WO2016075926A1 - 車両用衝突検知装置 - Google Patents
車両用衝突検知装置 Download PDFInfo
- Publication number
- WO2016075926A1 WO2016075926A1 PCT/JP2015/005600 JP2015005600W WO2016075926A1 WO 2016075926 A1 WO2016075926 A1 WO 2016075926A1 JP 2015005600 W JP2015005600 W JP 2015005600W WO 2016075926 A1 WO2016075926 A1 WO 2016075926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collision
- pressure
- pressure sensor
- vehicle
- bumper
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/48—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
Definitions
- the present disclosure relates to a vehicle collision detection device for detecting the occurrence of a collision accident between a vehicle and a pedestrian.
- a pedestrian protection device for reducing the impact on the pedestrian when the pedestrian collides with the vehicle.
- a bumper unit is provided with a collision detection device, and when this sensor detects that a pedestrian or the like has collided with the vehicle, the pedestrian protection device is activated to reduce the impact on the pedestrian.
- This pedestrian protection device includes what is called a pop-up hood, for example. This pop-up hood raises the rear end of the engine hood when a vehicle collision is detected, increases the clearance (clearance) between the pedestrian and hard parts such as the engine, and uses that space to the pedestrian's head. It absorbs collision energy and reduces the impact on the head.
- a chamber member having a chamber space formed therein is disposed in front of a bumper reinforcement in the vehicle bumper, and the pressure in the chamber space is detected by a pressure sensor. There is something that was made.
- the chamber member is deformed along with the deformation of the bumper cover, and a pressure change is generated in the chamber space.
- the pressure sensor detects this pressure change to detect a pedestrian collision.
- Some of such vehicle collision detection devices are configured to be able to detect the bumper's collision position in the vehicle width direction based on the resonance frequency of the pressure vibration detected by the pressure sensor. With this configuration, the collision detection accuracy is improved by correcting the collision determination threshold according to the calculated collision position (see, for example, Patent Document 1).
- the vehicle collision detection apparatus having the above-described configuration has a problem in that the configuration is complicated because it is necessary to accurately calculate the resonance frequency of the pressure vibration detected by the pressure sensor.
- the present disclosure has been made in view of the above-described problems, and an object thereof is to provide a vehicle collision detection device capable of estimating a collision position with a simple configuration.
- a vehicle collision detection device made to solve the above object is disposed to extend in the vehicle width direction on the vehicle front side of a bumper reinforcement in a vehicle bumper and is hollow inside.
- a hollow member having a portion formed therein, a pressure sensor for detecting a pressure in the hollow portion, and a collision determination unit for determining whether or not an object has collided with the bumper based on a pressure detection result by the pressure sensor.
- the pressure sensor includes a plurality of pressure sensors that respectively detect pressures at a plurality of locations that are separated in the vehicle width direction within the hollow portion.
- a collision position estimation unit is provided that estimates a collision position based on a phase shift of each pressure waveform respectively detected by a plurality of pressure sensors when a collision with the bumper occurs.
- the collision position estimation unit can estimate the collision position based on the phase shift of each pressure waveform respectively detected by the plurality of pressure sensors when the object collides with the bumper.
- the collision position in the vehicle width direction of the bumper can be estimated with a simple configuration, and appropriate collision determination according to the collision position can be performed. Therefore, the collision determination unit can accurately determine the collision of the object with the bumper, and the collision detection accuracy of the vehicle collision detection apparatus can be improved with a simple configuration.
- FIG. 3 is a III-III cross-sectional view of the bumper portion of FIG. 2.
- FIG. 3 is a III-III cross-sectional view of the bumper portion of FIG. 2.
- FIG. 2 is sectional drawing which shows the internal structure of the pressure sensor of 1st Embodiment.
- FIG. 3 shows the electrical constitution of the collision detection apparatus for vehicles of 1st Embodiment.
- FIG. 10 is a view corresponding to FIG. 1 in a third embodiment.
- FIG. 10 is a view corresponding to FIG. 2 in the third embodiment. It is XVII-XVII sectional drawing of the bumper part of FIG.
- the vehicle collision detection apparatus 1 of the present embodiment includes a detection tube member 2 (corresponding to a hollow member), a first pressure sensor 3, a second pressure sensor 4, a speed sensor 5, A temperature sensor 6, a collision detection ECU 7, a bumper absorber 10 and the like are provided.
- the vehicle collision detection device 1 detects a collision of an object M (pedestrian) with a bumper 8 provided in front of the vehicle (see FIG. 8).
- the bumper 8 is mainly composed of a bumper cover 9, a bumper absorber 10, and a bumper reinforcement 11.
- the detection tube member 2 is a tube-like member having a hollow portion 2a formed therein and extending in the vehicle width direction (the vehicle left-right direction), and is attached to the groove portion 10a of the bumper absorber 10.
- the detection tube member 2 is disposed on the front surface 11a (the vehicle front side) of the bumper reinforcement 11 in the vehicle bumper 8. Both ends of the tube member for detection 2 are curved in a substantially U shape and connected to a first pressure sensor 3 and a second pressure sensor 4 described later on the left and right outer sides of the bumper reinforcement 11 in the vehicle width direction.
- the detection tube member 2 has a circular cross-sectional shape and is made of a synthetic rubber such as silicone rubber.
- the outer diameter of the detection tube member 2 is assumed to be about 10 mm, for example.
- ethylene propylene rubber (EPDM) may be used, or a mixture of silicone rubber and EPDM may be used.
- the first pressure sensor 3 and the second pressure sensor 4 are arranged on the vehicle rear side of the front surface 11a of the bumper reinforcement 11 as shown in FIGS. Specifically, the first pressure sensor 3 is installed on the rear surface 11 b of the right end portion of the bumper reinforcement 11. The second pressure sensor 4 is installed on the rear surface 11 b of the left end portion of the bumper reinforcement 11. The first pressure sensor 3 and the second pressure sensor 4 are fixedly attached to the rear surface 11b of the bumper reinforcement 11 by fastening bolts (not shown).
- the first pressure sensor 3 and the second pressure sensor 4 are sensor devices that detect changes in gas pressure. Specifically, the first pressure sensor 3 is connected to the right end of the detection tube member 2 in the vehicle width direction, and detects the pressure on the right in the vehicle width direction in the hollow portion 2a.
- the second pressure sensor 4 is connected to the left end of the detection tube member 2 in the vehicle width direction and detects the pressure on the left in the vehicle width direction in the hollow portion 2a. Thus, the pressures at two positions separated by a predetermined distance in the hollow portion 2a are detected by the two pressure sensors 3 and 4.
- the first pressure sensor 3 includes a main body part 30, a sensor part 31, a pressure introduction pipe 32, and a connector part 33.
- the main body 30 is a box-shaped case for housing the sensor unit 31.
- the sensor unit 31 is made of a substrate or the like on which a sensor element for detecting pressure is provided.
- the sensor unit 31 is provided with a temperature sensor 6 including a temperature detection element. The temperature sensor 6 detects the temperature in the hollow portion 2a.
- the pressure introduction tube 32 is a substantially cylindrical tube that introduces the pressure in the hollow portion 2 a of the detection tube member 2 into the sensor portion 31, and is inserted into the hollow portion 2 a from the main body portion 30.
- the sensor unit 31 detects a pressure change in the hollow portion 2 a via the pressure introduction pipe 32.
- the sensor unit 31 is electrically connected to a connector 34 provided in the connector unit 33, and transmits a signal proportional to pressure to the collision detection ECU 7 via the connector 34 and a transmission line (see FIG. 1).
- the second pressure sensor 4 has the same configuration as the first pressure sensor 3.
- the first pressure sensor 3 and the second pressure sensor 4 by installing two pressure sensors, the first pressure sensor 3 and the second pressure sensor 4, redundancy and detection accuracy are ensured, and the collision position of an object M (pedestrian) described later is set.
- the configuration can be estimated.
- the first pressure sensor 3 and the second pressure sensor 4 are electrically connected to the collision detection ECU 7 via a transmission line, and output a signal proportional to the pressure to the collision detection ECU 7.
- the speed sensor 5 is a sensor device that detects the speed of the vehicle, and is electrically connected to the collision detection ECU 7 via a signal line. The speed sensor 5 transmits a signal proportional to the vehicle speed to the collision detection ECU 7.
- the temperature sensor 6 is composed of a temperature detection element, for example.
- the temperature sensor 6 is provided in each of the first pressure sensor 3 and the second pressure sensor 4 and detects the temperature in the hollow portion 2a (see FIG. 4).
- the temperature sensor 6 is electrically connected to the collision detection ECU 7 via a signal line, and transmits a signal proportional to the temperature in the hollow portion 2a to the collision detection ECU 7.
- the collision detection ECU (Electronic Control Unit) 7 is composed mainly of a CPU, and controls the overall operation of the vehicle collision detection device 1. As shown in FIG. 5, the collision detection ECU 7 includes a collision determination unit 71, a collision position estimation unit 72, a threshold change unit 73, and a correction unit 74.
- the collision detection ECU 7 is electrically connected to each of the first pressure sensor 3, the second pressure sensor 4, the speed sensor 5, the temperature sensor 6, and the pedestrian protection device 12.
- the collision detection ECU 7 includes a pressure signal (pressure data) from the first pressure sensor 3 and the second pressure sensor 4, a speed signal (speed data) from the speed sensor 5, a temperature signal (temperature data) from the temperature sensor 6, etc. Is entered.
- the collision determination unit 71 of the collision detection ECU 7 determines whether or not the object M (pedestrian) has collided with the bumper 8 based on the pressure detection results by the first pressure sensor 3 and the second pressure sensor 4. . That is, the collision determination unit 71 determines that a pedestrian has collided with the bumper 8 when the pressure detection results by the first pressure sensor 3 and the second pressure sensor 4 are equal to or greater than a predetermined threshold. When the collision detection ECU 7 determines that a pedestrian has collided with the bumper 8, the collision detection ECU 7 operates the pedestrian protection device 12.
- the collision position estimation unit 72 estimates the collision position of the object M based on the phase shift of the pressure waveform detected by the two pressure sensors of the first pressure sensor 3 and the second pressure sensor 4. .
- the “phase shift” represents how much the two waveforms are shifted in time, and in this case, corresponds to the time difference of the rise of the detected value by the pressure sensors 3 and 4 of the pressure waveform generated at the time of collision. .
- the rise time of the pressure waveform of the first pressure sensor 3 is earlier than that of the second pressure sensor 4. This corresponds to the case where a collision occurs at a position closer to the first pressure sensor 3 than the second pressure sensor 4 as shown in FIG.
- the rise times of the pressure waveforms of the first pressure sensor 3 and the second pressure sensor 4 are substantially the same (the phase shift is 0). Is close to).
- there is a predetermined correlation, in this case a proportional relationship, between the phase shift and the collision position see FIG. 9).
- the threshold value changing unit 73 changes the threshold value used for collision determination according to the collision position of the object M estimated by the collision position estimation unit 72 before the collision determination unit 71 determines that the object M has collided with the bumper 8. To do. Specifically, the threshold changing unit 73 changes the area threshold based on the collision position of the object M estimated by the collision position estimating unit 72.
- the threshold value includes a main threshold value and at least one area threshold value that is smaller than the main threshold value and is set for each collision position of the object M.
- the correction unit 74 corrects the phase shift of each pressure waveform detected by the first pressure sensor 3 and the second pressure sensor 4 based on the temperature in the hollow portion 2 a detected by the temperature sensor 6. As described above, a time difference occurs at the rise of each pressure waveform with the difference in the vehicle width direction distance from the collision position of the object M to each pressure sensor 3 and 4 at the time of the collision.
- the correction unit 74 corrects the phase shift by correcting the speed of sound, which is the propagation speed of the pressure waveform, based on the temperature in the hollow portion 2a and calculating the time difference between the rises of the pressure waveforms.
- the bumper 8 is for reducing a shock at the time of a vehicle collision, and includes a bumper cover 9, a bumper absorber 10, a bumper reinforcement 11, and the like.
- the bumper cover 9 is provided so as to cover the components of the bumper 8, and is a resin member such as polypropylene.
- the bumper cover 9 constitutes the appearance of the bumper 8 and at the same time constitutes a part of the appearance of the entire vehicle.
- the bumper absorber 10 is provided on the front surface 11 a (vehicle front side) of the bumper reinforcement 11 and is disposed so as to surround the detection tube member 2.
- the bumper absorber 10 is a member responsible for shock absorption in the bumper 8, and is made of, for example, foamed polypropylene.
- the groove portion 10a has a rectangular cross section and is formed along the vehicle width direction.
- the groove part 10a shall have a bending part in the middle of the vehicle width direction.
- the cross-sectional shape of the groove part 10a is not restricted to a rectangle, For example, circular and a polygon may be sufficient.
- the bumper reinforcement 11 is a rigid member made of metal such as aluminum which is disposed in the bumper cover 9 and extends in the vehicle width direction. As shown in FIG. A hollow member having a letter-shaped cross section.
- the bumper reinforcement 11 has a vehicle front side surface (front surface 11a) and a vehicle effect side surface (rear surface 11b). As shown in FIGS. 1 and 2, the bumper reinforcement 11 is attached to the front end of a side member 13 that is a pair of metal members extending in the vehicle front-rear direction.
- the pressure sensors 3 and 4 are disposed on the rear surface 11b of the bumper reinforcement 11, and an impact (external force) due to a collision with a pedestrian or vehicle in front of the vehicle is provided in front of the vehicle.
- the presence of the bumper reinforcement 11 protects the direct transmission from the bumper cover 9 or the like to the pressure sensors 3 and 4.
- a pop-up hood As the pedestrian protection device 12, for example, a pop-up hood is used.
- This pop-up hood instantly raises the rear end of the engine hood after a vehicle collision is detected, increases the clearance (clearance) between the pedestrian and hard parts such as the engine, and uses that space to make the pedestrian's head The impact energy on the pedestrian is absorbed and the impact on the pedestrian's head is reduced.
- a cowl airbag or the like that cushions a pedestrian's impact by deploying the airbag from the engine hood outside the vehicle body to the lower part of the front window may be used.
- the operation at the time of collision of the vehicle collision detection apparatus 1 in the present embodiment will be described.
- the bumper cover 9 of the bumper 8 is deformed by an impact caused by the collision with the pedestrian.
- the bumper absorber 10 is deformed while absorbing the impact, and at the same time, the detection tube member 2 is also deformed.
- the pressure in the hollow portion 2 a of the detection tube member 2 increases rapidly, and this pressure change is transmitted to the first pressure sensor 3 and the second pressure sensor 4.
- a pedestrian who estimates the pedestrian collision position and requires the pedestrian protection device 12 to operate based on the pressure detection results of the first pressure sensor 3 and the second pressure sensor 4. It is determined whether or not a collision has occurred.
- the collision detection ECU 7 of the vehicle collision detection device 1 acquires the vehicle speed based on the output from the speed sensor 5 (step S ⁇ b> 1, the following steps are omitted), and the vehicle speed is within a predetermined operating range. Is determined (S2).
- the operating range of the vehicle speed is, for example, a range of 25 km to 55 km / h. This operating range is set based on the fact that the speed at which the pedestrian protection function of the pedestrian protection device 12 acts effectively is determined by conditions such as the vehicle shape.
- effective mass refers to the mass calculated from the detected values of the first pressure sensor 3 and the second pressure sensor 4 at the time of collision using the relationship between momentum and impulse.
- the detected value of the pressure sensor 3 is different for a collision object having a mass different from that of a pedestrian. For this reason, by setting a threshold value between the effective mass of the human body and the mass of another assumed collision object, it is possible to classify the types of the collision object.
- the above-mentioned “effective mass” is calculated by dividing the interval integral value at a predetermined time of the pressure value detected by the first pressure sensor 3 and the second pressure sensor 4 by the vehicle speed, as shown in the following equation. .
- M ( ⁇ P (t) dt) / V (Expression 1)
- P is a value detected by the first pressure sensor 3 and the second pressure sensor 4 at a predetermined time
- t is a predetermined time (for example, several ms to several tens of ms)
- V is a vehicle speed at the time of collision. Is shown.
- the collision determination unit 71 of the collision detection ECU 7 determines whether or not the calculated effective mass is greater than or equal to the main threshold (S5). When the effective mass is less than the main threshold (S5: No), the “area threshold setting process” shown in FIG. 7 is performed.
- the collision position estimation unit 72 calculates a phase shift between the two pressure waveforms detected by the first pressure sensor 3 and the second pressure sensor 4 (S13). Specifically, the collision position estimation unit 72 uses (Equation 2), so that the pressure change associated with the occurrence of the collision is detected by the first pressure sensor 3 and the second pressure sensor 4, and the rise time difference t. Is calculated. This time difference t corresponds to “phase shift”.
- the collision position estimation unit 72 calculates the object M (pedestrian) according to the above proportional relationship. Is estimated (calculated) (S14).
- the pressure output accompanying the collision of the first pressure sensor 3 and the second pressure sensor 4 varies depending on the collision position of the bumper 8 (bumper cover 9) in the vehicle width direction.
- the pressure output is higher than the portion that is flat with respect to the vehicle width direction on the vehicle center side. May become smaller.
- the threshold value for collision determination on the vehicle end side may be smaller than the threshold value on the vehicle center side.
- the threshold value changing unit 73 of the collision detection ECU 7 sets the area threshold of the effective mass according to the collision position. Specifically, first, assuming that the distance from the center in the vehicle width direction of the collision position is L, 0 ⁇ L ⁇ 400 [mm] is area A, 400 ⁇ L ⁇ 800 is area B, and 800 ⁇ L is area C. As a result, the vehicle width direction position of the bumper 8 (bumper cover 9) is divided into three. Area A corresponds to the center in the vehicle width direction. Area C corresponds to both ends (corner portions) in the vehicle width direction. Area B corresponds to the area between area A and area C. As the area threshold, the first threshold is used for area A, the second threshold is used for area B, and the third threshold is used for area C.
- the threshold value changing unit 73 determines whether or not the collision position is the area A (S15). When the collision position is area A (S15: Yes), the threshold value changing unit 73 sets the area threshold value to the first threshold value (S16). When the collision position is not the area A (S15: No), the threshold value changing unit 73 determines whether or not the collision position is the area B (S17). When the collision position is area B (S17: Yes), the threshold value changing unit 73 sets the area threshold value to the second threshold value (S18). It is assumed that the second threshold value is smaller than the first threshold value.
- the threshold changing unit 73 determines that the collision position is the area C (S19), and sets the area threshold to the third threshold (S20). It is assumed that the third threshold value is smaller than the second threshold value.
- a filter circuit such as a high-pass filter is used, although not shown.
- the high-pass filter is used as a filter circuit that passes a high numerical value among the phase shift calculation values.
- a collision position calculated from the phase shift that is, a high-pass filter that passes an output signal having a distance L value of 800 or more may be used.
- the collision determination unit 71 of the collision detection ECU 7 sets the area threshold values (the first threshold value, the second threshold value, and the third threshold value) in which the “effective mass” value calculated in S4 is set in the “area threshold value setting process”. It is determined whether or not any value) (S7).
- the collision determination unit 71 determines that a collision between the vehicle and the pedestrian has occurred (S8), and outputs a control signal that activates the pedestrian protection device 12. Then, the pedestrian protection device 12 is operated (S9). Thereby, the impact to the pedestrian due to the collision between the vehicle and the pedestrian is reduced.
- the process returns to S1.
- the vehicle collision detection apparatus 1 is disposed to extend in the vehicle width direction on the vehicle front side of the bumper reinforcement 11 in the bumper 8 of the vehicle, and has a hollow portion therein.
- the pressure sensors 3 and 4 for detecting the pressure in the hollow portion 2a, and the pressure detection result by the pressure sensors 3 and 4, the bumper 8
- a collision determination unit (71, S5, S7) for determining whether or not an object M (pedestrian) collides with the vehicle.
- a plurality of pressure sensors in this case, two pressure sensors (the first pressure sensor 3 and the second pressure sensor 4) respectively detect pressures at two positions separated in the vehicle width direction in the hollow portion 2a.
- the collision position estimation part (72, S14) which estimates a collision position based on the phase shift of each pressure waveform each detected by the two pressure sensors 3 and 4 with the collision occurrence to the bumper 8 was provided. It is characterized by that.
- each pressure waveform detected by the two pressure sensors (the first pressure sensor 3 and the second pressure sensor 4) by the collision position estimation unit 72 when the pedestrian collides with the bumper 8 is generated.
- the collision position of the pedestrian can be estimated based on the phase shift.
- the collision position in the vehicle width direction of the bumper 8 can be estimated with a simple configuration, and an appropriate collision determination according to the collision position can be performed. Therefore, the collision determination unit 71 can accurately determine the collision of the object M against the bumper 8, and the collision detection accuracy of the vehicle collision detection apparatus 1 can be improved with a simple configuration.
- One of the first pressure sensor 3 and the second pressure sensor 4 is disposed at the right end of the detection tube member 2 in the vehicle width direction, and the other is disposed at the left end of the detection tube member 2 in the vehicle width direction. It is characterized by being arranged.
- the first pressure sensor 3 and the second pressure sensor 4 are arranged with a sufficient separation distance in the vehicle width direction of the detection tube member 2. It is possible to easily detect the phase shift of the detected pressure waveform. As a result, the collision position can be reliably estimated by the collision position estimation unit 72.
- the pressure sensors 3 and 4 are fixed to the rear surface 11b (rear side of the vehicle) of the bumper reinforcement 11, even if an object such as a pedestrian collides with the bumper 8 near the vehicle width direction end, The impact is reduced by the palinforce 11, and the impact from the bumper cover 9 is not directly transmitted to the pressure sensors 3 and 4. For this reason, it can prevent that external force is added to the pressure sensors 3 and 4 by deformation
- One of the first pressure sensor 3 and the second pressure sensor 4 is disposed at the right end of the detection tube member 2 in the vehicle width direction, and the other is disposed at the left end of the detection tube member 2 in the vehicle width direction. It is characterized by being arranged.
- the first pressure sensor 3 and the second pressure sensor 4 are arranged with a sufficient separation distance in the vehicle width direction of the detection tube member 2. It is possible to easily detect the phase shift of the detected pressure waveform. As a result, the collision position can be reliably estimated by the collision position estimation unit 72.
- the pressure sensors 3 and 4 are fixed to the rear surface 11b (rear side of the vehicle) of the bumper reinforcement 11, even if an object such as a pedestrian collides with the bumper 8 near the vehicle width direction end, The impact is reduced by the palinforce 11, and the impact from the bumper cover 9 is not directly transmitted to the pressure sensors 3 and 4. For this reason, it can prevent that external force is added to the pressure sensors 3 and 4 by deformation
- the first pressure sensor 3 and the second pressure sensor 4 are for detecting the pressure at a position separated by a predetermined distance in the vehicle width direction in the hollow portion 2a.
- the collision determination unit 71 determines that the object M has collided with the bumper 8 based on the pressure detection results by the first pressure sensor 3 and the second pressure sensor 4. Then, the collision position estimation unit 72 estimates the collision position of the object M based on the phase shift between the pressure waveform detected by the first pressure sensor 3 and the pressure waveform detected by the second pressure sensor 4.
- the first pressure sensor 3 and the second pressure sensor 4 detect the pressure at a position separated by a predetermined distance in the vehicle width direction in the hollow portion 2a. It is possible to accurately estimate the collision position of the object M by the collision position estimation unit 72 by verifying in advance that there is a predetermined correlation (in this case, a proportional relation) between
- the collision position estimation unit 72 calculates the collision time of the object M based on calculating the rise time difference between the pressure waveform detected by the first pressure sensor 3 and the pressure waveform detected by the second pressure sensor 4. Is estimated.
- the estimation unit 72 can accurately estimate the collision position of the object M.
- the collision determination unit 71 determines that the object M has collided with the bumper 8 when the pressure detection results by the plurality of pressure sensors 3 and 4 are equal to or greater than a predetermined threshold. Before determining that the object M has collided with the bumper 8, a threshold value changing unit 73 that changes the threshold value according to the collision position of the object M estimated by the collision position estimating unit 72 is provided.
- the threshold value changing unit 73 changes the threshold value for collision determination (area threshold value) according to the collision position of the object M estimated by the collision position estimation unit 72, so the collision of the bumper 8 in the vehicle width direction. It is possible to prevent the collision detection accuracy from being lowered according to the position.
- the collision determination threshold value includes a main threshold value and at least one area threshold value that is smaller than the main threshold value and is set for each collision position of the object M (pedestrian).
- the threshold value changing unit 73 is characterized by changing the area threshold value based on the collision position of the object M estimated by the collision position estimating unit 72.
- the threshold value changing unit 73 can change the area threshold value based on the collision position of the object M estimated by the collision position estimating unit 72, so that the output value varies depending on the vehicle width direction position.
- the threshold values of the sensors 3 and 4 can be appropriately set according to the collision position. Thereby, the collision detection accuracy of the vehicle collision detection device 1 can be effectively improved, and the pedestrian can be detected more accurately in the entire vehicle width direction of the bumper 8.
- a correction unit 74 that corrects the phase shift.
- the correction unit 74 corrects the time until the pressure waveform generated at the time of collision reaches the pressure sensors 3 and 4 in consideration of the temperature in the hollow portion 2a detected by the temperature sensor 6. be able to. Thereby, the calculation of the phase shift by the collision position estimation unit 72 can be performed more accurately, and the collision position of the object M can be estimated more accurately.
- One of the first pressure sensor 3 and the second pressure sensor 4 detects pressure on the right side of the center in the vehicle width direction in the hollow portion 2a, and the other side is on the left side of the center in the vehicle width direction in the hollow portion 2a. The pressure is detected in the above.
- the pressure detection positions of the first pressure sensor 3 and the second pressure sensor 4 are made different so that the pressure detected by the two pressure sensors 3 and 4 depending on the collision position of the object M on the bumper 8.
- a phase shift can be caused in the waveform.
- One of the first pressure sensor 3 and the second pressure sensor 4 is disposed at the right end of the detection tube member 2 in the vehicle width direction, and the other is disposed at the left end of the detection tube member 2 in the vehicle width direction. It is characterized by being arranged.
- the first pressure sensor 3 and the second pressure sensor 4 are arranged with a sufficient separation distance in the vehicle width direction of the detection tube member 2. It is possible to easily detect the phase shift of the detected pressure waveform. As a result, the collision position can be reliably estimated by the collision position estimation unit 72.
- a bumper absorber 10 is provided in the vehicle bumper 8 so as to extend in the vehicle width direction on the vehicle front side of the bumper reinforcement 11, and the hollow member is a tube-shaped detection tube member 2.
- the bumper absorber 10 is mounted in a groove portion 10a formed along the vehicle width direction.
- the threshold is changed by dividing the bumper 8 from the vehicle width direction center to the vehicle width direction end into three sections of area A, area B, and area C.
- the present invention is not limited to this, and it may be divided into four or more.
- the threshold value of each area can be set as appropriate.
- the threshold value in the design portion at the center of the bumper 8 in the vehicle width direction may be set small. In this case, it is considered that the output of the pressure sensors 3 and 4 is small because the structure of the central portion of the vehicle front end is harder than the other portions.
- the area surrounded by the upper right enclosure line on the two-dimensional map of FIG. 12 corresponds to the case where a collision occurs in area A (center collision). Further, the area surrounded by the lower left surrounding line on the two-dimensional map corresponds to the case where a collision occurs in area B. Further, the area surrounded by the lower right and upper left surrounding lines on the two-dimensional map corresponds to the case where a collision occurs in area C (corner collision).
- the collision position estimation unit 72 estimates the collision position of the pedestrian by using the fact that the coordinates on the two-dimensional map are different for each collision position. That is, the collision position is estimated by grasping in advance the pressure output values of the first pressure sensor 3 and the second pressure sensor 4 for each collision position in the vehicle width direction of the bumper 8 (bumper cover 9). Is. In this case, the difference in output value between the first pressure sensor 3 and the second pressure sensor 4 corresponds to “phase shift”.
- the collision position estimation unit 72 uses the detection value from the first pressure sensor 3 as one axis (horizontal axis) and the detection value from the second pressure sensor 4.
- the collision position of the object M (pedestrian) is estimated based on a two-dimensional map having the other axis (vertical axis).
- the same effect as that of the first embodiment can be obtained, and the time difference of the rise of the pressure waveform between the first pressure sensor 3 and the second pressure sensor 4 as in the first embodiment.
- S11 to S13 can be omitted in the area threshold setting process shown in FIG. Therefore, the collision position of a pedestrian can be estimated with a simpler configuration.
- the arrangement position of the detection tube member 2 may be changed.
- the detection tube member 2 may be disposed at the upper center of the bumper absorber 10 on the vehicle front side of the bumper reinforcement 11.
- the cross-sectional shape of the detection tube member 2 can be changed as appropriate.
- the tube member for detection 21 having a substantially square cross-sectional shape and having a hollow portion 21 a formed therein is provided at the center upper portion of the bumper absorber 10 on the vehicle front side of the bumper reinforcement 11. You may arrange.
- the detection tube member 21 having a polygonal cross-sectional shape may be used.
- FIGS. 15 to 17 the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted, and only different parts are described.
- the hollow member is constituted by a chamber member 20 formed in a box shape.
- the chamber member 20 is a box-shaped member having a hollow portion 20a (chamber space) formed therein and extending in the vehicle width direction (vehicle left-right direction).
- the chamber member 20 is disposed on the front surface 11a (the vehicle front side) of the bumper reinforcement 11 in the bumper cover 9 of the vehicle and on the upper portion of the bumper absorber 10 (see FIG. 17).
- the chamber member 20 is made of a soft resin such as low density polyethylene, for example.
- the chamber member 20 has a substantially square cross-sectional shape, and the vertical and horizontal lengths of the chamber member 20 (corresponding to the outer diameter in the case of a circular tube) are, for example, about 50 mm.
- the chamber member 20 is provided with an extending portion 20b that communicates with the hollow portion 20a.
- Two extending portions 20 b are disposed on the left end side and the right end side in the vehicle width direction of the chamber member 20, and extend from the upper surface of the chamber member 20 to above the bumper reinforcement 11.
- the extended portion 20b is integrally formed with the chamber member 20 by blow molding.
- An opening (not shown) is formed on the upper surface of the extended portion 20b, and a first pressure sensor 3 and a second pressure sensor 4 to be described later are attached in a state where the pressure introduction pipes 32 and 42 are inserted into the opening. It is done. It is assumed that the space between the pressure introduction pipes 32 and 42 and the opening is sealed.
- the hollow portion 20a is surrounded by the chamber member 20, but is not hermetically sealed, and communicates with the outside air at some narrow portion. As a result, a difference in atmospheric pressure from the outside air due to an altitude difference or a change in temperature is prevented so that the collision detection is not affected by the change in altitude or temperature. Further, the hollow portion 20a communicates with the pressure introduction pipes 32 and 42 of the first pressure sensor 3 and the second pressure sensor 4 through the extending portion 20b.
- the first pressure sensor 3 and the second pressure sensor 4 are sensor devices that detect changes in gas pressure.
- the first pressure sensor 3 has a pressure introduction pipe 32.
- the second pressure sensor 4 has a pressure introduction pipe 42.
- the pressure introducing pipes 32 and 42 are inserted into the opening of the extending portion 20b described above, and communicate with the inside of the hollow portion 20a. Thereby, the 1st pressure sensor 3 and the 2nd pressure sensor 4 are comprised so that detection of the pressure change of the air in the hollow part 20a of the chamber member 20 is possible.
- the first pressure sensor 3 is disposed at the right end of the chamber member 20 in the vehicle width direction, and detects the pressure on the right in the vehicle width direction in the hollow portion 20a.
- the second pressure sensor 4 is disposed at the left end in the vehicle width direction of the chamber member 20 and detects the pressure on the left in the vehicle width direction in the hollow portion 20a.
- the third embodiment redundancy and detection accuracy are ensured by installing two pressure sensors, the first pressure sensor 3 and the second pressure sensor 4, as in the first embodiment.
- the collision position of an object M (pedestrian) described later can be estimated.
- the first pressure sensor 3 and the second pressure sensor 4 are electrically connected to the collision detection ECU 7 via a transmission line, and output a signal proportional to the pressure to the collision detection ECU 7.
- the operation at the time of collision of the vehicle collision detection apparatus 1 in the third embodiment is the same as that of the first embodiment. That is, when an object M such as a pedestrian collides with the front of the vehicle, the bumper cover 9 of the bumper 8 is deformed by an impact caused by the collision with the pedestrian. Subsequently, the bumper absorber 10 is deformed while absorbing the impact, and at the same time, the chamber member 20 is also deformed. At this time, the pressure in the hollow portion 20 a rapidly rises, and this pressure change is transmitted to the first pressure sensor 3 and the second pressure sensor 4.
- the collision determination process and the area threshold setting process performed by the vehicle collision detection apparatus 1 according to the third embodiment are the same as those in the first embodiment shown in the flowcharts of FIGS. 6 and 7. It is the same.
- the bumper reinforcement 11 in the vehicle bumper 8 is disposed on the vehicle front side in the vehicle width direction and has a hollow portion 20a therein.
- a chamber member 20 formed in a box shape, pressure sensors 3 and 4 for detecting the pressure in the hollow portion 20a, and the object M to the bumper 8 based on the pressure detection result by the pressure sensors 3 and 4
- the pressure sensors 3 and 4 are composed of two pressure sensors that respectively detect pressures at two locations separated in the vehicle width direction in the hollow portion 20a.
- the collision position estimation part (72, S14) which estimates a collision position based on the phase shift of each pressure waveform each detected by the two pressure sensors 3 and 4 with the collision occurrence to the bumper 8 was provided. It is characterized by that. According to the third embodiment, the same effect as that of the first embodiment can be obtained.
- the present disclosure is not limited to the above-described embodiment, and various modifications or extensions can be made without departing from the gist of the present disclosure.
- a modification of the above embodiment will be described below.
- the present disclosure is not limited to this, and the present disclosure can be applied even when three or more pressure sensors are provided.
- positioning location of the 1st pressure sensor 3 and the 2nd pressure sensor 4 shall be changed suitably.
- the collision determination it is determined that a collision with a pedestrian that requires the operation of the pedestrian protection device 12 occurs when the effective mass is equal to or greater than a predetermined threshold, but not limited thereto, for example, You may make it use a pressure value, a pressure change rate, etc. as a threshold value of collision determination.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
車両用衝突検知装置(1)は、車両のバンパ(8)内におけるバンパリンフォースメント(11)の車両前方側に車幅方向に延びて配設され、内部に中空部(2a,20a,21a)が形成された中空部材(2,20,21)と、中空部(2a,20a,21a)内の圧力を検出する圧力センサ(3,4)と、圧力センサ(3,4)による圧力検出結果に基づいて、バンパ(8)への物体(M)の衝突発生の有無を判定する衝突判定部(71,S5,S7)とを有する。圧力センサ(3,4)は、中空部(2a,20a,21a)内の車幅方向に離隔する複数箇所でそれぞれ圧力を検出する複数の圧力センサ(3,4)からなり、車両用衝突検知装置(1)は、バンパ(8)への衝突発生に伴って複数の圧力センサ(3,4)によりそれぞれ検出される各圧力波形の位相ずれに基づいて、衝突位置を推定する衝突位置推定部(72,S14)を備える。
Description
本出願は、2014年11月11日に出願された日本特許出願番号2014-228698号に基づくもので、ここにその記載内容を援用する。
本開示は、車両と歩行者との衝突事故の発生を検知するための車両用衝突検知装置に関する。
従来、歩行者が車両に衝突した際に、歩行者への衝撃を軽減するための歩行者保護装置を備えた車両がある。この車両では、バンパ部にセンサを備えた衝突検知装置を設け、このセンサにより車両に歩行者等が衝突したことが検知された場合、歩行者保護装置を作動させ、歩行者への衝撃を和らげる構成となっている。この歩行者保護装置には、例えばポップアップフードと呼ばれるものがある。このポップアップフードは、車両の衝突検知時に、エンジンフードの後端を上昇させ、歩行者とエンジン等の硬い部品との間隔(クリアランス)を増加させ、そのスペースを用いて歩行者の頭部への衝突エネルギーを吸収し、頭部への衝撃を低減させるものである。
上記した車両用衝突検知装置には、車両バンパ内におけるバンパリンフォースメントの前面に、内部にチャンバ空間が形成されたチャンバ部材を配設し、このチャンバ空間内の圧力を圧力センサにより検出するようにしたものがある。この車両用衝突検知装置では、バンパ(バンパカバー)へ歩行者等の物体が衝突すると、バンパカバーの変形に伴ってチャンバ部材が変形し、チャンバ空間に圧力変化が発生する。この圧力変化を圧力センサが検出することで歩行者の衝突を検知している。
このような車両用衝突検知装置において、圧力センサにより検出された圧力振動がもつ共振周波数に基づいて、バンパの車幅方向における衝突位置を検知可能に構成したものがある。この構成のものでは、算出した衝突位置に応じて衝突判定の閾値を補正することにより、衝突検知精度を向上させている(例えば特許文献1参照)。
しかしながら、上記した構成の車両用衝突検知装置では、圧力センサにより検出された圧力振動がもつ共振周波数を正確に算出する必要があり、構成が複雑になるという問題がある。
本開示は、上述した問題点に鑑みてなされたものであり、簡易な構成で衝突位置を推定可能な車両用衝突検知装置を提供することを目的とする。
上記目的を解決するためになされた本開示の1つの態様における車両用衝突検知装置は、車両のバンパ内におけるバンパリンフォースメントの車両前方側に車幅方向に延びて配設され、内部に中空部が形成された中空部材と、中空部内の圧力を検出する圧力センサと、圧力センサによる圧力検出結果に基づいて、バンパへの物体の衝突発生の有無を判定する衝突判定部とを有する。圧力センサは、中空部内の車幅方向に離隔する複数箇所でそれぞれ圧力を検出する複数の圧力センサからなる。そして、バンパへの衝突発生に伴って複数の圧力センサによりそれぞれ検出される各圧力波形の位相ずれに基づいて、衝突位置を推定する衝突位置推定部を備えたことを特徴とする。
この構成によれば、衝突位置推定部により、バンパへの物体の衝突発生に伴って複数の圧力センサによりそれぞれ検出される各圧力波形の位相ずれに基づいて衝突位置を推定することができる。これにより、バンパの車幅方向における衝突位置を簡易な構成で推定でき、衝突位置に応じた適切な衝突判定を行うことができる。従って、衝突判定部によるバンパへの物体の衝突判定を正確に行うことができ、簡易な構成で車両用衝突検知装置の衝突検知精度を向上させることができる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1の実施形態の車両用衝突検知装置の全体構成を示す概略図である。
図1のバンパ部の拡大図である。
図2のバンパ部のIII‐III断面図である。
第1の実施形態の圧力センサの内部構造を示す断面図である。
第1の実施形態の車両用衝突検知装置の電気的構成を示す図である。
第1の実施形態の衝突判定処理の流れを示すフローチャートである。
第1の実施形態のエリア閾値設定処理の流れを示すフローチャートである。
第1の実施形態の物体の衝突位置を示す模式図である。
第1の実施形態の位相ずれと衝突位置との関係を示す図である。
第1の実施形態のセンター衝突時の圧力波形を示す図である。
第1の実施形態のコーナ衝突時の圧力波形を示す図である。
第2の実施形態における圧力検出結果に基づくマップ図である。
検出用チューブ部材の配置構造の第2の実施形態の変形例を示す断面図である。
検出用チューブ部材の配置構造の第2の実施形態の他の変形例を示す断面図である。
第3の実施形態における図1相当図である。
第3の実施形態における図2相当図である。
図16のバンパ部のXVII‐XVII断面図である。
(第1の実施形態)
以下、第1の実施形態の車両用衝突検知装置について、図1~図11を参照して説明する。図1及び図2に示すように、本実施形態の車両用衝突検知装置1は、検出用チューブ部材2(中空部材に相当)、第1圧力センサ3、第2圧力センサ4、速度センサ5、温度センサ6、衝突検知ECU7、バンパアブソーバ10等を備えて構成される。この車両用衝突検知装置1は、車両前方に設けられたバンパ8への物体M(歩行者)の衝突を検知するものである(図8参照)。このバンパ8は、図3にも示すように、バンパカバー9、バンパアブソーバ10、バンパリンフォースメント11を主体として構成されている。
以下、第1の実施形態の車両用衝突検知装置について、図1~図11を参照して説明する。図1及び図2に示すように、本実施形態の車両用衝突検知装置1は、検出用チューブ部材2(中空部材に相当)、第1圧力センサ3、第2圧力センサ4、速度センサ5、温度センサ6、衝突検知ECU7、バンパアブソーバ10等を備えて構成される。この車両用衝突検知装置1は、車両前方に設けられたバンパ8への物体M(歩行者)の衝突を検知するものである(図8参照)。このバンパ8は、図3にも示すように、バンパカバー9、バンパアブソーバ10、バンパリンフォースメント11を主体として構成されている。
検出用チューブ部材2は、内部に中空部2aが形成され、車幅方向(車両左右方向)に延びているチューブ状の部材であり、バンパアブソーバ10の溝部10aに装着されるものである。また、検出用チューブ部材2は、車両のバンパ8内におけるバンパリンフォースメント11の前面11a(車両前方側)に配設される。この検出用チューブ部材2の両端部は、バンパリンフォースメント11の車幅方向左右の外側にて、略コ字状に湾曲して後述する第1圧力センサ3及び第2圧力センサ4に接続される。
この検出用チューブ部材2は、円形の断面形状を有し、合成ゴム、例えばシリコーンゴムからなる。また、検出用チューブ部材2の外径は、例えば10mm程度であるとする。なお、検出用チューブ部材2の材質としては、他にもエチレンプロピレンゴム(EPDM)でもよく、シリコーンゴムとEPDMとを混ぜ合わせたものを用いてもよい。
これら第1圧力センサ3及び第2圧力センサ4は、図1及び図2に示すように、バンパリンフォースメント11の前面11aよりも車両後方側に配置される。具体的には、第1圧力センサ3は、バンパリンフォースメント11の右側端部の後面11bに設置される。第2圧力センサ4は、バンパリンフォースメント11の左側端部の後面11bに設置される。なお、第1圧力センサ3及び第2圧力センサ4は、ボルト(図示しない)を締結することによりバンパリンフォースメント11の後面11bに固定されて取り付けられる。
第1圧力センサ3及び第2圧力センサ4は、気体の圧力変化を検出するセンサ装置である。具体的には、第1圧力センサ3は、検出用チューブ部材2の車幅方向右側端部に接続され、中空部2a内における車幅方向右側の圧力を検出する。第2圧力センサ4は、検出用チューブ部材2の車幅方向左側端部に接続され、中空部2a内における車幅方向左側の圧力を検出する。このように2つの圧力センサ3,4により、中空部2a内において所定の距離離れた2つの位置の圧力を検出する。
第1圧力センサ3は、図4に示すように、本体部30と、センサ部31と、圧力導入管32と、コネクタ部33とを備えて構成される。本体部30は、センサ部31を収容するための箱状のケースである。センサ部31は、圧力検出用のセンサ素子等が設けられた基板等からなる。また、センサ部31には、温度検出素子からなる温度センサ6が設けられている。この温度センサ6により、中空部2a内の温度が検出される。
圧力導入管32は、検出用チューブ部材2の中空部2a内の圧力をセンサ部31に導入する略円筒状の管であり、本体部30から中空部2a内に差し込まれている。センサ部31は、圧力導入管32を介して中空部2aの圧力変化を検出する。このセンサ部31は、コネクタ部33に設けられたコネクタ34に電気的に接続されており、圧力に比例した信号をコネクタ34及び伝送線を介して衝突検知ECU7へ送信する(図1参照)。なお、図示しないが、第2圧力センサ4も、第1圧力センサ3と同様の構成となっている。
本実施形態では、第1圧力センサ3と第2圧力センサ4との2つの圧力センサを設置することにより、冗長性及び検出精度を確保するとともに、後述する物体M(歩行者)の衝突位置を推定可能な構成となっている。これら第1圧力センサ3及び第2圧力センサ4は、図1に示すように、伝送線を介して衝突検知ECU7に電気的に接続され、圧力に比例した信号を衝突検知ECU7へ出力する。
速度センサ5は、車両の速度を検出するセンサ装置であり、衝突検知ECU7に信号線を介して電気的に接続されている。この速度センサ5は、車両速度に比例した信号を衝突検知ECU7へ送信する。
温度センサ6は、例えば温度検出素子からなる。この温度センサ6は、第1圧力センサ3及び第2圧力センサ4の内部にそれぞれ設けられ、中空部2a内の温度を検出する(図4参照)。温度センサ6は、衝突検知ECU7に信号線を介して電気的に接続され、中空部2a内の温度に比例した信号を衝突検知ECU7へ送信する。
衝突検知ECU(Electronic Control Unit)7は、CPUを主体として構成され、車両用衝突検知装置1の動作全般を制御するものである。この衝突検知ECU7は、図5に示すように、衝突判定部71と、衝突位置推定部72と、閾値変更部73と、補正部74とを有している。
また、衝突検知ECU7は、第1圧力センサ3、第2圧力センサ4、速度センサ5、温度センサ6、歩行者保護装置12のそれぞれに電気的に接続されている。衝突検知ECU7には、第1圧力センサ3及び第2圧力センサ4からの圧力信号(圧力データ)、速度センサ5からの速度信号(速度データ)、温度センサ6からの温度信号(温度データ)等が入力される。
衝突検知ECU7の衝突判定部71は、第1圧力センサ3及び第2圧力センサ4による圧力検出結果が基づいて、バンパ8への物体M(歩行者)の衝突発生の有無を判定するものである。すなわち、衝突判定部71は、第1圧力センサ3及び第2圧力センサ4による圧力検出結果が所定の閾値以上である場合に、バンパ8へ歩行者が衝突したことを判定する。そして、衝突検知ECU7は、バンパ8へ歩行者が衝突したと判定した場合、歩行者保護装置12を作動させる。
また、衝突位置推定部72は、第1圧力センサ3と第2圧力センサ4との2つの圧力センサにより検出される圧力波形の位相ずれに基づいて、物体Mの衝突位置を推定するものである。「位相ずれ」とは、2つの波形が時間的にどの程度ずれているかを表すものであり、この場合、衝突時に生じる圧力波形の各圧力センサ3,4による検出値の立ち上がりの時間差に相当する。
例えば、図11に示すコーナ衝突(車幅方向端部側での衝突)の場合、第2圧力センサ4よりも第1圧力センサ3の圧力波形の立ち上がり時間が早くなっている。これは、図8に示すように、第2圧力センサ4よりも第1圧力センサ3に近い位置で衝突が発生した場合に該当する。一方、図10に示すセンター衝突(車幅方向中央での衝突)の場合、第1圧力センサ3及び第2圧力センサ4の各圧力波形の立ち上がり時間が略同じになっている(位相ずれが0に近くなっている)。このように、位相ずれと衝突位置との間には所定の相関関係、この場合比例関係がある(図9参照)。
閾値変更部73は、衝突判定部71によりバンパ8へ物体Mが衝突したことを判定する前に、衝突位置推定部72により推定された物体Mの衝突位置に応じて衝突判定に用いる閾値を変更する。具体的には、閾値変更部73は、衝突位置推定部72により推定された物体Mの衝突位置に基づいて、エリア閾値を変更する。閾値は、メイン閾値と、メイン閾値よりも小さい値であって物体Mの衝突位置ごとに設定された少なくとも1つ以上のエリア閾値とを有している。
補正部74は、温度センサ6により検出される中空部2a内の温度に基づいて、第1圧力センサ3及び第2圧力センサ4によりそれぞれ検出される各圧力波形の位相ずれを補正する。上述の通り、衝突時において物体Mの衝突位置から各圧力センサ3,4までの車幅方向距離の相違に伴って各圧力波形の立ち上がりに時間差が生じる。補正部74は、圧力波形の伝播速度である音速を中空部2a内の温度に基づいて補正して各圧力波形の立ち上がりの時間差を算出することにより、位相ずれを補正する。
バンパ8は、車両の衝突時における衝撃を和らげるためのものであり、バンパカバー9、バンパアブソーバ10、バンパリンフォースメント11等から構成される。バンパカバー9は、バンパ8の構成部品を覆うように設けられ、例えばポリプロピレン等の樹脂製の部材である。このバンパカバー9は、バンパ8の外観を構成すると同時に、車両全体の外観の一部を構成するものとなっている。
バンパアブソーバ10は、図3に示すように、バンパリンフォースメント11の前面11a(車両前方側)に設けられ、検出用チューブ部材2を囲むように配設される。このバンパアブソーバ10は、バンパ8において衝撃吸収の作用を受け持つ部材であり、例えば発泡ポリプロピレン等からなる。このバンパアブソーバ10の後面には、検出用チューブ部材2を装着するための溝部10aが形成されている。この溝部10aは、矩形形状の断面を有し、車幅方向に沿って形成されている。なお、溝部10aは、車幅方向の途中に屈曲部を有していてもよいものとする。また、溝部10aの断面形状は矩形に限られず、例えば円形や多角形であってもよい。
バンパリンフォースメント11は、バンパカバー9内に配設されて車幅方向に延びるアルミニウム等の金属製の剛性部材であって、図3に示すように、内部中央に梁が設けられた日の字状断面を有する中空部材である。また、バンパリンフォースメント11は、車両前方側の面(前面11a)と、車両功側の面(後面11b)とを有している。このバンパリンフォースメント11は、図1及び図2に示すように、車両前後方向に延びる一対の金属製部材であるサイドメンバ13の前端に取り付けられる。
通常、車両の衝突事故においては、車両の進行方向(車両前方)に存在する歩行者や車両と衝突する場合が多い。このため、本実施形態では、圧力センサ3,4をバンパリンフォースメント11の後面11bに配設して、車両前方の歩行者や車両との衝突に伴う衝撃(外力)が、車両前方に設けられたバンパカバー9等から圧力センサ3,4に直接伝わることをバンパリンフォースメント11の存在によって保護している。
歩行者保護装置12としては、例えばポップアップフードを用いる。このポップアップフードは、車両の衝突検知後瞬時に、エンジンフードの後端を上昇させ、歩行者とエンジン等の硬い部品との間隔(クリアランス)を増加させ、そのスペースを用いて歩行者の頭部への衝突エネルギーを吸収し、歩行者の頭部への衝撃を低減させるものである。なお、ポップアップフードの代わりに、車体外部のエンジンフード上からフロントウインド下部にかけてエアバッグを展開させて歩行者の衝撃を緩衝するカウルエアバッグ等を用いてもよい。
ここで、本実施形態における車両用衝突検知装置1の衝突時の動作について説明する。車両前方に物体M(歩行者等)が衝突した際には、バンパ8のバンパカバー9が歩行者との衝突に伴う衝撃により変形する。続いて、バンパアブソーバ10が衝撃を吸収しながら変形すると同時に、検出用チューブ部材2も変形する。このとき、検出用チューブ部材2の中空部2a内の圧力が急上昇し、この圧力変化が第1圧力センサ3及び第2圧力センサ4に伝達する。
次に、上記構成を有する車両用衝突検知装置1による衝突判定処理の流れについて、図6及び図7のフローチャートも参照して説明する。ただし、これらのフローチャートは一例であり、これらに限定されるものではない。本実施形態の衝突判定処理においては、第1圧力センサ3及び第2圧力センサ4の圧力検出結果に基づいて、歩行者の衝突位置を推定するとともに、歩行者保護装置12の作動を要する歩行者との衝突が発生したか否かの判定を行う。
まず、図6のフローチャートにおいて、車両用衝突検知装置1の衝突検知ECU7は、速度センサ5からの出力により車両速度を取得し(ステップS1、以下ステップを省略)、車両速度が所定の作動範囲内か否かの判定を行っている(S2)。この車両速度の作動範囲としては、例えば時速25km~55kmの範囲であるとする。この作動範囲は、歩行者保護装置12の歩行者保護機能が有効に作用する速度が、車両形状等の条件によって決まっていることに基づいて設定される。
車両速度が作動範囲内でない場合には(S2:No)、S1に戻り、車両速度が作動範囲内の場合(S2:Yes)、衝突検知ECU7は、第1圧力センサ3及び第2圧力センサ4の検出値を取得し(S3)、有効質量を算出する(S4)。
ここで、「有効質量」とは、衝突時における第1圧力センサ3及び第2圧力センサ4の検出値より、運動量と力積の関係を利用して算出する質量をいう。車両と物体Mとの衝突が発生した場合、歩行者とは質量の異なる衝突物では、圧力センサ3の検出値が異なる。このため、人体の有効質量と、想定される他の衝突物の質量との間に閾値を設定することにより、衝突物の種類を切り分けることが可能となる。
なお、本実施形態では、歩行者保護装置12の作動のON要件として、体重7kg程度の子供が時速25kmで走行する車両と衝突した場合を想定している。また、OFF要件として、道路上に設置されたロードサイドマーカに対して車両が衝突した場合を想定している。上述の通り、人体(歩行者)とロードサイドマーカとでは質量(重量)が異なるため、人体とそれ以外の物体とでは、第1圧力センサ3及び第2圧力センサ4の圧力検出値が異なるものとなり、この差異を衝突物の判定に用いている。
上記した「有効質量」は、次式に示すように、第1圧力センサ3及び第2圧力センサ4により検出される圧力の値の所定時間における区間積分値を車両速度で割ることにより算出される。
M=(∫P(t)dt)/V・・・(式1)
ここで、Mは有効質量、Pは所定時間における第1圧力センサ3及び第2圧力センサ4による検出値、tは所定時間(例えば、数ms~数十ms)、Vは衝突時の車両速度を示している。なお、有効質量を算出する方法には、他にも、衝突した物体の運動エネルギーEを表す式E=1/2・MV2を用いて算出することが可能である。この場合、有効質量
は、M=2・E/V2により算出される。
ここで、Mは有効質量、Pは所定時間における第1圧力センサ3及び第2圧力センサ4による検出値、tは所定時間(例えば、数ms~数十ms)、Vは衝突時の車両速度を示している。なお、有効質量を算出する方法には、他にも、衝突した物体の運動エネルギーEを表す式E=1/2・MV2を用いて算出することが可能である。この場合、有効質量
は、M=2・E/V2により算出される。
次に、衝突検知ECU7の衝突判定部71は、算出した有効質量はメイン閾値以上か否かの判定を行う(S5)。有効質量がメイン閾値未満の場合(S5:No)、図7に示す「エリア閾値設定処理」を行う。
図7に示す「エリア閾値設定処理」では、車幅方向中心から距離Lだけ離れた位置に物体Mが衝突した場合を想定している(図8参照)。この場合、衝突位置から第1圧力センサ3の設置位置までの距離と、衝突位置から第2圧力センサ4の設置位置までの距離との差は2Lとなる。従って、第1圧力センサ3により検出される圧力波形と、第2圧力センサ4により検出される圧力波形とは、距離2Lに比例した時間tだけずれて圧力波形が伝播する。この時間tは、音速をvとすると、次式のように表される。
t=2L/v・・・(式2)
ここで、音速vは中空部2a内の温度Tに依存して変化する。このため、本実施形態では、温度センサ6により検出される中空部2a内の温度データを取得し(S11)、この後、補正部74により、取得した温度データに基づいて、圧力波形の位相ずれの補正を行う(S12)。具体的には、圧力波形の伝播速度である音速vと温度Tとの間には、温度Tが高くなるにつれて音速vが大きくなるという比例関係があり、この比例関係を用いて、音速vを中空部2a内の温度Tに応じて適切な速度に設定する補正を行う。これにより、補正部74は、第1圧力センサ3及び第2圧力センサ4により検出される2つの圧力波形の位相ずれの補正を行う。
ここで、音速vは中空部2a内の温度Tに依存して変化する。このため、本実施形態では、温度センサ6により検出される中空部2a内の温度データを取得し(S11)、この後、補正部74により、取得した温度データに基づいて、圧力波形の位相ずれの補正を行う(S12)。具体的には、圧力波形の伝播速度である音速vと温度Tとの間には、温度Tが高くなるにつれて音速vが大きくなるという比例関係があり、この比例関係を用いて、音速vを中空部2a内の温度Tに応じて適切な速度に設定する補正を行う。これにより、補正部74は、第1圧力センサ3及び第2圧力センサ4により検出される2つの圧力波形の位相ずれの補正を行う。
続いて、衝突位置推定部72は、第1圧力センサ3及び第2圧力センサ4により検出される2つの圧力波形の位相ずれを算出する(S13)。具体的には、衝突位置推定部72は、(式2)を用いることにより、衝突発生に伴う圧力変化が第1圧力センサ3、第2圧力センサ4により検出される圧力波形の立ち上がりの時間差tを算出する。この時間差tが「位相ずれ」に相当する。
2つの圧力波形の位相ずれと衝突位置との間には、図9に示す比例関係がある。本実施形態では、第1圧力センサ3及び第2圧力センサ4に検出される2つの圧力波形の位相ずれを算出した後、衝突位置推定部72により、上記比例関係により、物体M(歩行者)の衝突位置を推定(算出)する(S14)。
ここで、第1圧力センサ3、第2圧力センサ4の衝突に伴う圧力の出力は、バンパ8(バンパカバー9)の車幅方向における衝突位置によりばらつきがある。例えば、車両端部側(コーナー部分)は車幅方向に対して傾斜した構造となっているため、車両中央部側の車幅方向に対して平坦な構造となっている部分よりも、圧力出力が小さくなることがある。この場合、車両端部側の衝突判定の閾値を車両中央部側の閾値よりも小さくしてもよい。このように、衝突検知精度を確保するには、物体M(歩行者)が衝突したバンパ8の車幅方向における衝突位置に応じて、衝突判定の閾値を異なるものとする必要がある。
そこで、本実施形態では、S14にて歩行者の衝突位置の推定を行った後、衝突検知ECU7の閾値変更部73によって、衝突位置に応じた有効質量のエリア閾値を設定する。具体的には、まず、衝突位置の車幅方向中心からの距離をLとした場合、0≦L<400[mm]をエリアA、400≦L<800をエリアB、800≦LをエリアCとして、バンパ8(バンパカバー9)における車幅方向位置を3つに区画する。エリアAは、車幅方向中央部に該当する。エリアCは、車幅方向両端部(コーナ部分)に該当する。エリアBは、エリアAとエリアCとの間の領域が該当する。そして、エリア閾値として、エリアAには第1閾値、エリアBには第2閾値、エリアCには第3閾値を用いる。
S14にて衝突位置推定部72により衝突位置の推定が行われた後、閾値変更部73は、衝突位置がエリアAか否かの判定を行う(S15)。衝突位置がエリアAの場合(S15:Yes)、閾値変更部73は、エリア閾値を第1閾値に設定する(S16)。衝突位置がエリアAではない場合(S15:No)、閾値変更部73は、衝突位置がエリアBか否かの判定を行う(S17)。衝突位置がエリアBである場合(S17:Yes)、閾値変更部73は、エリア閾値を第2閾値に設定する(S18)。第2閾値は、第1閾値よりも小さい値であるとする。
衝突位置がエリアBではない場合(S17:No)、閾値変更部73は、衝突位置がエリアCであると判定し(S19)、エリア閾値を第3閾値に設定する(S20)。第3閾値は、第2閾値よりも更に小さい値であるとする。
なお、S15、S17、S19における衝突位置がエリアA,B,Cのいずれかを判定する際には、図示しないが、ハイパスフィルタ等のフィルタ回路を用いるものとする。この場合、ハイパスフィルタは、位相ずれの演算値のうち高数値のものを通すフィルタ回路として用いられる。例えば、S17においては、位相ずれから算出される衝突位置、すなわち、距離Lの値が800以上の出力信号を通すハイパスフィルタを用いればよい。
次に、衝突検知ECU7の衝突判定部71は、S4にて算出した「有効質量」の値が「エリア閾値設定処理」において設定されたエリア閾値(第1閾値、第2閾値、第3閾値のいずれかの値)以上か否かの判定を行う(S7)。
衝突判定部71は、有効質量がエリア閾値以上の場合(S7:Yes)、車両と歩行者との衝突が発生したものと判定し(S8)、歩行者保護装置12を作動させる制御信号を出力して、歩行者保護装置12を作動させる(S9)。これにより、車両と歩行者との衝突による歩行者への衝撃を低減させる。なお、有効質量が設定されたエリア閾値未満の場合(S7:No)、S1に戻る。
以上説明したように、第1の実施形態の車両用衝突検知装置1は、車両のバンパ8内におけるバンパリンフォースメント11の車両前方側に車幅方向に延びて配設され、内部に中空部2aが形成されたチューブ状の検出用チューブ部材2(中空部材)と、中空部2a内の圧力を検出する圧力センサ3,4と、圧力センサ3,4による圧力検出結果に基づいて、バンパ8への物体M(歩行者)の衝突発生の有無を判定する衝突判定部(71,S5,S7)とを有する。
また、複数の圧力センサ、この場合2つの圧力センサ(第1圧力センサ3と第2圧力センサ4)は、中空部2a内の車幅方向に離隔する2箇所でそれぞれ圧力を検出する。そして、バンパ8への衝突発生に伴って2つの圧力センサ3,4によりそれぞれ検出される各圧力波形の位相ずれに基づいて、衝突位置を推定する衝突位置推定部(72,S14)を備えたことを特徴とする。
この構成によれば、衝突位置推定部72により、バンパ8への歩行者の衝突発生に伴って2つの圧力センサ(第1圧力センサ3と第2圧力センサ4)によりそれぞれ検出される各圧力波形の位相ずれに基づいて、歩行者の衝突位置を推定することができる。これにより、バンパ8の車幅方向における衝突位置を簡易な構成で推定でき、衝突位置に応じた適切な衝突判定を行うことができる。従って、衝突判定部71によるバンパ8への物体Mの衝突判定を正確に行うことができ、簡易な構成で車両用衝突検知装置1の衝突検知精度を向上させることができる。
また、第1圧力センサ3と第2圧力センサ4とは、一方が検出用チューブ部材2の車幅方向右側端部に配設され、他方が検出用チューブ部材2の車幅方向左側端部に配設されることを特徴とする。
この構成によれば、第1圧力センサ3と第2圧力センサ4とが、検出用チューブ部材2の車幅方向に十分な離間距離をとって配置されるので、2つの圧力センサ3,4により検出される圧力波形の位相ずれを検出し易くすることができる。これにより、衝突位置推定部72による衝突位置の推定を確実に行うことができる。
また、圧力センサ3,4がバンパリンフォースメント11の後面11b(車両後方側)に固定されているので、バンパ8の車幅方向端部付近に歩行者等の物体が衝突しても、バンパリンフォースメント11によって衝撃が低減され、圧力センサ3,4にバンパカバー9からの衝撃が直接伝わらない。このため、バンパカバー9の変形により圧力センサ3,4に外力が加わり、圧力センサ3,4が外力により損傷してしまうことを防止できる。これにより、車両用衝突検知装置1の耐性を改善できるとともに、車両用衝突検知装置1による衝突検知の信頼性を向上させることができる。
また、第1圧力センサ3と第2圧力センサ4とは、一方が検出用チューブ部材2の車幅方向右側端部に配設され、他方が検出用チューブ部材2の車幅方向左側端部に配設されることを特徴とする。
この構成によれば、第1圧力センサ3と第2圧力センサ4とが、検出用チューブ部材2の車幅方向に十分な離間距離をとって配置されるので、2つの圧力センサ3,4により検出される圧力波形の位相ずれを検出し易くすることができる。これにより、衝突位置推定部72による衝突位置の推定を確実に行うことができる。
また、圧力センサ3,4がバンパリンフォースメント11の後面11b(車両後方側)に固定されているので、バンパ8の車幅方向端部付近に歩行者等の物体が衝突しても、バンパリンフォースメント11によって衝撃が低減され、圧力センサ3,4にバンパカバー9からの衝撃が直接伝わらない。このため、バンパカバー9の変形により圧力センサ3,4に外力が加わり、圧力センサ3,4が外力により損傷してしまうことを防止できる。これにより、車両用衝突検知装置1の耐性を改善できるとともに、車両用衝突検知装置1による衝突検知の信頼性を向上させることができる。
また、第1圧力センサ3と第2圧力センサ4とは、中空部2a内において車幅方向に所定の距離離れた位置の圧力を検出するものである。衝突判定部71は、第1圧力センサ3及び第2圧力センサ4による圧力検出結果に基づいて、バンパ8へ物体Mが衝突したことを判定する。そして、衝突位置推定部72は、第1圧力センサ3により検出される圧力波形と第2圧力センサ4により検出される圧力波形との位相ずれに基づいて、物体Mの衝突位置を推定することを特徴とする。
この構成によれば、第1圧力センサ3と第2圧力センサ4とは、中空部2a内において車幅方向に所定の距離離れた位置の圧力を検出するものであるので、衝突位置と位相ずれとの間に所定の相関関係(この場合、比例関係)があることを予め検証しておくことで、衝突位置推定部72により物体Mの衝突位置を正確に推定することが可能である。
また、衝突位置推定部72は、第1圧力センサ3により検出される圧力波形と第2圧力センサ4により検出される圧力波形との立ち上がりの時間差を算出することに基づいて、物体Mの衝突位置を推定することを特徴とする。
この構成によれば、第1圧力センサ3及び第2圧力センサ4の各圧力波形の立ち上がりの時間差と衝突位置との間に所定の相関関係があることを予め検証しておくことで、衝突位置推定部72により物体Mの衝突位置を正確に推定することができる。
また、衝突判定部71は、複数の圧力センサ3,4による圧力検出結果が所定の閾値以上である場合に、バンパ8へ物体Mが衝突したことを判定するものであり、衝突判定部71によりバンパ8へ物体Mが衝突したことを判定する前に、衝突位置推定部72により推定された物体Mの衝突位置に応じて閾値を変更する閾値変更部73を備えたことを特徴とする。
この構成によれば、衝突位置推定部72により推定された物体Mの衝突位置に応じて、閾値変更部73が衝突判定の閾値(エリア閾値)を変更するので、バンパ8の車幅方向における衝突位置に応じて衝突検知精度が低下することを防ぐことができる。
また、衝突判定の閾値は、メイン閾値と、メイン閾値よりも小さい値であって物体M(歩行者)の衝突位置ごとに設定された少なくとも1つ以上のエリア閾値とを有する。閾値変更部73は、衝突位置推定部72により推定された物体Mの衝突位置に基づいて、エリア閾値を変更することを特徴とする。
この構成によれば、閾値変更部73により、衝突位置推定部72により推定された物体Mの衝突位置に基づいて、エリア閾値を変更することができるので、車幅方向位置によって出力値が異なる圧力センサ3,4の閾値を、衝突位置に応じて適切に設定することができる。これにより、車両用衝突検知装置1の衝突検知精度を効果的に向上させることができ、バンパ8の車幅方向全域において歩行者の衝突検知をより正確に行うことができる。
また、検出用チューブ部材2の中空部2a内における温度を検出する温度センサ6と、温度センサ6により検出される温度に基づいて、2つの圧力センサ3,4によりそれぞれ検出される各圧力波形の位相ずれを補正する補正部74とを備えたことを特徴とする。
この構成によれば、補正部74によって、温度センサ6により検出される中空部2a内の温度を考慮して、衝突時に発生する圧力波形が圧力センサ3,4に到達するまでの時間を補正することができる。これにより、衝突位置推定部72による位相ずれの算出をより正確に行うことができ、物体Mの衝突位置をより正確に推定することができる。
また、第1圧力センサ3と第2圧力センサ4とは、一方が中空部2a内における車幅方向中央よりも右側において圧力を検出し、他方が中空部2a内における車幅方向中央よりも左側において圧力を検出することを特徴とする。
この構成によれば、第1圧力センサ3と第2圧力センサ4とで圧力検出位置を相違させることにより、バンパ8への物体Mの衝突位置によって2つの圧力センサ3,4により検出される圧力波形に位相ずれを生じさせることができる。これにより、位相ずれと衝突位置との間の比例関係を用いて、衝突位置推定部72による衝突位置の推定を行うことが可能となる。
また、第1圧力センサ3と第2圧力センサ4とは、一方が検出用チューブ部材2の車幅方向右側端部に配設され、他方が検出用チューブ部材2の車幅方向左側端部に配設されることを特徴とする。
この構成によれば、第1圧力センサ3と第2圧力センサ4とが、検出用チューブ部材2の車幅方向に十分な離間距離をとって配置されるので、2つの圧力センサ3,4により検出される圧力波形の位相ずれを検出し易くすることができる。これにより、衝突位置推定部72による衝突位置の推定を確実に行うことができる。
また、車両のバンパ8内でバンパリンフォースメント11の車両前方側に車幅方向に延びて配設されたバンパアブソーバ10を備え、中空部材は、チューブ状の検出用チューブ部材2であって、バンパアブソーバ10に車幅方向に沿って形成される溝部10aに装着されることを特徴とする。
この構成によれば、バンパアブソーバ10の溝部10aに検出用チューブ部材2を装着することで、小型で搭載性に優れたチューブ状の中空部材を車両用衝突検知装置1に用いることができる。これにより、車両と歩行者との衝突を簡易な構成で良好に検知することができる。
なお、上記した第1の実施形態では、バンパ8の車幅方向中心から車幅方向端部までを、エリアA、エリアB、エリアCの3つの区画に分けて閾値を変更するものとしたが、これに限られず、4つ以上に分けてもよい。また、各エリアの閾値の大小は適宜設定可能であるものとする。例えば、バンパ8の車幅方向中心部の意匠部分における閾値を小さく設定してもよい。この場合、車両前端中央部の意匠が施された部分は他の部分よりも構造が硬くなっているので、圧力センサ3,4の出力が小さくなることを考慮している。
(第2の実施形態)
次に、第2の実施形態について、図12を参照して説明する。なお、第1の実施形態と同一部分については説明を省略し、異なる部分についてだけ説明する。第2の実施形態では、図12に示すように、第1圧力センサ3の出力値を横軸、第2圧力センサ4の出力値を縦軸とした二次元マップを用いることにより、物体Mの衝突位置を推定するものである。この二次元マップでは、第1圧力センサ3の出力値と第2圧力センサ4の出力値とを1つの座標に表示し、車幅方向左端部から車幅方向右端部まで衝突位置を移動させた場合の座標の軌跡がプロットされたものが示されている。
(第2の実施形態)
次に、第2の実施形態について、図12を参照して説明する。なお、第1の実施形態と同一部分については説明を省略し、異なる部分についてだけ説明する。第2の実施形態では、図12に示すように、第1圧力センサ3の出力値を横軸、第2圧力センサ4の出力値を縦軸とした二次元マップを用いることにより、物体Mの衝突位置を推定するものである。この二次元マップでは、第1圧力センサ3の出力値と第2圧力センサ4の出力値とを1つの座標に表示し、車幅方向左端部から車幅方向右端部まで衝突位置を移動させた場合の座標の軌跡がプロットされたものが示されている。
具体的には、図12の二次元マップ上において右上の囲い線で囲まれた領域は、エリアA(センター衝突)で衝突が発生した場合が該当する。また、二次元マップ上において左下囲い線で囲まれた領域は、エリアBで衝突が発生した場合が該当する。また、二次元マップ上において右下囲い線及び左上囲い線で囲まれた領域は、エリアC(コーナ衝突)で衝突が発生した場合が該当する。
第2の実施形態では、このように二次元マップ上の座標が衝突位置ごとに異なることを用いて、衝突位置推定部72により歩行者の衝突位置の推定が行われる。すなわち、バンパ8(バンパカバー9)の車幅方向における衝突位置ごとの第1圧力センサ3と第2圧力センサ4との圧力の出力値を予め把握しておくことで、衝突位置の推定を行うものである。なお、この場合、第1圧力センサ3と第2圧力センサ4との出力値の相違が、「位相ずれ」に相当する。
以上説明した第2の実施形態の車両用衝突検知装置1では、衝突位置推定部72は、第1圧力センサ3による検出値を一方の軸(横軸)、第2圧力センサ4による検出値を他方の軸(縦軸)とする二次元マップに基づいて、物体M(歩行者)の衝突位置を推定することを特徴とする。
この構成によれば、第1の実施形態と同様の効果を得ることができるとともに、第1の実施形態のように、第1圧力センサ3と第2圧力センサ4との圧力波形の立ち上がりの時間差(位相ずれ)を算出する必要がなく、物体Mの衝突位置の推定を簡易に行うことができる。具体的には、図7に示すエリア閾値設定処理において、S11~S13を省略することができる。従って、より簡易な構成で歩行者の衝突位置を推定することができる。
なお、上記した第1,2の実施形態において、検出用チューブ部材2の配設位置を変更させてもよい。例えば、図13に示すように、検出用チューブ部材2を、バンパリンフォースメント11の車両前方側におけるバンパアブソーバ10の中央上部に配置してもよい。
また、検出用チューブ部材2の断面形状は、適宜変更可能であるとする。例えば、図14に示すように、断面形状が略四角形であって内部に中空部21aが形成された検出用チューブ部材21を、バンパリンフォースメント11の車両前方側におけるバンパアブソーバ10の中央上部に配置してもよい。他にも、断面形状が多角形の検出用チューブ部材21を用いてもよい。
(第3の実施形態)
次に、第3の実施形態について、図15~図17を参照して説明する。なお、図15~図17には上記第1の実施形態と同一部分には同一の符号を付して説明を省略し、異なる部分についてだけ説明する。この第3の実施形態においては、中空部材は、箱状に成形されたチャンバ部材20によって構成される。
(第3の実施形態)
次に、第3の実施形態について、図15~図17を参照して説明する。なお、図15~図17には上記第1の実施形態と同一部分には同一の符号を付して説明を省略し、異なる部分についてだけ説明する。この第3の実施形態においては、中空部材は、箱状に成形されたチャンバ部材20によって構成される。
チャンバ部材20は、内部に中空部20a(チャンバ空間)が形成され、車幅方向(車両左右方向)に延びている箱状の部材である。このチャンバ部材20は、車両のバンパカバー9内におけるバンパリンフォースメント11の前面11a(車両前方側)、且つバンパアブソーバ10の上部に配設される(図17参照)。
また、チャンバ部材20は、例えば低密度ポリエチレン等の軟質樹脂からなる。チャンバ部材20は、略四角形の断面形状を有し、チャンバ部材20の縦横の長さ(円管の場合の外径に相当)は、例えば50mm程度であるとする。
また、チャンバ部材20には、図17に示すように、内部が中空部20aに連通した延設部20bが延設されている。延設部20bは、チャンバ部材20の車幅方向左端部側及び右端部側に2箇所配設され、チャンバ部材20の上面からバンパリンフォースメント11の上方に向かって延設されている。この延設部20bは、チャンバ部材20とブロー成形により一体的に形成される。延設部20bには、上面に開口部(図示しない)が形成されており、後述する第1圧力センサ3及び第2圧力センサ4が圧力導入管32,42を開口部に差し込んだ状態で取り付けられる。なお、圧力導入管32,42と開口部との間は密封されているものとする。
また、中空部20aは、チャンバ部材20に囲覆されているが、密閉されてはおらず、一部の狭小部分で外気と連通している。これにより、標高差や温度の変化等による外気との気圧差が生じないようにして、衝突検知が標高や気温の変化の影響を受けないようにしている。また、中空部20aは、延設部20bを介して第1圧力センサ3及び第2圧力センサ4の圧力導入管32,42と連通している。
第1圧力センサ3及び第2圧力センサ4は、気体の圧力変化を検出するセンサ装置である。第1圧力センサ3は、圧力導入管32を有している。第2圧力センサ4は、圧力導入管42を有している。圧力導入管32,42は、上述した延設部20bの開口部に差し込まれ、中空部20a内と連通している。これにより、第1圧力センサ3及び第2圧力センサ4は、チャンバ部材20の中空部20a内の空気の圧力変化を検出可能に構成されている。
具体的には、図16に示すように、第1圧力センサ3は、チャンバ部材20の車幅方向右側端部に配設され、中空部20a内における車幅方向右側の圧力を検出する。第2圧力センサ4は、チャンバ部材20の車幅方向左側端部に配設され、中空部20a内における車幅方向左側の圧力を検出する。
また、第3の実施形態では、第1の本実施形態と同様に、第1圧力センサ3と第2圧力センサ4との2つの圧力センサを設置することにより、冗長性及び検出精度を確保するとともに、後述する物体M(歩行者)の衝突位置を推定可能な構成となっている。これら第1圧力センサ3及び第2圧力センサ4は、図15に示すように、伝送線を介して衝突検知ECU7に電気的に接続され、圧力に比例した信号を衝突検知ECU7へ出力する。
この第3の実施形態における車両用衝突検知装置1の衝突時の動作も、第1の実施形態と同様である。すなわち、車両前方に歩行者等の物体Mが衝突した際には、バンパ8のバンパカバー9が歩行者との衝突による衝撃により変形する。続いて、バンパアブソーバ10が衝撃を吸収しながら変形すると同時に、チャンバ部材20も変形する。このとき、中空部20a内の圧力が急上昇し、この圧力変化が第1圧力センサ3及び第2圧力センサ4に伝達する。
また、第3の実施形態における車両用衝突検知装置1による衝突判定処理及びエリア閾値設定処理ついても、図6及び図7のフローチャートに示される第1の実施形態における衝突判定処理及びエリア閾値設定処理と同様である。
以上説明した第3の実施形態の車両用衝突検知装置1では、車両のバンパ8内におけるバンパリンフォースメント11の車両前方側に車幅方向に延びて配設され、内部に中空部20aを有する箱状に成形されたチャンバ部材20(中空部材)と、中空部20a内の圧力を検出する圧力センサ3,4と、圧力センサ3,4による圧力検出結果に基づいて、バンパ8への物体Mの衝突発生の有無を判定する衝突判定部(71,S5,S7)とを有する。圧力センサ3,4は、中空部20a内の車幅方向に離隔する2箇所でそれぞれ圧力を検出する2つの圧力センサからなる。そして、バンパ8への衝突発生に伴って2つの圧力センサ3,4によりそれぞれ検出される各圧力波形の位相ずれに基づいて、衝突位置を推定する衝突位置推定部(72,S14)を備えたことを特徴とする。この第3の実施形態によっても、第1の実施形態と同様の効果を得ることができる。
本開示は、上記した実施形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々の変形または拡張を施すことができる。上記実施形態の変形例について以下に述べる。例えば、上記実施形態では、圧力センサを2つ設けた場合について説明したが、これに限られず、圧力センサを3つ以上設けた場合においても本開示を適用することが可能である。更に、第1圧力センサ3及び第2圧力センサ4の配置箇所は適宜変更可能であるものとする。
また、衝突判定において、有効質量が所定の閾値以上になった場合に歩行者保護装置12の作動を要する歩行者との衝突が発生したと判定するものとしたが、これに限られず、例えば、圧力の値、圧力変化率等を衝突判定の閾値として用いるようにしてもよい。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (11)
- 車両のバンパ(8)内におけるバンパリンフォースメント(11)の車両前方側に車幅方向に延びて配設され、内部に中空部(2a,20a,21a)が形成された中空部材(2,20,21)と、前記中空部(2a,20a,21a)内の圧力を検出する圧力センサ(3,4)と、前記圧力センサ(3,4)による圧力検出結果に基づいて、前記バンパ(8)への物体(M)の衝突発生の有無を判定する衝突判定部(71,S5,S7)とを有する車両用衝突検知装置(1)において、
前記圧力センサ(3,4)は、前記中空部(2a,20a,21a)内の車幅方向に離隔する複数箇所でそれぞれ圧力を検出する複数の圧力センサ(3,4)からなり、
前記バンパ(8)への衝突発生に伴って前記複数の圧力センサ(3,4)によりそれぞれ検出される各圧力波形の位相ずれに基づいて、衝突位置を推定する衝突位置推定部(72,S14)を備えたことを特徴とする車両用衝突検知装置。 - 前記複数の圧力センサ(3,4)は、第1圧力センサ(3)と第2圧力センサ(4)とからなり、
前記第1圧力センサ(3)と前記第2圧力センサ(4)とは、前記中空部(2a,20a,21a)内において車幅方向に所定の距離離れた位置の圧力を検出するものであり、
前記衝突判定部(71,S5,S7)は、前記第1圧力センサ(3)及び前記第2圧力センサ(4)による圧力検出結果に基づいて、前記バンパ(8)へ前記物体(M)が衝突したことを判定し、
前記衝突位置推定部(72,S14)は、前記第1圧力センサ(3)により検出される前記圧力波形と前記第2圧力センサ(4)により検出される前記圧力波形との前記位相ずれに基づいて、前記物体(M)の衝突位置を推定することを特徴とする請求項1に記載の車両用衝突検知装置。 - 前記衝突位置推定部(72,S14)は、前記第1圧力センサ(3)により検出される前記圧力波形と前記第2圧力センサ(4)により検出される前記圧力波形との立ち上がりの時間差を算出することに基づいて、前記物体(M)の衝突位置を推定することを特徴とする請求項2に記載の車両用衝突検知装置。
- 前記衝突位置推定部(72,S14)は、前記第1圧力センサ(3)による検出値を一方の軸、第2圧力センサ(4)による検出値を他方の軸とする二次元マップに基づいて、前記物体(M)の衝突位置を推定することを特徴とする請求項2に記載の車両用衝突検知装置。
- 前記衝突判定部(71,S5,S7)は、前記複数の圧力センサ(3,4)による圧力検出結果が所定の閾値以上である場合に、前記バンパ(8)へ前記物体(M)が衝突したことを判定するものであり、
前記衝突判定部(71,S5,S7)により前記バンパ(8)へ前記物体(M)が衝突したことを判定する前に、前記衝突位置推定部(72,S14)により推定された前記物体(M)の衝突位置に応じて前記閾値を変更する閾値変更部(73,S16,S18,S20)を備えたことを特徴とする請求項1から4のいずれか一項に記載の車両用衝突検知装置。 - 前記閾値は、メイン閾値と、前記メイン閾値よりも小さい値であって前記物体(M)の衝突位置ごとに設定された少なくとも1つ以上のエリア閾値とを有し、
前記閾値変更部(73,S16,S18,S20)は、前記衝突位置推定部(72,S14)により推定された前記物体(M)の衝突位置に基づいて、前記エリア閾値を変更することを特徴とする請求項5に記載の車両用衝突検知装置。 - 前記中空部材(2,20,21)の前記中空部(2a,20a,21a)内における温度を検出する温度センサ(6)と、
前記温度センサ(6)により検出される温度に基づいて、前記複数の圧力センサ(3,4)によりそれぞれ検出される各圧力波形の位相ずれを補正する補正部(74,S12)と、
を備えたことを特徴とする請求項1から6のいずれか一項に記載の車両用衝突検知装置。 - 前記第1圧力センサ(3)と前記第2圧力センサ(4)とは、一方が前記中空部(2a,20a,21a)内における車幅方向中央よりも右側において圧力を検出し、他方が前記中空部(2a,20a,21a)内における車幅方向中央よりも左側において圧力を検出することを特徴とする請求項2から7のいずれか一項に記載の車両用衝突検知装置。
- 前記第1圧力センサ(3)と前記第2圧力センサ(4)とは、一方が前記中空部材(2,20,21)の車幅方向右側端部に配設され、他方が前記中空部材(2,20,21)の車幅方向左側端部に配設されることを特徴とする請求項8に記載の車両用衝突検知装置。
- 前記中空部材(2,21)は、前記中空部(2a,21a)を有するチューブ状の検出用チューブ部材(2,21)によって構成されることを特徴とする請求項1から9のいずれか一項に記載の車両用衝突検知装置。
- 前記中空部材(20)は、前記中空部(20a)を有する箱状に成形されたチャンバ部材(20)によって構成されることを特徴とする請求項1から9のいずれか一項に記載の車両用衝突検知装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-228698 | 2014-11-11 | ||
JP2014228698A JP2016088456A (ja) | 2014-11-11 | 2014-11-11 | 車両用衝突検知装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016075926A1 true WO2016075926A1 (ja) | 2016-05-19 |
Family
ID=55954029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005600 WO2016075926A1 (ja) | 2014-11-11 | 2015-11-10 | 車両用衝突検知装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016088456A (ja) |
WO (1) | WO2016075926A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6337832B2 (ja) * | 2015-05-12 | 2018-06-06 | 株式会社デンソー | 車両用衝突検知装置 |
JP6806017B2 (ja) | 2017-09-25 | 2020-12-23 | 株式会社デンソー | 保護制御装置 |
JP7404963B2 (ja) | 2020-03-24 | 2023-12-26 | 株式会社デンソー | チューブ式衝突検知センサ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310095A (ja) * | 1998-02-24 | 1999-11-09 | Toyota Central Res & Dev Lab Inc | 車両用衝突判別装置 |
JP2009023410A (ja) * | 2007-07-17 | 2009-02-05 | Denso Corp | 衝突検出装置 |
JP2010064605A (ja) * | 2008-09-10 | 2010-03-25 | Denso Corp | 車両用衝突検知装置 |
JP2010143277A (ja) * | 2008-12-16 | 2010-07-01 | Toyota Motor Corp | 衝突検出装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001144669A (ja) * | 1999-11-11 | 2001-05-25 | Nec Corp | 音源位置検出システム |
JP6072457B2 (ja) * | 2012-07-30 | 2017-02-01 | 株式会社エイテック | 標的システム |
JP5825530B2 (ja) * | 2012-11-22 | 2015-12-02 | 株式会社デンソー | 車両用衝突検知装置 |
-
2014
- 2014-11-11 JP JP2014228698A patent/JP2016088456A/ja active Pending
-
2015
- 2015-11-10 WO PCT/JP2015/005600 patent/WO2016075926A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310095A (ja) * | 1998-02-24 | 1999-11-09 | Toyota Central Res & Dev Lab Inc | 車両用衝突判別装置 |
JP2009023410A (ja) * | 2007-07-17 | 2009-02-05 | Denso Corp | 衝突検出装置 |
JP2010064605A (ja) * | 2008-09-10 | 2010-03-25 | Denso Corp | 車両用衝突検知装置 |
JP2010143277A (ja) * | 2008-12-16 | 2010-07-01 | Toyota Motor Corp | 衝突検出装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2016088456A (ja) | 2016-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6098897B2 (ja) | 車両用衝突検知装置 | |
JP4492823B2 (ja) | 車両用衝突検知装置 | |
JP6375978B2 (ja) | 車両用衝突検知装置 | |
JP6233651B2 (ja) | 車両用衝突検知装置 | |
WO2016088328A1 (ja) | 車両用衝突検知装置 | |
WO2016075926A1 (ja) | 車両用衝突検知装置 | |
JP4941773B2 (ja) | 車両用衝突検知装置 | |
JP6201909B2 (ja) | 車両用衝突検知装置 | |
JP6036636B2 (ja) | 車両用衝突検知装置 | |
WO2016163095A1 (ja) | 車両用衝突検知装置 | |
WO2016136165A1 (ja) | 車両用衝突検知装置 | |
WO2016084362A1 (ja) | 車両用衝突検知装置 | |
WO2016038840A1 (ja) | 車両用衝突検知装置 | |
JP2015081070A (ja) | 車両用衝突検知装置 | |
WO2016147546A1 (ja) | 車両用衝突検知装置 | |
JP6390913B2 (ja) | 車両用衝突検知装置 | |
JP5924548B2 (ja) | 車両用衝突検知装置 | |
WO2016181613A1 (ja) | 車両用衝突検知装置 | |
JP4816661B2 (ja) | 車両用衝突検知装置 | |
WO2016092793A1 (ja) | 車両用衝突検知装置 | |
JP2016120867A (ja) | 車両用衝突検知装置 | |
JP2009227089A (ja) | 車両用衝突検知装置 | |
JP6447303B2 (ja) | 車両用衝突検知装置 | |
JP6443686B2 (ja) | 車両用衝突検知装置 | |
JP5354301B2 (ja) | 車両用衝突検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859328 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15859328 Country of ref document: EP Kind code of ref document: A1 |