WO2015098106A1 - 浸炭鋼部品の製造方法及び浸炭鋼部品 - Google Patents

浸炭鋼部品の製造方法及び浸炭鋼部品 Download PDF

Info

Publication number
WO2015098106A1
WO2015098106A1 PCT/JP2014/006442 JP2014006442W WO2015098106A1 WO 2015098106 A1 WO2015098106 A1 WO 2015098106A1 JP 2014006442 W JP2014006442 W JP 2014006442W WO 2015098106 A1 WO2015098106 A1 WO 2015098106A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
steel
carburized
gas carburizing
carburizing
Prior art date
Application number
PCT/JP2014/006442
Other languages
English (en)
French (fr)
Inventor
達也 小山
久保田 学
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015554571A priority Critical patent/JP6098732B2/ja
Priority to EP14873478.3A priority patent/EP3088550B1/en
Priority to US15/102,581 priority patent/US10202677B2/en
Priority to CN201480071095.4A priority patent/CN105899697B/zh
Priority to KR1020167020285A priority patent/KR101830017B1/ko
Publication of WO2015098106A1 publication Critical patent/WO2015098106A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a method of manufacturing a steel part and a steel part, and more particularly, to a method of manufacturing a carburized steel part manufactured by performing a carburizing treatment and a carburized steel part.
  • Steel parts are usually manufactured as follows. First, the material is formed into a desired shape to produce an intermediate product. The intermediate product is surface-hardened to form a steel part. Surface-hardened steel parts have high surface fatigue strength.
  • Patent Document 1 As a method of enhancing the surface fatigue strength, in Japanese Patent Application Laid-Open No. 2013-204645 (Patent Document 1), asperities are formed on the surface of the steel component by acid pickling treatment.
  • the method increases the number of steps because of the addition of the pickling process as compared to the conventional method of manufacturing steel parts. The increase in the number of steps increases the manufacturing cost.
  • Si enhances the hardenability of steel parts and further enhances the temper softening resistance in martensite. Therefore, Si enhances the strength of the core of the steel component and enhances the surface fatigue strength.
  • Another method of increasing the surface fatigue strength is a method of carrying out a carburizing treatment as a surface hardening treatment.
  • the carburizing treatment forms a carburized layer on the surface of the steel part and enhances the surface fatigue strength of the steel part.
  • Patent Document 2 discloses a method of manufacturing a steel part having an increased Si content.
  • vacuum carburization is performed on steel containing 0.5 to 3.0% of Si.
  • continuous treatment is difficult.
  • tarring tends to occur in the vacuum carburizing process.
  • gas carburizing process Another carburizing process different from the vacuum carburizing process is a gas carburizing process.
  • Gas carburizing does not have the disadvantages of the vacuum carburizing process described above. Therefore, gas carburizing treatment is suitable for mass production of steel parts.
  • Si in steel reduces the carburizing property in the gas carburizing process.
  • case-hardened steel hereinafter referred to as normal case-hardened steel
  • case-hardened steel hereinafter, high Si-containing steel having a higher Si content compared to SCr420
  • gas carburizing is performed under the same conditions for normal case-hardened steel and high Si-containing steel.
  • the effective hardened layer depth of the high Si-containing steel is usually shallower than the case-hardened steel.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2-156063 (Patent Document 3) and International Publication No. 12/077705 (Patent Document 4) disclose gas carburizing methods for enhancing the fatigue strength of steel parts.
  • pre-carburizing is performed on a steel material at a carburizing temperature higher than the A 1 transformation point so that the surface carbon concentration is 1.0% or more. Then, gradually cooled steel to just above the A 1 transformation point, soaking. Next, it is reheated to a temperature lower than the carburizing temperature at the time of preliminary carburizing and quenched.
  • the steel materials to be targets of Patent Document 3 are SCr steel, SCM steel, SNCM steel, and case-hardened steel defined in JIS standard.
  • the Si content of these steels is low. Therefore, when the gas carburizing process of Patent Document 3 is performed on a steel having a high Si content, sufficient surface fatigue strength may not be obtained.
  • Patent Document 4 discloses the following matters regarding a manufacturing method including gas carburizing treatment of a high Si content steel.
  • gas carburizing treatment When normal gas carburizing treatment is performed on a high Si content steel, an oxide film is formed on the surface at the initial stage of carburization. The oxide film reduces the gas carburizing property. Therefore, in Patent Document 4, the following gas carburizing process is performed. First, primary carburizing is performed on the steel under an atmosphere in which an oxide film is formed. Next, the oxide film formed on the steel material is removed by shot peening, chemical polishing or the like. Next, secondary carburization is performed on the steel material from which the oxide film has been removed.
  • Patent Document 4 has an additional step of removing the oxide film as compared with the conventional carburizing treatment. An increase in the number of processes reduces productivity and increases manufacturing costs.
  • An object of the present invention is to provide a method of manufacturing a carburized steel part capable of enhancing the gas carburizing property to a steel part having a high Si content and suppressing a decrease in productivity.
  • the method of manufacturing a carburized steel component according to the present embodiment includes a preliminary gas carburizing step and the present gas carburizing step.
  • the present gas carburizing step is performed subsequent to the preliminary gas carburizing step.
  • the gas carburizing process is performed at the carburizing temperature T r ° C. satisfying the formula (B) and the carburizing time t r minutes.
  • FIG. 1 is a cross-sectional photograph of the surface layer of the carburized steel component of the present embodiment.
  • the present inventors investigated and examined a method capable of suppressing the decrease in gas carburizing property even if the Si content in steel parts is increased.
  • the Si content in the steel part is increased, although the temper softening resistance is increased, an oxide film is formed on the surface of the steel part at the time of gas carburizing and the gas carburizing property is reduced.
  • the formation of the oxide film is considered to be related to the alloying element which easily forms an oxide, the carburizing temperature which influences the diffusion coefficient of the alloying element and oxygen, and the carbon potential which influences the oxygen partial pressure.
  • Si, Mn and Cr have high affinity for oxygen and are easily oxidized.
  • elements for example, Ni, Cu, etc.
  • elements having a weaker affinity to oxygen than Si, Mn and Cr do not oxidize and therefore do not affect the formation of an oxide film.
  • the content of elements for example, Ti, V, etc.
  • the elements that affect the formation of the oxide film are Si, Mn and Cr.
  • Si, Mn and Cr will be referred to as "specific elements".
  • the specific elements all increase the strength and hardenability of the steel and increase the resistance to temper softening. Therefore, if the content of these specific elements is too low, the surface fatigue strength of the carburized steel part is reduced.
  • F1 3.5 ⁇ [Si%] + [Mn%] + 3 ⁇ [Cr%]
  • Si content, the Mn content, and the Cr content in the steel component are respectively substituted into [Si%], [Mn%] and [Cr%].
  • F1 is higher than 6.5, the strength and temper softening resistance necessary for carburized steel parts such as gears and bearings can be obtained, and excellent surface fatigue strength can be obtained. Therefore, in the carburized steel part in this embodiment, it is necessary to make F1 higher than 6.5.
  • the specific element forms an oxide film to lower the gas carburizing property. Therefore, the present inventors further investigated the relationship between the content of the specific element in the ordinary gas carburizing treatment and the gas carburizing property by the following test method.
  • a normal gas carburizing treatment was performed on each steel component under the same gas carburizing conditions (950 ° C.-carbon potential 0.8) to produce a carburized steel component.
  • the C content of the surface layer of carburized steel parts was measured by EPMA.
  • the condition of the specific element content at which the C content of the surface layer to be observed was 0.5% or more was determined by multiple regression analysis.
  • the reduction of the carburizing temperature suppresses the formation of the oxide film.
  • the carburizing temperature is low, oxides tend to be formed inside the surface layer of the steel part, not on the surface of the steel part. That is, in this case, it is difficult to form an oxide film, and instead, an oxide is formed inside the surface layer.
  • the oxide formed in the grain boundary and grain in the surface layer of the steel component is referred to as "internal oxide”.
  • FIG. 1 is a cross-sectional photograph of the surface layer of the carburized steel component according to the present embodiment.
  • a large number of oxides (black dots in FIG. 1) are formed inside the surface layer of the steel component. If such internal oxides are formed during gas carburizing, the increase in the concentration of specific elements due to diffusion is suppressed in the surface layer of the steel component. Therefore, if the internal oxide is formed to a certain extent, the oxide film is less likely to be formed on the surface in the subsequent gas carburizing process, and the gas carburizing property is enhanced.
  • the gas carburizing process of the present embodiment includes a preliminary gas carburizing process and a present gas carburizing process performed subsequently to the preliminary gas carburizing process.
  • the preliminary gas carburizing step mainly aims at the formation of internal oxides.
  • the carburizing temperature is adjusted according to the specific element content and the carbon potential to promote the formation of internal oxides.
  • the gas carburizing treatment is performed at the carburizing temperature T p (° C.) satisfying the formula (A) .
  • T p ° C.
  • the formula (A) 800 ⁇ T p ⁇ 163 ⁇ ln (CP + 0.6) ⁇ 41 ⁇ ln (3.5 ⁇ [Si%] + [Mn%] + 3 ⁇ [Cr%]) + 950
  • the Si content, the Mn content, and the Cr content (% by mass) in the steel component are substituted for [Si%], [Mn%], and [Cr%] in the formula.
  • Ru the carbon potential at the time of carburizing in the preliminary gas carburizing step is substituted for CP.
  • the present gas carburizing step is subsequently performed.
  • a carburized layer is formed on the surface of a base material of a steel part.
  • a carburizing time tr (minute) gas carburizing is performed at a carburizing temperature Tr (° C.) satisfying the following equation (B). 4 ⁇ 13340 / (T r +273.15) -ln (t r ) ⁇ 7 (B)
  • the effective hardened layer of the carburized steel part has an appropriate depth, and the surface fatigue strength of the carburized steel part is increased.
  • the carburizing temperature T r (° C.) of the present gas carburizing step is higher than the carburizing temperature T p (° C.) of the preliminary gas carburizing step.
  • the internal oxide is generated by the preliminary gas carburizing step satisfying the formula (A). Therefore, the specific element concentration is suppressed low in the surface layer of the steel component at the time of the gas carburizing step. Therefore, even if the carburizing temperature T r (° C.) is higher than the carburizing temperature T p (° C.) in the present gas carburizing step, if the present gas carburizing step satisfies the formula (B), an oxide film is difficult to be formed. Carburization can be maintained.
  • the method of manufacturing a carburized steel component of the present embodiment completed based on the above findings includes a preliminary gas carburizing step and the present gas carburizing step.
  • C 0.1 to 0.4%, Si: 0.7 to 4.0%, Mn: 0.2 to 3.0%, Cr: 0.5 to 5 in mass% .0%, Al: 0.005 to 0.15%, S: 0.3% or less, N: 0.003 to 0.03%, O: 0.0050% or less, P: 0.025% or less, Nb: 0 to 0.3%, Ti: 0 to 0.3%, V: 0 to 0.3%, Ni: 0 to 3.0%, Cu: 0 to 3.0%, Co: 0 to 3 .0%, Mo: 0 to 1.0%, W: 0 to 1.0%, B: 0 to 0.005%, Ca: 0 to 0.01%, Mg: 0 to 0.01%, Zr Containing: 0 to 0.05%, Te: 0 to 0.1%, and rare earth element: 0
  • the present gas carburizing step is performed subsequent to the preliminary gas carburizing step.
  • the gas carburizing process is performed at the carburizing temperature T r ° C. satisfying the formula (B) and the carburizing time t r minutes.
  • the carburized steel component according to the present embodiment is, by mass%, C: 0.1 to 0.4%, Si: 0.7 to 4.0%, Mn: 0.2 to 3.0%, Cr: 0. 5 to 5.0%, Al: 0.005 to 0.15%, S: 0.3% or less, N: 0.003 to 0.03%, O: 0.0050% or less, P: 0.025 % Or less, Nb: 0 to 0.3%, Ti: 0 to 0.3%, V: 0 to 0.3%, Ni: 0 to 3.0%, Cu: 0 to 3.0%, Co: 0 to 3.0%, Mo: 0 to 1.0%, W: 0 to 1.0%, B: 0 to 0.005%, Ca: 0 to 0.01%, Mg: 0 to 0.01 %, Zr: 0 to 0.05%, Te: 0 to 0.1%, and rare earth elements: 0 to 0.005%, the balance being Fe and impurities, and the chemical formula satisfying the formula (1)
  • the C content of the surface layer of the carburized layer is 0.5% or more, and the Si content, the Mn content, and the Cr content of the surface layer of the carburized layer satisfy the formula (2).
  • the effective hardened layer depth is 0.3 to less than 1.5 mm, and the area ratio of oxide in the range of 10 ⁇ m depth ⁇ 3 ⁇ m from the surface of the carburized layer is 7 to 50%.
  • the chemical composition is one or two selected from the group consisting of Nb: 0.02 to 0.3%, Ti: 0.02 to 0.3%, and V: 0.02 to 0.3%. It may contain more than species.
  • the above chemical composition is Ni: 0.2 to 3.0%, Cu: 0.2 to 3.0%, Co: 0.2 to 3.0%, Mo: 0.05 to 1.0%, W It may contain one or more selected from the group consisting of: 0.05 to 1.0%, and B: 0.0006 to 0.005%.
  • the above chemical compositions are: Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, Zr: 0.0005 to 0.05%, Te: 0.0005 to 0.1%, and
  • rare earth elements may contain one or more selected from the group consisting of 0.0001 to 0.005%.
  • the present manufacturing method includes a preliminary gas carburizing step and the present gas carburizing step.
  • an oxide internal oxide
  • the steel parts in which the formation of the oxide film is suppressed are subjected to gas carburizing at a carburizing temperature higher than the carburizing temperature in the preliminary gas carburizing step to enhance the productivity.
  • the preliminary gas carburizing process and the present gas carburizing process will be described in detail.
  • Preliminary gas carburizing process In the preliminary gas carburizing step, steel parts having the following chemical composition are prepared. Pre-gas carburizing is performed on the prepared steel parts to generate internal oxides in the steel and suppress the concentration of specific elements in the surface layer.
  • C 0.1 to 0.4% Carbon (C) enhances the strength of the steel. More specifically, C enhances the strength of the core of the steel part. If the C content is too low, the above effects can not be obtained effectively. The C content further affects the depth of the effective hardened layer. On the other hand, if the C content is too high, the toughness of the steel decreases. Therefore, the C content is 0.1 to 0.4%.
  • the preferred lower limit of the C content is 0.16%, and more preferably 0.18%.
  • the upper limit of the C content is preferably 0.30%, more preferably 0.28%.
  • Si 0.7 to 4.0%
  • Silicon (Si) deoxidizes the steel. Si further enhances the strength and hardenability of the steel and enhances the temper softening resistance. Therefore, Si enhances the strength of the core of the steel component and enhances the surface fatigue strength. Furthermore, Si forms an internal oxide by satisfying the following production conditions. Internal oxides increase the surface fatigue strength of the steel. If the Si content is too low, the above effect can not be obtained effectively. On the other hand, if the Si content is too high, the steel is likely to be decarburized during hot working such as hot forging. Therefore, the Si content is 0.7 to 4.0%. The preferred lower limit of the Si content is 0.8%, and more preferably 1.0%. The upper limit of the Si content is preferably 3.0%, more preferably 2.5%.
  • Mn 0.2 to 3.0%
  • Manganese (Mn) deoxidizes the steel. Mn further enhances the strength and hardenability of the steel and enhances the temper softening resistance. Therefore, Mn enhances the strength of the core of the steel component and enhances the surface fatigue strength. Mn further combines with S in the steel to form MnS and renders S harmless. Mn further forms an internal oxide by satisfying the following production conditions. Internal oxides increase the surface fatigue strength of the steel. If the Mn content is too low, the above effects can not be obtained effectively. On the other hand, if the Mn content is too high, retained austenite remains in the steel and the strength decreases even if the subzero treatment is performed. Therefore, the Mn content is 0.2 to 3.0%.
  • the preferable lower limit of the Mn content is 0.4%, and more preferably 0.5%.
  • the preferred upper limit of the Mn content is 2.0%, and more preferably 1.5%.
  • Chromium (Cr) enhances the strength and hardenability of the steel and enhances the temper softening resistance. Therefore, Cr enhances the strength of the core of the steel component and enhances the surface fatigue strength. Cr further forms an internal oxide by satisfying the following production conditions. Internal oxides increase the surface fatigue strength of the steel. If the Cr content is too low, the above effects can not be obtained effectively. On the other hand, if the Cr content is too high, the hardness of the steel is increased and the cold workability is reduced. Therefore, the Cr content is 0.5 to 5.0%.
  • the preferable lower limit of the Cr content is 0.6%, and more preferably 0.8%.
  • the preferable upper limit of the Cr content is 3.0%, and more preferably 2.5%.
  • Al 0.005 to 0.15%
  • Aluminum (Al) deoxidizes the steel. Al further combines with nitrogen to form a nitride and refines the crystal grains. If the Al content is too low, the above effect can not be obtained effectively. On the other hand, if the Al content is too high, the nitride becomes coarse and the steel becomes brittle. Therefore, the Al content is 0.005 to 0.15%.
  • the preferable lower limit of the Al content is 0.01%, and more preferably 0.02%.
  • the preferred upper limit of the Al content is 0.10%, and more preferably 0.05%.
  • said Al content means total Al content.
  • S 0.3% or less Sulfur (S) is unavoidably contained. Since S has the effect of enhancing the machinability of steel, it may be contained positively. If the S content is too high, the forgeability of the steel is reduced. Therefore, the S content is 0.3% or less. In order to obtain the effect of enhancing the machinability of steel, the preferable lower limit of the S content is 0.005%, and more preferably 0.01%. The preferable upper limit of the S content is 0.15%, and more preferably 0.1%.
  • N 0.003 to 0.03%
  • Nitrogen (N) combines with Al to form a nitride and refines crystal grains. If the N content is too low, this effect can not be obtained effectively. On the other hand, if the N content is too high, the forgeability of the steel decreases. Therefore, the N content is 0.003 to 0.03%.
  • the lower limit of the N content is preferably 0.004%, more preferably 0.005%.
  • the upper limit of the N content is preferably 0.025%, more preferably 0.02%.
  • Oxygen (O) is an impurity. Oxygen is present in the steel as oxide inclusions such as alumina and titania. If the O content is too high, oxide inclusions become coarse. Coarse oxide inclusions become the origin of cracking. Therefore, when the steel component is a power transmission component, the crack may develop and be broken. Therefore, the O content is 0.0050% or less. The O content is preferably as low as possible. The preferred O content is 0.0020% or less, and more preferably 0.0015% or less in order to increase the life of the steel part.
  • Phosphorus (P) is an impurity. P segregates at grain boundaries to reduce the toughness of the steel. Therefore, the P content is 0.025% or less.
  • the P content is preferably as low as possible.
  • the P content is preferably 0.020% or less, and more preferably 0.015% or less in order to increase the life of the steel part.
  • the balance of the chemical composition of the steel component according to the present embodiment consists of Fe and impurities.
  • the impurities are mixed in from the ore as a raw material, scrap, or the manufacturing environment, etc., when industrially manufacturing steel, and within a range not adversely affecting the steel parts of the present embodiment. Means something that is acceptable.
  • the chemical composition of the steel component according to the present embodiment may further contain one or more selected from the group consisting of Nb, Ti and V, instead of part of Fe.
  • Nb 0 to 0.3%
  • Ti 0 to 0.3%
  • V 0 to 0.3%
  • Niobium (Nb), titanium (Ti) and vanadium (V) are all optional elements and may not be contained. When contained, these elements combine with C and / N to form carbides, nitrides, and carbonitrides to refine the crystal grains. However, if the content of these elements is too high, the above effect is saturated. Furthermore, the hot workability and the machinability of the steel are reduced. Therefore, the Nb content is 0 to 0.3%, the Ti content is 0 to 0.3%, and the V content is 0 to 0.3%.
  • the preferable lower limit of the Nb content is 0.02%
  • the preferable lower limit of the Ti content is 0.02%
  • the preferable lower limit of the V content is 0.02%
  • the preferable upper limit of the Nb content is 0.1%
  • the preferable upper limit of the Ti content is 0.1%
  • the preferable upper limit of the V content is 0.1%.
  • the chemical composition of the steel component according to the present embodiment further contains one or more selected from the group consisting of Ni, Cu, Co, Mo, W, and B, instead of part of Fe. It is also good.
  • the Ni content is 0 to 3.0%
  • the Cu content is 0 to 3.0%
  • the Co content is 0 to 3.0%
  • the Mo content is 0 to 1.0%
  • the W content is The content is 0 to 1.0%
  • the B content is 0 to 0.005%.
  • the preferable lower limit of Ni content is 0.2%
  • the preferable lower limit of Cu content is 0.2%
  • the preferable lower limit of Co content is 0.2%
  • the Mo content is The preferable lower limit is 0.05%
  • the preferable lower limit of W content is 0.05%
  • the preferable lower limit of B content is 0.0006%.
  • Preferred upper limit of Ni content is 2.0%
  • preferred upper limit of Cu content is 2.0%
  • preferred upper limit of Co content is 2.0%
  • preferred upper limit of Mo content is 0.3%
  • W content The preferable upper limit of the amount is 0.3%
  • the preferable upper limit of the B content is 0.001%.
  • the chemical composition of the steel component according to the present embodiment further contains one or more selected from the group consisting of Ca, Mg, Zr, Te and a rare earth element (REM) in place of a part of Fe. It is also good.
  • REM rare earth element
  • Rare earth element (REM) 0 to 0.005% Calcium (Ca), magnesium (Mg), zirconium (Zr), tellurium (Te) and rare earth elements (REM) are all optional elements and may not be contained. When contained, these elements enhance the machinability of the steel.
  • Ca lowers the melting point of the oxide.
  • the oxide is softened and the machinability of the steel is enhanced.
  • the Ca content is 0 to 0.01%. In order to acquire the said effect more effectively, the preferable lower limit of Ca content is 0.0005%.
  • Mg, Zr, Te and REM control the morphology of MnS and enhance the machinability of the steel.
  • Mg content is 0 to 0.01%.
  • Zr content is too high, the above effect is saturated. Therefore, the Zr content is 0 to 0.05%.
  • Te content is 0 to 0.1%.
  • REM content is 0 to 0.005%.
  • the preferable lower limit of the Mg content is 0.0005%
  • the preferable lower limit of the Zr content is 0.0005%
  • the preferable lower limit of the Te content is 0.0005%
  • the REM content is 0.0001%.
  • REM is a generic term for 17 elements in which yttrium (Y) and scandium (Sc) are added to lutetium (Lu) with atomic number 71 from lanthanum (La) with atomic number 57 in the periodic table. .
  • the content of REM means the total content of one or more of these elements.
  • Formula (1) is an index related to the content of the specific element (Si, Mn and Cr). While specific elements increase the surface fatigue strength of steel, they tend to form an oxide film in gas carburizing treatment.
  • F1 is too high, an oxide film will be formed on the surface of the steel part even if the gas carburizing treatment is carried out under the below-mentioned manufacturing conditions, and the gas carburizing property is lowered.
  • F1 is more than 6.5 to 18, the surface fatigue strength is sufficiently increased, and the oxide film is hardly formed even if the gas carburizing process described later is performed. Therefore, gas carburization can also be maintained.
  • the above-mentioned steel parts are manufactured, for example, by the following method.
  • a molten steel having the above-described chemical composition is produced.
  • Molten steel is made into slabs by a continuous casting method.
  • the molten steel may be made into an ingot (steel ingot) by the ingot method.
  • the slab or ingot may be hot worked into billets or bars.
  • the slab, ingot, billet or bar is heated in a heating furnace.
  • the hot cast slab, ingot, billet or bar is hot worked to produce steel parts.
  • Hot working is, for example, hot rolling or hot forging. Hot working may be performed multiple times to produce steel parts. Hot rolling and hot forging may be performed to produce steel parts.
  • the intermediate product after hot forging may be subjected to cold working represented by cold forging to produce steel parts.
  • Cutting may be performed on the hot-worked and / or cold-worked intermediate product to produce a steel part.
  • cold working it is preferable to carry out spheroidizing annealing at 700 to 800 ° C. on the intermediate before cold working. In this case, the formability is enhanced.
  • Preliminary gas carburizing treatment A preliminary gas carburizing process is performed on the manufactured steel parts.
  • the preliminary gas carburizing process is carried out using a gas carburizing furnace. After the steel parts are charged into the gas carburizing furnace, the gas carburizing treatment is performed under the following conditions.
  • the carburizing temperature T p is less than 800 ° C., the carburizing efficiency in the preliminary gas carburizing process is reduced. In this case, the productivity is reduced. Therefore, the lower limit of the carburizing temperature T is 800.degree.
  • the carbon potential CP in the preliminary gas carburizing treatment is not particularly limited as long as the carburizing temperature T p satisfies the formula (A).
  • the preferable lower limit of carbon potential is 0.6, and the preferable upper limit is 1.2.
  • the carburizing time (preliminary gas carburizing time) at the carburizing temperature T is set to 10 minutes to less than 20 hours. If the carburizing time is less than 10 minutes, internal oxides are not sufficiently formed, and the concentration of specific elements in the surface layer is still high. In this case, the oxide film is easily formed by the gas carburizing process. On the other hand, if the carburizing time is 20 hours or more, the productivity is reduced. Therefore, the carburizing time is 10 minutes to less than 20 hours.
  • the present gas carburizing step is subsequently performed.
  • the present gas carburizing step is carried out in the same gas carburizing furnace as the preliminary gas carburizing step. Specifically, the temperature of the gas carburizing furnace is raised after the preliminary gas carburizing step. In order to obtain high surface fatigue strength, it is necessary to properly manage the effective hardened layer depth obtained by the carburizing process. Therefore, the carburizing temperature T r (° C.) and the carburizing time t r (minute) in the present gas carburizing step satisfy the following formula (B). 4 ⁇ 13340 / (T r +273.15) -ln (t r ) ⁇ 7 (B)
  • FB 13340 / (T r +273.15) ⁇ ln (t r ). If FB is too high, the effective hardened layer depth will be too shallow and the surface fatigue strength of the carburized steel part will be low. On the other hand, if FB is less than 4, the effective hardened layer depth becomes too deep, and the surface fatigue strength of the carburized steel part becomes low.
  • the carburization temperature T r of the gas carburizing process is higher than the carburization temperature T p of the pre-gas carburizing process.
  • the time for gas carburization can be shortened, and the productivity is enhanced.
  • the preliminary gas carburizing step is performed first under the condition satisfying the formula (A) to generate the internal oxide, so the specific element concentration in the surface layer of the steel component is suppressed. Even if the carburizing temperature Tr is raised and the gas carburizing process is performed in a short time in the present gas carburizing step satisfying the formula (B), it is sufficient to carry out such a preliminary gas carburizing step, a sufficient effective hardened layer depth And high surface fatigue strength can be obtained.
  • the carbon potential in the present gas carburizing step is not particularly limited. Carburizing treatment may be performed within the known carbon potential range.
  • the preferable lower limit of the carburizing temperature Tr in the present gas carburizing step is 820 ° C., more preferably 850 ° C.
  • a preferred upper limit of the carburizing temperature Tr is 1050 ° C.
  • the preferable lower limit of carburizing time t r in this gas carburization step is 20 minutes.
  • hardening treatment is carried out by a known method.
  • the quenching process is, for example, water quenching or oil quenching.
  • tempering is performed.
  • the tempering treatment increases the toughness of the product member.
  • the tempering treatment is carried out under known conditions.
  • Carburized steel parts are manufactured by the above manufacturing process.
  • the carburized steel parts produced have an effective hardened layer depth of sufficient depth, even at high Si content. Therefore, the present carburized steel part has excellent surface fatigue strength.
  • the carburized steel parts will be described in detail below.
  • the carburized steel part manufactured by the above-mentioned manufacturing method comprises a base material and a carburized layer.
  • the base material has the chemical composition of the steel parts described above. That is, the chemical composition of the base material contains the same elements as the above-described steel parts, and satisfies the formula (1).
  • the carburized layer is formed on the surface of the base material.
  • the C content of the surface layer of the carburized layer is 0.5% or more.
  • the C content of the surface layer of the carburized layer is measured by the following method.
  • a sample is taken having a cross section perpendicular to the surface of the carburized steel part.
  • C concentration is applied at a pitch of 5 ⁇ m in the depth direction using EPMA (electron beam microanalyzer) taking measurement.
  • the average of the obtained C concentration is defined as the C content of the surface layer of the carburized steel part.
  • the C content of the surface layer is less than 0.5%, the hardness of the surface layer portion is lowered, and excellent surface fatigue strength can not be obtained.
  • the preferable lower limit of the C content of the surface layer is 0.6%, and the preferable upper limit is 1.0%.
  • the effective hardened layer depth of carburized steel parts is less than 0.3 to 1.5 mm.
  • the effective cured layer is defined by the depth (mm) from the surface at which a Vickers hardness of 550 Hv is obtained.
  • the effective hardened layer depth is measured by the following method. Based on JIS Z 2244 (2009), a hardness distribution is created using a Vickers hardness meter in the area from the surface to the center in the cross section of the carburized steel part. At this time, the test force F is 1.96N. Of the obtained hardness distribution, a depth at which the Vickers hardness is 550 Hv is determined, and defined as an effective curing depth (mm).
  • the effective hardened layer depth is less than 0.3 mm, excellent surface fatigue strength can not be obtained.
  • the effective hardened layer depth is 1.5 mm or more, the compressive residual stress decreases, and the surface fatigue strength decreases.
  • the effective hardened layer depth is less than 0.3 to 1.5 mm.
  • the Si content, the Mn content, and the Cr content of the surface layer of the carburized layer satisfy the formula (2). 3.5 [Sis%] + [Mns%] + 3 [Crs%] ⁇ 9 (2)
  • the Si content, the Mn content, and the Cr content (% by mass) of the surface layer of the carburized layer are Each is substituted.
  • the Si content, the Mn content, and the Cr content of the surface layer of the carburized layer are defined in the same manner as the C content of the surface layer described above. That is, in the region from the surface of the observation surface of the sample to a depth of 30 ⁇ m, the Si concentration, the Mn concentration and the Cr concentration are measured at a pitch of 5 ⁇ m in the depth direction using EPMA. The average of the obtained each element concentration is defined as Si content, Mn content, and Cr content (%) of the surface layer of the carburized layer.
  • the area ratio of oxide (internal oxide) in the range of 10 ⁇ m depth ⁇ 3 ⁇ m from the surface of the carburized layer is 7 to 50%.
  • the area ratio of oxide in a range of 10 ⁇ m depth ⁇ 3 ⁇ m from the surface of the carburized layer is referred to as “internal oxide ratio”.
  • the internal oxide rate is measured by the following method.
  • EPMA is used to obtain elemental mapping of oxygen at intervals of 0.3 ⁇ m ⁇ 0.3 ⁇ m.
  • an O concentration profile of 200 ⁇ m deep from the surface is extracted, and a numerical value which is the maximum oxygen concentration among metallic irons excluding the second phase such as inclusions is binarized as a threshold.
  • a range of 10 ⁇ m deep ⁇ 3 ⁇ m from the surface of the carburized layer is trimmed, and the area ratio of the high oxygen concentration region is determined from the threshold value in the trimmed range.
  • the determined area ratio is defined as an internal oxide ratio (%).
  • the internal oxide ratio will be 7 to 50%.
  • the carburizing temperature T exceeds FA
  • the area ratio of the oxide becomes less than 7%.
  • the gas carburizing process (preliminary gas carburizing process and main gas carburizing process) of the present embodiment is performed, the internal oxide ratio does not exceed 50%.
  • the preliminary gas carburizing step was performed under the conditions (carburizing temperature, carburizing time, carbon potential CP) shown in Table 2. Furthermore, following the preliminary gas carburizing step, the present gas carburizing step was performed under the conditions shown in Table 2 (carburizing temperature, carburizing time, and CP). The steel parts after the gas carburizing step were quenched with oil at 130 ° C. and tempered at 150 ° C. to produce carburized steel parts.
  • test numbers 31 and 32 the preliminary gas carburizing step was not performed, and the present gas carburizing step was performed under the conditions of Table 2.
  • oil hardening was performed on the steel parts at 130 ° C. and tempering at 150 ° C. was performed. According to the above steps, carburized steel parts (test pieces) of test numbers 1 to 36 were manufactured.
  • the effective hardened layer depth (mm) of the carburized steel part was determined by the method described above. Furthermore, the area ratio of the oxide (internal oxide ratio) in the range of 10 ⁇ m depth ⁇ 3 ⁇ m from the surface of the carburized layer of the carburized steel part was determined by the method described above.
  • roller pitching fatigue test In order to evaluate the surface fatigue strength of the manufactured carburized steel parts, a roller pitting fatigue test was performed using the large roller test piece and the small roller test piece. Specifically, hot forging and heat treatment were performed on the steel materials of steel numbers 1 to 34 in Table 1 to produce an intermediate product. The intermediate product was machined to make small roller test pieces and large roller test pieces.
  • the small roller test specimen had a diameter of 26 mm and a width of 28 mm.
  • the large roller test specimen had a diameter of 130 mm and a width of 18 mm.
  • the large roller test piece also had 150 mm crowning on the outer periphery.
  • the preliminary gas carburizing process and the present gas carburizing process are performed on the prepared small roller test pieces and large roller test pieces under the conditions shown in Table 2, and further at 130 ° C. Oil quenching and tempering at 150 ° C. were carried out.
  • the preliminary carburizing step is not performed on the small roller test piece and the large roller test piece, and the gas carburizing step is performed under the conditions shown in Table 2, and oil quenching at 130 ° C. And tempering at 150.degree.
  • the roller pitching test was performed as follows using the small roller test piece and the large roller test piece after tempering.
  • the small roller test piece was pressed against the small roller test piece.
  • the surface pressure was set to a Hertz stress of 3000 MPa.
  • Each roller was rotated, with the circumferential speed direction of both rollers at the contact portion between the small roller test piece and the large roller test piece being the same direction, and the slip ratio being -40%.
  • the circumferential speed of the large roller test piece at the contact portion was 40% larger than the circumferential speed of the small roller test piece.
  • the number of rotations before the occurrence of pitching on the small roller test piece is determined, and the obtained number of rotations is used as an evaluation index of surface fatigue strength.
  • the chemical composition of the steel material was appropriate, and F1 satisfied the formula (1). Furthermore, the production conditions were also appropriate, and the carburizing temperature of the preliminary gas carburizing step was less than FA, and FB satisfied the formula (2). Therefore, the C content in the surface layer of the carburized layer of the carburized steel component is 0.5% or more, and F2 satisfies the formula (2). Furthermore, the effective hardened layer was 0.3 to less than 1.5 mm, and the internal oxide ratio was 7 to 50%. Therefore, in these test numbers, the roller pitting test lasted 10 million times and showed excellent surface fatigue strength. Furthermore, the carburizing time of the gas carburizing process (preliminary gas carburizing process and the present gas carburizing process) was less than 50 hours, which was not inferior to ordinary gas carburizing treatment.
  • F1 was less than the lower limit of Formula (1). Furthermore, no pre-gas carburizing step was performed. Therefore, the surface fatigue strength was low.
  • FB was less than the lower limit of Formula (B). Therefore, the effective hardened layer depth exceeded 1.5 mm, and the surface fatigue strength was low.
  • the method of manufacturing a carburized steel part according to the present embodiment can be widely applied to the manufacture of a carburized steel part.
  • a carburized steel part manufactured by the present manufacturing method can increase the output of a car, a construction vehicle, an industrial machine or the like, and improve the fuel consumption. Therefore, the present manufacturing method is suitable for manufacturing a carburized steel member used in the above-mentioned field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Si含有量が高い鋼部品に対するガス浸炭性を高め、かつ、生産性の低下を抑制できる浸炭鋼部品の製造方法を提供する。本製造方法は、予備ガス浸炭工程と、本ガス浸炭工程とを備える。予備ガス浸炭工程は、質量%で、C、Si、Mn、Crを含有し、式(1)を満たす化学組成を有する鋼部品に対して、式(A)を満たす浸炭温度Tp℃で10分~20時間未満ガス浸炭処理を実施する。本ガス浸炭工程では、式(B)を満たす浸炭温度T℃及び浸炭時間t分でガス浸炭処理を実施するガス浸炭処理を実施する。6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)800≦T<163×ln(CP+0.6)-41×ln(3.5[Si%]+[Mn%]+3[Cr%])+950 (A)4<13340/(T+273.15)-ln(t)<7 (B)ここで、式中のCPには、予備ガス浸炭工程における浸炭時のカーボンポテンシャルが代入される。

Description

浸炭鋼部品の製造方法及び浸炭鋼部品
 本発明は、鋼部品の製造方法及び鋼部品に関し、さらに詳しくは、浸炭処理を実施して製造される浸炭鋼部品の製造方法及び浸炭鋼部品に関する。
 歯車や軸受に代表される鋼部品は、過酷な環境で使用され、トルクの伝達等で大きな負荷を受ける。したがって、このような鋼部品には、高い面疲労強度が求められる。
 鋼部品は通常、次のとおり製造される。初めに、素材を目的の形状に成形して中間品を製造する。中間品に対して表面硬化処理を実施して鋼部品にする。表面硬化処理を施された鋼部品は、高い面疲労強度を有する。
 面疲労強度を高める方法として、特開2013-204645号公報(特許文献1)では、酸洗処理により、鋼部品の表面に凹凸を形成する。しかしながら、本方法は、通常の鋼部品の製造方法と比較して、酸洗処理を追加するため、工程数が増加する。工程数の増加は、製造コストを高くする。
 面疲労強度を高める他の方法として、鋼部品中のSi含有量を高める方法がある。Siは、鋼部品の焼入れ性を高め、さらに、マルテンサイトにおいて焼戻し軟化抵抗を高める。そのため、Siは、鋼部品の芯部の強度を高め、面疲労強度を高める。
 面疲労強度を高めるさらに他の方法として、表面硬化処理として浸炭処理を実施する方法がある。浸炭処理は、鋼部品の表面に浸炭層を形成し、鋼部品の面疲労強度を高める。
 特開2008-280610号公報(特許文献2)は、Si含有量を高めた鋼部品の製造方法を開示する。特許文献2では、0.5~3.0%のSiを含有する鋼に対して、真空浸炭処理を実施する。しかしながら、真空浸炭処理では、連続処理が困難である。また、真空浸炭処理ではターリングが発生しやすい。また、鋼部品の特性の制御が困難である。したがって、真空浸炭処理では、鋼部品を量産しにくく、生産性が低い。
 真空浸炭処理と異なる他の浸炭処理として、ガス浸炭処理がある。ガス浸炭処理は、上述の真空浸炭処理の短所を有さない。そのため、ガス浸炭処理は、鋼部品の量産化に適する。
 しかしながら、鋼中のSiは、ガス浸炭処理での浸炭性を低下する。たとえば、JIS G4052に規定されたSCr420に相当する化学組成を有する肌焼鋼(以下、通常肌焼鋼という)と、SCr420と比較してSi含有量が高い肌焼鋼(以下、高Si含有鋼という)とを準備する。通常肌焼鋼及び高Si含有鋼に対して、同じ条件でガス浸炭処理を実施する。この場合、高Si含有鋼の有効硬化層深さは、通常肌焼鋼よりも浅くなる。
 「鉄と鋼」第58年(1972)第7号(昭和47年6月1日、(財)日本鉄鋼協会発行)、第926頁(非特許文献1)は、Si含有量が増大すれば、ガス浸炭深さが低下すると報告する。したがって、高Si含有鋼に対してガス浸炭処理を実施しても、十分な有効硬化層深さが得られる製造方法の開発が望まれている。
 鋼部品の疲労強度を高めるガス浸炭方法が、特開平2-156063号公報(特許文献3)及び国際公開第第12/077705号(特許文献4)に開示されている。
 特許文献3では、表面炭素濃度が1.0%以上となるように、鋼材に対してA変態点よりも高い浸炭温度で予備浸炭を実施する。次に、鋼材をA変態点直上まで徐冷し、均熱する。次に、予備浸炭時の浸炭温度未満の温度まで再加熱して、焼入れする。
 しかしながら、特許文献3の対象となる鋼材は、JIS規格で規定されたSCr鋼、SCM鋼、SNCM鋼、肌焼鋼である。これらの鋼のSi含有量は低い。そのため、Si含有量の高い鋼に対して特許文献3のガス浸炭処理を実施した場合、十分な面疲労強度が得られない場合がある。
 特許文献4は、高Si含有鋼のガス浸炭処理を含む製造方法に関して、次の事項を開示する。高Si含有鋼に対して通常のガス浸炭処理を実施した場合、浸炭初期に、表面に酸化被膜が形成される。酸化被膜は、ガス浸炭性を低下する。そこで、特許文献4では、次のガス浸炭処理を実施する。初めに、酸化被膜が生成する雰囲気下で、鋼材に対して1次浸炭を実施する。次いで、鋼材に形成された酸化被膜を、ショットピーニングや化学研磨等により除去する。次いで、酸化被膜が除去された鋼材に対して2次浸炭を実施する。
 しかしながら、特許文献4の方法は、通常の浸炭処理と比較して、酸化被膜を除去する工程が追加される。工程数の増加は、生産性を低下し、製造コストを高める。
特開2013-204645号公報 特開2008-280610号公報 特開平2-156063号公報 国際公開第12/077705号
「鉄と鋼」第58年(1972)第7号(昭和47年6月1日、(財)日本鉄鋼協会発行)、第926頁
 本発明の目的は、Si含有量が高い鋼部品に対するガス浸炭性を高め、かつ、生産性の低下を抑制できる、浸炭鋼部品の製造方法を提供することである。
 本実施形態による浸炭鋼部品の製造方法は、予備ガス浸炭工程と、本ガス浸炭工程とを備える。予備ガス浸炭工程は、質量%で、C:0.1~0.4%、Si:0.7~4.0%、Mn:0.2~3.0%、Cr:0.5~5.0%、Al:0.005~0.15%、S:0.3%以下、N:0.003~0.03%、O:0.0050%以下、P:0.025%以下、Nb:0~0.3%、Ti:0~0.3%、V:0~0.3%、Ni:0~3.0%、Cu:0~3.0%、Co:0~3.0%、Mo:0~1.0%、W:0~1.0%、B:0~0.005%、Ca:0~0.01%、Mg:0~0.01%、Zr:0~0.05%、Te:0~0.1%、及び、希土類元素:0~0.005%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有する鋼部品に対して、式(A)を満たす浸炭温度T℃で10~20時間未満ガス浸炭処理を実施する。本ガス浸炭工程は、予備ガス浸炭工程に引き続き実施される。本ガス浸炭工程では、式(B)を満たす浸炭温度T℃及び浸炭時間t分でガス浸炭処理を実施する。
 6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)
 800≦T<163×ln(CP+0.6)-41×ln(3.5×[Si%]+[Mn%]+3×[Cr%])+950 (A)
 4<13340/(T+273.15)-ln(t)<7 (B)
 ここで、式中の[Si%]、[Mn%]、及び、[Cr%]には、鋼部品中のSi含有量、Mn含有量、及び、Crの含有量(質量%)が代入される。ln( )は自然対数である。CPには、予備浸炭工程における浸炭時のカーボンポテンシャルが代入される。
 本実施形態の製造方法では、Si含有量が高い鋼部品に対するガス浸炭性を高め、かつ、生産性の低下を抑制できる。
図1は、本実施形態の浸炭鋼部品の表層の断面写真である。
 本発明者らは、鋼部品中のSi含有量を高めても、ガス浸炭性の低下を抑制できる方法について、調査及び検討した。
 上述のとおり、鋼部品中のSi含有量が高まれば、焼戻し軟化抵抗が高まるものの、ガス浸炭時に鋼部品の表面に酸化被膜が形成されてガス浸炭性が低下する。酸化被膜の形成には、酸化物を形成しやすい合金元素と、合金元素及び酸素の拡散係数に影響を与える浸炭温度と、酸素分圧に影響を与えるカーボンポテンシャルとが関係すると考えられる。
 質量%で、C:0.1~0.4%、Si:0.7~4.0%、Mn:0.2~3.0%、Cr:0.5~5.0%、Al:0.005~0.15%、S:0.3%以下、N:0.003~0.03%、O:0.0050%以下、P:0.025%以下、Nb:0~0.3%、Ti:0~0.3%、V:0~0.3%、Ni:0~3.0%、Cu:0~3.0%、Co:0~3.0%、Mo:0~1.0%、W:0~1.0%、B:0~0.005%、Ca:0~0.01%、Mg:0~0.01%、Zr:0~0.05%、Te:0~0.1%、及び、希土類元素:0~0.005%を含有し、残部がFe及び不純物からなる鋼部品に対して、通常の浸炭処理を実施した結果、鋼部品の表面に酸化被膜が形成された。特定X線を用いて酸化被膜の元素分析をした結果、酸化被膜が含有する主な元素は、Si、Mn、Cr、及びO(酸素)であった。
 Si、Mn及びCrは、酸素との親和力が高く、酸化しやすい。具体的には、上記化学組成のうち、Si、Mn及びCrよりも酸素との親和力が弱い元素(たとえば、Ni、Cu等)は、酸化しないため、酸化被膜の形成に影響しない。一方、Si、Mn及びCrよりも酸素との親和力が高い元素(たとえばTi、V等)の含有量は、Si、Mn及びCr含有量と比較して、微量であるため、酸化被膜の形成に実質的に影響しない。したがって、上記化学組成の鋼部品において、酸化被膜の形成に影響を与える元素は、Si、Mn及びCrである。以下、Si、Mn及びCrを「特定元素」と称する。
 特定元素はいずれも、鋼の強度及び焼入れ性を高め、焼戻し軟化抵抗を高める。そのため、これらの特定元素の含有量が低すぎれば、浸炭鋼部品の面疲労強度が低下する。
 F1を次のとおり定義する。
 F1=3.5×[Si%]+[Mn%]+3×[Cr%]
 ここで、[Si%]、[Mn%]及び[Cr%]には、鋼部品中のSi含有量、Mn含有量及びCr含有量がそれぞれ代入される。
 F1が6.5よりも高ければ、歯車や軸受け等の浸炭鋼部品に必要な強度及焼戻し軟化抵抗が得られ、優れた面疲労強度が得られる。したがって、本実施形態における浸炭鋼部品では、F1を6.5よりも高くする必要がある。
 一方、上述のとおり、特定元素は酸化被膜を形成してガス浸炭性を低下する。そこで、本発明者らはさらに、通常のガス浸炭処理における特定元素の含有量とガス浸炭性の関係について、次の試験方法により調査した。
 C:0.1~0.4%、Al:0.005~0.15%、S:0.3%以下、N:0.003~0.03%、O:0.0050%以下、P:0.025%以下を含有し、Siを0.1~4.0%、Mnを0.1~3.0%、Crを0.1~5.0%含有する種々の鋼材を準備した。各鋼材に対して熱間鍛造及び熱処理を実施した。その後、機械加工を実施して、20mm×20mmの角柱状の鋼部品を作製した。
 各鋼部品に対して、同一のガス浸炭条件(950℃-カーボンポテンシャル0.8)で、通常のガス浸炭処理を実施して浸炭鋼部品を作製した。浸炭鋼部品の表層のC含有量をEPMAにより測定した。観察対象となった表層のC含有量が0.5%以上となる特定元素含有量の条件を、重回帰分析により求めた。
 試験の結果、通常のガス浸炭処理の場合、F1が6.5以下でなければ、表層のC含有量が0.5%以上となる浸炭鋼部品を得ることができなかった。F1が6.5よりも高い場合、鋼部品の表面に酸化被膜が形成されるため、浸炭性が低く、浸炭層が形成されにくかった。
 しかしながら、浸炭鋼部品において十分な面疲労強度を得るためには、F1が6.5よりも高くなければならない。そこで、本発明者らは、F1が6.5よりも高くても、酸化被膜の形成を抑制して、十分なガス浸炭性が得られるガス浸炭処理方法について検討した。その結果、本発明者らは次の知見を得た。
 浸炭温度の低下は、酸化被膜の形成を抑制する。浸炭温度が低い場合、酸化物は、鋼部品の表面ではなく、鋼部品の表層の内部に形成されやすくなる。つまりこの場合、酸化被膜が形成されにくく、代わりに、表層の内部に酸化物が形成される。以下、鋼部品の表層の内部の粒界及び粒内に形成される酸化物を、「内部酸化物」と称する。
 図1は本実施形態による浸炭鋼部品の表層の断面写真である。図1では、鋼部品の表層の内部に、多数の酸化物(図1中の黒い点)が形成されている。このような内部酸化物が、ガス浸炭処理中に形成されれば、鋼部品の表層において、拡散による特定元素濃度の増大は抑制される。そのため、内部酸化物がある程度形成されれば、それ以降のガス浸炭処理において、表面に酸化被膜が形成されにくくなり、ガス浸炭性が高まる。
 そこで、F1が6.5よりも高くても、酸化被膜の形成を抑制するための方法として、次の2段階のガス浸炭工程を実施する。本実施形態のガス浸炭工程は、予備ガス浸炭工程と、予備ガス浸炭処理に引き続き実施される本ガス浸炭工程とを含む。
 予備ガス浸炭工程は、内部酸化物の形成を主目的とする。予備ガス浸炭工程では、特定元素含有量及びカーボンポテンシャルに応じて浸炭温度を調整し、内部酸化物の生成を促進する。
 具体的には、予備ガス浸炭工程では、次の式(1)を満たす化学組成を有する鋼部品を用いて、式(A)を満たす浸炭温度T(℃)で、ガス浸炭処理を実施する。
 6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)
 800≦T<163×ln(CP+0.6)-41×ln(3.5×[Si%]+[Mn%]+3×[Cr%])+950 (A)
 ここで、式中の[Si%]、[Mn%]、及び、[Cr%]には、鋼部品中のSi含有量、Mn含有量、及び、Crの含有量(質量%)が代入される。式中のln( )は自然対数であり、CPには予備ガス浸炭工程における浸炭時のカーボンポテンシャルが代入される。
 式(1)に示すとおり、F1が6.5より高くても、18以下であれば、式(A)を満たす浸炭温度Tで予備ガス浸炭処理を10分~20時間未満実施することを条件に、酸化被膜の形成を抑制できる。
 予備ガス浸炭工程後、引き続いて、本ガス浸炭工程を実施する。本ガス浸炭工程では、鋼部品の母材の表面上に浸炭層を形成する。
 本ガス浸炭工程では、浸炭鋼部品の面疲労強度を高めるために、次の式(B)を満たす浸炭温度T(℃)で浸炭時間t(分)ガス浸炭処理を実施する。
 4<13340/(T+273.15)-ln(t)<7 (B)
 浸炭温度T(℃)及び浸炭時間t(分)が式(B)を満たせば、浸炭鋼部品の有効硬化層が適切な深さとなり、浸炭鋼部品の面疲労強度が高まる。
 好ましくは、本ガス浸炭工程の浸炭温度T(℃)を、予備ガス浸炭工程の浸炭温度T(℃)よりも高くする。本実施形態では、式(A)を満たす予備ガス浸炭工程により内部酸化物を生成する。そのため、本ガス浸炭工程時における鋼部品の表層では、特定元素濃度が低く抑えられている。したがって、本ガス浸炭工程において浸炭温度T(℃)を浸炭温度T(℃)よりも高くしても、本ガス浸炭工程が式(B)を満たせば、酸化被膜が形成されにくく、ガス浸炭性を維持できる。その結果、Si含有量が高い鋼部品であっても、短時間で十分な厚さの浸炭層を形成でき、生産性の低下を抑制しつつ、優れた面疲労強度を有する浸炭鋼部品を製造できる。
 以上の知見に基づいて完成した本実施形態の浸炭鋼部品の製造方法は、予備ガス浸炭工程と、本ガス浸炭工程とを備える。予備ガス浸炭工程では、質量%で、C:0.1~0.4%、Si:0.7~4.0%、Mn:0.2~3.0%、Cr:0.5~5.0%、Al:0.005~0.15%、S:0.3%以下、N:0.003~0.03%、O:0.0050%以下、P:0.025%以下、Nb:0~0.3%、Ti:0~0.3%、V:0~0.3%、Ni:0~3.0%、Cu:0~3.0%、Co:0~3.0%、Mo:0~1.0%、W:0~1.0%、B:0~0.005%、Ca:0~0.01%、Mg:0~0.01%、Zr:0~0.05%、Te:0~0.1%、及び、希土類元素:0~0.005%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有する鋼部品に対して、式(A)を満たす浸炭温度T℃で10~20時間未満ガス浸炭処理を実施する。本ガス浸炭工程は、予備ガス浸炭工程に引き続き実施される。本ガス浸炭工程では、式(B)を満たす浸炭温度T℃及び浸炭時間t分でガス浸炭処理を実施する。
 6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)
 800≦T<163×ln(CP+0.6)-41×ln(3.5×[Si%]+[Mn%]+3×[Cr%])+950 (A)
 4<13340/(T+273.15)-ln(t)<7 (B)
 ここで、式中の[Si%]、[Mn%]、及び、[Cr%]には、鋼部品中のSi含有量、Mn含有量、及び、Crの含有量(質量%)が代入さる。ln( )は自然対数である。CPには予備ガス浸炭工程における浸炭時のカーボンポテンシャルが代入される。
 本実施形態による浸炭鋼部品は、質量%で、C:0.1~0.4%、Si:0.7~4.0%、Mn:0.2~3.0%、Cr:0.5~5.0%、Al:0.005~0.15%、S:0.3%以下、N:0.003~0.03%、O:0.0050%以下、P:0.025%以下、Nb:0~0.3%、Ti:0~0.3%、V:0~0.3%、Ni:0~3.0%、Cu:0~3.0%、Co:0~3.0%、Mo:0~1.0%、W:0~1.0%、B:0~0.005%、Ca:0~0.01%、Mg:0~0.01%、Zr:0~0.05%、Te:0~0.1%、及び、希土類元素:0~0.005%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有する母材と、母材の表面上に形成される浸炭層とを備える。浸炭層の表層のC含有量は0.5%以上であり、浸炭層の表層のSi含有量、Mn含有量及びCr含有量は式(2)を満たす。有効硬化層深さは0.3~1.5mm未満であり、浸炭層の表面から10μm深さ±3μmの範囲における酸化物の面積率は7~50%である。
 6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)
 3.5[Sis%]+[Mns%]+3[Crs%]≦9 (2)
 ここで、式(1)中の[Si%]、[Mn%]、及び、[Cr%]には、母材中のSi含有量、Mn含有量、及び、Cr含有量(質量%)がそれぞれ代入され、式(2)中の[Sis%]、[Mns%]、及び、[Crs%]には、浸炭層の表層のSi含有量、Mn含有量、及びCr含有量(質量%)がそれぞれ代入される。
 上記化学組成は、Nb:0.02~0.3%、Ti:0.02~0.3%、及び、V:0.02~0.3%からなる群から選択される1種又は2種以上を含有してもよい。
 上記化学組成は、Ni:0.2~3.0%、Cu:0.2~3.0%、Co:0.2~3.0%、Mo:0.05~1.0%、W:0.05~1.0%、及び、B:0.0006~0.005%からなる群から選択される1種又は2種以上を含有してもよい。
 上記化学組成は、Ca:0.0005~0.01%、Mg:0.0005~0.01%、Zr:0.0005~0.05%、Te:0.0005~0.1%、及び、希土類元素:0.0001~0.005%からなる群から選択される1種又は2種以上を含有してもよい。
 以下、本実施の形態による浸炭鋼部品の製造方法を説明する。本製造方法は、予備ガス浸炭工程と、本ガス浸炭工程とを含む。予備ガス浸炭工程では、Si含有量の高い鋼部品の表層の内部に酸化物(内部酸化物)を形成して、表面に酸化被膜が形成されるのを抑制する。本ガス浸炭工程では、酸化被膜の形成が抑制された鋼部品に対して、予備ガス浸炭工程での浸炭温度よりも高い浸炭温度でガス浸炭処理を実施して、生産性を高める。以下、予備ガス浸炭工程及び本ガス浸炭工程について詳述する。
 [予備ガス浸炭工程]
 予備ガス浸炭工程では、次に示す化学組成を有する鋼部品を準備する。準備された鋼部品に対して予備ガス浸炭を実施して、鋼中に内部酸化物を生成し、表層の特定元素濃度を抑制する。
 [鋼部品の化学組成]
 鋼部品の化学組成は、次の元素を含有する。以下、元素に関する「%」は、質量%を意味する。
 C:0.1~0.4%
 炭素(C)は、鋼の強度を高める。より具体的には、Cは、鋼部品の芯部の強度を高める。C含有量が低すぎれば、上記効果が有効に得られない。C含有量はさらに、有効硬化層の深さにも影響する。一方、C含有量が高すぎれば、鋼の靭性が低下する。したがって、C含有量は0.1~0.4%である。C含有量の好ましい下限は0.16%であり、さらに好ましくは0.18%である。C含有量の好ましい上限は0.30%であり、さらに好ましくは0.28%である。
 Si:0.7~4.0%
 シリコン(Si)は、鋼を脱酸する。Siはさらに、鋼の強度及び焼入れ性を高め、焼戻し軟化抵抗を高める。したがって、Siは鋼部品の芯部の強度を高め、面疲労強度を高める。Siはさらに、下記製造条件を満たすことにより内部酸化物を形成する。内部酸化物は、鋼の面疲労強度を高める。Si含有量が低すぎれば、上記効果が有効に得られない。一方、Si含有量が高すぎれば、熱間鍛造等の熱間加工時に鋼が脱炭しやすくなる。したがって、Si含有量は0.7~4.0%である。Si含有量の好ましい下限は0.8%であり、さらに好ましくは1.0%である。Si含有量の好ましい上限は3.0%であり、さらに好ましくは2.5%である。
 Mn:0.2~3.0%
 マンガン(Mn)は鋼を脱酸する。Mnはさらに、鋼の強度及び焼入れ性を高め、焼戻し軟化抵抗を高める。したがって、Mnは、鋼部品の芯部の強度を高め、面疲労強度を高める。Mnはさらに、鋼中のSと結合してMnSを形成し、Sを無害化する。Mnはさらに、下記製造条件を満たすことにより内部酸化物を形成する。内部酸化物は、鋼の面疲労強度を高める。Mn含有量が低すぎれば、上記効果が有効に得られない。一方、Mn含有量が高すぎれば、サブゼロ処理を実施しても、残留オーステナイトが鋼中に残り、強度が低下する。したがって、Mn含有量は0.2~3.0%である。Mn含有量の好ましい下限は0.4%であり、さらに好ましくは0.5%である。Mn含有量の好ましい上限は2.0%であり、さらに好ましくは1.5%である。
 Cr:0.5~5.0%
 クロム(Cr)は、鋼の強度及び焼入れ性を高め、焼戻し軟化抵抗を高める。したがって、Crは、鋼部品の芯部の強度を高め、面疲労強度を高める。Crはさらに、下記製造条件を満たすことにより内部酸化物を形成する。内部酸化物は、鋼の面疲労強度を高める。Cr含有量が低すぎれば、上記効果が有効に得られない。一方、Cr含有量が高すぎれば、鋼の硬さが高まり、冷間加工性が低下する。したがって、Cr含有量は0.5~5.0%である。Cr含有量の好ましい下限は0.6%であり、さらに好ましくは0.8%である。Cr含有量の好ましい上限は3.0%であり、さらに好ましくは2.5%である。
 Al:0.005~0.15%
 アルミニウム(Al)は、鋼を脱酸する。Alはさらに、窒素と結合して窒化物を形成し、結晶粒を微細化する。Al含有量が低すぎれば、上記効果が有効に得られない。一方、Al含有量が高すぎれば、窒化物が粗大化して鋼が脆化する。したがって、Al含有量は0.005~0.15%である。Al含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%である。Al含有量の好ましい上限は0.10%であり、さらに好ましくは0.05%である。なお、上記Al含有量は、全Al含有量を意味する。
 S:0.3%以下
 硫黄(S)は、不可避的に含有される。Sは鋼の被削性を高める効果を有するので積極的に含有させてもよい。S含有量が高すぎれば、鋼の鍛造性が低下する。したがって、S含有量は0.3%以下である。鋼の被削性を高める効果を得るためには、S含有量の好ましい下限は0.005%であり、さらに好ましくは0.01%である。S含有量の好ましい上限は0.15%であり、さらに好ましくは0.1%である。
 N:0.003~0.03%
 窒素(N)は、Alと結合して窒化物を形成し、結晶粒を微細化する。N含有量が低すぎれば、この効果が有効に得られない。一方、N含有量が高すぎれば、鋼の鍛造性が低下する。したがって、N含有量は0.003~0.03%である。N含有量の好ましい下限は0.004%であり、さらに好ましくは0.005%である。N含有量の好ましい上限は0.025%であり、さらに好ましくは0.02%である。
 O:0.0050%以下
 酸素(O)は不純物である。酸素は、アルミナやチタニア等の酸化物系介在物として鋼中に存在する。O含有量が高すぎれば、酸化物系介在物が粗大化する。粗大な酸化物系介在物は割れの起点となる。そのため、鋼部品が動力伝達部品である場合、割れが進展して破損する場合がある。したがって、O含有量は0.0050%以下である。O含有量はなるべく低い方が好ましい。好ましいO含有量は0.0020%以下であり、鋼部品の高寿命化を図る場合、さらに好ましくは0.0015%以下である。
 P:0.025%以下
 燐(P)は不純物である。Pは粒界に偏析して鋼の靭性を低下する。したがって、P含有量は0.025%以下である。P含有量はなるべく低い方が好ましい。好ましいP含有量は0.020%以下であり、鋼部品の高寿命化を図る場合、さらに好ましくは0.015%以下である。
 本実施の形態による鋼部品の化学組成の残部は、Feおよび不純物からなる。ここで、不純物とは、鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本実施形態の鋼部品に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態による鋼部品の化学組成はさらに、Feの一部に代えて、Nb、Ti及びVからなる群から選択される1種又は2種以上を含有してもよい。
 Nb:0~0.3%
 Ti:0~0.3%
 V:0~0.3%
 ニオブ(Nb)、チタン(Ti)及びバナジウム(V)は、いずれも任意元素であり、含有されなくてもよい。含有される場合、これらの元素はC及び/Nと結合して炭化物、窒化物、及び、炭窒化物を形成して、結晶粒を微細化する。しかしながら、これらの元素含有量が高すぎれば、上記効果は飽和する。さらに、鋼の熱間加工性及び被削性が低下する。したがって、Nb含有量は0~0.3%であり、Ti含有量は0~0.3%であり、V含有量は0~0.3%である。
 上記効果をより有効に得るために、Nb含有量の好ましい下限は0.02%、Ti含有量の好ましい下限は0.02%、V含有量の好ましい下限は0.02%である。Nb含有量の好ましい上限は0.1%、Ti含有量の好ましい上限は0.1%、V含有量の好ましい上限は0.1%である。
 本実施形態による鋼部品の化学組成はさらに、Feの一部に代えて、Ni、Cu、Co、Mo、W、及び、Bからなる群から選択される1種又は2種以上を含有してもよい。
 Ni:0~3.0%
 Cu:0~3.0%
 Co:0~3.0%
 Mo:0~1.0%
 W:0~1.0%
 B:0~0.005%
 ニッケル(Ni)、銅(Cu)、コバルト(Co)、モリブデン(Mo)、タングステン(W)、及びボロン(B)はいずれも任意元素であり、含有されなくてもよい。含有される場合、これらの元素はいずれも、鋼の焼入れ性を高める。しかしながら、これらの元素含有量が高すぎれば、上記効果が飽和し、製造コストが高くなる。したがって、Ni含有量は0~3.0%、Cu含有量は0~3.0%、Co含有量は0~3.0%、Mo含有量は0~1.0%、W含有量は0~1.0%、B含有量は0~0.005%である。
 上記効果をより有効に得るために、Ni含有量の好ましい下限は0.2%、Cu含有量の好ましい下限は0.2%、Co含有量の好ましい下限は0.2%、Mo含有量の好ましい下限は0.05%、W含有量の好ましい下限は0.05%、B含有量の好ましい下限は0.0006%である。Ni含有量の好ましい上限は2.0%、Cu含有量の好ましい上限は2.0%、Co含有量の好ましい上限は2.0%、Mo含有量の好ましい上限は0.3%、W含有量の好ましい上限は0.3%、B含有量の好ましい上限は0.001%である。
 本実施形態による鋼部品の化学組成はさらに、Feの一部に代えて、Ca、Mg、Zr、Te及び希土類元素(REM)からなる群から選択される1種又は2種以上を含有してもよい。
 Ca:0~0.01%
 Mg:0~0.01%
 Zr:0~0.05%
 Te:0~0.1%
 希土類元素(REM):0~0.005%
 カルシウム(Ca)、マグネシウム(Mg)、ジルコニウム(Zr)、テルル(Te)及び希土類元素(REM)はいずれも任意元素であり、含有されなくてもよい。含有される場合、これらの元素は鋼の被削性を高める。
 具体的には、Caは酸化物の融点を下げる。この場合、切削加工時の鋼材の発熱により、酸化物が軟質化して鋼の被削性が高まる。しかしながら、Ca含有量が高すぎれば、硬質なCaSが多量に生成され、鋼の被削性がかえって低下する。したがって、Ca含有量は0~0.01%である。上記効果をより有効に得るために、Ca含有量の好ましい下限は0.0005%である。
 Mg、Zr、Te及びREMは、MnSの形態を制御し、鋼の被削性を高める。しかしながら、Mg含有量が高すぎれば、MgSが生成して鋼の被削性が低下する。したがって、Mg含有量は0~0.01%である。Zr含有量が高すぎれば、上記効果は飽和する。したがって、Zr含有量は0~0.05%である。Te含有量が高すぎれば、上記効果は飽和する。したがって、Te含有量は0~0.1%である。REM含有量が高すぎれば、粗大な硫化物が生成して鋼の被削性が低下する。したがって、REM含有量は0~0.005%である。
 上記効果をより有効に得るために、Mg含有量の好ましい下限は0.0005%、Zr含有量の好ましい下限は0.0005%、Te含有量の好ましい下限は0.0005%、REM含有量の好ましい下限は0.0001%である。
 本明細書でいうREMは、周期律表中の原子番号57のランタン(La)から原子番号71のルテチウム(Lu)に、イットリウム(Y)及びスカンジウム(Sc)を加えた17元素の総称である。REMの含有量は、これらの1種又は2種以上の元素の総含有量を意味する。
 [式(1)について]
 本実施形態の鋼部品の化学組成はさらに、式(1)を満たす。
 6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)
 ここで、式(1)中の[Si%]、[Mn%]、及び、[Cr%]には、鋼部品中のSi含有量、Mn含有量、及び、Cr含有量(質量%)が代入される。
 上述のとおり、式(1)は特定元素(Si、Mn及びCr)の含有量に関する指標である。特定元素は鋼の面疲労強度を高める反面、ガス浸炭処理において酸化被膜を形成しやすい。
 F1(=3.5[Si%]+[Mn%]+3[Cr%])が低すぎれば、鋼部品中の特定元素含有量が不足する。そのため、浸炭鋼部品の焼戻し軟化抵抗が低下して、面疲労強度が低下する。一方、F1が高すぎれば、後述の製造条件でガス浸炭処理を実施しても、鋼部品の表面に酸化被膜が形成されてしまい、ガス浸炭性が低下する。F1が6.5超~18であれば、面疲労強度が十分に高まり、かつ、後述のガス浸炭処理を実施しても、酸化被膜が形成されにくい。そのため、ガス浸炭性も維持できる。
 上述の鋼部品は、たとえば、次の方法で製造される。上述の化学組成を有する溶鋼を製造する。溶鋼を連続鋳造法により鋳片にする。溶鋼を造塊法によりインゴット(鋼塊)にしてもよい。鋳片又はインゴットを熱間加工して、ビレット(鋼片)や棒鋼にしてもよい。
 鋳片、インゴット、ビレット又は棒鋼を加熱炉で加熱する。加熱した鋳片、インゴット、ビレット又は棒鋼を熱間加工して鋼部品を製造する。熱間加工はたとえば、熱間圧延又は熱間鍛造である。熱間加工を複数回実施して、鋼部品を製造してもよい。熱間圧延と熱間鍛造とを実施して鋼部品を製造してもよい。
 熱間鍛造後の中間品に対して、冷間鍛造に代表される冷間加工を実施して鋼部品を製造してもよい。熱間加工及び/又は冷間加工された中間品に対して切削加工を実施して鋼部品を製造してもよい。冷間加工を実施して鋼部品を製造する場合、冷間加工前の中間品に対して700~800℃で球状化焼鈍を実施するのが好ましい。この場合、成形性が高まる。
 [予備ガス浸炭処理]
 製造された鋼部品に対して、予備ガス浸炭処理を実施する。予備ガス浸炭処理はガス浸炭炉を用いて実施される。鋼部品をガス浸炭炉に装入した後、次の条件でガス浸炭処理を実施する。
 [予備ガス浸炭温度T
 浸炭温度Tは、次の式(A)を満たす。
 800≦T<163×ln(CP+0.6)-41×ln(3.5×[Si%]+[Mn%]+3×[Cr%])+950 (A)
 FA=163×ln(CP+0.6)-41×ln(3.5×[Si%]+[Mn%]+3×[Cr%])+950と定義する。浸炭温度TがFAよりも高すぎれば、ガス浸炭炉内の酸素分圧が高くなりすぎる。さらに、特定元素及び酸素の拡散係数も高くなる。そのため、式(1)を満たす化学組成を有する鋼部品であっても、予備ガス浸炭処理時に、表面に酸化被膜が形成される。この場合、ガス浸炭性が低下するため、次工程の本ガス浸炭工程を実施しても、十分な浸炭層が得られない。その結果、浸炭鋼部品の面疲労強度が低くなる。
 一方、浸炭温度Tが800℃未満であれば、予備ガス浸炭処理での浸炭能率が低下する。この場合、生産性が低下する。したがって、浸炭温度Tの下限は800℃である。
 浸炭温度Tが式(A)を満たせば、予備ガス浸炭処理において鋼部品の表層の内部の粒界及び粒内にSi、Mn及びCrを含む内部酸化物が形成される。その結果、表層の内部の特定元素の濃度が抑制される。そのため、次工程の本ガス浸炭工程において、酸化被膜が形成されるのを抑制できる。
 [カーボンポテンシャルCP]
 予備ガス浸炭処理におけるカーボンポテンシャルCPは、浸炭温度Tが式(A)を満たせば、特に制限されない。カーボンポテンシャルの好ましい下限は0.6であり、好ましい上限は1.2である。
 [予備ガス浸炭時間]
 上記浸炭温度Tでの浸炭時間(予備ガス浸炭時間)を10分~20時間未満とする。浸炭時間が10分未満であれば、内部酸化物が十分に生成されず、表層の内部の特定元素の濃度が依然として高い。この場合、本ガス浸炭処理で酸化被膜が形成されやすくなる。一方、浸炭時間が20時間以上となれば、生産性が低下する。したがって、浸炭時間は10分~20時間未満である。
 [本ガス浸炭工程]
 上記予備ガス浸炭工程を実施した後、引き続き、本ガス浸炭工程を実施する。本ガス浸炭工程は、予備ガス浸炭工程と同じガス浸炭炉で実施する。具体的には、予備ガス浸炭工程後、ガス浸炭炉の温度を上昇する。高い面疲労強度を得るには、浸炭工程により得られる有効硬化層深さを適正に管理する必要がある。そのため、本ガス浸炭工程における浸炭温度T(℃)及び浸炭時間t(分)は下記の式(B)を満たす。
 4<13340/(T+273.15)-ln(t)<7  (B)
 FB=13340/(T+273.15)-ln(t)と定義する。FBが7よりも高すぎれば有効硬化層深さが浅くなりすぎ、浸炭鋼部品の面疲労強度が低くなる。一方、FBが4より低すぎれば、有効硬化層深さが深くなりすぎ、浸炭鋼部品の面疲労強度が低くなる。
 好ましくは、本ガス浸炭工程の浸炭温度Tは、予備ガス浸炭工程の浸炭温度Tよりも高くする。この場合、ガス浸炭処理の時間を短縮でき、生産性が高まる。本実施形態では、先に式(A)を満たす条件で予備ガス浸炭工程を実施し、内部酸化物を生成するため、鋼部品の表層の内部の特定元素濃度が抑制されている。このような予備ガス浸炭工程を実施するからこそ、式(B)を満たす本ガス浸炭工程において浸炭温度Tを上げて短時間でガス浸炭処理を実施しても、十分な有効硬化層深さが得られ、高い面疲労強度が得られる。
 本ガス浸炭工程におけるカーボンポテンシャルは特に制限されない。周知のカーボンポテンシャルの範囲で浸炭処理を実施すればよい。
 本ガス浸炭工程での浸炭温度Tの好ましい下限は820℃であり、さらに好ましくは850℃である。浸炭温度Tの好ましい上限は1050℃である。また、本ガス浸炭工程での浸炭時間tの好ましい下限は20分である。
 [本ガス浸炭工程以降の工程について]
 上述の予備ガス浸炭工程及び本ガス浸炭工程を実施した後、焼入れ及び焼き戻しを実施する。
 本浸炭ガス工程を実施した後、周知の方法で焼入れ処理を実施する。焼入れ処理はたとえば、水焼入れ、又は、油焼入れである。焼入れ処理を実施した後、焼戻し処理を実施する。焼戻し処理を実施すれば、製品部材の靱性が高まる。焼戻し処理は周知の条件で実施される。
 以上の製造工程により、浸炭鋼部品を製造する。製造された浸炭鋼部品は、Si含有量が高くても、十分な深さの有効硬化層深さを有する。そのため、本浸炭鋼部品は優れた面疲労強度を有する。以下、浸炭鋼部品について詳述する。
 [浸炭鋼部品]
 上述の製造方法で製造された浸炭鋼部品は、母材と浸炭層とを備える。
 [母材]
 母材は上述の鋼部品の化学組成を有する。つまり、母材の化学組成は、上述の鋼部品と同じ元素を含有し、かつ、式(1)を満たす。
 [浸炭層]
 浸炭層は、母材の表面上に形成される。浸炭層の表層のC含有量は0.5%以上である。浸炭層の表層のC含有量は、次の方法で測定される。浸炭鋼部品の表面に垂直な断面を有するサンプルを採取する。サンプルのうち、浸炭鋼部品の表面を含む断面(以下、観察面という)の表面から30μm深さまでの領域において、EPMA(電子線マイクロアナライザ)を用いて、深さ方向に5μmピッチでC濃度を測定する。得られたC濃度の平均を、浸炭鋼部品の表層のC含有量と定義する。
 表層のC含有量が0.5%未満であれば、表層部の硬さが低くなり優れた面疲労強度が得られない。表層のC含有量の好ましい下限は0.6%であり、好ましい上限は1.0%である。
 さらに、浸炭鋼部品の有効硬化層深さは0.3~1.5mm未満である。有効硬化層とは、ビッカース硬さ550Hvが得られる表面からの深さ(mm)で定義される。有効硬化層深さは、次の方法で測定される。浸炭鋼部品の断面において、表面から中心に至る領域にて、JIS Z2244(2009)に基づいて、ビッカース硬度計を用いて硬度分布を作成する。このとき、試験力Fは1.96Nとする。得られた硬度分布のうち、ビッカース硬さが550Hvとなる深さを求め、有効硬化深さ(mm)と定義する。
 有効硬化層深さが0.3mm未満であれば、優れた面疲労強度が得られない。一方、有効硬化層深さが1.5mm以上であれば、圧縮残留応力が低下するため、面疲労強度が低下する。したがって、有効硬化層深さは0.3~1.5mm未満である。
 さらに、浸炭層の表層のSi含有量、Mn含有量及びCr含有量は式(2)を満たす。
 3.5[Sis%]+[Mns%]+3[Crs%]≦9 (2)
 ここで、式(2)中の[Sis%]、[Mns%]、及び、[Crs%]には、浸炭層の表層のSi含有量、Mn含有量、及びCr含有量(質量%)がそれぞれ代入される。
 浸炭層の表層のSi含有量、Mn含有量及びCr含有量は、上述の表層のC含有量と同じ方法で定義される。すなわち、サンプルの観察面の表面から30μm深さまでの領域において、EPMAを用いて、深さ方向に5μmピッチでSi濃度、Mn濃度及びCr濃度を測定する。得られた各元素濃度の平均を、浸炭層の表層のSi含有量、Mn含有量及びCr含有量(%)と定義する。
 F2=3.5[Sis%]+[Mns%]+3[Crs%]と定義する。上述の条件で予備ガス浸炭工程を実施することにより、内部酸化物が形成される。この場合、鋼部品内に固溶する特定元素が消費される。そのため、本ガス浸炭工程開始時の鋼部品の表層の特定元素の含有量は、F2が式(2)を満たすレベルまで低下すると考えられる。表層の特定元素の含有量が抑えられるため、本ガス浸炭工程でのガス浸炭性が維持され、十分な深さの浸炭層を得ることができる。上記製造方法を実施すれば、結果として、浸炭鋼部品の表層(浸炭層の表層)において、F2は式(2)を満たす。
 [内部酸化物の面積率]
 浸炭鋼部品ではさらに、浸炭層の表面から10μm深さ±3μmの範囲における酸化物(内部酸化物)の面積率が7~50%である。以下、浸炭層の表面から10μm深さ±3μmの範囲における酸化物の面積率を「内部酸化物率」という。
 内部酸化物率は次の方法で測定される。上述のサンプルの観察面(400μm×400μm)において、0.3μm×0.3μmの間隔で、EPMAを用いて酸素の元素マッピングを取得する。そのうち、表面から200μm深さのO濃度プロファイルを抽出し、介在物等の第二相を除く金属鉄の中で最大酸素濃度となる数値を閾値として二値化する。その後、浸炭層の表面から10μm深さ±3μmの範囲をトリミングし、トリミングされた範囲のうち、閾値より高酸素濃度の領域の面積率を求める。求めた面積率を内部酸化物率(%)と定義する。
 上述の条件で予備ガス浸炭工程及び本ガス浸炭工程を実施すれば、内部酸化物率が7~50%となる。予備ガス浸炭工程において、浸炭温度TがFAを超えれば、酸化物の面積率は7%未満となる。一方、本実施形態のガス浸炭処理(予備ガス浸炭工程及び本ガス浸炭工程)を実施した場合、内部酸化物率が50%を超えることはない。
 なお、Si含有量が0.7%以上である鋼部品に対して、従来のガス浸炭処理を実施した場合、内部酸化物は粒内には形成されず、粒界にわずかに形成されるのみである。したがって、従来のガス浸炭処理を実施した場合、内部酸化物率は7%未満となる。
 [浸炭鋼部品の有効硬化層深さ測定及び内部酸化物率の測定]
 表1に示す化学組成を有する鋼番1~34の鋼材を準備した。各鋼材に対して熱間鍛造及び熱処理を実施して中間品を製造した。中間品に対して切削加工(機械加工)を実施して、20mm×20mmの角柱状の鋼部品を製造した。
Figure JPOXMLDOC01-appb-T000001
 表2に示すとおり、各試験番号の鋼部品に対して、表2に示す条件で予備ガス浸炭及び本ガス浸炭を実施した。
Figure JPOXMLDOC01-appb-T000002
 試験番号1~30、33~36では、表2に示す条件(浸炭温度、浸炭時間、カーボンポテンシャルCP)で予備ガス浸炭工程を実施した。さらに、予備ガス浸炭工程に引き続いて、表2に示す条件(浸炭温度、浸炭時間及びCP)で本ガス浸炭工程を実施した。本ガス浸炭工程後の鋼部品に対して、130℃の油で焼入れを実施し、150℃で焼戻しを実施して、浸炭鋼部品を製造した。
 試験番号31及び32では、予備ガス浸炭工程を実施せず、表2の条件で本ガス浸炭工程を実施した。本ガス浸炭工程後、鋼部品に対して130℃の油焼入れを実施し、150℃の焼戻しを実施した。以上の工程により、試験番号1~36の浸炭鋼部品(試験片)を製造した。
 [評価試験]
 [浸炭層の表層のC含有量及び特定元素含有量の測定]
 上述の方法により、EPMAを用いて、各試験番号の浸炭鋼部品の浸炭層の表層におけるC含有量、Si含有量、Mn含有量及びCr含有量を求めた。得られたSi含有量、Mn含有量及びCr含有量に基づいて、上述の方法により、F2を求めた。EPMA装置には、日本電子株式会社製の商品名JXA-8200を使用した。
 [有効硬化層深さ及び内部酸化物率の測定]
 上述の方法により、浸炭鋼部品の有効硬化層深さ(mm)を求めた。さらに、上述の方法により、浸炭鋼部品の浸炭層の表面から10μm深さ±3μmの範囲における酸化物の面積率(内部酸化物率)を求めた。
 [ローラピッチング疲労試験]
 製造された浸炭鋼部品の面疲労強度を評価するため、大ローラ試験片と小ローラ試験片を用いて、ローラピッチング疲労試験を行った。具体的には、表1の鋼番1~34の鋼材に対して熱間鍛造及び熱処理を実施して中間品を製造した。中間品に対して機械加工を実施して、小ローラ試験片及び大ローラ試験片を作製した。小ローラ試験片の直径は26mmであり、幅は28mmであった。大ローラ試験片の直径は130mmであり、幅は18mmであった。大ローラ試験片はさらに、外周に150mmのクラウニングを有した。
 作製した小ローラ試験片及び大ローラ試験片に対して、試験番号1~30、33~36では、表2に示す条件で予備ガス浸炭工程及び本ガス浸炭工程を実施し、さらに、130℃での油焼入れ、及び、150℃での焼き戻しを実施した。試験番号31及び32では、小ローラ試験片及び大ローラ試験片に対して予備ガス浸炭工程を実施せず、表2で示す条件で本ガス浸炭工程を実施し、130℃での油焼入れ、及び、150℃での焼戻しを実施した。
 焼戻し後の小ローラ試験片及び大ローラ試験片を用いて、次のとおりローラピッチング試験を実施した。小ローラ試験片に、大ローラ試験片を押し付けた。このとき、面圧をヘルツ応力3000MPaとした。小ローラ試験片と大ローラ試験片との接触部での両ローラの周速方向を同一方向とし、滑り率を-40%として、各ローラを回転した。具体的には、接触部における大ローラ試験片の周速を、小ローラ試験片の周速よりも40%大きくした。小ローラ試験片にピッチングが発生するまでの回転数を求め、得られた回転数を面疲労強度の評価指標とした。
 ローラピッチング試験中において、接触部に供給するギア油の油温は80℃とした。ピッチング発生を、備え付けられた振動計により検出した。振動検出後に、両ローラ試験片の回転を停止して、ピッチングの発生と回転数とを確認した。回転数が1000万回に達してもピッチングが発生しない場合は、優れた面疲労強度を有していると判断し、1000万回で試験を停止した。
 [試験結果]
 試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 試験番号1~26では、鋼材の化学組成は適正であり、F1が式(1)を満たした。さらに、製造条件も適切であり、予備ガス浸炭工程の浸炭温度がFA未満であり、FBが式(2)を満たした。そのため、浸炭鋼部品の浸炭層表層のC含有量は0.5%以上であり、F2は式(2)を満たした。さらに、有効硬化層は0.3~1.5mm未満であり、内部酸化物率は7~50%であった。そのため、これらの試験番号では、ローラピッチング試験で1000万回耐久し、優れた面疲労強度を示した。さらに、ガス浸炭工程(予備ガス浸炭工程及び本ガス浸炭工程)の浸炭時間は50時間未満であり、通常のガス浸炭処理と遜色がなかった。
 一方、試験番号27では、鋼材のC含有量が低すぎた。そのため、ローラピッチング疲労試験において、1000万回に到達する前に損傷が発生し、面疲労強度が低かった。C含有量が低すぎたため、浸炭鋼部品の非浸炭層である芯部の強度が低かったと考えられる。
 試験番号28では、Si含有量が低すぎた。そのため、ローラピッチング疲労試験において、1000万回に到達する前に損傷が発生し、面疲労強度が低かった。Si含有量が低すぎたため、焼戻し軟化抵抗が低く、その結果、面疲労強度が低下したと考えられる。
 試験番号29では、鋼材中の各元素の含有量は適切であったものの、F1が式(1)の上限を超えた。そのため、内部酸化物率が7%未満であり、有効硬化層が0mm、表層のC含有量が5%未満であった。その結果、面疲労強度が低かった。F1が式(1)の上限を超えたため、特定元素の含有量が多すぎ、本ガス浸炭処理において、鋼材表面に酸化被膜が形成されたと考えられる。
 試験番号30では、鋼材中の各元素の含有量は適切であったものの、F1が式(1)の下限未満であった。そのため、面疲労強度が低かった。焼戻し軟化抵抗が低かったため、面疲労強度が低下したと考えられる。
 試験番号31では、F1が式(1)の下限未満であった。さらに、予備ガス浸炭工程を実施しなかった。そのため、面疲労強度が低かった。
 試験番号32では、化学組成は適切であり、F1が式(1)を満たしたものの、予備ガス浸炭工程を実施しなかった。そのため、有効硬化層深さが0mmであり、内部酸化物率も低かった。その結果、面疲労強度が低かった。本浸炭処理時に酸化被膜が形成され、浸炭がされなかったと考えられる。
 試験番号33では、化学組成は適切であり、F1が式(1)を満たしたものの、予備ガス浸炭工程での浸炭時間が短すぎた。そのため、F2が式(2)を満たさず、有効硬化層が0mmであった。その結果、面疲労強度が低かった。
 試験番号34では、化学組成は適切であり、F1が式(1)を満たすものの、予備ガス浸炭処理での浸炭温度TがFA以上となった。そのため、F2が式(2)を満たさず、有効硬化層が0mmであった。その結果、面疲労強度が低かった。
 試験番号35では、FBが式(B)の上限を超えた。そのため、有効硬化層深さが低すぎ、面疲労強度が低下した。
 試験番号36では、FBが式(B)の下限未満であった。そのため、有効硬化層深さが1.5mmを超え、面疲労強度が低かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本実施形態による浸炭鋼部品の製造方法は、浸炭鋼部品の製造に広く適用できる。特に、本製造方法で製造された浸炭鋼部品は、自動車、建設車両、産業機械等を高出力化し、燃費を向上できる。そのため、本製造方法は上記分野で利用される浸炭鋼部材の製造に好適である。

Claims (5)

  1.  質量%で、
     C:0.1~0.4%、Si:0.7~4.0%、Mn:0.2~3.0%、Cr:0.5~5.0%、Al:0.005~0.15%、S:0.3%以下、N:0.003~0.03%、O:0.0050%以下、P:0.025%以下、Nb:0~0.3%、Ti:0~0.3%、V:0~0.3%、Ni:0~3.0%、Cu:0~3.0%、Co:0~3.0%、Mo:0~1.0%、W:0~1.0%、B:0~0.005%、Ca:0~0.01%、Mg:0~0.01%、Zr:0~0.05%、Te:0~0.1%、及び、希土類元素:0~0.005%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有する鋼部品に対して、式(A)を満たす浸炭温度T℃で10分~20時間未満ガス浸炭処理を実施する予備ガス浸炭工程と、
     予備ガス浸炭工程に引き続き、式(B)を満たす浸炭温度T℃及び浸炭時間t分でガス浸炭処理を実施する本ガス浸炭工程とを備える、浸炭鋼部品の製造方法。
     6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)
     800≦T<163×ln(CP+0.6)-41×ln(3.5×[Si%]+[Mn%]+3×[Cr%])+950 (A)
     4<13340/(T+273.15)-ln(t)<7 (B)
     ここで、式中の[Si%]、[Mn%]、及び、[Cr%]には、前記鋼部品中のSi含有量、Mn含有量、及び、Crの含有量(質量%)がそれぞれ代入され、ln( )は自然対数であり、CPには予備ガス浸炭工程における浸炭時のカーボンポテンシャルが代入される。
  2.  質量%で、
     C:0.1~0.4%、
     Si:0.7~4.0%、
     Mn:0.2~3.0%、
     Cr:0.5~5.0%、
     Al:0.005~0.15%、
     S:0.3%以下、
     N:0.003~0.03%、
     O:0.0050%以下、
     P:0.025%以下、
     Nb:0~0.3%、
     Ti:0~0.3%、
     V:0~0.3%、
     Ni:0~3.0%、
     Cu:0~3.0%、
     Co:0~3.0%、
     Mo:0~1.0%、
     W:0~1.0%、
     B:0~0.005%、
     Ca:0~0.01%、
     Mg:0~0.01%、
     Zr:0~0.05%、
     Te:0~0.1%、及び、
     希土類元素:0~0.005%を含有し、残部がFe及び不純物からなり、式(1)を満たす化学組成を有する母材と、
     前記母材の表面上に形成される浸炭層とを備え、
     前記浸炭層の表層のC含有量は0.5%以上であり、
     前記浸炭層の表層のSi含有量、Mn含有量及びCr含有量は式(2)を満たし、
     有効硬化層深さは0.3~1.5mm未満であり、
     前記浸炭層の表面から10μm深さ±3μmの範囲における酸化物の面積率は7~50%である、浸炭鋼部品。
     6.5<3.5[Si%]+[Mn%]+3[Cr%]≦18 (1)
     3.5[Sis%]+[Mns%]+3[Crs%]≦9 (2)
     ここで、式(1)中の[Si%]、[Mn%]、及び、[Cr%]には、前記母材中のSi含有量、Mn含有量、及び、Cr含有量(質量%)がそれぞれ代入され、式(2)中の[Sis%]、[Mns%]、及び、[Crs%]には、前記浸炭層の表層のSi含有量、Mn含有量、及びCr含有量(質量%)がそれぞれ代入される。
  3.  請求項2に記載の浸炭鋼部品であって、
     前記化学組成は、
     Nb:0.02~0.3%、
     Ti:0.02~0.3%、及び、
     V:0.02~0.3%からなる群から選択される1種又は2種以上を含有する、浸炭鋼部品。
  4.  請求項2又は請求項3に記載の浸炭鋼部品であって、
     前記化学組成は、
     Ni:0.2~3.0%、
     Cu:0.2~3.0%、
     Co:0.2~3.0%、
     Mo:0.05~1.0%、
     W:0.05~1.0%、及び、
     B:0.0006~0.005%からなる群から選択される1種又は2種以上を含有する、浸炭鋼部品。
  5.  請求項2~請求項4のいずれか1項に記載の浸炭鋼部品であって、
     前記化学組成は、
     Ca:0.0005~0.01%、
     Mg:0.0005~0.01%、
     Zr:0.0005~0.05%、
     Te:0.0005~0.1%、及び、
     希土類元素:0.0001~0.005%からなる群から選択される1種又は2種以上を含有する、浸炭鋼部品。
PCT/JP2014/006442 2013-12-27 2014-12-24 浸炭鋼部品の製造方法及び浸炭鋼部品 WO2015098106A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015554571A JP6098732B2 (ja) 2013-12-27 2014-12-24 浸炭鋼部品の製造方法及び浸炭鋼部品
EP14873478.3A EP3088550B1 (en) 2013-12-27 2014-12-24 Production method of carburized steel component and carburized steel component
US15/102,581 US10202677B2 (en) 2013-12-27 2014-12-24 Production method of carburized steel component and carburized steel component
CN201480071095.4A CN105899697B (zh) 2013-12-27 2014-12-24 渗碳钢部件的制造方法和渗碳钢部件
KR1020167020285A KR101830017B1 (ko) 2013-12-27 2014-12-24 침탄 강 부품의 제조 방법 및 침탄 강 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273309 2013-12-27
JP2013273309 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098106A1 true WO2015098106A1 (ja) 2015-07-02

Family

ID=53478002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006442 WO2015098106A1 (ja) 2013-12-27 2014-12-24 浸炭鋼部品の製造方法及び浸炭鋼部品

Country Status (6)

Country Link
US (1) US10202677B2 (ja)
EP (1) EP3088550B1 (ja)
JP (1) JP6098732B2 (ja)
KR (1) KR101830017B1 (ja)
CN (1) CN105899697B (ja)
WO (1) WO2015098106A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200335A (zh) * 2015-11-07 2015-12-30 李白 风力发电机用风电齿轮
CN105220062A (zh) * 2015-11-07 2016-01-06 李白 一种风力发电机
CN106048438A (zh) * 2016-07-11 2016-10-26 吴旭丹 一种耐腐蚀铜镍合金钢及其在钻进钻杆中的应用
CN106435388A (zh) * 2015-08-12 2017-02-22 现代自动车株式会社 渗碳钢及其制造方法
JP2018053338A (ja) * 2016-09-30 2018-04-05 Jfeスチール株式会社 耐摩耗性に優れた浸炭部品およびその製造方法
JP2018053337A (ja) * 2016-09-30 2018-04-05 Jfeスチール株式会社 耐摩耗性および疲労特性に優れた浸炭部品およびその製造方法
JP2018199838A (ja) * 2017-05-25 2018-12-20 新日鐵住金株式会社 浸炭部品
WO2019142947A1 (ja) * 2018-01-22 2019-07-25 日本製鉄株式会社 浸炭軸受鋼部品、および浸炭軸受鋼部品用棒鋼
JP2019183211A (ja) * 2018-04-05 2019-10-24 日本製鉄株式会社 浸炭部品
JP2021028413A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP2021028412A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7417093B2 (ja) 2020-03-31 2024-01-18 日本製鉄株式会社 鋼材

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705168B1 (ko) * 2015-04-20 2017-02-10 현대자동차주식회사 내구성이 향상된 침탄 합금강 및 이의 제조방법
CN109321837A (zh) * 2017-08-01 2019-02-12 宝钢特钢长材有限公司 用于喷油嘴阀体的渗碳钢及其制备方法
CN110284071A (zh) * 2019-08-02 2019-09-27 宜兴市佳信数控科技有限公司 一种回转窑用超大齿轮及其制备方法
CN112080708B (zh) * 2020-09-11 2021-08-31 马鞍山钢铁股份有限公司 一种高抗疲劳含钒时速400公里高铁车轴用钢及其热处理方法
CN111979492B (zh) * 2020-09-11 2021-08-27 马鞍山钢铁股份有限公司 一种高强韧抗疲劳含钒铌高铁车轴钢及其热处理方法
CN112063926B (zh) * 2020-09-11 2021-08-27 马鞍山钢铁股份有限公司 一种高耐蚀抗疲劳含铌时速400公里高铁车轴用钢及其热处理方法
CN113913685B (zh) * 2021-09-03 2022-05-03 东风商用车有限公司 一种连续炉高温渗碳方法及渗碳Cr-Mo钢零部件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156063A (ja) 1988-12-08 1990-06-15 Mazda Motor Corp 浸炭焼入れ方法
JP2008179848A (ja) * 2007-01-24 2008-08-07 Jfe Bars & Shapes Corp 耐衝撃疲労特性、面疲労強度に優れた歯車用鋼及びそれを用いた歯車
JP2008280610A (ja) 2007-04-09 2008-11-20 Daido Steel Co Ltd 高強度浸炭高周波焼入れ部品
JP2008291298A (ja) * 2007-05-23 2008-12-04 Daido Steel Co Ltd 浸炭用鋼、浸炭部品及び浸炭部品の製造方法
JP2009127095A (ja) * 2007-11-26 2009-06-11 Sumitomo Metal Ind Ltd 動力伝達部品用肌焼鋼
JP2009249684A (ja) * 2008-04-07 2009-10-29 Sumitomo Metal Ind Ltd 肌焼鋼
JP2011184768A (ja) * 2010-03-10 2011-09-22 Kobe Steel Ltd 高強度肌焼き鋼部品およびその製造方法
WO2011114836A1 (ja) * 2010-03-19 2011-09-22 新日本製鐵株式会社 表層硬化処理用鋼及び表層硬化鋼部品とその製造方法
WO2011132722A1 (ja) * 2010-04-19 2011-10-27 新日本製鐵株式会社 焼戻し軟化抵抗性に優れた鋼部品
WO2012077705A1 (ja) 2010-12-08 2012-06-14 新日本製鐵株式会社 面疲労強度に優れたガス浸炭鋼部品、ガス浸炭用鋼材およびガス浸炭鋼部品の製造方法
JP2013204645A (ja) 2012-03-27 2013-10-07 Kobe Steel Ltd 歯面疲労損傷寿命に優れた歯車

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1926317A (en) * 1929-06-03 1933-09-12 Standard Mailing Machines Comp Multicopying device
US1921367A (en) * 1930-01-06 1933-08-08 Edward G Mahin Process of carburizing iron or steel
US4039354A (en) * 1974-08-23 1977-08-02 Borg-Warner Corporation Method of making Belleville springs
US3964737A (en) * 1974-08-23 1976-06-22 Borg-Warner Corporation Belleville spring
JP4971751B2 (ja) * 2006-11-06 2012-07-11 本田技研工業株式会社 高濃度浸炭鋼の製造方法
US20100159235A1 (en) * 2008-12-18 2010-06-24 Scott Alan Johnston Wear component with a carburized case
CN102459678B (zh) * 2009-05-27 2013-09-25 住友金属工业株式会社 渗碳部件及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156063A (ja) 1988-12-08 1990-06-15 Mazda Motor Corp 浸炭焼入れ方法
JP2008179848A (ja) * 2007-01-24 2008-08-07 Jfe Bars & Shapes Corp 耐衝撃疲労特性、面疲労強度に優れた歯車用鋼及びそれを用いた歯車
JP2008280610A (ja) 2007-04-09 2008-11-20 Daido Steel Co Ltd 高強度浸炭高周波焼入れ部品
JP2008291298A (ja) * 2007-05-23 2008-12-04 Daido Steel Co Ltd 浸炭用鋼、浸炭部品及び浸炭部品の製造方法
JP2009127095A (ja) * 2007-11-26 2009-06-11 Sumitomo Metal Ind Ltd 動力伝達部品用肌焼鋼
JP2009249684A (ja) * 2008-04-07 2009-10-29 Sumitomo Metal Ind Ltd 肌焼鋼
JP2011184768A (ja) * 2010-03-10 2011-09-22 Kobe Steel Ltd 高強度肌焼き鋼部品およびその製造方法
WO2011114836A1 (ja) * 2010-03-19 2011-09-22 新日本製鐵株式会社 表層硬化処理用鋼及び表層硬化鋼部品とその製造方法
WO2011132722A1 (ja) * 2010-04-19 2011-10-27 新日本製鐵株式会社 焼戻し軟化抵抗性に優れた鋼部品
WO2012077705A1 (ja) 2010-12-08 2012-06-14 新日本製鐵株式会社 面疲労強度に優れたガス浸炭鋼部品、ガス浸炭用鋼材およびガス浸炭鋼部品の製造方法
JP2013204645A (ja) 2012-03-27 2013-10-07 Kobe Steel Ltd 歯面疲労損傷寿命に優れた歯車

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"IRON AND STEEL", vol. 7, 1 June 1972, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 926
See also references of EP3088550A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435388A (zh) * 2015-08-12 2017-02-22 现代自动车株式会社 渗碳钢及其制造方法
CN105220062A (zh) * 2015-11-07 2016-01-06 李白 一种风力发电机
CN105200335A (zh) * 2015-11-07 2015-12-30 李白 风力发电机用风电齿轮
CN106048438A (zh) * 2016-07-11 2016-10-26 吴旭丹 一种耐腐蚀铜镍合金钢及其在钻进钻杆中的应用
JP2018053338A (ja) * 2016-09-30 2018-04-05 Jfeスチール株式会社 耐摩耗性に優れた浸炭部品およびその製造方法
JP2018053337A (ja) * 2016-09-30 2018-04-05 Jfeスチール株式会社 耐摩耗性および疲労特性に優れた浸炭部品およびその製造方法
JP2018199838A (ja) * 2017-05-25 2018-12-20 新日鐵住金株式会社 浸炭部品
JPWO2019142947A1 (ja) * 2018-01-22 2021-01-28 日本製鉄株式会社 浸炭軸受鋼部品、および浸炭軸受鋼部品用棒鋼
WO2019142947A1 (ja) * 2018-01-22 2019-07-25 日本製鉄株式会社 浸炭軸受鋼部品、および浸炭軸受鋼部品用棒鋼
JP2019183211A (ja) * 2018-04-05 2019-10-24 日本製鉄株式会社 浸炭部品
JP7063070B2 (ja) 2018-04-05 2022-05-09 日本製鉄株式会社 浸炭部品
JP2021028413A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP2021028412A (ja) * 2019-08-09 2021-02-25 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7295417B2 (ja) 2019-08-09 2023-06-21 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7323791B2 (ja) 2019-08-09 2023-08-09 日本製鉄株式会社 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7417093B2 (ja) 2020-03-31 2024-01-18 日本製鉄株式会社 鋼材

Also Published As

Publication number Publication date
JPWO2015098106A1 (ja) 2017-03-23
EP3088550A1 (en) 2016-11-02
CN105899697A (zh) 2016-08-24
JP6098732B2 (ja) 2017-03-22
KR101830017B1 (ko) 2018-02-19
US10202677B2 (en) 2019-02-12
EP3088550A4 (en) 2017-08-02
US20160298224A1 (en) 2016-10-13
CN105899697B (zh) 2017-09-05
EP3088550B1 (en) 2019-10-30
KR20160102546A (ko) 2016-08-30

Similar Documents

Publication Publication Date Title
JP6098732B2 (ja) 浸炭鋼部品の製造方法及び浸炭鋼部品
JP5099276B1 (ja) 面疲労強度に優れたガス浸炭鋼部品、ガス浸炭用鋼材およびガス浸炭鋼部品の製造方法
CN110036129B (zh) 软氮化用钢和部件
JPWO2006118243A1 (ja) 浸炭高周波焼入部品
CN112292471B (zh) 机械部件
KR20150028354A (ko) 연질화용 강 및 연질화 부품 그리고 이들의 제조 방법
WO2016152167A1 (ja) 軟窒化用鋼および部品並びにこれらの製造方法
JP6601358B2 (ja) 浸炭部品およびその製造方法
JP5336972B2 (ja) 窒化用鋼および窒化部品
JP2016188421A (ja) 浸炭部品
JP7436779B2 (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP7263796B2 (ja) 自動車変速機用リングギアおよびその製造方法
WO2020138432A1 (ja) 鋼材
JP5969204B2 (ja) 耐摩耗性と面疲労特性に優れた高周波焼入歯車およびその製造方法
JP2016188422A (ja) 浸炭部品
JP7368697B2 (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP6601359B2 (ja) 耐摩耗性に優れた浸炭部品およびその製造方法
JP6569650B2 (ja) 肌焼鋼
JP2007092107A (ja) 衝撃特性、曲げ疲労特性、面疲労特性に優れた高周波焼入歯車用鋼および歯車の製造方法
JP2023163969A (ja) 棒鋼及び浸炭焼入れ部品
JP2023097583A (ja) 鋼、および、浸炭焼入れ部品
JP2023163968A (ja) 棒鋼及び浸炭焼入れ部品
JP2024034952A (ja) 窒化高周波焼入れ用鋼材及び鋼部品
JP2024034953A (ja) 鋼材及び鋼部品
JP2021161462A (ja) 鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554571

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15102581

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201604393

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2014873478

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873478

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167020285

Country of ref document: KR

Kind code of ref document: A