WO2010058460A1 - Système de batterie secondaire - Google Patents

Système de batterie secondaire Download PDF

Info

Publication number
WO2010058460A1
WO2010058460A1 PCT/JP2008/071040 JP2008071040W WO2010058460A1 WO 2010058460 A1 WO2010058460 A1 WO 2010058460A1 JP 2008071040 W JP2008071040 W JP 2008071040W WO 2010058460 A1 WO2010058460 A1 WO 2010058460A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
secondary battery
battery system
stopped
Prior art date
Application number
PCT/JP2008/071040
Other languages
English (en)
Japanese (ja)
Inventor
誠 安富
松夫 坂東
玉越 富夫
Original Assignee
東芝三菱電機産業システム株式会社
日本風力開発株式会社
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社, 日本風力開発株式会社, 日本碍子株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to KR1020117011428A priority Critical patent/KR101493124B1/ko
Priority to EP08878257.8A priority patent/EP2352215A4/fr
Priority to CN200880132071.XA priority patent/CN102217162B/zh
Priority to PCT/JP2008/071040 priority patent/WO2010058460A1/fr
Priority to MYPI2011002231A priority patent/MY160070A/en
Priority to JP2010539071A priority patent/JP5501248B2/ja
Priority to CA2743994A priority patent/CA2743994C/fr
Priority to AU2008364377A priority patent/AU2008364377B2/en
Publication of WO2010058460A1 publication Critical patent/WO2010058460A1/fr
Priority to US13/109,766 priority patent/US9214814B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system using a secondary battery.
  • a secondary battery system that supplies power using a secondary battery is known.
  • Such a secondary battery system is used, for example, to supplement power at a power receiving point (for example, “Monthly Energy January issue”, Nihon Kogyo Shimbun, released on December 28, 2004, p.82-84).
  • the secondary battery system may not be operated efficiently due to the remaining amount of each secondary battery.
  • An object of the present invention is to provide a secondary battery system that can be efficiently operated in a secondary battery system using a plurality of secondary batteries.
  • a secondary battery system is provided corresponding to each of two or more secondary batteries and the two or more secondary batteries, and converts electric power supplied from the corresponding secondary battery.
  • the detection means for detecting that the storage battery remaining amount of the secondary battery is equal to or less than a predetermined ratio, and the operation of the power conversion means to be detected by the detection means are stopped and stopped It is the structure provided with the operation switching means which starts the driving
  • FIG. 1 is a configuration diagram showing the configuration of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2A is a graph showing the transition of the remaining storage battery capacity of the first secondary battery of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2B is a graph showing the transition of the output power of the first power converter of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2C is a graph showing the transition of the remaining storage battery capacity of the second secondary battery of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2D is a graph showing a transition of output power of the second power conversion device of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2E is a graph showing the transition of the remaining battery level of the third secondary battery of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2F is a graph showing a transition of output power of the third power converter of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 2G is a graph showing the transition of the output power of the secondary battery system according to the first embodiment of the present invention.
  • FIG. 3 is a configuration diagram showing the configuration of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4A is a graph showing a transition of output power of the first power conversion device of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4B is a graph showing the transition of the output power of the second power conversion device of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4C is a graph showing the transition of the output power of the third power converter of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4D is a graph showing transition of output power of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing the configuration of the secondary battery system according to the first embodiment of the present invention.
  • symbol is attached
  • the secondary battery system includes secondary batteries B1, B2, and B3, power converters INV1, INV2, and INV3 connected to the secondary batteries B1, B2, and B3, and outputs of the power converters INV1, INV2, and INV3, respectively. So that the transformers TR1, TR2, TR3 connected to the respective sides, the circuit breakers K1, K2, K3 connected to the transformers TR1, TR2, TR3, respectively, and the output sides of the circuit breakers K1, K2, K3 are short-circuited. And a control device 1 that controls the three power converters INV1, INV2, and INV3.
  • the circuit breaker KD is provided between the connection point and the load side that supplies power.
  • Secondary batteries B1, B2, B3 are, for example, sodium-sulfur batteries (NAS batteries).
  • the secondary batteries B1, B2, B3 supply the electric power charged to the respective power converters INV1, INV2, INV3 connected thereto as DC power.
  • the power converters INV1, INV2, and INV3 convert the DC power supplied from the secondary batteries B1, B2, and B3, respectively, into AC power based on a command from the control device 1.
  • the power converters INV1, INV2, and INV3 output the converted AC power to the transformers TR1, TR2, and TR3 connected to each of them.
  • the transformer TR1 supplies the AC power supplied from the power converter INV1 to the load-side power system through the circuit breaker K1 and the circuit breaker KD sequentially.
  • the transformer TR2 supplies the AC power supplied from the power converter INV2 to the load-side power system through the circuit breaker K2 and the circuit breaker KD sequentially.
  • the transformer TR3 supplies the AC power supplied from the power converter INV3 to the load-side power system through the circuit breaker K3 and the circuit breaker KD sequentially.
  • the circuit breakers K1, K2, K3 are opened to stop the supply of AC power output from the power converters INV1, INV2, INV3 to the load side, respectively.
  • the circuit breaker KD stops the power supply from the secondary battery system by opening.
  • the control device 1 controls the power conversion devices INV1, INV2, and INV3 based on the respective remaining battery levels of the secondary batteries B1, B2, and B3.
  • set values for switching the operation of the power conversion devices INV1, INV2, and INV3 are set.
  • the control device 1 switches the operation of the power conversion devices INV1, INV2, and INV3 based on the set values and the remaining battery levels of the secondary batteries B1, B2, and B3.
  • control of the control device 1 will be described with reference to FIGS. 2A, 2B, 2C, 2D, 2E, 2F, and 2G.
  • FIG. 2A, FIG. 2B, FIG. 2C, FIG. 2D, FIG. 2E, FIG. 2F, and FIG. 2G are power converters INV1, INV2 controlled by the control device 1 of the secondary battery system according to the first embodiment of the present invention.
  • INV3 is a graph showing the transition of the output power of the secondary battery B1, B2, B3 remaining battery.
  • FIG. 2A is a graph showing the transition of the remaining battery level of the secondary battery B1.
  • FIG. 2B is a graph showing the transition of the output power of the power converter INV1.
  • FIG. 2C is a graph showing the transition of the remaining battery level of the secondary battery B2.
  • FIG. 2D is a graph showing the transition of the output power of the power converter INV2.
  • FIG. 2E is a graph showing the transition of the remaining battery level of the secondary battery B3.
  • FIG. 2F is a graph showing the transition of the output power of the power converter INV3.
  • FIG. 2G is a graph showing the transition of the output power of the secondary battery system.
  • the secondary battery system needs to supply a power amount of 400 kW to the power system on the load side. It is assumed that the power converters INV1, INV2, and INV3 have a maximum generated power of 200 kW. It is assumed that the set value for switching the operation of the power converters INV1, INV2, and INV3 set in the control device 1 is 70%.
  • control device 1 starts control from time T0.
  • the supply power required for the power system on the load side of the secondary battery system is 400 kW, and the maximum generated power of each of the power converters INV1, INV2, and INV3 is 200 kW. Can be supplied. Therefore, the control device 1 supplies power with the two power conversion devices and stops the remaining one power conversion device.
  • Remaining battery remaining amounts of the secondary batteries B1, B2, B3 at time T0 are as follows.
  • the storage battery remaining amount of the secondary battery B1 is 90%.
  • the remaining capacity of the secondary battery B2 is 100%.
  • the storage battery remaining amount of the secondary battery B1 is 70%.
  • control device 1 operates the power conversion devices INV1 and INV2 connected to the two secondary batteries B1 and B2 from the one with the larger remaining battery capacity.
  • the power converter INV3 connected to the secondary battery B3 with the smallest remaining amount of storage battery is stopped.
  • Control device 1 operates power converters INV1 and INV2 from time T0 to time T1.
  • the remaining battery level of the power converter INV1 is about 49%.
  • This 49% is a value corresponding to 70%, which is a set value of the control device 1, with respect to 70% of the storage battery remaining amount of the stopped power conversion device INV3.
  • control device 1 stops the power conversion device INV1 and operates the power conversion device INV3.
  • the storage battery remaining amount of the power conversion device being stopped is A%
  • the set value of the control device 1 is B%
  • the remaining storage battery remaining amount of the operating power conversion device is C%. Then, the control apparatus 1 switches a power converter device, when the following inequality is materialized.
  • control device 1 stops the operation of the power conversion device with the least remaining battery capacity, and starts the operation of the power conversion device that has been stopped.
  • the power conversion device with the least remaining battery capacity is the power conversion device INV1. Further, the power conversion device that has been stopped is the power conversion device INV3. Therefore, the control device 1 stops the operation of the power conversion device INV1, and starts the operation of the power conversion device INV3.
  • the control device 1 operates the power conversion devices INV1, INV2, and INV3 while repeating the above-described procedure.
  • the secondary battery system always supplies one power conversion device when the supply power necessary for the power system on the load side can be supplied even if one power conversion device is stopped. By stopping, the loss of one power conversion device can be reduced as a whole facility.
  • the secondary battery system can supply power to the load-side power system by operating the power converter so that the storage battery remaining amount of all the secondary batteries B1, B2, and B3 is uniform.
  • the operation and maintenance of the equipment in the secondary battery system can be facilitated by keeping the storage battery remaining amount uniform.
  • FIG. 3 is a configuration diagram showing the configuration of the secondary battery system according to the second embodiment of the present invention.
  • the secondary battery system according to the present embodiment is the same as that of the secondary battery system according to the first embodiment shown in FIG. 1 except that the control device 1 is replaced with the control device 1A.
  • the configuration is the same as that of the secondary battery system.
  • Control device 1A controls power conversion devices INV1, INV2, and INV3.
  • set values for switching the operation of the power conversion devices INV1, INV2, and INV3 are set.
  • the control device 1A switches the operation of the power conversion devices INV1, INV2, and INV3 based on this set value.
  • control of the control device 1A will be described with reference to FIGS. 4A, 4B, 4C, and 4D.
  • FIG. 4A, 4B, 4C, and 4D show transitions of output power of the power conversion devices INV1, INV2, and INV3 under the control of the control device 1A of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4A, 4B, 4C, and 4D show transitions of output power of the power conversion devices INV1, INV2, and INV3 under the control of the control device 1A of the secondary battery system according to the second embodiment of the present invention.
  • FIG. 4A is a graph showing the transition of the output power of the power converter INV1.
  • FIG. 4B is a graph showing the transition of the output power of the power converter INV2.
  • FIG. 4C is a graph showing the transition of the output power of the power converter INV3.
  • FIG. 4D is a graph showing the transition of the output power of the secondary battery system.
  • the secondary battery system needs to supply a power amount of 400 kW to the power system on the load side.
  • the power converters INV1, INV2, and INV3 have a maximum generated power of 200 kW.
  • the storage battery remaining amounts of the secondary batteries B1, B2, and B3 corresponding to the power conversion devices INV1, INV2, and INV3 are substantially uniform.
  • the set value for switching the operation of the power converters INV1, INV2, and INV3 set in the control device 1A is time T.
  • control device 1A starts control from time T0.
  • the supply power required for the power system on the load side of the secondary battery system is 400 kW, and the maximum generated power of each of the power converters INV1, INV2, and INV3 is 200 kW. Can be supplied. Therefore, the control device 1A supplies power with the two power conversion devices and stops the remaining one power conversion device.
  • Control device 1A starts operation of the two power conversion devices INV1 and INV3.
  • control device 1A stops the operation of power conversion device INV3 and starts the operation of power conversion device INV2. To do. Thereby, 1 A of control apparatuses switch the power converter device to drive from power converter device INV3 to power converter device INV2.
  • control device 1A stops the operation of the power conversion device INV1 and starts the operation of the power conversion device INV3. Thereby, 1 A of control apparatuses switch the power converter to drive from power converter INV1 to power converter INV3.
  • the control device 1A switches the power converters INV1, INV2, and INV3 to be operated.
  • the control device 1A operates the power conversion devices INV1, INV2, and INV3 while repeating this switching.
  • the power converters INV1, INV2, and INV3 are operated continuously for a time T, which is a set value, and repeatedly stop under the control of the control device 1A.
  • the secondary battery system always supplies one power conversion device when the supply power necessary for the power system on the load side can be supplied even if one power conversion device is stopped. By stopping, the loss of one power conversion device can be reduced as a whole facility.
  • the number of power converters to be stopped is one, it may be two or more as long as necessary power can be supplied to the load-side power system.
  • the power conversion device corresponding to the secondary battery with the largest remaining amount of storage battery is selected. It is good as well. Thereby, the storage battery residual amount of all the secondary batteries can be consumed equally.
  • a NAS battery is used as the secondary battery, but another battery may be used.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)

Abstract

L’invention concerne un système de batterie secondaire qui convertit un courant continu alimentant des batteries secondaires (B1 à B3) en un courant alternatif au moyen d’inverseurs de courant (INV1 à INV3) et fournit le courant alternatif converti à un système électrique sur un côté de charge. Le système de batterie secondaire comprend un contrôleur (1) pour que, lorsque la quantité d’énergie restant dans la batterie secondaire qui correspond à un inverseur de courant en fonctionnement, atteint un niveau prédéterminé inférieur ou égal à une quantité d’énergie restant dans la batterie secondaire qui correspond à un inverseur de puissance arrêté, il arrête l’inverseur de puissance qui lance et exécute le fonctionnement de l’inverseur de puissance qui est arrêté.
PCT/JP2008/071040 2008-11-19 2008-11-19 Système de batterie secondaire WO2010058460A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020117011428A KR101493124B1 (ko) 2008-11-19 2008-11-19 2차 전지 시스템
EP08878257.8A EP2352215A4 (fr) 2008-11-19 2008-11-19 Système de batterie secondaire
CN200880132071.XA CN102217162B (zh) 2008-11-19 2008-11-19 充电电池系统
PCT/JP2008/071040 WO2010058460A1 (fr) 2008-11-19 2008-11-19 Système de batterie secondaire
MYPI2011002231A MY160070A (en) 2008-11-19 2008-11-19 Secondry battery system
JP2010539071A JP5501248B2 (ja) 2008-11-19 2008-11-19 二次電池システム
CA2743994A CA2743994C (fr) 2008-11-19 2008-11-19 Systeme de batterie secondaire
AU2008364377A AU2008364377B2 (en) 2008-11-19 2008-11-19 Secondary battery system
US13/109,766 US9214814B2 (en) 2008-11-19 2011-05-17 Secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071040 WO2010058460A1 (fr) 2008-11-19 2008-11-19 Système de batterie secondaire

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/109,766 Continuation US9214814B2 (en) 2008-11-19 2011-05-17 Secondary battery system

Publications (1)

Publication Number Publication Date
WO2010058460A1 true WO2010058460A1 (fr) 2010-05-27

Family

ID=42197907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071040 WO2010058460A1 (fr) 2008-11-19 2008-11-19 Système de batterie secondaire

Country Status (9)

Country Link
US (1) US9214814B2 (fr)
EP (1) EP2352215A4 (fr)
JP (1) JP5501248B2 (fr)
KR (1) KR101493124B1 (fr)
CN (1) CN102217162B (fr)
AU (1) AU2008364377B2 (fr)
CA (1) CA2743994C (fr)
MY (1) MY160070A (fr)
WO (1) WO2010058460A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122826A (zh) * 2011-01-17 2011-07-13 中国南方电网有限责任公司电网技术研究中心 一种大容量蓄电池储能双向换流器
CN102457072A (zh) * 2010-10-22 2012-05-16 湖州雷霆能源科技有限公司 光电互补电池的充放电方法及系统
JP2013042584A (ja) * 2011-08-12 2013-02-28 Ihi Corp 電源システム
JP2013172567A (ja) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd 電力制御装置および電力制御方法
JPWO2012169046A1 (ja) * 2011-06-09 2015-02-23 東芝三菱電機産業システム株式会社 無停電電源システム
EP2698897A4 (fr) * 2011-04-11 2015-06-10 Ngk Insulators Ltd Dispositif de stockage d'énergie et procédé de commande de fonctionnement de dispositif de stockage d'énergie

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355040A (zh) * 2011-10-19 2012-02-15 北京四方继保自动化股份有限公司 与电池成组应用相匹配的变流器模块化设计与控制方法
JP6323822B1 (ja) * 2017-07-07 2018-05-16 Mirai−Labo株式会社 電源装置および電源制御方法
EP3462560B1 (fr) * 2017-09-27 2021-05-12 Indielux UG (Haftungsbeschränkt) Procédé et système permettant de déterminer et de réguler une alimentation d'électricité à un réseau électrique à partir d'un côté de charge d'un circuit électrique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140285A (ja) * 1994-11-07 1996-05-31 Hitachi Ltd 電力貯蔵システム
JPH0946914A (ja) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd 電源供給装置及びその充電装置
JPH11252812A (ja) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd バッテリ放電制御方法および装置
JP2000116014A (ja) * 1998-10-06 2000-04-21 Hitachi Ltd 電力貯蔵装置
JP2001327083A (ja) * 2000-05-18 2001-11-22 Ngk Insulators Ltd 高温二次電池による電力貯蔵及び補償システム
JP2003256083A (ja) * 2002-03-01 2003-09-10 Internatl Business Mach Corp <Ibm> 電気機器、コンピュータ装置、コントローラ、電池切換方法、およびプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044954C (zh) * 1995-02-20 1999-09-01 三洋电机株式会社 向电子器具供电的电源装置
US6111764A (en) * 1998-10-12 2000-08-29 Sanyo Denki Co., Ltd. Power failure-free power supply apparatus
JP3697121B2 (ja) * 1998-10-15 2005-09-21 キヤノン株式会社 太陽光発電装置およびその制御方法
JP2001103740A (ja) * 1999-09-30 2001-04-13 Oki Electric Ind Co Ltd 電源回路
JP3398703B2 (ja) * 2000-02-14 2003-04-21 米沢日本電気株式会社 放電回路及びデューティー比設定方法
JP4003553B2 (ja) * 2002-06-26 2007-11-07 Jfeスチール株式会社 副生ガスを用いた発電方法および発電設備
US7081737B2 (en) * 2003-06-19 2006-07-25 O2Micro International Limited Battery cell monitoring and balancing circuit
CN1300910C (zh) * 2003-07-23 2007-02-14 黄府能 一种电池供电装置
JP5039980B2 (ja) 2005-11-14 2012-10-03 日立ビークルエナジー株式会社 二次電池モジュール
JP4784566B2 (ja) * 2006-07-12 2011-10-05 日産自動車株式会社 二次電池の入出力電力制御装置及び入出力電力制御方法
JP4886562B2 (ja) * 2007-03-19 2012-02-29 本田技研工業株式会社 電力変換器及び多入出力電力変換器
CN101436830B (zh) * 2007-11-15 2011-06-08 鸿富锦精密工业(深圳)有限公司 电源装置及其保护方法
WO2009091395A1 (fr) * 2008-01-17 2009-07-23 Hewlett-Packard Development Company, L.P. Gestion de système d'alimentation de secours
JP4530078B2 (ja) * 2008-06-04 2010-08-25 トヨタ自動車株式会社 蓄電制御装置及び車両
US8571734B2 (en) * 2008-10-31 2013-10-29 Toyota Jidosha Kabushiki Kaisha Power supply system for electrically powered vehicle and method for controlling the same
JP5035427B2 (ja) * 2008-11-28 2012-09-26 トヨタ自動車株式会社 車両の充電システム
CN102414043B (zh) * 2009-04-23 2014-03-19 丰田自动车株式会社 电动车辆的电源系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140285A (ja) * 1994-11-07 1996-05-31 Hitachi Ltd 電力貯蔵システム
JPH0946914A (ja) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd 電源供給装置及びその充電装置
JPH11252812A (ja) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd バッテリ放電制御方法および装置
JP2000116014A (ja) * 1998-10-06 2000-04-21 Hitachi Ltd 電力貯蔵装置
JP2001327083A (ja) * 2000-05-18 2001-11-22 Ngk Insulators Ltd 高温二次電池による電力貯蔵及び補償システム
JP2003256083A (ja) * 2002-03-01 2003-09-10 Internatl Business Mach Corp <Ibm> 電気機器、コンピュータ装置、コントローラ、電池切換方法、およびプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The January issue of Monthly Energy", 28 December 2004, THE NIKKAN KOGYO SHIMBUN, LTD., pages: 82 - 84
See also references of EP2352215A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457072A (zh) * 2010-10-22 2012-05-16 湖州雷霆能源科技有限公司 光电互补电池的充放电方法及系统
CN102122826A (zh) * 2011-01-17 2011-07-13 中国南方电网有限责任公司电网技术研究中心 一种大容量蓄电池储能双向换流器
EP2698897A4 (fr) * 2011-04-11 2015-06-10 Ngk Insulators Ltd Dispositif de stockage d'énergie et procédé de commande de fonctionnement de dispositif de stockage d'énergie
US9337654B2 (en) 2011-04-11 2016-05-10 Ngk Insulators, Ltd. Power storage device and method for operating power storage device
JPWO2012169046A1 (ja) * 2011-06-09 2015-02-23 東芝三菱電機産業システム株式会社 無停電電源システム
US10284006B2 (en) 2011-06-09 2019-05-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply system
JP2013042584A (ja) * 2011-08-12 2013-02-28 Ihi Corp 電源システム
JP2013172567A (ja) * 2012-02-21 2013-09-02 Mitsubishi Heavy Ind Ltd 電力制御装置および電力制御方法

Also Published As

Publication number Publication date
CA2743994C (fr) 2018-02-20
EP2352215A4 (fr) 2014-01-15
EP2352215A1 (fr) 2011-08-03
US9214814B2 (en) 2015-12-15
CA2743994A1 (fr) 2010-05-27
MY160070A (en) 2017-02-15
KR20110096117A (ko) 2011-08-29
JP5501248B2 (ja) 2014-05-21
KR101493124B1 (ko) 2015-02-12
JPWO2010058460A1 (ja) 2012-04-12
AU2008364377A1 (en) 2010-05-27
AU2008364377B2 (en) 2015-07-16
CN102217162B (zh) 2014-05-21
CN102217162A (zh) 2011-10-12
US20110278930A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5501248B2 (ja) 二次電池システム
WO2012169046A1 (fr) Système d&#39;alimentation sans coupure
WO2021169430A1 (fr) Appareil d&#39;alimentation électrique, système d&#39;alimentation électrique et centre de données
CN106208071B (zh) 混合式ac及dc分配系统和使用方法
CN111725879B (zh) 一种光储联合供电的移动式储能系统及其控制方法
JP2010158098A (ja) 電源ユニットおよび電子装置
WO2012169045A1 (fr) Système d&#39;alimentation sans coupure
KR20180009187A (ko) 전원 공급 시스템
JP5941826B2 (ja) 二次電池用双方向電源装置及びその制御方法
JP5948116B2 (ja) 無停電電源システム
US11644506B2 (en) Power switch fault detection method and power switch fault detection circuit
JP6468593B2 (ja) 蓄電システム
JP2017216809A (ja) 電力変換装置
JP2010172115A (ja) 電力供給方法及び交直流電車用電源システム
JP5369047B2 (ja) 電力変換装置
JP7193634B2 (ja) 無停電電力供給マイクログリッドシステム
JP2008283729A (ja) 無停電電源装置
CN102769340A (zh) 一种接触器线包的供电电路
JP3286068B2 (ja) エレベータの電力変換装置
JP2010220339A (ja) 無停電電源システム
AU2016352424A1 (en) Battery-operated relay test device
RU2404439C1 (ru) Двухступенчатая электронная нагрузка
JP2015211494A (ja) 電力供給システム
KR20210020121A (ko) 전력 공급 시스템
US9653945B2 (en) Converter between solar panel, source and load

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132071.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539071

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2743994

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008364377

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117011428

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008878257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008364377

Country of ref document: AU

Date of ref document: 20081119

Kind code of ref document: A