WO2010061567A1 - 遠隔操作型アクチュエータ - Google Patents
遠隔操作型アクチュエータ Download PDFInfo
- Publication number
- WO2010061567A1 WO2010061567A1 PCT/JP2009/006286 JP2009006286W WO2010061567A1 WO 2010061567 A1 WO2010061567 A1 WO 2010061567A1 JP 2009006286 W JP2009006286 W JP 2009006286W WO 2010061567 A1 WO2010061567 A1 WO 2010061567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- posture
- rotation
- force
- tool
- spindle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B39/00—General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
- B23B39/14—General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines with special provision to enable the machine or the drilling or boring head to be moved into any desired position, e.g. with respect to immovable work
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1613—Component parts
- A61B17/1626—Control means; Display units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1613—Component parts
- A61B17/1631—Special drive shafts, e.g. flexible shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1642—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for producing a curved bore
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B45/00—Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
- B23B45/003—Attachments
- B23B45/005—Flexible shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/1662—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
- A61B17/1664—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip
- A61B17/1668—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the hip for the upper femur
Definitions
- the present invention relates to a remote operation type actuator that can change the posture of a tool by remote operation and is used for medical use, machining, and the like.
- the remote operation type actuator remotely controls a tool provided at the end of a long and narrow pipe portion having a linear shape or a curved shape.
- the conventional remote control actuator since the conventional remote control actuator only controls the rotation of the tool by remote control, in the case of medical use, it was difficult to process a complicated shape or a part that is difficult to see from the outside. Further, in drilling, it is required that not only a straight line but also a curved shape can be processed. Furthermore, in the cutting process, it is required that a deep part inside the groove can be processed.
- the prior art and problems of the remote control actuator will be described.
- an artificial joint insertion hole is formed in the medullary cavity at the center of the femur bone.
- a medical actuator used for such a bone cutting process a tool is rotatably provided at the distal end of an elongated pipe portion, and by driving a rotational drive source such as a motor provided on the proximal end side of the pipe portion,
- a rotational drive source such as a motor provided on the proximal end side of the pipe portion
- the gap is as narrow as possible. desirable. It is also important that the contact surface between the living bone and the artificial joint is smooth, and high accuracy is required for processing the hole for inserting the artificial joint.
- the operating range of the tool is limited by the shape of the pipe part. It is difficult to process the artificial joint insertion hole so that the gap is narrow and the contact surface between the two is smooth.
- the bones of patients undergoing artificial joint replacement are often weakened due to aging or the like, and the bones themselves may be deformed. Accordingly, it is more difficult to process the artificial joint insertion hole than is normally conceivable.
- the present applicant tried to make it possible to remotely change the posture of the tool provided at the tip for the purpose of relatively easily and accurately processing the artificial joint insertion hole. .
- the tool is provided at the tip of the elongated pipe portion, there are many restrictions in providing a mechanism for changing the posture of the tool, and a device for overcoming it is necessary.
- the tool posture is remotely controlled, it is required to always perform machining under optimum machining conditions that match the state of the workpiece.
- An object of the present invention is to provide a remote-operated actuator that can remotely change the posture of a tool provided at the end of an elongated pipe portion and can always perform machining under optimum machining conditions. It is an object of the present invention to provide a remote-operated actuator that can prevent a tool from rotating or rotating when the tool is rotated.
- a remote-control actuator includes an elongated spindle guide portion, a tip member attached to the tip of the spindle guide portion via a tip member connecting portion so that the posture can be freely changed, and a base end of the spindle guide portion And the tip member rotatably supports a spindle holding a tool, and the spindle guide portion rotates a tool rotation drive source provided in the drive unit housing.
- a rotation shaft that transmits the tip member to the spindle, and a guide hole that penetrates both ends of the shaft, and a posture operation member that changes the posture of the tip member by advancing and retracting with the tip contacting the tip member.
- a drive source for changing the posture is provided in the drive unit housing to advance and retract the posture operation member, and the tool is processed.
- the bone or the like is cut by the rotation of the tool provided on the tip member.
- the tip of the posture operation member acts on the tip member, so that the posture can be changed to the tip of the spindle guide portion via the tip member connecting portion.
- the position of the tip member attached to is changed.
- the posture changing drive source is provided in the drive portion housing on the proximal end side of the spindle guide portion, and the posture change of the tip member is performed by remote control. Since the posture operation member is inserted into the guide hole, the posture operation member does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member, and the posture change operation of the tip member Is done accurately.
- the magnitude of at least one of the main component force Fc, the back component force Fr, and the feed component force Pf in the cutting force is estimated by the cutting force estimation means.
- the machining conditions such as the number of rotations of the tool, the feed rate, etc. are set optimally, whereby fine machining suitable for the state of the workpiece can be realized.
- bone tissue breaks when the temperature of the surface to be cut reaches 50 ° C. or higher. Therefore, when used for bone processing for medical purposes, it is possible to suppress an increase in the temperature of the surface to be cut by changing the processing conditions while monitoring the cutting force by the cutting force estimating means.
- a driving power measuring means and a rotating speed measuring means for measuring the driving power and the rotation speed of the tool rotation drive source are provided, and the cutting force estimating means is the driving power measured by the driving power measuring means.
- the magnitude of at least one of the main component force, the back component force, and the feed component force in the cutting force is estimated from the rotation number measured by the rotation number measuring means. good.
- the cutting force estimation means estimates the magnitude of the main component force Fc [N], which is the tangential force of the tool in the cutting force.
- the drive power is P [W]
- the rotation speed of the tool is N [rpm]
- the torque acting on the tool is T [Nm]
- a bending amount measuring means for measuring a bending amount of the spindle guide portion
- the cutting force estimating means is configured to calculate a main component force and a back force in the cutting force from a bending amount measured by the bending amount measuring means. It is also possible to estimate the magnitude of at least one component force of the component force and the feed component force.
- the magnitude of the back component force Fr which is a force in the radial direction of the tool mainly in the cutting force
- the cutting force estimating means When the back component force Fr acts on the work piece from the tool, the spindle guide portion bends. Therefore, the amount of the back component force Fr can be estimated by measuring the amount of bending of the spindle guide portion by the amount-of-deflection measuring means. It can be done. If the ratio of the magnitudes of the main component force Fc, the back component force Fr, and the feed component force Pf is determined, the magnitude of the other component forces Fc and Pf can be obtained if the magnitude of the back component force Fr is obtained. It can also be estimated. When the ratio of the magnitudes of the respective component forces fluctuates, it is preferable to use cutting force estimation means for estimating the magnitudes of the other component forces Fc and Pf.
- the deflection amount measuring means may be one or more strain sensors attached to the peripheral surface of the spindle guide portion.
- the spindle guide portion bends, distortion occurs on the peripheral surface of the spindle guide portion. Therefore, the amount of bending of the spindle guide portion can be measured from the detection value of the strain sensor.
- a strain sensor is used as a means for measuring the amount of deflection, when a back component force Fr acts on the workpiece from the tool, the detection signal of the strain sensor on the peripheral surface of the spindle guide portion is changed in the compression direction or tension depending on the direction of deflection. Since it varies in the direction, the magnitude of the back component force Fr can be estimated.
- the detection signal of the strain sensor at any circumferential position on the peripheral surface of the spindle guide portion changes in the compression direction, so the magnitude of the feed component force Pf is also estimated. it can.
- a driving force measuring means for measuring the driving force of the posture changing drive source
- the cutting force estimating means is configured to calculate a main component force in the cutting force from the driving force measured by the driving force measuring means. The magnitude of at least one of the back component force and the feed component force may be estimated.
- the magnitude of the back component force Fr which is a force in the radial direction of the tool mainly in the cutting force
- the cutting force estimating means When the back force Fr acts on the workpiece from the tool, the force is transmitted to the posture changing drive source via the posture operating member, and the driving force of the posture changing drive source increases or decreases. By measuring the driving force, the magnitude of the back component force Fr can be estimated.
- a strain detecting means for detecting distortion of the lever mechanism is provided, and the cutting force estimating means is detected by the strain detecting means. From the value, the magnitude of at least one of the main component force, the back component force, and the feed component force in the cutting force can be estimated.
- the magnitude of the back component force Fr which is a force in the radial direction of the tool mainly in the cutting force
- the cutting force estimating means When the back force Fr acts on the work piece from the tool, the force is also transmitted to the lever mechanism via the posture operation member, and the lever mechanism is distorted.
- the magnitude of the force Fr can be estimated.
- an abnormality detecting means for detecting an abnormality at the time of spindle rotation or non-rotation, and a tool rotation control means for stopping the rotation of the tool rotation drive source when the abnormality detection means detects an abnormality. It may be provided.
- the abnormality detection means detects the abnormality, and the tool rotation control means stops the rotation of the tool rotation drive source. If any abnormality is discovered by the abnormality detection means before cutting, the tool rotation drive source is not rotated by the tool rotation control means.
- the abnormality detection means there is a fixing detection means for detecting whether or not the attitude of the tip member is in a fixed state
- the tool rotation control means is configured to detect the attitude of the tip member by the fixing detection means. It is preferable that the tool rotation drive source is not rotated when it is detected that is not in a fixed state.
- the fixed detection means includes, for example, a strain sensor that detects distortion of a lever mechanism provided between the posture change drive source and the posture operation member, and an encoder that detects an operation position of the posture change drive source. It can be either or both.
- the abnormality detection means includes an action force detection means for detecting the magnitude of a force acting on the tip member during the spindle rotation, and the tool rotation control means is detected by the action force detection means. It is preferable that the rotation of the tool rotation drive source is stopped when the applied force is greater than the specified force.
- the acting force detection means can be, for example, a distortion sensor that detects distortion of a lever mechanism provided between the attitude changing drive source and the attitude operating member.
- each part of the remote control type actuator may be deformed or damaged. Therefore, the magnitude of the force acting on the tip member is detected by the acting force detection means, and when the detected acting force is larger than the specified acting force, the rotation of the tool rotation drive source is stopped by the tool rotation control means. Let Thereby, deformation and breakage of the remote control type actuator can be prevented. Even if the acting force of the tip member is not actually detected, the acting force of the tip member can be easily obtained by detecting the distortion of the lever mechanism with the strain sensor.
- the abnormality detection means there is a rotation detection means for detecting the rotation speed of the spindle or the tool rotation drive source, and the tool rotation control means includes the rotation speed detected by the rotation detection means. It is preferable that the rotation of the tool rotation drive source is stopped when the difference from the specified rotation speed is outside a predetermined range.
- the rotation detection unit may be, for example, a rotation sensor that detects the number of rotations of the tool rotation drive source.
- the rotation speed of the spindle becomes abnormally high or low. It is dangerous to rotate the spindle in such a state. Therefore, the rotation speed of the spindle is detected by the rotation detection means, and when the difference between the detected rotation speed and the specified rotation speed is outside the predetermined range, the rotation of the tool rotation drive source is stopped by the tool rotation control means. Let Thereby, danger can be avoided. Even if the rotational speed of the spindle is not actually detected, the rotational speed of the spindle can be easily obtained by detecting the rotational speed of the drive source for rotating the tool with the rotation sensor.
- the abnormality detection means includes vibration detection means for detecting the magnitude of vibration of the spindle or the tool rotation drive source during the spindle rotation
- the tool rotation control means includes the vibration detection means. It is preferable that the rotation of the tool rotation drive source is stopped when the magnitude of the vibration detected by the above is larger than a specified magnitude.
- the vibration detection unit may be a vibration sensor, for example.
- the vibration detection means detects the magnitude of the spindle vibration, and when the detected vibration magnitude is larger than the specified magnitude, the tool rotation control means stops the rotation of the tool rotation drive source. Thereby, danger can be avoided.
- the abnormality detecting means includes temperature detecting means for detecting the temperature of the spindle during the rotation of the spindle, and the tool rotation control means is configured such that the temperature detected by the temperature detecting means is lower than a specified temperature. It is preferable to stop the rotation of the tool rotation drive source when the tool is high.
- the spindle temperature may rise due to a lack of lubricant to lubricate the bearing or bearing failure.
- the remote operation type actuator may be deformed or damaged. Accordingly, the temperature of the spindle is detected by the temperature detection means, and when the detected temperature is higher than the specified temperature, the rotation of the tool rotation drive source is stopped by the tool rotation control means. Thereby, deformation and breakage of the remote control type actuator can be prevented.
- the abnormality detection includes a bearing that rotatably supports the rotating shaft in the spindle guide portion, and a lubricating fluid supply device that supplies a lubricating fluid for lubricating the bearing into the spindle guide portion.
- a fluid pressure detection means for lubrication for detecting the pressure of the fluid for lubrication supplied into the spindle guide portion by the fluid supply apparatus for lubrication during the rotation of the spindle
- the tool rotation control means comprises the lubrication
- the rotation of the drive source for rotating the tool may be stopped when the difference between the pressure of the lubricating fluid detected by the working fluid pressure detecting means and the specified pressure is outside a predetermined range.
- the bearing that rotatably supports the rotating shaft in the spindle guide portion is lubricated with the lubricating fluid supplied into the spindle guide portion by the lubricating fluid supply device, if the lubricating fluid is insufficient, the pressure of the lubricating fluid decreases. If the lubricating fluid path is clogged, the pressure of the lubricating fluid increases. If the lubricating fluid is insufficient or the path is clogged, the bearing may not be lubricated well and the bearing may be damaged. Therefore, the pressure of the lubricating fluid is detected by the lubricating fluid pressure detecting means, and if the difference between the detected pressure and the specified pressure is outside the predetermined range, the tool rotation control means detects the tool rotation drive source. Stop rotation. Thereby, damage to the bearing can be prevented.
- (A) is a cross-sectional view of the remote-control-type actuator in which the tool rotation drive mechanism and the attitude change drive mechanism are combined and displayed with a control system
- (B) is a cross-sectional view taken along line III-III.
- (A) is a perspective view of a tool and a workpiece at the time of cutting
- (B) is the IV arrow view. It is a figure which shows schematic structure at the time of providing a cooling means in the remote control type actuator.
- (A) is a partial view of a remotely operated actuator showing different examples of cutting force estimation means
- (B) is a sectional view taken along the line VI-VI.
- (A) is a partial view of a remote control type actuator showing still another example of cutting force estimation means
- (B) is a sectional view taken along the line VII-VII.
- (A) is a partial view of a remote control type actuator showing still another example of cutting force estimation means
- (B) is a sectional view taken along the line VIII-VIII. It is sectional drawing of the drive mechanism for tool rotation and the drive mechanism for attitude
- (A) is a sectional view of a tool rotation drive mechanism and a posture change drive mechanism showing still another example of the cutting force estimation means
- (B) is a sectional view taken along line XX.
- (A) is a sectional view of a tip member and a spindle guide portion of a remote control type actuator according to a second embodiment of the present invention
- (B) is a sectional view taken along line XI-XI.
- (A) is a sectional view of a tip member and a spindle guide portion of a remote control type actuator according to a third embodiment of the present invention
- (B) is a sectional view taken along line XII-XII. It is the figure which combined and displayed the control system in the front view of the drive mechanism for tool rotation of this remote control type actuator, and the drive mechanism for attitude
- (A) is a sectional view of a tip member and a spindle guide portion of a remote control type actuator according to a fourth embodiment of the present invention
- (B) is a sectional view taken along the line XIV-XIV
- (C) is based on a housing of the tip member. It is the figure seen from the end side.
- (A) is a sectional view of a tip member and a spindle guide portion of a remote control type actuator according to a fifth embodiment of the present invention
- (B) is a sectional view taken along line XV-XV. It is a figure which shows schematic structure of the remote control type actuator from which the shape of a spindle guide part differs.
- FIG. 1 shows schematic structure of the remote control type actuator concerning 6th Embodiment of this invention.
- A is a cross-sectional view of the tip member and spindle guide portion of the remote operation type actuator
- B is a cross-sectional view taken along the line XVIII-XVIII
- C is a diagram showing a connection structure between the tip member and the rotating shaft.
- D) is a view of the housing of the tip member as seen from the base end side. It is sectional drawing which shows the structure in the drive part housing mainly of the same remote control type actuator. It is a XX arrow line view of FIG. It is a block diagram of a control system of the remote operation type actuator.
- (A), (B), (C) is explanatory drawing which shows a different state of a front-end
- the remote control type actuator includes a tip member 2 for holding a rotary tool 1, an elongated spindle guide portion 3 having the tip member 2 attached to the tip so that the posture can be freely changed, and the spindle guide.
- the drive unit housing 4a to which the base end of the unit 3 is coupled, the controller 5 that controls the tool rotation drive mechanism 4b and the posture change drive mechanism 4c in the drive unit housing 4a, and the cutting force during processing are estimated.
- Cutting force estimation means 6 constitutes the drive unit 4 together with the built-in tool rotation drive mechanism 4b and posture changing drive mechanism 4c.
- the tip member 2 has a spindle 13 rotatably supported by a pair of bearings 12 inside a substantially cylindrical housing 11.
- the spindle 13 has a cylindrical shape with an open end, and the shank 1a of the tool 1 is inserted into the hollow portion in a fitted state, and the shank 1a is non-rotatably coupled by the rotation prevention pin 14.
- the tip member 2 is attached to the tip of the spindle guide portion 3 via the tip member connecting portion 15.
- the tip member connecting portion 15 is a means for supporting the tip member 2 so that the posture thereof can be freely changed, and includes a spherical bearing.
- the distal end member connecting portion 15 includes a guided portion 11 a that is a reduced inner diameter portion of the proximal end of the housing 11 and a hook-shaped portion of a retaining member 21 that is fixed to the distal end of the spindle guide portion 3. It is comprised with the guide part 21a.
- the guide surfaces F1 and F2 that are in contact with each other 11a and 21a are spherical surfaces having a center of curvature O located on the center line CL of the spindle 13 and having a smaller diameter toward the proximal end side.
- the tip member 2 is configured to change the posture around the X axis passing through the center of curvature O, even if the guide surfaces F1 and F2 are cylindrical surfaces whose axis is the X axis passing through the center of curvature O. Good.
- the spindle guide portion 3 has a rotating shaft 22 that transmits the rotational force of the tool rotation drive source 41 (FIGS. 3A and 3B) in the drive portion housing 4 a to the spindle 13.
- the rotating shaft 22 is a wire and can be elastically deformed to some extent.
- the material of the wire for example, metal, resin, glass fiber or the like is used.
- the wire may be a single wire or a stranded wire.
- the spindle 13 and the rotary shaft 22 are connected so as to be able to transmit rotation via a joint 23 such as a universal joint.
- the joint 23 includes a groove 13 a provided at the closed base end of the spindle 13 and a protrusion 22 a provided at the distal end of the rotating shaft 22 and engaged with the groove 13 a.
- the center of the connecting portion between the groove 13a and the protrusion 22a is at the same position as the center of curvature O of the guide surfaces F1 and F2.
- the spindle guide part 3 has an outer pipe 25 that is an outer part of the spindle guide part 3, and the rotating shaft 22 is located at the center of the outer pipe 25.
- the rotating shaft 22 is rotatably supported by a plurality of rolling bearings 26 that are arranged apart from each other in the axial direction.
- spring elements 27A and 27B for generating a preload on the rolling bearing 26 are provided.
- the spring elements 27A and 27B are, for example, compression coil springs.
- the retaining member 21 is fixed to the pipe end portion 25a of the outer pipe 25 by a fixing pin 28, and rotatably supports the distal end portion of the rotary shaft 22 via a rolling bearing 29 at the distal end inner peripheral portion thereof.
- the pipe end portion 25a may be a separate member from the outer pipe 25 and may be joined by welding or the like.
- one guide pipe 30 penetrating at both ends is provided. Inside the guide hole 30 a which is the inner diameter hole of the guide pipe 30, the wire 31 a and the both ends thereof are provided.
- a posture operation member 31 composed of a columnar pin 31b is inserted in such a manner as to be able to advance and retreat.
- the distal end of the columnar pin 31b on the distal end member 2 side is spherical and is in contact with the proximal end surface 11b of the housing 11 of the distal end member 2.
- the base end surface 11b of the housing 11 of the distal end member 2 is an inclined surface that is closer to the spindle guide portion 3 side toward the outer diameter side.
- the tip of the columnar pin 31b on the drive unit housing 4a side is also spherical, and is in contact with the side surface of the lever 43b (FIGS. 3A and 3B).
- the columnar pin 31b may be omitted, and the posture operation member 31 may be configured with only one wire 31a.
- compression is provided between the proximal end surface of the housing 11 of the distal end member 2 and the distal end surface of the outer pipe 25 of the spindle guide portion 3 at a position 180 degrees relative to the circumferential position where the posture operation member 31 is located.
- a restoring elastic member 32 made of a coil spring is provided. The restoring elastic member 32 acts to urge the tip member 2 toward a predetermined posture.
- a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30, separately from the guide pipe 30. These reinforcing shafts 34 are for ensuring the rigidity of the spindle guide portion 3. The intervals between the guide pipe 30 and the reinforcing shaft 34 are equal.
- the guide pipe 30 and the reinforcing shaft 34 are in contact with the inner diameter surface of the outer pipe 25 and the outer diameter surface of the rolling bearing 26. Thereby, the outer diameter surface of the rolling bearing 26 is supported.
- the tool rotation drive mechanism 4 b includes a tool rotation drive source 41 controlled by the controller 5.
- the tool rotation drive source 41 is, for example, an electric motor, and its output shaft 41 a is coupled to the proximal end of the rotation shaft 22.
- the driving power and the rotational speed of the tool rotation drive source 41 are measured by the driving power measuring means 60 and the rotational speed measuring means 61, respectively.
- the drive power measuring means 60 is composed of a power meter or the like provided in a power supply system (not shown) of the tool rotation drive source 41.
- the rotation speed measuring means 61 is composed of a rotary encoder, a tachometer generator, or the like. Output signals of the driving power measuring means 60 and the rotational speed measuring means 61 are transmitted to the cutting force estimating means 6.
- the cutting force estimating means 6 estimates the cutting force of the tool 1 from the output signals of the driving power measuring means 60 and the rotational speed measuring means 61.
- the cutting force estimation means 6 is composed of a computer such as a microcomputer, an electronic circuit, or the like, and is a relation setting means (not shown) in which the relationship between each input signal and an estimated value that becomes an output signal is determined by an arithmetic expression or a table. And the estimated value is estimated by checking the input signal against the relationship setting means.
- Various cutting force estimation means 6 described below in this specification are also configured by a computer, an electronic circuit, or the like that performs estimation using the relationship setting means in the same manner as described above.
- the cutting force estimation means 6 estimates the magnitude of the main component force Fc [N], which is the tangential force of the tool 1 in the cutting force F applied to the workpiece W by the tool 1 ( (See FIGS. 4A and 4B).
- the driving power is P [W]
- the rotation speed of the tool 1 is N [rpm]
- the torque acting on the tool 1 is T [Nm]
- the cutting force estimation means 6 may be provided outside or inside the controller 5 as shown in FIG.
- the posture changing drive mechanism 4 c includes a posture changing drive source 42 controlled by the controller 5.
- the posture changing drive source 42 is, for example, an electric linear actuator, and the movement of the output rod 42a that moves in the left-right direction in FIG. 3A is applied to the posture operating member 31 via the lever mechanism 43 that is a force transmission mechanism. Communicated.
- the posture changing drive source 42 may be a rotary motor.
- the lever mechanism 43 has a lever 43b that is rotatable around a support shaft 43a.
- the force of the output rod 42a acts on an action point P1 that is a long distance from the support shaft 43a in the lever 43b.
- the force is applied to the posture operation member 31 at the force point P ⁇ b> 2 having a short distance, and the output of the posture changing drive source 42 is increased and transmitted to the posture operation member 31.
- the lever mechanism 43 is provided, a large force can be applied to the posture operation member 31 even with a linear actuator with a small output, and thus the linear actuator can be downsized.
- the rotating shaft 22 penetrates the opening 44 formed in the lever 43b.
- the posture of the tip member 2 may be remotely operated manually.
- the posture changing drive mechanism 4c is provided with a movement amount detector 45 for detecting the movement amount of the posture changing drive source 42.
- the detection value of the movement amount detector 45 is output to the posture detection means 46.
- the attitude detection means 46 detects the tilt attitude of the tip member 2 around the X axis (FIGS. 2A to 2C) based on the output of the motion amount detector 45.
- the posture detection means 46 has relationship setting means (not shown) in which the relationship between the tilt posture and the output signal of the motion amount detector 45 is set by an arithmetic expression or a table, and the relationship is determined from the input output signal.
- the tilting posture is detected using setting means.
- This posture detection means 46 may be provided in the controller 5 or may be provided in an external control device.
- the posture changing drive mechanism 4c is provided with a wattmeter 47 for detecting the amount of power supplied to the posture changing drive source 42, which is an electric actuator.
- the detected value of the supplied wattmeter 47 is output to the load detecting means 48.
- the load detection means 48 detects the load acting on the tip member 2 based on the output of the wattmeter 47.
- the load detection means 48 has relation setting means (not shown) in which the relation between the load and the output signal of the supplied wattmeter 47 is set by an arithmetic expression or a table, and the relation setting means is determined from the input output signal.
- the load is detected using.
- the load detecting means 48 may be provided in the controller 5 or may be provided in an external control device.
- the controller 5 controls the posture changing drive source 42 based on the detected values of the posture detecting means 46 and the load detecting means 48 and controls the tool rotating drive source 41 based on the output of the cutting force estimating means 6.
- this remote control type actuator When the tool rotation drive source 41 is driven, the rotational force is transmitted to the spindle 13 via the rotation shaft 22, and the tool 1 rotates together with the spindle 13.
- the load acting on the tip member 2 when the tool 1 is rotated to cut bone or the like is detected by the load detection means 48 from the detection value of the supply wattmeter 47.
- the posture changing drive source 42 is driven to change the posture of the tip member 2 by remote control.
- the posture operating member 31 is advanced to the distal end side by the posture changing drive source 42
- the housing 11 of the distal end member 2 is pushed by the posture operating member 31, and the distal end member 2 is directed downward in FIG.
- the posture is changed along the guide surfaces F1 and F2 toward the side.
- the posture operation member 31 is retracted by the posture changing drive source 42
- the housing 11 of the tip member 2 is pushed back by the elastic repulsive force of the restoring elastic member 32, and the tip member 2 is shown in FIG.
- the posture is changed along the guide surfaces F1 and F2 to the side facing upward.
- the pressure of the posture operation member 31, the elastic repulsive force of the restoring elastic member 32, and the reaction force from the retaining member 21 act on the tip member connecting portion 15, and the balance of these acting forces
- the posture of the tip member 2 is determined.
- the posture of the tip member 2 is detected by the posture detection means 46 from the detection value of the movement amount detector 45. Therefore, the posture of the tip member 2 can be appropriately controlled by remote operation.
- the proximal end surface 11b of the housing 11 of the distal end member 2 is an inclined surface closer to the spindle guide portion 3 side toward the outer diameter side, when the attitude operating member 31 pushes the proximal end surface 11b of the housing 11, the attitude operating member
- the base end surface 11b of the housing 11 is slippery with respect to 31 and the housing 11 can be smoothly changed in posture.
- the base end surface 11b of the housing 11 may be a surface perpendicular to the advancing / retreating direction of the posture operation member 31 instead of the inclined surface.
- the posture operation member 31 Since the posture operation member 31 is inserted through the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2, and the tip member 2 posture change operation is performed accurately. Further, since the posture operation member 31 is mainly composed of the wire 31a and is flexible, the posture changing operation of the tip member 2 is reliably performed even when the spindle guide portion 3 is curved. Furthermore, since the center of the connecting portion between the spindle 13 and the rotating shaft 22 is at the same position as the center of curvature O of the guide surfaces F1 and F2, a force for pushing and pulling against the rotating shaft 22 by changing the posture of the tip member 2 is increased. Accordingly, the posture of the tip member 2 can be changed smoothly.
- the magnitude of the main component force Fc in the cutting force F is estimated by the cutting force estimation means 6.
- the workpiece W (FIGS. 4A and 4B) is set by optimally setting machining conditions such as the rotational speed and feed rate of the tool 1 in accordance with the estimated magnitude of the main component force Fc. It is possible to achieve fine processing that matches the state of the machine. For example, in bone cutting, it is said that bone tissue breaks when the temperature of the surface to be cut reaches 50 ° C. or higher. Therefore, when used for bone processing for medical purposes, it is possible to suppress the temperature of the surface to be cut from becoming high by changing the processing conditions while monitoring the cutting force by the cutting force estimating means 6.
- This remote control type actuator is used, for example, for cutting the medullary cavity of bone in artificial joint replacement surgery.
- all or part of the distal end member 2 is inserted into the patient's body. The For this reason, if the posture of the tip member 2 can be changed by remote control as described above, the bone can be processed while the tool 1 is always held in an appropriate posture, and the artificial joint insertion hole is finished with high accuracy. Can do.
- the elongated spindle guide portion 3 needs to be provided with the rotating shaft 22 and the posture operation member 31 in a protected state.
- the rotating shaft 22 is provided at the center of the outer pipe 25.
- the outer diameter surface of the rolling bearing 26 that supports the rotating shaft 22 is supported by the guide pipe 30 and the reinforcing shaft 34, the outer diameter surface of the rolling bearing 26 can be supported without using extra members. Moreover, since the preload is applied to the rolling bearing 26 by the spring elements 27A and 27B, the rotating shaft 22 made of a wire can be rotated at a high speed. Therefore, machining can be performed by rotating the spindle 13 at a high speed, the machining finish is good, and the cutting resistance acting on the tool 1 can be reduced. Since the spring elements 27A and 27B are provided between the adjacent rolling bearings 26, the spring elements 27A and 27B can be provided without increasing the diameter of the spindle guide portion 3.
- This remote control type actuator can be provided with a cooling means 50 for cooling the tool 1 and the like as shown in FIG. 5 by utilizing the fact that the spindle guide portion 3 is hollow. That is, the cooling means 50 includes a cooling liquid supply device 51 provided outside the remote operation type actuator, and the cooling liquid supply device 51 to the base end of the spindle guide portion 3, the spindle guide portion 3 and the inside of the tip member 2. And a coolant supply pipe 52 that guides the coolant to the tool 1.
- the outer pipe 25 itself is the cooling liquid supply pipe 52 in a portion 52 a that passes through the spindle guide portion 3 in the cooling liquid supply pipe 52, and the cooling liquid passes through the outer pipe 25.
- the coolant guided to the tool 1 is discharged to the outer periphery of the tool 1. Between the spindle guide part 3 and the drive part housing 4a, it is preferable to provide a sealing means (not shown) for preventing the coolant from entering the drive part housing 4a.
- the heat generating points such as the tool 1, the workpiece W, the spindle 13, the rotating shaft 22, the rolling bearings 26 and 29, etc. can be cooled by the coolant. Since the coolant is allowed to pass through the outer pipe 25, it is not necessary to provide a separate coolant supply pipe, and the spindle guide portion 3 can be simplified and reduced in diameter. Further, the cooling liquid may be used for lubricating the rolling bearings 26 and 29. By doing so, it is not necessary to use grease or the like generally used for bearings, and it is not necessary to provide a separate lubricating device.
- the cooling liquid is preferably water or physiological saline. This is because if the coolant is water or physiological saline, the coolant does not adversely affect the living body when the tip member 2 is inserted into the living body to perform processing.
- the material of the parts in contact with the coolant is stainless steel having excellent corrosion resistance.
- Other parts constituting the remote control type actuator may also be made of stainless steel.
- FIGS. 6A and 6B show different examples of the cutting force estimation means 6.
- a bending amount measuring means 63 for measuring the bending amount of the spindle guide portion 3 is provided, and the cutting force estimating means 6 is measured by the bending amount measuring means 63. From the amount of bending, the magnitude of the back component force Fr (FIGS. 4A and 4B) in the cutting force is estimated.
- the back component force Fr acts on the work piece from the tool 1
- the spindle guide portion 3 bends. Therefore, the amount of the back component force Fr is measured by measuring the bend amount of the spindle guide portion 3 with the bend amount measuring means 63. Can be estimated.
- the deflection amount measuring means 63 is a strain sensor, and is affixed to the outer peripheral surface of the root portion of the outer pipe 25 of the spindle guide portion 3 at four locations in the circumferential direction. Since the distortion of the outer pipe 25 is greatest at the root portion, it is preferable that the strain sensor is attached to the root portion of the outer pipe 25.
- the bending amount measuring means 63 when a strain sensor is used as the bending amount measuring means 63, when the back component force Fr acts on the workpiece W from the tool 1, the detection signal of the strain sensor on the peripheral surface of the spindle guide portion 3 depends on the bending direction. Since it fluctuates in the compression direction and the tension direction, the magnitude of the back component force Fr can be estimated.
- the detection signal of the strain sensor at any circumferential position on the circumferential surface of the outer pipe 25 is compressed. Therefore, the magnitude of the feed force Pf can also be estimated.
- the magnitude of the other component forces Fc and Pf can be obtained if the magnitude of the back component force Fr is obtained. It can also be estimated.
- cutting force estimation means 6 for estimating the magnitudes of the other component forces Fc and Pf.
- the deflection amount measuring means 63 may be a displacement sensor that measures the displacement of an arbitrary portion of the spindle guide portion 3. Also in this case, the magnitude of the back component force Fr can be estimated by the cutting force estimation means 6 as described above.
- a cylindrical sensor housing 64 is provided on the outer periphery of the root portion of the spindle guide portion 3 as shown in FIG. 7A, and this sensor is shown in FIG. 7B.
- Deflection amount measuring means 63 including optical displacement sensors are provided at four locations on the inner periphery of the housing 64 at equal intervals in the circumferential direction. A deflection amount measuring means 63 measures the displacement of the outer pipe 25 of the spindle guide portion 3.
- the deflection amount measuring means 63 may be a magnetic displacement sensor including an encoder 63a as a detected portion and a hall sensor 63b.
- an annular encoder 63 a is fitted to the base of the outer pipe 25 of the spindle guide portion 3, and hall sensors 63 b are arranged at four locations on the inner periphery of the sensor housing 64 in the same circumferential direction.
- the number of hall sensors 63b is not limited.
- a deflection amount measuring means 63 measures the displacement of the outer pipe 25 of the spindle guide portion 3.
- the deflection amount measuring means 63 may be an eddy current displacement sensor.
- FIG. 9 shows still another example of the cutting force estimation means 6.
- driving force measuring means 65 for measuring the driving force of the posture changing drive source 42 is provided, and the cutting force estimating means 6 uses the cutting force from the driving force measured by the driving force measuring means 65.
- the magnitude of the back component force Fr is estimated.
- a supply wattmeter 47 (FIGS. 3A and 3B) for detecting the amount of power supplied to the attitude changing drive source 42 may be used.
- the force is transmitted to the posture changing drive source 42 via the posture operation member 31, and the driving force of the posture changing drive source 42 increases or decreases.
- the magnitude of the back component force Fr can be estimated.
- FIGS. 10A and 10B show further different examples of the cutting force estimating means 6.
- a strain detecting means 66 for detecting the strain of the lever mechanism 43 that transmits the driving force of the posture changing drive source 42 to the posture operating member 31 is provided, and the cutting force estimating means 6 is the strain detecting means. From the detected value of 66, the magnitude of the back component force Fr in the cutting force is estimated.
- the strain detecting means 66 shown in the figure is provided with a thin strain-generating portion 43ba (FIG. 10A) at the intermediate portion of the lever 43b of the lever mechanism 43, and the strain-generating portion 43ba is provided on both sides of the strain-generating portion 43ba. Strain sensors 66U, 66L, and 66R for detecting the generated strain are attached (FIG. 13).
- the distortion detecting means 66 detects the distortion. By doing so, the magnitude of the back component force Fr can be estimated.
- FIGS. 11A and 11B show a second embodiment.
- This remote control type actuator is provided with two guide pipes 30 at circumferential positions in the outer pipe 25 that are 180 degrees in phase with each other, and in the guide hole 30a that is the inner diameter hole of the guide pipe 30, the same attitude as described above.
- the operating member 31 is inserted so as to freely advance and retract. Between the two guide pipes 30, a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipe 30.
- the restoring elastic member 32 is not provided.
- the guide surfaces F1 and F2 are spherical surfaces whose center of curvature is the point O, or cylindrical surfaces whose axis is the X axis passing through the point O.
- the drive unit 4 (not shown) is provided with two posture change drive sources 42 (not shown) for individually moving the two posture operation members 31 forward and backward, and these two posture change drives.
- the posture of the tip member 2 is changed by driving the sources 42 in opposite directions. For example, when the upper posture operation member 31 in FIGS. 11A and 11B is advanced to the distal end side and the lower posture operation member 31 is retracted, the upper posture operation member 31 moves the housing of the distal end member 2. 11 is pushed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the side in which the tip side faces downward in FIG.
- FIGS. 12A and 12B show a third embodiment.
- This remote control type actuator is provided with three guide pipes 30 at circumferential positions at a phase of 120 degrees in the outer pipe 25, and the same posture as described above in a guide hole 30 a which is an inner diameter hole of the guide pipe 30.
- the operating member 31 is inserted so as to freely advance and retract.
- a plurality of reinforcing shafts 34 are arranged on the same pitch circle C as the guide pipes 30.
- the restoring elastic member 32 is not provided.
- the guide surfaces F1 and F2 are spherical surfaces whose center of curvature is a point O, and the tip member 2 can tilt in any direction.
- the drive unit 4 is provided with three posture changing drive sources 42 (42U, 42L, 42R) (FIG. 13) for individually moving the three posture operation members 31 (31U, 31L, 31R) forward and backward.
- the attitude of the tip member 2 is changed by driving these three attitude changing drive sources 42 in conjunction with each other. For example, when one upper posture operation member 31U in FIG. 12B is advanced to the distal end side and the other two posture operation members 31L and 31R are moved backward, the upper posture operation member 31U causes the distal end member 2 to move.
- the distal end member 2 changes its posture along the guide surfaces F1 and F2 to the side in which the distal end side faces downward in FIG.
- each posture changing drive source 42 is controlled so that the amount of advance / retreat of each posture operation member 31 is appropriate.
- each posture operation member 31 is moved back and forth, the housing 11 of the tip member 2 is pushed by the left and right posture operation members 31L and 31R, so that the tip member 2 moves to the side where the tip side is upward in FIG.
- the posture is changed along the guide surfaces F1 and F2. Further, when the left posture operation member 31L is advanced to the distal end side and the right posture operation member 31R is moved backward while the upper posture operation member 31U is stationary, the distal end member 2 is moved by the left posture operation member 31L.
- the tip member 2 When the housing 11 is pressed, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the right, that is, the side facing the back side of the paper surface in FIG.
- the left and right posture operation members 31L and 31R are moved back and forth, the housing 11 of the tip member 2 is pushed by the right posture operation member 31R, so that the tip member 2 moves along the guide surfaces F1 and F2 toward the left side. Change the posture.
- the tip member 2 can be changed in posture in the directions of the upper, lower, left and right axes (X axis, Y axis).
- the pressure of the three posture operating members 31 and the reaction force from the retaining member 21 are acting on the tip member connecting portion 15, and the posture of the tip member 2 is determined by the balance of these acting forces.
- the posture stability of the tip member 2 can be further improved. If the number of posture operation members 31 is further increased, the posture stability of the tip member 2 can be further enhanced.
- the posture change drive mechanism 4c can be configured as shown in FIG. That is, three posture change drive sources 42 (42U, 42L, 42R) for individually moving the posture operation members 31 (31U, 31L, 31R) forward and backward are arranged in parallel on the left and right sides, and each posture change drive source is provided.
- a lever 43b (43bU, 43bL, 43bR) corresponding to 42 is provided so as to be rotatable around a common support shaft 43a, and each lever 43b has a long distance from the support shaft 43a at an action point P1 (P1U, P1L, P1R).
- each posture changing drive source 42 The force of the output rod 42a (42aU, 42aL, 42aR) of each posture changing drive source 42 is applied, and a force is applied to the posture operating member 31 at a force point P2 (P2U, P2L, P2R) having a short distance from the support shaft 43a.
- P2 force point
- the rotary shaft 22 passes through an opening 44 formed in the lever 43bU for the upper posture operation member 31U.
- the strain detecting means 66 for detecting the strain of the lever mechanism 43 when the strain detecting means 66 for detecting the strain of the lever mechanism 43 is provided, the strain sensor 66U as the strain detecting means 66 for detecting the strain generated in each lever 43b is provided in each lever 43 (43bU, 43bL, 43bR). , 66L, 66R are pasted.
- the cutting force estimation means 6 estimates mainly the magnitude of the back component force Fr in the cutting force from the detection value of each strain sensor.
- FIGS. 14A to 14C show a fourth embodiment.
- a radial groove 11c (FIG. 10C) is formed on the base end surface of the housing 11 of the tip member 2, and the spherical tip of the posture operation member 31 is applied to the bottom surface of the groove 11c. Touching.
- the rotation prevention mechanism 37 is configured by the groove 11c and the posture operation member 31, and the distal end of the posture operation member 31 inserted into the groove 11c hits the side surface of the groove 11c. Rotation around the center line CL of the member 2 is prevented.
- the posture operation drive mechanism 4c for controlling the advance / retreat of the posture operation member 31 and the tip member 2 holding the tool 1 become uncontrollable due to a failure of the control device or the like.
- This embodiment is an example in which the posture operation member 31 is provided at one place in the circumferential direction.
- the present invention can also be applied to a configuration in which 31 is provided at three circumferential positions that are 120 degrees in phase with each other.
- FIGS. 15A and 15B show a fifth embodiment.
- the spindle guide portion 3 of the remote control type actuator is configured so that the hollow hole 24 of the outer pipe 25 is out of the circumferential position where the central circular hole portion 24a and the outer periphery of the circular hole portion 24a form a phase of 120 degrees with each other. It consists of three groove-like parts 24b recessed to the radial side.
- the peripheral wall at the tip of the groove-like portion 24b has a semicircular cross section.
- the rotary shaft 22 and the rolling bearing 26 are accommodated in the circular hole portion 24a, and the posture operation member 31 is accommodated in each groove portion 24b.
- the outer pipe 25 has the above-described cross-sectional shape, the thickness t of the outer pipe 25 other than the groove-like portion 24b is increased, and the secondary moment of the outer pipe 25 is increased. That is, the rigidity of the spindle guide portion 3 is increased. Thereby, the positioning accuracy of the tip member 2 is improved and the machinability is improved. Further, by arranging the guide pipes 30 in the groove-like portions 24b, the guide pipes 30 can be easily positioned in the circumferential direction, and the assemblability is good.
- the posture operation member 31 is provided at three circumferential positions at a phase of 120 degrees, but the posture operation member 31 is at two circumferential positions at a phase of 180 degrees.
- the present invention can also be applied to a configuration in which the posture operation member 31 provided at one place in the circumferential direction and the corresponding elastic member 32 for restoration are combined.
- the groove-like portions 24b of the hollow holes 24 are provided at three places in the circumferential direction as in the case of the outer pipe 25 in FIGS.
- the posture operation member 31 may be accommodated in one groove portion 24b, and the reinforcing shaft 34 (see FIGS. 2A to 2C) may be accommodated in the other groove portion 24b.
- the spindle guide portion 3 has a linear shape.
- the posture operation member 31 is flexible, and the posture of the tip member 2 is maintained even when the spindle guide portion 3 is curved. Since the changing operation is performed reliably, the spindle guide portion 3 may be curved in the initial state as shown in FIG. Alternatively, only a part of the spindle guide portion 3 may be curved. If the spindle guide portion 3 is curved, it may be possible to insert the distal end member 2 to the back of the bone, which is difficult to reach in the straight shape, so that the hole for artificial joint insertion can be accurately processed in artificial joint replacement surgery. It becomes possible to finish.
- the outer pipe 25, the guide pipe 30, and the reinforcing shaft 34 need to be curved.
- the rotating shaft 22 is preferably made of a material that is easily deformed, and for example, a shape memory alloy is suitable.
- the posture operation member 31 may be composed of a plurality of balls in addition to the wire 31a, or may be composed of a plurality of columnar bodies that are curved in accordance with the curved shape of the guide pipe 30. In the latter case, it is preferable that the curved columnar body has a short length and a shape in which corners are dropped by chamfering or the like.
- FIG. 17 shows a schematic configuration of a remotely operated actuator according to the sixth embodiment of the present invention.
- abnormality detection means 16, 55, 56, 57, 66 and 82 described in detail later are provided.
- the cutting force estimation means 6 of this embodiment is configured to detect distortion generated in -43b with the lever mechanism 43 as shown in FIGS. 10A and 10B of the first embodiment.
- the remote control type actuator includes an actuator body 8, a control box 7 that is a controller connected to the actuator body 8 and an electric cable 9, and a lubrication fluid supply that supplies the actuator body 8 with a lubrication fluid.
- the actuator body 8 has basically the same configuration as that described in the first embodiment.
- FIGS. 18A to 18 (D) correspond to FIGS. 12 (A) and 12 (B) showing the third embodiment, and the same or corresponding parts are denoted by the same reference numerals for detailed description.
- the housing 11 of the tip member 2 is provided with a temperature sensor 16 as temperature detecting means that is an abnormality detecting means for detecting the temperature of the housing 11. Yes.
- a ball 31c is used instead of the wire 31a.
- the rotation preventing mechanism 37 having the same configuration as in the case of the fourth embodiment (FIGS. 14A to 14C) is employed. I try to prevent rotation.
- the tool rotation drive mechanism 4b includes a tool rotation drive source 41.
- the tool rotation drive source 41 is, for example, an electric motor, and its output shaft 41 a is coupled to the proximal end of the rotation shaft 22.
- the rotating shaft 22 passes through an opening 44 formed in the lever 43b described later.
- the rotation speed of the tool rotation drive source 41 is detected by a rotation sensor 55.
- the rotation sensor 55 is a rotation detection unit that detects the number of rotations of the spindle 13.
- a vibration sensor 56 that detects the magnitude of vibration of the tool rotation drive source 41 is attached to the tool rotation drive source 41.
- the vibration sensor 56 is vibration detection means for detecting the magnitude of vibration of the spindle 13.
- the attitude changing drive mechanism 4c includes three attitude changing drive sources 42 (42U, 42L, 42R) respectively corresponding to the attitude operating members 31 (31U, 31L, 31R).
- the posture changing drive source 42 is, for example, an electric linear actuator, and a lever mechanism 43 provided between the posture changing drive source 41 and the posture operating member 31 by the movement of the output rod 42a moving in the left-right direction in FIG. Is transmitted to the posture operation member 31 via the.
- the forward / backward position of the output rod 42a that is, the operating position of the attitude changing drive source 42 is detected by the encoder 57 (57U, 57L, 57R).
- These encoders 57 are fixed detection means for detecting whether or not the posture of the tip member 2 is in a fixed state.
- the lever mechanism 43 has a lever 43b that is rotatable around a support shaft 43a.
- the force of the output rod 42a acts on an action point P1 of the lever 43b that is long from the support shaft 43a.
- the force is applied to the posture operation member 31 at the force point P ⁇ b> 2 having a short distance, and the output of the posture changing drive source 42 is increased and transmitted to the posture operation member 31.
- a thin strain-generating portion 43ba is provided at the intermediate portion of the lever 43b, and strain is detected on the strain-generating portion 43ba on both sides of the strain-generating portion 43ba.
- Sensors 66 (66U, 66L, 66R) are attached.
- strain sensors 66 are not only used for the cutting force estimation means 6 but also fixed detection means for detecting whether or not the posture of the tip member 2 is in a fixed state, and the magnitude of the force acting on the tip member 2 is determined. Used as an acting force detection means for detecting.
- a pair of left and right handles 80L and 80R are attached to the left and right side surfaces of the drive unit housing 4a.
- a rotation on / off operation tool 84 for rotating and stopping the rotation of the spindle 13 is provided at the tip of the left handle 80L.
- the rotation on / off operation tool 84 is, for example, a push button switch.
- a posture changing operation tool 83 for changing the posture of the tip member 2 is provided at the tip of the right handle 80R.
- the posture change operation tool 83 is, for example, a cross switch having four operation units 83a, 83b, 83c, and 83d arranged in a cross shape, and each operation unit 83a, 83b, 83c, and 83d faces the tip member 2 downward.
- the actuator body 5 is held by grasping the grips 80 ⁇ / b> L and 80 ⁇ / b> R with both hands. In this state, the rotation on / off operation tool 84 can be operated with the left hand, and the posture change operation tool 83 can be operated with the right hand.
- the control box 7 incorporates a computer 70 (FIG. 21) that performs various controls. Various controls will be described later. As shown in FIG. 17, a liquid crystal display type display device 85, a display lamp 86, and an initial posture operating tool 87 are provided on the outer front surface of the control box 7.
- the initial posture operating tool 87 is, for example, a push button switch.
- the lubricating fluid supply device 51A is connected to the vicinity of the proximal end of the spindle guide portion 3 via a pipe 52A that is a lubricating fluid supply tube, similarly to the coolant supply device 51 of FIG. 5 of the first embodiment. ing.
- the lubricating fluid supplied from the lubricating fluid supply device 51 ⁇ / b> A passes through the inside of the spindle guide portion 3 and the tip member 2 and is discharged toward the tool 1 from the tip of the tip member 2.
- the rolling bearing 26 of the spindle guide portion 3 and the rolling bearing 29 of the tip member 2 are lubricated. Further, the tool 1 and the part to be cut are cooled by the lubricating fluid discharged toward the tool 1.
- a pressure sensor 82 is provided as an abnormality detecting means for detecting the pressure of the lubricating fluid passing through the pipe 52A.
- the pressure sensor 82 is lubricating fluid pressure detecting means for detecting the pressure of the lubricating fluid supplied into the spindle guide portion 3.
- the computer 70 of the control box 7 includes a tool rotation control means 71 for controlling the tool rotation drive source 41 and a posture change control for controlling the posture change drive source 42 (42U, 42L, 42R). Means 72 are provided.
- the posture change control means 72 includes a posture change control unit 72a and an initial posture control unit 72b.
- the posture change control unit 72a outputs to the motor driver 74 in response to an operation command signal by an input operation of the posture change operation tool 83, and drives the posture change drive source 42 (42U, 42L, 42R).
- the drive amount of the posture changing drive source 42 is proportional to the operation time of the posture changing operation tool 83.
- the posture of the tip member 2 is changed by changing the output direction and the output magnitude for each of the posture changing drive sources 42U, 42L, and 42R depending on which of the operation portions 83a, 83b, 83c, and 83d is operated. .
- the operation unit 83a when the operation unit 83a is input, it is output to each of the posture changing drive sources 42U, 42L, 42R, and the one posture operation member 31U on the upper side in FIGS. And the other two posture operation members 31L and 31R are moved backward. Then, when the housing 11 of the tip member 2 is pushed by the upper posture operation member 31U, the tip member 2 changes its posture along the guide surfaces F1 and F2 to the side in which the tip side faces downward in FIG. When the operation unit 83b is input, each posture operation member 31 moves back and forth in the reverse direction, and the housing 11 of the tip member 2 is pushed by the left and right posture operation members 31L and 31R. In A), the posture is changed along the guide surfaces F1 and F2 to the side where the front end side is upward.
- the operation is output to the left and right posture changing drive sources 42L and 42R, the right posture operating member 31R is advanced to the distal end side, and the left posture operating member 31L is moved backward. .
- the housing 11 of the tip member 2 is pushed by the right posture operation member 31R, the tip member 2 faces leftward, that is, along the guide surfaces F1 and F2 to the side facing the front side of the paper surface in FIG. Change posture.
- the posture operation members 31L and 31R advance and retract in the opposite direction, and the housing 11 of the tip member 2 is pushed by the left posture operation member 31L, so that the tip member 2 is directed to the right side.
- the posture is changed along the guide surfaces F1 and F2.
- the tip member 2 can be changed in posture in the two directions of up, down, left and right as described above.
- the tip member connecting portion 15 is subjected to the pressures of the three posture operation members 31 and the reaction force from the retaining member 21, and the posture of the tip member 2 is determined by the balance of these acting forces. Since the housing 11 of the tip member 2 is pressurized by the three posture operation members 31, the posture stability of the tip member 2 is high.
- the initial posture control unit 72b performs control to bring the tip member 2 into a predetermined initial posture in accordance with an operation command signal output from the initial posture operating tool 87. For example, immediately after turning on the power to the remote control type actuator or at the time of initial operation after exchanging the tool 1, as shown in FIG. 22A, the base end surface of the housing 11 of the distal end member 2 and the columnar shape of the posture operation member 31 are used. Since there may be a gap S between the pins 31b, it is necessary to return the tip member 2 to the initial posture once to eliminate the gap S.
- the initial posture is a posture in which the center line CL1 of the tip member 2 and the center line CL2 of the spindle guide portion 3 coincide with each other.
- FIGS. 22A, 22B, and 22C are simplified views of a cross section corresponding to the XXIII-CL2-XXIII cross section of FIG.
- the initial attitude control is specifically performed in the order shown in the flowchart of FIG.
- each posture changing drive source 42 is moved backward (S2).
- the operation position of each posture changing drive source 42 is detected by the encoder 57.
- each attitude changing drive source 42 is advanced (S4).
- S5 the movement of each posture changing drive source 42 to the initial position is completed
- S6 the forward movement of each posture changing drive source 42 is stopped and the initial posture position movement is completed
- each posture change drive source 42 has moved to the initial posture position indicates that the actual operation position of each posture change drive source 42 indicated by the output of the encoder 57 is the posture in the initial posture stored in the storage means 76. This is confirmed by the coincidence with the operating position of the changing drive source 42.
- the progress of the initial posture control is displayed on the display lamp 86 in stages.
- the tool rotation control means 71 includes a tool rotation control unit 71a and an abnormal stop control unit 71b.
- the tool rotation control unit 71a outputs the rotation command signal from the rotation on / off operation tool 84 to the motor driver 73, and turns on / off the tool rotation drive source 41. Thereby, the spindle 13 is rotated and stopped. For example, when the rotation on / off operation tool 84 is pressed once, the spindle 13 rotates, and when it is pressed again, the rotation of the spindle 13 stops.
- the abnormal stop control unit 71b performs control to stop the rotation of the tool rotation drive source 41 when an abnormality during spindle rotation or non-rotation is detected by the following abnormality detection means.
- the abnormality detection means includes a strain sensor 66 (66U, 66L, 66R) which is a fixed detection means and an acting force detection means, an encoder 57 (57U, 57L, 57R) which is a fixed detection means, a rotation sensor 55 which is a rotation detection means,
- the vibration sensor 56 is a vibration detecting means, the temperature sensor 16 is a temperature detecting means, and the pressure sensor 82 is a lubricating fluid pressure detecting means.
- the abnormal stop control includes the following controls.
- the first abnormal stop control is performed by detecting whether or not the posture of the tip member 2 is in a fixed state from the outputs of the strain sensor 66 (66U, 66L, 66R) and the encoder 57 (57U, 57L, 57R). This is control for stopping the rotation of the tool rotation drive source 41 when it is not in a state. Even if the posture of the tip member 2 is not actually measured, it can be determined from the outputs of the strain sensor 66 and the encoder 57 whether or not the posture of the tip member 2 is in a fixed state. This control may be performed simultaneously with the initial posture control or separately.
- control is performed in the order shown in the flowchart of FIG.
- a certain posture of the tip member 2 it is confirmed that the three encoders 57 are in a predetermined position (S1), and the detection value of the strain sensor 66 is determined at that time (S2). If the detected value exceeds the predetermined value range, it is determined that there is an abnormality, and the rotation of the tool rotation drive source 41 is stopped (S3).
- the detection value of the strain sensor 66 is larger than a predetermined value, it means that an excessive force is acting on the posture operation member 31. For example, as shown in FIG. 22C, there is a possibility that a foreign object 49 is sandwiched between the posture operation member 31 and the tip member 2.
- the magnitude of the force acting on the tip member 2 during rotation of the spindle is detected from the output of the strain sensor 66 (66U, 66L, 66R), and the detected acting force is greater than the specified acting force.
- the rotation of the tool rotation drive source 41 is stopped. Even if the acting force of the tip member 2 is not actually detected, the acting force of the tip member 2 can be obtained from the output of the strain sensor 66. If an excessive force acts on the tip member 2, there is a possibility that deformation or the like will occur in each part of the remote control type actuator or breakage. Therefore, by stopping the rotation of the tool rotation drive source 41, deformation or breakage of the remote operation type actuator is prevented.
- the third abnormal stop control detects the rotational speed of the spindle 13 from the output of the rotational speed sensor 55, and when the difference between the detected rotational speed and the specified rotational speed is outside a predetermined range, the tool rotation drive source This is a control to stop the rotation of 41. Even if the rotational speed of the spindle 13 is not actually detected, the rotational speed of the spindle 13 can be obtained from the output of the rotational speed sensor 55 that detects the rotational speed of the tool rotation drive source 41.
- the output shaft 41a of the tool rotation drive source 41 or the bearings 12, 26, 29 supporting the rotation shaft 22 breaks down, the rotational speed of the spindle 13 becomes abnormally high or low. It is dangerous to rotate the spindle 13 in such a state. Therefore, when the rotational speed of the spindle 13 is abnormal, danger is avoided by stopping the rotation of the tool rotation drive source 41.
- the magnitude of the vibration of the spindle 13 is detected from the output of the vibration sensor 56, and the rotation of the tool rotation drive source 41 is rotated when the magnitude of the detected vibration is larger than a specified magnitude. This is the control to stop. Even if the magnitude of vibration of the spindle 13 is not actually detected, the magnitude of vibration of the spindle 13 can be obtained from the output of the vibration sensor 46 that detects the magnitude of vibration of the tool rotation drive source 41.
- the spindle 13 vibrates when there is a decrease in the posture holding force of the tip member 2, a failure of the tool rotation drive source 41 or the bearings 26, 29, a poor assembly of each part of the remote control type actuator, or the like. It is dangerous to rotate the spindle 13 in such a state. Therefore, when the vibration of the spindle 13 is abnormally large, the danger is avoided by stopping the rotation of the tool rotation drive source 41.
- the fifth abnormal stop control is a control for detecting the temperature of the spindle 13 from the output of the temperature sensor 16 and stopping the rotation of the tool rotation drive source 41 when the detected temperature is higher than the specified temperature.
- the temperature of the spindle 13 may rise due to a lack of lubricant for lubricating the bearings 12, 26, 29, failure of the bearings 12, 26, 29, and the like. In such a case, if the rotation of the spindle 13 is continued as it is, the remote operation type actuator is deformed or damaged. Therefore, when the spindle 13 is at an abnormally high temperature, the rotation of the tool rotation drive source 41 is stopped to prevent the remote operation type actuator from being deformed or damaged.
- the pressure of the lubricating fluid supplied into the spindle guide 3 is detected from the output of the pressure sensor 82, and the difference between the detected pressure of the lubricating fluid and the specified pressure is within a predetermined range. This is a control to stop the rotation of the tool rotation drive source 41 when it is outside. If the lubricating fluid is insufficient or the path of the lubricating fluid is clogged, the bearings 12, 26, 29 may not be lubricated well, and the bearings 12, 26, 29 may be damaged.
- the abnormality item is displayed on the display unit 85. For this reason, even when a plurality of types of abnormality detection means are provided as in this embodiment, it is possible to easily know what is abnormal and to take appropriate and prompt countermeasures.
- This remote operation type actuator holds the left and right grips 80L and 80R with both hands and holds the actuator body 8 as described above. Then, by operating the rotation on / off operation tool 84, the spindle 13 is rotated and the tool 1 performs cutting of bone and the like. During the processing, the posture of the tip member 2 is changed in the biaxial direction by remote operation by operating the posture changing operation tool 83 according to the shape of the processing portion and the progress of the processing. Since the rotation on / off operation tool 84 and the posture change operation tool 83 can be operated at the hand while holding the left and right handles 80L and 80R, the operation can be performed with the operator's own sense and the work can be easily performed.
- the abnormality detection means 16, 55, 56, 66, 82 detects the abnormality, and the tool rotation control means 71 stops the rotation of the tool rotation drive source 41.
- the tool rotation control means 71 is configured not to rotate the tool rotation drive source 41. For this reason, it is safe.
- the rotation preventing mechanism 37 for preventing the distal end member 2 from rotating around the center line CL1 of the distal end member 2 with respect to the spindle guide portion 3 is provided, the posture changing drive mechanism 4c and the posture control means 72 are broken. Even when the tip member 2 that holds the tool 1 becomes uncontrollable due to, for example, the tip member 2 rotates around the center line CL1 and the periphery of the machining site is damaged, or the tip member 2 itself is damaged. Can be prevented.
- the posture operation member 31 Since the posture operation member 31 is inserted through the guide hole 30a, the posture operation member 31 does not shift in the direction intersecting the longitudinal direction, and can always act properly on the tip member 2, and the tip member 2 posture change operation is performed accurately. Further, the posture operation member 31 includes a plurality of balls 31c and columnar pins 31b, and has a flexible property as a whole. Therefore, even when the spindle guide portion 3 is curved, the posture change operation of the tip member 2 is reliably performed. Is called. Furthermore, since the center of the connecting portion between the spindle 13 and the rotating shaft 22 is at the same position as the center of curvature O of the guide surfaces F1 and F2, a force for pushing and pulling against the rotating shaft 22 by changing the posture of the tip member 2 is increased. Accordingly, the posture of the tip member 2 can be changed smoothly.
- the medical remote control actuator has been described above, but the present invention can be applied to remote control actuators for other purposes. For example, in the case of machining, drilling of a curved hole or cutting of a deep part inside the groove is possible.
- the remote-control actuator according to the first aspect includes an elongated spindle guide part, a tip member attached to the tip of the spindle guide part via a tip member connecting part so that the posture can be freely changed, and a base end of the spindle guide part
- a drive housing coupled with The tip member rotatably supports a spindle that holds a tool
- the spindle guide portion includes a rotating shaft that transmits rotation of a driving source for tool rotation provided in the driving portion housing to the spindle, and both ends.
- a guide hole penetrating into the guide hole, and a posture operation member for changing the posture of the tip member by advancing and retreating with the tip contacting the tip member is inserted into the guide hole so as to be able to advance and retract.
- a posture changing drive source for moving the member forward and backward is provided in the drive unit housing, An abnormality detection means for detecting an abnormality during rotation of the spindle or during non-rotation, and a tool rotation control means for stopping the rotation of the tool rotation drive source when the abnormality detection means detects an abnormality.
- the abnormality detection unit includes a fixing detection unit that detects whether or not the posture of the tip member is in a fixed state, and the tool rotation control unit is configured to detect the posture of the tip member by the fixing detection unit. If it is detected that is not in a fixed state, the tool rotation drive source is not rotated.
- the fixed detection means is a distortion sensor that detects distortion of a lever mechanism provided between the attitude changing drive source and the attitude operating member.
- the fixed detection means is an encoder that detects an operation position of the posture changing drive source.
- the abnormality detecting means includes an acting force detecting means for detecting a magnitude of a force acting on the tip member when the spindle rotates, and the tool rotation control means is detected by the acting force detecting means. When the applied force is greater than the prescribed applied force, the rotation of the tool rotation drive source is stopped.
- the acting force detecting means is a strain sensor that detects a strain of a lever mechanism provided between the posture changing drive source and the posture operating member.
- the abnormality detection unit includes a rotation detection unit that detects a rotation number of the spindle or the tool rotation drive source, and the tool rotation control unit includes the rotation number detected by the rotation detection unit.
- the difference from the specified rotational speed is outside the predetermined range, the rotation of the tool rotation drive source is stopped.
- the abnormality detection unit includes a vibration detection unit that detects a magnitude of vibration of the spindle or the tool rotation drive source during the rotation of the spindle, and the tool rotation control unit includes the vibration detection unit.
- the magnitude of the detected vibration is larger than a prescribed magnitude, the rotation of the tool rotation drive source is stopped.
- the abnormality detection unit includes a temperature detection unit that detects the temperature of the spindle during the spindle rotation, and the tool rotation control unit has a temperature detected by the temperature detection unit higher than a specified temperature. In this case, the rotation of the tool rotation drive source is stopped.
- Aspect 1 includes a bearing that rotatably supports the rotating shaft in the spindle guide portion, and a lubricating fluid supply device that supplies a lubricating fluid that lubricates the bearing into the spindle guide portion, and the abnormality detection
- a lubricating fluid pressure detecting means for detecting the pressure of the lubricating fluid supplied into the spindle guide portion by the lubricating fluid supply device when the spindle is rotated
- the tool rotation control means comprises the lubrication fluid pressure detecting means.
- a display device for displaying an abnormal item when an abnormality is detected by the abnormality detecting means.
- Rotation sensor (rotation detection means) 56 Vibration sensor (vibration detecting means) 57 (57U, 57L, 57R) ... encoder (fixed detection means) 60 ... Driving power measuring means 61 . Rotational speed measuring means 63 ... Deflection amount measuring means 65 . Driving force measuring means 66 (66U, 66L, 66R) ... Strain detecting means (strain sensor (fixed detecting means, acting force detecting means)) 70 ... Computer 84 ... Rotation on / off operation tool 85 ... Display device 87 ... Initial posture operation tool
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dentistry (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Public Health (AREA)
- Mechanical Engineering (AREA)
- Surgical Instruments (AREA)
Abstract
細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、しかも常に最適な加工条件で加工することが可能な遠隔操作型アクチュエータを提供する。細長形状のスピンドルガイド部(3)と、その先端に姿勢変更自在に取付けられ工具を回転自在に支持する先端部材(2)と、スピンドルガイド部(3)の基端が結合された駆動部ハウジング(4a)とを備える。スピンドルガイド部(3)は内部に、駆動部ハウジング(4a)内の工具回転用駆動源(41)の回転を工具に伝達する回転軸(22)と、駆動部ハウジング(4a)内の姿勢変更用駆動源(42)の駆動により先端部材を姿勢変更させる姿勢操作部材(31)とを有する。工具が被加工物に与える切削力における主分力(Fc)、背分力(Fr)、および送り分力(Pf)のうち少なくとも1つの分力の大きさを推定する切削力推定手段(6)を設ける。
Description
本出願は、2008年11月27日出願の特願2008-302091、および2009年1月23日出願の特願2009-013002の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
この発明は、工具の姿勢を遠隔操作で変更可能で、医療用、機械加工等の用途で用いられる遠隔操作型アクチュエータに関する。
医療用として骨の加工に用いられたり、機械加工用としてドリル加工や切削加工に用いられたりする遠隔操作型アクチュエータがある。遠隔操作型アクチュエータは、直線形状や湾曲形状をした細長いパイプ部の先端に設けた工具を遠隔操作で制御する。ただし、従来の遠隔操作用アクチュエータは、工具の回転のみを遠隔操作で制御するだけであったため、医療用の場合、複雑な形状の加工や外からは見えにくい箇所の加工が難しかった。また、ドリル加工では、直線だけではなく、湾曲状の加工が可能なことが求められる。さらに、切削加工では、溝内部の奥まった箇所の加工が可能なことが求められる。以下、医療用を例にとって、遠隔操作型アクチュエータの従来技術と課題について説明する。
整形外科分野において、骨の老化等によって擦り減って使えなくなった関節を新しく人工のものに取り替える人工関節置換手術がある。この手術では、患者の生体骨を人工関節が挿入できるように加工する必要があるが、その加工には、術後の生体骨と人工関節との接着強度を高めるために、人工関節の形状に合わせて生体骨を精度良く加工することが要求される。
例えば、股関節の人工関節置換手術では、大腿骨の骨の中心にある髄腔部に人工関節挿入用の孔を形成する。人工関節と骨との接触強度を保つには両者の接触面積を大きくとる必要があり、人工関節挿入用の孔は、骨の奥まで延びた細長い形状に加工される。このような骨の切削加工に用いられる医療用アクチュエータとして、細長いパイプ部の先端に工具を回転自在に設け、パイプ部の基端側に設けたモータ等の回転駆動源の駆動により、パイプ部の内部に配した回転軸を介して工具を回転させる構成のものがある(例えば特許文献1)。この種の医療用アクチュエータは、外部に露出した回転部分は先端の工具のみであるため、工具を骨の奥まで挿入することができる。
人工関節置換手術では、皮膚切開や筋肉の切断を伴う。すなわち、人体に傷を付けなければならない。その傷を最小限に抑えるためには、前記パイプ部は真っ直ぐでなく、適度に湾曲している方が良い場合がある。このような状況に対応するためのものとして、次のような従来技術がある。例えば、特許文献2は、パイプ部の中間部を2重に湾曲させて、パイプ部の先端側の軸心位置と基端側の軸心位置とをずらせたものである。このようにパイプ部の軸心位置が先端側と基端側とでずれているものは、他にも知られている。また、特許文献3は、パイプ部を180度回転させたものである。
生体骨の人工関節挿入用孔に人工関節を嵌め込んだ状態で、生体骨と人工関節との間に広い隙間があると、術後の接着時間が長くなるため、前記隙間はなるべく狭いのが望ましい。また、生体骨と人工関節の接触面が平滑であることも重要であり、人工関節挿入用孔の加工には高い精度が要求される。しかし、パイプ部がどのような形状であろうとも、工具の動作範囲はパイプ部の形状の制約を受けるため、皮膚切開や筋肉の切断をできるだけ小さくしながら、生体骨と人工関節との間の隙間を狭くかつ両者の接触面が平滑になるように人工関節挿入用孔を加工するのは難しい。
一般に、人工関節置換手術が行われる患者の骨は、老化等により強度が弱くなっていることが多く、骨そのものが変形している場合もある。したがって、通常考えられる以上に、人工関節挿入用孔の加工は難しい。
そこで、本出願人は、人工関節挿入用孔の加工を比較的容易にかつ精度良く行えるようにすることを目的として、先端に設けた工具の姿勢を遠隔操作で変更可能とすることを試みた。工具の姿勢が変更可能であれば、パイプ部の形状に関係なく、工具を適正な姿勢に保持することができるからである。しかし、工具は細長いパイプ部の先端に設けられているため、工具の姿勢を変更させる機構を設ける上で制約が多く、それを克服するための工夫が必要である。さらに、工具の姿勢を遠隔操作する場合でも、常に被加工物の状態に合った最適な加工条件で加工できることが求められる。
なお、細長いパイプ部を有しない医療用アクチュエータでは、手で握る部分に対して工具が設けられた部分が姿勢変更可能なものがある(例えば特許文献4)が、遠隔操作で工具の姿勢を変更させるものは提案されていない。
この発明の目的は、細長いパイプ部の先端に設けられた工具の姿勢を遠隔操作で変更することができ、しかも常に最適な加工条件で加工することが可能な遠隔操作型アクチュエータ、さらに異常があった場合に工具を回転停止または回転させないようにできる遠隔操作型アクチュエータを提供することである。
この発明にかかる遠隔操作型アクチュエータは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、前記工具が被加工物に与える切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定する切削力推定手段を設けた。
この構成によれば、先端部材に設けた工具の回転により、骨等の切削が行われる。その場合に、姿勢変更用駆動源により姿勢操作部材を進退させると、この姿勢操作部材の先端が先端部材に対し作用することにより、スピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材が姿勢変更する。姿勢変更用駆動源は、スピンドルガイド部の基端側の駆動部ハウジング内に設けられており、上記先端部材の姿勢変更は遠隔操作で行われる。姿勢操作部材はガイド孔に挿通されているため、姿勢操作部材が長手方向と交差する方向に位置ずれすることがなく、常に先端部材に対し適正に作用することができ、先端部材の姿勢変更動作が正確に行われる。
切削力推定手段により、切削力における主分力Fc、背分力Fr、および送り分力Pfのうち少なくとも1つの分力の大きさを推定する。この推定された分力の大きさに応じて、工具の回転数、送り速度等の加工条件を最適に設定することにより、被加工物の状態に合ったきめ細かい加工を実現できる。例えば、骨の切削加工では、被切削面の温度が50℃以上になると骨組織が壊れると言われている。そこで、医療用として骨の加工に用いる場合、切削力推定手段により切削力を監視しながら加工条件を変更することで、被切削面の温度が高くなるのを抑えることができる。
この発明において、前記工具回転用駆動源の駆動電力および回転数をそれぞれ測定する駆動電力測定手段および回転数測定手段を設け、前記切削力推定手段は、前記駆動電力測定手段で測定された駆動電力と、前記回転数測定手段で測定された回転数とから、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとするのが良い。
この場合、切削力推定手段により、切削力における工具の接線方向の力である主分力Fc[N]の大きさが推定される。駆動電力をP[W]、工具の回転数をN[rpm]、工具に作用するトルクをT[Nm]とした場合、P=(2πNT)/60の関係式であらわされる。工具の半径をr[m]とすると、T=rFcであるため、Fc=(60P)/(2πNr)となり、これより主分力Fcの大きさを推定できる。主分力Fc、背分力Fr、および送り分力Pfの各大きさの比率が決まっている場合には、主分力Fcの大きさが求められれば、他の分力Fr,Pfの大きさも推定できる。各分力の大きさの比率が変動する場合は、他の分力Fr,Pfの大きさを推定する切削力推定手段を併用するのが良い。
この発明において、前記スピンドルガイド部の撓み量を測定する撓み量測定手段を設け、前記切削力推定手段は、前記撓み量測定手段で測定された撓み量から、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとしても良い。
この場合、切削力推定手段により、主に切削力における工具の径方向の力である背分力Frの大きさが推定される。工具から被加工物に背分力Frが作用するとスピンドルガイド部が撓むため、撓み量測定手段でスピンドルガイド部の撓み量を測定することにより、背分力Frの大きさを推定することができるのである。主分力Fc、背分力Fr、および送り分力Pfの各大きさの比率が決まっている場合には、背分力Frの大きさが求められれば、他の分力Fc,Pfの大きさも推定できる。各分力の大きさの比率が変動する場合は、他の分力Fc,Pfの大きさを推定する切削力推定手段を併用するのが良い。
前記撓み量測定手段は、前記スピンドルガイド部の周面に貼った1つ以上の歪みセンサとすることができる。
スピンドルガイド部が撓むとスピンドルガイド部の周面に歪みが生じるため、歪みセンサの検出値からスピンドルガイド部の撓み量を測定することができる。撓み量測定手段として歪みセンサを使用した場合、工具から被加工物に背分力Frが作用すると、スピンドルガイド部の周面にある歪みセンサの検出信号が、撓み方向に応じて圧縮方向や引張方向に変動するため、背分力Frの大きさが推定できる。また、工具から被加工物に送り分力Pfが作用すると、スピンドルガイド部の周面のどの周方向位置にある歪みセンサも検出信号が圧縮方向に変動するため、送り分力Pfの大きさも推定できる。
スピンドルガイド部が撓むとスピンドルガイド部の周面に歪みが生じるため、歪みセンサの検出値からスピンドルガイド部の撓み量を測定することができる。撓み量測定手段として歪みセンサを使用した場合、工具から被加工物に背分力Frが作用すると、スピンドルガイド部の周面にある歪みセンサの検出信号が、撓み方向に応じて圧縮方向や引張方向に変動するため、背分力Frの大きさが推定できる。また、工具から被加工物に送り分力Pfが作用すると、スピンドルガイド部の周面のどの周方向位置にある歪みセンサも検出信号が圧縮方向に変動するため、送り分力Pfの大きさも推定できる。
この発明において、前記姿勢変更用駆動源の駆動力を測定する駆動力測定手段を設け、前記切削力推定手段は、前記駆動力測定手段で測定された駆動力から、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとしても良い。
この場合、切削力推定手段により、主に切削力における工具の径方向の力である背分力Frの大きさが推定される。工具から被加工物に背分力Frが作用すると、姿勢操作部材を介して姿勢変更用駆動源にも力が伝達され、姿勢変更用駆動源の駆動力が増減するため、駆動力測定手段で駆動力を測定することにより、背分力Frの大きさを推定することができるのである。
前記姿勢変更用駆動源の駆動力を前記姿勢操作部材へ伝達するレバー機構を有する場合、このレバー機構の歪みを検出する歪み検出手段を設け、前記切削力推定手段は、前記歪み検出手段の検出値から、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとすることができる。
この場合、切削力推定手段により、主に切削力における工具の径方向の力である背分力Frの大きさが推定される。工具から被加工物に背分力Frが作用すると、姿勢操作部材を介してレバー機構にも力が伝達され、レバー機構に歪みが生じるため、歪み検出手段で歪みを検出することにより、背分力Frの大きさを推定することができるのである。
この発明において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設ける場合、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けるのが望ましい。
加工の仕上がりを良くするには、スピンドルを高速回転させて加工するのがよい。スピンドルを高速回転させると、工具に作用する切削抵抗を低減させる効果もある。スピンドルはワイヤ等からなる細い回転軸を介して回転力が伝達されるので、スピンドルの高速回転を実現させるため、回転軸を支持する転がり軸受に予圧をかけておくことが必要となる。この予圧のためのばね要素を隣合う転がり軸受間に設ければ、スピンドルガイド部の径を大きくせずにばね要素を設けられる。
この発明において、前記スピンドル回転時または非回転時の異常を検出する異常検出手段と、この異常検出手段が異常を検出した場合に前記工具回転用駆動源の回転を停止させる工具回転制御手段とを設けても良い。
この構成によれば、切削加工中、何らかの異常が生じた場合、その異常を異常検出手段が検出して、工具回転制御手段が工具回転用駆動源の回転を停止させる。また、切削加工前に、異常検出手段により何らかの異常が発見された場合は、工具回転制御手段により工具回転用駆動源を回転させない。
この発明において、前記異常検出手段として、前記先端部材の姿勢が固定状態にあるか否かを検出する固定検出手段を有し、前記工具回転制御手段は、前記固定検出手段により前記先端部材の姿勢が固定状態でないと検出された場合に前記工具回転用駆動源を回転させない構成とするのがよい。前記固定検出手段は、例えば、前記姿勢変更用駆動源と前記姿勢操作部材との間に設けたレバー機構の歪みを検出する歪みセンサ、および前記姿勢変更用駆動源の動作位置を検出するエンコーダのいずれか、または両方とすることができる。
先端部材に外力が作用していない状態で、先端部材を初期姿勢に姿勢変更する際に、姿勢操作部材に過剰な力が作用する場合、姿勢操作部材と先端部材との間に異物が挟まっている可能性がある。また、先端部材が初期姿勢にある状態で、姿勢操作部材を先端部材に押付けた際、姿勢操作部材が前進する場合は、姿勢操作部材の一部が欠落している可能性がある。このような場合、先端部材の姿勢を正しく固定することができないため、スピンドルを回転させるのは危険である。そこで、固定検出手段により先端部材の姿勢が固定状態にあるか否かを検出し、固定状態でない場合は、工具回転制御手段により工具回転用駆動源を回転させないようにする。これにより、危険を回避することができる。
先端部材に外力が作用していない状態で、先端部材を初期姿勢に姿勢変更する際に、姿勢操作部材に過剰な力が作用したことは、歪みセンサの出力から推定できる。また、先端部材が初期姿勢にある状態で、姿勢操作部材を先端部材に押付けた際、所定の位置を超えて姿勢操作部材が前進したことは、エンコーダの出力から推定できる。このように、歪みセンサおよびエンコーダの出力を利用することにより、実際に先端部材の姿勢を測定しなくても、先端部材の姿勢が固定状態にあるか否かを検出することができる。
先端部材に外力が作用していない状態で、先端部材を初期姿勢に姿勢変更する際に、姿勢操作部材に過剰な力が作用したことは、歪みセンサの出力から推定できる。また、先端部材が初期姿勢にある状態で、姿勢操作部材を先端部材に押付けた際、所定の位置を超えて姿勢操作部材が前進したことは、エンコーダの出力から推定できる。このように、歪みセンサおよびエンコーダの出力を利用することにより、実際に先端部材の姿勢を測定しなくても、先端部材の姿勢が固定状態にあるか否かを検出することができる。
この発明において、前記異常検出手段として、前記スピンドル回転時に前記先端部材に作用する力の大きさを検出する作用力検出手段を有し、前記工具回転制御手段は、前記作用力検出手段により検出された作用力が規定作用力よりも大きい場合に前記工具回転用駆動源の回転を停止させる構成とするのがよい。前記作用力検出手段は、例えば、前記姿勢変更用駆動源と前記姿勢操作部材との間に設けたレバー機構の歪みを検出する歪みセンサとすることができる。
スピンドル回転時に先端部材に過剰な力が作用すると、遠隔操作型アクチュエータの各部に変形等が生じたり破損したりする可能性である。そこで、作用力検出手段により先端部材に作用する力の大きさを検出し、この検出された作用力が規定作用力よりも大きい場合は、工具回転制御手段により工具回転用駆動源の回転を停止させる。これにより、遠隔操作型アクチュエータの変形や破損を防げる。実際に先端部材の作用力を検出しなくても、歪みセンサでレバー機構の歪みを検出することにより、先端部材の作用力を容易に求められる。
この発明において、前記異常検出手段として、前記スピンドルまたは前記工具回転用駆動源の回転数を検出する回転検出手段を有し、前記工具回転制御手段は、前記回転検出手段により検出された回転数と規定回転数との差が所定の範囲外にある場合に前記工具回転用駆動源の回転を停止させる構成とするのがよい。前記回転検出手段は、例えば、前記工具回転用駆動源の回転数を検出する回転センサとすることができる。
工具回転用駆動源の出力軸や、工具回転用駆動源の回転をスピンドルに伝達する回転軸を支持する軸受が故障した場合、スピンドルの回転数が異常に高くなったり低くなったりする。このような状態でスピンドルを回転させるのは危険である。そこで、回転検出手段によりスピンドルの回転数を検出し、検出された回転数と規定回転数との差が所定の範囲外にある場合は、工具回転制御手段により工具回転用駆動源の回転を停止させる。これにより、危険を回避することができる。実際にスピンドルの回転数を検出しなくても、回転センサで工具回転用駆動源の回転数を検出することにより、スピンドルの回転数を容易に求められる。
この発明において、前記異常検出手段として、前記スピンドル回転時の前記スピンドルまたは前記工具回転用駆動源の振動の大きさを検出する振動検出手段を有し、前記工具回転制御手段は、前記振動検出手段により検出された振動の大きさが規定大きさよりも大きい場合に前記工具回転用駆動源の回転を停止させる構成とするのがよい。前記振動検出手段は、例えば、振動センサとすることができる。
先端部材の姿勢保持力の低下、工具回転用駆動源や軸受の故障、遠隔操作型アクチュエータ各部の組付け不良等があると、スピンドルが振動する。このような状態でスピンドルを回転させるのは危険である。そこで、振動検出手段によりスピンドルの振動の大きさを検出し、この検出された振動の大きさが規定大きさよりも大きい場合は、工具回転制御手段により工具回転用駆動源の回転を停止させる。これにより、危険を回避することができる。
この発明において、前記異常検出手段として、前記スピンドル回転時の前記スピンドルの温度を検出する温度検出手段を有し、前記工具回転制御手段は、前記温度検出手段により検出された温度が規定温度よりも高い場合に前記工具回転用駆動源の回転を停止させる構成とするのがよい。
軸受を潤滑する潤滑剤の不足、軸受の故障等により、スピンドルの温度が上昇することがある。そのような場合、そのままスピンドルの回転を続けると、遠隔操作型アクチュエータの変形や破損を招く。そこで、温度検出手段によってスピンドルの温度を検出し、この検出された温度が規定温度よりも高い場合は、工具回転制御手段により工具回転用駆動源の回転を停止させる。これにより、遠隔操作型アクチュエータの変形や破損を防げる。
この発明において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する軸受と、この軸受を潤滑する潤滑用流体を前記スピンドルガイド部内に供給する潤滑用流体供給装置とを有し、前記異常検出手段として、前記スピンドル回転時の前記潤滑用流体供給装置により前記スピンドルガイド部内に供給される潤滑用流体の圧力を検出する潤滑用流体圧力検出手段を有し、前記工具回転制御手段は、前記潤滑用流体圧力検出手段により検出された潤滑用流体の圧力と規定圧力との差が所定の範囲外である場合に前記工具回転用駆動源の回転を停止させる構成とするのがよい。
スピンドルガイド部内の回転軸を回転自在に支持する軸受を、潤滑用流体供給装置によってスピンドルガイド部内に供給される潤滑用流体で潤滑する場合、潤滑用流体が不足すると、潤滑用流体の圧力が低下し、また潤滑用流体の経路に目詰まりが生じると、潤滑用流体の圧力が上昇する。潤滑用流体の不足や経路の目詰まりがあると、軸受の潤滑が良好に行われず、軸受が損傷する可能性がある。そこで、潤滑用流体圧力検出手段によって潤滑用流体の圧力を検出し、この検出された圧力と規定圧力との差が所定の範囲外である場合は、工具回転制御手段により工具回転用駆動源の回転を停止させる。これにより、軸受の損傷を防げる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態にかかる遠隔操作型アクチュエータの概略構成を示す図である。
(A)は同遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのII-II線断面図、(C)は先端部材と回転軸との連結構造を示す図である。
(A)は同遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の断面図に制御系を組み合わせて表示した図、(B)はそのIII-III線断面図である。
(A)は切削加工時の工具と被加工物の斜視図、(B)はそのIV矢視図である。
同遠隔操作型アクチュエータに冷却手段を設けた場合の概略構成を示す図である。
(A)は切削力推定手段の異なる例を示す遠隔操作型アクチュエータの部分図、(B)はそのVI-VI線断面図である。
(A)は切削力推定手段のさらに異なる例を示す遠隔操作型アクチュエータの部分図、(B)はそのVII-VII線断面図である。
(A)は切削力推定手段のさらに異なる例を示す遠隔操作型アクチュエータの部分図、(B)はそのVIII-VIII線断面図である。
切削力推定手段のさらに異なる例を示す工具回転用駆動機構および姿勢変更用駆動機構の断面図である。
(A)は切削力推定手段のさらに異なる例を示す工具回転用駆動機構および姿勢変更用駆動機構の断面図、(B)はそのX-X線断面図である。
(A)はこの発明の第2実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXI-XI線断面図である。
(A)はこの発明の第3実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXII-XII線断面図である。
同遠隔操作型アクチュエータの工具回転用駆動機構および姿勢変更用駆動機構の正面図に制御系を組み合わせて表示した図である。
(A)はこの発明の第4実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXIV-XIV線断面図、(C)は先端部材のハウジングを基端側から見た図である。
(A)はこの発明の第5実施形態にかかる遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXV-XV線断面図である。
スピンドルガイド部の形状が異なる遠隔操作型アクチュエータの概略構成を示す図である。
この発明の第6実施形態にかかる遠隔操作型アクチュエータの概略構成を示す図である。
(A)は同遠隔操作型アクチュエータの先端部材およびスピンドルガイド部の断面図、(B)はそのXVIII-XVIII線断面図、(C)は先端部材と回転軸との連結構造を示す図、(D)は先端部材のハウジングを基端側から見た図である。
同遠隔操作型アクチュエータの主に駆動部ハウジング内の構造を示す断面図である。
図17のXX矢視図である。
同遠隔操作型アクチュエータの制御系のブロック図である。
(A),(B),(C)はそれぞれ先端部材およびスピンドルガイド部の異なる状態を示す説明図である。
初期姿勢制御のフローチャートである。
異常停止制御のフローチャートである。
この発明の第1実施形態を図1~図3(A),(B)と共に説明する。図1において、この遠隔操作型アクチュエータは、回転式の工具1を保持する先端部材2と、この先端部材2が先端に姿勢変更自在に取付けられた細長形状のスピンドルガイド部3と、このスピンドルガイド部3の基端が結合された駆動部ハウジング4aと、この駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを制御するコントローラ5と、加工時の切削力を推定する切削力推定手段6とを備える。駆動部ハウジング4aは、内蔵の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cと共に駆動部4を構成する。
図2(A)~(C)に示すように、先端部材2は、略円筒状のハウジング11の内部に、一対の軸受12によりスピンドル13が回転自在に支持されている。スピンドル13は、先端側が開口した筒状で、中空部に工具1のシャンク1aが嵌合状態に挿入され、回り止めピン14によりシャンク1aが回転不能に結合される。この先端部材2は、先端部材連結部15を介してスピンドルガイド部3の先端に取付けられる。先端部材連結部15は、先端部材2を姿勢変更自在に支持する手段であり、球面軸受からなる。具体的には、先端部材連結部15は、ハウジング11の基端の内径縮径部からなる被案内部11aと、スピンドルガイド部3の先端に固定された抜け止め部材21の鍔状部からなる案内部21aとで構成される。両者11a,21aの互いに接する各案内面F1,F2は、スピンドル13の中心線CL上に曲率中心Oが位置し、基端側ほど径が小さい球面とされている。これにより、スピンドルガイド部3に対して先端部材2が抜け止めされるとともに、姿勢変更自在に支持される。この例は、曲率中心Oを通るX軸回りに先端部材2が姿勢変更する構成であるため、案内面F1,F2が、曲率中心Oを通るX軸を軸心とする円筒面であってもよい。
スピンドルガイド部3は、駆動部ハウジング4a内の工具回転用駆動源41(図3(A),(B))の回転力を前記スピンドル13へ伝達する回転軸22を有する。この例では、回転軸22はワイヤとされ、ある程度の弾性変形が可能である。ワイヤの材質としては、例えば金属、樹脂、グラスファイバー等が用いられる。ワイヤは単線であっても、撚り線であってもよい。図2(C)に示すように、スピンドル13と回転軸22とは、自在継手等の継手23を介して回転伝達可能に接続されている。継手23は、スピンドル13の閉塞した基端に設けられた溝13aと、回転軸22の先端に設けられ前記溝13aに係合する突起22aとで構成される。上記溝13aと突起22aとの連結箇所の中心は、前記案内面F1,F2の曲率中心Oと同位置である。
スピンドルガイド部3は、このスピンドルガイド部3の外郭となる外郭パイプ25を有し、この外郭パイプ25の中心に前記回転軸22が位置する。回転軸22は、それぞれ軸方向に離れて配置された複数の転がり軸受26によって回転自在に支持されている。各転がり軸受26間には、これら転がり軸受26に予圧を発生させるためのばね要素27A,27Bが設けられている。ばね要素27A,27Bは、例えば圧縮コイルばねである。転がり軸受26の内輪に予圧を発生させる内輪用ばね要素27Aと、外輪に予圧を発生させる外輪用ばね要素27Bとがあり、これらが交互に配置されている。前記抜け止め部材21は、固定ピン28により外郭パイプ25のパイプエンド部25aに固定され、その先端内周部で転がり軸受29を介して回転軸22の先端部を回転自在に支持している。パイプエンド部25aは、外郭パイプ25と別部材とし、溶接等により結合してもよい。
外郭パイプ25の内径面と回転軸22の間には、両端に貫通する1本のガイドパイプ30が設けられ、このガイドパイプ30の内径孔であるガイド孔30a内に、ワイヤ31aとその両端の柱状ピン31bとでなる姿勢操作部材31が進退自在に挿通されている。先端部材2側の柱状ピン31bの先端は球面状で、先端部材2のハウジング11の基端面11bに当接している。先端部材2のハウジング11の基端面11bは、外径側ほどスピンドルガイド部3側に近い傾斜面とされている。駆動部ハウジング4a側の柱状ピン31bの先端も球面状で、後記レバー43b(図3(A),(B))の側面に当接している。柱状ピン31bを省いて、1本のワイヤ31aのみで姿勢操作部材31を構成してもよい。
上記姿勢操作部材31が位置する周方向位置に対し180度の位相の位置には、先端部材2のハウジング11の基端面とスピンドルガイド部3の外郭パイプ25の先端面との間に、例えば圧縮コイルばねからなる復元用弾性部材32が設けられている。この復元用弾性部材32は、先端部材2を所定姿勢側へ付勢する作用をする。
また、外郭パイプ25の内径面と回転軸22の間には、前記ガイドパイプ30とは別に、このガイドパイプ30と同一ピッチ円C上に、複数本の補強シャフト34が配置されている。これらの補強シャフト34は、スピンドルガイド部3の剛性を確保するためのものである。ガイドパイプ30と補強シャフト34の配列間隔は等間隔とされている。ガイドパイプ30および補強シャフト34は、外郭パイプ25の内径面におよび前記転がり軸受26の外径面に接している。これにより、転がり軸受26の外径面を支持している。
図3(A),(B)は、駆動部ハウジング4a内の工具回転用駆動機構4bおよび姿勢変更用駆動機構4cを示す。
工具回転用駆動機構4bは、コントローラ5により制御される工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aを前記回転軸22の基端に結合させてある。
工具回転用駆動機構4bは、コントローラ5により制御される工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aを前記回転軸22の基端に結合させてある。
工具回転用駆動源41の駆動電力および回転数は、駆動電力測定手段60および回転数測定手段61でそれぞれ測定される。駆動電力測定手段60は、工具回転用駆動源41の電源系(図示せず)に設けられた電力計等からなる。回転数測定手段61は、ロータリエンコーダやタコジェネレータ等からなる。これら駆動電力測定手段60および回転数測定手段61の出力信号は、切削力推定手段6に送信される。切削力推定手段6は、上記駆動電力測定手段60および回転数測定手段61の出力信号から、工具1の切削力を推定する。この切削力推定手段6は、マイクロコンピュータ等のコンピュータや電子回路等により構成されて、各入力信号と出力信号となる推定値との関係を演算式またはテーブル等により定めた関係設定手段(図示せず)を有し、入力信号を上記関係設定手段に照らして推定値を推定する。なお、この明細書で以下に述べる各種の切削力推定手段6も、上記と同様に関係設定手段を用いて推定を行うコンピュータや電子回路等により構成される。
この実施形態の場合、切削力推定手段6により、工具1が被加工物Wに与える切削力Fにおける工具1の接線方向の力である主分力Fc[N]の大きさが推定される(図4(A),(B)参照)。駆動電力をP[W]、工具1の回転数をN[rpm]、工具1に作用するトルクをT[Nm]とした場合、P=(2πNT)/60の関係式であらわされる。工具1の半径をr[m]とすると、T=rFcであるため、Fc=(60P)/(2πNr)となり、これより主分力Fcの大きさを推定できる。主分力Fc、背分力Fr、および送り分力Pfの各大きさの比率が決まっている場合には、主分力Fcの大きさが求められれば、他の分力Fr,Pfの大きさも推定できる。各分力の大きさの比率が変動する場合は、他の分力Fr,Pfの大きさを推定する切削力推定手段を併用するのが良い。切削力推定手段6は、図1のようにコントローラ5の外部に設けても、あるいは内部に設けてもよい。
姿勢変更用駆動機構4cは、コントローラ5により制御される姿勢変更用駆動源42を備える。姿勢変更用駆動源42は、例えば電動リニアアクチュエータであり、図3(A)の左右方向に移動する出力ロッド42aの動きが、力伝達機構であるレバー機構43を介して前記姿勢操作部材31に伝達される。姿勢変更用駆動源42は、回転モータであってもよい。
レバー機構43は、支軸43a回りに回動自在なレバー43bを有し、このレバー43bにおける支軸43aからの距離が長い作用点P1に出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2で姿勢操作部材31に力を与える構成であり、姿勢変更用駆動源42の出力が増力して姿勢操作部材31に伝達される。レバー機構43を設けると、小さな出力のリニアアクチュエータでも姿勢操作部材31に大きな力を与えることができるので、リニアアクチュエータの小型化が可能になる。回転軸22は、レバー43bに形成された開口44を貫通させてある。なお、姿勢変更用駆動源42等を設ける代わりに、手動により先端部材2の姿勢を遠隔操作してもよい。
姿勢変更用駆動機構4cには、姿勢変更用駆動源42の動作量を検出する動作量検出器45が設けられている。この動作量検出器45の検出値は、姿勢検出手段46に出力される。姿勢検出手段46は、動作量検出器45の出力により、先端部材2のX軸(図2(A)~(C))回りの傾動姿勢を検出する。姿勢検出手段46は、上記傾動姿勢と動作量検出器45の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて傾動姿勢を検出する。この姿勢検出手段46は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。
また、姿勢変更用駆動機構4cには、電動アクチュエータである姿勢変更用駆動源42に供給される電力量を検出する供給電力計47が設けられている。この供給電力計47の検出値は、荷重検出手段48に出力される。荷重検出手段48は、供給電力計47の出力により、先端部材2に作用する荷重を検出する。荷重検出手段48は、上記荷重と供給電力計47の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて荷重を検出する。この荷重検出手段48は、コントローラ5に設けられたものであっても、あるいは外部の制御装置に設けられたものであってもよい。
コントローラ5は、前記姿勢検出手段46および荷重検出手段48の検出値に基づき姿勢変更用駆動源42を制御するとともに、前記切削力推定手段6の出力に基づき工具回転用駆動源41を制御する。
この遠隔操作型アクチュエータの動作を説明する。
工具回転用駆動源41を駆動すると、その回転力が回転軸22を介してスピンドル13に伝達されて、スピンドル13と共に工具1が回転する。工具1を回転させて骨等を切削加工する際に先端部材2に作用する荷重は、供給電力計47の検出値から、荷重検出手段48によって検出される。このように検出される荷重の値に応じて遠隔操作型アクチュエータ全体の送り量や後記先端部材2の姿勢変更を制御することにより、先端部材2に作用する荷重を適正に保った状態で骨の切削加工を行える。
工具回転用駆動源41を駆動すると、その回転力が回転軸22を介してスピンドル13に伝達されて、スピンドル13と共に工具1が回転する。工具1を回転させて骨等を切削加工する際に先端部材2に作用する荷重は、供給電力計47の検出値から、荷重検出手段48によって検出される。このように検出される荷重の値に応じて遠隔操作型アクチュエータ全体の送り量や後記先端部材2の姿勢変更を制御することにより、先端部材2に作用する荷重を適正に保った状態で骨の切削加工を行える。
使用時には、姿勢変更用駆動源42を駆動させて、遠隔操作で先端部材2の姿勢変更を行う。例えば、姿勢変更用駆動源42により姿勢操作部材31を先端側へ進出させると、姿勢操作部材31によって先端部材2のハウジング11が押されて、先端部材2は図2(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、姿勢変更用駆動源42により姿勢操作部材31を後退させると、復元用弾性部材32の弾性反発力によって先端部材2のハウジング11が押し戻され、先端部材2は図2(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、姿勢操作部材31の圧力、復元用弾性部材32の弾性反発力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。先端部材2の姿勢は、動作量検出器45の検出値から、姿勢検出手段46によって検出される。そのため、遠隔操作で先端部材2の姿勢を適正に制御できる。
先端部材2のハウジング11の基端面11bが外径側ほどスピンドルガイド部3側に近い傾斜面とされているため、姿勢操作部材31がハウジング11の基端面11bを押したときに、姿勢操作部材31に対してハウジング11の基端面11bが滑りやすく、ハウジング11の円滑な姿勢変更ができる。ハウジング11の基端面11bは、傾斜面でなく、姿勢操作部材31の進退方向と垂直な面であってもよい。
姿勢操作部材31はガイド孔30aに挿通されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、姿勢操作部材31は主にワイヤ31aからなり可撓性であるため、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われる。さらに、スピンドル13と回転軸22との連結箇所の中心が案内面F1,F2の曲率中心Oと同位置であるため、先端部材2の姿勢変更によって回転軸22に対して押し引きする力がかからず、先端部材2が円滑に姿勢変更できる。
また、切削加工時、切削力推定手段6により、切削力Fにおける主分力Fcの大きさを推定する。この推定された主分力Fcの大きさに応じて、工具1の回転数、送り速度等の加工条件を最適に設定することにより、被加工物W(図4(A),(B))の状態に合ったきめ細かい加工を実現できる。例えば、骨の切削加工では、被切削面の温度が50℃以上になると骨組織が壊れると言われている。そこで、医療用として骨の加工に用いる場合、切削力推定手段6により切削力を監視しながら加工条件を変更することで、被切削面の温度が高くなるのを抑えることができる。
この遠隔操作型アクチュエータは、例えば人工関節置換手術において骨の髄腔部を削るのに使用されるものであり、施術時には、先端部材2の全部または一部が患者の体内に挿入して使用される。このため、上記のように先端部材2の姿勢を遠隔操作で変更できれば、常に工具1を適正な姿勢に保持した状態で骨の加工をすることができ、人工関節挿入用孔を精度良く仕上げることができる。
細長形状であるスピンドルガイド部3には、回転軸22および姿勢操作部材31を保護状態で設ける必要があるが、図2(B)に示すように、外郭パイプ25の中心部に回転軸22を設け、外郭パイプ25と回転軸22との間に、姿勢操作部材31を収容したガイドパイプ30と補強シャフト34とを円周方向に並べて配置した構成としたことにより、回転軸22および姿勢操作部材31を保護し、かつ内部を中空して軽量化を図りつつ剛性を確保できる。また、全体のバランスも良い。
回転軸22を支持する転がり軸受26の外径面を、ガイドパイプ30と補強シャフト34とで支持させたため、余分な部材を用いずに転がり軸受26の外径面を支持できる。また、ばね要素27A,27Bにより転がり軸受26に予圧がかけられているため、ワイヤからなる回転軸22を高速回転させることができる。そのため、スピンドル13を高速回転させて加工することができ、加工の仕上がりが良く、工具1に作用する切削抵抗を低減させられる。ばね要素27A,27Bは隣合う転がり軸受26間に設けられているので、スピンドルガイド部3の径を大きくせずにばね要素27A,27Bを設けることができる。
この遠隔操作型アクチュエータは、スピンドルガイド部3が中空状であることを利用して、工具1等を冷却する冷却手段50を図5のように設けることができる。すなわち、冷却手段50は、遠隔操作型アクチュエータの外部に設けた冷却液供給装置51と、この冷却液供給装置51からスピンドルガイド部3の基端に続き、スピンドルガイド部3および先端部材2の内部を通って工具1に冷却液を導く冷却液供給管52とでなる。冷却液供給管52におけるスピンドルガイド部3を通る部分52aは外郭パイプ25自体が冷却液供給管52であり、外郭パイプ25の内部を冷却液が通過するようにしてある。工具1まで導かれた冷却液は、工具1の外周へ吐出される。スピンドルガイド部3と駆動部ハウジング4aとの間には、駆動部ハウジング4a内への冷却液の浸入を防止するシール手段(図示せず)を設けるのが良い。
このような冷却手段50を設ければ、冷却液により、工具1、被加工物W、スピンドル13、回転軸22、転がり軸受26,29等の発熱箇所を冷却することができる。外郭パイプ25内に冷却液を通過させるため、冷却液供給用の管を別に設ける必要がなく、スピンドルガイド部3を簡素化および小径化できる。また、前記冷却液を転がり軸受26,29の潤滑に兼用させてもよい。そうすれば、軸受に一般的に使用されているグリス等を使用しなくてもよく、しかも別に潤滑装置を設けなくて済む。なお、工具1まで導かれた冷却液を工具1の外周へ吐出させずに、冷却液供給装置51へ戻す循環型の構成としてもよい。ただし、外郭パイプ25内に通過させる冷却液の流量が少ない場合は、さらにスピンドルガイド部3の外部から冷却液を供給し、工具1や被加工物Wを冷却してもよい。
上記冷却液は、水または生理食塩水であるのが望ましい。冷却液が水もしくは生理食塩水であれば、先端部材2を生体内に挿入して加工を行う場合に冷却液が生体に悪影響を与えないからである。冷却液を水もしくは生理食塩水とする場合、冷却液と接する部品の材質は、耐腐食性に優れたステンレスであるのが望ましい。この遠隔操作型アクチュエータを構成する他の各部品も、ステンレス製であってもよい。
図6(A),(B)は切削力推定手段6の異なる例を示す。この例は、図6(B)に示すように、スピンドルガイド部3の撓み量を測定する撓み量測定手段63が設けられており、切削力推定手段6は、前記撓み量測定手段63で測定された撓み量から、切削力における主に背分力Fr(図4(A),(B))の大きさを推定する。工具1から被加工物に背分力Frが作用すると、スピンドルガイド部3が撓むため、撓み量測定手段63でスピンドルガイド部3の撓み量を測定することにより、背分力Frの大きさを推定することができるのである。
図6(A),(B)の場合、撓み量測定手段63は歪みセンサであり、スピンドルガイド部3の外郭パイプ25の根元部外周面に周方向等配で4箇所に貼られている。外郭パイプ25の歪みは根元部で最も大きくなるため、歪みセンサを外郭パイプ25の根元部に貼り付けるのが良い。撓み量測定手段63として歪みセンサを使用した場合、工具1から被加工物Wに背分力Frが作用すると、スピンドルガイド部3の周面にある歪みセンサの検出信号が、撓み方向に応じて圧縮方向や引張方向に変動するため、背分力Frの大きさが推定できる。また、工具1から被加工物Wに送り分力Pf(図4(A),(B))が作用すると、外郭パイプ25の周面のどの周方向位置にある歪みセンサも検出信号が圧縮方向に変動するため、送り分力Pfの大きさも推定できる。
主分力Fc、背分力Fr、および送り分力Pfの各大きさの比率が決まっている場合には、背分力Frの大きさが求められれば、他の分力Fc,Pfの大きさも推定できる。各分力の大きさの比率が変動する場合は、他の分力Fc,Pfの大きさを推定する切削力推定手段6を併用するのが良い。
図7(A),(B)に示すように、撓み量測定手段63が、スピンドルガイド部3の任意箇所の変位を測定する変位センサであってもよい。その場合も、上記同様、切削力推定手段6により背分力Frの大きさを推定することができる。図7(A),(B)の例は、図7(A)のようにスピンドルガイド部3の根元部の外周に円筒状のセンサハウジング64を設け、図7(B)のようにこのセンサハウジング64の内周に周方向等配で4箇所に、光学式の変位センサからなる撓み量測定手段63を設けている。撓み量測定手段63により、スピンドルガイド部3の外郭パイプ25の変位を測定する。
また、図8(A),(B)に示すように、撓み量測定手段63が、被検出部としてのエンコーダ63aとホールセンサ63bとでなる磁気式の変位センサであってもよい。図8の例は、スピンドルガイド部3の外郭パイプ25の根元部に円環状のエンコーダ63aを嵌合させ、前記同様のセンサハウジング64の内周に周方向等配で4箇所にホールセンサ63bを設けている。ホールセンサ63bの個数は限定しない。撓み量測定手段63により、スピンドルガイド部3の外郭パイプ25の変位を測定する。
撓み量測定手段63は、渦電流式の変位センサとしてもよい。
撓み量測定手段63は、渦電流式の変位センサとしてもよい。
図9は切削力推定手段6のさらに異なる例を示す。この例は、姿勢変更用駆動源42の駆動力を測定する駆動力測定手段65が設けられており、切削力推定手段6は、前記駆動力測定手段65で測定された駆動力から、切削力における主に背分力Frの大きさを推定する。駆動力測定手段65として、姿勢変更用駆動源42に供給される電力量を検出する供給電力計47(図3(A),(B))を利用してもよい。
工具1から被加工物に背分力Frが作用すると、姿勢操作部材31を介して姿勢変更用駆動源42に力が伝達され、姿勢変更用駆動源42の駆動力が増減するため、駆動力測定手段42で駆動力を測定することにより、背分力Frの大きさを推定することができる。
図10(A),(B)は切削力推定手段6のさらに異なる例を示す。この例は、姿勢変更用駆動源42の駆動力を姿勢操作部材31へ伝達するレバー機構43の歪みを検出する歪み検出手段66が設けられており、切削力推定手段6は、前記歪み検出手段66の検出値から、切削力における主に背分力Frの大きさを推定する。図例の歪み検出手段66は、レバー機構43のレバー43bの中間部に肉厚の薄い起歪部43ba(図10(A))を設け、この起歪部43baの両側に起歪部43baに発生する歪みを検出する歪みセンサ66U,66L,66Rを貼り付けてある(図13)。
工具から被加工物に背分力Frが作用すると、その力が姿勢操作部材31を介してレバー機構43に伝わり、レバー機構43のレバー43bに歪みが生じるため、歪み検出手段66で歪みを検出することにより、背分力Frの大きさを推定することができる。
図11(A),(B)は第2実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに180度の位相にある周方向位置に2本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に前記同様の姿勢操作部材31が進退自在に挿通してある。2本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は、曲率中心が点Oである球面、または点Oを通るX軸を軸心とする円筒面である。
駆動部4(図示せず)には、2つの姿勢操作部材31をそれぞれ個別に進退操作させる2つの姿勢変更用駆動源42(図示せず)が設けられており、これら2つの姿勢変更用駆動源42を互いに逆向きに駆動することで先端部材2の姿勢変更を行う。
例えば、図11(A),(B)における上側の姿勢操作部材31を先端側へ進出させ、かつ下側の姿勢操作部材31を後退させると、上側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図11(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、両姿勢操作部材31を逆に進退させると、下側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図11(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、上下2つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。
この構成では、2つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、1つ姿勢操作部材31だけで加圧される前記第1実施形態に比べ、先端部材2の姿勢安定性を高めることができる。
例えば、図11(A),(B)における上側の姿勢操作部材31を先端側へ進出させ、かつ下側の姿勢操作部材31を後退させると、上側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図11(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。逆に、両姿勢操作部材31を逆に進退させると、下側の姿勢操作部材31によって先端部材2のハウジング11が押されることにより、先端部材2は図11(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。その際、先端部材連結部15には、上下2つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。
この構成では、2つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、1つ姿勢操作部材31だけで加圧される前記第1実施形態に比べ、先端部材2の姿勢安定性を高めることができる。
図12(A),(B)は第3実施形態を示す。この遠隔操作型アクチュエータは、外郭パイプ25内の互いに120度の位相にある周方向位置に3本のガイドパイプ30を設け、そのガイドパイプ30の内径孔であるガイド孔30a内に前記同様の姿勢操作部材31が進退自在に挿通してある。3本のガイドパイプ30間には、ガイドパイプ30と同一ピッチ円C上に複数本の補強シャフト34が配置されている。復元用弾性部材32は設けられていない。案内面F1,F2は曲率中心が点Oである球面であり、先端部材2は任意方向に傾動可能である。
駆動部4には、3つの姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)(図13)が設けられており、これら3つの姿勢変更用駆動源42を互いに連係させて駆動することで先端部材2の姿勢変更を行う。
例えば、図12(B)における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図12(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。このとき、各姿勢操作部材31の進退量が適正になるよう、各姿勢変更用駆動源42が制御される。各姿勢操作部材31を逆に進退させると、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図12(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
また、上側の姿勢操作部材31Uは静止させた状態で、左側の姿勢操作部材31Lを先端側へ進出させ、かつ右側の姿勢操作部材31Rを後退させると、左側の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向き、すなわち図12(A)において紙面の裏側向きとなる側へ案内面F1,F2に沿って姿勢変更する。左右の姿勢操作部材31L,31Rを逆に進退させると、右の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向きとなる側へ案内面F1,F2に沿って姿勢変更する。
このように姿勢操作部材31を円周方向の3箇所に設けることにより、先端部材2を上下左右の2軸(X軸、Y軸)の方向に姿勢変更することができる。その際、先端部材連結部15には、3つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、3つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、さらに先端部材2の姿勢安定性を高めることができる。姿勢操作部材31の数をさらに増やせば、先端部材2の姿勢安定性をより一層高めることができる。
例えば、図12(B)における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図12(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。このとき、各姿勢操作部材31の進退量が適正になるよう、各姿勢変更用駆動源42が制御される。各姿勢操作部材31を逆に進退させると、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図12(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
また、上側の姿勢操作部材31Uは静止させた状態で、左側の姿勢操作部材31Lを先端側へ進出させ、かつ右側の姿勢操作部材31Rを後退させると、左側の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向き、すなわち図12(A)において紙面の裏側向きとなる側へ案内面F1,F2に沿って姿勢変更する。左右の姿勢操作部材31L,31Rを逆に進退させると、右の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向きとなる側へ案内面F1,F2に沿って姿勢変更する。
このように姿勢操作部材31を円周方向の3箇所に設けることにより、先端部材2を上下左右の2軸(X軸、Y軸)の方向に姿勢変更することができる。その際、先端部材連結部15には、3つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。この構成では、3つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、さらに先端部材2の姿勢安定性を高めることができる。姿勢操作部材31の数をさらに増やせば、先端部材2の姿勢安定性をより一層高めることができる。
姿勢操作部材31が周方向の3箇所に設けられている場合、姿勢変更駆動機構4cを例えば図13のように構成することができる。すなわち、各姿勢操作部材31(31U,31L,31R)をそれぞれ個別に進退操作させる3つの姿勢変更用駆動源42(42U,42L,42R)を左右並列に配置すると共に、各姿勢変更用駆動源42に対応するレバー43b(43bU,43bL,43bR)を共通の支軸43a回りに回動自在に設け、各レバー43bにおける支軸43aからの距離が長い作用点P1(P1U,P1L,P1R)に各姿勢変更用駆動源42の出力ロッド42a(42aU,42aL,42aR)の力が作用し、支軸43aからの距離が短い力点P2(P2U,P2L,P2R)で姿勢操作部材31に力を与える構成としてある。これにより、各姿勢変更用駆動源42の出力が増力して対応する姿勢操作部材31に伝達させることができる。なお、回転軸22は、上側の姿勢操作部材31U用のレバー43bUに形成された開口44を貫通させてある。
また、レバー機構43の歪みを検出する歪み検出手段66を設ける場合、各レバー43(43bU,43bL,43bR)に、それぞれのレバー43bに発生する歪みを検出する歪み検出手段66としての歪みセンサ66U,66L,66Rを貼り付ける。切削力推定手段6は、各歪みセンサの検出値から、切削力における主に背分力Frの大きさを推定する。
図14(A)~(C)は第4実施形態を示す。この実施形態は、先端部材2のハウジング11の基端面に径方向の溝部11c(同図(C))を形成し、この溝部11cの底面に、姿勢操作部材31の球面状をした先端を当接させている。溝部11cおよび姿勢操作部材31で回転防止機構37を構成し、溝部11cに挿入された姿勢操作部材31の先端部が溝部11cの側面に当たることで、先端部材2がスピンドルガイド部3に対して先端部材2の中心線CL回りに回転するのを防止している。
このような回転防止機構37を設けることにより、姿勢操作部材31の進退を制御する姿勢操作用駆動機構4cやその制御装置の故障等により工具1を保持する先端部材2が制御不能となった場合でも、先端部材2が中心線CL回りに回転して加工箇所の周りを傷付けたり、先端部材2自体が破損したりすることを防止できる。
この実施形態は、姿勢操作部材31を周方向の1箇所に設けた例であるが、姿勢操作部材31を互いに180度の位相にある2箇所の周方向位置に設けた構成や、姿勢操作部材31を互いに120度の位相にある3箇所の周方向位置に設けた構成にも適用できる。
図15(A),(B)は第5実施形態を示す。この遠隔操作型アクチュエータのスピンドルガイド部3は、外郭パイプ25の中空孔24が、中心部の円形孔部24aと、この円形孔部24aの外周における互いに120度の位相をなす周方向位置から外径側へ凹んだ3つの溝状部24bとでなる。溝状部24bの先端の周壁は、断面半円形である。そして、円形孔部24aに回転軸22と転がり軸受26とが収容され、各溝状部24bに姿勢操作部材31が収容されている。
外郭パイプ25を上記断面形状としたことにより、外郭パイプ25の溝状部24b以外の箇所の肉厚tが厚くなり、外郭パイプ25の断面2次モーメントが大きくなる。すなわち、スピンドルガイド部3の剛性が高まる。それにより、先端部材2の位置決め精度が向上させられるとともに、切削性を向上させられる。また、溝状部24bにガイドパイプ30をそれぞれ配置したことにより、ガイドパイプ30の円周方向の位置決めを容易に行え、組立性が良好である。
この実施形態は、姿勢操作部材31を互いに120度の位相にある3箇所の周方向位置に設けた例であるが、姿勢操作部材31を互いに180度の位相にある2箇所の周方向位置に設けた構成や、周方向の1箇所に設けた姿勢操作部材31とこれに対応する復元用弾性部材32とを組み合わせた構成にも適用できる。例えば、姿勢操作部材31を周方向の1箇所に設けた構成において、図15(A),(B)の外郭パイプ25と同様に中空孔24の溝状部24bを周方向の3箇所に設け、1つの溝状部24bには姿勢操作部材31を収容し、他の溝状部24bには補強シャフト34(図2(A)~(C)等を参照)を収容してもよい。
上記各実施形態はスピンドルガイド部3が直線形状であるが、この発明の遠隔操作型アクチュエータは、姿勢操作部材31が可撓性であり、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われるので、図16のようにスピンドルガイド部3を初期状態で湾曲形状としてもよい。あるいは、スピンドルガイド部3の一部分のみを湾曲形状としてもよい。スピンドルガイド部3が湾曲形状であれば、直線形状では届きにくい骨の奥まで先端部材2を挿入することが可能となる場合があり、人工関節置換手術における人工関節挿入用孔の加工を精度良く仕上げることが可能になる。
スピンドルガイド部3を湾曲形状とする場合、外郭パイプ25、ガイドパイプ30、および補強シャフト34を湾曲形状とする必要がある。また、回転軸22は変形しやすい材質を用いるのが良く、例えば形状記憶合金が適する。姿勢操作部材31は、ワイヤ31aからなるものの他に、複数のボールからなるものとしてもよく、あるいはガイドパイプ30の湾曲形状に合わせて湾曲させた複数の柱状体からなるものとしてもよい。後者の場合、湾曲させた柱状体は、長さが短めであり、面取り等により角部が落とされた形状であるのが好ましい。
この発明の第6実施形態を図17~図24と共に説明する。以下に示す図面において、前記実施形態と同一または相当する部分には同一の符号を付して詳しい説明は省略する。図17はこの発明の第6実施形態にかかる遠隔操作型アクチュエータの概略構成を示す。この実施形態では、第1実施形態の遠隔操作型アクチュエータで要件とした切削力推定手段6に加えて、後で詳しく説明する異常検出手段16,55,56,57,66および82を備えている。この実施形態の切削力推定手段6は、第1実施形態の図10(A),(B)に示したようなレバー機構43のればー43bに生じる歪みを歪み検出手段(歪みセンサ)66で検出することにより、切削力における背分力Frの大きさを推定するものである(図19)。図17において、この遠隔操作型アクチュエータは、アクチュエータ本体8と、このアクチュエータ本体8と電気ケーブル9で結ばれたコントローラである制御ボックス7と、アクチュエータ本体8に潤滑用流体を供給する潤滑用流体供給装置51Aとでなる。アクチュエータ本体8は既述の第1実施形態で説明したものと基本的に同様の構成である。
図18(A)~(D)は第3実施形態を示す図12(A),(B)に対応するものであって、同一または相当する部分には同一の符号を付して詳しい説明は省略するが、この図18(A)~(D)では、先端部材2のハウジング11には、このハウジング11の温度を検出する異常検出手段である温度検出手段としての温度センサ16が設けられている。また、この第3実施形態の姿勢操作部材31を構成するワイヤ31aと柱状ピン31bのうち、前記ワイヤ31aに代えて、ボール31cを用いている。
この第6実施形態においても、前記第4実施形態(図14(A)~(C))の場合と同様の構成からなる回転防止機構37を採用し、これにより、必要時における先端部材2の回転防止を図っている。
図19に示すように、工具回転用駆動機構4bは、工具回転用駆動源41を備える。工具回転用駆動源41は、例えば電動モータであり、その出力軸41aが前記回転軸22の基端に結合させてある。回転軸22は、後記レバー43bに形成された開口44を貫通している。工具回転用駆動源41の回転数は、回転センサ55により検出される。この回転センサ55は、スピンドル13の回転数を検出する回転検出手段である。また、工具回転用駆動源41には、この工具回転用駆動源41の振動の大きさを検出する振動センサ56が取付けられている。この振動センサ56は、スピンドル13の振動の大きさを検出する振動検出手段である。
姿勢変更用駆動機構4cは、各姿勢操作部材31(31U,31L,31R)にそれぞれ対応する3個の姿勢変更用駆動源42(42U,42L,42R)を備える。姿勢変更用駆動源42は、例えば電動リニアアクチュエータであり、図19の左右方向に移動する出力ロッド42aの動きが、姿勢変更用駆動源41と姿勢操作部材31との間に設けたレバー機構43を介して前記姿勢操作部材31に伝達される。出力ロッド42aの進退位置、すなわち姿勢変更用駆動源42の動作位置が、エンコーダ57(57U,57L,57R)により検出される。これらエンコーダ57は、先端部材2の姿勢が固定状態にあるか否かを検出する固定検出手段である。
前記レバー機構43は、支軸43a回りに回動自在なレバー43bを有し、このレバー43bにおける支軸43aからの距離が長い作用点P1に出力ロッド42aの力が作用し、支軸43aからの距離が短い力点P2で姿勢操作部材31に力を与える構成であり、姿勢変更用駆動源42の出力が増力して姿勢操作部材31に伝達される。第1実施形態の図13と同様に、レバー43bの中間部には肉厚の薄い起歪部43baが設けられ、この起歪部43baの両側に起歪部43baに発生する歪みを検出する歪みセンサ66(66U,66L,66R)が取付けられている。これら歪みセンサ66は、切削力推定手段6に用いられる他、先端部材2の姿勢が固定状態にあるか否かを検出する固定検出手段であり、かつ先端部材2に作用する力の大きさを検出する作用力検出手段として用いられる。
図17および図20に示すように、駆動部ハウジング4aの左右両側面には、左右一対の把手80L,80Rが取付けられている。そして、左側の把手80Lの先端には、スピンドル13を回転および回転停止させる回転オン・オフ操作具84が設けられている。回転オン・オフ操作具84は、例えば押しボタン式スイッチである。また、右側の把手80Rの先端には、先端部材2の姿勢を変更させる姿勢変更操作具83が設けられている。姿勢変更操作具83は、例えば、十字に配された4つの操作部83a,83b,83c,83dを有する十字スイッチであり、各操作部83a,83b,83c,83dがそれぞれ、先端部材2を下向きに傾動させる下傾動操作部83a、上向きに傾動させる上傾動操作部83b、左向きに傾動させる左傾動操作部83c、および右向きに傾動させる右傾動操作部83dになっている。図20に二点鎖線で示すように、両手で把手80L,80Rをつかんでアクチュエータ本体5を保持する。この状態において、左手で回転オン・オフ操作具84を操作し、右手で姿勢変更操作具83を操作することができる。
制御ボックス7には、各種制御を行うコンピュータ70(図21)が内蔵されている。各種制御については後で説明する。制御ボックス7の外正面には、図17に示すように、液晶表示式等の表示機85、表示ランプ86、および初期姿勢操作具87が設けられている。初期姿勢操作具87は、例えば押しボタン式スイッチである。
潤滑用流体供給装置51Aは、第1実施形態の図5の冷却液供給装置51と同様に、潤滑用流体の供給管である配管52Aを介して、スピンドルガイド部3の基端付近に接続されている。潤滑用流体供給装置51Aから供給される潤滑用流体は、スピンドルガイド部3および先端部材2の内部を通り、先端部材2の先端から工具1に向けて吐出される。この間、スピンドルガイド部3の転がり軸受26および先端部材2の転がり軸受29を潤滑する。また、工具1に向けて吐出された潤滑用流体により、工具1および被切削箇所を冷却する。配管52Aの途中には、この配管52A内を通る潤滑用流体の圧力を検出する異常検出手段である圧力センサ82が設けられている。この圧力センサ82は、スピンドルガイド部3内に供給される潤滑用流体の圧力を検出する潤滑用流体圧力検出手段である。
図21に示すように、制御ボックス7のコンピュータ70は、工具回転用駆動源41を制御する工具回転制御手段71、および姿勢変更用駆動源42(42U,42L,42R)を制御する姿勢変更制御手段72を備える。
姿勢変更制御手段72は、姿勢変更制御部72aと初期姿勢制御部72bとでなる。
姿勢変更制御部72aは、姿勢変更操作具83の入力操作による動作指令信号に応じてモータドライバ74に出力し、姿勢変更用駆動源42(42U,42L,42R)を駆動する。例えば、姿勢変更用駆動源42の駆動量は、姿勢変更操作具83の操作時間に比例する。操作部83a,83b,83c,83dのうちどれが操作されたかで、姿勢変更用駆動源42U,42L,42R毎に出力方向と出力の大きさとを変えることにより、先端部材2の姿勢を変更する。
姿勢変更制御部72aは、姿勢変更操作具83の入力操作による動作指令信号に応じてモータドライバ74に出力し、姿勢変更用駆動源42(42U,42L,42R)を駆動する。例えば、姿勢変更用駆動源42の駆動量は、姿勢変更操作具83の操作時間に比例する。操作部83a,83b,83c,83dのうちどれが操作されたかで、姿勢変更用駆動源42U,42L,42R毎に出力方向と出力の大きさとを変えることにより、先端部材2の姿勢を変更する。
例えば、操作部83aを入力操作した場合、各姿勢変更用駆動源42U,42L,42Rに出力して、図18(A)~(D)における上側の1つの姿勢操作部材31Uを先端側へ進出させ、かつ他の2つの姿勢操作部材31L,31Rを後退させる。すると、上側の姿勢操作部材31Uによって先端部材2のハウジング11が押されることにより、先端部材2は図18(A)において先端側が下向きとなる側へ案内面F1,F2に沿って姿勢変更する。操作部83bを入力操作した場合、各姿勢操作部材31が上記と逆に進退し、左右の姿勢操作部材31L,31Rによって先端部材2のハウジング11が押されることにより、先端部材2は図18(A)において先端側が上向きとなる側へ案内面F1,F2に沿って姿勢変更する。
また、操作部83cを入力操作した場合、左右の各姿勢変更用駆動源42L,42Rに出力して、右側の姿勢操作部材31Rを先端側へ進出させ、かつ左側の姿勢操作部材31Lを後退させる。すると、右側の姿勢操作部材31Rによって先端部材2のハウジング11が押されることにより、先端部材2は左向き、すなわち図18(A)において紙面の表側向きとなる側へ案内面F1,F2に沿って姿勢変更する。操作部83dを入力操作した場合、姿勢操作部材31L,31Rが上記と逆に進退し、左の姿勢操作部材31Lによって先端部材2のハウジング11が押されることにより、先端部材2は右向きとなる側へ案内面F1,F2に沿って姿勢変更する。
姿勢操作部材31が円周方向の3箇所に設けられているため、上記のように、先端部材2を上下左右の2軸方向に姿勢変更することができる。先端部材連結部15には、3つの姿勢操作部材31の圧力、および抜け止め部材21からの反力が作用しており、これらの作用力の釣り合いにより先端部材2の姿勢が決定される。3つの姿勢操作部材31で先端部材2のハウジング11に加圧されるため、先端部材2の姿勢安定性が高い。
初期姿勢制御部72bは、前記初期姿勢操作具87から出される動作指令信号により、先端部材2を所定の初期姿勢にさせる制御を行う。例えば、遠隔操作型アクチュエータに電源を投入した直後や、工具1交換後の初動操作時には、図22(A)に示すように、先端部材2のハウジング11の基端面と、姿勢操作部材31の柱状ピン31bとの間に隙間Sが生じている可能性があるため、一度先端部材2を初期姿勢に戻して、前記隙間Sを無くす必要があるのである。初期姿勢は、例えば図22(B)に示すように、先端部材2の中心線CL1とスピンドルガイド部3の中心線CL2とが一致する姿勢である。この初期姿勢における各姿勢変更用駆動源42の動作位置は、記憶手段76に記憶させてある。なお、図22(A),(B),(C)は、図18(B)のXXIII-CL2-XXIII断面に相当する断面を簡略化して表してある。
初期姿勢制御は、具体的には図23のフローチャートに示す順序で行う。初期姿勢操作具87が操作されて初期姿勢位置への動作指令を受けると(S1)、各姿勢変更用駆動源42を後退させる(S2)。各姿勢変更用駆動源42の動作位置は、前記エンコーダ57で検出する。全姿勢変更用駆動源42が進退範囲の最後端まで後退すると(S3)、今度は各姿勢変更用駆動源42を前進させる(S4)。各姿勢変更用駆動源42の初期位置への移動が完了したなら(S5)、各姿勢変更用駆動源42の前進を停止させて、初期姿勢位置移動を完了する(S6)。各姿勢変更用駆動源42が初期姿勢位置へ移動したことは、エンコーダ57の出力が示す実際の各姿勢変更用駆動源42の動作位置が、記憶手段76に記憶されている初期姿勢における各姿勢変更用駆動源42の動作位置と一致したことで確認する。この初期姿勢制御の進行具合は、前記表示ランプ86に段階的に表示される。
工具回転制御手段71は、工具回転制御部71aと異常停止制御部71bとでなる。
工具回転制御部71aは、前記回転オン・オフ操作具84からの回転指令信号に応じてモータドライバ73に出力し、工具回転用駆動源41をオン・オフする。これにより、スピンドル13が回転および回転停止させられる。例えば、回転オン・オフ操作具84を1回押すとスピンドル13が回転し、再度押すとスピンドル13の回転が停止する。
工具回転制御部71aは、前記回転オン・オフ操作具84からの回転指令信号に応じてモータドライバ73に出力し、工具回転用駆動源41をオン・オフする。これにより、スピンドル13が回転および回転停止させられる。例えば、回転オン・オフ操作具84を1回押すとスピンドル13が回転し、再度押すとスピンドル13の回転が停止する。
異常停止制御部71bは、下記の異常検出手段によりスピンドル回転時または非回転時の異常が検出された場合に工具回転用駆動源41の回転を停止させる制御を行う。異常検出手段は、固定検出手段および作用力検出手段である歪みセンサ66(66U,66L,66R)、固定検出手段であるエンコーダ57(57U,57L,57R)、回転検出手段である回転センサ55、振動検出手段である振動センサ56、温度検出手段である温度センサ16、および潤滑用流体圧力検出手段である圧力センサ82である。異常停止制御には、以下の各制御がある。
第1の異常停止制御は、歪みセンサ66(66U,66L,66R)およびエンコーダ57(57U,57L,57R)の出力から先端部材2の姿勢が固定状態にあるか否かを検出して、固定状態でない場合に、工具回転用駆動源41の回転を停止させる制御である。実際に先端部材2の姿勢を測定しなくても、歪みセンサ66およびエンコーダ57の出力から先端部材2の姿勢が固定状態にあるか否かを知ることができる。なお、この制御は、前記初期姿勢制御と同時に行っても、別に行ってもよい。
具体的には、図24のフローチャートに示す順で制御を行う。先端部材2のある姿勢において、3つのエンコーダ57が所定の位置であることを確認し(S1)、その際に歪みセンサ66の検出値を判定する(S2)。検出値が所定値範囲を超えたなら、異常有りとして、工具回転用駆動源41の回転を停止させる(S3)。歪みセンサ66の検出値が所定値より大きいときは、姿勢操作部材31に過剰な力が作用していることを意味する。例えば、図22(C)に示すように、姿勢操作部材31と先端部材2との間に異物49が挟まっている可能性がある。また、所定値より小さいときは、図22(A)に示すように、先端部材2のハウジング11の基端面と、姿勢操作部材31の柱状ピン31bとの間に隙間Sが生じている可能性がある。これらの状態では、姿勢操作部材31により先端部材2の姿勢を正しく固定することができないため、スピンドル13を回転させるのは危険である。そこで、工具回転用駆動源41の回転を停止させるのである。これにより、危険を回避することができる。
先端部材2のある姿勢において、3つのエンコーダ57が所定の位置であることを確認し、かつ歪みセンサ66の検出値が所定の範囲内にあれば、先端部材2の姿勢が固定状態にあることが確認されたことになり(S4)、制御を終了する。
第2の異常停止制御は、歪みセンサ66(66U,66L,66R)の出力からスピンドル回転時に先端部材2に作用する力の大きさを検出し、検出された作用力が規定作用力よりも大きい場合に工具回転用駆動源41の回転を停止させる制御である。実際に先端部材2の作用力を検出しなくても、歪みセンサ66の出力から先端部材2の作用力を求められる。先端部材2に過剰な力が作用すると、遠隔操作型アクチュエータの各部に変形等が生じたり破損したりする可能性である。そこで、工具回転用駆動源41の回転を停止させることで、遠隔操作型アクチュエータの変形や破損を防ぐのである。
第3の異常停止制御は、回転数センサ55の出力からスピンドル13の回転数を検出し、検出された回転数と規定回転数との差が所定の範囲外にある場合に工具回転用駆動源41の回転を停止させる制御である。実際にスピンドル13の回転数を検出しなくても、工具回転用駆動源41の回転数を検出する回転数センサ55の出力からスピンドル13の回転数を求められる。工具回転用駆動源41の出力軸41aや、回転軸22を支持する軸受12,26,29が故障した場合、スピンドル13の回転数が異常に高くなったり低くなったりする。このような状態でスピンドル13を回転させるのは危険である。そこで、スピンドル13の回転数が異常である場合、工具回転用駆動源41の回転を停止させることで、危険を回避するのである。
第4の異常停止制御は、振動センサ56の出力からスピンドル13の振動の大きさを検出し、検出された振動の大きさが規定の大きさよりも大きい場合に工具回転用駆動源41の回転を停止させる制御である。実際にスピンドル13の振動の大きさを検出しなくても、工具回転用駆動源41の振動の大きさを検出する振動センサ46の出力からスピンドル13の振動の大きさを求められる。先端部材2の姿勢保持力の低下、工具回転用駆動源41や軸受26,29の故障、遠隔操作型アクチュエータ各部の組付け不良等があると、スピンドル13が振動する。このような状態でスピンドル13を回転させるのは危険である。そこで、スピンドル13の振動が異常に大きい場合、工具回転用駆動源41の回転を停止させることで、危険を回避するのである。
第5の異常停止制御は、温度センサ16の出力からスピンドル13の温度を検出し、検出された温度が規定温度よりも高い場合に工具回転用駆動源41の回転を停止させる制御である。軸受12,26,29を潤滑する潤滑剤の不足、軸受12,26,29の故障等により、スピンドル13の温度が上昇することがある。そのような場合、そのままスピンドル13の回転を続けると、遠隔操作型アクチュエータの変形や破損を招く。そこで、スピンドル13が異常な高温となった場合、工具回転用駆動源41の回転を停止させることで、遠隔操作型アクチュエータの変形や破損を防ぐのである。
第6の異常停止制御は、圧力センサ82の出力からスピンドルガイド部3内に供給される潤滑用流体の圧力を検出し、検出された潤滑用流体の圧力と規定圧力との差が所定の範囲外である場合に工具回転用駆動源41の回転を停止させる制御である。潤滑用流体が不足したり潤滑用流体の経路が目詰まりしたりすると、軸受12,26,29の潤滑が良好に行われず、軸受12,26,29が損傷する可能性がある。そこで、潤滑用流体が不足して潤滑用流体の圧力が異常に低下した場合、および潤滑用流体の流れる経路に目詰まりが生じて潤滑用流体の圧力が異常に上昇した場合、工具回転用駆動源41の回転を停止させることで、軸受12,26,29の損傷を防ぐのである。
上記各異常停止制御において、異常検出手段により異常が検出された時、その異常項目が表示機85に表示される。このため、この実施形態のように複数種の異常検出手段が設けられている場合でも、何が異常であるかを容易に知ることができ、適切で迅速な対処を行える。
この遠隔操作型アクチュエータは、先に説明したように、左右の把手80L,80Rを両手でつかんでアクチュエータ本体8を保持する。そして、回転オン・オフ操作具84の操作により、スピンドル13を回転させて、工具1により骨等の切削を行う。加工中は、加工箇所の形状や加工の進行に応じて、姿勢変更操作具83を操作することで、先端部材2の姿勢を遠隔操作で2軸方向に変更させる。回転オン・オフ操作具84および姿勢変更操作具83は、左右の把手80L,80Rをつかんだまま手元操作できるので、操作者本人の感覚で操作を行え、作業がやり易い。
切削加工中、何らかの異常が生じた場合、その異常を異常検出手段16,55,56,66,82が検出して、工具回転制御手段71が工具回転用駆動源41の回転を停止させる。また、切削加工前に、異常検出手段57,66により何らかの異常が発見されれば、工具回転制御手段71により工具回転用駆動源41を回転させないようにする。このため、安全である。
先端部材2がスピンドルガイド部3に対して先端部材2の中心線CL1回りに回転するのを防止する回転防止機構37が設けられているため、姿勢変更用駆動機構4cや姿勢制御手段72の故障等により工具1を保持する先端部材2が制御不能となった場合でも、先端部材2が中心線CL1回りに回転して加工箇所の周りを傷つけたり、先端部材2自体が破損したりすることを防止できる。
姿勢操作部材31はガイド孔30aに挿通されているため、姿勢操作部材31が長手方向と交差する方向に位置ずれすることがなく、常に先端部材2に対し適正に作用することができ、先端部材2の姿勢変更動作が正確に行われる。また、姿勢操作部材31は、複数のボール31cおよび柱状ピン31bからなり、全体で可撓性の性質を有するため、スピンドルガイド部3が湾曲した状態でも先端部材2の姿勢変更動作が確実に行われる。さらに、スピンドル13と回転軸22との連結箇所の中心が案内面F1,F2の曲率中心Oと同位置であるため、先端部材2の姿勢変更によって回転軸22に対して押し引きする力がかからず、先端部材2が円滑に姿勢変更できる。
以上、医療用の遠隔操作型アクチュエータについて説明したが、この発明はそれ以外の用途の遠隔操作型アクチュエータにも適用できる。例えば、機械加工用とした場合、湾曲状をした孔のドリル加工や、溝内部の奥まった箇所の切削加工が可能になる。
以上説明したこの発明の実施形態において要件とした切削力推定手段6を含まない応用態様について以下に示す。
[態様1]
態様1にかかる遠隔操作型アクチュエーは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、
前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、
前記スピンドル回転時または非回転時の異常を検出する異常検出手段と、この異常検出手段が異常を検出した場合に前記工具回転用駆動源の回転を停止させる工具回転制御手段とを設けた。
[態様1]
態様1にかかる遠隔操作型アクチュエーは、細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、
前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、
前記スピンドル回転時または非回転時の異常を検出する異常検出手段と、この異常検出手段が異常を検出した場合に前記工具回転用駆動源の回転を停止させる工具回転制御手段とを設けた。
[態様2]
態様1において、前記異常検出手段として、前記先端部材の姿勢が固定状態にあるか否かを検出する固定検出手段を有し、前記工具回転制御手段は、前記固定検出手段により前記先端部材の姿勢が固定状態でないと検出された場合に前記工具回転用駆動源を回転させない。
態様1において、前記異常検出手段として、前記先端部材の姿勢が固定状態にあるか否かを検出する固定検出手段を有し、前記工具回転制御手段は、前記固定検出手段により前記先端部材の姿勢が固定状態でないと検出された場合に前記工具回転用駆動源を回転させない。
[態様3]
態様2において、前記固定検出手段が、前記姿勢変更用駆動源と前記姿勢操作部材との間に設けたレバー機構の歪みを検出する歪みセンサである。
態様2において、前記固定検出手段が、前記姿勢変更用駆動源と前記姿勢操作部材との間に設けたレバー機構の歪みを検出する歪みセンサである。
[態様4]
態様2において、前記固定検出手段が、前記姿勢変更用駆動源の動作位置を検出するエンコーダである。
態様2において、前記固定検出手段が、前記姿勢変更用駆動源の動作位置を検出するエンコーダである。
[態様5]
態様1において、前記異常検出手段として、前記スピンドル回転時に前記先端部材に作用する力の大きさを検出する作用力検出手段を有し、前記工具回転制御手段は、前記作用力検出手段により検出された作用力が規定作用力よりも大きい場合に前記工具回転用駆動源の回転を停止させる。
態様1において、前記異常検出手段として、前記スピンドル回転時に前記先端部材に作用する力の大きさを検出する作用力検出手段を有し、前記工具回転制御手段は、前記作用力検出手段により検出された作用力が規定作用力よりも大きい場合に前記工具回転用駆動源の回転を停止させる。
[態様6]
態様5において、前記作用力検出手段が、前記姿勢変更用駆動源と前記姿勢操作部材との間に設けたレバー機構の歪みを検出する歪みセンサである。
態様5において、前記作用力検出手段が、前記姿勢変更用駆動源と前記姿勢操作部材との間に設けたレバー機構の歪みを検出する歪みセンサである。
[態様7]
態様1において、前記異常検出手段として、前記スピンドルまたは前記工具回転用駆動源の回転数を検出する回転検出手段を有し、前記工具回転制御手段は、前記回転検出手段により検出された回転数と規定回転数との差が所定の範囲外にある場合に前記工具回転用駆動源の回転を停止させる。
態様1において、前記異常検出手段として、前記スピンドルまたは前記工具回転用駆動源の回転数を検出する回転検出手段を有し、前記工具回転制御手段は、前記回転検出手段により検出された回転数と規定回転数との差が所定の範囲外にある場合に前記工具回転用駆動源の回転を停止させる。
[態様8]
態様1において、前記異常検出手段として、前記スピンドル回転時に前記スピンドルまたは前記工具回転用駆動源の振動の大きさを検出する振動検出手段を有し、前記工具回転制御手段は、前記振動検出手段により検出された振動の大きさが規定の大きさよりも大きい場合に前記工具回転用駆動源の回転を停止させる。
態様1において、前記異常検出手段として、前記スピンドル回転時に前記スピンドルまたは前記工具回転用駆動源の振動の大きさを検出する振動検出手段を有し、前記工具回転制御手段は、前記振動検出手段により検出された振動の大きさが規定の大きさよりも大きい場合に前記工具回転用駆動源の回転を停止させる。
[態様9]
態様1において、前記異常検出手段として、前記スピンドル回転時に前記スピンドルの温度を検出する温度検出手段を有し、前記工具回転制御手段は、前記温度検出手段により検出された温度が規定温度よりも高い場合に前記工具回転用駆動源の回転を停止させる。
態様1において、前記異常検出手段として、前記スピンドル回転時に前記スピンドルの温度を検出する温度検出手段を有し、前記工具回転制御手段は、前記温度検出手段により検出された温度が規定温度よりも高い場合に前記工具回転用駆動源の回転を停止させる。
[態様10]
態様1において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する軸受と、この軸受を潤滑する潤滑用流体を前記スピンドルガイド部内に供給する潤滑用流体供給装置とを有し、前記異常検出手段として、前記スピンドル回転時に前記潤滑用流体供給装置により前記スピンドルガイド部内に供給される潤滑用流体の圧力を検出する潤滑用流体圧力検出手段を有し、前記工具回転制御手段は、前記潤滑用流体圧力検出手段により検出された潤滑用流体の圧力と規定圧力との差が所定の範囲外である場合に前記工具回転用駆動源の回転を停止させる。
態様1において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する軸受と、この軸受を潤滑する潤滑用流体を前記スピンドルガイド部内に供給する潤滑用流体供給装置とを有し、前記異常検出手段として、前記スピンドル回転時に前記潤滑用流体供給装置により前記スピンドルガイド部内に供給される潤滑用流体の圧力を検出する潤滑用流体圧力検出手段を有し、前記工具回転制御手段は、前記潤滑用流体圧力検出手段により検出された潤滑用流体の圧力と規定圧力との差が所定の範囲外である場合に前記工具回転用駆動源の回転を停止させる。
[態様11]
態様1において、前記異常検出手段による異常検出時に異常項目を表示する表示機を設けた。
態様1において、前記異常検出手段による異常検出時に異常項目を表示する表示機を設けた。
以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まるこの発明の範囲内のものと解釈される。
1…工具
2…先端部材
3…スピンドルガイド部
4a…駆動部ハウジング
5…コントローラ
6…切削力推定手段
7…制御ボックス
13…スピンドル
15…先端部材連結部
16…温度センサ(温度検出手段)
22…回転軸
25…外郭パイプ
26,29…転がり軸受
27A,27B…ばね要素
30…ガイドパイプ
30a…ガイド孔
31…姿勢操作部材
41…工具回転用駆動源
42…姿勢変更用駆動源
43…レバー機構(力伝達機構)
43b…レバー
45…動作量検出器
46…姿勢検出手段
48…荷重検出手段
50…冷却手段
55…回転センサ(回転検出手段)
56…振動センサ(振動検出手段)
57(57U,57L,57R)…エンコーダ(固定検出手段)
60…駆動電力測定手段
61…回転数測定手段
63…撓み量測定手段
65…駆動力測定手段
66(66U,66L,66R)…歪み検出手段(歪みセンサ(固定検出手段、作用力検出手段))
70…コンピュータ
84…回転オン・オフ操作具
85…表示機
87…初期姿勢操作具
2…先端部材
3…スピンドルガイド部
4a…駆動部ハウジング
5…コントローラ
6…切削力推定手段
7…制御ボックス
13…スピンドル
15…先端部材連結部
16…温度センサ(温度検出手段)
22…回転軸
25…外郭パイプ
26,29…転がり軸受
27A,27B…ばね要素
30…ガイドパイプ
30a…ガイド孔
31…姿勢操作部材
41…工具回転用駆動源
42…姿勢変更用駆動源
43…レバー機構(力伝達機構)
43b…レバー
45…動作量検出器
46…姿勢検出手段
48…荷重検出手段
50…冷却手段
55…回転センサ(回転検出手段)
56…振動センサ(振動検出手段)
57(57U,57L,57R)…エンコーダ(固定検出手段)
60…駆動電力測定手段
61…回転数測定手段
63…撓み量測定手段
65…駆動力測定手段
66(66U,66L,66R)…歪み検出手段(歪みセンサ(固定検出手段、作用力検出手段))
70…コンピュータ
84…回転オン・オフ操作具
85…表示機
87…初期姿勢操作具
Claims (15)
- 細長形状のスピンドルガイド部と、このスピンドルガイド部の先端に先端部材連結部を介して姿勢変更自在に取付けられた先端部材と、前記スピンドルガイド部の基端が結合された駆動部ハウジングとを備え、
前記先端部材は、工具を保持するスピンドルを回転自在に支持し、前記スピンドルガイド部は、前記駆動部ハウジング内に設けられた工具回転用駆動源の回転を前記スピンドルに伝達する回転軸と、両端に貫通したガイド孔とを内部に有し、先端が前記先端部材に接して進退動作することにより前記先端部材を姿勢変更させる姿勢操作部材を前記ガイド孔内に進退自在に挿通し、前記姿勢操作部材を進退させる姿勢変更用駆動源を前記駆動部ハウジング内に設け、
前記工具が被加工物に与える切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定する切削力推定手段を設けた遠隔操作型アクチュエータ。 - 請求項1において、前記工具回転用駆動源の駆動電力および回転数をそれぞれ測定する駆動電力測定手段および回転数測定手段を設け、前記切削力推定手段は、前記駆動電力測定手段で測定された駆動電力と、前記回転数測定手段で測定された回転数とから、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとした遠隔操作型アクチュエータ。
- 請求項1において、前記スピンドルガイド部の撓み量を測定する撓み量測定手段を設け、前記切削力推定手段は、前記撓み量測定手段で測定された撓み量から、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとした遠隔操作型アクチュエータ。
- 請求項3において、前記撓み量測定手段は、前記スピンドルガイド部の周面に貼った1つ以上の歪みセンサである遠隔操作型アクチュエータ。
- 請求項1において、前記姿勢変更用駆動源の駆動力を測定する駆動力測定手段を設け、前記切削力推定手段は、前記駆動力測定手段で測定された駆動力から、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとした遠隔操作型アクチュエータ。
- 請求項1において、前記姿勢変更用駆動源の駆動力を前記姿勢操作部材へ伝達するレバー機構を有し、このレバー機構の歪みを検出する歪み検出手段を設け、前記切削力推定手段は、前記歪み検出手段の検出値から、前記切削力における主分力、背分力、および送り分力のうち少なくとも1つの分力の大きさを推定するものとした遠隔操作型アクチュエータ。
- 請求項1において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する複数の転がり軸受を設け、隣合う転がり軸受間に、これら転がり軸受に対して予圧を与えるばね要素を設けた遠隔操作型アクチュエータ。
- 請求項1において、前記スピンドル回転時または非回転時の異常を検出する異常検出手段と、この異常検出手段が異常を検出した場合に前記工具回転用駆動源の回転を停止させる工具回転制御手段とを設けた遠隔操作型アクチュエータ。
- 請求項8において、前記異常検出手段として、前記先端部材の姿勢が固定状態にあるか否かを検出する固定検出手段を有し、前記工具回転制御手段は、前記固定検出手段により前記先端部材の姿勢が固定状態でないと検出された場合に前記工具回転用駆動源を回転させない遠隔操作型アクチュエータ。
- 請求項9において、前記固定検出手段が、前記姿勢変更用駆動源と前記姿勢操作部材との間に設けたレバー機構の歪みを検出する歪みセンサである遠隔操作型アクチュエータ。
- 請求項8において、前記異常検出手段として、前記スピンドル回転時に前記先端部材に作用する力の大きさを検出する作用力検出手段を有し、前記工具回転制御手段は、前記作用力検出手段により検出された作用力が規定作用力よりも大きい場合に前記工具回転用駆動源の回転を停止させる遠隔操作型アクチュエータ。
- 請求項8において、前記異常検出手段として、前記スピンドルまたは前記工具回転用駆動源の回転数を検出する回転検出手段を有し、前記工具回転制御手段は、前記回転検出手段により検出された回転数と規定回転数との差が所定の範囲外にある場合に前記工具回転用駆動源の回転を停止させる遠隔操作型アクチュエータ。
- 請求項8において、前記異常検出手段として、前記スピンドル回転時に前記スピンドルまたは前記工具回転用駆動源の振動の大きさを検出する振動検出手段を有し、前記工具回転制御手段は、前記振動検出手段により検出された振動の大きさが規定の大きさよりも大きい場合に前記工具回転用駆動源の回転を停止させる遠隔操作型アクチュエータ。
- 請求項8において、前記異常検出手段として、前記スピンドル回転時に前記スピンドルの温度を検出する温度検出手段を有し、前記工具回転制御手段は、前記温度検出手段により検出された温度が規定温度よりも高い場合に前記工具回転用駆動源の回転を停止させる遠隔操作型アクチュエータ。
- 請求項8において、前記スピンドルガイド部内の前記回転軸を回転自在に支持する軸受と、この軸受を潤滑する潤滑用流体を前記スピンドルガイド部内に供給する潤滑用流体供給装置とを有し、前記異常検出手段として、前記スピンドル回転時に前記潤滑用流体供給装置により前記スピンドルガイド部内に供給される潤滑用流体の圧力を検出する潤滑用流体圧力検出手段を有し、前記工具回転制御手段は、前記潤滑用流体圧力検出手段により検出された潤滑用流体の圧力と規定圧力との差が所定の範囲外である場合に前記工具回転用駆動源の回転を停止させる遠隔操作型アクチュエータ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09828817.8A EP2371304A4 (en) | 2008-11-27 | 2009-11-20 | REMOTE CONTROL ACTUATOR |
US13/116,679 US8221398B2 (en) | 2008-11-27 | 2011-05-26 | Remote-controlled actuator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-302091 | 2008-11-27 | ||
JP2008302091A JP5213666B2 (ja) | 2008-11-27 | 2008-11-27 | 遠隔操作型アクチュエータ |
JP2009013002A JP5213735B2 (ja) | 2009-01-23 | 2009-01-23 | 遠隔操作型アクチュエータ |
JP2009-013002 | 2009-01-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/116,679 Continuation US8221398B2 (en) | 2008-11-27 | 2011-05-26 | Remote-controlled actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010061567A1 true WO2010061567A1 (ja) | 2010-06-03 |
Family
ID=42225455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006286 WO2010061567A1 (ja) | 2008-11-27 | 2009-11-20 | 遠隔操作型アクチュエータ |
Country Status (3)
Country | Link |
---|---|
US (1) | US8221398B2 (ja) |
EP (1) | EP2371304A4 (ja) |
WO (1) | WO2010061567A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011113078A1 (de) * | 2010-03-16 | 2011-09-22 | Technische Universität Wien | Werkzeug zum bohren gekrümmter bohrlöcher |
JP2019202148A (ja) * | 2013-04-25 | 2019-11-28 | リムサイエンス カンパニー リミテッド | 電気制御可能な回転加圧装置及びその制御方法 |
JPWO2022054719A1 (ja) * | 2020-09-10 | 2022-03-17 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8439899B2 (en) * | 2008-09-11 | 2013-05-14 | Ntn Corporation | Remote-controlled actuator |
DE102010002271B4 (de) * | 2010-02-24 | 2012-05-31 | Mag Ias Gmbh | Schneidvorrichtung zum Scherschneiden von Fasersträngen |
WO2013152346A1 (en) * | 2012-04-06 | 2013-10-10 | Aseptico Inc. | A method for cutting/abrading with a tool, and related drivers and systems |
US9549781B2 (en) * | 2014-05-30 | 2017-01-24 | The Johns Hopkins University | Multi-force sensing surgical instrument and method of use for robotic surgical systems |
US9936961B2 (en) * | 2014-09-26 | 2018-04-10 | DePuy Synthes Products, Inc. | Surgical tool with feedback |
US10875138B1 (en) * | 2016-08-09 | 2020-12-29 | M4 Sciences Llc | Tool holder assembly for machining system |
WO2018075925A1 (en) * | 2016-10-21 | 2018-04-26 | University Of Louisville Research Foundation, Inc. | Systems and methods for intramedullary preparations |
JP7424759B2 (ja) | 2019-05-23 | 2024-01-30 | ファナック株式会社 | 主軸異常検出装置 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4265231A (en) | 1979-04-30 | 1981-05-05 | Scheller Jr Arnold D | Curved drill attachment for bone drilling uses |
US4466429A (en) | 1979-04-10 | 1984-08-21 | M.A.N. Maschinenfabrik Augsburg-Nurnberg Ag | Apparatus for producing a cavity in a bone |
JPS6025223Y2 (ja) * | 1981-11-27 | 1985-07-29 | オリンパス光学工業株式会社 | 体腔内処置用ドリル装置 |
JPH03190612A (ja) * | 1989-12-15 | 1991-08-20 | Nippon Pneumatic Mfg Co Ltd | 穴明け加工方法および装置 |
JP2558898Y2 (ja) * | 1993-02-18 | 1998-01-14 | 株式会社森精機製作所 | 工作機械用着脱式主軸旋回制御ユニット |
JP2001017446A (ja) | 1999-07-05 | 2001-01-23 | Nakanishi:Kk | 医療用のハンドピース |
JP2002514464A (ja) * | 1998-05-08 | 2002-05-21 | シュミット・ヘーリベルト | 医療目的のための穿孔、切断およびネジ締め器具の作業装置 |
JP2007229826A (ja) * | 2006-02-28 | 2007-09-13 | Daiya Seiki Co Ltd | スピンドルモータ及び穿孔加工装置 |
US20070213692A1 (en) * | 2006-03-09 | 2007-09-13 | Timo Neubauer | Force action feedback in surgical instruments |
JP2007301149A (ja) | 2006-05-11 | 2007-11-22 | Nakanishi:Kk | 医療用ハンドピース |
DE102006030688A1 (de) * | 2006-07-04 | 2008-04-17 | Fay, Alexander, Prof. Dr. | Vorrichtung zum Ausfräsen einer Kavität zur Aufnahme einer Gelenkprothese |
WO2008072559A1 (ja) * | 2006-12-11 | 2008-06-19 | Namiki Seimitsu Houseki Kabushikikaisha | マイクロスピンドル |
US20080226409A1 (en) * | 2007-03-13 | 2008-09-18 | Thomas Hasenzahl | Dental machining unit with tool spindle |
JP2008302091A (ja) | 2007-06-08 | 2008-12-18 | Sharp Corp | 洗濯乾燥機 |
JP2009013002A (ja) | 2007-07-03 | 2009-01-22 | Agc Techno Glass Co Ltd | 蛍光ランプ用紫外線吸収ガラスおよび蛍光ランプ用ガラス管 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5814038A (en) * | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5649956A (en) * | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5776136A (en) * | 1996-09-30 | 1998-07-07 | Integrated Surgical Systems, Inc. | Method and system for finish cutting bone cavities |
EP1015944B1 (en) * | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
US7152456B2 (en) * | 2004-01-14 | 2006-12-26 | Romer Incorporated | Automated robotic measuring system |
-
2009
- 2009-11-20 WO PCT/JP2009/006286 patent/WO2010061567A1/ja active Application Filing
- 2009-11-20 EP EP09828817.8A patent/EP2371304A4/en not_active Withdrawn
-
2011
- 2011-05-26 US US13/116,679 patent/US8221398B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4466429A (en) | 1979-04-10 | 1984-08-21 | M.A.N. Maschinenfabrik Augsburg-Nurnberg Ag | Apparatus for producing a cavity in a bone |
US4265231A (en) | 1979-04-30 | 1981-05-05 | Scheller Jr Arnold D | Curved drill attachment for bone drilling uses |
JPS6025223Y2 (ja) * | 1981-11-27 | 1985-07-29 | オリンパス光学工業株式会社 | 体腔内処置用ドリル装置 |
JPH03190612A (ja) * | 1989-12-15 | 1991-08-20 | Nippon Pneumatic Mfg Co Ltd | 穴明け加工方法および装置 |
JP2558898Y2 (ja) * | 1993-02-18 | 1998-01-14 | 株式会社森精機製作所 | 工作機械用着脱式主軸旋回制御ユニット |
JP2002514464A (ja) * | 1998-05-08 | 2002-05-21 | シュミット・ヘーリベルト | 医療目的のための穿孔、切断およびネジ締め器具の作業装置 |
JP2001017446A (ja) | 1999-07-05 | 2001-01-23 | Nakanishi:Kk | 医療用のハンドピース |
JP2007229826A (ja) * | 2006-02-28 | 2007-09-13 | Daiya Seiki Co Ltd | スピンドルモータ及び穿孔加工装置 |
US20070213692A1 (en) * | 2006-03-09 | 2007-09-13 | Timo Neubauer | Force action feedback in surgical instruments |
JP2007301149A (ja) | 2006-05-11 | 2007-11-22 | Nakanishi:Kk | 医療用ハンドピース |
DE102006030688A1 (de) * | 2006-07-04 | 2008-04-17 | Fay, Alexander, Prof. Dr. | Vorrichtung zum Ausfräsen einer Kavität zur Aufnahme einer Gelenkprothese |
WO2008072559A1 (ja) * | 2006-12-11 | 2008-06-19 | Namiki Seimitsu Houseki Kabushikikaisha | マイクロスピンドル |
US20080226409A1 (en) * | 2007-03-13 | 2008-09-18 | Thomas Hasenzahl | Dental machining unit with tool spindle |
JP2008302091A (ja) | 2007-06-08 | 2008-12-18 | Sharp Corp | 洗濯乾燥機 |
JP2009013002A (ja) | 2007-07-03 | 2009-01-22 | Agc Techno Glass Co Ltd | 蛍光ランプ用紫外線吸収ガラスおよび蛍光ランプ用ガラス管 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2371304A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011113078A1 (de) * | 2010-03-16 | 2011-09-22 | Technische Universität Wien | Werkzeug zum bohren gekrümmter bohrlöcher |
JP2019202148A (ja) * | 2013-04-25 | 2019-11-28 | リムサイエンス カンパニー リミテッド | 電気制御可能な回転加圧装置及びその制御方法 |
JPWO2022054719A1 (ja) * | 2020-09-10 | 2022-03-17 | ||
WO2022054719A1 (ja) * | 2020-09-10 | 2022-03-17 | 住友電気工業株式会社 | 判定装置、切削工具システムおよび判定方法 |
JP7157397B2 (ja) | 2020-09-10 | 2022-10-20 | 住友電気工業株式会社 | 判定装置、切削工具システムおよび判定方法 |
Also Published As
Publication number | Publication date |
---|---|
US8221398B2 (en) | 2012-07-17 |
EP2371304A4 (en) | 2013-10-09 |
EP2371304A1 (en) | 2011-10-05 |
US20110230868A1 (en) | 2011-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010061567A1 (ja) | 遠隔操作型アクチュエータ | |
KR101287985B1 (ko) | 원격 조작형 액츄에이터 | |
JP5464892B2 (ja) | 遠隔操作型アクチュエータ | |
US8393242B2 (en) | Remote-controlled actuator | |
JP5289470B2 (ja) | 可撓性ケーブル | |
WO2010137603A1 (ja) | 遠隔操作型アクチュエータ | |
WO2011037130A1 (ja) | 遠隔操作型アクチュエータ | |
JP5213735B2 (ja) | 遠隔操作型アクチュエータ | |
JP5500890B2 (ja) | 遠隔操作型アクチュエータ | |
JP5213666B2 (ja) | 遠隔操作型アクチュエータ | |
JP5258495B2 (ja) | 遠隔操作型アクチュエータ | |
JP5388702B2 (ja) | 遠隔操作型アクチュエータ | |
JP5500891B2 (ja) | 遠隔操作型アクチュエータ | |
JP2010046764A (ja) | 遠隔操作型アクチュエータ | |
JP2010088812A (ja) | 遠隔操作型アクチュエータ | |
JP5213654B2 (ja) | 遠隔操作型アクチュエータ | |
JP5258594B2 (ja) | 遠隔操作型アクチュエータ | |
JP2010051439A (ja) | 遠隔操作型アクチュエータ | |
JP2010046197A (ja) | 遠隔操作型アクチュエータ | |
JP5197293B2 (ja) | 遠隔操作型アクチュエータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09828817 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2009828817 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009828817 Country of ref document: EP |