WO2010061451A1 - 空気二次電池 - Google Patents

空気二次電池 Download PDF

Info

Publication number
WO2010061451A1
WO2010061451A1 PCT/JP2008/071542 JP2008071542W WO2010061451A1 WO 2010061451 A1 WO2010061451 A1 WO 2010061451A1 JP 2008071542 W JP2008071542 W JP 2008071542W WO 2010061451 A1 WO2010061451 A1 WO 2010061451A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
negative electrode
secondary battery
electrode layer
air electrode
Prior art date
Application number
PCT/JP2008/071542
Other languages
English (en)
French (fr)
Inventor
中西 真二
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010500983A priority Critical patent/JP5104942B2/ja
Priority to CN200880104967A priority patent/CN101821897A/zh
Priority to US12/675,951 priority patent/US20110129739A1/en
Priority to PCT/JP2008/071542 priority patent/WO2010061451A1/ja
Publication of WO2010061451A1 publication Critical patent/WO2010061451A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an air secondary battery using a non-aqueous electrolyte, and more particularly to an air secondary battery capable of reducing a charging voltage.
  • An air secondary battery using a non-aqueous electrolyte is a secondary battery using air (oxygen) as a positive electrode active material, and has advantages such as high energy density and easy miniaturization and weight reduction. For this reason, it has attracted attention as a high-capacity secondary battery that exceeds the widely used lithium secondary battery.
  • Such an air secondary battery includes, for example, an air electrode layer having a conductive material (for example, carbon black), a catalyst (for example, manganese dioxide) and a binder (for example, polyvinylidene fluoride), and a current collector for the air electrode layer.
  • a conductive material for example, carbon black
  • a catalyst for example, manganese dioxide
  • a binder for example, polyvinylidene fluoride
  • a negative electrode layer containing a negative electrode active material for example, metal Li
  • a negative electrode current collector for collecting the current of the negative electrode layer
  • a non-charger that conducts metal ions (for example, Li ions)
  • an aqueous electrolyte for example, Li ions
  • Patent Document 1 discloses an air electrode of an air battery using a nonaqueous electrolyte, in which a mixture of carbon, a catalyst, and a binder is pressed or applied to a mesh-shaped metal current collector. Furthermore, metals such as stainless steel, nickel, aluminum, iron, and titanium are disclosed as materials for the air electrode current collector.
  • Patent Document 2 an aluminum air battery using an aqueous electrolyte instead of a non-aqueous electrolyte is disclosed. There, it is disclosed that carbon paper is used as the base material of the cathode catalyst electrode.
  • Patent Document 3 also discloses an aluminum air battery using an aqueous electrolyte instead of a nonaqueous electrolyte. There, it is disclosed that a thin conductive carbon cloth is used as an air electrode current collector.
  • a metal air electrode current collector has been used for an air secondary battery using a non-aqueous electrolyte.
  • the metal air cathode current collector has a problem of being easily corroded.
  • the present inventor has confirmed that the problem of corrosion can be solved by using an air electrode current collector made of a carbon material instead of a metal air electrode current collector.
  • a carbon material air electrode current collector is used, a new problem has arisen in that the charging voltage becomes higher than when a metal air electrode current collector is used.
  • the present invention has been made in view of the above problems, and it is a main object of the present invention to provide an air secondary battery that can reduce the charging voltage in an air secondary battery using a non-aqueous electrolyte. .
  • an air electrode having an air electrode layer containing a conductive material and an air electrode current collector for collecting the air electrode layer, a negative electrode layer containing a negative electrode active material, and the negative electrode layer
  • An air secondary battery comprising: a negative electrode having a negative electrode current collector for collecting current; and the air electrode layer and a non-aqueous electrolyte that conducts metal ions between the negative electrode layer,
  • an air secondary battery characterized in that the electric body is made of a carbon material, and the non-aqueous electrolyte contains a sulfonimide salt.
  • the charge voltage can be lowered by using a combination of an air electrode current collector made of a carbon material and a nonaqueous electrolytic solution containing a sulfonimide salt.
  • the sulfonimide salt is preferably a compound represented by the following general formula (1). This is because the charging voltage can be effectively reduced.
  • M is an alkali metal element
  • R 1 and R 2 are each independently a functional group containing a fluorine element and a carbon element.
  • R 1 and R 2 may be bonded to each other to form a ring structure.
  • the carbon material is preferably carbon fiber. This is because electrons can be conducted through the fiber and the electron conductivity is high.
  • the air electrode current collector is preferably carbon paper or carbon cloth using the carbon fiber. This is because it has excellent gas diffusibility and oxygen can be diffused quickly.
  • the metal ion is preferably Li ion. This is because a battery having a high energy density can be obtained.
  • FIG. 1 It is a schematic sectional drawing which shows an example of the air secondary battery of this invention. 2 is a schematic cross-sectional view showing an evaluation cell used in Example 1. FIG.
  • the air secondary battery of the present invention includes an air electrode having an air electrode layer containing a conductive material and an air electrode current collector for collecting the air electrode layer, a negative electrode layer containing a negative electrode active material, and the negative electrode.
  • An air secondary battery comprising: a negative electrode having a negative electrode current collector for collecting current of the layer; and the air electrode layer and a non-aqueous electrolyte solution that conducts metal ions between the negative electrode layer, the air
  • the electrode current collector is made of a carbon material, and the non-aqueous electrolyte contains a sulfonimide salt.
  • the charge voltage can be lowered by using a combination of an air electrode current collector made of a carbon material and a nonaqueous electrolytic solution containing a sulfonimide salt.
  • an air electrode current collector made of a carbon material when used, corrosion of the air electrode current collector can be prevented, but there is a problem that a charging voltage becomes high.
  • the charging voltage can be lowered and charging can be performed efficiently.
  • the reason why the charging voltage is low is not yet clear, but the non-aqueous electrolyte containing a sulfonimide salt has a low surface tension, and therefore the wettability of the surface of the carbon material constituting the air electrode current collector. This is thought to be due to the fact that the charging reaction (decomposition reaction of the discharge product) is likely to occur due to the improvement of the flow rate and the smooth movement of ions.
  • a discharge product such as Li 2 O 2 is generated by discharge, but if the wettability of the surface of the carbon material is improved during charging to decompose the discharge product, It is considered that the movement of Li ions in the vicinity of the product becomes smooth and the charge reaction is likely to occur.
  • the sulfonimide salt contains a fluorine element, a nonaqueous electrolytic solution having a high dissolved oxygen amount is usually obtained. In this case, since a large amount of oxygen can be dissolved in the nonaqueous electrolytic solution, oxygen generated during charging can be smoothly excluded from the reaction field of the charging reaction, and the charging reaction is likely to occur.
  • FIG. 1 is a schematic cross-sectional view showing an example of the air secondary battery of the present invention.
  • An air secondary battery 10 shown in FIG. 1 includes a negative electrode case 1a, a negative electrode current collector 2 formed on the inner bottom surface of the negative electrode case 1a, a negative electrode lead 2a connected to the negative electrode current collector 2, and a negative electrode current collector.
  • the air electrode current collector 5 is made of a carbon material, and the nonaqueous electrolytic solution 7 contains a sulfonimide salt.
  • the air secondary battery of the present invention will be described for each configuration.
  • the air electrode used in the present invention has an air electrode layer containing a conductive material and an air electrode current collector that collects the air electrode layer.
  • Air electrode current collector The air electrode current collector used in the present invention collects current in the air electrode layer. Furthermore, the air electrode current collector used in the present invention is usually composed of a carbon material. Carbon materials have the advantage of being excellent in corrosion resistance, the advantage of being excellent in electronic conductivity, and the advantage of being higher in energy density per weight because they are lighter than metals. Examples of such a carbon material include carbon fiber (carbon fiber), activated carbon (what activated a carbon plate), and the like. Among these, carbon fiber is preferable. This is because electrons can be conducted through the fiber and the electron conductivity is high. Examples of the type of carbon fiber include PAN carbon fiber and pitch carbon fiber.
  • the structure of the air electrode current collector in the present invention is not particularly limited as long as the desired electron conductivity can be ensured, and may be a porous structure having gas diffusibility, or a dense structure having no gas diffusibility. It may be. Among them, in the present invention, the air current collector preferably has a porous structure having gas diffusibility. Specific examples of the porous structure include a mesh structure, a non-woven fabric structure, and a three-dimensional network structure having connecting holes. The porosity of the porous structure is not particularly limited, but is preferably in the range of 20% to 99%, for example.
  • Examples of the air electrode current collector using the carbon fiber described above include carbon cloth and carbon paper.
  • the carbon cloth generally refers to a material in which carbon fibers are regularly knitted (corresponding to the mesh structure described above).
  • carbon paper generally refers to a carbon fiber randomly arranged (corresponding to the above-mentioned nonwoven fabric structure). Further, the carbon cloth and the carbon paper may be sintered or activated. In the present invention, carbon cloth and carbon fiber may be used in an overlapping manner. This is because an air electrode current collector with improved mechanical strength can be obtained.
  • the thickness of the air electrode current collector in the present invention is, for example, preferably in the range of 10 ⁇ m to 1000 ⁇ m, and more preferably in the range of 20 ⁇ m to 400 ⁇ m.
  • Air electrode layer used in the present invention contains at least a conductive material. Furthermore, you may contain at least one of a catalyst and a binder as needed.
  • the conductive material used for the air electrode layer is not particularly limited as long as it has conductivity, and examples thereof include a carbon material. Further, the carbon material may have a porous structure or may not have a porous structure. However, in the present invention, the carbon material preferably has a porous structure. This is because the specific surface area is large and many reaction fields can be provided. Specific examples of the carbon material having a porous structure include mesoporous carbon. On the other hand, specific examples of the carbon material having no porous structure include graphite, acetylene black, carbon nanotube, and carbon fiber.
  • the content of the conductive material in the air electrode layer is preferably in the range of 10% by weight to 99% by weight, for example. If the content of the conductive material is too small, the reaction field may decrease and the battery capacity may decrease. If the content of the conductive material is too large, the content of the catalyst or binder is relatively high. This is because the desired air electrode layer may not be obtained.
  • the air electrode layer used in the present invention may contain a catalyst that promotes the reaction. This is because the electrode reaction is performed more smoothly.
  • the conductive material preferably carries a catalyst.
  • the catalyst include oxide catalysts such as manganese dioxide (MnO 2 ) and cerium dioxide (CeO 2 ), macrocyclic compounds such as phthalocyanine and porphyrin, and transition metals (eg, Co) coordinated with the macrocyclic compounds. A complex etc. can be mentioned.
  • the catalyst content in the air electrode layer is, for example, preferably in the range of 1% by weight to 30% by weight, and more preferably in the range of 5% by weight to 20% by weight. If the catalyst content is too low, sufficient catalytic function may not be achieved. If the catalyst content is too high, the content of the conductive material is relatively reduced, the reaction field is reduced, and the battery capacity is reduced. This is because there is a possibility that a decrease in the number of times will occur.
  • the air electrode layer used in the present invention may contain a binder for fixing the conductive material.
  • the binder include fluorine-containing binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the content of the binder in the air electrode layer is, for example, preferably 40% by weight or less, and more preferably in the range of 1% by weight to 10% by weight.
  • the thickness of the air electrode layer varies depending on the use of the air secondary battery, but is preferably in the range of 2 ⁇ m to 500 ⁇ m, and more preferably in the range of 5 ⁇ m to 300 ⁇ m.
  • the formation method of the air electrode in this invention will not be specifically limited if it is a method which can form the air electrode mentioned above.
  • a method for forming an air electrode first, a composition for forming an air electrode layer containing a conductive material, a catalyst, and a binder is prepared, and then this composition is placed on the air electrode current collector.
  • coating to and drying can be mentioned.
  • the nonaqueous electrolyte used in the present invention conducts metal ions between the negative electrode layer and the air electrode layer. Furthermore, the non-aqueous electrolyte usually contains a sulfonimide salt and an organic solvent (non-aqueous solvent). Examples of the sulfonimide salt used in the present invention include compounds represented by the following general formula (1).
  • M is an alkali metal element
  • R 1 and R 2 are each independently a functional group containing a fluorine element and a carbon element. R 1 and R 2 may be bonded to each other to form a ring structure.
  • M is an alkali metal element, and usually this alkali metal ion becomes a conduction ion of the air secondary battery.
  • alkali metal ion Li ion, Na ion, K ion etc. can be mentioned, for example, Li ion is especially preferable. This is because a battery having a high energy density can be obtained.
  • R 1 and R 2 are functional groups containing a fluorine element and a carbon element, and among them, a functional group composed of only a fluorine element and a carbon element is preferable.
  • R 1 and R 2 are —C n F 2n + 1 . This is because the charging voltage can be sufficiently lowered.
  • the value of n is preferably 1 to 6, and more preferably 1 to 4.
  • Specific examples of the sulfonimide salt in which M is Li and R 1 and R 2 are —C n F 2n + 1 include (CF 3 SO 2 ) 2 NLi (sometimes referred to as LiTFSI), (C 2 F 5 SO 2) (CF 3 SO 2) NLi, ( sometimes C 2 F 5 SO 2) referred to as 2 NLi (LiBETI), (C 3 F 7 SO 2) (CF 3 SO 2) NLi, (C 3 F 7 SO 2) (C 2 F 5 SO 2) NLi, (C 3 F 7 SO 2) 2 NLi, (C 4 F 9 SO 2) (CF 3 SO 2) NLi, (C 4 F 9 SO 2 ) (C 2 F 5 SO 2 ) NLi, (C 4 F 9 SO 2 ) (C 3 F 7 SO 2 ) NLi, etc., among which LiTFSI and LiBETI Is preferred.
  • R 1 and R 2 may be bonded to each other to form a ring structure.
  • cyclic sulfoimide salts include CF 2 (CF 2 SO 2 ) 2 NLi.
  • concentration of the sulfonimide salt in the non-aqueous electrolyte is, for example, preferably in the range of 0.3 mol / L to 3 mol / L, and more preferably in the range of 0.5 mol / L to 2 mol / L.
  • organic solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate, ⁇ -butyrolactone, sulfolane, acetonitrile, , 2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran and mixtures thereof.
  • the organic solvent is preferably a solvent having high oxygen solubility. This is because dissolved oxygen can be used efficiently in the reaction.
  • an ionic liquid room temperature molten salt
  • room temperature molten salt may be used as the solvent.
  • non-aqueous electrolyte used in the present invention may be used as a non-aqueous gel electrolyte by adding a polymer.
  • a non-aqueous gel electrolyte of a lithium-air secondary battery is gelled by adding a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA) to the non-aqueous electrolyte described above. By doing so, it can be obtained.
  • a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA)
  • the negative electrode used in the present invention has a negative electrode layer containing a negative electrode active material and a negative electrode current collector that collects current from the negative electrode layer.
  • the negative electrode layer used in the present invention contains at least a negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it can occlude and release metal ions, and examples thereof include simple metals, alloys, metal oxides, and metal nitrides.
  • an alkali metal ion can be mentioned, for example.
  • examples of the alkali metal ions include Li ions, Na ions, K ions, and the like, and among them, Li ions are preferable. This is because a battery having a high energy density can be obtained.
  • examples of the alloy containing lithium element include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.
  • examples of a metal oxide which has a lithium element lithium titanium oxide etc. can be mentioned, for example.
  • examples of the metal nitride containing a lithium element include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
  • the negative electrode layer in the present invention may contain only the negative electrode active material, or may contain at least one of a conductive material and a binder in addition to the negative electrode active material.
  • a negative electrode layer containing only the negative electrode active material can be obtained.
  • a negative electrode layer having a conductive material and a binder can be obtained.
  • the thickness of the negative electrode layer is preferably selected as appropriate according to the configuration of the target air secondary battery.
  • Negative electrode current collector used in the present invention collects current from the negative electrode layer.
  • the material for the negative electrode current collector is not particularly limited as long as it has conductivity, and examples thereof include copper, stainless steel, and nickel.
  • Examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh (grid) shape.
  • a battery case which will be described later, may have the function of a negative electrode current collector.
  • the thickness of the negative electrode current collector is preferably appropriately selected according to the configuration of the target air secondary battery.
  • the formation method of the negative electrode in this invention will not be specifically limited if it is a method which can form the negative electrode mentioned above.
  • a method for forming the negative electrode a method in which a foil-like negative electrode active material is placed on a negative electrode current collector and pressurized can be exemplified.
  • a composition for forming a negative electrode layer containing a negative electrode active material and a binder is prepared, and then this composition is applied onto a negative electrode current collector. And a method of drying.
  • the shape of the battery case used in the present invention is not particularly limited as long as it can accommodate the air electrode, the negative electrode, and the non-aqueous electrolyte described above, but specifically, a coin type, a flat plate type, a cylindrical type And a laminate type.
  • the battery case may be an open-air battery case or a sealed battery case. As shown in FIG. 1 described above, the open-air battery case is a battery case that can come into contact with the atmosphere.
  • the battery case is a sealed battery case, it is preferable to provide a gas (air) introduction pipe and an exhaust pipe in the sealed battery case.
  • the gas to be introduced / exhausted preferably has a high oxygen concentration, and more preferably pure oxygen.
  • Air Secondary Battery The air secondary battery of the present invention preferably has a separator that holds a non-aqueous electrolyte between the air electrode layer and the negative electrode layer. This is because a safer air secondary battery can be obtained.
  • the separator include porous films such as polyethylene and polypropylene; and nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric. The thickness of the separator is preferably selected as appropriate according to the use of the air secondary battery.
  • the type of the air secondary battery of the present invention differs depending on the type of metal ions that become conductive ions.
  • an alkali metal ion can be mentioned, for example.
  • examples of the alkali metal ions include Li ions, Na ions, K ions, and the like, and among them, Li ions are preferable.
  • examples of the type of the air secondary battery of the present invention include a lithium air secondary battery, a sodium air secondary battery, and a potassium air secondary battery, and among them, a lithium air secondary battery is preferable. This is because a battery having a high energy density can be obtained.
  • the air secondary battery of this invention a vehicle mounting use, a stationary power supply use, a household power supply use etc. can be mentioned, for example.
  • the method for producing the air secondary battery of the present invention is not particularly limited, and is the same as the method for producing a general air secondary battery.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 (Production of air electrode) First, 85 parts by weight of ketjen black (manufactured by ketjen black international), 15 parts by weight of electrolytic manganese dioxide (manufactured by High Purity Chemical Laboratory), and 100 parts by weight of PVDF solution (manufactured by Kureha) are mixed. NMP (N-methylpyrrolidone, manufactured by Kanto Chemical Co., Inc.) was added to and mixed with a kneader to obtain an air electrode layer forming paste. Thereafter, the air electrode layer forming paste was applied onto carbon paper (air electrode current collector, manufactured by Toray Industries, Inc., TGP-H-090, thickness 0.28 mm), and NMP was removed by drying. Thereafter, punching was performed at ⁇ 18 mm to obtain an air electrode.
  • NMP N-methylpyrrolidone, manufactured by Kanto Chemical Co., Inc.
  • the lithium air secondary battery 20 includes battery cases 11a and 11b made of Teflon (registered trademark) and a battery case 11c made of SUS.
  • the battery case 11b and the battery case 11c are joined by bolts 12.
  • the battery case 11a has an opening for supplying oxygen, and a hollow current extraction portion 13 is provided in the opening.
  • the air electrode obtained by the above method is used as the air electrode 14, and non-aqueous electrolysis in which (CF 3 SO 2 ) 2 NLi is dissolved in propylene carbonate (PC) at a concentration of 1 M is used as the non-aqueous electrolyte 15.
  • a liquid lithium was used for the negative electrode layer 16 (made by Honjo Metal Co., Ltd., thickness: 200 ⁇ m, diameter: 19 mm).
  • the non-aqueous electrolyte 15 was added to such an extent that the upper part of the air electrode 14 was immersed.
  • the air electrode lead 23 is connected to the current extraction unit 13 made of SUS, the negative electrode lead 25 is connected to the battery case 11c made of SUS, and the lithium air secondary battery 20 is stored in the glass container 21 having a capacity of 1000 cc. . Thereafter, the glass container 21 was sealed, and the sealed glass container 21 was taken out from the argon box. Next, oxygen was introduced from a gas cylinder of oxygen through the gas introduction part 22 and, at the same time, the gas exhaust part 24 was evacuated to replace the inside of the glass container with an oxygen atmosphere from an argon atmosphere. Thereby, the cell for evaluation was obtained.
  • Example 2 An evaluation cell was obtained in the same manner as in Example 1 except that (C 2 F 5 SO 2 ) 2 NLi was used in place of (CF 3 SO 2 ) 2 NLi in the nonaqueous electrolytic solution 15.
  • the charge capacity at the fifth cycle is substantially the same (almost 100%) as the charge capacity at the first cycle, and the air secondary battery of the present invention is As a result, it has been revealed that it exhibits good cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

 本発明は、非水電解液を用いた空気二次電池において、その充電電圧を低くすることができる空気二次電池を提供することを主目的とする。  本発明は、導電性材料を含有する空気極層および上記空気極層の集電を行う空気極集電体を有する空気極と、負極活物質を含有する負極層および上記負極層の集電を行う負極集電体を有する負極と、上記空気極層および上記負極層の間で金属イオンの伝導を担う非水電解液と、を有する空気二次電池であって、上記空気極集電体がカーボン材料から構成されており、上記非水電解液がスルホンイミド塩を含有することを特徴とする空気二次電池を提供することにより、上記課題を解決する。

Description

空気二次電池
 本発明は、非水電解液を用いた空気二次電池に関し、より詳しくは、充電電圧を低くすることができる空気二次電池に関する。
 非水電解液を用いた空気二次電池は、空気(酸素)を正極活物質として用いた二次電池であり、エネルギー密度が高い、小型化および軽量化が容易である等の利点を有する。そのため、現在、広く使用されているリチウム二次電池を超える高容量二次電池として、注目を集めている。
 このような空気二次電池は、例えば、導電性材料(例えばカーボンブラック)、触媒(例えば二酸化マンガン)および結着材(例えばポリフッ化ビニリデン)を有する空気極層と、その空気極層の集電を行う空気極集電体と、負極活物質(例えば金属Li)を含有する負極層と、その負極層の集電を行う負極集電体と、金属イオン(例えばLiイオン)の伝導を担う非水電解液と、を有する。
 従来、空気極集電体として、メッシュ状の金属集電体が用いられてきた。例えば、特許文献1においては、非水電解質を用いた空気電池の空気極として、カーボン、触媒およびバインダーからなる混合物を、メッシュ状の金属集電体に圧着または塗布したものが開示されている。さらに、空気極集電体の材料として、ステンレス、ニッケル、アルミニウム、鉄、チタン等の金属が開示されている。
 なお、特許文献2においては、非水電解液ではなく、水系電解液を用いたアルミニウム空気電池が開示されている。そこでは、カソード触媒電極の基材として、カーボンペーパーを用いることが開示されている。また、特許文献3においても、非水電解液ではなく、水系電解液を用いたアルミニウム空気電池が開示されている。そこでは、導電性の薄い炭素布を空気極集電体として用いることが開示されている。
特開2005-15737号公報 特開2004-327200号公報 米国特許4248682号明細書
 従来、非水電解液を用いた空気二次電池には、金属の空気極集電体が用いられてきた。ところが、金属の空気極集電体は、腐食しやすいという問題がある。この問題に対して、本発明者は、金属の空気極集電体ではなく、カーボン材料の空気極集電体を用いることにより、腐食の問題を解決できることを確認した。ところが、カーボン材料の空気極集電体を用いた場合、金属の空気極集電体を用いた場合と比較して、充電電圧が高くなるという新たな問題が生じてきた。
 本発明は、上記問題点に鑑みてなされたものであり、非水電解液を用いた空気二次電池において、充電電圧を低くすることができる空気二次電池を提供することを主目的とする。
 上記課題を解決するために、本発明者が鋭意検討した結果、スルホンイミド塩を含有する非水電解液を用いると、カーボン材料の空気極集電体を用いた場合であっても、充電電圧を低くすることができることを見出した。本発明はこのような知見に基づいてなされたものである。
 すなわち、本発明においては、導電性材料を含有する空気極層および上記空気極層の集電を行う空気極集電体を有する空気極と、負極活物質を含有する負極層および上記負極層の集電を行う負極集電体を有する負極と、上記空気極層および上記負極層の間で金属イオンの伝導を担う非水電解液と、を有する空気二次電池であって、上記空気極集電体がカーボン材料から構成されており、上記非水電解液がスルホンイミド塩を含有することを特徴とする空気二次電池を提供する。
 本発明によれば、カーボン材料から構成される空気極集電体と、スルホンイミド塩を含有する非水電解液とを組み合せて用いることにより、充電電圧を低くすることができる。
 上記発明においては、上記スルホンイミド塩が、下記一般式(1)で表される化合物であることが好ましい。効果的に充電電圧を低くすることができるからである。
Figure JPOXMLDOC01-appb-C000002
 なお、一般式(1)において、Mはアルカリ金属元素であり、RおよびRは、それぞれ独立に、フッ素元素および炭素元素を含む官能基である。また、RおよびRは、互いに結合し環構造を形成していても良い。
 上記発明においては、上記カーボン材料が、カーボンファイバーであることが好ましい。電子が繊維を通じて伝導することができ、電子伝導性が高いからである。
 上記発明においては、上記空気極集電体が、上記カーボンファイバーを用いた、カーボンペーパーまたはカーボンクロスであることが好ましい。ガス拡散性に優れ、酸素の拡散を速やかに行うことができるからである。
 上記発明においては、上記金属イオンが、Liイオンであることが好ましい。エネルギー密度の高い電池を得ることができるからである。
 本発明においては、非水電解液を用いた空気二次電池において、充電電圧を低くすることができるという効果を奏する。
本発明の空気二次電池の一例を示す概略断面図である。 実施例1で用いる評価用セルを示す概略断面図である。
符号の説明
 1a … 負極ケース
 1b … 空気極ケース
 2 … 負極集電体
 2a … 負極リード
 3 … 負極層
 4 … 空気極層
 5 … 空気極集電体
 5a … 空気極リード
 6 … セパレータ
 7 … 非水電解液
 8 … 微多孔膜
 9 … パッキン
 以下、本発明の空気二次電池について詳細に説明する。
 本発明の空気二次電池は、導電性材料を含有する空気極層および上記空気極層の集電を行う空気極集電体を有する空気極と、負極活物質を含有する負極層および上記負極層の集電を行う負極集電体を有する負極と、上記空気極層および上記負極層の間で金属イオンの伝導を担う非水電解液と、を有する空気二次電池であって、上記空気極集電体がカーボン材料から構成されており、上記非水電解液がスルホンイミド塩を含有することを特徴とするものである。
 本発明によれば、カーボン材料から構成される空気極集電体と、スルホンイミド塩を含有する非水電解液とを組み合せて用いることにより、充電電圧を低くすることができる。上述したように、カーボン材料から構成される空気極集電体を用いた場合、空気極集電体の腐食を防止することができるものの、充電電圧が高くなるという問題がある。本発明においては、このような空気極集電体に対して、スルホンイミド塩を含有する非水電解液を組み合せることにより、充電電圧を低くすることができ、効率良く充電を行うことができる。
 本発明において、充電電圧が低くなる理由は、未だ明らかではないが、スルホンイミド塩を含有する非水電解液は表面張力が小さいため、空気極集電体を構成するカーボン材料の表面の濡れ性が向上し、イオンの移動がスムーズになることで、充電反応(放電生成物の分解反応)が起こりやすくなるためであると考えられる。例えば、リチウム空気二次電池の場合、放電によりLi等の放電生成物が生じるが、この放電生成物を分解する充電時に、カーボン材料の表面の濡れ性が向上していれば、放電生成物の近傍でのLiイオンの移動がスムーズになり、充電反応が起こりやすくなると考えられる。また、後述するように、スルホンイミド塩がフッ素元素を有する場合、通常、溶存酸素量の高い非水電解液が得られる。この場合、非水電解液により多くの酸素を溶存させることができるため、充電時に生じる酸素を、充電反応の反応場からスムーズに除外することができ、充電反応が起こりやすくなると考えられる。
 なお、金属の空気極集電体を用いた従来の空気二次電池において、充電電圧が低い理由は、未だ明らかではないが、金属自身が触媒として作用し、充電反応が起こりやすくなるためであると考えられる。金属が触媒作用を発揮する結果、金属の腐食が生じている可能性がある。これに対して、カーボン材料から構成される空気極集電体は、触媒作用を有しないため、腐食は生じないが、充電電圧が高くなると考えられる。
 図1は、本発明の空気二次電池の一例を示す概略断面図である。図1に示される空気二次電池10は、負極ケース1aと、負極ケース1aの内側底面に形成された負極集電体2と、負極集電体2に接続された負極リード2aと、負極集電体2上に形成され、負極活物質を含有する負極層3と、導電性材料、触媒および結着材を含有する空気極層4と、空気極層4の集電を行う空気極集電体5と、空気極集電体5に接続された空気極リード5aと、負極層3および空気極層4の間に配置されたセパレータ6と、負極層3および空気極層4を浸す非水電解液7と、微多孔膜8を有する空気極ケース1bと、負極ケース1aおよび空気極ケース1bで内容物を密閉するパッキン9と、を有するものである。本発明においては、空気極集電体5がカーボン材料から構成されており、非水電解液7がスルホンイミド塩を含有することを大きな特徴とする。
 以下、本発明の空気二次電池について、構成ごとに説明する。
1.空気極
 まず、本発明に用いられる空気極について説明する。本発明に用いられる空気極は、導電性材料を含有する空気極層と、上記空気極層の集電を行う空気極集電体と、を有するものである。
(1)空気極集電体
 本発明に用いられる空気極集電体は、空気極層の集電を行うものである。さらに、本発明に用いられる空気極集電体は、通常、カーボン材料から構成されている。カーボン材料は、耐腐食性に優れるという利点、電子伝導性に優れているという利点、金属に比べて軽いため重量当たりのエネルギー密度が高くなるという利点を有する。このようなカーボン材料としては、例えばカーボンファイバー(炭素繊維)、賦活カーボン(カーボン板を賦活したもの)等を挙げることができ、中でもカーボンファイバーが好ましい。電子が繊維を通じて伝導することができ、電子伝導性が高いからである。カーボンファイバーの種類としては、例えばPANカーボンファイバー、ピッチカーボンファイバー等を挙げることができる。
 本発明における空気極集電体の構造は、所望の電子伝導性を確保できれば特に限定されるものではなく、ガス拡散性を有する多孔質構造であっても良く、ガス拡散性を有しない緻密構造であっても良い。中でも、本発明においては、空気集電体が、ガス拡散性を有する多孔質構造を有していることが好ましい。多孔質構造の具体例としては、メッシュ構造、不織布状構造、および連結孔等を有する三次元網目構造等を挙げることができる。多孔質構造の気孔率としては、特に限定されるものではないが、例えば20%~99%の範囲内であることが好ましい。
 上述したカーボンファイバーを用いた空気極集電体としては、例えば、カーボンクロスおよびカーボンペーパー等を挙げることができる。カーボンクロスとは、一般的に、カーボンファイバーを規則正しく編み込んだものをいう(上記のメッシュ構造に該当する)。これに対して、カーボンペーパーとは、一般的に、カーボンファイバーをランダムに配列させたものをいう(上記の不織布構造に該当する)。また、カーボンクロスおよびカーボンペーパーは、焼結処理されたものや賦活処理されたものであっても良い。また、本発明においては、カーボンクロスやカーボンファイバーを、それぞれ重ねて用いても良い。これにより、機械的強度が向上した空気極集電体を得ることができるからである。
 本発明における空気極集電体の厚さは、例えば10μm~1000μmの範囲内、中でも20μm~400μmの範囲内であることが好ましい。
(2)空気極層
 本発明に用いられる空気極層は、少なくとも導電性材料を含有するものである。さらに、必要に応じて、触媒および結着材の少なくとも一方を含有していても良い。
 空気極層に用いられる導電性材料としては、導電性を有するものであれば特に限定されるものではないが、例えばカーボン材料等を挙げることができる。さらに、このカーボン材料は、多孔質構造を有するものであっても良く、多孔質構造を有しないものであっても良いが、本発明においては、多孔質構造を有するものであることが好ましい。比表面積が大きく、多くの反応場を提供することができるからである。多孔質構造を有するカーボン材料としては、具体的にはメソポーラスカーボン等を挙げることができる。一方、多孔質構造を有しないカーボン材料としては、具体的にはグラファイト、アセチレンブラック、カーボンナノチューブおよびカーボンファイバー等を挙げることができる。空気極層における導電性材料の含有量としては、例えば10重量%~99重量%の範囲内であることが好ましい。導電性材料の含有量が少なすぎると、反応場が減少し、電池容量の低下が生じる可能性があり、導電性材料の含有量が多すぎると、相対的に触媒や結着材の含有量が減り、所望の空気極層が得られない可能性があるからである。
 また、本発明に用いられる空気極層は、反応を促進させる触媒を含有していても良い。電極反応がよりスムーズに行われるからである。中でも、導電性材料は、触媒を担持していることが好ましい。上記触媒としては、例えば二酸化マンガン(MnO)、二酸化セリウム(CeO)等の酸化物触媒、フタロシアニン、ポリフィリン等の大環状化合物、および上記大環状化合物に遷移金属(例えばCo)が配位した錯体等を挙げることができる。空気極層における触媒の含有量としては、例えば1重量%~30重量%の範囲内、中でも5重量%~20重量%の範囲内であることが好ましい。触媒の含有量が少なすぎると、充分な触媒機能を発揮できない可能性があり、触媒の含有量が多すぎると、相対的に導電性材料の含有量が減り、反応場が減少し、電池容量の低下が生じる可能性があるからである。
 また、本発明に用いられる空気極層は、導電性材料を固定化する結着材を含有していても良い。結着材としては、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素含有結着材等を挙げることができる。空気極層における結着材の含有量としては、例えば40重量%以下、中でも1重量%~10重量%の範囲内であることが好ましい。
 空気極層の厚さは、空気二次電池の用途等により異なるものであるが、例えば2μm~500μmの範囲内、中でも5μm~300μmの範囲内であることが好ましい。
(3)空気極の形成方法
 本発明における空気極の形成方法は、上述した空気極を形成することができる方法であれば特に限定されるものではない。空気極の形成方法の一例としては、まず、導電性材料、触媒および結着材を含有する空気極層形成用の組成物を作製し、次に、この組成物を、空気極集電体上に塗布して、乾燥する方法等を挙げることができる。
2.非水電解液
 次に、本発明に用いられる非水電解液について説明する。本発明に用いられる非水電解液は、負極層および空気極層の間で金属イオンの伝導を行うものである。さらに、非水電解液は、通常、スルホンイミド塩および有機溶媒(非水溶媒)を含有する。本発明に用いられるスルホンイミド塩としては、例えば、下記一般式(1)で表される化合物を挙げることができる。一般式(1)において、Mはアルカリ金属元素であり、RおよびRは、それぞれ独立に、フッ素元素および炭素元素を含む官能基である。また、RおよびRは、互いに結合し環構造を形成していても良い。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、Mはアルカリ金属元素であり、通常、このアルカリ金属イオンが、空気二次電池の伝導イオンとなる。上記アルカリ金属イオンとしては、例えば、Liイオン、NaイオンおよびKイオン等を挙げることができ、中でもLiイオンが好ましい。エネルギー密度の高い電池を得ることができるからである。一方、一般式(1)において、RおよびRは、フッ素元素および炭素元素を含む官能基であり、中でも、フッ素元素および炭素元素のみから構成される官能基であることが好ましい。特に、本発明においては、RおよびRが-C2n+1であることが好ましい。充電電圧を充分に低くすることができるからである。なお、nの値は、例えば1~6であることが好ましく、1~4であることがより好ましい。
 MがLiであり、RおよびRが-C2n+1であるスルホンイミド塩としては、具体的には、(CFSONLi(LiTFSIと称する場合がある)、(CSO)(CFSO)NLi、(CSONLi(LiBETIと称する場合がある)、(CSO)(CFSO)NLi、(CSO)(CSO)NLi、(CSONLi、(CSO)(CFSO)NLi、(CSO)(CSO)NLi、(CSO)(CSO)NLi、(CSONLi等を挙げることができ、中でもLiTFSIおよびLiBETIが好ましい。
 また、一般式(1)において、RおよびRは、互いに結合し環構造を形成していても良い。このような環状スルホイミド塩としては、具体的には、CF(CFSONLi等を挙げることができる。また、非水電解液におけるスルホンイミド塩の濃度は、例えば0.3mol/L~3mol/Lの範囲内、中でも0.5mol/L~2mol/Lの範囲内であることが好ましい。
 上記有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランおよびこれらの混合物等を挙げることができる。また、上記有機溶媒は、酸素溶解性が高い溶媒であることが好ましい。溶存した酸素を効率良く反応に用いることができるからである。なお、本発明においては、溶媒として、イオン性液体(常温溶融塩)を用いても良い。
 また、本発明に用いられる非水電解液は、ポリマーを添加し、非水ゲル電解質として用いても良い。例えば、リチウム空気二次電池の非水ゲル電解質は、上述した非水電解液に、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)またはポリメチルメタクリレート(PMMA)等のポリマーを添加し、ゲル化することにより、得ることができる。
3.負極
 次に、本発明に用いられる負極について説明する。本発明に用いられる負極は、負極活物質を含有する負極層と、上記負極層の集電を行う負極集電体と、を有するものである。
(1)負極層
 本発明に用いられる負極層は、少なくとも負極活物質を含有する。負極活物質は、金属イオンを吸蔵・放出することができるものであれば特に限定されるものではないが、例えば金属単体、合金、金属酸化物、金属窒化物等を挙げることができる。上記金属イオンとしては、例えばアルカリ金属イオンを挙げることができる。さらに、上記アルカリ金属イオンとしては、例えばLiイオン、NaイオンおよびKイオン等を挙げることができ、中でもLiイオンが好ましい。エネルギー密度の高い電池を得ることができるからである。
 また、リチウム元素を有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。また、リチウム元素を有する金属酸化物としては、例えばリチウムチタン酸化物等を挙げることができる。また、リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等を挙げることができる。
 また、本発明における負極層は、負極活物質のみを含有するものであっても良く、負極活物質の他に、導電性材料および結着材の少なくとも一方を含有するものであっても良い。例えば、負極活物質が箔状である場合は、負極活物質のみを含有する負極層とすることができる。一方、負極活物質が粉末状である場合は、導電性材料および結着材を有する負極層とすることができる。なお、導電性材料および結着材については、上述した「1.空気極」に記載した内容と同様であるので、ここでの説明は省略する。また、負極層の厚さについては、目的とする空気二次電池の構成に応じて適宜選択することが好ましい。
(2)負極集電体
 本発明に用いられる負極集電体は、負極層の集電を行うものである。負極集電体の材料としては、導電性を有するものであれば特に限定されるものではないが、例えば、銅、ステンレス、ニッケル等を挙げることができる。上記負極集電体の形状としては、例えば箔状、板状およびメッシュ(グリッド)状等を挙げることができる。本発明においては、後述する電池ケースが負極集電体の機能を兼ね備えていても良い。また、負極集電体の厚さについては、目的とする空気二次電池の構成に応じて適宜選択することが好ましい。
(3)負極の形成方法
 本発明における負極の形成方法は、上述した負極を形成することができる方法であれば特に限定されるものではない。負極の形成方法の一例としては、箔状の負極活物質を、負極集電体上に配置して、加圧する方法を挙げることができる。また、負極の形成方法の他の例としては、負極活物質および結着材を含有する負極層形成用の組成物を作製し、次に、この組成物を、負極集電体上に塗布して、乾燥する方法等を挙げることができる。
4.電池ケース
 次に、本発明に用いられる電池ケースについて説明する。本発明に用いられる電池ケースの形状としては、上述した空気極、負極、非水電解液を収納することができれば特に限定されるものではないが、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。また、電池ケースは、大気開放型の電池ケースであっても良く、密閉型の電池ケースであっても良い。大気開放型の電池ケースは、上述した図1に示すように、大気と接触可能な電池ケースである。一方、電池ケースが密閉型電池ケースである場合は、密閉型電池ケースに、気体(空気)の導入管および排気管を設けることが好ましい。この場合、導入・排気する気体は、酸素濃度が高いことが好ましく、純酸素であることがより好ましい。また、放電時には酸素濃度を高くし、充電時には酸素濃度を低くすることが好ましい。
5.空気二次電池
 本発明の空気二次電池は、空気極層および負極層の間に、非水電解液を保持するセパレータを有することが好ましい。より安全性の高い空気二次電池を得ることができるからである。上記セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。また、セパレータの厚さは、空気二次電池の用途等に応じて、適宜選択することが好ましい。
 また、本発明の空気二次電池の種類は、伝導イオンとなる金属イオンの種類に応じて異なるものである。上記金属イオンとしては、例えばアルカリ金属イオンを挙げることができる。さらに、上記アルカリ金属イオンとしては、例えばLiイオン、NaイオンおよびKイオン等を挙げることができ、中でもLiイオンが好ましい。すなわち、本発明の空気二次電池の種類としては、例えばリチウム空気二次電池、ナトリウム空気二次電池およびカリウム空気二次電池等を挙げることができ、中でもリチウム空気二次電池が好ましい。エネルギー密度の高い電池を得ることができるからである。また、本発明の空気二次電池の用途としては、例えば車両搭載用途、定置型電源用途、家庭用電源用途等を挙げることができる。本発明の空気二次電池を製造する方法は、特に限定されるものではなく、一般的な空気二次電池の製造方法と同様である。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
[実施例1]
(空気極の作製)
 まず、ケッチェンブラック(ケッチェンブラックインターナショナル社製)85重量部と、電解二酸化マンガン(高純度化学研究所製)15重量部と、PVDF溶液(クレハ社製)100重量部とを混合し、これにNMP(N-メチルピロリドン、関東化学社製)を添加し、混練機で混合することにより、空気極層形成用ペーストを得た。その後、空気極層形成用ペーストを、カーボンペーパー(空気極集電体、東レ社製、TGP-H-090、厚さ0.28mm)上に塗布し、乾燥によりNMPを除去した。その後、φ18mmで打ち抜いて、空気極を得た。
(リチウム空気二次電池の組立て)
 次に、得られた空気極を用いたリチウム空気二次電池を作製した(図2参照)。なお、電池の組立はすべてアルゴンボックス内(露点-40℃以下)で行った。ここで、リチウム空気二次電池20は、テフロン(登録商標)製の電池ケース11a、11bと、SUS製の電池ケース11cと、を有している。なお、電池ケース11bおよび電池ケース11cは、ボルト12で接合されている。さらに、電池ケース11aには酸素を供給する開口部を有しており、その開口部には、中空状の電流取出し部13が設けられている。また、空気極14には上記の方法で得られた空気極を用い、非水電解液15には(CFSONLiをプロピレンカーボネート(PC)に濃度1Mで溶解させた非水電解液を用い、負極層16には金属リチウム(本城金属社製、厚み200μm、直径19mm)を用いた。なお、非水電解液15は、空気極14の上部が浸る程度まで加えた。
(評価用セルの作製)
 次に、SUS製の電流取出し部13に空気極リード23を接続し、SUS製の電池ケース11cに負極リード25を接続し、リチウム空気二次電池20を、容積1000ccのガラス容器21に収納した。その後、ガラス容器21を密閉し、密封したガラス容器21をアルゴンボックス内から取出した。次に、酸素のガスボンベからガス導入部22を介して酸素を導入し、同時に、ガス排気部24から排気を行い、ガラス容器内を、アルゴン雰囲気から酸素雰囲気に置換した。これにより、評価用セルを得た。
[実施例2]
 非水電解液15において、(CFSONLiの代わりに、(CSONLiを用いたこと以外は、実施例1と同様にして評価用セルを得た。
[比較例1]
 非水電解液15において、(CFSONLiの代わりに、LiClOを用いたこと以外は、実施例1と同様にして評価用セルを得た。
[比較例2]
 非水電解液15において、(CFSONLiの代わりに、LiPFを用いたこと以外は、実施例1と同様にして評価用セルを得た。
[評価]
 実施例1、2および比較例1、2で得られた評価用セルを用いて、充放電試験を行った。下記に充放電の条件を示す。なお、充放電は放電スタートとし、25℃の恒温槽を用いて充放電を行った。
(1)100mA/(g-carbon)の電流で電池電圧2Vになるまで放電を行う
(2)放電後、1時間休止する。
(3)休止後、100mA/(g-carbon)の電流で電池電圧4.3Vになるまで充電を行う
 ここで「g-carbon」は、粉末カーボン重量を表す。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示されるように、実施例1、2では、1サイクル目の放電容量に対する、1サイクル目の充電容量は、ほぼ100%であった。これに対して、比較例1、2は、1サイクル目の放電容量に対する、1サイクル目の充電容量が、それぞれ78%、60%であった。特にLiPFを用いた場合(比較例2)は、放電に対する充電の効率が低かった。これは、LiF等の副反応生成物が発生するためであると考えられる。
 実施例1、2において、放電に対する充電の効率が良好な理由は、比較例1、2と比べて、充電電圧が低いためであると考えられる。比較例1、2では、充電電圧が高く、充電時に早く4.3Vに到達してしまうため、放電に対する充電の効率が悪くなったものと考えられる。なお、充電電圧が低くなる理由は、上述したように、スルホンイミド塩を含有する非水電解液は表面張力が小さいため、空気極集電体を構成するカーボン材料の表面の濡れ性が向上し、イオンの移動がスムーズになることで、充電反応(放電生成物の分解反応)が起こりやすくなるためであると考えられる。
 また、表1に示されるように、実施例1、2において、5サイクル目の充電容量は、1サイクル目の充電容量とほぼ同じ(ほぼ100%)であり、本発明の空気二次電池は、良好なサイクル特性を示すことが明らかになった。

Claims (5)

  1.  導電性材料を含有する空気極層および前記空気極層の集電を行う空気極集電体を有する空気極と、負極活物質を含有する負極層および前記負極層の集電を行う負極集電体を有する負極と、前記空気極層および前記負極層の間で金属イオンの伝導を担う非水電解液と、を有する空気二次電池であって、
     前記空気極集電体がカーボン材料から構成されており、前記非水電解液がスルホンイミド塩を含有することを特徴とする空気二次電池。
  2.  前記スルホンイミド塩が、下記一般式(1)で表される化合物であることを特徴とする請求の範囲第1項に記載の空気二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Mはアルカリ金属元素であり、RおよびRは、それぞれ独立に、フッ素元素および炭素元素を含む官能基である。また、RおよびRは、互いに結合し環構造を形成していても良い。)
  3.  前記カーボン材料が、カーボンファイバーであることを特徴とする請求の範囲第1項または第2項に記載の空気二次電池。
  4.  前記空気極集電体が、前記カーボンファイバーを用いた、カーボンペーパーまたはカーボンクロスであることを特徴とする請求の範囲第3項に記載の空気二次電池。
  5.  前記金属イオンが、Liイオンであることを特徴とする請求の範囲第1項から第4項までのいずれかに記載の空気二次電池。
PCT/JP2008/071542 2008-11-27 2008-11-27 空気二次電池 WO2010061451A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010500983A JP5104942B2 (ja) 2008-11-27 2008-11-27 空気二次電池
CN200880104967A CN101821897A (zh) 2008-11-27 2008-11-27 空气二次电池
US12/675,951 US20110129739A1 (en) 2008-11-27 2008-11-27 Air secondary battery
PCT/JP2008/071542 WO2010061451A1 (ja) 2008-11-27 2008-11-27 空気二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071542 WO2010061451A1 (ja) 2008-11-27 2008-11-27 空気二次電池

Publications (1)

Publication Number Publication Date
WO2010061451A1 true WO2010061451A1 (ja) 2010-06-03

Family

ID=42225344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071542 WO2010061451A1 (ja) 2008-11-27 2008-11-27 空気二次電池

Country Status (4)

Country Link
US (1) US20110129739A1 (ja)
JP (1) JP5104942B2 (ja)
CN (1) CN101821897A (ja)
WO (1) WO2010061451A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089266A (ja) * 2010-10-15 2012-05-10 Toyota Central R&D Labs Inc 非水電解液空気電池
WO2012071668A1 (fr) 2010-12-01 2012-06-07 HYDRO-QUéBEC Batterie lithium-air
JP2014238985A (ja) * 2013-06-07 2014-12-18 スズキ株式会社 リチウム空気電池の正極構造及び正極製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231269B2 (en) * 2011-02-22 2016-01-05 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte air battery
KR101365980B1 (ko) * 2011-06-24 2014-02-24 한양대학교 산학협력단 리튬 공기 전지
KR102031349B1 (ko) 2013-02-21 2019-10-14 삼성전자주식회사 양극, 이를 포함하는 리튬공기전지, 및 양극의 제조방법
JP2014209453A (ja) * 2013-03-26 2014-11-06 株式会社東芝 非水電解質空気電池
CN103219527B (zh) * 2013-04-12 2015-05-20 中国科学院长春应用化学研究所 一种锂-空气电池用空气电极及其制备方法
KR102155696B1 (ko) 2013-09-13 2020-09-15 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함한 리튬 공기 전지
KR102255300B1 (ko) 2014-05-16 2021-05-24 삼성전자주식회사 금속-공기 전지
EP2950380B1 (en) 2014-05-27 2017-04-12 Samsung Electronics Co., Ltd Electrolyte for lithium air battery and lithium air battery including the same
US9780386B2 (en) 2014-08-08 2017-10-03 Samsung Electronics Co., Ltd. Composite for lithium air battery, method of preparing the composite, and lithium air battery employing positive electrode including the composite
KR102280684B1 (ko) 2014-08-27 2021-07-22 삼성전자주식회사 리튬공기전지 및 이의 제조방법
US10381625B2 (en) 2014-12-19 2019-08-13 Samsung Electronics Co., Ltd. Composite membrane, preparation method thereof, anode structure including the composite membrane, and lithium secondary battery including the anode structure
KR102364843B1 (ko) 2015-04-28 2022-02-18 삼성전자주식회사 전기 화학 전지, 이를 포함하는 전기 화학 전지 모듈 및 전기 화학 전지 제조방법
KR102409386B1 (ko) 2015-07-08 2022-06-15 삼성전자주식회사 금속 공기 전지 시스템 및 그 작동 방법
EP3116058B1 (en) 2015-07-08 2019-12-04 Samsung Electronics Co., Ltd. Electrochemical battery and method of operating the same
CN105810891B (zh) * 2016-04-20 2018-12-11 浙江大学 具有多孔结构的MnO2/CeO2复合电极及其制备方法和应用
EP3457467B1 (en) * 2016-05-12 2023-03-15 Eliiy Power Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10916762B2 (en) 2016-11-01 2021-02-09 Samsung Electronics Co., Ltd. Cathode for metal-air battery including spaces for accommodating metal oxides formed during discharge of metal-air battery and metal-air battery including the same
US11476522B2 (en) 2017-11-15 2022-10-18 Samsung Electronics Co., Ltd. Metal-air battery
KR102626920B1 (ko) 2018-09-14 2024-01-18 삼성전자주식회사 금속-공기 전지
KR20210048291A (ko) 2019-10-23 2021-05-03 삼성전자주식회사 금속공기전지용 양극, 그 제조방법 및 이를 포함하는 금속공기전지
KR20210076688A (ko) 2019-12-16 2021-06-24 삼성전자주식회사 복합 고체전해질, 이를 포함하는 전기화학 셀, 및 상기 복합 고체전해질의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298934A (ja) * 2001-03-30 2002-10-11 Toshiba Corp 非水電解質電池
JP2004063262A (ja) * 2002-07-29 2004-02-26 Toshiba Corp 非水電解質空気電池
JP2006286414A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 非水電解質空気電池
JP2008300273A (ja) * 2007-06-01 2008-12-11 Toyota Central R&D Labs Inc 非水系空気電池及びその触媒

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248682A (en) * 1979-09-27 1981-02-03 Prototech Company Carbon-cloth-based electrocatalytic gas diffusion electrodes, assembly and electrochemical cells comprising the same
US5476734A (en) * 1994-04-28 1995-12-19 Westinghouse Electric Corporation Current collector with integral tab for high temperature cell
JP4102184B2 (ja) * 2002-03-15 2008-06-18 株式会社東芝 アルミニウム負極電池
CN100397686C (zh) * 2004-04-06 2008-06-25 新源动力股份有限公司 一种双效空气电极及其制备方法
JP3996629B2 (ja) * 2005-08-25 2007-10-24 松下電器産業株式会社 酸素還元用電極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298934A (ja) * 2001-03-30 2002-10-11 Toshiba Corp 非水電解質電池
JP2004063262A (ja) * 2002-07-29 2004-02-26 Toshiba Corp 非水電解質空気電池
JP2006286414A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 非水電解質空気電池
JP2008300273A (ja) * 2007-06-01 2008-12-11 Toyota Central R&D Labs Inc 非水系空気電池及びその触媒

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089266A (ja) * 2010-10-15 2012-05-10 Toyota Central R&D Labs Inc 非水電解液空気電池
WO2012071668A1 (fr) 2010-12-01 2012-06-07 HYDRO-QUéBEC Batterie lithium-air
US20140023940A1 (en) * 2010-12-01 2014-01-23 Hydro-Quebec Lithium-air battery
EP2647081A4 (fr) * 2010-12-01 2016-08-10 Hydro Québec Batterie lithium-air
JP2014238985A (ja) * 2013-06-07 2014-12-18 スズキ株式会社 リチウム空気電池の正極構造及び正極製造方法

Also Published As

Publication number Publication date
JP5104942B2 (ja) 2012-12-19
US20110129739A1 (en) 2011-06-02
CN101821897A (zh) 2010-09-01
JPWO2010061451A1 (ja) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5104942B2 (ja) 空気二次電池
JP5056942B2 (ja) 空気極および非水空気電池
JP5062322B2 (ja) 空気二次電池
JP5050225B2 (ja) 空気二次電池およびその製造方法
JP5637317B2 (ja) 金属空気電池
JP5267575B2 (ja) 空気電池
JP2010108904A (ja) 金属空気電池
JP2013504143A (ja) 空気極および金属空気電池
JP5217278B2 (ja) 空気電池システム
WO2013053378A1 (en) Stable non-aqueous electrolyte promoting ideal reaction process in rechargeable lithium-air batteries
JP2012084379A (ja) 金属空気電池システム、及び金属空気電池の充電方法
JP5434062B2 (ja) 空気電池
JP2014072079A (ja) 金属空気電池用の空気極
JP2018133168A (ja) リチウム空気電池及びその使用方法
JP5298610B2 (ja) 空気電池
JP2010177036A (ja) 空気極層
US10629970B2 (en) Lithium air battery including negative electrode, positive electrode, nonaqueous lithium ion conductor, and copper ion
JP2012174349A (ja) 空気一次電池
JP2012109164A (ja) 二次電池用負極及び空気二次電池
JP5783150B2 (ja) 金属空気電池
AU2009282538B2 (en) Air cathode and nonaqueous air battery
US20190067765A1 (en) Lithium air battery that includes nonaqueous lithium ion conductor
JP2014035857A (ja) 空気電池用空気極、及び当該空気極を備える空気電池
JP2009289450A (ja) 空気電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880104967.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010500983

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12675951

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878408

Country of ref document: EP

Kind code of ref document: A1