WO2010061653A1 - Pfcコンバータ - Google Patents

Pfcコンバータ Download PDF

Info

Publication number
WO2010061653A1
WO2010061653A1 PCT/JP2009/059750 JP2009059750W WO2010061653A1 WO 2010061653 A1 WO2010061653 A1 WO 2010061653A1 JP 2009059750 W JP2009059750 W JP 2009059750W WO 2010061653 A1 WO2010061653 A1 WO 2010061653A1
Authority
WO
WIPO (PCT)
Prior art keywords
output voltage
value
input
current
voltage
Prior art date
Application number
PCT/JP2009/059750
Other languages
English (en)
French (fr)
Inventor
鵜野良之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN200980140888.6A priority Critical patent/CN102187559B/zh
Priority to JP2010540403A priority patent/JP5273158B2/ja
Publication of WO2010061653A1 publication Critical patent/WO2010061653A1/ja
Priority to US13/108,019 priority patent/US8179703B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to an AC-DC converter that inputs an AC power supply and outputs a DC voltage, and more particularly to a PFC converter that suppresses harmonic current.
  • a general switching power supply device that uses a commercial AC power supply as an input power supply rectifies and smoothes the commercial AC power supply and converts it to a DC voltage, which is then switched by a DC-DC converter. Is greatly distorted. This is the cause of the harmonic current.
  • a PFC converter is provided after the full-wave rectifier circuit and before the smoothing circuit by the smoothing capacitor.
  • This PFC converter is composed of a chopper circuit and operates so that the input current waveform is similar to the input voltage waveform and has the same phase as a sine wave. Therefore, the harmonic current is suppressed to a certain level or less, and the power factor is improved.
  • P Proportional control
  • PI Proportional-integral control
  • PID Proportional-Integral-Differential control
  • Patent Document 1 is an example of a PFC converter that performs P control.
  • FIG. 1 is a circuit diagram of a PFC converter disclosed in Patent Document 1. In FIG. Here, the PFC converter of Patent Document 1 will be described with reference to FIG.
  • Fig. 1 shows a so-called step-up voltage converter.
  • a voltage Vr obtained by rectifying an AC voltage Va of a commercial power supply by a rectifier circuit 1 is applied to a reactor 2, and a current generated in the reactor 2 is interrupted by a switching transistor 3.
  • the output voltage Vo is taken out and is smoothed and stabilized by the capacitor 5.
  • the detection value vo of the output voltage Vo by the voltage dividing circuit 6 is given to the error amplification circuit 7, and the error voltage ve indicating the difference from the set value vs is output.
  • the multiplication circuit 8 receives the error voltage ve and the rectified voltage Vr, and outputs a voltage error signal Se that is proportional to the error voltage ve and has the same pulsating waveform as that of the rectified voltage Vr.
  • the current flowing when the switching transistor 3 is turned on and its waveform are detected by the detection resistor 9, and this current waveform signal Sc and the voltage error signal Se described above are given to the current error detection circuit 10 to express the current difference signal representing the waveform difference between the two signals.
  • S1 is output to the non-inverting input of the comparator 20.
  • the comparator 20 compares the current error signal S1 with a sawtooth wave period signal S0 that specifies the intermittent period of the switching transistor 3 received from the high-frequency oscillation circuit 21, and compares the on / off command signal Sw that is a PWM signal with the switching transistor. 3 is output.
  • the current flowing through the reactor 2 is interrupted at the duty ratio specified by the on / off command Sw.
  • the PFC converter disclosed in Patent Document 1 has a high gain in a low frequency region, but a finite gain. That is, there is an error even in a stable state. As the output voltage error ve shown in FIG. 1 increases, the difference between the output voltage Vo and the target voltage vs increases and the output voltage decreases.
  • the PFC converter shown in Patent Document 2 has a direct current and an infinite gain, so that the error in the stable state can be made zero. However, in the transient state such as a sudden load change, the capacitor is charged and discharged. Since it takes time, the time until the output voltage converges is longer than that of the P-controlled PFC converter shown in FIG.
  • an object of the present invention is to have both P control responsiveness and PI control stability, so that fluctuations in output voltage due to fluctuations in input voltage and load can be suppressed without deteriorating transient responsiveness. It is to provide a PFC converter.
  • a PFC converter comprising: a circuit; and switching control means for controlling on / off of the switching element so that an input current input from the AC input power source is similar to the AC voltage, Input voltage detection means for detecting an input voltage input from the AC input power supply; Inductor current detection means for detecting current flowing in the inductor; Output voltage detecting means for detecting the output voltage of the rectifying and smoothing means,
  • the switching control means uses a product of an output voltage error, which is an error of a detected value of the output voltage with respect to an output voltage target value, and a detected value of the input voltage as a current reference amplitude value, and the current reference amplitude value and the inductor Is a means for controlling the on-
  • the switching control unit and the output voltage control value correction unit are configured by a DSP (Digital Signal Processor) that holds a digital value corresponding to the output voltage target value, and the output voltage control value correction unit includes The digital value is corrected by a proportional value of the current reference amplitude value.
  • DSP Digital Signal Processor
  • FIG. 2 is a circuit diagram of a PFC converter disclosed in Patent Document 1.
  • FIG. 1 is a circuit diagram of a PFC converter according to a first embodiment.
  • FIG. It is a wave form diagram of the voltage and current of the PFC converter 101 in the unit of a switching cycle in the state in which control is performed in the current continuous mode.
  • FIG. 3 is a diagram showing the processing contents of the digital signal processing circuit 13 shown in FIG. 2 in blocks. It is a block diagram regarding feedback control of output voltage.
  • FIG. 5 is a circuit diagram of an output voltage error amplifier according to a second embodiment.
  • FIG. 2 is a circuit diagram of the PFC converter according to the first embodiment.
  • reference signs P ⁇ b> 11 and P ⁇ b> 12 are input ports of the PFC converter 101
  • reference signs P ⁇ b> 21 and P ⁇ b> 22 are output ports of the PFC converter 101.
  • An AC input power supply Vac which is a commercial AC power supply, is input to the input ports P11 to P12, and a load circuit 100 is connected to the output ports P21 to P22.
  • the load circuit 100 is, for example, a DC-DC converter and a circuit of an electronic device that is supplied with power by the DC-DC converter.
  • the input stage of the PFC converter 101 is provided with a diode bridge B1 that full-wave rectifies the AC voltage of the AC input power supply Vac.
  • the diode bridge B1 corresponds to the “rectifier circuit” of the present invention.
  • a series circuit of an inductor L1, a switching element Q1, and a current detection resistor Rcd is connected to the output side of the diode bridge B1.
  • a rectifying / smoothing circuit composed of a diode D1 and a smoothing capacitor C1 is connected in parallel to both ends of the switching element Q1.
  • the inductor L1, the switching element Q1, the diode D1, and the smoothing capacitor C1 constitute a so-called boost chopper circuit.
  • the current detection resistor Rcd and the input portion of the digital signal processing circuit 13 for inputting the signal correspond to the “inductor current detection means” of the present invention.
  • An input voltage detection circuit 11 is provided between both ends on the output side of the diode bridge B1.
  • An output voltage detection circuit 12 is provided between the output ports P21 and P22.
  • the digital signal processing circuit 13 is constituted by a DSP, and controls the PFC converter 101 by digital signal processing. That is, the digital signal processing circuit 13 receives the output signal of the input voltage detection circuit 11 and detects the phase of the voltage of the AC input power supply. Further, the output signal of the output voltage detection circuit 12 is inputted to detect the output voltage. Further, the switching element Q1 is turned on / off at a predetermined switching frequency.
  • the digital signal processing circuit 13 corresponds to the “switching control means” of the present invention.
  • the input portion of the input voltage detection circuit 11 and the digital signal processing circuit 13 for inputting the signal corresponds to the “input voltage detection means” of the present invention.
  • the output voltage detection circuit 12 and the input part of the digital signal processing circuit 13 for inputting the signal correspond to the “output voltage detection means” of the present invention.
  • the digital signal processing circuit 13 includes a port for performing communication with the load circuit 100.
  • the digital signal processing circuit 13 performs data communication or signal input / output, and the state of the converter with respect to the load circuit (electronic device). Etc. are always transmitted, input voltage, output voltage, output current, etc. are transmitted, or the load state is received from the load circuit side and reflected in the switching control.
  • FIG. 3 is a waveform diagram of the voltage / current of the PFC converter 101 in units of switching periods in a state where control is performed in the continuous current mode.
  • the digital signal processing circuit 13 performs switching control so that the input current to the PFC converter 101, that is, the average value of the current flowing through the inductor L1, is similar to the full-wave rectified waveform. In this way, when an input current similar to the input voltage flows, harmonics are suppressed and the power factor is improved.
  • (A) is a current waveform of the average value Ii of the current flowing through the inductor L1 in a unit of a half cycle of the commercial power supply frequency
  • (B) is an enlarged part of the time axis of the switching cycle.
  • (C) is a waveform diagram of the drain-source voltage Vds of the switching element Q1.
  • the current IL flows through the inductor L1, and the current IL increases with a slope determined according to the voltage across the inductor L1 and the inductance of the inductor L1. Thereafter, the current IL decreases with an inclination determined by the voltage across the inductor L1 and its inductance during the OFF period Toff of the switching element Q1. As described above, the current IL flowing through the inductor L1 with the width of the current ripple ⁇ IL varies in the switching cycle.
  • FIG. 4 is a block diagram showing the processing contents of the digital signal processing circuit 13 shown in FIG.
  • the adding element 31 calculates an error ev of the output voltage detection value vo with respect to an output voltage target value Vref described later.
  • the output voltage error amplifier 32 obtains a current reference amplitude value vm by multiplying the error ev by a predetermined proportionality coefficient (usually, the error amplifier in the PFC needs to prevent the output voltage from responding to the ripple of the input voltage. Because it has high-frequency cutoff characteristics).
  • the multiplier 33 obtains the current reference value ir by multiplying the current reference amplitude value vm by the input voltage detection value vi.
  • the adding element 34 obtains an input current error value ei that is a difference between the inductor current detection value iL and the current reference value ir.
  • the input current error amplifier 35 multiplies the input current error value ei by a predetermined proportionality coefficient to generate a modulation signal D for the pulse generator.
  • the pulse generator 36 Based on the modulation signal D, the pulse generator 36 outputs a pulse signal which is a binary logic signal.
  • This pulse signal is a switching control signal for the switching element Q1. That is, the switching control signal is PWM-modulated with a value proportional to the current error value ei. Thereby, the ON time of the switching element Q1 is controlled.
  • the coefficient element 38 generates a value obtained by multiplying the current reference amplitude value vm by a predetermined coefficient.
  • the adding element 39 adds the value generated by the coefficient element 38 to the reference value vr0 to obtain the output voltage target value Vref.
  • the coefficient element 38 and the addition element 39 correspond to the “output voltage control value correcting means” of the present invention.
  • the coefficient element 38 changes the output voltage target value Vref according to the output vm of the output voltage error amplifier 32. Therefore, abnormal oscillation may occur depending on conditions. In such a case, the coefficient element 38 has a high-frequency cutoff characteristic. As a result, even when the current reference amplitude value vm changes rapidly, the change in Vref becomes slow, and a transient response can be avoided.
  • FIG. 5 is a block diagram relating to feedback control of the output voltage.
  • FIG. 5A is a block diagram of a feedback system including the addition element 31, the output voltage error amplifier 32, the coefficient element 38, and the addition element 39 shown in FIG.
  • FIG. 5B is a comparative example and is a block diagram when the coefficient element 38 and the addition element 39 shown in FIG. 4 are not provided.
  • the error ev of the output voltage detection value vo with respect to the output voltage target value Vref is obtained, and the output voltage error amplifier 32 outputs the current reference amplitude value vm to be controlled (
  • the PFC converter 50 controls the output voltage (output voltage detection value vo) based on the current reference amplitude value vm.
  • the coefficient element 38 further adds a value obtained by multiplying the current reference amplitude value vm by a coefficient to the reference (fixed) target value vr0 to output the output voltage target value Vref. To correct.
  • the residual (the output voltage detection value vo in the steady state and the output voltage target value Vref is basically controlled while being P control). Control without difference is possible.
  • condition judgment and condition branching can be performed in a detailed and complicated manner. For example, when the load is large, the target value is also large. When it is detected that the load has suddenly decreased in this state, the output voltage target value Vref is reset to the initial value. This suppresses a jump in the output voltage when the load suddenly decreases.
  • Second Embodiment In the first embodiment, as shown in FIGS. 2 and 4, the switching control is performed using the digital signal processing circuit 13 by the DSP. However, in the second embodiment, the output shown in FIG. This is an example in which the voltage error amplifier 32 is composed of analog elements.
  • FIG. 6 is a circuit diagram of an output voltage error amplifier according to the second embodiment.
  • the input voltage Vref at the non-inverting input terminal (+) of the operational amplifier OP is expressed by the following equation (1).
  • vm is an output voltage of the operational amplifier OP (output of the output voltage error amplifier)
  • vo is an output voltage detection value
  • Vref is an output voltage target value.
  • Vref (vr0 / Rr1 + vm / Rr3) / (1 / Rr1 + 1 / Rr2 + 1 / Rr3) (1)
  • the capacitor Cref is connected in parallel to the resistor Rr2
  • the change in the output voltage target value Vref with the lapse of time decreases as the capacitance of the capacitor Cref increases. That is, it has a function of a low-pass filter.
  • the output voltage can be made constant regardless of the input voltage or load without degrading the transient response.
  • Switching element Rcd Current detection resistor Toff ... Off period Ton ... On period Vac ... AC input power supply Vds ... Source voltage vi ... Input voltage detection value vm ... Current reference amplitude value vo ... Output voltage detection value vr0 ... Reference value Vref ... Output voltage target value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 P制御の応答性とPI制御の安定性を併せ持つものであり、過渡応答性を劣化させることなく、且つ入力電圧や負荷の変動による出力電圧の変動を抑制する。  出力電圧誤差増幅器(32)は、フィードバック制御によって出力電圧を安定化させる低周波数領域で比例器として作用し、出力電圧目標値Vrefに対する出力電圧検出値voの誤差evに対して所定の比例係数を乗じて電流基準振幅値vmを求める。係数要素(38)は電流基準振幅値vmに対して所定の係数を乗じ、その値を基準値vr0に加算して出力電圧目標値Vrefを求める。係数要素(38)は、低周波数領域で電流基準振幅値vmに応じて出力電圧目標値Vrefを変化させ、高い周波数領域では係数値を小さくしてローパスフィルタとして作用させる。

Description

PFCコンバータ
 この発明は、交流電源を入力して直流電圧を出力するAC-DCコンバータに関し、特に高調波電流を抑制するPFCコンバータに関するものである。
 商用電源に接続される電気機器は、その電力容量に応じて高調波電流規制があり、商用電源を入力とするスイッチング電源装置はそれをクリアするためにPFC(力率改善回路)コンバータを備えている場合が多い。
 商用交流電源を入力電源とする一般的なスイッチング電源装置は、商用交流電源を整流平滑して直流電圧に変換した後、それをDC-DCコンバータでスイッチングするので入力電流は不連続となり、正弦波から大きく歪む。このことが高調波電流の原因である。
 そこで、この高調波電流を抑制することを目的として、全波整流回路の後段で且つ平滑コンデンサによる平滑回路の手前にPFCコンバータが設けられている。
 このPFCコンバータはチョッパ回路で構成され、入力電流波形が入力電圧波形に相似形で同位相の正弦波状になるように動作する。そのため高調波電流が一定レベル以下に抑えられ、力率も改善される。
 制御理論として、P(Proportional:比例)制御、PI(proportional-Integral:比例&積分)制御、PID(Proportional-Integral-Differential:比例&積分&微分)制御などが一般的に知られているが、PFCコンバータでは出力電圧の定常特性よりは応答性が優先されるため、P制御が用いられることが一般的である。
 P制御を行うPFCコンバータの例として特許文献1がある。図1は特許文献1に示されているPFCコンバータの回路図である。ここで、図1を参照して特許文献1のPFCコンバータについて説明する。
 図1はいわゆる昇圧形の電圧コンバータを構成している。このコンバータは、商用電源の交流電圧Vaを整流回路1で整流した電圧Vrをリアクトル2に与え、それに流す電流をスイッチングトランジスタ3によって断続しながら、電流遮断時にリアクトル2に発生する電圧を、ダイオード4を介して出力電圧Voとして取り出すとともにキャパシタ5により平滑化しかつ安定化させる。
 出力電圧Voの分圧回路6による検出値voを誤差増幅回路7に与え、その設定値vsとの差を示す誤差電圧veを出力させる。乗算回路8は誤差電圧veと整流電圧Vrを受け、両者の乗算によって誤差電圧veに比例しかつ整流電圧Vrと同じ脈動波形をもつ電圧誤差信号Seを出力する。
 スイッチングトランジスタ3のオン時に流れる電流とその波形を検出抵抗9によって検出し、この電流波形信号Sc及び上述の電圧誤差信号Seを電流誤差検出回路10に与えて両信号の波形差を表す電流誤差信号S1を、コンパレータ20の非反転入力に出力させる。コンパレータ20は、この電流誤差信号S1を、高周波発振回路21から受けているスイッチングトランジスタ3の断続周期を指定する鋸歯状波の周期信号S0と比較し、PWM信号であるオンオフ指令信号Swをスイッチングトランジスタ3に出力する。このことにより、リアクトル2に流す電流をこのオンオフ指令Swにより指定されるデューティ比で断続させる。
特開平7-87744号公報 特開2007-129849号公報
 特許文献1に示されているPFCコンバータは、低周波数領域では高ゲインであるが、有限のゲインである。すなわち安定状態においても誤差が存在する。図1に示されている出力電圧誤差veが大きくなるほど、出力電圧Voと目標電圧vsとの差は大きくなり、出力電圧が低下する。
 特許文献2に示されているPFCコンバータは、直流でゲインが無限大となるため、安定状態での誤差をゼロにすることができるが、負荷急変などの過渡状態においては、コンデンサの充放電に時間が掛かるので、出力電圧が収束するまでの時間は、図1に示されているP制御のPFCコンバータに比べて大きくなる。
 そこで、この発明の目的は、P制御の応答性とPI制御の安定性を併せ持つものであり、過渡応答性を劣化させることなく、且つ入力電圧や負荷の変動による出力電圧の変動を抑制できるようにしたPFCコンバータを提供することにある。
 前記課題を解決するために、この発明は次のように構成する。
(1)交流入力電源から入力される交流電圧を整流する整流回路と、前記整流回路の次段に接続された、インダクタ及びスイッチング素子を含む直列回路と、前記スイッチング素子に並列接続された整流平滑回路と、前記交流入力電源から入力される入力電流が前記交流電圧に対して相似形となるように前記スイッチング素子をオン/オフ制御するスイッチング制御手段と、を備えたPFCコンバータであって、
 前記交流入力電源から入力される入力電圧を検出する入力電圧検出手段と、
 前記インダクタに流れる電流を検出するインダクタ電流検出手段と、
 前記整流平滑手段の出力電圧を検出する出力電圧検出手段と、を備え、
 前記スイッチング制御手段は、出力電圧目標値に対する前記出力電圧の検出値の誤差である出力電圧誤差と、前記入力電圧の検出値との積を電流基準振幅値とし、この電流基準振幅値と前記インダクタに流れる電流との差に応じて前記スイッチング素子のオン時間を制御する手段であり、
 前記出力電圧の目標値または前記出力電圧誤差を前記電流基準振幅値の比例値で補正する出力電圧制御値補正手段を設けたことを特徴とする。
(2)前記スイッチング制御手段及び前記出力電圧制御値補正手段は、前記出力電圧目標値に相当するディジタル値を保持するDSP(Digital Signal Processor)で構成され、前記出力電圧制御値補正手段は、前記ディジタル値を前記電流基準振幅値の比例値で補正するようにしたことを特徴とする。
 この発明によれば、過渡応答性を劣化させることなく、入力電圧や負荷の変動に因る出力電圧の変動が抑制される。
特許文献1に示されているPFCコンバータの回路図である。 第1の実施形態に係るPFCコンバータの回路図である。 電流連続モードで制御が行われている状態におけるスイッチング周期の単位でのPFCコンバータ101の電圧・電流の波形図である。 図2に示したディジタル信号処理回路13の処理内容をブロック化して表した図である。 出力電圧のフィードバック制御に関するブロック図である。 第2の実施形態に係る出力電圧誤差増幅器の回路図である。
《第1の実施形態》
 第1の実施形態に係るPFCコンバータについて図2~図6を参照して説明する。
 図2は第1の実施形態に係るPFCコンバータの回路図である。図2において符号P11,P12はPFCコンバータ101の入力ポート、符号P21,P22はPFCコンバータ101の出力ポートである。入力ポートP11-P12には商用交流電源である交流入力電源Vacが入力され、出力ポートP21-P22には負荷回路100が接続される。
 負荷回路100は例えばDC-DCコンバータ及びそのDC-DCコンバータによって電源供給を受ける電子機器の回路である。
 PFCコンバータ101の入力段には交流入力電源Vacの交流電圧を全波整流するダイオードブリッジB1を設けている。ダイオードブリッジB1はこの発明の「整流回路」に相当する。ダイオードブリッジB1の出力側にはインダクタL1及びスイッチング素子Q1、さらに電流検出用抵抗Rcdの直列回路を接続している。スイッチング素子Q1の両端には、ダイオードD1及び平滑コンデンサC1で構成される整流平滑回路を並列接続している。このインダクタL1、スイッチング素子Q1、ダイオードD1及び平滑コンデンサC1によっていわゆる昇圧チョッパ回路を構成している。
 電流検出用抵抗Rcd及びその信号を入力するディジタル信号処理回路13の入力部は、この発明の「インダクタ電流検出手段」に相当する。
 ダイオードブリッジB1の出力側の両端間には入力電圧検出回路11を設けている。また出力ポートP21-P22間に出力電圧検出回路12を設けている。ディジタル信号処理回路13はDSPで構成していて、ディジタル信号処理によってこのPFCコンバータ101を制御する。すなわち、ディジタル信号処理回路13は入力電圧検出回路11の出力信号を入力し、交流入力電源の電圧の位相を検知する。また出力電圧検出回路12の出力信号を入力して出力電圧を検知する。さらにスイッチング素子Q1を所定のスイッチング周波数でオン/オフする。
 ディジタル信号処理回路13は、この発明の「スイッチング制御手段」に相当する。前記入力電圧検出回路11及びその信号を入力するディジタル信号処理回路13の入力部は、この発明の「入力電圧検出手段」に相当する。また、前記出力電圧検出回路12及びその信号を入力するディジタル信号処理回路13の入力部は、この発明の「出力電圧検出手段」に相当する。
 さらに、ディジタル信号処理回路13は負荷回路100との間で通信を行うためのポートを備えていて、たとえばデータの通信または信号の入出力を行い、負荷回路(電子機器)に対してコンバータの状態等を常に送信したり、入力電圧、出力電圧、出力電流等を送信したり、負荷回路側から負荷状態等を受信してスイッチング制御に反映したりする。
 図3は、電流連続モードで制御が行われている状態におけるスイッチング周期の単位でのPFCコンバータ101の電圧・電流の波形図である。
 ディジタル信号処理回路13は、PFCコンバータ101に対する入力電流、すなわちインダクタL1に流れる電流の平均値、が全波整流波形に相似形となるようにスイッチング制御を行う。このようにして入力電圧と相似形の入力電流が流れることにより、高調波が抑制され、力率が改善される。
 図3において(A)は商用電源周波数の半周期単位での、インダクタL1に流れる電流の平均値Iiの電流波形、(B)はその一部の時間軸を拡大して表した、スイッチング周期の単位でのインダクタL1に流れる電流ILの波形図、(C)はスイッチング素子Q1のドレイン-ソース間電圧Vdsの波形図である。
 スイッチング素子Q1のオン期間TonではインダクタL1に電流ILが流れ、インダクタL1の両端間電圧及びインダクタL1のインダクタンスに応じて定まる傾きで電流ILは上昇する。その後、スイッチング素子Q1のオフ期間Toffで、インダクタL1の両端電圧とそのインダクタンスによって定まる傾きで電流ILは下降する。このように電流リップルΔILの幅でインダクタL1に流れる電流ILがスイッチング周期で変動する。
 図4は、図2に示したディジタル信号処理回路13の処理内容をブロック化して表した図である。
 図4において、加算要素31は、後述する出力電圧目標値Vrefに対する出力電圧検出値voの誤差evを求める。出力電圧誤差増幅器32は、誤差evに対して所定の比例係数を乗じて電流基準振幅値vmを求める(通常、PFCにおける誤差増幅器は、出力電圧が入力電圧のリップルに応答しないようにする必要があるため、高域遮断特性を持つ)。乗算器33は、電流基準振幅値vmに対して入力電圧検出値viを乗じて電流基準値irを求める。加算要素34は、電流基準値irに対するインダクタ電流検出値iLの差分である入力電流誤差値eiを求める。入力電流誤差増幅器35は入力電流誤差値eiに対して所定の比例係数を乗じて、パルス生成器に対する変調信号Dを発生する。パルス生成器36は前記変調信号Dに基づいて、二値論理信号であるパルス信号を出力する。このパルス信号はスイッチング素子Q1に対するスイッチング制御信号である。すなわちスイッチング制御信号を前記電流誤差値eiに比例した値でPWM変調する。これによりスイッチング素子Q1のオン時間が制御される。
 係数要素38は前記電流基準振幅値vmに対して所定の係数を乗じた値を発生する。加算要素39は、係数要素38が発生する値を基準値vr0に加算して出力電圧目標値Vrefを求める。この係数要素38及び加算要素39が、この発明の「出力電圧制御値補正手段」に相当する。
 係数要素38は、出力電圧誤差増幅器32の出力vmに応じて出力電圧目標値Vrefを変化させる。そのため、条件によっては異常発振することがある。そのような場合は係数要素38に高域遮断特性をもたせる。このことにより、電流基準振幅値vmが急激に変化する場合でもVrefの変化は低速になって、過渡的な応答が回避できる。
 図5は、出力電圧のフィードバック制御に関するブロック図である。図5(A)は、図4に示した、加算要素31、出力電圧誤差増幅器32、係数要素38、加算要素39によるフィードバック系のブロック図である。図5(B)は、比較例であり、図4に示した係数要素38及び加算要素39を設けない場合のブロック図である。
 図5(B)に示す比較例のフィードバック系では、出力電圧目標値Vrefに対する出力電圧検出値voの誤差evが求められ、出力電圧誤差増幅器32は電流基準振幅値vmを出力し、制御対象(PFCコンバータ)50は電流基準振幅値vmを基にして出力電圧(出力電圧検出値vo)を制御する。
 一方、図5(A)に示すフィードバック系では、更に係数要素38が電流基準振幅値vmに対して係数を乗じた値を基準の(固定の)目標値vr0に加算して出力電圧目標値Vrefを修正する。
 このように、電流基準振幅値vmに応じて目標値vr0を変動させることによって、基本的にP制御でありながら、残差(定常状態での出力電圧検出値voと出力電圧目標値Vrefとの差)が生じない制御が可能となる。
 以上に示したように、ディジタル信号処理回路13をDSPで構成することにより、信号の劣化やノイズの混入、素子バラツキの影響がないため、高精度な目標値の補正が行える。また、条件判断や条件分岐を細かく複雑に行える。例えば負荷が大きいときは目標値も大きくなっているが、この状態で負荷が急激に小さくなったことを検出すると、出力電圧目標値Vrefを初期値にリセットする。このことによって、負荷が急激に小さくなったときの出力電圧の跳ね上がりを抑制する。
《第2の実施形態》
 第1の実施形態では、図2及び図4に示したように、DSPによるディジタル信号処理回路13を用いてスイッチング制御を行うようにしたが、第2の実施形態は、図4に示した出力電圧誤差増幅器32をアナログ素子で構成する例である。
 図6は第2の実施形態に係る出力電圧誤差増幅器の回路図である。オペアンプOPの非反転入力端子(+)の入力電圧Vrefは次の(1)式で表される。ここでvmはオペアンプOPの出力電圧(出力電圧誤差増幅器の出力)、voは出力電圧検出値、Vrefは出力電圧目標値である。
Vref=(vr0/Rr1+vm/Rr3)/(1/Rr1+1/Rr2+1/Rr3) …(1)
 但し、抵抗Rr2に対してコンデンサCrefが並列接続されているので、このコンデンサCrefの容量が大きくなるほど、時間経過あたりの出力電圧目標値Vrefの変化は小さくなる。すなわちローパスフィルタの作用を備えることになる。
 以上の2つの実施形態で示したように、誤差増幅器に比例器を用いてP制御を行うと、定常状態では、出力電圧目標値Vrefに対して出力電圧Voに残差が生じる。よって、残差に応じて出力電圧目標値Vrefを変更する。vmと残差とは比例関係にあるため、vmに比例した値でVrefを補正することで、出力電圧を一定値に制御できる。但し、Vrefが急激に変化すると系が安定しないような場合には、ローパスフィルタ特性をもたせてVrefを低速に変化させる。
 その結果、過渡応答性を劣化させることなく、入力電圧や負荷によらず出力電圧を一定にすることができる。
 101…PFCコンバータ
 11…入力電圧検出回路
 12…出力電圧検出回路
 13…ディジタル信号処理回路
 31…加算要素
 32…出力電圧誤差増幅器
 33…乗算器
 34…加算要素
 35…入力電流誤差増幅器
 36…パルス生成器
 38…係数要素
 39…加算要素
 B1…ダイオードブリッジ
 C1…平滑コンデンサ
 Cref…コンデンサ
 D…変調信号
 D1…ダイオード
 ei…入力電流誤差値
 ev…誤差
 iL…インダクタ電流検出値
 ir…電流基準値
 L1…インダクタ
 OP…オペアンプ
 Q1…スイッチング素子
 Rcd…電流検出用抵抗
 Toff…オフ期間
 Ton…オン期間
 Vac…交流入力電源
 Vds…ソース間電圧
 vi…入力電圧検出値
 vm…電流基準振幅値
 vo…出力電圧検出値
 vr0…基準値
 Vref…出力電圧目標値

Claims (2)

  1.  交流入力電源から入力される交流電圧を整流する整流回路と、前記整流回路の次段に接続された、インダクタ及びスイッチング素子を含む直列回路と、前記スイッチング素子に並列接続された整流平滑回路と、前記交流入力電源から入力される入力電流が前記交流電圧に対して相似形となるように前記スイッチング素子をオン/オフ制御するスイッチング制御手段と、を備えたPFCコンバータであって、
     前記交流入力電源から入力される入力電圧を検出する入力電圧検出手段と、
     前記インダクタに流れる電流を検出するインダクタ電流検出手段と、
     前記整流平滑回路の出力電圧を検出する出力電圧検出手段と、を備え、
     前記スイッチング制御手段は、出力電圧目標値に対する前記出力電圧の検出値の誤差である出力電圧誤差と、前記入力電圧の検出値との積を電流基準振幅値とし、この電流基準振幅値と前記インダクタに流れる電流との差に応じて前記スイッチング素子のオン時間を制御する手段であり、
     前記出力電圧の目標値または前記出力電圧誤差を前記電流基準振幅値の比例値で補正する出力電圧制御値補正手段を設けたPFCコンバータ。
  2.  前記スイッチング制御手段及び前記出力電圧制御値補正手段は、前記出力電圧目標値に相当するディジタル値を保持するDSP(Digital Signal Processor)で構成され、前記出力電圧制御値補正手段は、前記ディジタル値を前記電流基準振幅値の比例値で補正するようにした、請求項1に記載のPFCコンバータ。
PCT/JP2009/059750 2008-11-25 2009-05-28 Pfcコンバータ WO2010061653A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980140888.6A CN102187559B (zh) 2008-11-25 2009-05-28 Pfc变换器
JP2010540403A JP5273158B2 (ja) 2008-11-25 2009-05-28 Pfcコンバータ
US13/108,019 US8179703B2 (en) 2008-11-25 2011-05-16 Power factor correction converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008299060 2008-11-25
JP2008-299060 2008-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/108,019 Continuation US8179703B2 (en) 2008-11-25 2011-05-16 Power factor correction converter

Publications (1)

Publication Number Publication Date
WO2010061653A1 true WO2010061653A1 (ja) 2010-06-03

Family

ID=42225535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059750 WO2010061653A1 (ja) 2008-11-25 2009-05-28 Pfcコンバータ

Country Status (4)

Country Link
US (1) US8179703B2 (ja)
JP (1) JP5273158B2 (ja)
CN (1) CN102187559B (ja)
WO (1) WO2010061653A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422940B1 (ko) 2012-12-05 2014-07-23 삼성전기주식회사 역률 보정 장치 및 그를 이용한 역률 보정 제어 방법
WO2017056298A1 (ja) * 2015-10-01 2017-04-06 三菱電機株式会社 電力変換装置及びこれを用いた空気調和装置
JP2017112822A (ja) * 2015-12-15 2017-06-22 國家中山科學研究院 力率改善コンバータ及びその制御方法
WO2022168608A1 (ja) * 2021-02-03 2022-08-11 ソニーグループ株式会社 電源装置及び表示装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141774B2 (ja) * 2008-11-25 2013-02-13 株式会社村田製作所 Pfcコンバータ
JP5104946B2 (ja) * 2009-03-18 2012-12-19 株式会社村田製作所 Pfcコンバータ
CN102308462B (zh) * 2009-03-24 2014-07-02 株式会社村田制作所 开关电源装置
US8836296B2 (en) * 2010-09-28 2014-09-16 Mitsubishi Electric Corporation Power conversion apparatus
US8716985B2 (en) * 2012-02-29 2014-05-06 Alpha & Omega Semiconductor, Inc. Power factor correction device and correcting method thereof
KR101288615B1 (ko) * 2012-03-28 2013-07-22 주식회사 만도 고조파 변조를 이용한 불연속 전류 모드 역률 정정 컨버터 제어회로
US10084379B2 (en) * 2012-11-13 2018-09-25 Toyota Jidosha Kabushiki Kaisha Boost converter control apparatus
TW201422968A (zh) * 2012-12-11 2014-06-16 Hon Hai Prec Ind Co Ltd 發光二極體燈具
CN104242628B (zh) * 2014-09-03 2017-09-22 广东美的制冷设备有限公司 Ac‑dc变换器的pfc控制方法、装置和空调器
CN105186854B (zh) * 2015-10-09 2019-05-14 安徽师范大学 基于dsp的数字化pfc采集控制系统及方法
CN108075634B (zh) * 2016-11-17 2020-05-01 台达电子电源(东莞)有限公司 用于功率因数校正变换器的控制装置及控制方法
US10401885B2 (en) * 2017-08-18 2019-09-03 Rolls-Royce North American Technologies Inc. DC to DC converter output bus voltage control system
EP3667884B1 (en) * 2018-12-14 2022-11-16 Delta Electronics (Thailand) Public Co., Ltd. Burst mode routine for switched mode power converter
JP7184168B2 (ja) * 2019-03-29 2022-12-06 サンケン電気株式会社 スイッチング電源装置
US10833616B1 (en) * 2019-11-22 2020-11-10 Rolls-Royce Marine North America Inc. Gas turbine engine generator power management control system
JP2021151074A (ja) * 2020-03-18 2021-09-27 富士電機株式会社 電源装置および電源装置の劣化判定方法
US11637493B2 (en) * 2020-11-23 2023-04-25 Robert S. Wrathall Electrical circuits for power factor correction by measurement and removal of overtones and power factor maximization
JP2022096152A (ja) * 2020-12-17 2022-06-29 富士電機株式会社 スイッチング制御回路、力率改善回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139079A (ja) * 1998-05-29 2000-05-16 Fairchild Korea Semiconductor Ltd 力率補正制御器
JP2005253284A (ja) * 2004-01-08 2005-09-15 Fujitsu General Ltd 電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8905177D0 (en) * 1989-03-07 1989-04-19 Emi Plc Thorn Switched-mode regulator circuit
JP3158805B2 (ja) 1993-09-13 2001-04-23 富士電機株式会社 電圧コンバータ回路
DE10042587B4 (de) * 2000-08-30 2007-04-12 Infineon Technologies Ag Filteranordnung und Verfahren zur Filterung eines Analogsignals
US6980445B2 (en) * 2002-01-08 2005-12-27 Sanken Electric Co., Ltd. Power factor improving converter and control method thereof
JP4016719B2 (ja) 2002-05-23 2007-12-05 サンケン電気株式会社 力率改善回路
KR101026248B1 (ko) * 2004-09-21 2011-03-31 페어차일드코리아반도체 주식회사 역률 보상 회로
US7723964B2 (en) * 2004-12-15 2010-05-25 Fujitsu General Limited Power supply device
JP4992225B2 (ja) * 2005-11-04 2012-08-08 株式会社富士通ゼネラル 電源装置
US7772811B1 (en) * 2007-07-13 2010-08-10 Chil Semiconductor Corporation Power supply configurations and adaptive voltage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139079A (ja) * 1998-05-29 2000-05-16 Fairchild Korea Semiconductor Ltd 力率補正制御器
JP2005253284A (ja) * 2004-01-08 2005-09-15 Fujitsu General Ltd 電源装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422940B1 (ko) 2012-12-05 2014-07-23 삼성전기주식회사 역률 보정 장치 및 그를 이용한 역률 보정 제어 방법
WO2017056298A1 (ja) * 2015-10-01 2017-04-06 三菱電機株式会社 電力変換装置及びこれを用いた空気調和装置
JPWO2017056298A1 (ja) * 2015-10-01 2018-02-08 三菱電機株式会社 電力変換装置及びこれを用いた空気調和装置
JP2017112822A (ja) * 2015-12-15 2017-06-22 國家中山科學研究院 力率改善コンバータ及びその制御方法
WO2022168608A1 (ja) * 2021-02-03 2022-08-11 ソニーグループ株式会社 電源装置及び表示装置

Also Published As

Publication number Publication date
JP5273158B2 (ja) 2013-08-28
CN102187559A (zh) 2011-09-14
US20110211375A1 (en) 2011-09-01
US8179703B2 (en) 2012-05-15
CN102187559B (zh) 2014-07-30
JPWO2010061653A1 (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5273158B2 (ja) Pfcコンバータ
JP5104947B2 (ja) スイッチング電源装置
US7323851B2 (en) Digital power factor correction controller and AC-to-DC power supply including same
EP2919374B1 (en) Duty-ratio controller
US9479047B2 (en) System and method for controlling a power supply with a feed forward controller
US9502961B2 (en) Control circuit implementing a related method for controlling a switching power factor corrector, a PFC and an AC/DC converter
JP4774987B2 (ja) スイッチング電源装置
JP5136364B2 (ja) 力率改善回路の制御方式
US9190899B2 (en) Power factor correction (PFC) circuit configured to control high pulse load current and inrush current
JP3969390B2 (ja) スイッチング電源装置
JP5141774B2 (ja) Pfcコンバータ
US6215287B1 (en) Power supply apparatus
KR101840412B1 (ko) 벅 스위치 모드 파워 컨버터 큰 신호 천이 응답 최적화기
WO2015049716A1 (ja) 力率改善回路
US6956360B2 (en) Switching power supply controller and switching power supply
JP2005110434A (ja) 力率改善回路
US10396655B2 (en) Power factor correction circuit, control method and controller
JP2010104218A (ja) 力率改善電源装置、該電源装置に用いられる制御回路および制御方法
US9872353B2 (en) LED lighting device and LED illuminating device
KR20200040673A (ko) Pfc 버스트 모드 제어 기능이 있는 스위치 모드 전원 공급 장치
JP4466089B2 (ja) 力率改善回路
JP6911677B2 (ja) 交流−直流変換装置
US11962249B2 (en) Multi-level power converter architecture
CN108306493B (zh) 开关功率变换器的线路纹波补偿
JP2018196168A (ja) 力率改善回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140888.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540403

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828903

Country of ref document: EP

Kind code of ref document: A1