WO2010061799A1 - 画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラム - Google Patents

画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラム Download PDF

Info

Publication number
WO2010061799A1
WO2010061799A1 PCT/JP2009/069733 JP2009069733W WO2010061799A1 WO 2010061799 A1 WO2010061799 A1 WO 2010061799A1 JP 2009069733 W JP2009069733 W JP 2009069733W WO 2010061799 A1 WO2010061799 A1 WO 2010061799A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
print band
relative curvature
image shape
shape deformation
Prior art date
Application number
PCT/JP2009/069733
Other languages
English (en)
French (fr)
Inventor
和友 関
義己 小野沢
将也 樋口
河野 信之
健一郎 小松
伸幸 小野
Original Assignee
株式会社ミマキエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミマキエンジニアリング filed Critical 株式会社ミマキエンジニアリング
Priority to EP09829047A priority Critical patent/EP2275988A1/en
Priority to CN200980115544XA priority patent/CN102016914B/zh
Publication of WO2010061799A1 publication Critical patent/WO2010061799A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/08Projecting images onto non-planar surfaces, e.g. geodetic screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/393Enlarging or reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects

Definitions

  • the present invention relates to an image shape deforming apparatus, an image shape deforming method, and an image shape deforming program for deforming an image shape for a three-dimensional printer for printing on the surface of a three-dimensional shape medium.
  • Patent Document 1 describes this type of three-dimensional printer. This three-dimensional printer prints an image on the surface of the medium by rotating the medium so as to rotate about the X axis (B axis) in the XYZ orthogonal coordinate system.
  • Patent Document 1 describes a problem that an image printed on a spherical print surface of a medium is apparently distorted in a contracted state toward the peripheral direction (Y direction) of the spherical print surface.
  • Japanese Patent Application Laid-Open No. H10-228707 discloses ink dots arranged in the Y direction for image printing, which are formed by being ejected from an inkjet head by a host computer that controls a three-dimensional printer and landed on a spherical print surface immediately below the ink jet head.
  • a blank portion is added to correct distortion of an image printed on the spherical print surface.
  • an image for printing on a flat surface such as a spherical surface or a hemispherical surface
  • the image after printing is apparently distorted even in the X direction.
  • the viewpoint is placed above the spherical equator
  • the lower side along the equator is long and is distorted into a state of being gradually contracted toward the top of the spherical surface.
  • the present invention provides an image shape deformation device, an image shape deformation method, and an image shape that can reduce the apparent distortion of a printed image when an image is printed on the surface of a three-dimensional shape medium. It aims to provide a transformation program.
  • An image shape deforming apparatus is an image shape deforming apparatus for deforming an image shape for a three-dimensional printer that performs printing on a surface of a three-dimensional medium for each print band. And a relative curvature generating means for obtaining a relative curvature for each print band and an image enlarging / reducing means for enlarging or reducing an image for each print band in accordance with the relative curvature.
  • An image shape deformation method is an image shape deformation method for deforming an image shape for a three-dimensional printer that performs printing for each print band on the surface of a three-dimensional shape medium.
  • the relative curvature of the print band with respect to the reference print band is obtained for each print band, and the image is enlarged or reduced for each print band according to the relative curvature.
  • An image shape modification program is an image shape modification program for deforming an image shape for a three-dimensional printer that performs printing for each print band on a surface of a three-dimensional shape medium.
  • the computer functions as a relative curvature generation unit that obtains a relative curvature of the print band with respect to the reference print band for each print band, and an image enlargement / reduction unit that enlarges or reduces the image for each print band according to the relative curvature.
  • the image is enlarged or reduced for each print band according to the relative curvature of the media. Therefore, when this image is printed on the surface of the three-dimensional media, the print image corresponding to a specific viewpoint is printed. Apparent distortion can be reduced.
  • the relative curvature generation means described above obtains a relative curvature representing a media circumference corresponding to the reference print band and representing the media circumference with respect to the reference circumference for each print band.
  • the image enlargement / reduction means preferably enlarges the image as the relative curvature is smaller, and preferably reduces the image as the relative curvature is larger.
  • the present invention when printing an image on the surface of a three-dimensional media, it is possible to reduce the apparent distortion of the printed image according to a specific viewpoint.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional printer and a printer control apparatus according to the present embodiment.
  • FIG. 2 is a diagram showing the configuration of the main part of the three-dimensional printer shown in FIG.
  • FIG. 3 is a diagram showing an electrical configuration of the printer control apparatus shown in FIG.
  • FIG. 4 is a diagram showing an electrical configuration of the image shape deformation apparatus according to the embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of how to obtain the relative curvature.
  • FIG. 6 is a diagram showing the relative curvature for each print band.
  • FIG. 7 is a conceptual diagram of image shape deformation by the image shape deformation apparatus shown in FIG.
  • FIG. 8 is a diagram showing coordinate data and head data.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional printer and a printer control apparatus according to the present embodiment.
  • FIG. 2 is a diagram showing the configuration of the main part of the three-dimensional printer shown in FIG.
  • FIG. 3 is
  • FIG. 9 is a conceptual diagram of functions of the three-dimensional coordinate generation unit.
  • FIG. 10 is a flowchart of the image shape deformation method according to the embodiment of the present invention.
  • FIG. 11 is a conceptual diagram of a conventional image development method.
  • FIG. 12 is a diagram showing a conventional printing result.
  • FIG. 13 is a diagram showing a printing result of the present invention.
  • FIG. 14 is a conceptual diagram of how to obtain the relative curvature of an ellipsoidal medium.
  • FIG. 1 is a diagram showing a configuration of a three-dimensional printer and a printer control apparatus according to the present embodiment.
  • the image shape transformation device according to the embodiment of the present invention is mounted on a printer control device 100 for controlling the three-dimensional printer 200.
  • the printer control apparatus 100 performs bi-directional communication using commands and status with the three-dimensional printer 200 by, for example, the Ethernet (10baseT) method. Specifically, the printer control apparatus 100 transmits a command for acquiring the status of the three-dimensional printer 200 to the three-dimensional printer 200. When the three-dimensional printer 200 receives a command from the printer control apparatus 100, the three-dimensional printer 200 returns a current state, for example, a status indicating whether printing is possible, to the printer control apparatus 100.
  • a current state for example, a status indicating whether printing is possible
  • the printer control device 100 confirms the status from the three-dimensional printer 200 and, if printing is possible, sequentially transmits coordinate data and head data for printing an image to the three-dimensional printer 200.
  • the three-dimensional printer 200 sequentially stores these coordinate data and head data in the memory.
  • the printer control device 100 transmits a command for executing printing
  • the three-dimensional printer 200 receives this command and executes printing based on the coordinate data and the head data.
  • FIG. 2 is a diagram illustrating a configuration of a main part of the three-dimensional printer 200.
  • a three-dimensional printer 200 shown in FIG. 2 is a printer for printing an image on the surface of a three-dimensional shape, for example, a spherical medium 300.
  • the three-dimensional printer 200 includes a head 210 that ejects ink onto the surface of the medium 300, and a support unit 220 that supports the medium 300 and the head 210.
  • the support unit 220 includes an X-axis direction moving unit 221 that moves the medium 300 in the X-axis direction, a Z-axis direction moving unit 223 that moves the medium 300 in the Z-axis direction, and the medium 300 with respect to the X-axis (B-axis).
  • a B-axis rotating unit 224 that rotates so as to rotate, an A-axis rotating unit 225 that rotates the medium 300 to revolve with respect to the Y-axis (A-axis), and a Y-axis that moves the head 210 in the Y-axis direction.
  • a direction moving unit 222 is an X-axis direction moving unit 221 that moves the medium 300 in the X-axis direction
  • a Z-axis direction moving unit 223 that moves the medium 300 in the Z-axis direction
  • the medium 300 with respect to the X-axis B-axis
  • a B-axis rotating unit 224 that rotates so as to rotate
  • an A-axis rotating unit 225 that
  • the support unit 220 determines the positions of the medium 300 and the head 210 based on the coordinate data received from the printer control apparatus 100, and determines the print band to be printed by gradually rotating the medium 300 with respect to the A axis. In addition, the support unit 220 enables printing of a print band corresponding to the head width by rotating the medium 300 with respect to the B axis.
  • the head 210 ejects ink and adjusts the ink amount for each of a plurality of nozzles based on the printing parameters in the coordinate data and the head data received from the printer control apparatus 100.
  • FIG. 3 is a diagram illustrating the configuration of the printer control apparatus 100.
  • a printer control device 100 shown in FIG. 3 includes an image shape deforming unit (image shape deforming device according to an embodiment of the present invention) 10, a RIP (Raster Image Processor) unit 20, a three-dimensional coordinate generating unit 30, and head data.
  • a generation unit 40 and a data transfer / print control unit 50 are provided.
  • the image shape deforming unit 10 receives the media shape information indicating the shape of the medium 300 and the image data to be printed, and changes the image data according to the shape of the medium 300. As shown in FIG. 4, the image shape deformation unit 10 includes a relative curvature generation unit 11 and an image enlargement / reduction unit 12.
  • the relative curvature generator 11 obtains the relative curvature of the print band with respect to the reference print band for each print band. Specifically, the relative curvature generation unit 11 calculates, for each print band, the reference circumference of the medium 300 corresponding to the reference print band in the print band and representing the circumference of the medium 300 with respect to the reference circumference. Ask for.
  • the relative curvature generator 11 obtains the circumference for each print band.
  • the relative curvature generation unit 11 sets one of the print bands as a reference print band, and sets the circumference of the reference print band as the reference circumference. For example, as shown in FIG. 5, in the spherical medium 300, if the printing band closest to the B axis is the reference printing band B0, the reference circumferential length BL0 of the reference printing band B0 and the other printing bands B
  • the circumference BL is obtained by the following formula.
  • generation part 11 calculates
  • the relative curvature generation unit 11 supplies the relative curvature RC obtained for each print band as shown in FIG. 6 to the image enlargement / reduction unit 12.
  • the image enlargement / reduction unit 12 enlarges the image as the relative curvature is smaller, and reduces the image as the relative curvature is larger, as shown in FIG. 7B. It becomes.
  • the image enlargement / reduction unit 12 gradually enlarges the image from the equator to the apex with respect to the B axis of the medium 300.
  • the RIP unit 20 receives the image data from the image shape transformation unit 10 and converts the image data for PC into the image data for printer. For example, the RIP unit 20 generates image information such as an image size and raster data from the image data from the image shape deforming unit 10. The RIP unit 20 supplies image information to the three-dimensional coordinate generation unit 30 and also supplies raster data to the head data generation unit 40.
  • the three-dimensional coordinate generation unit 30 receives the RIP-completed image data and the media shape information from the RIP unit 20, and generates coordinate data for the three-dimensional printer 200 to perform printing.
  • the head data generation unit 40 receives the raster data from the RIP unit 20 and the coordinate data from the three-dimensional coordinate generation unit 30 and is head data corresponding to the coordinate data on a one-to-one basis. Head data for printing is generated.
  • FIG. 8 shows an example of these coordinate data and head data.
  • a plurality of coordinate data and head data are generated for each print cell C of each print band B on the medium 300 in a one-to-one correspondence. Note that the width of the print band and the size of the print cell are determined by the size of the head, that is, the number and interval of the nozzles.
  • the coordinate data has, for example, the position of the lower left nozzle in the head 210 as a reference point of the head, and the coordinate value of this reference point.
  • the coordinate data has a plurality of coordinate values for controlling the support unit 220 that supports the medium 300 and the head 210 in the three-dimensional printer 200. That is, the coordinate data is used to control the X-axis coordinate value for controlling the X-axis direction moving unit 221, the Y-axis coordinate value for controlling the Y-axis direction moving unit 222, and the Z-axis direction moving unit 223.
  • Z-axis coordinate values, B-axis coordinate values for controlling the B-axis rotation unit 224, and A-axis coordinate values for controlling the A-axis rotation unit 225 are examples of the coordinates rotation unit 225.
  • the coordinate data includes the C-axis coordinate value and the D-axis coordinate value.
  • E-axis coordinate values are illustrated.
  • a head number corresponding to an ink color for example, black, cyan, magenta, yellow
  • a UV curing parameter are added to the coordinate data.
  • the head data is a collection of raster data for each three-dimensional printer in one head and one discharge unit, and is associated with the coordinate data on a one-to-one basis.
  • the head data defines a gradation value for each nozzle that ejects ink. Further, the head data defines an ejection delay parameter between nozzle groups (between rows).
  • the gradation values of these nozzles and the ejection delay parameters between nozzle groups are stored in the memory according to the associated storage positions.
  • the print cell Ca outside the print range corresponds by not specifying the head number in the coordinate data, not the gradation of the nozzle in the head data.
  • These coordinate data and head data are supplied to the data transfer / print control unit 50.
  • the three-dimensional coordinate generation unit 30 adjusts the ink discharge interval and the head feed distance for each print band in accordance with the relative curvature and the print range (for example, circumference) in order to align the resolution for each print band. .
  • FIG. 9B is a diagram in which the surface of the spherical medium 300 shown in FIG.
  • the broken line in FIG. 9B indicates the rotation angle with respect to the B axis, and the intervals are equiangular.
  • the three-dimensional coordinate generation unit 30 increases the ink ejection coordinate interval Si as the relative curvature RC is smaller, and decreases the ink ejection coordinate interval Si as the relative curvature RC is larger.
  • the three-dimensional coordinate generation unit 30 increases the ink discharge coordinate interval Si from the equator side to the apex side of the medium 300.
  • FIG. 9C when the print band length is converted into the circumferential length, the ink discharge coordinate interval Si, that is, the resolution can be apparently arranged for each print band.
  • the data transfer / print control unit 50 performs print control of the three-dimensional printer 200. For example, as described above, the data transfer / print control unit 50 transmits a command to the three-dimensional printer 200 to check the status of the three-dimensional printer 200. When the status of the 3D printer 200 indicates that printing is possible, the data transfer / print control unit 50 sends the coordinate data from the 3D coordinate generation unit 30 and the head data from the head data generation unit 40 to the 3D printer 200. Output sequentially. Thereafter, when the data transfer / print control unit 50 transmits a print execution command, the three-dimensional printer 200 prints an image on the surface of the medium 300.
  • FIG. 10 is a flowchart showing the image shape deformation process.
  • the image shape deforming apparatus 10 is mainly configured by a computer including a CPU, a ROM, and a RAM, for example.
  • a computer including a CPU, a ROM, and a RAM, for example.
  • Each function of the image shape deforming apparatus 10 shown in FIG. 4 has an image shape deforming program on the ROM or RAM. This is realized by reading and executing the image shape deformation program by the CPU. That is, the operation of the image shape modification device 10 is comprehensively controlled by the CPU, the image shape modification program is executed, and the image shape modification process shown in the flowchart of FIG. 10 is performed.
  • the image shape transformation program may be provided by being stored in a recording medium such as a floppy disk, CD-ROM, DVD, or ROM, or in a semiconductor memory, or a computer superimposed on a carrier wave. It may be provided via a network as a data signal.
  • the image shape transformation device 10 is a reading device (not shown) for reading data such as a program from the recording medium, and a communication device (not shown) for acquiring data such as a program via a network.
  • the CPU functions as each part of the image shape deformation device 10.
  • the image shape transformation device 10 may be an ASIC, FPGA, or the like mounted on the printer control device 100. Further, the image shape deformation device 10 may include a CPU that controls the entire printer control device 100, an ASIC, an FPGA, and the like. In this case, a part of the configuration of the image shape deforming apparatus 10 is configured by, for example, an ASIC or FPGA other than the CPU.
  • the portion for performing the above arithmetic processing of the relative curvature generation unit 11 and the image enlargement / reduction unit 12 in the image shape deformation apparatus 10 is configured by an ASIC, FPGA, or the like. If comprised in this way, it will become possible to perform the arithmetic processing of the relative curvature production
  • the relative curvature generation unit 11 obtains the circumference BL for each print band B (S01), determines the reference print band B0 in the print band, and the circumference of the reference print band B0 is the reference circumference BL0. (S02). Next, a relative curvature RC that represents the circumference BL with respect to the reference circumference BL0 is obtained for each print band by the relative curvature generator 11 (S03) (FIG. 6).
  • the enlargement / reduction ratio ER based on the relative curvature RC is obtained for each print band by the image enlargement / reduction unit 12 (S04), and the image is enlarged or reduced for each print band in accordance with the enlargement / reduction ratio ER ( S05) (FIG. 7).
  • the surface of the hemispherical medium 300 is developed in a rectangular shape, and a rectangular image is associated thereon. Therefore, as shown in FIG. 12, when a rectangular image is printed on the hemispherical medium 300 as it is, the image is apparently distorted. Specifically, when the viewpoint is placed above the equator of the medium 300 (the front side of the paper in FIG. 12), the lower side of the image along the equator is long, and the image appears distorted toward the top of the spherical surface. .
  • an image is printed for each print band according to the relative curvature of the medium 300. Zoom in or out. Specifically, the smaller the relative curvature, the larger the image, and the larger the relative curvature, the smaller the image. Therefore, as shown in FIG. 13B, a rectangular image was printed on the surface of the three-dimensional media 300. In this case, it is possible to reduce the apparent distortion of the printed image according to a specific viewpoint.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the present embodiment is not limited to spherical or hemispherical media, and can be applied to printing of various three-dimensional media.
  • the apparent distortion of a printed image corresponding to a specific viewpoint can be reduced by applying the idea of the present invention.
  • the circumference BL of the print band is obtained by the following equation.
  • BL ⁇ ⁇ ⁇ (2 (a 2 + b 2 )) ⁇ (ab) 2 /2.2 a:
  • One rotation radius in the medium b The other rotation radius in the medium, one of the circumferences thus obtained is set as the reference circumference BL0, and as described above, the circumference with respect to the reference circumference BL0
  • a relative curvature RC representing BL may be obtained for each print band, and the image may be enlarged or reduced according to the relative curvature RC.
  • coefficient 2.2 in the above equation may be changed to 2.1, for example, in order to prevent the approximate value from exceeding the actual media length.
  • the relative curvature generation unit 11 obtains a reference curvature of the medium 300 corresponding to the reference print band in the print band, and a relative curvature representing the circumference of the medium 300 with respect to the reference circumference.
  • the relative curvature generation unit 11 may obtain the relative curvature that is the reference curvature 1 / R0 corresponding to the reference print band in the print band and that represents the curvature 1 / R with respect to the reference circumference.
  • the image enlargement / reduction unit 12 enlarges the image as the relative curvature increases, and reduces the image as the relative curvature decreases according to the relative curvature.
  • Image shape deformation unit image shape deformation device
  • Relative curvature generator reflative curvature generator
  • Image Enlargement / Reduction Unit Image Enlargement / Reduction Unit
  • RIP unit 3D coordinate generation unit
  • Head data generation unit 50
  • Data transfer / printing control unit 100
  • Printer control device 200
  • 3D printer 210 Head 220 Support unit 221 X-axis direction moving unit 222 Y-axis direction moving unit 223 Z-axis direction Moving unit 224 B-axis rotating unit 225 A-axis rotating unit 300

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ink Jet (AREA)
  • Record Information Processing For Printing (AREA)
  • Processing Or Creating Images (AREA)

Abstract

 本発明の一実施形態に係る画像形状変形装置10は、三次元形状のメディアの表面に印刷バンドごとに印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形装置であって、印刷バンドにおける基準印刷バンドに対する相対曲率を印刷バンドごとに求める相対曲率生成手段11と、相対曲率に応じて画像を印刷バンドごとに拡大又は縮小する画像拡大縮小手段12と、を備える。

Description

画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラム
 本発明は、三次元形状のメディアの表面に印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラムに関するものである。
 三次元形状のメディアの表面に画像の印刷を行う三次元プリンタが知られている。特許文献1には、この種の三次元プリンタが記載されている。この三次元プリンタは、XYZ直交座標系におけるX軸(B軸)に対してメディアを自転させるように回転させて、メディアの表面に画像の印刷を行う。
 特許文献1には、メディアの球面プリント面にプリントされる画像が、見かけ上、その球面プリント面の周囲方向(Y方向)に向けて、次第に縮んだ状態に歪んでしまう問題点が記載されている。この問題点に関し、特許文献1には、三次元プリンタを制御するホストコンピュータによって、インクジェットヘッドから噴射させてその直下の球面プリント面に着弾させて形成する画像プリント用のY方向に並ぶインクのドットの間に、空白箇所を加入して、その球面プリント面にプリントされる画像の歪みを補正することが記載されている。
特開2007-8110号広報
 しかしながら、三次元形状のメディアの表面に、例えば、球面や半球面に、平面に印刷するための画像をそのまま印刷すると、印刷後の画像は、見かけ上、X方向に向けても歪んでしまう。例えば、球面の赤道上方に視点をおいた場合、赤道に沿う下辺が長く、球面の頂上に向けて次第に縮んだ状態に歪んでしまう。
 そこで、本発明は、三次元形状のメディアの表面に画像の印刷を行う場合に、印刷画像の見かけ上の歪みを低減することが可能な画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラムを提供することを目的としている。
 本発明の一側面に係る画像形状変形装置は、三次元形状のメディアの表面に印刷バンドごとに印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形装置であって、印刷バンドにおける基準印刷バンドに対する相対曲率を印刷バンドごとに求める相対曲率生成手段と、相対曲率に応じて画像を印刷バンドごとに拡大又は縮小する画像拡大縮小手段と、を備える。
 また、本発明の別の一側面に係る画像形状変形方法は、三次元形状のメディアの表面に印刷バンドごとに印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形方法であって、印刷バンドにおける基準印刷バンドに対する相対曲率を印刷バンドごとに求め、相対曲率に応じて画像を印刷バンドごとに拡大又は縮小する。
 また、本発明の更に別の一側面に係る画像形状変形プログラムは、三次元形状のメディアの表面に印刷バンドごとに印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形プログラムであって、コンピュータを、印刷バンドにおける基準印刷バンドに対する相対曲率を印刷バンドごとに求める相対曲率生成手段と、相対曲率に応じて画像を印刷バンドごとに拡大又は縮小する画像拡大縮小手段と、として機能させる。
 本発明によれば、メディアの相対曲率に応じて画像を印刷バンドごとに拡大又は縮小するので、この画像を三次元形状のメディアの表面に印刷した場合に、特定の視点に応じた印刷画像の見かけ上の歪みを低減することができる。
 上記した相対曲率生成手段は、基準印刷バンドに対応するメディアの基準周長であって、当該基準周長に対するメディアの周長を表す相対曲率を、印刷バンドごとに求めることが好ましい。この場合、上記した画像拡大縮小手段は、相対曲率が小さいほど前記画像を拡大することが好ましく、相対曲率が大きいほど前記画像を縮小することが好ましい。
 本発明によれば、三次元形状のメディアの表面に画像の印刷を行う場合に、特定の視点に応じた印刷画像の見かけ上の歪みを低減することができる。
図1は本実施形態に係る三次元プリンタとプリンタ制御装置との構成を示す図である。 図2は図1に示す三次元プリンタの主要部の構成を示す図である。 図3は図1に示すプリンタ制御装置の電気的な構成を示す図である。 図4は本発明の実施形態に係る画像形状変形装置の電気的な構成を示す図である。 図5は相対曲率の求め方の概念図である。 図6は印刷バンドごとの相対曲率を示す図である。 図7は図4に示す画像形状変形装置による画像形状の変形の概念図である。 図8は座標データ及びヘッドデータを示す図である。 図9は三次元座標生成部の機能の概念図である。 図10は本発明の実施形態に係る画像形状変形方法のフローチャートである。 図11は従来の画像展開手法の概念図である。 図12は従来の印刷結果を示す図である。 図13は本発明の印刷結果を示す図である。 図14は楕円体形状のメディアの相対曲率の求め方の概念図である。
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
 図1は、本実施形態に係る三次元プリンタとプリンタ制御装置との構成を示す図である。本発明の実施形態に係る画像形状変形装置は、三次元プリンタ200を制御するためのプリンタ制御装置100に搭載される。
 プリンタ制御装置100には、例えば、パーソナルコンピュータ(PC)が用いられる。プリンタ制御装置100は、三次元プリンタ200と、例えばイーサネット(10baseT)方式によって、コマンド及びステータスを用いた双方向通信を行う。具体的には、プリンタ制御装置100は、三次元プリンタ200のステータスを取得するためのコマンドを三次元プリンタ200へ送信する。三次元プリンタ200は、プリンタ制御装置100からコマンドを受信すると、現在の状態、例えば印刷可能か否かのステータスをプリンタ制御装置100へ返信する。
 プリンタ制御装置100は、三次元プリンタ200からのステータスを確認し、印刷可能である場合には、画像の印刷を行うための座標データ及びヘッドデータを順次に三次元プリンタ200へ送信する。三次元プリンタ200は、これらの座標データ及びヘッドデータを順次にメモリに保存する。
 その後、プリンタ制御装置100が印刷を実行するためのコマンドを送信すると、三次元プリンタ200がこのコマンドを受信し、座標データ及びヘッドデータに基づいて印刷を実行する。
 図2は、三次元プリンタ200の主要部の構成を示す図である。図2に示す三次元プリンタ200は、三次元形状、例えば球状のメディア300の表面に画像の印刷を行うためのプリンタである。三次元プリンタ200は、メディア300の表面にインクを吐き出すヘッド210と、メディア300及びヘッド210を支持する支持部220を備える。
 支持部220は、メディア300をX軸方向に移動させるX軸方向移動部221と、メディア300をZ軸方向に移動させるZ軸方向移動部223と、メディア300をX軸(B軸)に対して自転させるように回転させるB軸回転部224と、メディア300をY軸(A軸)に対して公転させるように回転させるA軸回転部225と、ヘッド210をY軸方向に移動させるY軸方向移動部222とを備える。
 この支持部220は、プリンタ制御装置100から受ける座標データに基づいて、メディア300及びヘッド210の位置を定めると共に、メディア300をA軸に対して次第に回転させることによって印刷対象の印刷バンドを定める。また、支持部220は、メディア300をB軸に対して回転させることによって、ヘッド幅に対応する印刷バンドの印刷を可能とする。
 また、ヘッド210は、座標データにおける印刷パラメータ、及び、プリンタ制御装置100から受けるヘッドデータに基づいて、複数のノズルごとにインクを吐出し及びインク量を調整する。
 図3は、プリンタ制御装置100の構成を示す図である。図3に示すプリンタ制御装置100は、画像形状変形部(本発明の実施形態に係る画像形状変形装置)10と、RIP(Raster Image Processor)部20と、三次元座標生成部30と、ヘッドデータ生成部40と、データ転送・印刷制御部50とを備える。
 画像形状変形部10は、メディア300の形状を示すメディア形状情報と、印刷を行う画像データとを受けて、メディア300の形状に応じて画像データを変更する。画像形状変形部10は、図4に示すように、相対曲率生成部11と画像拡大縮小部12とを有する。
 相対曲率生成部11は、印刷バンドにおける基準印刷バンドに対する相対曲率を印刷バンドごとに求める。具体的には、相対曲率生成部11は、印刷バンドにおける基準印刷バンドに対応するメディア300の基準周長であって、当該基準周長に対するメディア300の周長を表す相対曲率を、印刷バンドごとに求める。
 例えば、相対曲率生成部11は、印刷バンドごとに周長を求める。相対曲率生成部11は、印刷バンドにおける1つを基準印刷バンドとし、この基準印刷バンドの周長を基準周長とする。例えば、図5に示すように、球状のメディア300では、B軸に対して最も赤道側の印刷バンドを基準印刷バンドB0とすると、基準印刷バンドB0の基準周長BL0とその他の印刷バンドBの周長BLとは、下記式によって求められる。
BL0=2πR0
BL=2πR=2πR0cosθ
R0:基準印刷バンドB0のB軸回転半径、すなわちメディア300の赤道半径
R:その他の印刷バンドBのB軸回転半径
θ:基準印刷バンドB0に対するその他の印刷バンドBの中心角
 そして、相対曲率生成部11は、基準周長BL0に対する周長BLを表す相対曲率RCを、下記式によって、印刷バンドごとに求める。
RC=BL/BL0=cosθ
相対曲率生成部11は、図6に示すような印刷バンドごとに求めた相対曲率RCを画像拡大縮小部12へ供給する。
 画像拡大縮小部12は、相対曲率RCに応じて、画像を印刷バンドごとに拡大又は縮小する。具体的には、画像拡大縮小部12は、下記式によって画像の拡大縮小率ERを印刷バンドごとに求める。
ER=(1/RC)
そして、画像拡大縮小部12は、求めた拡大縮小率に応じて、画像を印刷バンドごとに拡大又は縮小する。
 これによって、画像拡大縮小部12は、図7(a)に示す矩形画像を図7(b)に示すように、相対曲率が小さいほど画像を拡大し、相対曲率が大きいほど画像を縮小することとなる。特に、球状のメディア300では、画像拡大縮小部12は、メディア300のB軸に対する赤道から頂点へ向けて次第に画像を拡大することとなる。
 図3に戻り、RIP部20は、画像形状変形部10からの画像データを受けて、PC用画像データからプリンタ用画像データに変換する。例えば、RIP部20は、画像形状変形部10からの画像データから、画像サイズといった画像情報及びラスターデータを生成する。RIP部20は、画像情報を三次元座標生成部30へ供給すると共に、ラスターデータをヘッドデータ生成部40へ供給する。
 三次元座標生成部30は、RIP部20からのRIP済み画像データとメディア形状情報とを受け、三次元プリンタ200が印刷を行うための座標データを生成する。
 ヘッドデータ生成部40は、RIP部20からのラスターデータと三次元座標生成部30からの座標データとを受けて、座標データに1対1に対応するヘッドデータであって、三次元プリンタ200が印刷を行うためのヘッドデータを生成する。
 図8に、これらの座標データ及びヘッドデータの一例を示す。図8では、3グループ(列)×106個=318個のノズルを有するヘッド210を用いて印刷を行う場合について例示する。座標データ及びヘッドデータは、メディア300における各印刷バンドBの各印刷セルCに対して、1対1に対応して複数生成される。なお、印刷バンドの幅及び印刷セルの大きさは、ヘッドの大きさ、すなわちノズルの個数及び間隔によって定まる。
 座標データは、例えば、ヘッド210における左下のノズルの位置をヘッドの基準点とし、この基準点の座標値を有する。具体的には、座標データは、三次元プリンタ200におけるメディア300及びヘッド210を支持する支持部220を制御するための複数の座標値を有する。すなわち、座標データは、X軸方向移動部221を制御するためのX軸座標値と、Y軸方向移動部222を制御するためのY軸座標値と、Z軸方向移動部223を制御するためのZ軸座標値と、B軸回転部224を制御するためのB軸座標値と、A軸回転部225を制御するためのA軸座標値とを有する。
 本実施形態では、C軸座標制御、D軸座標制御及びE軸座標制御を行わない形態を例示したが、これらの制御を行う場合には、座標データは、C軸座標値、D軸座標値及びE軸座標値を有することとなる。
 また、座標データには、インク色(例えば、ブラック、シアン、マゼンダ、イエロー)に対応するヘッド番号や、UV硬化パラメータが付加される。
 これらの座標値、ヘッド番号及びUV硬化パラメータは、対応付けされた格納位置に従って、メモリに格納されている。
 一方、ヘッドデータは、ラスターデータを三次元プリンタ向けに1ヘッド1吐出単位にまとめたものであり、座標データと1対1に対応付けられている。ヘッドデータは、インクを吐き出すノズルごとに階調値を定める。また、ヘッドデータは、ノズルグループ間(列間)の吐出遅延パラメータを定める。
 これらのノズルの階調値及びノズルグループ間の吐出遅延パラメータは、対応付けされた格納位置に従って、メモリに格納されている。
 なお、印刷範囲外、すなわち空送り範囲における印刷セルCaでは、ヘッドデータにおけるノズルの階調ではなく、座標データにおけるヘッド番号を指定しないことによって対応する。これらの座標データ及びヘッドデータは、データ転送・印刷制御部50へ供給される。
 ここで、三次元座標生成部30は、印刷バンドごとの解像度をそろえるために、相対曲率及び印刷範囲(例えば、周長)に応じて、インク吐出間隔やヘッド送り距離を印刷バンドごとに調整する。
 具体的には、三次元座標生成部30は、相対曲率生成部11と同様に印刷バンドごとに周長BL及び相対曲率RCを求め、これらの周長BL、相対曲率RC及び所望の解像度に基づいてインク吐出座標間隔Si(半球の場合には回転角Degree)を求める。
Si=360/(BL/Sr)×(1/RC)
Sr:解像度のドット間隔
三次元座標生成部30は、このインク吐出座標間隔Siに基づいて上記した各座標値を設定する。
 これによって、図9に示すように、印刷バンドごとの解像度をそろえることができる。詳説すると、図9(a)に示す球状のメディア300の表面を矩形に展開した図を図9(b)に示す。図9(b)における破線はB軸に対する回転角度を示しており、その間隔は等角度である。図9(b)に示すように、三次元座標生成部30は、相対曲率RCが小さいほどインク吐出座標間隔Siを大きくし、相対曲率RCが大きいほどインク吐出座標間隔Siを小さくする。換言すれば、球状のメディア300では、三次元座標生成部30は、メディア300の赤道側から頂点側へ向けて、インク吐出座標間隔Siを大きくする。その結果、図9(c)に示すように、印刷バンド長を周長に変換すると、見かけ上、インク吐出座標間隔Si、すなわち解像度を印刷バンドごとにそろえることができる。
 図3に戻り、データ転送・印刷制御部50は、三次元プリンタ200の印刷制御を行う。例えば、データ転送・印刷制御部50は、上記したように、三次元プリンタ200へコマンドを送信し三次元プリンタ200のステータスを確認する。三次元プリンタ200のステータスが印刷可能を示すときに、データ転送・印刷制御部50は、三次元座標生成部30からの座標データとヘッドデータ生成部40からのヘッドデータとを三次元プリンタ200へ順次に出力する。その後、データ転送・印刷制御部50が、印刷実行コマンドを送信すると、三次元プリンタ200によってメディア300の表面への画像の印刷が行われる。
 次に、画像形状変形装置10の動作を説明すると共に、本発明の実施形態に係る画像形状変形方法を説明する。図10は、画像形状変形処理を示すフローチャートである。
 画像形状変形装置10は、例えば、CPU、ROM、RAMを含むコンピュータを主体として構成されており、図4に示した画像形状変形装置10の各機能は、ROMやRAM上に画像形状変形プログラムを読み込ませ、この画像形状変形プログラムをCPUによって実行することで実現される。すなわち、CPUによって、画像形状変形装置10の動作が統括的に制御され、画像形状変形プログラムが実行されて、図10のフローチャートに示す画像形状変形処理が行われる。
 ここで、画像形状変形プログラムは、フロッピーディスク、CD-ROM、DVD、あるいはROM等の記録媒体、あるいは半導体メモリに格納されて提供されるものであってもよく、また、搬送波に重畳されたコンピュータデータ信号としてネットワークを介して提供されるものであってもよい。この場合、画像形状変形装置10は、上記の記録媒体からプログラム等のデータを読み取るための読取装置(図示略)や、ネットワークを介してプログラム等のデータを取得するための通信装置(図示略)を有する。
 この場合、CPUが、画像形状変形装置10の各部として機能する。画像形状変形装置10は、プリンタ制御装置100に実装されるASICやFPGA等であってもよい。また、画像形状変形装置10は、プリンタ制御装置100の全体を制御するCPUと、ASICやFPGA等とを含む構成であってもよい。この場合、画像形状変形装置10の一部の構成は、例えば、CPUとは別のASICやFPGA等により構成される。例えば、画像形状変形装置10における相対曲率生成部11や画像拡大縮小部12の上記演算処理を行う部分をASICやFPGA等により構成することが考えられる。このように構成すれば、例えば、相対曲率生成部11や画像拡大縮小部12の演算処理を適切かつ高速に行うことが可能になる。
 まず、相対曲率生成部11によって、印刷バンドBごとに周長BLが求められ(S01)、印刷バンドにおける基準印刷バンドB0が決定されると共に、この基準印刷バンドB0の周長が基準周長BL0として決定される(S02)。次に、相対曲率生成部11によって、基準周長BL0に対する周長BLを表す相対曲率RCが印刷バンドごとに求められる(S03)(図6)。
 次に、画像拡大縮小部12によって、相対曲率RCに基づく拡大縮小率ERが印刷バンドごとに求められ(S04)、この拡大縮小率ERに応じて画像が印刷バンドごとに拡大又は縮小される(S05)(図7)。
 ところで、従来の画像展開手法では、図11に示すように、例えば半球状のメディア300の表面を矩形に展開し、その上に矩形画像を対応させる手法であった。そのため、図12に示すように、矩形の画像を半球状のメディア300にそのまま印刷すると、見かけ上、画像が歪んでしまう。具体的には、メディア300の赤道上方(図12の紙面の表側)に視点をおいた場合に、赤道に沿う画像の下辺が長く、球面の頂上にむけて画像が縮んだ状態に歪んで見える。
 しかしながら、本実施形態の画像形状変形装置10、画像形状変形方法及び画像形状変形プログラムによれば、図13(a)に示すように、メディア300の相対曲率に応じて、画像を印刷バンドごとに拡大又は縮小する。具体的には、相対曲率が小さいほど画像を拡大し、相対曲率が大きいほど画像を縮小するので、図13(b)に示すように、矩形画像を三次元形状のメディア300の表面に印刷した場合に、特定の視点に応じた印刷画像の見かけ上の歪みを低減することができる。
 なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、本実施形態は、球状や半球状のメディアに限定されることなく、種々の三次元形状のメディアの印刷に適用可能である。例えば、楕円体状やひょうたん状のメディアであっても、本発明の思想を適用すれば、特定の視点に応じた印刷画像の見かけ上の歪みを低減することができる。
 以下では、変形例として、楕円体状の相対曲率の求め方を例示する。図14に示すような楕円体状のメディアでは、印刷バンドの周長BLは下記式によって求められる。
BL=π×√(2(a+b))-(a-b)/2.2
a:メディアにおける一方の回転半径
b:メディアにおける他方の回転半径
よって、このようにして求めた周長のうちの1つを基準周長BL0とし、上記したように、基準周長BL0に対する周長BLを表す相対曲率RCを印刷バンドごとに求め、この相対曲率RCに応じて画像を拡大又は縮小すればよい。
 なお、近似値が実際のメディア長以上になることを防止するために、上記式における係数2.2を例えば2.1に変更してもよい。
 また、本実施形態では、相対曲率生成部11は、印刷バンドにおける基準印刷バンドに対応するメディア300の基準周長であって、当該基準周長に対するメディア300の周長を表す相対曲率を求めたが、相対曲率生成部11は、印刷バンドにおける基準印刷バンドに対応する基準曲率1/R0であって、この基準周長に対する曲率1/Rを表す相対曲率を求めてもよい。この場合、画像拡大縮小部12は、この相対曲率に応じて、相対曲率が大きいほど画像を拡大し、相対曲率が小さいほど画像を縮小することとなる。
 三次元形状のメディアの表面に画像の印刷を行う場合に、印刷画像の見かけ上の歪みを低減する用途に適用することができる。
 10 画像形状変形部(画像形状変形装置)
 11 相対曲率生成部(相対曲率生成手段)
 12 画像拡大縮小部(画像拡大縮小手段)
 20 RIP部
 30 三次元座標生成部
 40 ヘッドデータ生成部
 50 データ転送・印刷制御部
 100 プリンタ制御装置
 200 三次元プリンタ
 210 ヘッド
 220 支持部
 221 X軸方向移動部
 222 Y軸方向移動部
 223 Z軸方向移動部
 224 B軸回転部
 225 A軸回転部
 300 メディア

Claims (6)

  1.  三次元形状のメディアの表面に印刷バンドごとに印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形装置であって、
     前記印刷バンドにおける基準印刷バンドに対する相対曲率を前記印刷バンドごとに求める相対曲率生成手段と、
     前記相対曲率に応じて前記画像を前記印刷バンドごとに拡大又は縮小する画像拡大縮小手段と、
    を備える、
    画像形状変形装置。
  2.  前記相対曲率生成手段は、前記基準印刷バンドに対応する前記メディアの基準周長であって、当該基準周長に対する前記メディアの周長を表す前記相対曲率を、前記印刷バンドごとに求める、
    請求項1に記載の画像形状変形装置。
  3.  前記画像拡大縮小手段は、前記相対曲率が小さいほど前記画像を拡大する、
    請求項2に記載の画像形状変形装置。
  4.  前記画像拡大縮小手段は、前記相対曲率が大きいほど前記画像を縮小する、
    請求項2に記載の画像形状変形装置。
  5.  三次元形状のメディアの表面に印刷バンドごとに印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形方法であって、
     前記印刷バンドにおける基準印刷バンドに対する相対曲率を前記印刷バンドごとに求め、
     前記相対曲率に応じて前記画像を前記印刷バンドごとに拡大又は縮小する、
    画像形状変形方法。
  6.  三次元形状のメディアの表面に印刷バンドごとに印刷を行う三次元プリンタのための画像の形状を変形する画像形状変形プログラムであって、
     コンピュータを、
     前記印刷バンドにおける基準印刷バンドに対する相対曲率を前記印刷バンドごとに求める相対曲率生成手段と、
     前記相対曲率に応じて前記画像を前記印刷バンドごとに拡大又は縮小する画像拡大縮小手段と、
    として機能させる、
    画像形状変形プログラム。
PCT/JP2009/069733 2008-11-28 2009-11-20 画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラム WO2010061799A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09829047A EP2275988A1 (en) 2008-11-28 2009-11-20 Image shape deformation device, image shape deformation method, and image shape deformation program
CN200980115544XA CN102016914B (zh) 2008-11-28 2009-11-20 图像形状改变装置、图像形状改变方法以及图像形状改变程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008304699 2008-11-28
JP2008-304699 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061799A1 true WO2010061799A1 (ja) 2010-06-03

Family

ID=42225675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069733 WO2010061799A1 (ja) 2008-11-28 2009-11-20 画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラム

Country Status (5)

Country Link
EP (1) EP2275988A1 (ja)
JP (1) JP2010152879A (ja)
KR (1) KR20100127859A (ja)
CN (1) CN102016914B (ja)
WO (1) WO2010061799A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125770A (ja) * 2008-11-28 2010-06-10 Mimaki Engineering Co Ltd バンド送り制御装置、バンド送り制御方法、及び、バンド送り制御プログラム
US20170134716A1 (en) * 2015-11-06 2017-05-11 Canon Kabushiki Kaisha Image capturing apparatus, control method for the same, and computer readable medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5992677B2 (ja) * 2011-12-01 2016-09-14 イーデーエム株式会社 印字装置
US9004675B2 (en) * 2013-04-04 2015-04-14 Nike, Inc. Image correction with 3D printing
JP6740035B2 (ja) * 2016-06-30 2020-08-12 独立行政法人国立高等専門学校機構 印刷装置、印刷装置の制御方法、及び印刷方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290627A (ja) * 1995-04-21 1996-11-05 Canon Inc 印刷方法及び装置
JPH09161092A (ja) * 1995-12-04 1997-06-20 S N K:Kk 表示制御装置および表示制御方法
JP2004082442A (ja) * 2002-08-26 2004-03-18 Master Mind Co Ltd インクジェットプリンタを用いて円錐面に印刷する方法
JP2007008110A (ja) 2005-07-04 2007-01-18 Mimaki Engineering Co Ltd 球体メディアプリント用のインクジェットプリンタとそれを用いたプリント方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293955A (ja) * 1992-04-17 1993-11-09 Suzuki Sogyo Co Ltd 曲面印刷方法
JPH05318715A (ja) * 1992-05-18 1993-12-03 Olympus Optical Co Ltd 曲面印刷装置
CN1224881A (zh) * 1997-12-18 1999-08-04 莱克斯马克国际公司 用于打印机图像变形的系统和方法
CN1689814B (zh) * 2000-05-24 2011-07-27 西尔弗布鲁克研究有限公司 打印引擎控制器、打印机和处理图像数据的方法
JP2005305867A (ja) * 2004-04-22 2005-11-04 Seiko Epson Corp 画像処理システム、画像表示装置、プリンタおよび印刷方法
JP2006335018A (ja) * 2005-06-06 2006-12-14 Mimaki Engineering Co Ltd 円錐メディアプリント用のインクジェットプリンタとそれを用いたプリント方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290627A (ja) * 1995-04-21 1996-11-05 Canon Inc 印刷方法及び装置
JPH09161092A (ja) * 1995-12-04 1997-06-20 S N K:Kk 表示制御装置および表示制御方法
JP2004082442A (ja) * 2002-08-26 2004-03-18 Master Mind Co Ltd インクジェットプリンタを用いて円錐面に印刷する方法
JP2007008110A (ja) 2005-07-04 2007-01-18 Mimaki Engineering Co Ltd 球体メディアプリント用のインクジェットプリンタとそれを用いたプリント方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125770A (ja) * 2008-11-28 2010-06-10 Mimaki Engineering Co Ltd バンド送り制御装置、バンド送り制御方法、及び、バンド送り制御プログラム
US20170134716A1 (en) * 2015-11-06 2017-05-11 Canon Kabushiki Kaisha Image capturing apparatus, control method for the same, and computer readable medium
US10742963B2 (en) * 2015-11-06 2020-08-11 Canon Kabushiki Kaisha Image capturing apparatus, control method for the same, and computer readable medium

Also Published As

Publication number Publication date
CN102016914A (zh) 2011-04-13
EP2275988A1 (en) 2011-01-19
KR20100127859A (ko) 2010-12-06
CN102016914B (zh) 2013-09-25
JP2010152879A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5033113B2 (ja) 印刷データ生成装置、印刷データ生成方法、及び、印刷データ生成プログラム
WO2010061799A1 (ja) 画像形状変形装置、画像形状変形方法、及び、画像形状変形プログラム
US10567618B2 (en) Correcting sharing ratios of nozzle groups in overlapping image region and correcting color conversion table based thereon
US11238320B2 (en) Printing apparatus and printing method
JP5445674B2 (ja) 印刷座標生成装置、印刷座標生成方法、印刷座標生成プログラム、三次元インクジェットプリンタ及び三次元インクジェットプリンタの印刷方法
US8115964B2 (en) Image processing method for printing gray objects
JP2012245781A (ja) データ処理システムおよびデータ処理方法
JP5160384B2 (ja) バンド送り制御装置、バンド送り制御方法、及び、バンド送り制御プログラム
JP2006205616A (ja) 画像形成装置、画像処理方法、およびプログラム
EP3769968B1 (en) Image forming apparatus and dot pattern adjustment method
US20220032648A1 (en) Image processing apparatus, image processing method, and storage medium
US11642901B2 (en) Printing apparatus and printing method
US20210264229A1 (en) Image processing method, printing method, and printing system
WO2023210719A1 (ja) 印刷システム
US8705113B2 (en) Apparatus and method for recording a maintenance pattern
JP4252130B2 (ja) インクジェットプリンタにおける細線の階調表現方法
JP3902800B2 (ja) 印字制御装置及び該装置の制御方法
US9076089B2 (en) Image processing apparatus and method for printing according to a dot-arrangement matrix
JP2010128936A (ja) 印刷回数指定装置、印刷回数指定方法、印刷回数指定プログラム、印刷回数識別装置、印刷回数識別方法、及び、印刷回数識別プログラム。
JP2017016597A (ja) 印刷制御装置、印刷制御方法、及び、印刷制御プログラム
JP2005153159A (ja) 印刷装置、印刷制御装置、印刷方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115544.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107024054

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009829047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009829047

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE