WO2010064546A1 - 衝突検出装置及び衝突検出方法 - Google Patents

衝突検出装置及び衝突検出方法 Download PDF

Info

Publication number
WO2010064546A1
WO2010064546A1 PCT/JP2009/069699 JP2009069699W WO2010064546A1 WO 2010064546 A1 WO2010064546 A1 WO 2010064546A1 JP 2009069699 W JP2009069699 W JP 2009069699W WO 2010064546 A1 WO2010064546 A1 WO 2010064546A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
chamber
absorber
pressure
vehicle
Prior art date
Application number
PCT/JP2009/069699
Other languages
English (en)
French (fr)
Inventor
高橋 浩幸
宗太郎 成田
田辺 貴敏
Original Assignee
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社デンソー filed Critical トヨタ自動車株式会社
Priority to EP09830313.4A priority Critical patent/EP2383152B1/en
Priority to CN200980147928.XA priority patent/CN102227339B/zh
Priority to US13/132,088 priority patent/US8978486B2/en
Publication of WO2010064546A1 publication Critical patent/WO2010064546A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • B60R19/483Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds with obstacle sensors of electric or electronic type

Definitions

  • the present invention relates to a collision detection apparatus and a collision detection method for detecting a collision with an applied vehicle.
  • the foamed resin since the deformation of the collision detection tube is constrained by the shock absorbing member, there is a concern that the accuracy of collision determination and detection due to the detection of the pressure change of the collision detection tube is lowered. .
  • the foamed resin since the foamed resin has only a strength that does not change the crushing characteristics of the chamber member, it does not substantially function as a buffer member, and substantially all of the collision load is supported by the chamber member. It will be.
  • An object of the present invention is to obtain a collision detection apparatus and a collision detection method capable of accurately detecting a collision based on a pressure change in a pressure chamber in consideration of the above fact.
  • the collision detection device is longitudinal in the vehicle width direction, is provided with a buffer member disposed on the outer side in the vehicle front-rear direction with respect to the bumper skeleton member, and is elongated in the vehicle width direction and the interior thereof.
  • the bumper skeleton member side from the outer side in the vehicle front-rear direction (for example, the front side with respect to the bumper provided at the front of the vehicle and the rear side with respect to the bumper provided at the rear of the vehicle) to the bumper skeleton member side. Detect collisions.
  • the chamber member that can be deformed independently of the buffer member is restrained from being restrained by the buffer member (deformation thereof), and the collision body compresses and deforms the buffer member.
  • the load (reaction force) that the chamber member bears is sufficiently smaller than the load that the buffer member bears.
  • the volume change due to the deformation of the chamber member substantially corresponds to the amount of compressive deformation of the buffer member, that is, the support reaction force (collision load) by the buffer member.
  • the volume change of the chamber member can be detected based on the signal of the pressure detector that detects the pressure in the pressure chamber, so that the detection value that substantially corresponds to the collision load in the collision determination unit.
  • the collision can be accurately determined based on the above.
  • the chamber member that is crushed and deformed with a low load with respect to the buffer member is provided (arranged) so as to be independently deformable with respect to the buffer member, for example, a hollow chamber member and the buffer member are It is sufficient to provide them separately so as to support them in parallel, and the structure is simple.
  • the collision can be accurately detected based on the pressure change in the pressure chamber.
  • the chamber member and the buffer member may be configured such that at least a part thereof is spaced apart in the vehicle vertical direction.
  • the chamber member and the buffer member are spaced apart from each other in the vehicle vertical direction, so that this gap is free from a deformation allowance (relief allowance) during compression in the vehicle front-rear direction. Become. For this reason, the buffer member (deformation) restrains the deformation of the chamber member more effectively. That is, the chamber member and the buffer member are allowed to be effectively and independently deformed.
  • the chamber member and the buffer member may be configured such that at least a part in the vehicle front-rear direction is spaced apart in the vehicle vertical direction over the entire length in the longitudinal direction.
  • a gap is formed between the chamber member and the buffer member over the entire length in the longitudinal direction (vehicle width direction). Escape allowance). For this reason, it is permitted that the chamber member and the buffer member are more effectively independently deformed.
  • the chamber member and the buffer member may have a configuration in which at least a part in the longitudinal direction is separated in the vehicle vertical direction over the entire length in the vehicle front-rear direction.
  • a gap is formed between the chamber member and the buffer member over the entire length in the longitudinal direction of the vehicle in a cross-sectional view perpendicular to the longitudinal direction, and this gap is deformed when compressed in the longitudinal direction of the vehicle. It becomes a fee (escape fee). For this reason, it is permitted that the chamber member and the buffer member are more effectively independently deformed.
  • the buffer member may be arranged on both the upper and lower sides in the vehicle vertical direction with respect to the chamber member and spaced apart in the vehicle vertical direction with respect to the chamber member.
  • the buffer members are arranged on both the upper and lower sides with respect to the chamber member, and a gap is formed between the upper and lower sides of the chamber member with the buffer member.
  • the gap positioned above and below the chamber member becomes a deformation allowance (relief allowance) at the time of compression in the vehicle front-rear direction, and the chamber member and the buffer member are Effectively independent deformation is allowed.
  • the outer end portion of the cushioning member in the vehicle front-rear direction protrudes from the outer end portion of the chamber member in the vehicle front-rear direction at the same position in the vehicle front-rear direction or outward in the vehicle front-rear direction. It is good also as a structure arrange
  • the chamber member since the collision-side end of the buffer member is located at the same position in the vehicle front-rear direction with respect to the collision-side end of the chamber member or protrudes toward the collision side, the chamber member is deformed independently. It is suppressed. For this reason, it is suppressed effectively that a chamber member deform
  • the buffer member may have a configuration in which an inner end in the vehicle front-rear direction is in contact with the bumper skeleton member.
  • the shock-absorbing member on the anti-collision side since the end of the shock-absorbing member on the anti-collision side is in contact with the bumper skeleton member, the shock-absorbing member is deformed from the initial stage of the collision and supports (part of) the collision load, It is effectively suppressed that the member is deformed alone.
  • the buffer member may be made of a material that generates a reaction force corresponding to a volume change due to compression deformation.
  • the buffer member generates a reaction force corresponding to (substantially proportional to) the amount of compressive deformation (the amount of collapse) during the collision.
  • the pressure (volume) change in the pressure chamber substantially corresponds to the amount of compressive deformation of the buffer member. Therefore, the collision determination unit can obtain a detection value corresponding to the collision load with higher accuracy based on the output signal of the pressure detector.
  • the collision determination unit may be configured to detect a collision load based on a signal from the pressure detector and determine a collision based on the collision load.
  • the collision determination unit detects the collision load based on the output signal of the pressure detector, that is, the pressure change in the pressure chamber.
  • the pressure change in the pressure chamber substantially corresponds to the amount of compressive deformation of the buffer member, so that the collision load can be detected with high accuracy.
  • the collision determination unit may detect a collision body that has collided with the bumper skeleton member from the outside in the vehicle front-rear direction based on the collision speed information and the collision load detected based on the pressure change in the pressure chamber. It is also possible to adopt a configuration that can be discriminated.
  • the effective mass can be obtained by dividing the time integral value of the collision load by the collision velocity, and the collision object can be determined based on the effective mass. Further, for example, the collision object can be determined based on the relationship between the time integral value of the collision load and the threshold value set according to the collision speed.
  • the collision load can be detected with high accuracy as described above, and therefore, the collision object discrimination accuracy is high.
  • the chamber member whose inside is a pressure chamber and the buffer member that generates a reaction force according to the volume change due to deformation can be deformed independently of each other. It is arranged in parallel in the vertical direction of the vehicle, and when a collision body collides, a pressure change in the pressure chamber accompanying the deformation of the chamber member is detected while absorbing the shock by the buffer member, and based on the pressure change in the pressure chamber Detect collision load.
  • the chamber member is deformed while mainly supporting the collision load by the buffer member.
  • the buffer member generates a reaction force corresponding to the amount of compressive deformation (the amount of collapse).
  • the volume of the chamber member that supports the collision load while deforming independently of the buffer member is changed substantially corresponding to the amount of compressive deformation of the buffer member as the collision body enters the bumper skeleton member side.
  • the pressure change in the pressure chamber substantially corresponds to the volume change of the buffer member, that is, the collision load, and the collision load (corresponding detection value) can be accurately detected based on the pressure change in the pressure chamber.
  • a method may be used in which the collision speed of the collision body is further detected, and the collision body is determined based on the collision speed and the collision load detected based on the pressure change in the pressure chamber.
  • the effective mass can be obtained by dividing the time integral value of the collision load by the collision speed, and the collision object can be determined based on the effective mass. Further, for example, the collision object can be determined based on the relationship between the time integral value of the collision load and the threshold value set according to the collision speed. As described above, in this collision detection method, the collision load can be detected with high accuracy, and therefore, the collision object discrimination accuracy is high.
  • the collision detection apparatus and the collision detection method according to the present invention have an excellent effect that the collision can be accurately detected based on the pressure change in the pressure chamber.
  • FIG. 1 is a side sectional view showing a schematic overall configuration of a collision object discrimination system according to a first embodiment of the present invention. It is a diagram for demonstrating the discrimination method of the collision body based on the effective mass by the collision body discrimination
  • a collision object discrimination system 10 as a collision detection apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
  • the arrow FR shown in the figure indicates the forward direction (traveling direction) in the longitudinal direction of the vehicle body, and the arrow UP indicates the upward direction in the vertical direction of the vehicle body.
  • FIG. 1 is a schematic side sectional view showing a schematic overall configuration of the collision object discrimination system 10. As shown in this figure, the collision object discrimination system 10 is applied to a front bumper 12 disposed at the front end of an applied automobile, and the collision object to the front bumper 12 is discriminated. This will be specifically described below.
  • the front bumper 12 includes a bumper reinforcement 14 as a bumper skeleton member.
  • the bumper reinforcement 14 is made of, for example, a metal material such as iron or aluminum, and is configured as a skeleton member that is long in the vehicle width direction.
  • the bumper reinforcement 14 is supported by the vehicle body across the front ends of a pair of left and right skeleton members on the vehicle body side (not shown).
  • the front bumper 12 includes a bumper cover 16 that covers the bumper reinforcement 14 from the outside in the vehicle front-rear direction, that is, from the front side.
  • the bumper cover 16 is made of a resin material or the like, and is fixedly supported to the vehicle body at a portion not shown so that a space S is formed between the bumper cover 16 and the bumper reinforcement 14.
  • a chamber member 18 and an absorber 20 as a buffer member are arranged in the space S between the bumper reinforcement 14 and the bumper cover 16 in the front bumper 12.
  • the chamber member 18 is configured as a hollow structure that is long in the vehicle width direction, and is fixedly attached to the upper portion of the front surface 14A of the bumper reinforcement 14. Although illustration is omitted, the positions of both ends of the chamber member 18 in the longitudinal direction substantially coincide with the positions of both ends of the bumper reinforcement 14.
  • the chamber member 18 has a rigidity capable of maintaining its shape (cross-sectional shape shown in FIG. 1) in a state where the chamber member 18 is fixedly attached to the front surface 14A of the bumper reinforcement 14 at the rear end portion 18A.
  • a communication hole communicating with the atmosphere is provided at a position not shown. Therefore, normally (statically), the pressure chamber 24 which is the internal space of the chamber member 18 is configured to be at atmospheric pressure.
  • the chamber member 18 is crushed while receiving a comparatively low compressive load from the front of the vehicle and escaping air from the communication hole, so that the volume of the pressure chamber 24 is reduced.
  • the collision object discrimination system 10 includes a pressure sensor 22 as a pressure detector that outputs a signal corresponding to the pressure in the pressure chamber 24.
  • the pressure sensor 22 is configured to output a signal corresponding to the pressure in the pressure chamber 24 to the ECU 26 described later.
  • the pressure sensor 22 according to this embodiment is configured to output a signal corresponding to the atmospheric pressure in addition to a signal corresponding to the pressure in the pressure chamber 24 to the ECU 26.
  • the ECU 26 determines a collision based on a signal from the pressure sensor 22, that is, a dynamic pressure change accompanying a decrease in the volume of the pressure chamber 22.
  • the absorber 20 is made of, for example, polypropylene foam as a foam material (the physical properties of the material will be described later), and is fixedly attached to the lower front portion of the bumper reinforcement 14 independently of the chamber member 18.
  • the absorber 20 includes an absorber main body 20 ⁇ / b> A positioned below the chamber member 18 in a state of being attached to the bumper reinforcement 14, and a spacer portion 20 ⁇ / b> B positioned in front of the chamber member 18.
  • the rear end portion 20 ⁇ / b> C of the absorber body 20 ⁇ / b> A is fixed (contacted) to the front surface 14 ⁇ / b> A of the bumper reinforcement 14.
  • the absorber body 20A of the absorber 20 is configured to absorb the impact load by deforming (smashing) the absorber body 20A mainly with respect to the impact load from the front.
  • the spacer portion 20 ⁇ / b> B of the absorber 20 is configured to transmit a load mainly to the chamber member 18.
  • the absorber 20 is configured such that the front end 20D of the absorber main body 20A is positioned in front of the vehicle with respect to the front end 18B of the chamber member 18.
  • a gap G is formed between the spacer portion 20B and the chamber member 18 (the front end portion 18B).
  • the front end 20D of the absorber body 20A can be regarded as substantially protruding forward from the front end 18B of the chamber member 18 by the gap G.
  • the absorber 20 is made of a material in which the entry volume V of the collision body I accompanying the collision of the collision body I is substantially proportional to the collision load F.
  • the proportionality constant is ⁇
  • the approach volume is V1
  • the height of the absorber 20 in the vehicle vertical direction is H.
  • the straight line L1 indicates the relationship between the approach amount S and the load F (reaction force) when the colliding body I1 having the width W1 collides, and the straight line L2 has the width W2 (> W1).
  • the relationship between the approach amount S and the load F (reaction force) when the collision object I2 collides is shown. From this figure, it can be seen that when the load F is constant, the approaching amount S is large in the collision body I1 having a relatively small width W, and the approaching amount S is small in the collision body I2 having a relatively large width.
  • FIG. 4 shows the characteristics when a collision body I having a certain width W is collided with respect to a sample in which the expansion ratio is changed.
  • the bumper when a collision from the front to the rear (bumper reinforcement 14) occurs in the front bumper 12, the bumper is interposed via the absorber body 20A of the absorber 20 and the chamber member 18.
  • a load is transmitted to the reinforcement 14. That is, the path through which the load is transmitted to the bumper reinforcement 14 via the absorber body 20A and the path through which the load is transmitted to the bumper reinforcement 14 through the chamber member 18 are arranged in parallel.
  • the load (support reaction force) transmitted to the bumper reinforcement 14 while the chamber member 18 is deformed is set to be sufficiently small (so as to be negligible) with respect to the support reaction force of the absorber 20.
  • a gap C is formed between the upper surface 20E of the absorber body 20A and the lower surface 18C of the chamber member 18 so that the chamber member 18 and the absorber body 20A can be independently deformed. ing.
  • the gap C secures a volume capable of absorbing the downward expansion due to the backward compression of the chamber member 18.
  • the chamber member 18 is a structure deform
  • the gap C extends over the entire length in the vehicle front-rear direction in a side view (perpendicular cross-sectional view in the longitudinal direction).
  • the gap C is formed in the vehicle width direction, that is, over substantially the entire length of the chamber member 18.
  • the collision object discrimination system 10 when a collision object I that is long in the vehicle vertical direction collides with the front bumper 12, the width of the collision object I with respect to the chamber member 18, the amount of approach is the width of the collision object I with respect to the absorber 20, It is designed to match the approach amount. Therefore, in principle, in the collision object discrimination system 10, the volume change ⁇ V of the chamber member 18 due to the collision with the front bumper 12 is substantially proportional (coincidence) with the entry volume V of the collision object I into the absorber 20, that is, the collision load F. In addition, the collision load F is mainly (almost) supported by the absorber 20. Thereby, the collision object discrimination system 10 is configured to be able to obtain the collision load as described later by using the volume change of the chamber member 18.
  • the collision object discrimination system 10 is provided with ECU26 as a collision determination part.
  • the ECU 26 is electrically connected to the pressure sensor 22 and obtains (calculates) a collision load F based on a signal from the pressure sensor 22.
  • the initial volume of the pressure chamber 24 in the chamber member 18 is V0
  • the initial pressure is P0
  • the volume change is ⁇ V
  • the pressure change is ⁇ P
  • P0 ⁇ V0 (P0 + ⁇ P) ⁇ (V0 ⁇ V)
  • the initial volume V0 is stored (set) in advance, and the initial pressure P0 is stored in advance as the standard atmospheric pressure.
  • the ECU 26 calculates V0 ⁇ ⁇ P / (P0 + ⁇ P) proportional to the collision load F based on a signal from the pressure sensor 22, that is, a pressure change ⁇ P of the pressure chamber 24.
  • F ⁇ ⁇ V0 ⁇ ⁇ P / (P0 + ⁇ P) (1)
  • the ECU 26 is configured to use a value corrected as follows as the pressure change ⁇ P in the pressure chamber 24.
  • the measurement atmospheric pressure obtained based on the signal from the pressure sensor 22 is P0s
  • the measurement pressure obtained based on the signal from the pressure sensor 22 is Ps.
  • ⁇ P (Ps ⁇ P0s) ⁇ (P0 / P0s)
  • the ECU 26 is electrically connected to a collision speed sensor 28 that outputs a signal corresponding to the collision speed with the collision object I.
  • the collision speed sensor 28 can be configured using a vehicle speed sensor, for example. Further, the output of the collision speed sensor 28 may be obtained by time-differentiating the output of a distance sensor such as a millimeter wave radar.
  • the ECU 26 obtains the effective mass m of the collision object I from the time integral value of the collision load F (t) and the collision speed v.
  • m ⁇ v ⁇ F (t) dt
  • m ⁇ F (t) dt / v (2)
  • the effective mass m of the collision body I is obtained.
  • the ECU 26 discriminates the collision object I based on the effective mass m. Specifically, the ECU 26 determines that the collision object I is a pedestrian when the effective mass m obtained as described above exceeds a threshold value T. Thereby, in the collision object discrimination system 10, it is the structure which can discriminate
  • the ECU 26 determines that the collision object I is a pedestrian, it corresponds to the collision object I being a pedestrian for a pedestrian safety ECU for controlling a pedestrian safety device, for example.
  • a signal to output is output.
  • the ECU 26 can also serve as a pedestrian safety ECU.
  • the collision object discrimination system 10 configured as described above, when the collision object I collides with any part of the front bumper 12 in the vehicle width direction from the front, a collision load acts backward on the collision part. Then, the absorber 20 is compressed and deformed by an amount corresponding to the collision load while supporting the collision load (producing a reaction force). On the other hand, the chamber member 18 is compressed with almost no reaction force, and the volume of the pressure chamber 24 is reduced by an amount substantially corresponding to the amount of compressive deformation of the absorber 20.
  • the ECU 26 receives a signal from the pressure sensor 22 accompanying the volume change of the pressure chamber 24. That is, a signal corresponding to the pressure in the pressure chamber 24 and a signal corresponding to the atmospheric pressure are input to the ECU 26, and a signal corresponding to the collision speed is input from the collision speed sensor 28.
  • the ECU 26 time-integrates the collision load F obtained by the above equation (1) as in the equation (2) and divides it by the collision velocity v to obtain the effective mass m. Then, the ECU 26 repeats the determination of whether or not the effective mass m exceeds the threshold T during the collision period. When the effective mass m exceeds the threshold T, the ECU 26 determines that the collision object I is a pedestrian. To do.
  • FIG. 2A a time change of a typical effective mass m when a pedestrian collides is shown by a solid line, and a time change of a typical effective mass m when a roadside marker pole collides is indicated by a broken line. Is shown.
  • FIG. 2B a typical pressure waveform (output signal of the pressure sensor 22) when a pedestrian collides is shown by a solid line, and a typical pressure waveform when a roadside marker pole collides is shown. The time change is indicated by a broken line. As shown in FIG.
  • the pedestrian and the roadside marker pole have a difference in pressure peak, although there is a difference in pressure duration. For this reason, it may be difficult to set the threshold effectively with the peak value of the pressure waveform (by setting the threshold low to reliably detect pedestrians, the roadside marker pole is erroneously identified as a pedestrian. May be detected).
  • a threshold is set for the effective mass m in which a large difference occurs between the pedestrian and the roadside marker pole (the margin is large).
  • the marker pole can be determined stably.
  • the front bumper 12 automobile
  • the front bumper 12 is relatively displaced in a direction away from the roadside marker pole by a reaction force after the collision. Therefore, as shown in FIG. Shorter.
  • the waveform of the effective mass m based on the time integral value of the collision load F pressure increase in the pressure chamber 24
  • the chamber member 18 and the absorber 20 are arranged so as to be able to displace independently, so that the absorber 20 supports (absorbs) the collision load.
  • the chamber member 18 can be deformed without being restrained by the deformation of the absorber 20.
  • the volume change ⁇ V of the chamber member 18 is proportional (substantially coincident) with the entry volume V of the collision object I into the absorber 20 in principle as described above.
  • the absorber 20 is made of a material that generates a support reaction force (collision load F) according to the entry volume V of the collision object I. Therefore, the volume change ⁇ V (pressure) of the chamber member 18
  • the collision load F can be accurately detected based on the signal of the sensor 22. Therefore, in the collision object discrimination system 10, the ECU 26 obtains the effective mass m based on the time integral value of the collision load F, and accurately determines the collision object I according to whether or not the effective mass m exceeds the threshold value T. can do.
  • the collision object discrimination system 10 since a gap C is formed between the lower surface of the chamber member 18 and the upper surface of the absorber 20, a deformation (escape) allowance associated with the compression of the chamber member 18 in the front-rear direction is ensured. Is done. Moreover, in the collision object discrimination system 10, the clearance C is provided over substantially the entire lower surface of the chamber member 18, so that a sufficient clearance for the chamber member 18 is ensured. For this reason, the absorber 20 is effectively suppressed from restraining the deformation of the chamber member 18. That is, the structure in which the chamber member 18 is deformed independently with respect to the absorber 20 can be realized with a simple structure.
  • the absorber body 20A of the absorber 20 protrudes forward from the chamber member 18 (in this embodiment, a gap G is set between the spacer portion 20B and the chamber member 18). ) And the rear end portion 20C of the absorber main body 20A are fixed (contacted) to the front surface 14A of the bumper reinforcement 14. This prevents the chamber member 18 from being compressed and deformed alone. For this reason, in this collision object discriminating system 10, for example, in the case of a light collision, the chamber member 18 is prevented from being greatly deformed, which contributes to prevention of erroneous detection.
  • the manufacturing process is compared with, for example, a configuration in which a chamber is formed inside the buffer member. Can be simplified.
  • the manufacturing process can be further simplified.
  • the chamber member 18 constituting the collision object discrimination system 10 communicates with the atmosphere via the communication hole, in other words, it is not necessary to fill with a filler such as an incompressible fluid. Manufacture is easy compared with what is filled with such a filler.
  • FIG. 5 is a schematic side sectional view showing a collision object discrimination system 30 as a collision detection apparatus according to the second embodiment of the present invention.
  • the collision object determination system 30 is different from the collision object determination system 10 according to the first embodiment in that an absorber 32 as a buffer member is provided instead of the absorber 20.
  • the absorber 32 is configured such that the spacer portion 20B is removed from the absorber 20.
  • the absorber 32 has a rear end portion 32 ⁇ / b> A fixed (contacted) with the front surface 14 ⁇ / b> A of the bumper reinforcement 14, and a front end portion 32 ⁇ / b> B protruding forward in the vehicle front-rear direction with respect to the front end portion 18 ⁇ / b> B of the chamber member 18.
  • Other configurations of the collision object discrimination system 30 are the same as the corresponding configurations of the collision object discrimination system 10.
  • the collision object discrimination system 30 according to the second embodiment can obtain the same effect by the basically same operation as the collision object discrimination system 10 according to the first embodiment.
  • FIG. 6 is a schematic side sectional view showing a collision object discrimination system 40 as a collision detection device according to a third embodiment of the present invention.
  • the collision object discrimination system 40 includes an absorber 42 as a buffer member instead of the absorber 20 and the arrangement of the chamber member 18, and the collision object discrimination system 10 according to the first embodiment. Is different.
  • the rear end 18A of the chamber member 18 is fixedly attached to the lower part of the front surface 14A of the bumper reinforcement 14.
  • the absorber 42 is formed in a shape similar to the absorber 32, and is disposed above the chamber member 18 with a gap C therebetween.
  • the absorber 42 has a rear end portion 42 ⁇ / b> A fixed (contacted) to the front surface 14 ⁇ / b> A of the bumper reinforcement 14, and a front end portion 42 ⁇ / b> B of the absorber 42 substantially coincides with the front end portion 18 ⁇ / b> B of the chamber member 18. . That is, the length of the absorber 42 in the vehicle front-rear direction is substantially the same as the length of the chamber member 18 in the vehicle front-rear direction.
  • Other configurations of the collision object discrimination system 40 are the same as the corresponding configurations of the collision object discrimination system 10.
  • the collision object discrimination system 40 according to the third embodiment can obtain the same effect by the basically same operation as the collision object discrimination system 10 according to the first embodiment.
  • the position of the front end portion 42B of the absorber 42 in the vehicle front-rear direction substantially coincides with the position of the front end portion 18B of the chamber member 18 in the vehicle front-rear direction. It is not limited. Therefore, for example, a configuration in which the absorber 20 is inverted upside down or the absorber 32 instead of the absorber 42 may be arranged on the upper side of the chamber member 18. Moreover, it is good also as a structure which replaces with the absorber 32 of 2nd Embodiment, and provides the absorber 42.
  • FIG. 7 is a schematic side sectional view showing a collision object discrimination system 50 as a collision detection apparatus according to a fourth embodiment of the present invention.
  • the collision object discrimination system 50 includes an absorber 52 as a buffer member instead of the absorber 20 and the arrangement of the chamber member 18, and the collision object discrimination system 10 according to the first embodiment. Is different.
  • the rear end 18A of the chamber member 18 is fixedly attached to a substantially middle portion in the vertical direction on the front surface 14A of the bumper reinforcement 14.
  • the absorber 52 includes a pair of upper and lower absorber bodies 52A and a spacer portion 52B that connects the front end portions of the absorber bodies 52A.
  • the absorber 52 is in a posture in which the chamber member 18 is positioned between the upper and lower absorber bodies 52A, and the rear end portion 52C of the absorber body 52A is fixed (contacted) to the front surface 14A of the bumper reinforcement 14.
  • a gap C is formed between the upper and lower absorber bodies 52A and the chamber member 18, and a gap G is formed between the spacer portion 52B and the front end portion 18B of the chamber member 18.
  • Other configurations of the collision object discrimination system 50 are the same as the corresponding configurations of the collision object discrimination system 10.
  • the collision object discrimination system 50 according to the fourth embodiment can obtain the same effect by the basically same operation as the collision object discrimination system 10 according to the first embodiment.
  • the absorber 52 may be configured by a pair of upper and lower absorber bodies 52A, for example.
  • the absorber body 52 ⁇ / b> A may be configured to protrude forward from the front end portion 18 ⁇ / b> B of the chamber member 18 like the absorber 32.
  • the front end portion 18B of the chamber member 18 and the position in the vehicle front-rear direction may be substantially the same as the absorber 42. Further, the position of the front end may be made different between the upper and lower absorber bodies 52A.
  • FIG. 8 is a schematic side sectional view showing a collision object discrimination system 60 as a collision detection apparatus according to a fifth embodiment of the present invention.
  • the collision object discrimination system 60 includes an absorber 62 as a buffer member instead of the absorber 20 and the arrangement of the chamber member 18, and the collision object discrimination system 10 according to the first embodiment. Is different.
  • the absorber 62 is mainly composed of an absorber main body 62A having a shape similar to the absorber 32 and a spacer portion 62B erected from the rear end of the absorber main body 62A.
  • the absorber 62 is fixed (contacted) to the front surface 14A of the bumper reinforcement 14 at the rear end portion 62C of the absorber main body 62A and the spacer portion 62B.
  • the chamber member 18 is fixed to the front end 62D of the spacer 62B of the absorber 62. In this state, a gap C is formed between the chamber member 18 and the absorber main body 62A. Further, the front end 62E of the absorber main body 62A protrudes forward in the vehicle front-rear direction from the front end 18B of the chamber member 18.
  • Other configurations of the collision object discrimination system 60 are the same as the corresponding configurations of the collision object discrimination system 10.
  • the collision object discrimination system 60 according to the fifth embodiment can obtain the same effect by the basically same operation as that of the collision object discrimination system 10 according to the first embodiment.
  • the front end 62E of the absorber body 62A protrudes forward in the vehicle front-rear direction from the front end portion 18B of the chamber member 18 is shown, but the present invention is not limited to this. Therefore, for example, the front and rear direction positions of the front end 62E of the absorber 62 and the front end 18B of the chamber member 18 may be substantially matched.
  • FIG. 9 is a schematic side sectional view showing a collision object discrimination system 70 as a collision detection device according to a sixth embodiment of the present invention.
  • the collision object discrimination system 70 includes an absorber 72 as a buffer member instead of the absorber 20 and the arrangement of the chamber member 18, and the collision object discrimination system 10 according to the first embodiment. Is different.
  • the absorber 72 includes a pair of upper and lower absorber bodies 72A and a spacer portion 72B that connects the rear end portions of the absorber bodies 72A as main parts.
  • the absorber 72 is fixed (contacted) to the front surface 14A of the bumper reinforcement 14 at the rear end portion 72C of the absorber main body 72A and the spacer portion 72B.
  • the chamber member 18 is fixed to the front end portion 72D of the spacer portion 72B between the pair of absorber main bodies 72A of the absorber 72. In this state, a gap C is formed between the upper and lower absorber bodies 72A and the chamber member 18. Further, the front end 62E of each absorber body 62A protrudes forward in the vehicle front-rear direction from the front end portion 18B of the chamber member 18, respectively.
  • Other configurations of the collision object discrimination system 70 are the same as the corresponding configurations of the collision object discrimination system 10.
  • the collision object discrimination system 70 according to the sixth embodiment can obtain the same effect by basically the same operation as the collision object discrimination system 10 according to the first embodiment.
  • each front end 72E of the upper and lower absorber bodies 72A protrudes forward in the vehicle front-rear direction from the front end 18B of the chamber member 18, but the present invention is not limited to this.
  • the vehicle front-rear direction position may be substantially the same between at least one of the front end portions 72E of the upper and lower absorber bodies 72A and the front end portion 18B of the chamber member 18.
  • FIG. 10 is a schematic side sectional view showing a collision object discrimination system 80 as a collision detection device according to a seventh embodiment of the present invention.
  • the collision object determination system 80 is different from the collision object determination system 10 according to the first embodiment in that it includes a chamber member 82 instead of the chamber member 18.
  • the chamber member 82 is fixedly attached to the front surface 14A of the bumper reinforcement 14 at the rear end portion 82A, and a gap G is set between the front end portion 82B and the spacer portion 20B. Common.
  • the chamber member 82 is different from the chamber member 18 in that the lower wall 82C has a concave shape that opens downward and the upper wall 82D has a concave shape that opens upward in a side sectional view.
  • the chamber member 82 is placed on the absorber body 20A of the absorber 20. That is, the chamber member 82 is in contact with the upper surface of the absorber body 20A so as to be slidable with low friction at the front and rear ends of the lower wall 82C.
  • the chamber member 82 receives a load in the front-rear direction due to the above shape, the chamber member 82 is compressed back and forth and the volume of the pressure chamber 24 changes while increasing the bending angle of the lower wall 82C and the upper wall 82D. . Therefore, the chamber member 82 is configured to be deformable (not restricted by the absorber 20) independently of the absorber 20 in the configuration arranged in contact with the absorber 20.
  • the shape of the chamber member 18 can be regarded as a bellows shape.
  • the chamber member 82 may be formed in a bellows shape in which the lower wall 82C and the upper wall 82D each have a plurality of irregularities.
  • Other configurations of the collision object discrimination system 80 are the same as the corresponding configurations of the collision object discrimination system 10.
  • the collision object discrimination system 80 according to the seventh embodiment can obtain the same effect by the basically same action as the collision object discrimination system 10 according to the first embodiment. Further, in the collision object discrimination system 80, since the chamber member 82 is configured to contact the absorber 20 so as to be slidable with low friction, the chamber member 82 is configured to have a lower rigidity than the chamber member 18 and required for compression deformation. It is also possible to further reduce the load (reaction force).
  • the present invention is not limited to this, and for example, any one of the absorbers 32, 42, 52, 62, 72 and the chamber. It is good also as a structure which combined the member 82.
  • FIG. 1 A block diagram illustrating an example in which the chamber member 82 is combined with the absorber 20.
  • the present invention is not limited to this.
  • a configuration in which a part in the (width) direction is in contact with the absorber 20 may be adopted.
  • the present invention is not limited to this. Therefore, for example, by comparing the time integral value of the collision load F (t) with a threshold value that is set according to the collision speed v (different for each collision speed v), it is determined whether the collision object I is a pedestrian or a roadside pole. It is good also as a structure (method) which discriminate
  • the present invention is not limited to the configuration in which the collision object I is determined based on the time integral value or effective mass m of the collision load F (t) alone, for example, the time integral value or effective mass m of the collision load F (t). And the pressure waveform (collision load F) may be used together to determine the collision object I.

Abstract

 圧力チャンバの圧力変化に基づいて衝突を精度良く検出することができる衝突検出装置、衝突検出方法を得る。  衝突体判別システム(10)は、車幅方向に長手とされると共に内部が圧力チャンバ(24)とされると共にバンパリインフォースメント(14)の前側に配置されたチャンバ部材(18)と、車幅方向に長手とされると共にバンパリインフォースメント(14)の前側に配置されたアブソーバ(20)と、圧力チャンバ(24)の圧力変化に応じた信号を出力する圧力センサ(22)と、圧力センサ22からの信号に基づいて衝突体を判別するECU(26)とを備えている。チャンバ部材(18)とアブソーバ(20)は、隙間Cを挟んで上下に配置されることで、衝突体の衝突時に独立して変形可能な構成とされている。

Description

衝突検出装置及び衝突検出方法
 本発明は、適用された車両への衝突を検出するための衝突検出装置及び衝突検出方法に関する。
 フロントバンパ内に硬質衝撃吸収材と軟質衝撃吸収材とを介挿し、これら硬質衝撃吸収材と軟質衝撃吸収材との間に非圧縮性流体が充填された衝突検知チューブを挿入配置した車両衝突判別装置が知られている(例えば、特開平11-310095号公報(図13~図15)参照)。また、チャンバ部材の長手方向位置に応じた変形量を調整するために、チャンバ部材を車両前後方向に貫通した複数の貫通孔を該チャンバ部材に設け、該貫通孔に発泡樹脂を充填した衝突検知手段が知られている(例えば、特開2007-290689号公報(図17、段落0103)参照)。
 しかしながら、上記した前者の技術では、衝突検知チューブの変形が衝撃吸収部材によって拘束される構成であるため、衝突検知チューブの圧力変化の検出による衝突判別、検知の精度が低下することが懸念される。一方、上記した後者の技術では、発泡樹脂はチャンバ部材に潰れ特性を変化させない程度の強度しか持たないので、実質的に緩衝部材として機能せず、衝突荷重のほぼ全てをチャンバ部材にて支持することとなる。
 本発明は、上記事実を考慮して、圧力チャンバの圧力変化に基づいて衝突を精度良く検出することができる衝突検出装置、衝突検出方法を得ることが目的である。
 本発明の第1の態様に係る衝突検出装置は、車幅方向に長手とされ、バンパ骨格部材に対する車両前後方向の外側に配置された緩衝部材と、車幅方向に長手とされると共に内部が圧力チャンバとされ、前記バンパ骨格部材に対する前記緩衝部材側と同じ側に設けられ、車両前後方向の外側からの荷重入力によって、前記緩衝部材とは独立してかつ該緩衝部材よりも小さい荷重で、前記圧力チャンバの体積が減じられるように潰れ変形されるチャンバ部材と、前記圧力チャンバの圧力変化に応じた信号を出力する圧力検出器と、前記圧力検出器からの信号に基づいて、車両前後方向の外側から前記バンパ骨格部材側への衝突を検知する衝突判定部と、を備えている。
 上記態様の衝突検出装置では、車両前後方向の外側(例えば、車両前部に設けられたバンパに対しては前側、車両後部に設けられたバンパに対しては後側)からバンパ骨格部材側への衝突を検出する。このような衝突が生じた場合、緩衝部材に対し独立して変形可能であるチャンバ部材は、緩衝部材(の変形)による拘束を受けることを抑制されつつ、該衝突体が緩衝部材を圧縮変形させてバンパ骨格部材側に進入する量に応じて、潰れ変形される。また、この際、チャンバ部材が受け持つ荷重(反力)は、緩衝部材が受け持つ荷重に対し十分に小さい。これらにより、本衝突検出装置では、チャンバ部材の変形による体積変化が、緩衝部材の圧縮変形量すなわち緩衝部材による支持反力(衝突荷重)に略対応する。
 そして、本衝突検出装置では、圧力チャンバ内の圧力を検出する圧力検出器の信号に基づいてチャンバ部材の体積変化を検出することができるので、衝突判定部にて衝突荷重に略対応する検出値に基づいて衝突を精度良く判定することができる。また、緩衝部材に対し低荷重で潰れ変形するチャンバ部材を、該緩衝部材に対し独立して変形可能に設ける(配置する)構成であるため、例えば中空のチャンバ部材と緩衝部材とを、衝突荷重を並列支持するように別個に設ければ足り、構造が簡単である。
 このように、上記態様の衝突検出装置では、圧力チャンバの圧力変化に基づいて衝突を精度良く検出することができる。
 上記態様において、前記チャンバ部材と前記緩衝部材とは、少なくとも一部が車両上下方向に離間して配置されている、構成としても良い。
 上記態様の衝突検出装置では、チャンバ部材と緩衝部材とは少なくとも一部が車両上下方向に離間して配置されているので、この隙間が車両前後方向への圧縮時の変形代(逃がし代)となる。このため、緩衝部材(の変形)がチャンバ部材の変形を拘束することが一層効果的に抑制される。すなわち、チャンバ部材と緩衝部材とは実効的に独立して変形することが許容される。
 上記態様において、前記チャンバ部材と前記緩衝部材とは、車両前後方向の少なくとも一部が長手方向の全長に亘って車両上下方向に離間して配置されている、構成としても良い。
 上記態様の衝突検出装置では、チャンバ部材と緩衝部材との間に長手方向(車幅方向)の全長に亘る隙間が形成されているので、この隙間が車両前後方向への圧縮時の変形代(逃がし代)となる。このため、チャンバ部材と緩衝部材とは一層実効的に独立して変形することが許容される。
 上記態様において、前記チャンバ部材と前記緩衝部材とは、長手方向の少なくとも一部が車両前後方向の全長に亘って車両上下方向に離間されている、構成としても良い。
 上記態様の衝突検出装置では、チャンバ部材と緩衝部材との間に長手方向直角断面視で車両前後方向の全長に亘る隙間が形成されているので、この隙間が車両前後方向への圧縮時の変形代(逃がし代)となる。このため、チャンバ部材と緩衝部材とは一層実効的に独立して変形することが許容される。
 上記態様において、前記緩衝部材は、前記チャンバ部材に対し車両上下方向の上側及び下側の双方に、それぞれ前記チャンバ部材に対し車両上下方向に離間して配置されている、構成としても良い。
 上記態様の衝突検出装置では、チャンバ部材に対する上下両側に緩衝部材(の部分)が配置されており、チャンバ部材の上下両側には緩衝部材との間に隙間が形成されている。このため、チャンバ部材の上下に緩衝部材が位置する構成において、該チャンバ部材の上下に位置する隙間が車両前後方向への圧縮時の変形代(逃がし代)となり、これらチャンバ部材と緩衝部材とが実効的に独立して変形することが許容される。
 上記態様において、前記緩衝部材における車両前後方向の外側の端部は、前記チャンバ部材における車両前後方向の外側の端部に対し、車両前後方向の同じ位置か、又は車両前後方向の外側に突出した位置に配置されている、構成としても良い。
 上記態様の衝突検出装置では、緩衝部材における衝突側の端部がチャンバ部材における衝突側の端部に対し車両前後方向の同じ位置か衝突側に突出して位置するので、チャンバ部材が単独で変形することが抑制される。このため、例えば軽度の衝突の際にチャンバ部材が過度に変形されることが効果的に抑制される。
 上記態様において、前記緩衝部材は、車両前後方向の内側の端部が前記バンパ骨格部材に接触されている、構成としても良い。
 上記態様の衝突検出装置では、緩衝部材の反衝突側の端部がバンパ骨格部材に接触しているので、衝突の初期から緩衝部材は変形しつつ衝突荷重(の一部)を支持し、チャンバ部材が単独で変形することが効果的に抑制される。
 上記態様において、前記緩衝部材は、圧縮変形による体積変化に応じた反力を生じる材料にて構成されている、構成としても良い。
 上記態様の衝突検出装置では、緩衝部材は衝突の際にその圧縮変形量(潰れ量)に応じた(略比例した)反力を生じる。一方、上記した通り、圧力チャンバの圧力(体積)変化は、緩衝部材の圧縮変形量に略対応する。したがって、衝突判定部は、圧力検出器の出力信号に基づいて、衝突荷重に応じた検出値を一層精度良く得ることができる。
 上記態様において、前記衝突判定部は、前記圧力検出器からの信号に基づいて衝突荷重を検出し、該衝突荷重に基づいて衝突を判定するようになっている、構成としても良い。
 上記態様の衝突検出装置では、衝突判定部は、圧力検出器の出力信号すなわち圧力チャンバの圧力変化に基づいて、衝突荷重を検出する。本衝突検出装置では、上記の通り圧力チャンバの圧力変化は緩衝部材の圧縮変形量に略対応するので、衝突荷重を精度良く検出することができる。
 上記態様において、前記衝突判定部は、衝突速度情報と、前記圧力チャンバの圧力変化に基づいて検出した衝突荷重とに基づいて、車両前後方向の外側から前記バンパ骨格部材側に衝突した衝突体を判別するようになっている、構成としても良い。
 上記態様の衝突検出装置では、例えば、衝突荷重の時間積分値を衝突速度で除して有効質量を求め、この有効質量に基づいて衝突体を判別することができる。また例えば、衝突荷重の時間積分値と衝突速度に応じて設定された閾値との関係で、衝突体を判別することができる。本衝突検出装置では、上記の通り衝突荷重を精度良く検出することができるので、衝突体の判別精度が高い。
 本発明の第2の態様に係る衝突検出方法は、内部が圧力チャンバとされたチャンバ部材と、変形による体積変化に応じた反力を生じる緩衝部材とを、互いに独立して変形し得るように車両上下方向に並列して配置し、衝突体の衝突によって、前記緩衝部材により衝撃を吸収しながら前記チャンバ部材の変形に伴う圧力チャンバの圧力変化を検出し、前記圧力チャンバの圧力変化に基づいて衝突荷重を検出する。
 上記態様の衝突検出方法では、緩衝部材にて衝突荷重を主に支持しながらチャンバ部材を変形させる。この際、緩衝部材は、その圧縮変形量(潰れ量)に応じた反力を生じる。一方、この緩衝部材と独立に変形しつつ衝突荷重を支持するチャンバ部材は、衝突体のバンパ骨格部材側への進入に伴って、緩衝部材の圧縮変形量に略対応して体積変化される。このため、圧力チャンバの圧力変化は、緩衝部材の体積変化すなわち衝突荷重に略対応し、圧力チャンバの圧力変化に基づいて、衝突荷重(に対応する検出値)を精度良く検出することができる。
 上記態様において、衝突体の衝突速度をさらに検出し、前記衝突速度と、前記圧力チャンバの圧力変化に基づいて検出した衝突荷重とに基づいて、衝突体を判別する、方法としても良い。
 上記態様の衝突検出方法では、例えば、衝突荷重の時間積分値を衝突速度で除して有効質量を求め、この有効質量に基づいて衝突体を判別することができる。また例えば、衝突荷重の時間積分値と衝突速度に応じて設定された閾値との関係で、衝突体を判別することができる。上記の通り本衝突検出方法では、衝突荷重を精度良く検出することができるので、衝突体の判別精度が高い。
 以上説明したように本発明に係る衝突検出装置、衝突検出方法は、圧力チャンバの圧力変化に基づいて衝突を精度良く検出することができるという優れた効果を有する。
本発明の第1の実施形態に係る衝突体判別システムの概略全体構成を示す側断面図である。 本発明の第1の実施形態に係る衝突体判別システムによる有効質量に基づく衝突体の判別方法を説明するための線図である。 比較例に係るチャンバ圧力に基づく衝突体の判別方法を説明するための線図である。 本発明の第1の実施形態に係る衝突体判別システムを構成するアブソーバの特性を説明するための、衝突体の衝突による変形を模式的に示す図である。 本発明の第1の実施形態に係る衝突体判別システムを構成するアブソーバの特性を説明するための、衝突体の進入量と荷重との関係を概念的に示す線図である。 本発明の第1の実施形態に係る衝突体判別システムを構成するアブソーバの潰れ量と反力との関係の一例を示す線図である。 本発明の第2の実施形態に係る衝突体判別システムの要部を示す側断面図である。 本発明の第3の実施形態に係る衝突体判別システムの要部を示す側断面図である。 本発明の第4の実施形態に係る衝突体判別システムの要部を示す側断面図である。 本発明の第5の実施形態に係る衝突体判別システムの要部を示す側断面図である。 本発明の第6の実施形態に係る衝突体判別システムの要部を示す側断面図である。 本発明の第7の実施形態に係る衝突体判別システムの要部を示す側断面図である。
 本発明の第1の実施形態に係る衝突検出装置としての衝突体判別システム10について、図1~図4に基づいて説明する。なお、図中に記す矢印FRは車体前後方向の前方向(進行方向)を、矢印UPは車体上下方向の上方向をそれぞれ示すものとする。
 図1には、衝突体判別システム10の概略全体構成が模式的な側断面図にて示されている。この図に示される如く、衝突体判別システム10は、適用された自動車の前端に配置されたフロントバンパ12に適用されており、該フロントバンパ12への衝突体を判別するようになっている。以下、具体的に説明する。
 フロントバンパ12は、バンパ骨格部材としてのバンパリインフォースメント14を備えている。バンパリインフォースメント14は、例えば鉄系やアルミ系等の金属材料より成り、車幅方向に長手の骨格部材として構成されている。このバンパリインフォースメント14は、図示しない車体側の左右一対の骨格部材における前端間を架け渡して車体に対し支持されている。
 また、フロントバンパ12は、バンパリインフォースメント14を車両前後方向の外側すなわち前側から覆うバンパカバー16を備えている。バンパカバー16は、樹脂材等にて構成され、バンパリインフォースメント14との間に空間Sが形成されるように、図示しない部分で車体に対し固定的に支持されている。
 そして、フロントバンパ12におけるバンパリインフォースメント14とバンパカバー16との間の空間S内には、チャンバ部材18と緩衝部材としてのアブソーバ20とが配置されている。チャンバ部材18は、車幅方向に長手の中空構造体として構成されており、バンパリインフォースメント14の前面14Aの上部に固定的に取り付けられている。図示は省略するが、チャンバ部材18は、その長手方向両端の位置がバンパリインフォースメント14の両端の位置と略一致されている。
 また、チャンバ部材18は、その後端部18Aにおいてバンパリインフォースメント14の前面14Aに固定的に取り付けられた状態で、その形状(図1に示す断面形状)を維持可能な剛性を有しており、図示しない位置に大気と連通された連通孔を有する。したがって、通常(静的には)、チャンバ部材18の内部空間である圧力チャンバ24内は、大気圧とされる構成である。このチャンバ部材18は、車両前方から比較的低い圧縮荷重を受けて上記連通孔から空気を逃がしながら潰れ、圧力チャンバ24の体積が減じられるようになっている。
 さらに、衝突体判別システム10は、圧力チャンバ24の圧力に応じた信号を出力する圧力検出器としての圧力センサ22を備えている。圧力センサ22は、圧力チャンバ24内の圧力に応じた信号を後述するECU26に出力する構成とされている。また、この実施形態に係る圧力センサ22は、圧力チャンバ24内の圧力に応じた信号の他に、大気圧に応じた信号をECU26出力する構成とされている。ECU26は、圧力センサ22からに信号すなわち圧力チャンバ22の体積減少に伴う動的な圧力変化に基づいて、衝突を判定するようになっている。
 アブソーバ20は、例えば発泡材としてのポリプロピレンフォーム等より成り(材料の物性については後述する)、チャンバ部材18とは独立してバンパリインフォースメント14の前面下部に固定的に取り付けられている。具体的には、アブソーバ20は、バンパリインフォースメント14への取り付け状態でチャンバ部材18の下方に位置するアブソーバ本体20Aと、チャンバ部材18の前方に位置するスペーサ部20Bとを有する。アブソーバ20は、アブソーバ本体20Aの後端部20Cがバンパリインフォースメント14の前面14Aに固定(接触)されている。
 これにより、アブソーバ20のアブソーバ本体20Aは、前方からの衝撃的な荷重に対し主にアブソーバ本体20Aが変形して(潰されて)衝撃荷重を吸収する構成とされている。一方、アブソーバ20のスペーサ部20Bは、主にチャンバ部材18に荷重を伝達する構成とされている。このアブソーバ20は、アブソーバ本体20Aの前端部20Dがチャンバ部材18の前端部18Bよりも車両前方に位置する構成とされている。この実施形態では、スペーサ部20Bとチャンバ部材18(の前端部18B)との間には隙間Gが形成されている。このため、アブソーバ本体20Aの前端部20Dは、実質的には隙間Gの間隔分だけチャンバ部材18の前端部18Bよりも前方に突出しているものと捉えることができる。
 アブソーバ20は、衝突体Iの衝突に伴う該衝突体Iの進入体積Vが衝突荷重Fに略比例する材料にて構成されている。例えば、図3Aに示される如く、荷重F1で車幅方向の幅がW1の衝突体I1が衝突した場合のアブソーバ20への衝突体I1の進入量(深さ)をS1とすると、比例定数をα、進入体積をV1、アブソーバ20の車両上下方向における高さをHとして、
     F1=α×W1×H×S1=α×V1
となる。
 同様に荷重F2で車幅方向の幅が幅W2の衝突体I2が衝突した場合のアブソーバ20への衝突体I2の進入量をS2とすると、比例定数をα、進入体積をV2として、
     F2=α×W2×H×S2=α×V2
となる。
 したがって、反力-進入量の特性が図4に示す如くほぼ比例関係にある材料にてアブソーバ20が構成されている場合、図3Bに概念的に示される如く、該アブソーバ20では、衝突体Iの幅に依らず、荷重と体積変化とが比例する(αが一定となる)こととなる。すなわち、衝突体判別システム10を構成するアブソーバ20では、
     F1/F2=V1/V2
の関係が成り立つ。
 図3Bについて補足すると、直線L1は、幅W1の衝突体I1が衝突した場合の進入量Sと荷重F(反力)との関係を示しており、直線L2は、幅W2(>W1)の衝突体I2が衝突した場合の進入量Sと荷重F(反力)との関係を示している。この図から、荷重Fが一定である場合、相対的に幅Wが小さい衝突体I1では進入量Sが大きく、相対的に幅が大きい衝突体I2では進入量Sが小さくなることが判る。なお、図4は、発泡倍率を変化させたサンプルについて一定の幅Wの衝突体Iを衝突させた場合の特性を示している。
 以上説明した衝突体判別システム10の構造的構成部分では、フロントバンパ12に前方から後方(バンパリインフォースメント14)に向けた衝突が生じると、アブソーバ20のアブソーバ本体20A、チャンバ部材18を介してバンパリインフォースメント14に荷重が伝達されるようになっている。すなわち、アブソーバ本体20Aを介してバンパリインフォースメント14に荷重が伝達される経路と、チャンバ部材18を介してバンパリインフォースメント14に荷重が伝達される経路とが並列される構成である。なお、チャンバ部材18が変形しつつバンパリインフォースメント14に伝達する荷重(支持反力)は、アブソーバ20の支持反力に対し十分に(無視し得る程度に)小さくなる設定とされている。
 そして、この実施形態では、チャンバ部材18とアブソーバ本体20Aとが独立して変形し得るように、アブソーバ本体20Aの上面20Eと、チャンバ部材18の下面18Cとの間には、隙間Cが形成されている。隙間Cは、チャンバ部材18の後方への圧縮に伴う下方への膨張分を吸収し得る体積を確保している。このため、衝突体判別システム10では、チャンバ部材18は、アブソーバ本体20Aに干渉する(拘束される)ことなく変形する構成である。この実施形態では、隙間Cは、図1に示される如く側面視(長手方向直角断面視)で車両前後方向の全長に亘りされている。また、図示は省略するが、隙間Cは、車幅方向すなわちチャンバ部材18の略全長に亘り形成されている。
 これらにより、衝突体判別システム10では、車両上下方向に長い衝突体Iがフロントバンパ12に衝突する場合に、チャンバ部材18に対する衝突体Iの幅、進入量がアブソーバ20に対する衝突体Iの幅、進入量と略一致するようになっている。このため、衝突体判別システム10では、原理上、フロントバンパ12への衝突に伴うチャンバ部材18の体積変化ΔVがアブソーバ20への衝突体Iの進入体積Vすなわち衝突荷重Fにほぼ比例(一致)し、かつ衝突荷重Fは主に(殆ど)アブソーバ20が支持する構成とされている。これにより、衝突体判別システム10では、チャンバ部材18の体積変化を用いて、後述する如く衝突荷重を求め得る構成とされている。
 また、衝突体判別システム10は、衝突判定部としてのECU26を備えている。ECU26は、圧力センサ22に電気的に接続されており、該圧力センサ22からの信号に基づいて衝突荷重Fを求める(算出する)ようになっている。具体的には、チャンバ部材18内の圧力チャンバ24の初期体積をV0、初期圧力をP0、体積変化をΔV、圧力変化をΔPとすると、以下の関係がある。
     P0×V0=(P0+ΔP)×(V0-ΔV)
 したがって、アブソーバ20への進入体積Vに対応するΔVは、
     ΔV=V0×ΔP/(P0+ΔP)
として得ることができる。この実施形態に係るECU26は、初期体積V0は予め記憶(設定)されており、初期圧力P0は、標準大気圧として予め記憶されている。そして、ECU26は、圧力センサ22からの信号すなわち圧力チャンバ24の圧力変化ΔPに基づいて、衝突荷重Fに比例するV0×ΔP/(P0+ΔP)の計算を実行するようになっている。
 この実施形態では、上記した比例定数α(例えば、α=50)を設定して、以下の通り衝突荷重F自体の算出を実行するようになっている。
     F=α×V0×ΔP/(P0+ΔP)        (1)
 なお、この実施形態では、ECU26は、圧力チャンバ24内の圧力変化ΔPとして以下の通り補正した値を用いる構成とされている。ここで、圧力センサ22からの信号に基づいて得た測定時大気圧をP0s、圧力センサ22から信号に基づいて得た測定圧力をPsとする。
     ΔP=(Ps-P0s)×(P0/P0s)
 さらに、ECU26は、衝突体Iとの衝突速度に応じた信号を出力する衝突速度センサ28に電気的に接続されている。衝突速度センサ28は、例えば車速センサを用いて構成することができる。また、衝突速度センサ28の出力としてミリ波レーダ等の距離センサの出力を時間微分したものを用いても良い。
 そして、ECU26は、上記した衝突荷重F(t)の時間積分値と衝突速度vとから衝突体Iの有効質量mを求めるようになっている。具体的には、
     m×v=∫F(t)dt
より、
     m=∫F(t)dt/v              (2)
として、衝突体Iの有効質量mを求める構成である。
 さらに、この実施形態に係るECU26は、有効質量mに基づいて、衝突体Iを判別するようになっている。具体的には、ECU26は、上記の通り求めた有効質量mが閾値Tを超えた場合には、衝突体Iが歩行者であると判断するようになっている。これにより、衝突体判別システム10では、フロントバンパ12への衝突体Iが歩行者であるか、路側マーカポール等の路上固定体であるかを判別することができる構成である。この判別方法については、本実施形態の作用と共に後述する。
 ECU26は、例えば、衝突体Iが歩行者であると判断した場合には、例えば歩行者用の安全装置を制御するための歩行者安全ECUに対し、衝突体Iが歩行者であることに対応する信号を出力するようになっている。なお、ECU26が歩行者安全ECUを兼ねる構成とすることも可能である。
 次に、第1の実施形態の作用を説明する。
 上記構成の衝突体判別システム10では、フロントバンパ12における車幅方向の何れかの部分に前方から衝突体Iが衝突すると、該衝突部分には後向きに衝突荷重が作用する。すると、アブソーバ20は、衝突荷重を支持しつつ(反力を生じつつ)、衝突荷重に応じた量だけ圧縮変形される。一方、チャンバ部材18は、ほとんど反力を生じることなく圧縮され、アブソーバ20の圧縮変形量にほぼ応じた量だけ圧力チャンバ24の体積が減じられる。
 ECU26には、この圧力チャンバ24の体積変化に伴う圧力センサ22からの信号が入力される。すなわち、ECU26には、圧力チャンバ24内の圧力に応じた信号、大気圧に応じた信号が入力され、また衝突速度に応じた信号が衝突速度センサ28から入力される。
 ECU26は、上記した式(1)にて求めた衝突荷重Fを式(2)の如く時間積分すると共に衝突速度vにて除し、有効質量mを求める。そして、ECU26は、衝突期間中、この有効質量mが閾値Tを越えるか否かの判断の判断を繰り返し、有効質量mが閾値Tを越えた場合に、衝突体Iが歩行者であると判定する。
 以下、このECU26による衝突体Iの判別方法について補足する。図2Aには、歩行者が衝突した場合の典型的な有効質量mの時間変化が実線にて示されており、路側マーカポールが衝突した場合の典型的な有効質量mの時間変化が破線にて示されている。一方、図2Bには、歩行者が衝突した場合の典型的な圧力波形(圧力センサ22の出力信号)が実線にて示されており、路側マーカポールが衝突した場合の典型的な圧力波形の時間変化が破線にて示されている。この図2Bに示される如く、歩行者と路側マーカポールとでは、圧力の持続時間で差があるものの、圧力のピークの差は小さいことが判る。このため、圧力波形のピーク値で実効的に閾値を設定することが困難な場合がある(歩行者を確実に検出すべく閾値を低く設定することにより、路側マーカポールを歩行者であると誤検出する場合が生じ得る)。
 これに対して衝突体判別システム10では、図2Aに示される如く歩行者と路側マーカポールとで大きな差が生じる(マージンが大きい)有効質量mに閾値を設定しているため、歩行者と路側マーカポールとを安定して判別することができる。図2Aについて補足すると、路側マーカポールとの衝突の場合、衝突後にフロントバンパ12(自動車)は反力で路側マーカポールから離れる方向に相対変位するので、図2Bに示される如く圧力の持続時間が短くなる。このため、衝突荷重F(圧力チャンバ24の圧力上昇)の時間積分値に基づく有効質量mの波形は、比較的低く抑えられることとなる。一方、歩行者との衝突の場合、歩行者はエンジンフード側に倒れ込むように相対変位するので、フロントバンパ12への入力持続時間が長くなり(図2B参照)、衝突荷重Fの時間積分値に基づく有効質量mの波形は、路側マーカポールの場合と比較して高い値に至ることとなる。
 ここで、衝突体判別システム10(衝突体判別方法)では、チャンバ部材18とアブソーバ20とが独立して変位し得るように配置されているため、アブソーバ20で衝突荷重を支持(吸収)しながら、チャンバ部材18を、アブソーバ20の変形に拘束されることなく変形させることができる。このため、衝突体判別システム10では、上記の如く原理上、チャンバ部材18の体積変化ΔVがアブソーバ20への衝突体Iの進入体積Vに比例(略一致)することとなる。
 そして、衝突体判別システム10では、衝突体Iの進入体積Vに応じた支持反力(衝突荷重F)を生じる材料にてアブソーバ20を構成しているため、チャンバ部材18の体積変化ΔV(圧力センサ22の信号)に基づいて、衝突荷重Fを精度良く検出することができる。このため、衝突体判別システム10では、ECU26において衝突荷重Fの時間積分値に基づいて有効質量mを求め、該有効質量mが閾値Tを超えるか否かに応じて衝突体Iを精度良く判別することができる。
 特に、衝突体判別システム10では、チャンバ部材18の下面とアブソーバ20の上面との間に隙間Cが形成されているため、チャンバ部材18の前後方向への圧縮に伴う変形(逃げ)代が確保される。しかも、衝突体判別システム10では、隙間Cがチャンバ部材18の下方の略全面に亘り設けられているので、チャンバ部材18の逃げ代が十分に確保される。このため、アブソーバ20がチャンバ部材18の変形を拘束することが効果的に抑制される。すなわち、チャンバ部材18がアブソーバ20に対し独立して変形される構成を、簡単な構造で実現することができる。
 また特に、衝突体判別システム10では、アブソーバ20のアブソーバ本体20Aがチャンバ部材18よりも前方に突出される(この実施形態においてはスペーサ部20Bとチャンバ部材18との間に隙間Gが設定される)と共に、アブソーバ本体20Aの後端部20Cがバンパリインフォースメント14の前面14Aに固定(接触)されている。これにより、チャンバ部材18が単独で圧縮変形されることが防止される。このため、本衝突体判別システム10では、例えば軽度の衝突の際に、チャンバ部材18が大きく変形されることが防止され、誤検出の防止に寄与する。
 さらに、衝突体判別システム10では、上記の通りチャンバ部材18とアブソーバ20との間に隙間Cが設定されているため、例えば緩衝部材の内部にチャンバを形成する構成等と比較して、製造工程を簡素化することができる。特に、衝突体判別システム10では、チャンバ部材18とアブソーバ20とが独立してバンパリインフォースメント14に取り付けられる構成であるため、製造工程を一層簡素化することができる。また特に、衝突体判別システム10を構成するチャンバ部材18は、連通孔を介して大気と連通されているため、換言すれば、非圧縮性流体等の充填材を充填する必要がないため、このような充填材を充填するものと比較して製造が容易である。
 次に、本発明の他の実施形態を説明する。なお、上記第1の実施形態又は前出の構成と基本的に同一の部品、部分には上記第1の実施形態又は前出の構成と同一の符号を付して説明を省略する。また、他の実施形態を示す図5~図10では、圧力センサ22、ECU26、衝突速度センサ28の図示を省略する。
(第2の実施形態)
 図5には、本発明の第2の実施形態に係る衝突検出装置としての衝突体判別システム30が模式的な側断面図にて示されている。この図5に示される如く、衝突体判別システム30は、アブソーバ20に代えて緩衝部材としてのアブソーバ32を備える点で、第1の実施形態に係る衝突体判別システム10とは異なる。
 アブソーバ32は、アブソーバ20からスペーサ部20Bを取り除いた如く構成されている。アブソーバ32は、その後端部32Aがバンパリインフォースメント14の前面14Aに固定(接触)されると共に、その前端部32Bがチャンバ部材18の前端部18Bに対し車両前後方向の前方に突出している。衝突体判別システム30の他の構成は、衝突体判別システム10の対応する構成と同じである。
 したがって、第2の実施形態に係る衝突体判別システム30によっても、第1の実施形態に係る衝突体判別システム10と基本的に同様の作用によって同様の効果を得ることができる。
(第3の実施形態)
 図6には、本発明の第3の実施形態に係る衝突検出装置としての衝突体判別システム40が模式的な側断面図にて示されている。この図6に示される如く、衝突体判別システム40は、アブソーバ20に代えて緩衝部材としてのアブソーバ42を備える点、及びチャンバ部材18の配置において、第1の実施形態に係る衝突体判別システム10とは異なる。
 チャンバ部材18は、その後端部18Aがバンパリインフォースメント14の前面14Aにおける下部に固定的に取り付けられている。アブソーバ42は、アブソーバ32に似た形状に形成されており、チャンバ部材18の上方に隙間Cを挟んで配置されている。アブソーバ42は、その後端部42Aがバンパリインフォースメント14の前面14Aに固定(接触)されると共に、その前端部42Bがチャンバ部材18の前端部18Bに対し車両前後方向の位置が略一致されている。すなわち、アブソーバ42の車両前後方向の長さは、チャンバ部材18の車両前後方向の長さと略一致されている。衝突体判別システム40の他の構成は、衝突体判別システム10の対応する構成と同じである。
 したがって、第3の実施形態に係る衝突体判別システム40によっても、第1の実施形態に係る衝突体判別システム10と基本的に同様の作用によって同様の効果を得ることができる。
 なお、第3の実施形態では、アブソーバ42の前端部42Bの車両前後方向における位置がチャンバ部材18の前端部18Bの車両前後方向における位置と略一致する例を示したが、本発明はこれに限定されない。したがって、例えば、アブソーバ42に代えてアブソーバ20を上下反転したものやアブソーバ32を、チャンバ部材18の上側に配置する構成としても良い。また、第2の実施形態のアブソーバ32に代えてアブソーバ42を設ける構成としても良い。
(第4の実施形態)
 図7には、本発明の第4の実施形態に係る衝突検出装置としての衝突体判別システム50が模式的な側断面図にて示されている。この図7に示される如く、衝突体判別システム50は、アブソーバ20に代えて緩衝部材としてのアブソーバ52を備える点、及びチャンバ部材18の配置において、第1の実施形態に係る衝突体判別システム10とは異なる。
 チャンバ部材18は、その後端部18Aがバンパリインフォースメント14の前面14Aにおける上下方向の略中間部に固定的に取り付けられている。アブソーバ52は、上下一対のアブソーバ本体52Aと、これらアブソーバ本体52Aの前端部間を連結するスペーサ部52Bとを主要部として構成されている。アブソーバ52は、上下のアブソーバ本体52A間にチャンバ部材18が位置する姿勢で、これらアブソーバ本体52Aの後端部52Cは、バンパリインフォースメント14の前面14Aに固定(接触)されている。
 この状態で上下のアブソーバ本体52Aとチャンバ部材18との間には隙間Cが形成され、スペーサ部52Bとチャンバ部材18の前端部18Bとの間には隙間Gが形成されている。衝突体判別システム50の他の構成は、衝突体判別システム10の対応する構成と同じである。
 したがって、第4の実施形態に係る衝突体判別システム50によっても、第1の実施形態に係る衝突体判別システム10と基本的に同様の作用によって同様の効果を得ることができる。
 なお、上記した実施形態では、アブソーバ52がスペーサ部52Bを有する例を示したが、本発明はこれに限定されず、例えば、アブソーバ52が上下一対のアブソーバ本体52Aから成る構成としても良い。この場合、アブソーバ本体52Aは、アブソーバ32の如くチャンバ部材18の前端部18Bよりも前方に突出した構成としても良い。またこの場合、アブソーバ42の如くチャンバ部材18の前端部18Bと車両前後方向の位置が略一致する構成としても良い。また、上下のアブソーバ本体52Aで前端の位置を異ならせても良い。
(第5の実施形態)
 図8には、本発明の第5の実施形態に係る衝突検出装置としての衝突体判別システム60が模式的な側断面図にて示されている。この図8に示される如く、衝突体判別システム60は、アブソーバ20に代えて緩衝部材としてのアブソーバ62を備える点、及びチャンバ部材18の配置において、第1の実施形態に係る衝突体判別システム10とは異なる。
 アブソーバ62は、アブソーバ32に似た形状のアブソーバ本体62Aと、アブソーバ本体62Aの後端から立設されたスペーサ部62Bとを主要部として構成されている。このアブソーバ62は、アブソーバ本体62A、スペーサ部62Bの後端部62Cにおいて、バンパリインフォースメント14の前面14Aに固定(接触)されている。
 そして、この実施形態では、チャンバ部材18は、アブソーバ62のスペーサ部62Bの前端部62Dに固定されている。この状態で、チャンバ部材18とアブソーバ本体62Aとの間には、隙間Cが形成されている。また、アブソーバ本体62Aの前端62Eは、チャンバ部材18の前端部18Bよりも車両前後方向の前方に突出している。衝突体判別システム60の他の構成は、衝突体判別システム10の対応する構成と同じである。
 したがって、第5の実施形態に係る衝突体判別システム60によっても、第1の実施形態に係る衝突体判別システム10と基本的に同様の作用によって同様の効果を得ることができる。
 なお、第5の実施形態では、アブソーバ本体62Aの前端62Eがチャンバ部材18の前端部18Bよりも車両前後方向の前方に突出した例を示したが、本発明はこれに限定されない。したがって、例えば、アブソーバ62の前端62Eとチャンバ部材18の前端部18Bとで車両前後方向の位置が略一致する構成としても良い。
(第6の実施形態)
 図9には、本発明の第6の実施形態に係る衝突検出装置としての衝突体判別システム70が模式的な側断面図にて示されている。この図7に示される如く、衝突体判別システム70は、アブソーバ20に代えて緩衝部材としてのアブソーバ72を備える点、及びチャンバ部材18の配置において、第1の実施形態に係る衝突体判別システム10とは異なる。
 アブソーバ72は、上下一対のアブソーバ本体72Aと、これらアブソーバ本体72Aの後端部間を連結するスペーサ部72Bとを主要部として構成されている。アブソーバ72は、これらアブソーバ本体72A、スペーサ部72Bの後端部72Cにおいて、バンパリインフォースメント14の前面14Aに固定(接触)されている。
 そして、この実施形態では、チャンバ部材18は、アブソーバ72の一対のアブソーバ本体72A間で、スペーサ部72Bの前端部72Dに固定されている。この状態で上下のアブソーバ本体72Aとチャンバ部材18との間には隙間Cが形成されている。また、各アブソーバ本体62Aの前端62Eは、それぞれチャンバ部材18の前端部18Bよりも車両前後方向の前方に突出している。衝突体判別システム70の他の構成は、衝突体判別システム10の対応する構成と同じである。
 したがって、第6の実施形態に係る衝突体判別システム70によっても、第1の実施形態に係る衝突体判別システム10と基本的に同様の作用によって同様の効果を得ることができる。
 なお、第6の実施形態では、上下のアブソーバ本体72Aの各前端部72Eがチャンバ部材18の前端部18Bよりも車両前後方向の前方に突出した例を示したが、本発明はこれに限定されず、例えば、上下のアブソーバ本体72Aの各前端部72Eの少なくとも一方とチャンバ部材18の前端部18Bとで車両前後方向の位置が略一致する構成としても良い。
(第7の実施形態)
 図10には、本発明の第7の実施形態に係る衝突検出装置としての衝突体判別システム80が模式的な側断面図にて示されている。この図10に示される如く、衝突体判別システム80は、チャンバ部材18に代えてチャンバ部材82を備える点で、第1の実施形態に係る衝突体判別システム10とは異なる。
 チャンバ部材82は、その後端部82Aにおいてバンパリインフォースメント14の前面14Aに固定的に取り付けられ、その前端部82Bとスペーサ部20Bとの間に隙間Gが設定されている点で、チャンバ部材18と共通する。このチャンバ部材82は、側断面視で、下壁82Cが下向きに開口する凹状を成すと共に上壁82Dが上向きに開口する凹状を成している点で、チャンバ部材18とは異なる。
 このチャンバ部材82は、アブソーバ20のアブソーバ本体20Aの上に載置されている。すなわち、チャンバ部材82は、その下壁82Cの前後の端部において、それぞれアブソーバ本体20Aの上面に低摩擦で摺動可能に接触している。チャンバ部材82は、上記の形状により、前後方向の荷重を受けると、下壁82C、上壁82Dの屈曲角度を増しながら、前後に圧縮されて圧力チャンバ24の体積が変化する構成とされている。したがって、チャンバ部材82は、アブソーバ20に接触して配置された構成において、該アブソーバ20とは独立して変形可能(アブソーバ20による拘束を受けない)構成とされている。
 このチャンバ部材18の形状は、蛇腹形状であると捉えることも可能である。換言すれば、チャンバ部材82は、下壁82C、上壁82Dがそれぞれ複数の凸凹を有する蛇腹状に形成しても良い。衝突体判別システム80の他の構成は、衝突体判別システム10の対応する構成と同じである。
 したがって、第7の実施形態に係る衝突体判別システム80によっても、第1の実施形態に係る衝突体判別システム10と基本的に同様の作用によって同様の効果を得ることができる。また、衝突体判別システム80では、チャンバ部材82がアブソーバ20に低摩擦で摺動可能に接触する構成であるため、該チャンバ部材82をチャンバ部材18よりも低剛性に構成して圧縮変形に要する荷重(反力)を一層小さくすることも可能である。
 なお、第7の実施形態では、チャンバ部材82がアブソーバ20と組み合わされた例を示したが、本発明はこれに限定されず、例えば、アブソーバ32、42、52、62、72の何れかとチャンバ部材82とを組み合わせた構成としても良い。
 また、第7の実施形態では、チャンバ部材82の車両前後方向の一部がアブソーバ本体20Aに接触する例を示したが、本発明はこれに限定されず、例えば、チャンバ部材82における長手(車幅)方向の一部がアブソーバ20に接触する構成としても良い。
 また、上記した各実施形態では、ECU26が有効質量mを求めて閾値と比較する例を示したが、本発明はこれに限定されない。したがって、例えば、衝突荷重F(t)の時間積分値を衝突速度vに応じて設定された(衝突速度v毎に異なる)閾値と比較することで、衝突体Iが歩行者であるか路側ポールマーカであるかを判別する構成(方法)としても良い。また、本発明は、衝突荷重F(t)の時間積分値又は有効質量m単独で衝突体Iを判別する構成には限られず、例えば、衝突荷重F(t)の時間積分値又は有効質量mと圧力波形(衝突荷重F)とを併用して衝突体Iを判別するようにしても良い。
 さらに、上記した各実施形態では、衝突体判別システム10~80がフロントバンパ12に適用された例を示したが、本発明はこれに限定されず、例えば、上記した各構成を前後反転してリヤバンパに適用しても良い。

Claims (12)

  1.  車幅方向に長手とされ、バンパ骨格部材に対する車両前後方向の外側に配置された緩衝部材と、
     車幅方向に長手とされると共に内部が圧力チャンバとされ、前記バンパ骨格部材に対する前記緩衝部材側と同じ側に設けられ、車両前後方向の外側からの荷重入力によって、前記緩衝部材とは独立してかつ該緩衝部材よりも小さい荷重で、前記圧力チャンバの体積が減じられるように潰れ変形されるチャンバ部材と、
     前記圧力チャンバ内の圧力変化に応じた信号を出力する圧力検出器と、
     前記圧力検出器からの信号に基づいて、車両前後方向の外側から前記バンパ骨格部材側への衝突を判定する衝突判定部と、
     を備えた衝突検出装置。
  2.  前記チャンバ部材と前記緩衝部材とは、少なくとも一部が車両上下方向に離間して配置されている請求項1記載の衝突検出装置。
  3.  前記チャンバ部材と前記緩衝部材とは、車両前後方向の少なくとも一部が長手方向の全長に亘って車両上下方向に離間して配置されている請求項2記載の衝突検出装置。
  4.  前記チャンバ部材と前記緩衝部材とは、長手方向の少なくとも一部が車両前後方向の全長に亘って車両上下方向に離間されている請求項2又は請求項3記載の衝突検出装置。
  5.  前記緩衝部材は、前記チャンバ部材に対し車両上下方向の上側及び下側の双方に、それぞれ前記チャンバ部材に対し車両上下方向に離間して配置されている請求項2~請求項4の何れか1項記載の衝突検出装置。
  6.  前記緩衝部材における車両前後方向の外側の端部は、前記チャンバ部材における車両前後方向の外側の端部に対し、車両前後方向の同じ位置か、又は車両前後方向の外側に突出した位置に配置されている請求項1~請求項5の何れか1項記載の衝突検出装置。
  7.  前記緩衝部材は、車両前後方向の内側の端部が前記バンパ骨格部材に接触されている請求項6記載の衝突検出装置。
  8.  前記緩衝部材は、圧縮変形による体積変化に応じた反力を生じる材料にて構成されている請求項1~請求項7の何れか1項記載の衝突検出装置。
  9.  前記衝突判定部は、前記圧力検出器からの信号に基づいて衝突荷重を検出し、該衝突荷重に基づいて衝突を判定するようになっている請求項8記載の衝突検出装置。
  10.  前記衝突判定部は、衝突速度情報と、前記圧力チャンバの圧力変化に基づいて検出した衝突荷重とに基づいて、車両前後方向の外側から前記バンパ骨格部材側に衝突した衝突体を判別するようになっている請求項9記載の衝突検出装置。
  11.  内部が圧力チャンバとされたチャンバ部材と、変形による体積変化に応じた反力を生じる緩衝部材とを、互いに独立して変形し得るように車両上下方向に並列して配置し、
     衝突体の衝突によって、前記緩衝部材により衝撃を吸収しながら前記チャンバ部材の変形に伴う圧力チャンバの圧力変化を検出し、
     前記圧力チャンバの圧力変化に基づいて衝突荷重を検出する衝突検出方法。
  12.  衝突体の衝突速度をさらに検出し、
     前記衝突速度と、前記圧力チャンバの圧力変化に基づいて検出した衝突荷重とに基づいて、衝突体を判別する請求項11記載の衝突検出方法。
PCT/JP2009/069699 2008-12-02 2009-11-20 衝突検出装置及び衝突検出方法 WO2010064546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09830313.4A EP2383152B1 (en) 2008-12-02 2009-11-20 Collision detecting device and collision detecting method
CN200980147928.XA CN102227339B (zh) 2008-12-02 2009-11-20 碰撞检测装置以及碰撞检测方法
US13/132,088 US8978486B2 (en) 2008-12-02 2009-11-20 Collision detecting device and collision detecting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008307805A JP5302643B2 (ja) 2008-12-02 2008-12-02 衝突検出装置及び衝突検出方法
JP2008-307805 2008-12-02

Publications (1)

Publication Number Publication Date
WO2010064546A1 true WO2010064546A1 (ja) 2010-06-10

Family

ID=42233197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069699 WO2010064546A1 (ja) 2008-12-02 2009-11-20 衝突検出装置及び衝突検出方法

Country Status (5)

Country Link
US (1) US8978486B2 (ja)
EP (1) EP2383152B1 (ja)
JP (1) JP5302643B2 (ja)
CN (1) CN102227339B (ja)
WO (1) WO2010064546A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131508A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 車両用バンパ構造
JP2015178316A (ja) * 2014-03-19 2015-10-08 本田技研工業株式会社 車両用バンパー
JP2016107719A (ja) * 2014-12-03 2016-06-20 トヨタ自動車株式会社 車両用衝突検出装置及び車両用衝突検出方法
US20210268979A1 (en) * 2020-03-02 2021-09-02 Subaru Corporation Collision detection device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509863B2 (ja) * 2010-01-14 2014-06-04 トヨタ自動車株式会社 歩行者衝突検出装置
JP5327190B2 (ja) * 2010-10-27 2013-10-30 株式会社デンソー 車両用衝突検知装置
JP5354301B2 (ja) * 2010-12-06 2013-11-27 株式会社デンソー 車両用衝突検知装置
DE102012013327A1 (de) * 2012-07-06 2014-01-09 Volkswagen Aktiengesellschaft Fußgängerschutzsystem für ein Fahrzeug
JP5895795B2 (ja) * 2012-10-02 2016-03-30 トヨタ自動車株式会社 歩行者衝突検出装置を備えた車両用バンパ
JP5962435B2 (ja) * 2012-10-26 2016-08-03 トヨタ自動車株式会社 歩行者衝突検出装置を備えた車両用バンパ
JP2014104805A (ja) * 2012-11-26 2014-06-09 Toyota Motor Corp 歩行者衝突検出装置を備えた車両用バンパ
JP5920228B2 (ja) * 2013-01-09 2016-05-18 トヨタ自動車株式会社 歩行者衝突検出装置を備えた車両用バンパ
JP6294066B2 (ja) * 2013-12-12 2018-03-14 株式会社Subaru 歩行者衝突検知装置
US9114769B1 (en) * 2014-02-06 2015-08-25 Ford Global Technologies, Llc Vehicle sensor assembly with lever assist
AT515500A1 (de) * 2014-03-12 2015-09-15 Siemens Ag Oesterreich Vorrichtung und Verfahren zur Hinderniserkennung bei Schienenfahrzeugen
US9174595B2 (en) * 2014-03-24 2015-11-03 Ford Global Technologies, Llc Collision sensing and energy absorbing apparatus
US9827935B2 (en) * 2014-06-24 2017-11-28 Ford Global Technologies, Llc Collision sensing apparatus
DE102014214595B4 (de) * 2014-07-24 2023-07-06 Continental Automotive Technologies GmbH Kraftfahrzeugteil mit einem Aufprallsensor
JP6146383B2 (ja) * 2014-08-08 2017-06-14 トヨタ自動車株式会社 圧力チューブ式歩行者衝突検知センサを備えた車両用バンパ構造
CN104608721B (zh) * 2014-11-28 2017-04-05 长城汽车股份有限公司 一种汽车前端刚度自适应系统及控制方法
JP6375907B2 (ja) * 2014-12-02 2018-08-22 株式会社デンソー 車両用衝突検知装置
JP6565182B2 (ja) 2014-12-10 2019-08-28 株式会社デンソー 車両用衝突検知装置
JP6432376B2 (ja) * 2015-02-09 2018-12-05 株式会社デンソー 車両用衝突検知装置
JP6413829B2 (ja) * 2015-02-23 2018-10-31 株式会社デンソー 車両用衝突検知装置
JP6500532B2 (ja) * 2015-03-19 2019-04-17 株式会社デンソー 車両用衝突検知装置
JP2016196206A (ja) * 2015-04-02 2016-11-24 株式会社デンソー 車両用衝突検知装置
DE102015223547A1 (de) * 2015-11-27 2017-06-14 Bayerische Motoren Werke Aktiengesellschaft Kollisionserfassungsvorrichtung für ein Kraftfahrzeug
DE102015223573A1 (de) * 2015-11-27 2017-06-01 Bayerische Motoren Werke Aktiengesellschaft Kollisionserfassungsvorrichtung für ein Kraftfahrzeug zur Erfassung einer Kollision mit einem Fußgänger
JP6766776B2 (ja) * 2017-08-21 2020-10-14 トヨタ車体株式会社 車両用バンパー
CN111201162B (zh) * 2017-10-24 2022-05-03 本田技研工业株式会社 碰撞检测构造

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736204U (ja) * 1993-12-06 1995-07-04 船井電機株式会社 自動搬送車のバンパー装置
JPH11310095A (ja) 1998-02-24 1999-11-09 Toyota Central Res & Dev Lab Inc 車両用衝突判別装置
JP2007290689A (ja) 2006-03-29 2007-11-08 Denso Corp 衝突検知手段
JP2008230503A (ja) * 2007-03-22 2008-10-02 Denso Corp 衝突検知手段、歩行者衝突検知手段および歩行者保護システム
JP2009227089A (ja) * 2008-03-21 2009-10-08 Denso Corp 車両用衝突検知装置
JP2009234427A (ja) * 2008-03-27 2009-10-15 Denso Corp 車両用衝突検知装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114441B2 (ja) 1993-07-23 2000-12-04 富士電機株式会社 電子写真用感光体
US6561301B1 (en) * 1998-02-24 2003-05-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Collision discriminating apparatus for vehicles
US7098778B1 (en) * 1999-09-27 2006-08-29 Autoliv Asp, Inc. Impact sensor assembly and method of attaching same to a vehicle
JP4052244B2 (ja) * 2003-12-24 2008-02-27 トヨタ自動車株式会社 車両用バンパ構造
JP4124812B2 (ja) * 2004-03-10 2008-07-23 株式会社デンソー 荷重検知装置
JP4376743B2 (ja) * 2004-09-21 2009-12-02 タカタ株式会社 衝突物判別装置、保護装置
JP2006125999A (ja) * 2004-10-28 2006-05-18 Denso Corp 衝突検出センサ
DE102004062484A1 (de) * 2004-12-24 2006-07-06 Daimlerchrysler Ag Vorrichtung zur Erkennung einer Kollision eines Kraftfahrzeuges
JP4410138B2 (ja) * 2005-03-31 2010-02-03 株式会社デンソー 車両用衝突物体判別装置
DE102005018588B4 (de) * 2005-04-21 2009-04-02 Continental Safety Engineering International Gmbh Sensoranordnung in einem Karosseriebauteil
JP4830475B2 (ja) * 2005-12-14 2011-12-07 株式会社デンソー 車両用衝突荷重測定装置及びそれを用いた車両用衝突体判定装置
JP2007192577A (ja) * 2006-01-17 2007-08-02 Denso Corp 車両用衝突物体判別装置
JP4626552B2 (ja) * 2006-03-27 2011-02-09 株式会社デンソー 衝突検知手段
JP5011934B2 (ja) * 2006-03-29 2012-08-29 株式会社デンソー 衝突検知手段
JP2008107232A (ja) * 2006-10-26 2008-05-08 Denso Corp 衝突検知手段
JP4492823B2 (ja) * 2007-06-19 2010-06-30 株式会社デンソー 車両用衝突検知装置
JP4264844B2 (ja) * 2007-06-21 2009-05-20 株式会社デンソー 車両用衝突検知装置
JP4403518B2 (ja) * 2007-07-13 2010-01-27 株式会社デンソー 車両用衝突検知装置
JP4403517B2 (ja) * 2007-07-13 2010-01-27 株式会社デンソー 車両用衝突検知装置
JP4466690B2 (ja) * 2007-07-17 2010-05-26 株式会社デンソー 衝突検出装置
JP4513833B2 (ja) * 2007-07-17 2010-07-28 株式会社デンソー 車両用衝突検知装置
JP4688849B2 (ja) * 2007-07-17 2011-05-25 株式会社デンソー 衝突検出装置
JP2009023405A (ja) * 2007-07-17 2009-02-05 Denso Corp 衝突検知センサ
JP4497182B2 (ja) * 2007-07-23 2010-07-07 株式会社デンソー 衝突検出装置
JP4816665B2 (ja) * 2008-03-18 2011-11-16 株式会社デンソー 車両用衝突検知装置
JP4980300B2 (ja) * 2008-06-12 2012-07-18 株式会社デンソー 車両用衝突判定装置
JP5003636B2 (ja) * 2008-08-28 2012-08-15 株式会社デンソー 車両用衝突検知装置
JP5136433B2 (ja) * 2009-01-20 2013-02-06 株式会社デンソー 車両用衝突検知装置
JP5170140B2 (ja) * 2009-05-15 2013-03-27 株式会社デンソー 車両用衝突検知装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736204U (ja) * 1993-12-06 1995-07-04 船井電機株式会社 自動搬送車のバンパー装置
JPH11310095A (ja) 1998-02-24 1999-11-09 Toyota Central Res & Dev Lab Inc 車両用衝突判別装置
JP2007290689A (ja) 2006-03-29 2007-11-08 Denso Corp 衝突検知手段
JP2008230503A (ja) * 2007-03-22 2008-10-02 Denso Corp 衝突検知手段、歩行者衝突検知手段および歩行者保護システム
JP2009227089A (ja) * 2008-03-21 2009-10-08 Denso Corp 車両用衝突検知装置
JP2009234427A (ja) * 2008-03-27 2009-10-15 Denso Corp 車両用衝突検知装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2383152A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131508A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 車両用バンパ構造
JP2015178316A (ja) * 2014-03-19 2015-10-08 本田技研工業株式会社 車両用バンパー
JP2016107719A (ja) * 2014-12-03 2016-06-20 トヨタ自動車株式会社 車両用衝突検出装置及び車両用衝突検出方法
US20210268979A1 (en) * 2020-03-02 2021-09-02 Subaru Corporation Collision detection device
US11491936B2 (en) * 2020-03-02 2022-11-08 Subaru Corporation Collision detection device

Also Published As

Publication number Publication date
JP5302643B2 (ja) 2013-10-02
CN102227339B (zh) 2015-05-20
US8978486B2 (en) 2015-03-17
EP2383152A4 (en) 2012-06-27
EP2383152B1 (en) 2013-12-25
EP2383152A1 (en) 2011-11-02
US20110232396A1 (en) 2011-09-29
JP2010132040A (ja) 2010-06-17
CN102227339A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5302643B2 (ja) 衝突検出装置及び衝突検出方法
US9016142B2 (en) Collision detection device
JP4539281B2 (ja) 車両用障害物判別装置
JP5360295B2 (ja) 歩行者衝突検出装置
JP4492823B2 (ja) 車両用衝突検知装置
JP5252077B2 (ja) 衝突検出装置
US8653958B2 (en) Collision detection apparatus and method for same
KR102572261B1 (ko) 자동차의 하나 이상의 안전 기능을 트리거링하기 위한 트리거 신호의 생성 방법
JP4941773B2 (ja) 車両用衝突検知装置
US20080201077A1 (en) Vehicle collision detecting system
WO2016084362A1 (ja) 車両用衝突検知装置
JP6028740B2 (ja) 車両用バンパ構造
JP5499907B2 (ja) 歩行者衝突検知装置
JP2012111264A (ja) 車両用衝突検知装置
WO2016136165A1 (ja) 車両用衝突検知装置
WO2016075926A1 (ja) 車両用衝突検知装置
JP4941771B2 (ja) 車両用衝突検知装置
JP4858786B2 (ja) 車両用衝突検知装置
WO2016092793A1 (ja) 車両用衝突検知装置
JP5949786B2 (ja) 歩行者衝突検知システム
JP2011137743A (ja) 衝突検出装置
JP5169967B2 (ja) 衝突検出機構
JP2014124991A (ja) 車両衝突判定装置
JP2009227087A (ja) 車両用衝突検知装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147928.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13132088

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009830313

Country of ref document: EP