010064617 A1 WO 2010064617A1 JP 2009070152 W JP2009070152 W JP 2009070152W WO 2010064617 A1 WO2010064617 A1 WO 2010064617A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonitriding
test
case
present
depth
Prior art date
Application number
PCT/JP2009/070152
Other languages
English (en)
French (fr)
Inventor
佐野 直幸
雅之 堀本
善成 岡田
政樹 天野
彬仁 二宮
Original Assignee
住友金属工業株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社, 本田技研工業株式会社 filed Critical 住友金属工業株式会社
Priority to CN2009801485933A priority Critical patent/CN102239273A/zh
Publication of WO2010064617A1 publication Critical patent/WO2010064617A1/ja
Priority to US13/116,405 priority patent/US20110284133A1/en
Priority to US14/320,690 priority patent/US20140366992A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • manganese-based materials represented by SMn420 containing about 0.2% by mass of carbon manganese-chromium-based materials represented by SMnC420, chromium-based materials represented by SCr420, and chromium-molybdenum-based materials represented by SCM420.
  • Alloy steels for machine structural use have been used as materials for carburized parts and carbonitrided parts. By the way, among the elements contained in the steel materials, there has been a remarkable increase in the price of rare metal elements in recent years, and in particular, a significant price increase has occurred in molybdenum.
  • the amount of retained austenite is 10 to 40% in order to make dense martensite containing nitrogen, or dense martensite containing nitrogen and lower bainite as a main structure. It is a technology that only limits to For this reason, the technique disclosed in Patent Document 2 cannot always provide sufficient wear resistance and pitching strength.
  • Steel material of the material is mass%, C: 0.10 to 0.35%, Si: 0.15 to 1.0%, Mn: 0.30 to 1.0%, Cr: 0.40
  • the carbonitriding member characterized by the above-mentioned.
  • the steel 3 used in the example is used as a raw material, and it penetrates the microstructure at a depth of 70 ⁇ m from the surface of the carbonitriding member when it is tempered at 300 ° C. for 1 hour after oil quenching and after oil quenching. It is a figure which shows the photograph observed with the electron microscope.
  • (A) is the microstructure as it was oil-quenched, and “residual austenite” was indicated by “ ⁇ R ”.
  • (B) is a microstructure when tempering is performed at 300 ° C. for 1 hour. It is a figure which shows the shape of the small roller test piece used for the roller pitching test of an Example. The unit of dimension is mm.
  • the Cr content is set to 0.40 to 2.0%.
  • a desirable lower limit of the Cr content is 0.50%, and a desirable upper limit is 1.80%.
  • S 0.05% or less
  • S is an element usually contained as an impurity, as described above, MnS is formed together with Mn to improve machinability.
  • the S content is desirably 0.01% or more.
  • the S content is 0.05% or less.
  • a desirable upper limit of the S content is 0.03%.
  • One of the chemical compositions of the dough of the present invention is that the balance is composed of Fe and impurities in addition to the above elements.
  • Another one of the chemical composition of the dough of the present invention contains the following amounts of Mo in addition to the above elements.
  • the “impurities” in the remaining “Fe and impurities” refers to those mixed from ore, scrap, or the environment as raw materials when industrially producing steel materials.
  • the atmosphere carburizing ability and nitriding ability are defined as carbon potential and nitrogen potential, respectively. That is, it is represented by the carbon concentration and the nitrogen concentration on the surface of the processing member when equilibrium is reached with the atmosphere at a specific atmospheric temperature.
  • the carbon concentration profile and the nitrogen concentration profile in the depth direction from the surface of the processing member are determined by the carbon potential, the nitrogen potential, the processing temperature, and the processing time.
  • the average concentration of nitrogen from the outermost surface of the processing member to the position of 50 ⁇ m when reaching an equilibrium with the atmosphere at a specific atmosphere temperature as in the examples described later is “nitrogen potential”. I will say.
  • austenite In the carbonitriding process, since nitrogen is dissolved in austenite, austenite is stabilized, and even if it is quenched by oil quenching, austenite that does not transform into martensite, that is, retained austenite, is likely to be generated. Since this retained austenite decreases the surface hardness of the carbonitrided member, the pitching strength decreases. For this reason, conventionally, by changing the conditions of oil quenching to avoid the formation of residual austenite, or by performing sub-zero treatment after oil quenching and transforming the generated residual austenite to martensite, 150 to Tempering was performed at a low temperature of about 180 ° C.
  • ⁇ ′′ -Fe 16 N 2 is a phase that appears when iron containing nitrogen in supersaturation is aged at low temperature, and transitions to ⁇ ′-Fe 4 N when held for a long time.
  • nitrogen is contained in supersaturation.
  • ⁇ '-Fe 4 N is formed directly. Therefore, the solubility of ⁇ "-Fe 16 N 2 and ⁇ '-Fe 4 N is shown in the Fe-N phase diagram.
  • a curve can be drawn, and the solubility curve of ⁇ ′′ -Fe 16 N 2 is located on the low temperature side, and the solubility curve of ⁇ ′-Fe 4 N is located on the high temperature side. That is, the “low temperature phase” is ⁇ ′′ ⁇ With Fe 16 N 2 , the “high temperature phase” can be considered as ⁇ ′-Fe 4 N.
  • the round bar having a diameter of 35 mm was heated to 925 ° C. and held for 120 minutes, and then subjected to a normalizing treatment that was allowed to cool in the atmosphere to obtain a mixed structure of ferrite and pearlite.
  • the carbon potential was kept constant at 0.8% as in the carburizing process, and the holding time was also kept constant at 90 minutes, and the holding temperature T 1 (° C.) and the nitrogen potential were variously changed. At this time, the nitrogen potential was adjusted by changing the flow rate of the ammonia gas introduced into the furnace. In addition, about each steel, it did not flow ammonia gas in a furnace in the carbonitriding process in the heat treatment conditions of FIG.
  • the hardness measurement was performed using a micro Vickers hardness tester with a 6 mm ⁇ 10 mm surface obtained by halving the block test piece at the center of a length of 16 mm as a test surface. That is, the above surface is embedded in a resin so as to be a test surface and mirror-polished, and the 2.94N (300 gf) test is performed with the “surface in contact with the ring test piece” shown in FIG.
  • the hardness at the 30 ⁇ m, 50 ⁇ m, and 100 ⁇ m depth positions from the surface is obtained by force, and thereafter, the hardness to the 1 mm depth position is obtained while proceeding at a 100 ⁇ m pitch in the depth direction, and further thereafter in the depth direction.
  • the hardness up to a depth of 2 mm was obtained, and the hardness profile near the surface including the hardened layer was measured by continuously connecting the hardness at each position. From this hardness profile, the position of the “effective curing depth” defined as the depth from the surface at which the Vickers hardness 550 is obtained was obtained.
  • the hardness at a depth of 30 ⁇ m from the surface is referred to as “surface hardness”.
  • both the above “70 ⁇ m depth position from the surface” are the “region from the surface of the cured layer to the position of the effective cure depth” defined in the present invention. It is a part corresponding to ".”
  • the “nitrogen potential” in the carbonitriding process is both as high as 0.55%, which satisfies the conditions specified in the present invention.
  • dispersion of iron nitride particles of ⁇ -Fe 3 N and / or ⁇ -Fe 2 N was observed.
  • the above “70 ⁇ m depth position from the surface” is both “from the surface of the cured layer to the position of the effective cure depth” defined in the present invention. This is a region corresponding to “region”.
  • the surface layer hardness is as high as 705 and 715, respectively, as Vickers hardness, which is almost the same as the case of test symbols 2-a to 2-j of the above-described example of the present invention.
  • the wear groove widths are 1180 ⁇ m and 1170 ⁇ m, respectively, exceeding 1000 ⁇ m. It was inferior in abrasion.
  • any of the above “70 ⁇ m depth position from the surface” is “from the surface of the cured layer to the position of the effective cure depth” defined in the present invention. It corresponds to the “region of”.
  • the surface layer hardness is as high as 720 to 750 in terms of Vickers hardness, and a roller with a surface pressure of 2800 MPa.
  • the pitching test it is clear that fatigue peeling does not occur even when the cumulative number of revolutions reaches 2.0 ⁇ 10 7 times, and that the pitching strength is high.
  • the width of the wear groove serving as an index of wear resistance is 690 to 880 ⁇ m, which is less than 1000 ⁇ m, and it is also clear that the wear resistance is excellent.
  • the above “70 ⁇ m depth position from the surface” is both “from the surface of the cured layer to the position of the effective cure depth” defined in the present invention. This is a region corresponding to “region”.
  • the tempering temperature is 180 ° C. and does not satisfy the heat treatment conditions of the present invention. Therefore, the retained austenite is not sufficiently transformed into bainite, and “las-like bainite as in the case of the present invention example” "Organization" was not obtained.
  • the tempering temperature is as high as 400 ° C. and does not satisfy the heat treatment conditions of the present invention, the retained austenite is decomposed into ferrite, cementite and rod-like coarse ⁇ ′-Fe 4 N nitride. As a result, the “lass-like bainite structure” as in the case of the present invention was not obtained.
  • the microstructures in the case of these test symbols are all “las-like bainite”, that is, ( As shown in b), the retained austenite was a mixed structure decomposed into bainitic ferrite, Fe 3 C and ⁇ ′′ -Fe 16 N 2 .
  • both of the above “70 ⁇ m depth position from the surface” are “from the surface of the cured layer to the position of the effective cure depth” defined in the present invention. This is a region corresponding to “region”.

Abstract

 生地の鋼材が、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%、S≦0.05%以下を含み、更に、必要に応じて、Mo≦0.50%以下を含有し、残部がFe及び不純物からなる浸炭窒化部材であって、硬化層の表面から有効硬化深さの位置までの領域に、ε-FeN及び/又はζ-FeNの鉄窒化物粒子が分散しており、且つ、残留オーステナイトがベイニティックフェライト、FeC及びα”-Fe16Nに分解している浸炭窒化部材は、高価なMoの含有量を低減するか、あるいはMoが非添加であっても、優れた耐摩耗性と大きなピッチング強度を確保することができる。この浸炭窒化部材は、例えば、900~950℃の浸炭性雰囲気に保持する浸炭に続いて、温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、次いで、焼入れを行い、その後更に、250℃を超えて350℃以下の温度範囲で焼戻すことによって製造できる。

Description

浸炭窒化部材および浸炭窒化部材の製造方法
 本発明は、浸炭窒化処理を施された部材(以下、「浸炭窒化部材」という。)および浸炭窒化部材の製造方法に関する。より詳しくは、本発明は、優れた面圧疲労強度、なかでも、ピッチングに対する大きな強度と優れた耐摩耗性が要求される動力伝達部品として好適な浸炭窒化部材およびその浸炭窒化部材の製造方法に関する。
 自動車の変速機として使用される歯車やベルト式無段変速機(CVT)用プーリーなどの動力伝達部品は、従来、JIS G 4053(2003)に規定されている機械構造用合金鋼鋼材を、鍛造や切削などの加工により所定の形状に成形して、浸炭焼入れや浸炭窒化焼入れし、その後さらに焼戻しを行って製造されている。
 近年、自動車の燃費向上への要求がますます厳しくなっている。この状況の下、燃費の向上に直結する車体の軽量化を実現するために、上記の部品についても一層の小型化および高強度化が求められ、面圧疲労の一種であるピッチングに対する限界強度(以下、「ピッチング強度」という。)と耐摩耗性を向上させることが重視されている。
 一般に、ピッチング強度と耐摩耗性向上のためには浸炭あるいは浸炭窒化することによって部品表面を硬化することが有効である。このため、質量%で0.2%程度の炭素を含むSMn420に代表されるマンガン系、SMnC420に代表されるマンガンクロム系、SCr420に代表されるクロム系およびSCM420に代表されるクロムモリブデン系などの機械構造用合金鋼鋼材が、浸炭部品および浸炭窒化部品の素材として使用されてきた。ところで、上記鋼材に含まれる元素のなかで、希少金属元素の近年における価格高騰には著しいものがあり、特にモリブデンで顕著な価格高騰が生じている。
 「浸炭窒化」には、浸炭性の雰囲気にアンモニアガスを混合して浸炭と同時に浸窒を行う「ガス浸炭窒化」などがあり、窒素は、いわゆる「焼戻し軟化抵抗」を高める効果があるとされている。しかしながら、窒素には炭素の拡散を抑制する作用があり、加えて、浸窒処理が浸炭処理よりも低温で実施されるので、硬化深さが小さくなるという問題があった。さらに、窒素がオーステナイト安定化元素であり、Cと同様にMs点を下げるので残留オーステナイトが存在しやすくなって、硬質のマルテンサイトを得難いという問題もあった。
 そこで、浸炭窒化における上記の問題を解決する技術が、例えば、特許文献1~4に開示されている。
 具体的には、特許文献1に、「機械構造用はだ焼鋼を素材とし、最表面のC量が0.5重量%以上0.9重量%以下であり且つ最表面のN量が0.3重量%以上0.8重量%以下であって、N量をC量並みとすると共に、Nの侵入深さが、硬さHv550が得られる深さである有効硬化深さの少なくとも80%の深さにまで達している表面硬化組織を有する歯車を製造する方法であって、機械構造用はだ焼鋼からなる歯車素材に対し800℃以上950℃以下の温度で浸炭処理と同時に浸窒処理を行ったのち冷却し、さらに800℃以上930℃以下のオーステナイト化温度にまで再加熱して再び浸窒処理を行ったのち焼入れすることにより、表面硬化組織が、CのみでなくNをも固溶した緻密なマルテンサイト組織からなっていることを特徴とする歯面強度に優れた歯車の製造方法」が開示されている。
 特許文献2に、「化学成分としてC、Si、Mn、P、S、Cr、又はこれら成分にMo若しくはMo及びVを添加した機械構造用肌焼鋼を素材とし、歯車成形体に対して浸炭窒化処理が施されていて、この処理が浸炭工程、NHガスによる窒化工程、ソルトへの浸漬工程および焼戻し工程をこの順で行う表面硬化熱処理であり、表面から少なくとも150μm深さまでの窒素含有量が0.2%以上0.8%以下であり、かつ、窒素を含有した緻密なマルテンサイトおよび10~40%の残留オーステナイトの混合組織、あるいは窒素を含有した緻密なマルテンサイト、下部ベイナイトおよび10~40%の残留オーステナイトの混合組織からなる表面硬化層を有することを特徴とする高強度歯車」が開示されている。
 特許文献3に、「重量%で(以下同じ)、C:0.10~0.35%、Si:0.05~1.00%、Mn:0.30~1.50%、S:0.005~0.03%、Cr:0.50~4.00%及びAl:0.02~0.60%を含有し、必要に応じてNi:0.05~3.00%、Mo:0.05~4.00%、V:0.05~1.00%及びW:0.05~1.00%のうちの1種又は2種以上を含有し、更に必要に応じてNb:0.005~0.10%を含有し、残部が実質的にFeからなる鋼の部材を浸炭後浸炭窒化あるいは浸炭窒化し、その後に焼入れし、200~560℃の温度で焼戻しすることを特徴とする耐ピッティング性に優れた浸炭窒化処理部材の熱処理方法」が開示されている。(「耐ピッティング性」とは本発明でいう「ピッチング強度」と同義である。)
 特許文献4に、「合金元素の含有量が、質量%で、C:0.10~0.30%、Si:0.50~1.50%、Mn:0.50~1.50%、P:≦0.020%、S:0.003~0.020%、Cr:0.50~3.00%、残部がFeおよび不可避不純物からなり、耐摩耗性、面疲労特性に優れた研磨部品に適用される浸炭窒化用鋼」が開示されている。
特開平11-51155号公報 特開平7-190173号公報 特開2001-140020号公報 特開2002-194492号公報
 前述の特許文献1で開示された歯車の製造方法の場合、窒素の侵入深さを深くして有効硬化深さを大きくさせるために再加熱焼入れを行う必要がある。このため、特許文献1で開示された技術は、製造工程やエネルギー消費の点で効率的ではなかった。
 特許文献2に開示された高強度歯車は、窒素を含有した緻密なマルテンサイト、あるいは窒素を含有した緻密なマルテンサイトと下部ベイナイトを主たる組織とするために、残留オーステナイトの量を10~40%に制限するだけの技術である。このため、特許文献2で開示された技術は、必ずしも十分な耐摩耗性とピッチング強度を得ることができないものであった。
 特許文献3で開示された熱処理方法は、従来の150~180℃よりも高い200~560℃の温度で焼戻しすることで、軟らかい残留オーステナイトがマルテンサイトとη炭化物に分解されて、表面硬さを高くすることができるとともに、CrN、AlNなどの窒化物が微細に析出して析出硬化し、それにより耐ピッチング性が向上するとの技術思想に基づくものである。上記の200~560℃の温度範囲で焼戻した際に、表面硬さを高くすることができるマルテンサイトとη炭化物の混合組織に分解させるためには、もとの残留オーステナイト中の窒素濃度の制御が重要である。それにも関わらず、特許文献3には、浸炭窒化工程においてどの程度の窒素を導入させるべきか(すなわち、最適な窒素ポテンシャル)に関しては全く開示されていないので、窒素ポテンシャルの選び方次第では上述のような混合組織が全く得られない場合があった。加えて、CrN、AlNなどの合金元素窒化物の析出までもが起こるような、指定の温度範囲の中でも高温側の温度で焼戻しを行うと、残留オーステナイトはマルテンサイトとη炭化物ではなく、フェライトとセメンタイトに分解したり、粗大なγ’-FeN窒化物が析出したりして著しく硬さが低下し、かえってピッチング強度が低下するという問題があった。
 特許文献4に開示された浸炭窒化用鋼は、Siの含有量を増大させて焼戻し軟化抵抗を高めるという技術思想に基づくものである。しかしながら、浸炭窒化の雰囲気を制御することなく一般的なガス浸炭窒化を適用しただけの場合には、Siの含有量が高いために粒界酸化の促進を避けることができず、このため、十分な表面硬さが得られないという問題があった。
 上記の様に、これまでに提案された浸炭窒化技術では、耐摩耗性とピッチング強度の双方に優れた浸炭窒化部材を効率的に提供するには不十分であった。
 そこで、本発明は、これらの課題を解決することに加えて、さらに、近年,価格の高騰が著しい高価な合金元素であるMoの含有量を低減あるいは非添加とすることで、従来鋼よりも低廉でありながら、優れた耐摩耗性と大きなピッチング強度を確保することができる浸炭窒化部材を提供することを目的とする。上記の浸炭窒化部材を効率的に得ることができる浸炭窒化部材の製造方法を提供することも本発明の目的とするところである。
 本発明者らは、前記した課題を解決するために、SCr420に代表されるクロム系およびSCM420に代表されるクロムモリブデン系の肌焼鋼を用いて、様々な条件で浸炭窒化実験を行い、浸炭窒化部材の耐摩耗性およびピッチング強度と表面硬化層のミクロ組織との関係を調べた。
 その結果、浸炭窒化で優れた耐摩耗性と大きなピッチング強度を発現させることができるミクロ組織に関して、下記(a)~(d)の知見を得た。
 (a)浸炭窒化して焼入れすると、硬化層に残留オーステナイトが生成しやすい。Nを含んだ残留オーステナイトがNを含まない残留オーステナイトよりも安定で、容易に変態しないことは従来から知られているが、硬化層における残留オーステナイトの体積分率が小さいほど、優れた耐摩耗性および大きなピッチング強度を得ることができる。
 (b)浸炭窒化において窒素を導入する工程で、温度および窒素ポテンシャルを適正な範囲に制限することによって、長径が約50~300nmのε-FeNおよび/またはζ-FeNの粒子を析出させることができる。これらの鉄窒化物粒子は、浸炭窒化後に焼入れして、さらにその後焼戻しを行っても変化せずに硬化層に安定に存在して、浸炭窒化部材の表層硬さの増大に寄与し、特に、耐摩耗性を向上させる作用を有する。また、上記の鉄窒化物粒子は、浸炭窒化部材のピッチング強度を向上させる効果も有する。
 (c)浸炭窒化後の焼入れで硬化層に生成した残留オーステナイトは、150~180℃で1~2時間保持する一般的な焼戻し条件の場合にはほとんど分解しない。しかしながら、250℃を超えて350℃以下の温度範囲では、1~2時間保持して焼戻しすれば、残留オーステナイトは、幅が約50~200nm、長さが約200nm~1μm程度の微細な「笹の葉」形状のベイニティックフェライトと、FeCおよびα”-Fe16に分解し、残留オーステナイトの面積率はおよそ5%未満にまで低下する。このような残留オーステナイトの分解挙動は、フェライトの形状から推察すると、等温ベイナイト変態であると考えられる。このとき、硬さは著しく増大して、浸炭窒化部材の耐摩耗性およびピッチング強度が向上する。なお、焼戻し温度が350℃を超える場合には、残留オーステナイトはフェライト、FeCおよびγ’-FeNに分解し、このときの硬さはあまり増大しない。一方、この場合、焼入れ処理によってマルテンサイトに変態していた部分は、等軸粒形状のフェライトと粒状のFeCに分解してしまうので、全体としての硬さは低下する。このため、焼戻し温度が350℃を超えると、浸炭窒化部材の耐摩耗性およびピッチング強度は低下する。
 (d)浸炭窒化部材のミクロ組織が、硬化層に、なかでも、ビッカース硬さ550が得られる表面からの深さとして定義する有効硬化深さの位置までの領域に、長径が約50~300nmのε-FeNおよび/またはζ-FeNの鉄窒化物粒子が分散しており、且つ、残留オーステナイトが幅が約50~200nm、長さが約200nm~1μm程度の微細なベイニティックフェライトと、FeCおよびα”-Fe16に分解しているものであれば、たとえクロム系の肌焼鋼を素材とする場合であっても、その浸炭窒化部材は、クロムモリブデン系の肌焼鋼を素材として通常のガス浸炭後に焼入れして焼戻しした部材と同等以上の耐摩耗性とピッチング強度を有する。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)および(2)に示す浸炭窒化部材、ならびに(3)および(4)に示す浸炭窒化部材の製造方法にある。
 (1)生地の鋼材が、質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%、S:0.05%以下を含有し、残部がFeおよび不純物からなる浸炭窒化部材であって、当該浸炭窒化部材の硬化層の表面から有効硬化深さの位置までの領域において、ε-FeNおよび/またはζ-FeNの鉄窒化物粒子が分散しており、且つ、残留オーステナイトがベイニティックフェライト、FeCおよびα”-Fe16に分解している、ことを特徴とする浸炭窒化部材。
 (2)生地の鋼材が、質量%で、さらに、Mo:0.50%以下を含有することを特徴とする上記(1)に記載の浸炭窒化部材。
 (3)質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%、S:0.05%以下を含有し、残部がFeおよび不純物からなる鋼材を用いた浸炭窒化部材の製造方法であって、次のステップ1から4の処理を順に含むことを特徴とする、浸炭窒化部材の製造方法。
 ステップ1:温度が900~950℃の浸炭性雰囲気に保持して、当該鋼材に対して浸炭を行う。
 ステップ2:温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持して、当該浸炭の施された鋼材に対して浸炭窒化を施す。
 ステップ3:当該浸炭窒化の施された鋼材に対して焼入れを行う。
 ステップ4:当該焼入れの施された鋼材を、250℃を超えて350℃以下の温度で焼戻す。
 (4)鋼材が、質量%で、さらに、Mo:0.50%以下を含有することを特徴とする上記(3)に記載の浸炭窒化部材の製造方法。
 なお、「有効硬化深さ」とは、ビッカース硬さ550が得られる表面からの深さのことを指す。
 また、ε-FeN、ζ-FeN、α”-Fe16およびγ’-FeNは、表1に示す結晶構造と格子定数を有しているため、電子線回折図形を撮影し、これを解析することで各相を同定することができる。
Figure JPOXMLDOC01-appb-T000001
 本発明の浸炭窒化部材は、優れた耐摩耗性と大きなピッチング強度を具備している。このため、燃費の向上に直結する車体の軽量化を実現するために、一層の小型化および高強度化が求められている自動車の変速機用の歯車やベルト式無段変速機用プーリーなどの動力伝達部品に用いることができる。しかも、本発明の浸炭窒化部材は、本発明の方法によって製造でき、また、高価な合金元素であるMoの含有量が低いか、あるいはMoが非添加という低廉な鋼を素材とするものであるため、従来の動力伝達部品に比べて製造コストの低減を実現することもできる。
実施例で用いた鋼3を素材とし、浸炭窒化後に油焼入れしたままの試料の表面から70μm深さ位置に生成した残留オーステナイト中に存在する鉄窒化物粒子を透過電子顕微鏡で観察した写真を示す図である。なお、図中円で囲んだものが鉄窒化物粒子である。 本発明における「浸炭」工程、「浸炭窒化」工程および浸炭窒化後の「焼入れ」工程の一例を模式的に説明する図である。この図では、「焼入れ」工程を「油焼入」として例示した。なお、図中の「Cp」と「Np」はそれぞれ、炭素ポテンシャルおよび窒素ポテンシャルを表す。 実施例で用いた鋼3を素材とし、浸炭窒化後に油焼入れしたままと、油焼入れ後に300℃で1時間焼戻しを行った場合の、浸炭窒化部材の表面から70μm深さ位置におけるミクロ組織を透過電子顕微鏡で観察した写真を示す図である。(a)が油焼入れしたままのミクロ組織で、「残留オーステナイト」を「γ」で示した。(b)が300℃で1時間焼戻しを行った場合のミクロ組織である。 実施例のローラーピッチング試験に用いた小ローラー試験片の形状を示す図である。なお、寸法の単位はmmである。 実施例のブロックオンリング試験に用いたブロック試験片の形状を示す図である。なお、寸法の単位はmmである。 実施例の窒素濃度測定のために用いた切り粉採取用試験片の形状を示す図である。なお、寸法の単位はmmである。 実施例で行った「浸炭」工程、「浸炭窒化」工程、浸炭窒化後の「焼入れ」工程および焼入れ後の「焼戻し」工程の条件を模式的に説明する図である。なお、図中の「Cp」と「Np」はそれぞれ、炭素ポテンシャルおよび窒素ポテンシャルを表す。なお、図では大気中での放冷を「空冷」と表記した。 実施例で実施したブロックオンリング試験の方法とブロック試験片の接触面に発生する摩耗痕の幅を模式的に説明する図である。
 本発明において、生地の鋼材の化学組成、ミクロ組織および製造条件を上述のように規定した理由について、以下に詳述する。なお、各成分元素の含有量の「%」は「質量%」を意味する。
 (A)生地の鋼材の化学組成
 C:0.10~0.35%
 Cは、鋼材の強度を決定するのに最も重要な元素であり、生地の強度、すなわち浸炭窒化後の焼入れで硬化されない芯部の強度を確保するために、0.10%以上含有させる必要がある。一方、その含有量が0.35%を超えると、芯部の靱性が低下したり、被削性が低下したりする。したがって、Cの含有量を0.10~0.35%とした。なお、C含有量の望ましい下限は0.20%であり、また、望ましい上限は0.30%である。
 Si:0.15~1.0%
 Siは、セメンタイトの析出を抑制して焼戻し軟化抵抗を上昇させる効果を有するとともに、固溶強化元素として芯部強度の増大にも寄与する元素である。Siには、オーステナイトのパーライトへの変態を抑制する作用もある。これらの効果は、Siの含有量が0.15%以上で得られる。しかしながら、Siの含有量が多くなると、浸炭速度の低下や延性の低下を招き、特に、Siの含有量が1.0%を超えると、熱間加工性が劣化し、浸炭速度も著しく低下する。したがって、Siの含有量を0.15~1.0%とした。なお、Si含有量の望ましい下限は0.20%であり、また、望ましい上限は0.90%である。
 Mn:0.30~1.0%
 Mnは、オーステナイト安定化元素で、オーステナイト中のCの活量を下げて、浸炭を促進する元素である。Mnは、SとともにMnSを形成して、被削性を高める作用も有する。これらの効果を得るためには、0.30%以上のMn含有量が必要である。しかしながら、Mnを1.0%を超えて含有させてもその効果は飽和してコストが嵩むうえ、また、被削性が劣化することさえある。したがって、Mnの含有量を0.30~1.0%とした。なお、Mn含有量の望ましい下限は0.50%であり、また、望ましい上限は0.90%である。
 Cr:0.40~2.0%
 Crは、炭素および窒素との親和力が大きく、浸炭窒化時のオーステナイト中のCおよびNの活量を下げて、浸炭窒化を促進する効果を有する。Crには、固溶強化によって、浸炭窒化後の焼入れで硬化されない芯部の強度を増大させる効果もある。これらの効果は、Crの含有量が0.40%以上で得られる。しかしながら、Crの含有量が多くなると、粒界にCr炭化物やCr窒化物を生成して粒界近傍のCrが欠乏する。その結果、部材の表層に不完全焼入れ組織および/または酸化異常層が生成しやすくなって、ピッチング強度および耐摩耗性の劣化をきたす。特に、Crの含有量が2.0%を超えると、部材の表層における不完全焼入れ組織および/または粒界酸化による異常層の生成によって、ピッチング強度および耐摩耗性の劣化が著しくなる。したがって、Crの含有量を0.40~2.0%とした。なお、Cr含有量の望ましい下限は0.50%であり、また、望ましい上限は1.80%である。
 S:0.05%以下
 Sは、通常、不純物として含有される元素であるが、前述したように、MnとともにMnSを形成して被削性を高める作用がある。この効果を得る場合には、Sの含有量は0.01%以上とすることが望ましい。一方、Sの含有量が過剰になって、特に、0.05%を超えると、熱間延性が低下して鍛造時に割れが発生しやすくなる。したがって、Sの含有量を0.05%以下とした。なお、S含有量の望ましい上限は0.03%である。
 本発明の生地の化学組成の一つは、上記元素のほか、残部がFeおよび不純物からなるものである。本発明の生地の化学組成の別の一つは、上記元素に加えて、さらに、下記の量のMoを含有するものである。なお、残部としての「Feおよび不純物」における「不純物」とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石やスクラップあるいは環境などから混入するものを指す。
 Mo:0.50%以下
 Moは、部材の表層における不完全焼入れ組織および/または粒界酸化による異常層の生成を抑制する効果を有し、また、芯部硬さを高める効果も有するので、これらの効果を得るためにMoを含有してもよい。しかしながら、Moの含有量が0.50%を超えると、素材コストが嵩むばかりか、被削性の低下が著しくなる。したがって、含有させる場合のMoの量を0.50%以下とした。なお、Mo含有量の上限は0.30%とすることが望ましい。一方、前記したMoの部材表層における不完全焼入れ組織および/または粒界酸化による異常層の生成を抑制する効果、さらには、芯部硬さを高める効果を確実に得るためには、Mo含有量の下限を0.05%とすることが望ましく、0.10%とすれば一層望ましい。
 なお、本発明の生地の化学組成における不純物については、特に、Pの含有量を0.05%以下に制限することが望ましく、0.03%以下に制限すれば一層望ましい。
 (B)ミクロ組織
 本発明の浸炭窒化部材は、硬化層の表面から有効硬化深さの位置までの領域に、ε-FeNおよび/またはζ-FeNの鉄窒化物粒子が分散しており、且つ、残留オーステナイトがベイニティックフェライト、FeCおよびα”-Fe16に分解しているミクロ組織を有するものでなければならない。以下、詳細に説明する。
 先ず、浸炭窒化の際に、浸炭窒化後の焼入れで硬化層となる部材表層部に、鉄の窒化物であるε-FeNおよび/またはζ-FeNの粒子を析出・分散させれば、これらの鉄窒化物は浸炭窒化後に焼入れしても、また、その焼入れ後さらに焼戻しを行っても、変化しないので、浸炭窒化部材の表層硬さが増大して、耐摩耗性が向上するとともにピッチング強度も高くなる。なお、表層硬さが同程度であっても、硬化層に上記の鉄窒化物粒子が分散している場合には、なかでも、硬化層の表面から有効硬化深さの位置までの領域に分散している場合には、上記の鉄窒化物粒子そのものの硬さが高いことに加えて、いわゆる「分散強化」の効果によって、浸炭窒化部材に極めて良好な耐摩耗性を確保させることができる。
 なお、上記硬化層の表面から有効硬化深さの位置までの領域に分散するε-FeNおよび/またはζ-FeNの鉄窒化物粒子は、長径が数十~数百nm、特に、50~300nmであることが好ましい。これらの鉄窒化物は、例えば、薄膜試料を採取して透過電子顕微鏡(以下、「TEM」という。)で観察し、それらのサイズを確認することができる。また、これらの鉄窒化物を含む領域から電子線回折図形を撮影し、その回折パターンを解析して結晶構造と格子定数を求めることで、ε-FeNあるいはζ-FeNのどちらであるかを同定することができる。
 なお、図1に、上記硬化層の表面から有効硬化深さの位置までの領域に分散するε-FeNおよび/またはζ-FeNの鉄窒化物粒子の一例として、後述の実施例に示す鋼3を用いた場合を示した。この図1は、薄膜試料をTEM観察した写真で、浸炭窒化後に油焼入れしたままの試料の表面から70μm深さ位置に生成した残留オーステナイト中に存在する鉄窒化物粒子を示している。図中円で囲んだものが鉄窒化物粒子である。
 次に、浸炭窒化後の焼入れで硬化層に生成した残留オーステナイトを、焼戻しによって、ベイニティックフェライト、FeCおよびα”-Fe16に分解させれば、浸炭窒化部材の表層硬さが著しく増大し、もともと存在する前記ε-FeNおよび/またはζ-FeNの鉄窒化物粒子の作用と相まって、耐摩耗性およびピッチング強度が極めて大きく向上する。
 すなわち、浸炭窒化後の焼入れで硬化層に生成する炭素と窒素とを含んだ残留オーステナイトが焼戻しによって分解する際、鉄窒化物の安定相であるγ’-FeNが生成すると硬さが低下するが、鉄窒化物の準安定相であるα”-Fe16が生成すると硬さが増大するのである。
 上記の残留オーステナイトの分解については、例えば、薄膜試料を採取してTEM観察することによって、相の形態やサイズを確認することができ、特定の相を含む制限視野で電子線回折図形を撮影し、これを解析することで各相を同定することができる。
 以上のことから、本発明の浸炭窒化部材は、硬化層の表面から有効硬化深さの位置までの領域において、ε-FeNおよび/またはζ-FeNの鉄窒化物粒子が分散しており、且つ、残留オーステナイトがベイニティックフェライト、FeCおよびα”-Fe16に分解していることとした。
 なお、この(B)項で述べたミクロ組織は、前記(A)項で述べた化学組成を有する鋼材に、次の(C)項で述べる条件の熱処理を施すことによって得ることができる。
 (C)製造条件
 本発明の製造工程における熱処理は、900~950℃の浸炭性雰囲気に保持する「浸炭」工程、この浸炭に続いて、温度を800~900℃に低下させ、浸炭性雰囲気を維持したまま、例えば、アンモニアガスなどを混合して浸窒性も合わせ持たせた、窒素ポテンシャルが0.2~0.6%の雰囲気に保持する「浸炭窒化」工程、浸炭窒化後の「焼入れ」工程および250℃を超えて350℃以下の温度範囲での「焼戻し」工程からなるものである。
 雰囲気の浸炭能力および浸窒能力はそれぞれ、炭素ポテンシャルおよび窒素ポテンシャルとして定義される。すなわち、特定の雰囲気温度で、その雰囲気と平衡に達したときの処理部材の表面の炭素濃度および窒素濃度で表される。処理部材の表面から深さ方向への炭素濃度プロファイルおよび窒素濃度プロファイルは、炭素ポテンシャル、窒素ポテンシャル、処理温度および処理時間によって決定される。ただし、本発明においては、後述の実施例のように、特定の雰囲気温度で、その雰囲気と平衡に達したときの処理部材の最表面から50μmの位置までの窒素の平均濃度を「窒素ポテンシャル」ということにする。これは、処理部材として直径30mmで高さ50mmの円柱状試料の外周曲面部を、最表面から半径方向に沿って中心に向かって深さ50μm削り取った時の切り粉を化学分析して、窒素濃度を求め、これを「表面窒素濃度」として定義したためである。
 図2に、本発明における「浸炭」工程、「浸炭窒化」工程および浸炭窒化後の「焼入れ」工程の一例を模式的に示す。なお、この図では、「焼入れ」工程を「油焼入」として例示した。図中の「Cp」と「Np」はそれぞれ、炭素ポテンシャルおよび窒素ポテンシャルを表す。
 なお、炭素ポテンシャルは、必ずしも図2に示すような状態に保つ、つまり、浸炭および浸炭窒化の両工程において一定の状態に保つ必要はない。目標とする表面炭素濃度、有効硬化層深さおよび効率的な操業の観点から、適宜変化させて構わない。
 例えば、浸炭工程での炭素ポテンシャルを、浸炭窒化部材の目標表面炭素濃度よりも高目に設定し、次の浸炭窒化工程に移行した際に炭素ポテンシャルを目標の表面炭素濃度に下げることによって、浸炭と浸炭窒化の合計処理時間を短縮することが可能である。
 「浸炭」工程には、例えば、ブタン、プロパンなど炭化水素ガスを空気と混合して変成したCO、HおよびNの混合ガスである吸熱性ガス(このガスは通常「RXガス」と称される。)に、ブタン、プロパンなどいわゆる「エンリッチガス」と称されるガスを添加した雰囲気を用いて浸炭する「ガス浸炭」が適用できる。この「浸炭」工程における処理温度、つまり、浸炭雰囲気に保持する温度は、900~950℃とする。これは、上記温度が950℃を上回れば、結晶粒の粗大化が起こりやすくなって焼入れ後の強度の低下を招きやすくなるからである。一方、900℃を下回れば、十分な硬化層深さが得られにくくなるからである。上記温度に保持する時間は所望の硬化層深さの大きさに依存するが、例えば、2~15時間程度とすればよい。上記の炭素ポテンシャルはもっぱら、エンリッチガスの添加量で制御することができる。
 「浸炭」工程に続く「浸炭窒化」工程は、温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気で行う。
 従来の一般的な「浸炭窒化」工程よりも約50℃高く、オーステナイトへの窒素の溶解度が小さくなる800~900℃の温度で、窒素ポテンシャルを0.2%以上として浸炭窒化を施すことによって、長径が数十~数百nm、特に、50~300nmの鉄窒化物粒子であるε-FeNおよび/またはζ-FeNを析出・分散させることができる。また、窒素ポテンシャルを0.2%以上として浸炭窒化を施すことによって、オーステナイトが安定化されて残留オーステナイトが得られやすくなる。窒素ポテンシャルが0.2%未満であれば、長径が数十~数百nm、特に、50~300nmの鉄窒化物粒子であるε-FeNおよびζ-FeNの双方を析出・分散させることができないだけでなく、残留オーステナイトとマルテンサイト以外の不完全焼入れ組織が生ずる場合がある。ただし、窒素ポテンシャルが高すぎて、特に、0.6%を超えると、上記の鉄窒化物粒子が粗大化しやすくなって、その長径は300nmを超えてしまい鉄窒化物粒子による分散強化が図れなくなる。このため、上記温度域における窒素ポテンシャルは0.6%以下としなければならない。
 上記の「浸炭窒化」工程は、例えば、浸炭工程のガス雰囲気のまま、炉内温度を浸炭窒化する温度である800~900℃まで低下させた後、アンモニアガスを添加して行えばよい。この際の窒素ポテンシャルは、アンモニアガスの添加量で制御することができる。上記浸炭窒化雰囲気に保持する時間は数時間、例えば、1~2時間とすればよい。
 浸炭窒化後の「焼入れ」工程は、図2に例示したように、油焼入れとすればよい。
 浸炭窒化の工程では、オーステナイトに窒素が固溶していくので、オーステナイトが安定化され、これを油焼入れによって急冷しても、マルテンサイトに変態しないオーステナイト、すなわち、残留オーステナイトが生成しやすくなる。この残留オーステナイトは、浸炭窒化部材の表層硬さを低下させるため、ピッチング強度が低下してしまう。このため、従来は、油焼入れの条件を変えて残留オーステナイトの生成を回避したり、油焼入れ後にサブゼロ処理を行って、生じた残留オーステナイトをマルテンサイトに変態させたりしたうえで、焼入れ後に150~180℃程度の低い温度で焼戻しを行っていた。しかしながら、前述した条件で浸炭窒化した場合には、焼入れ条件を変えたりサブゼロ処理したりして、残留オーステナイト量を制御する必要はない。「焼入れ」工程の後は、250℃を超えて350℃以下の温度範囲で、焼戻しを行いさえすればよい。
 前記した長径が数十~数百nm、特に、50~300nmの鉄窒化物粒子(ε-FeNおよび/またはζ-FeN)が分散した残留オーステナイトは、250℃以下の温度で1~2時間の焼戻しを行ってもほとんど分解しない。しかしながら、250℃を超えて350℃以下の温度範囲で、1~2時間保持して焼戻しすれば、等温ベイナイト変態が起こって、残留オーステナイトは幅が約50~200nm、長さが約200nm~1μm程度の微細なベイニティックフェライトと、FeCおよびα”-Fe16に分解する。そして、この残留オーステナイトの分解によって硬さは著しく増大し、しかも、焼戻しの前から存在する長径が数十~数百nmのε-FeNおよび/またはζ-FeNの鉄窒化物粒子は、この焼戻しによって変化しないので、これら鉄窒化物粒子の作用との相乗効果で、浸炭窒化部材の耐摩耗性とピッチング強度が大きく向上する。
 焼戻し温度が350℃を超える場合には、残留オーステナイトはフェライト、FeCおよびγ’-FeNに分解し、このときの硬さはあまり増大しないばかりか、マルテンサイトに変態していた部分が等軸粒形状のフェライトと粒状のFeCに分解してしまうので、全体としての硬さは低下する。このため、焼戻し温度が350℃を超えると、浸炭窒化部材の耐摩耗性およびピッチング強度は低下する。
 上記の理由から、本発明の浸炭窒化部品の製造方法は、900~950℃の浸炭性雰囲気に保持する浸炭に続いて、温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持する浸炭窒化を施し、次いで、焼入れを行い、その後さらに、250℃を超えて350℃以下の温度範囲で焼戻すこととした。
 以上述べたように、浸炭窒化工程で生成するような炭素と窒素とを含んだオーステナイトが相分解する時、鉄窒化物の安定相であるγ’-FeNが生成すると硬さが低下するが、鉄窒化物の準安定相であるα”-Fe16が生成すると硬さが増大し、その際の相分解の機構は等温ベイナイト変態で特徴づけられる。これは、次にように解釈することもできる。
 α”-Fe16は、窒素を過飽和に含んだ鉄を低温で時効すると出現する相であり、長時間保持するとγ’-FeNに遷移していく。一方、窒素を過飽和に含んだ鉄を高温で時効すると直接、γ’-FeNが生成するので、Fe-N状態図上には、α”-Fe16とγ’-FeNに対して、それぞれの溶解度曲線を描くことができ、低温側にα”-Fe16の溶解度曲線が、また、高温側にγ’-FeNの溶解度曲線が位置する。つまり、「低温相」がα”-Fe16で、「高温相」がγ’-FeN、と考えることができる。
 上記の窒素を含んだオーステナイトがベイナイト変態を起こす場合を、炭素を含んだオーステナイトがベイナイト変態を起こす場合のアナロジーで考えると、「低温相」のα”-Fe16が生成する状態が「下部ベイナイト」に相当し、「高温相」のγ’-FeNが生成する場合が「上部ベイナイト」に相当することになる。そして、浸炭窒化で生成した残留オーステナイトが「下部ベイナイト」組織に対応するような組織であるときに、硬さが増大して、浸炭窒化部材の耐摩耗性やピッチング強度が増大することになる。
 図3に、浸炭窒化後に油焼入れしたままと、油焼入れ後に300℃で1時間焼戻しを行った場合の、浸炭窒化部材の表面から70μm深さ位置におけるミクロ組織の一例として、後述の実施例に示す鋼3を用いた場合を示した。なお、この図3は、薄膜試料をTEM観察した写真である。
 図3において、(a)は油焼入れしたままのミクロ組織で、「残留オーステナイト」が主たる構成相であり、それ以外の部分、例えば残留オーステナイトの領域にはさまれた部分は、ラス状の組織を呈しており、こうした形状から判断すると、それらはマルテンサイトに変態した部分であると考えられる。なお、図では「残留オーステナイト」を「γ」で示した。また、(b)は300℃で1時間焼戻しを行った場合のミクロ組織であって、上記の残留オーステナイトが、微細なベイニティックフェライト、FeCおよびα”-Fe16に分解した組織であり、Fe-C系の「下部ベイナイト」組織に類似していることがわかる。
 なお、以下の説明においては、上記Fe-C系の「下部ベイナイト」組織に類似した図3の(b)に示すような組織、つまり、残留オーステナイトが、ベイニティックフェライト、FeCおよびα”-Fe16に分解したような混合組織を、便宜上、「ラス状ベイナイト」ということにする。
 以下、実施例により本発明をさらに詳しく説明する。
 表2に示す化学組成を有する鋼1~5を50kg真空溶解炉によって溶解し、インゴットを作製した。
 上記の鋼1~5はいずれも、化学組成が本発明で規定する範囲内にある鋼で、鋼1は、JIS G 4053(2003)に記載のSCr420に相当する鋼である。鋼2~4はそれぞれ、SCr420の元素のうち、Si含有量を高めた鋼、Cr含有量を高めた鋼、SiおよびCrの含有量を高めた鋼である。鋼5は、SCr420にMoを含有させたもので、上記JISに記載のSCM420に相当する鋼である。なお、いずれの鋼についても不純物としてのNiの含有量は0.02%であり、また、Cuの含有量も0.02%であった。 
Figure JPOXMLDOC01-appb-T000002
 このようにして得たインゴットを、1250℃に加熱した後、仕上げ温度が1000℃となるように熱間鍛造して、直径35mmの丸棒とした。熱間鍛造終了後は、大気中で放冷した。
 次いで、上記直径35mmの丸棒に、925℃に加熱して120分保持した後大気中で放冷する焼ならし処理を施し、フェライトとパーライトの混合組織とした。
 焼ならしした直径35mmの各丸棒の中心部から、鍛造方向(鍛錬軸)に平行に、図4に示す形状のローラーピッチング試験(二円筒転がり疲労試験)用の小ローラー試験片、図5に示す形状のブロック試験片および図6に示す形状の切り粉採取用試験片を切り出した。なお、図5に示したブロック試験片は、ブロックオンリング摩耗試験、ミクロ組織観察および硬さ測定に用いた。図4~6に示した試験片における寸法の単位は全て「mm」である。
 切り粉採取用試験片は切り出したままの状態で、図7に模式的に示すような熱処理条件で浸炭、浸炭窒化、油焼入れを施し、その後、焼戻しを行った。また、ローラーピッチング試験用の小ローラー試験片およびブロック試験片は、それぞれ、図4および図5に表示したように、大ローラー試験片およびリング試験片と接触する面を研削した後、上記図7に模式的に示す条件で熱処理を行った。
 浸炭工程は、温度を930℃、保持時間を180分とし、また、炭素ポテンシャルは0.8%で一定とした。
 浸炭窒化工程では、炭素ポテンシャルは浸炭工程と同じく0.8%で一定とし、また、保持時間も90分で一定として、保持温度T(℃)と、窒素ポテンシャルを種々に変化させた。この際、炉内に導入するアンモニアガスの流量を変化させて窒素ポテンシャルを調整するようにした。なお、各鋼について、図7の熱処理条件における浸炭窒化工程で炉内にアンモニアガスを流さず、実質的にガス浸炭と同じ条件で処理することも行った。
 窒素ポテンシャルは、浸炭窒化後に油焼入れした切り粉採取用試験片を用いて測定した。すなわち、図6に示した直径30mmで高さ50mmの円柱状試料の曲面部を、最外周から中心方向へ50μm旋削し、採取した切り粉をヘリウムガス雰囲気中溶融解熱伝導度法に基づいた分析装置Leco
TC-136で分析し、この分析で求められた窒素の濃度を「窒素ポテンシャル」とした。浸炭窒化工程で炉内にアンモニアガスを流さず、実質的にガス浸炭と同じ条件で処理したものについては、上述の「窒素ポテンシャル」の分析調査は行わなかった。
 焼戻し工程では、保持温度T(℃)と保持時間t(分)を種々に変化させて処理した後、炉から取り出して大気中で放冷した。なお、図7においては、上記大気中での放冷を「空冷」と表記した。
 表3および表4に、各鋼について上記浸炭窒化工程における保持温度T(℃)および窒素ポテンシャル、ならびに焼戻し工程における保持温度T(℃)と保持時間t(分)の詳細を示す。なお、表3および表4においては、窒素ポテンシャルを「Np」と表記した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記のようにして作製した小ローラ試験片は、表5に示す条件でローラーピッチング試験を実施してピッチング強度を調査した。
Figure JPOXMLDOC01-appb-T000005
 ブロック試験片の一部を用いて、表6に示す条件でブロックオンリング摩耗試験を実施して耐摩耗性を調査し、残りのブロック試験片を用いてミクロ組織観察および硬さ測定を実施した。
Figure JPOXMLDOC01-appb-T000006
 ローラーピッチング試験に用いる大ローラ試験片およびブロックオンリング摩耗試験に用いるリング試験片としては、JIS G 4053(2003)で規定されたSCM822を機械加工して、温度が930℃、保持時間が180分、炭素ポテンシャルが0.8%の条件でガス浸炭した後油焼入れし、次いで、180℃で120分焼戻しして大気中で放冷してから表層を50μm研削したものを使用した。
 ローラーピッチング試験は、疲労剥離が生じるまで、あるいは疲労剥離が生じない場合には、累積回転数が2.0×10回に至るまで試験を継続し、より長く耐久したものをピッチング強度が高いと判定した。
 ブロックオンリング摩耗試験は、延べ接触距離が8000mに至るまで摩耗試験を継続し、試験後、ブロック試験片の接触面に発生した摩耗痕の幅を測定して、摩耗痕の幅が狭いものほど摩耗が進行しにくく、耐摩耗性が高いと判定した。図8に、ブロックオンリング試験の方法とブロック試験片の接触面に発生した摩耗痕の幅の模式図を示す。
 ミクロ組織はブロック試験片から採取した薄膜試料をTEMで観察して調査した。すなわち、浸炭窒化されている表面層を含む厚さ約0.1mmの薄片を作製し、これを電解研磨して薄膜試料として、表面から70μm深さ位置におけるミクロ組織をTEMで観察し、ε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散の有無、ならびに残留オーステナイトがベイニティックフェライト、FeCおよびα”-Fe16に分解しているかどうかを調査した。
 硬さ測定は、ブロック試験片を長さ16mmの中央で半割にした6mm×10mmの面を被検面としてマイクロビッカース硬度計を用いて行った。すなわち、上記の面が被検面となるように樹脂に埋め込んで鏡面研磨し、前述の図5に表示した「リング試験片と接触する面」を表面側として、2.94N(300gf)の試験力で、表面から30μm、50μm、100μm深さ位置の硬さを求め、それ以降は深さ方向に100μmピッチで進みながら1mm深さ位置までの硬さを求め、さらにそれ以降は深さ方向に200μmピッチで進みながら2mm深さ位置までの硬さを求め、各位置での硬さを連続的に結んで硬化層を含む表面付近の硬さプロファイルを測定した。この硬さプロファイルから、ビッカース硬さ550が得られる表面からの深さとして定義する「有効硬化深さ」の位置を求めた。以下、上記の表面から30μm深さ位置の硬さを「表層硬さ」ということにする。
 鋼1~5のそれぞれについて上記の試験結果を、表7~11に整理して示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表7は、JISに記載のSCr420に相当する鋼である鋼1を用いた場合の試験結果である。表7中、試験記号1-aから1-jまでが本発明例である。
 表3に示したように、上記の本発明例の各試験記号の場合、浸炭窒化工程における「窒素ポテンシャル」が0.20~0.60%と高く、本発明の熱処理条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。また、焼入れ後の焼戻し温度が260~340℃で、本発明の熱処理条件を満たしているので、これらの試験記号の場合のミクロ組織は、いずれも「ラス状ベイナイト」、すなわち、図3の(b)に示すような、残留オーステナイトが、ベイニティックフェライト、FeCおよびα”-Fe16に分解した混合組織であった。
 なお、上記の試験記号の有効硬化深さは720~750μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上記の試験記号1-aから1-jまでは、いずれも本発明で規定するミクロ組織を有しているので、表層硬さはビッカース硬さで700~740と高く、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有していることが明らかである。さらに、上記の試験記号の場合、耐摩耗性の指標となる摩耗溝の幅は750~910μmで、1000μmを下回っており、耐摩耗性にも優れていることも明らかである。
 これに対して、試験記号1-pから1-vまでの比較例の場合、耐摩耗性とピッチング強度の双方ともが劣るか(試験記号1-q~1-t)、あるいは、耐摩耗性に劣っている(試験記号1-uおよび1-v)。
 表3に示したように、試験記号1-p、1-sおよび1-tの場合、浸炭窒化工程における「窒素ポテンシャル」が0.10~0.14%と低く本発明の熱処理条件を満たしていない。このため、上記の試験記号の場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められないばかりか、不完全焼入れ組織も発生していた。さらに、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならなかった。
 なお、上記の試験記号の有効硬化深さは640~650μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号1-p、1-sおよび1-tの場合、いずれも本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さで620~635と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数が1.8~2.8×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅は1520~1630μmで、1000μmを大きく超えており、耐摩耗性にも劣っていることがわかる。
 表3に示したように、試験記号1-uの場合、浸炭窒化工程における「窒素ポテンシャル」は0.04%と低く、さらに、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。また、試験記号1-vの場合、浸炭窒化工程で炉内にアンモニアガスを流さず、実質的にガス浸炭と同じ条件で処理しており、しかも、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。このため、試験記号1-uおよび1-vの場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められなかった。また、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならず「焼戻しマルテンサイト」であった。
 なお、上記の試験記号の有効硬化深さは、720μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 試験記号1-uおよび1-vの場合、表層硬さはビッカース硬さでそれぞれ、700および710と高く、前記した本発明例の試験記号1-aから1-jまでの場合とほぼ同等であるため、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有している。しかしながら、試験記号1-uおよび1-vの場合、上述のとおり本発明で規定するミクロ組織を有していないので、摩耗溝の幅はそれぞれ、1150μmと1190μmで、1000μmを超えており、耐摩耗性に劣っていた。
 表3に示したように、試験記号1-qおよび1-rの場合、浸炭窒化工程における「窒素ポテンシャル」はともに0.55%と高く、本発明で規定する条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。
 しかしながら、試験記号1-qの場合、焼戻し温度が180℃で、本発明の熱処理条件を満たしていないので、残留オーステナイトが十分にベイナイト変態せず前記本発明例の場合におけるような「ラス状ベイナイト組織」が得られなかった。また、試験記号1-rの場合、焼戻し温度が400℃と高く、本発明の熱処理条件を満たしていないので、残留オーステナイトがフェライト、セメンタイトおよび棒状の粗大なγ’-FeN窒化物に分解して、やはり前記本発明例の場合におけるような「ラス状ベイナイト組織」は得られなかった。
 なお、上記の試験記号の有効硬化深さは、600~640μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号1-qおよび1-rの場合、ともに本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さでそれぞれ、520および605と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数が1.5~8.2×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅はそれぞれ、2100μmおよび1860μmで、1000μmを大きく超えており、耐摩耗性にも劣っていた。
 表8は、JISに記載のSCr420のSi含有量を高めた鋼に相当する鋼である鋼2を用いた場合の試験結果である。表8中、試験記号2-aから2-jまでが本発明例である。
 表3に示したように、上記の本発明例の各試験記号の場合、浸炭窒化工程における「窒素ポテンシャル」が0.20~0.59%と高く、本発明の熱処理条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。また、焼入れ後の焼戻し温度が260~340℃で、本発明の熱処理条件を満たしているので、これらの試験記号の場合のミクロ組織は、いずれも「ラス状ベイナイト」、すなわち、図3の(b)に示すような、残留オーステナイトが、ベイニティックフェライト、FeCおよびα”-Fe16に分解した混合組織であった。
 なお、上記の試験記号の有効硬化深さは710~760μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上記の試験記号2-aから2-jまでは、いずれも本発明で規定するミクロ組織を有しているので、表層硬さはビッカース硬さで710~740と高く、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有していることが明らかである。さらに、上記の試験記号の場合、耐摩耗性の指標となる摩耗溝の幅は730~900μmで、1000μmを下回っており、耐摩耗性にも優れていることも明らかである。
 これに対して、試験記号2-pから2-vまでの比較例の場合、耐摩耗性とピッチング強度の双方ともが劣るか(試験記号2-q~2-t)、あるいは、耐摩耗性に劣っている(試験記号2-uおよび2-v)。
 すなわち、表3に示したように、試験記号2-p、2-sおよび2-tの場合、浸炭窒化工程における「窒素ポテンシャル」が0.11~0.13%と低く本発明の熱処理条件を満たしていない。このため、上記の試験記号の場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められないばかりか、不完全焼入れ組織も発生していた。さらに、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならなかった。
 なお、上記の試験記号の有効硬化深さは650~660μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
  上述のように試験記号2-p、2-sおよび2-tの場合、いずれも本発明で規定するミクロ組織を有していなので、表層硬さはいずれもビッカース硬さで630と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数が2.0~3.5×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅は1470~1520μmで、1000μmを大きく超えており、耐摩耗性にも劣っていることがわかる。
 表3に示したように、試験記号2-uの場合、浸炭窒化工程における「窒素ポテンシャル」は0.04%と低く、さらに、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。また、試験記号2-vの場合、浸炭窒化工程で炉内にアンモニアガスを流さず、実質的にガス浸炭と同じ条件で処理しており、しかも、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。このため、試験記号2-uおよび2-vの場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められなかった。また、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならず「焼戻しマルテンサイト」であった。
 なお、上記の試験記号の有効硬化深さは、720~730μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 試験記号2-uおよび2-vの場合、表層硬さはビッカース硬さでそれぞれ、705および715と高く、前記した本発明例の試験記号2-aから2-jまでの場合とほぼ同等であるため、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有している。しかしながら、試験記号2-uおよび2-vの場合、上述のとおり本発明で規定するミクロ組織を有していないので、摩耗溝の幅はそれぞれ、1180μmと1170μmで、1000μmを超えており、耐摩耗性に劣っていた。
 表3に示したように、試験記号2-qおよび2-rの場合、浸炭窒化工程における「窒素ポテンシャル」はともに0.54%と高く、本発明で規定する条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。
 しかしながら、試験記号2-qの場合、焼戻し温度が180℃で、本発明の熱処理条件を満たしていないので、残留オーステナイトが十分にベイナイト変態せず前記本発明例の場合におけるような「ラス状ベイナイト組織」が得られなかった。また、試験記号2-rの場合、焼戻し温度が400℃と高く、本発明の熱処理条件を満たしていないので、残留オーステナイトがフェライト、セメンタイトおよび棒状の粗大なγ’-FeN窒化物に分解して、やはり前記本発明例の場合におけるような「ラス状ベイナイト組織」は得られなかった。
 なお、上記の試験記号の有効硬化深さは、590~630μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号2-qおよび2-rの場合、ともに本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さでそれぞれ、515および610と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数が1.6~9.6×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅はそれぞれ、2050μmおよび1800μmで、1000μmを大きく超えており、耐摩耗性にも劣っていた。
 表9は、JISに記載のSCr420のCr含有量を高めた鋼に相当する鋼である鋼3を用いた場合の試験結果である。表9中、試験記号3-aから3-jまでが本発明例である。
 表3に示したように、上記の本発明例の各試験記号の場合、浸炭窒化工程における「窒素ポテンシャル」が0.21~0.58%と高く、本発明の熱処理条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。また、焼入れ後の焼戻し温度が260~340℃で、本発明の熱処理条件を満たしているので、これらの試験記号の場合のミクロ組織は、いずれも「ラス状ベイナイト」、すなわち、図3の(b)に示すような、残留オーステナイトが、ベイニティックフェライト、FeCおよびα”-Fe16に分解した混合組織であった。
 なお、上記の試験記号の有効硬化深さは720~760μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上記の試験記号3-aから3-jまでは、いずれも本発明で規定するミクロ組織を有しているので、表層硬さはビッカース硬さで715~745と高く、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有していることが明らかである。さらに、上記の試験記号の場合、耐摩耗性の指標となる摩耗溝の幅は720~890μmで、1000μmを下回っており、耐摩耗性にも優れていることも明らかである。
 これに対して、試験記号3-pから3-vまでの比較例の場合、耐摩耗性とピッチング強度の双方ともが劣るか(試験記号3-q~3-t)、あるいは、耐摩耗性に劣っている(試験記号3-uおよび3-v)。
 すなわち、表3に示したように、試験記号3-p、3-sおよび3-tの場合、浸炭窒化工程における「窒素ポテンシャル」が0.11~0.15%と低く本発明の熱処理条件を満たしていない。このため、上記の試験記号の場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められないばかりか、不完全焼入れ組織も発生していた。さらに、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならなかった。
 なお、上記の試験記号の有効硬化深さは660~680μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号3-p、3-sおよび3-tの場合、いずれも本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さで635~645と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数が3.2~4.1×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅は1490~1560μmで、1000μmを大きく超えており、耐摩耗性にも劣っていることがわかる。
 表3に示したように、試験記号3-uの場合、浸炭窒化工程における「窒素ポテンシャル」は0.04%と低く、さらに、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。また、試験記号3-vの場合、浸炭窒化工程で炉内にアンモニアガスを流さず、実質的にガス浸炭と同じ条件で処理しており、しかも、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。このため、試験記号3-uおよび3-vの場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められなかった。また、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならず「焼戻しマルテンサイト」であった。
 なお、上記の試験記号の有効硬化深さは、730~740μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 試験記号3-uおよび3-vの場合、表層硬さはビッカース硬さでそれぞれ、710および720と高く、前記した本発明例の試験記号3-aから3-jまでの場合とほぼ同等であるため、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有している。しかしながら、試験記号3-uおよび3-vの場合、上述のとおり本発明で規定するミクロ組織を有していないので、摩耗溝の幅はそれぞれ、1170μmと1120μmで、1000μmを超えており、耐摩耗性に劣っていた。
 表3に示したように、試験記号3-qおよび3-rの場合、浸炭窒化工程における「窒素ポテンシャル」はともに0.56%と高く、本発明で規定する条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。
 しかしながら、試験記号3-qの場合、焼戻し温度が180℃で、本発明の熱処理条件を満たしていないので、残留オーステナイトが十分にベイナイト変態せず前記本発明例の場合におけるような「ラス状ベイナイト組織」が得られなかった。また、試験記号3-rの場合、焼戻し温度が400℃と高く、本発明の熱処理条件を満たしていないので、残留オーステナイトがフェライト、セメンタイトおよび棒状の粗大なγ’-FeN窒化物に分解して、やはり前記本発明例の場合におけるような「ラス状ベイナイト組織」は得られなかった。
 なお、上記の試験記号の有効硬化深さは、600~640μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号3-qおよび3-rの場合、ともに本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さでそれぞれ、520および610と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数がそれぞれ、2.8×10回および1.9×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅はそれぞれ、2150μmおよび1780μmで、1000μmを大きく超えており、耐摩耗性にも劣っていた。
 表10は、JISに記載のSCr420のSiとCrの含有量を高めた鋼に相当する鋼である鋼4を用いた場合の試験結果である。表10中、試験記号4-aから4-jまでが本発明例である。
 上記の本発明例の各試験記号の場合、表4に示したように、浸炭窒化工程における「窒素ポテンシャル」が0.20~0.57%と高く、本発明の熱処理条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。また、焼入れ後の焼戻し温度が260~340℃で、本発明の熱処理条件を満たしているので、これらの試験記号の場合のミクロ組織は、いずれも「ラス状ベイナイト」、すなわち、図3の(b)に示すような、残留オーステナイトが、ベイニティックフェライト、FeCおよびα”-Fe16に分解した混合組織であった。
 なお、上記の試験記号の有効硬化深さは720~770μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上記の試験記号4-aから4-jまでは、いずれも本発明で規定するミクロ組織を有しているので、表層硬さはビッカース硬さで720~750と高く、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有していることが明らかである。さらに、上記の試験記号の場合、耐摩耗性の指標となる摩耗溝の幅は690~880μmで、1000μmを下回っており、耐摩耗性にも優れていることも明らかである。
 なお、上記の試験記号のうちでも、試験記号4-aおよび4-jの場合には、ビッカース硬さで750の表層硬さが得られているため、面圧3000MPaでのローラーピッチング試験での累積回転数は2.0×10回には至らなかったものの、それぞれ、1.5×10回および1.8×10回という大きなものであり、後述のJISに記載のSCM420に相当する鋼である鋼5を用いた場合と同等のピッチング強度を有していた。
 これに対して、試験記号4-pから4-vまでの比較例の場合、耐摩耗性とピッチング強度の双方ともが劣るか(試験記号4-p~4-t)、あるいは、耐摩耗性に劣っている(試験記号4-uおよび4-v)。
 すなわち、表4に示したように、試験記号4-p、4-sおよび4-tの場合、浸炭窒化工程における「窒素ポテンシャル」が0.11~0.13%と低く本発明の熱処理条件を満たしていない。このため、上記の試験記号の場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められないばかりか、不完全焼入れ組織も発生していた。さらに、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならなかった。
 なお、上記の試験記号の有効硬化深さは650~690μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号4-p、4-sおよび4-tの場合、いずれも本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さで640~650と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数が4.8~5.2×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅は1500~1570μmで、1000μmを大きく超えており、耐摩耗性にも劣っていることがわかる。
 表4に示したように、試験記号4-uの場合、浸炭窒化工程における「窒素ポテンシャル」は0.04%と低く、さらに、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。また、試験記号4-vの場合、浸炭窒化工程で炉内にアンモニアガスを流さず、実質的にガス浸炭と同じ条件で処理しており、しかも、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。このため、試験記号4-uおよび4-vの場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められなかった。また、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならず「焼戻しマルテンサイト」であった。
 なお、上記の試験記号の有効硬化深さは、720~730μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 試験記号4-uおよび4-vの場合、表層硬さはビッカース硬さでそれぞれ、715および725と高く、前記した本発明例の試験記号4-aから4-jまでの場合とほぼ同等であるため、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有している。しかしながら、試験記号4-uおよび4-vの場合、上述のとおり本発明で規定するミクロ組織を有していないので、摩耗溝の幅はそれぞれ、1120μmと1100μmで、1000μmを超えており、耐摩耗性に劣っていた。
 表4に示したように、試験記号4-qおよび4-rの場合、浸炭窒化工程における「窒素ポテンシャル」はともに0.57%と高く、本発明で規定する条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。
 しかしながら、試験記号4-qの場合、焼戻し温度が180℃で、本発明の熱処理条件を満たしていないので、残留オーステナイトが十分にベイナイト変態せず前記本発明例の場合におけるような「ラス状ベイナイト組織」が得られなかった。また、試験記号4-rの場合、焼戻し温度が400℃と高く、本発明の熱処理条件を満たしていないので、残留オーステナイトがフェライト、セメンタイトおよび棒状の粗大なγ’-FeN窒化物に分解して、やはり前記本発明例の場合におけるような「ラス状ベイナイト組織」は得られなかった。
 なお、上記の試験記号の有効硬化深さは、580~630μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号4-qおよび4-rの場合、ともに本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さでそれぞれ、515および610と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数がそれぞれ、2.6×10回および1.4×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅はそれぞれ、1980μmおよび1620μmで、1000μmを大きく超えており、耐摩耗性にも劣っていた。
 表11は、JISに記載のSCM420に相当する鋼である鋼5を用いた場合の試験結果である。表11中、試験記号5-aから5-jまでが本発明例である。
 表4に示したように、上記の本発明例の各試験記号の場合、浸炭窒化工程における「窒素ポテンシャル」が0.22~0.57%と高く、本発明の熱処理条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。また、焼入れ後の焼戻し温度が260~340℃で、本発明の熱処理条件を満たしているので、これらの試験記号の場合のミクロ組織は、いずれも「ラス状ベイナイト」、すなわち、図3の(b)に示すような、残留オーステナイトが、ベイニティックフェライト、FeCおよびα”-Fe16に分解した混合組織であった。
 なお、上記の試験記号の有効硬化深さは740~800μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上記の試験記号5-aから5-jまでは、いずれも本発明で規定するミクロ組織を有しているので、表層硬さはビッカース硬さで730~770と高く、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じなかった。また、そのうち半数の試験記号の場合には、面圧3000MPaでのローラーピッチング試験でも、累積回転数2.0×10回で疲労剥離を生じず、極めて大きなピッチング強度を有していることが明らかである。さらに、上記の試験記号5-aから5-jまでの場合、耐摩耗性の指標となる摩耗溝の幅は680~870μmで、1000μmを下回っており、耐摩耗性にも優れていることも明らかである。
 これに対して、試験記号5-pから5-vまでの比較例の場合、耐摩耗性とピッチング強度の双方ともが劣るか(試験記号5-q~5-t)、あるいは、耐摩耗性に劣っている(試験記号5-uおよび5-v)。
 すなわち、表4に示したように、試験記号5-p、5-sおよび5-tの場合、浸炭窒化工程における「窒素ポテンシャル」が0.09~0.12%と低く本発明の熱処理条件を満たしていない。このため、上記の試験記号の場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められなかった。また、不完全焼入れ組織の発生はなかったものの、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならなかった。
 なお、上記の試験記号の有効硬化深さは670~700μmであるので前記の「表面から70μm深さ位置」はいずれも、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号5-p、5-sおよび5-tの場合、いずれも本発明で規定するミクロ組織を有していなので、表層硬さはビッカース硬さで650~690と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数が4.8~5.2×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅は1350~1440μmで、1000μmを大きく超えており、耐摩耗性にも劣っていることがわかる。
 表4に示したように、試験記号5-uの場合、浸炭窒化工程における「窒素ポテンシャル」は0.04%と低く、さらに、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。また、試験記号5-vの場合、浸炭窒化工程で炉内にアンモニアガスを流さず、実質的にガス浸炭と同じ条件で処理しており、しかも、焼戻し温度も180℃で、本発明の熱処理条件を満たしていない。このため、試験記号5-uおよび5-vの場合、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよびζ-FeNの鉄窒化物粒子は双方ともに分散が認められなかった。また、これらの試験記号の場合、焼戻しを行っても、前記の本発明例のような「ラス状ベイナイト組織」にはならず「焼戻しマルテンサイト」であった。
 なお、上記の試験記号の有効硬化深さは、740~750μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 試験記号5-uおよび5-vの場合、表層硬さはビッカース硬さでそれぞれ、730および740と高く、前記した本発明例の試験記号5-aから5-jまでの場合とほぼ同等であるため、面圧2800MPaでのローラーピッチング試験では、累積回転数が2.0×10回に至っても疲労剥離を生じず、大きなピッチング強度を有している。しかしながら、試験記号5-uおよび5-vの場合、上述のとおり本発明で規定するミクロ組織を有していないので、摩耗溝の幅はそれぞれ、1070μmと1050μmで、1000μmを超えており、耐摩耗性に劣っていた。
 表4に示したように、試験記号5-qおよび5-rの場合、浸炭窒化工程における「窒素ポテンシャル」はともに0.56%と高く、本発明で規定する条件を満たしているので、表面から70μm深さ位置におけるミクロ組織にはε-FeNおよび/またはζ-FeNの鉄窒化物粒子の分散が認められた。
 しかしながら、試験記号5-qの場合、焼戻し温度が180℃で、本発明の熱処理条件を満たしていないので、残留オーステナイトが十分にベイナイト変態せず前記本発明例の場合におけるような「ラス状ベイナイト組織」が得られなかった。また、試験記号5-rの場合、焼戻し温度が400℃と高く、本発明の熱処理条件を満たしていないので、残留オーステナイトがフェライト、セメンタイトおよび棒状の粗大なγ’-FeN窒化物に分解して、やはり前記本発明例の場合におけるような「ラス状ベイナイト組織」は得られなかった。
 なお、上記の試験記号の有効硬化深さは、610~640μmであるので前記の「表面から70μm深さ位置」はともに、本発明で規定する「硬化層の表面から有効硬化深さの位置までの領域」に該当する部位である。
 上述のように試験記号5-qおよび5-rの場合、ともに本発明で規定するミクロ組織を有していないので、表層硬さはビッカース硬さでそれぞれ、535および625と低く、面圧2800MPaでのローラーピッチング試験でも、累積回転数がそれぞれ、2.6×10回および1.4×10回で疲労剥離を生じ、ピッチング強度が低い。さらに、上記の試験記号の場合、摩耗溝の幅はそれぞれ、2020μmおよび1580μmで、1000μmを大きく超えており、耐摩耗性にも劣っていた。
 本発明の浸炭窒化部材は、優れた耐摩耗性と大きなピッチング強度を具備している。このため、燃費の向上に直結する車体の軽量化を実現するために、一層の小型化および高強度化が求められている自動車の変速機用の歯車やベルト式無段変速機用プーリーなどの動力伝達部品に用いることができる。しかも、本発明の浸炭窒化部材は、本発明の方法によって製造でき、また、高価な合金元素であるMoの含有量が低いか、あるいはMoが非添加という低廉な鋼を素材とするものであるため、従来の動力伝達部品に比べて製造コストの低減を実現することもできる。
 

Claims (4)

  1.  生地の鋼材が、質量%で、
    C:0.10~0.35%、
    Si:0.15~1.0%、
    Mn:0.30~1.0%、
    Cr:0.40~2.0%、
    S:0.05%以下
    を含有し、残部がFeおよび不純物からなる浸炭窒化部材であって、
     当該浸炭窒化部材の硬化層の表面から有効硬化深さの位置までの領域において、ε-FeNおよび/またはζ-FeNの鉄窒化物粒子が分散しており、且つ、残留オーステナイトがベイニティックフェライト、FeCおよびα”-Fe16に分解している、
    ことを特徴とする浸炭窒化部材。
  2.  生地の鋼材が、質量%で、さらに、Mo:0.50%以下を含有することを特徴とする請求項1に記載の浸炭窒化部材。
  3.  質量%で、C:0.10~0.35%、Si:0.15~1.0%、Mn:0.30~1.0%、Cr:0.40~2.0%、S:0.05%以下を含有し、残部がFeおよび不純物からなる鋼材を用いた浸炭窒化部材の製造方法であって、次のステップ1から4の処理を順に含むことを特徴とする、浸炭窒化部材の製造方法。
     ステップ1:温度が900~950℃の浸炭性雰囲気に保持して、当該鋼材に対して浸炭を行う。
     ステップ2:温度が800~900℃で、窒素ポテンシャルが0.2~0.6%の浸炭窒化雰囲気に保持して、当該浸炭の施された鋼材に対して浸炭窒化を施す。
     ステップ3:当該浸炭窒化の施された鋼材に対して焼入れを行う。
     ステップ4:当該焼入れの施された鋼材を、250℃を超えて350℃以下の温度で焼戻す。
  4.  鋼材が、質量%で、さらに、Mo:0.50%以下を含有することを特徴とする請求項3に記載の浸炭窒化部材の製造方法。
     
     
PCT/JP2009/070152 2008-12-02 2009-12-01 浸炭窒化部材および浸炭窒化部材の製造方法 WO2010064617A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801485933A CN102239273A (zh) 2008-12-02 2009-12-01 碳氮共渗部件及碳氮共渗部件的制造方法
US13/116,405 US20110284133A1 (en) 2008-12-02 2011-05-26 Carbonitrided part and process for producing carbonitrided part
US14/320,690 US20140366992A1 (en) 2008-12-02 2014-07-01 Process for producing carbonitrided part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008307250A JP5241455B2 (ja) 2008-12-02 2008-12-02 浸炭窒化部材および浸炭窒化部材の製造方法
JP2008-307250 2008-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/116,405 Continuation US20110284133A1 (en) 2008-12-02 2011-05-26 Carbonitrided part and process for producing carbonitrided part

Publications (1)

Publication Number Publication Date
WO2010064617A1 true WO2010064617A1 (ja) 2010-06-10

Family

ID=42233266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070152 WO2010064617A1 (ja) 2008-12-02 2009-12-01 浸炭窒化部材および浸炭窒化部材の製造方法

Country Status (4)

Country Link
US (2) US20110284133A1 (ja)
JP (1) JP5241455B2 (ja)
CN (1) CN102239273A (ja)
WO (1) WO2010064617A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277581A (zh) * 2011-08-11 2011-12-14 眉山恒升机械装备有限公司 一种低碳合金材料热处理工艺
CN102337494A (zh) * 2011-09-26 2012-02-01 台州学院 Fe-Mn系不锈钢表面耐磨耐腐蚀渗氮层的加工方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2679701B1 (en) * 2011-02-23 2017-07-12 Dowa Thermotech Co., Ltd. Manufacturing method of a nitrided steel member
JP5683348B2 (ja) * 2011-03-29 2015-03-11 愛知製鋼株式会社 浸炭部材、浸炭部材用鋼および浸炭部材の製造方法
JP5044712B1 (ja) * 2011-06-24 2012-10-10 エア・ウォーター株式会社 摩擦材用鋼製裏金および鋼製品の製造方法
JP5725416B2 (ja) * 2011-06-28 2015-05-27 新東工業株式会社 低炭素系鋳鋼ショット
CN105132857B (zh) * 2014-05-30 2018-09-11 比亚迪股份有限公司 一种低碳钢零件及其复合热处理方法
CN104611638A (zh) * 2015-02-10 2015-05-13 苏州科胜仓储物流设备有限公司 一种抗震耐火型牛腿梁用型材及其处理工艺
DE112016003760T5 (de) * 2015-08-17 2018-05-03 Ntn Corporation Gleitelement und Verfahren zu seiner Herstellung
CN105401119A (zh) * 2015-10-28 2016-03-16 安徽省三方新材料科技有限公司 一种顽石破衬板氮碳共渗处理工艺
CN105349940B (zh) * 2015-11-27 2018-01-26 陕西东铭车辆系统股份有限公司 热锻标识模具钢的渗碳碳氮共渗复合热处理方法
CN105925932B (zh) * 2016-05-26 2018-04-10 滨中元川金属制品(昆山)有限公司 用于1215易切削钢紧固件的微碳氮共渗工艺
CN105886726A (zh) * 2016-06-20 2016-08-24 马鞍山市益丰实业集团有限公司 一种烟气脱硫球磨机用耐磨球制备方法
CN107604250B (zh) * 2017-08-15 2019-11-15 江阴兴澄特种钢铁有限公司 一种重型卡车变速器齿轮用21MnCrMoS钢及其制造方法
US10870910B2 (en) 2018-01-10 2020-12-22 GM Global Technology Operations LLC Ferritic nitrocarburized part and methods of making and using the same
JP7365773B2 (ja) * 2019-02-13 2023-10-20 株式会社日立製作所 軟磁性材料及びその製造方法並びに軟磁性材料を用いた電動機
FR3095659B1 (fr) * 2019-05-02 2022-04-15 Safran Helicopter Engines Piece en acier cementee pour l’aeronautique
CN110438319B (zh) * 2019-08-06 2021-02-19 厦门真冈热处理有限公司 一种滑块的热处理方法
CN112576507A (zh) * 2019-09-27 2021-03-30 安徽美芝精密制造有限公司 一种压缩机活塞的制造方法、压缩机活塞
US20230106078A1 (en) * 2021-10-06 2023-04-06 Aktiebolaget Skf Method of manufacturing a brinelling-resistant hub bearing unit
CN115044861B (zh) * 2022-06-27 2023-11-17 滨中元川金属制品(昆山)有限公司 一种中碳合金钢精密紧固件微碳氮共渗工艺
CN115261775B (zh) * 2022-07-04 2023-09-19 东宇东庵(无锡)科技有限公司 一种碳氮共渗后保温淬火热处理工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337410A (ja) * 1998-06-30 2000-12-05 Tokico Ltd ディスクブレーキ用ロータ
JP2003268497A (ja) * 2002-03-18 2003-09-25 Ntn Corp 転がり軸受
JP2004052997A (ja) * 2002-05-30 2004-02-19 Nsk Ltd 転動装置及びその製造方法
JP2005097720A (ja) * 2003-09-18 2005-04-14 Mahindra & Mahindra Ltd 優れた曲げ疲労強度とピッチング疲労寿命とを有するギア部品及びシャフト部品を従来の合金鋼から製造する方法
JP2005226116A (ja) * 2004-02-12 2005-08-25 Toyota Motor Corp 高硬度高磁気特性鋼材及びその製造方法
JP2006183845A (ja) * 2004-12-28 2006-07-13 Nsk Ltd 転がり軸受

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765890B1 (fr) * 1997-07-10 1999-08-20 Ascometal Sa Procede de fabrication d'une piece mecanique en acier cementee ou carbonitruree et acier pour la fabrication de cette piece
EP1348775B1 (en) * 2000-12-27 2006-03-08 Nsk Ltd., Toroidal continuously variable transmission
EP1595025A1 (de) * 2003-02-19 2005-11-16 Walzen Irle GmbH Plasmatrierter wärmetauscher
JP5272609B2 (ja) * 2008-09-22 2013-08-28 新日鐵住金株式会社 鋼製の浸炭窒化部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337410A (ja) * 1998-06-30 2000-12-05 Tokico Ltd ディスクブレーキ用ロータ
JP2003268497A (ja) * 2002-03-18 2003-09-25 Ntn Corp 転がり軸受
JP2004052997A (ja) * 2002-05-30 2004-02-19 Nsk Ltd 転動装置及びその製造方法
JP2005097720A (ja) * 2003-09-18 2005-04-14 Mahindra & Mahindra Ltd 優れた曲げ疲労強度とピッチング疲労寿命とを有するギア部品及びシャフト部品を従来の合金鋼から製造する方法
JP2005226116A (ja) * 2004-02-12 2005-08-25 Toyota Motor Corp 高硬度高磁気特性鋼材及びその製造方法
JP2006183845A (ja) * 2004-12-28 2006-07-13 Nsk Ltd 転がり軸受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277581A (zh) * 2011-08-11 2011-12-14 眉山恒升机械装备有限公司 一种低碳合金材料热处理工艺
CN102337494A (zh) * 2011-09-26 2012-02-01 台州学院 Fe-Mn系不锈钢表面耐磨耐腐蚀渗氮层的加工方法

Also Published As

Publication number Publication date
US20110284133A1 (en) 2011-11-24
JP5241455B2 (ja) 2013-07-17
CN102239273A (zh) 2011-11-09
JP2010132936A (ja) 2010-06-17
US20140366992A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP5241455B2 (ja) 浸炭窒化部材および浸炭窒化部材の製造方法
JP5639064B2 (ja) 浸炭窒化部材の製造方法
JP4627776B2 (ja) 高濃度浸炭・低歪焼入れ部材およびその製造方法
WO2015098106A1 (ja) 浸炭鋼部品の製造方法及び浸炭鋼部品
KR101464712B1 (ko) 템퍼링 연화 저항성이 우수한 강 부품
KR101726251B1 (ko) 연질화용 강 및 연질화 부품 그리고 이들의 제조 방법
KR101127909B1 (ko) 기어부재 및 그 제조방법
JP5258458B2 (ja) 耐高面圧性に優れた歯車
JP2019218582A (ja) 機械部品
JP2017171951A (ja) 鋼部品及びその製造方法
JP7364895B2 (ja) 鋼部品及びその製造方法
JP5402711B2 (ja) 浸炭窒化層を有する鋼製品およびその製造方法
WO2019244504A1 (ja) 機械部品の製造方法
KR20160133549A (ko) 진공 침탄용 강재 및 그의 제조 방법
JPH10147814A (ja) 熱処理歪みの少ない肌焼鋼製品の製法
JP3855418B2 (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
WO2018012636A1 (ja) Cvtシーブ用鋼材、cvtシーブおよびcvtシーブの製造方法
JP3607583B2 (ja) 動力伝達部品用鋼および動力伝達部品
JP6881496B2 (ja) 部品およびその製造方法
JP6881497B2 (ja) 部品およびその製造方法
JP2008133501A (ja) 真空浸炭歯車用鋼
JP2005002366A (ja) 冷間加工性に優れた高硬度高周波焼入れ用鋼
JP2020143320A (ja) 浸炭浸窒処理用鋼材
JPH11310824A (ja) 浸炭焼き入れ鋼部材及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148593.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830383

Country of ref document: EP

Kind code of ref document: A1