WO2010057355A1 - 软质聚氨酯低回弹泡沫及其制备方法 - Google Patents

软质聚氨酯低回弹泡沫及其制备方法 Download PDF

Info

Publication number
WO2010057355A1
WO2010057355A1 PCT/CN2009/000226 CN2009000226W WO2010057355A1 WO 2010057355 A1 WO2010057355 A1 WO 2010057355A1 CN 2009000226 W CN2009000226 W CN 2009000226W WO 2010057355 A1 WO2010057355 A1 WO 2010057355A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate
weight
parts
foam
reactive
Prior art date
Application number
PCT/CN2009/000226
Other languages
English (en)
French (fr)
Inventor
杜宗宪
Original Assignee
优洁(亚洲)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优洁(亚洲)有限公司 filed Critical 优洁(亚洲)有限公司
Priority to EP09827104A priority Critical patent/EP2360199A1/en
Priority to US13/130,427 priority patent/US20110263741A1/en
Priority to JP2011536723A priority patent/JP5497057B2/ja
Publication of WO2010057355A1 publication Critical patent/WO2010057355A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4866Polyethers having a low unsaturation value
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/06Flexible foams

Definitions

  • the present invention relates to an aromatic isocyanate-based polyurethane low resilience foam in which an aliphatic isocyanate and/or an alicyclic isocyanate and/or an isocyanate group are not directly bonded to an aromatic ring, and a process for producing the same. It also relates to reaction systems and specific isocyanate-reactive component compositions useful in the process. Background technique
  • Soft low-rebound polyurethane foam has the characteristics of slow, gradual recovery after compression, commonly referred to as "Wuman rebound” foam, “viscoelastic” foam, “dead” foam, “high damping” foam, “shape memory” foam Or “slow reply” bubble. Although most of its physical properties are similar to conventional polyurethane foams, low resilience foams have much lower resilience, typically less than about 15%.
  • Low resilience polyurethane foam has excellent impact resistance and excellent vibration damping. It also features shape adjustment and energy attenuation, making it an ideal cushion material.
  • the low rebound foam can be used on mattresses, pillows, car seats and furniture mats to reduce pressure points and as an impact pad for sports mats or helmets.
  • the soft, low-rebound polyurethane foam has a hand-like feel similar to a human chest and can therefore be used in bra pads and shoulder pads.
  • low resilience polyurethane foams are prepared using a polyol blend comprising a hard or semi-:triol having an equivalent weight of less than 450 and a soft triol having an equivalent weight of more than 800.
  • Most soft shield low resilience polyurethane foams are prepared at a low isocyanate index (molar ratio of isocyanate groups to isocyanate reactive groups multiplied by 100). In most cases, the index is below 90. This results in a highly crosslinked, low molecular weight foamed polymer which has lower mechanical properties, particularly tear strength and elongation. It also results in a narrow operating range, which usually causes the foam to shrink. Therefore, a low resilience polyurethane foam is prepared by adjusting the amount and type of polyol, polyisocyanate, surfactant, crosslinking agent, catalyst or other additive to
  • U.S. Patent 7,388,037 discloses the use of a hydroxyl value (a measure of the amount of reactive hydroxyl groups reactive in a polyol, as described in ASTM D-4274-88) to provide a soft polyol of 5-15 mg KOH/g. Foam flexibility and reduced cross-linking to improve processability.
  • a foam having low resilience and improved processability can be prepared by using a polyol composition composed of a polyol having an ethylene oxide content of up to 50 parts by weight based on 100 parts by weight of the total polyol composition.
  • U.S. Patent 6,391,935 describes the use of polyalkylene oxide monohydric alcohols and semi-rigid polyols having a polyester or number average equivalent weight greater than about 1,000 and an OH number of less than about 56 to achieve a resilience of less than about 15% while maintaining A foam having an isocyanate index of more than 90.
  • plasticizers have been reported, for example, in U.S. Patent 6,790,871, which uses halogenated paraffins, (C 2 /C 4 ) aliphatic polymers containing primary hydroxyl groups, and mixtures thereof to produce low softness in cold climates. Rebound foam.
  • the soft polyurethane low resilience foam was first developed in the mid-1960s as a result of the NASA (National Aeronautics and Space Administration, NASA) AMES research technology project.
  • NASA National Aeronautics and Space Administration, NASA
  • the purpose of this development is to redistribute the low resilience foam to the G-Force that astronauts receive during take-off and landing and to provide a more comfortable seat for commercial pilots during long-term flight (eg ' 'IN *TOUCH", Vol. 11 No. 1, p. 1, June 2003, Periodic Publication of the Polyurethane Foam Association (PFA), ⁇ . ⁇ , ⁇ 1459, Wayne, NJ).
  • PFA Polyurethane Foam Association
  • VOCs volatile organic compounds
  • TDA indole phenyl diamine
  • MDA diaminodiphenyl decane
  • TDA and MDA are highly toxic compounds and possible carcinogens of public concern.
  • US Patent 6,391,935 released May 21, 2002, Bayer issued It is further disclosed that when the viscoelastic foam is prepared at a low index with terpene diisocyanate (TDI), the resulting foam will contain an undesirably high level of indolediamine, especially after the normalization process. ".
  • the EU officially implemented the "REACH” (Registration, Evaluation and Authorization of Chemicals) Act on June 1, 2007, and mandatory registration of all chemicals on the EU market and entering the EU market. , assessment and licensing, implementation of security monitoring.
  • the European Chemicals Agency published 15 SVHCs (Substance of Very High Concern) on November 28, 2008, according to Article 57(1) of the Act. 4,4,-MDA ranked first.
  • U.S. Patent Application No. 2005/0176838 A1 describes the use of a polyol composition comprising at least one acrylate polyol having a hydroxyl number of from 15 to 50 mg KOH/g to reduce the hydrolytic cleavage of the amino decanoate and urea linkages.
  • the patent describes "this fracture is not only apparent in terms of significant deterioration in performance characteristics, but also in the production of aromatic amines such as indolediamine (TDA) and diaminodibenzoquinone (MDA)".
  • TDA indolediamine
  • MDA diaminodibenzoquinone
  • U.S. Patent No. 6,800,607 discloses the preparation of a flexible polyurethane foam by adding at least one organic or inorganic acid anhydride to the isocyanate component and then reacting the resulting isocyanate component with the polyol component.
  • the anhydride in the polyurethane foam is further hydrolyzed to the relevant acid, especially under humid, warm conditions. These acids formed after hydrolysis block all of the amine catalyst present in the foam, thus preventing the aminophthalate and/or urea linkage from dissociating under warm, moist conditions. Unfortunately, this approach reduces the activity of the polyurethane foam due to the increased acidity of the reaction mixture.
  • flexible polyurethane low resilience foam Since the flexible polyurethane low resilience foam has unique properties that cannot be replaced by other conventional elastic foam materials, it is required to develop a method of preparing a flexible polyurethane low resilience foam without using an aromatic isocyanate. Flexible polyurethane based on aliphatic and/or cycloaliphatic isocyanate Low resilience foam provides a good solution to this need.
  • aliphatic and alicyclic isocyanates are much less active, they are rarely used in the preparation of polyurethane foams. Focusing on stronger catalysts, more reactive polyisocyanate compositions, polyol compositions using highly reactive polyols, or other methods of production, only a few synthetic methods have been developed to prepare aliphatic or alicyclic salts with practical physical properties. Family isocyanate based polyurethane foam.
  • U.S. Patent Application No. US 2008/0114088 discloses a process for preparing a flexible polyurethane foam which comprises dimerizing in the presence of a catalyst for the formation of ethyl amino decanoate, a blowing agent and a foam stabilizer at an isocyanate index of more than 90 The alcohol mixture is reacted with a polyisocyanate compound.
  • the polyol mixture composition is composed of a polyol (A) and a polyol (B), a monohydric alcohol (D) and an optional polyol (C), and the polyol (A) is a polyether polyol having an average of 2 3 hydroxyl groups having a hydroxyl value of 10-90 mg KOH/g, obtained by ring-opening polyaddition of an alkylene oxide onto an initiator by using a double metal cyanide complex catalyst; the polyol (B) is a polyether polyol, The average has 2-3 hydroxyl groups, the hydroxyl value is 15-250 mg KOH / g; - the diol (D) is a polyether monool, the hydroxyl value is 10-200 mg KOH / g; the polyol (C) is average 2-6 hydroxyl groups having a hydroxyl value of 300-1,830 mg KOH/g, up to 10 °/ of the entire polyol mixture.
  • a suitable isocyanate compound is selected from the group consisting of: TDI, MDI, polymethylene polyphenyl polyisocyanate (also known as crude MDI), benzodiamidyl diisocyanate (XDI), isophorone diisocyanate (IPDI) ), hexamethylene diisocyanate Acid esters and their derivatives.
  • TDI polymethylene polyphenyl polyisocyanate
  • XDI benzodiamidyl diisocyanate
  • IPDI isophorone diisocyanate
  • hexamethylene diisocyanate Acid esters and their derivatives there are no examples or detailed descriptions of the use of aromatic isocyanates of these aliphatic and cycloaliphatic diisocyanates and isocyanate groups such as XDI which are not directly attached to the aromatic ring, in accordance with the process described in the preparation of any polyurethane foam. In fact, since these aliphatic and alicyclic diisocyan
  • the prepolymer is an aliphatic isocyanate-terminated prepolymer obtained by addition polymerization of a polyol having an average molecular weight of 100 to 5,000 and an aliphatic polyisocyanate of 1.4 to 2.6 times the hydroxyl equivalent.
  • the activity of the aliphatic isocyanate is generally lower than the activity of the aromatic isocyanate.
  • the isocyanate-reactive composition comprises (1) a low-unsaturation polyether polyol, as described in U.S. Patent No. 5,470,813 and U.S. Patent No. 5,498,583, which is incorporated herein by reference.
  • the average nominal functionality is 2-4, the average equivalent weight is 800-4,000 g/moK (2) about 3 to about 20% by weight of at least one chain extender, only having an aliphatic or alicyclic OH group as a functional group, functional a degree of 2, an equivalent of up to 80 g/mol, a primary OH group content of at least 50% and (3) from about 2 to about 10% by weight of the cocatalyst system, a catalyst comprising 2-3 functional aliphatic NH, NH 2 or OH groups and an equivalent weight of up to 150 g/mol, at least one of said catalysts being a secondary or primary amine group and at least one of said catalysts being an amine initiated catalyst .
  • the invention provides a method of preparing a non-yellowing
  • a method of preparing an alicyclic polyisocyanate-based polyurethane foam is disclosed in Japanese Patent Application No. 2003-261643 A, issued Sep. 19, 2003, to A.S. Pat. Novel (more expensive and production limited) norbornane diisocyanate (2,5(2,6)-bis(isocyanatoindenyl)bicyclo[2.2.1]heptane, manufactured by Mitsui-Takeda Chemicals Inc.
  • the "Cosmonate NBDI" product is reacted with a polyether polyol and a large amount of a UV stabilizer to obtain a polyurethane foam which is hardly yellowed.
  • There is no description of the mechanical properties of the resulting foam and no examples are given to illustrate its use in the preparation of flexible polyurethane low resilience foams.
  • Japanese Patent Application No. 2006-257187A issued Sep. 28, 2006, to Kurashiki Boseki Corp., discloses a method of preparing a substantially non-yellowing polyurethane foam for clothing, health care or cosmetics.
  • the polyurethane foam is prepared by reacting a polyether polyol with a polyisocyanate composition comprising (isophorone diisocyanate (IPDI) and/or IPDI trimer or a derivative thereof):
  • the trimer of the mercapto diisocyanate (HDI) and/or the HDI derivative is adjusted to a mixture of (70-30): (30-70). It is also explained that the resulting foam has an increased foam hardness and a low wet compression set due to an increase in cross-linking.
  • Japanese Patent Application No. 2001-72738A published on March 21, 2001, to INOAC MTP KK., discloses a polyurethane foam having excellent water resistance and no discoloration under sunlight, by being selected from diazocycloalkene or a phenyl salt thereof. Catalyst and weak acid alkali metal salt The aliphatic diisocyanate is reacted with a polyol having an ethylene oxide content of less than 18 parts by weight based on 100 parts by weight of the total polyol alkylene oxide.
  • DBU 1,8-diazabicyclo-(5,4,0)undecene-5
  • DBN 1,5-diazabicyclo-(4,3,0) Terpene-5
  • DBN 1,5-diazabicyclo-(4,3,0) Terpene-5
  • Japanese Patent Application No. 2003-012756A issued Jan. 15, 2003, to INOAC MTP KK., discloses a substantially non-yellowing polyurethane foam prepared by reacting an alicyclic diisocyanate with an amine-terminated polyol. This application also describes these polyols consisting solely of propylene oxide units. These amine terminated polypropylene oxides are expensive and only available in limited quantities. It is difficult to obtain useful amine-terminated polypropylene oxide molecules to prepare flexible polyurethane low resilience foams.
  • the reaction product of the fraction is substantially free of isocyanate groups and which is directly attached to the aromatic ring.
  • Another object of the present invention is to provide a novel isocyanate-reactive component composition which is suitable for aromatic isocyanates which are not directly bonded to the aromatic ring with an aliphatic and/or alicyclic isocyanate and/or isocyanate group and
  • a flexible polyurethane low resilience foam is prepared by reacting one or more catalysts, water, a surfactant as a cell regulator, and other additives.
  • Another object of the present invention is to provide a process for preparing a non-yellowing flexible polyurethane low resilience foam.
  • Another object of the present invention is to provide a non-yellowing polyurethane low resilience foam which is low in density.
  • Another object of the present invention is to provide a method of making a molded soft shield polyurethane low resilience foam. Another object of the present invention is to provide a process for preparing a flexible polyurethane retoxiy foam which does not produce a toxic aromatic amine when degraded in a hot or humid environment.
  • Another object of the present invention is to provide a process for preparing a flexible polyurethane low resilience foam which is catalyzed by a non-volatile catalyst and which releases a relatively small amount.
  • Another object of the present invention is to provide a polyurethane low recovery In the method of foaming, the polyurethane low resilience foam has improved mechanical properties, particularly tear strength, tensile strength and elongation, at an isocyanate index of 75-105.
  • Another object of the present invention is to prepare a flexible polyurethane low resilience foam which is excellent in low resilience and durability without using a plasticizer and exhibits a small hardness change under temperature change. At the same time, it has high gas permeability.
  • Another object of the present invention is to provide a process for preparing a biodegradable polyurethane low resilience foam using a renewable biosourced polyol.
  • Another object of the present invention is to provide a novel non-yellowing polyurethane low resilience foam which can be used in the field of bra pads, shoulder pads, mattresses, pillows, furniture mats and automotive seating.
  • Another object of the present invention is to provide a process for preparing polyurethane foams with less or no conventional and/or reactive tertiary amine catalysts to reduce internal atomization in automobiles.
  • the flexible polyurethane low resilience foam of the present invention comprises the reaction product of:
  • isocyanate component said isocyanate component is substantially free of isocyanate groups directly attached to the aromatic isocyanate on the aromatic ring;
  • an isocyanate-reactive group more preferably 2.6 isocyanate-reactive groups, preferably 2. 6-6. 5 isocyanate-reactive groups, more Preferred 2. 65-6. 0 isocyanate reactive groups, most preferably 2. 7-5. 5 isocyanate reactive groups having a hydroxyl equivalent weight of less than 800, preferably 80-800, more preferably 100-700, most preferably 110 -600, having a hydroxyl value higher than 70 mg KOH/g, preferably 70-700 mg KOH/g, more preferably 80-560 mg KOH/g, most preferably 90-510 mg
  • a second isocyanate-reactive component having an average hydroxyl functionality of less than 6.0, preferably from 1.8 to 6. 0, more preferably from 1.85 to 4.5, and a hydroxyl equivalent of from 600 to 6, 000, preferably 700 - 50,000, more preferably 800-4,500, having a hydroxyl value of 9-94 mg KOH/g, preferably 19-80 mg KOH/g, more preferably 14-70 mg KOH/g, and a primary hydroxyl group content of at least 30 weight And preferably at least 40 parts by weight, more preferably at least 51 parts by weight, based on 100 parts by weight of the total weight of the hydroxyl groups of the second isocyanate active component,
  • first isocyanate active component is used in an amount of 20 to 90 parts by weight, preferably 20 to 70 parts by weight
  • second isocyanate active component is used in an amount of 10 to 80 parts by weight, preferably 30 to 80 parts by weight. Parts, based on 100 parts by weight of the isocyanate active mixture
  • d. optionally one or more materials selected from the group consisting of: water, surfactants, crosslinking agents, and additives;
  • the optional crosslinking agent has a weight average molecular weight of from 60 to 420 g/mol and has at least two isocyanate reactive functional groups; wherein, if used, the crosslinking agent is used in an amount of from 0.2 to 15 parts by weight, most preferably 1.2. -12 parts by weight based on 100 parts by weight of the isocyanate reactive mixture.
  • the foam is prepared at an isocyanate index of from 75 to 105.
  • the isocyanate-reactive component further comprises 0-40 parts by weight (based on 100 parts by weight of the isocyanate active component) of a polymer polyol, the solid content of the polymer polyol The amount is 5 to 55 parts by weight based on 100 parts by weight of the polymer polyol, and the hydroxyl value is 15 to 50 mg KOH/g.
  • the isocyanate-reactive component may comprise from 0 to 3.5 parts by weight of polypropylene oxide (b3) as a cell opener (based on 100 parts by weight total foam mass), the nominal hydroxyl functionality of the polypropylene oxide (b3) being 1, the weight average molecular weight is 800-8,500 g / mol.
  • Another embodiment of the invention is directed to a method of making a flexible polyurethane low resilience foam.
  • the process of the invention comprises preparing a foam formulation comprising an isocyanate reactive mixture, an isocyanate component substantially free of isocyanate groups directly attached to the aromatic ring, water, a catalyst to form an amino phthalate linkage and a foam in the foam formulation.
  • the stabilizer/surfactant is then foamed and the resulting foam formulation is then cured.
  • the isocyanate reactive mixture is selected from the above isocyanate reactive mixtures.
  • Another embodiment of the present invention is directed to a method of preparing a flexible polyurethane low resilience foam by a one-step process.
  • Another embodiment of the present invention relates to a soft shield polyurethane low resilience foam prepared by the above method and having a density of 16 to 160 kg/m 3 .
  • Another embodiment of the invention is directed to a method of making a soft molded polyurethane low resilience foam.
  • the isocyanate-reactive compositions of the present invention provide a greater range of formulation components in the preparation of flexible polyurethane low resilience foams of greater density and hardness.
  • the present invention relates to a novel flexible polyurethane low resilience foam by the isocyanate component of an aromatic isocyanate which is substantially free of isocyanate groups directly attached to the aromatic ring and the disclosed isocyanate active component and catalyst, optionally water, surface active The agent, the crosslinking agent and the additive are reacted to prepare.
  • the isocyanate component is selected from one or more of the following isocyanates: aliphatic isocyanide
  • the ester, alicyclic isocyanate and isocyanate groups are not directly attached to the aromatic isocyanate on the aromatic ring.
  • an aromatic isocyanate in which an aliphatic and/or alicyclic and/or isocyanate group is not directly bonded to an aromatic ring is used, the present invention provides a flexible polyurethane low resilience foam having excellent processability and low foam elasticity.
  • the present invention discloses a one-step process for preparing flexible polyurethane low resilience foams of a wide range of hardness without the use of other blowing agents other than water.
  • the present invention discloses an aromatic isocyanate-based polyurethane material in which a novel aliphatic or alicyclic or isocyanate group is not directly bonded to an aromatic ring.
  • the polyurethane material of the invention is suitable for preparing soft polyurethane low resilience foam, and the soft polyurethane low resilience foam can be used as a material for a bra pad and a shoulder pad, and is also suitable for mattresses, pillows, furniture mats, mats and car seats. pad. It is especially suitable for mattresses and pillows.
  • the formulation material is simultaneously injected into the mixing head and then poured into a mold or a conveyor belt.
  • the foaming reaction proceeds very quickly.
  • the rising foam is substantially completely cured in 2-7 minutes.
  • the resulting foam was then post cured for 24 hours to obtain its final properties.
  • the reaction composition comprises an isocyanate component, an isocyanate-reactive component, a catalyst, a surfactant, water as a blowing agent, and an additive known per se.
  • additives such as pigments/dyes, antioxidants, UV absorbers, flame retardants, fillers, recycled foams, stabilizers, antibacterial compounds, and antistatic agents may also be used as needed.
  • the isocyanate comprises an aromatic diisocyanate monomer which is not directly bonded to the aromatic ring and/or an alicyclic and/or isocyanate group, or an aliphatic and/or alicyclic and/or isocyanate group is not directly bonded to a blend of an aromatic diisocyanate monomer and a trimer on an aromatic ring, said trimer being an aliphatic or alicyclic or isocyanate group not directly attached to an aromatic ring of an aromatic diisocyanate
  • the product, the NCO content of the blend is from 20.5 to 50.0 parts by weight (based on 100 parts by weight of total isocyanate in the isocyanate component), and the calculated functionality is 2-3.
  • the isocyanate of the aliphatic or alicyclic or isocyanate group not directly bonded to the aromatic ring may be at least one selected from the group consisting of, but not limited to, the following: Mercapto diisocyanate, bicycloheptane triisocyanate, undecane triisocyanate, isophorone diisocyanate, dicyclohexyldecane diisocyanate, nonylcyclohexane diisocyanate, methylcyclohexane diisocyanate, benzene Methylene diisocyanate, tetradecyl benzodiamidylene diisocyanate, dimers and trimers thereof.
  • Mercapto diisocyanate bicycloheptane triisocyanate
  • undecane triisocyanate isophorone diisocyanate
  • dicyclohexyldecane diisocyanate nonylcyclohexane diisocyanate
  • the isocyanate component optionally further comprises up to 35% by weight (isocyanate component) Total weight), an aromatic isocyanate prepolymer containing from 2 to 4 isocyanate functional groups or an aliphatic or alicyclic or isocyanate group not directly attached to the aromatic ring.
  • the isocyanate is typically used at a level of from about 65 to about 110, preferably from about 70 to about 105, more preferably from about 75 to about 105.
  • the isocyanate reactive mixture comprises:
  • the isocyanate reactive group most preferably 2. 7 to 5.
  • 5 isocyanate reactive groups having a hydroxyl equivalent weight of less than 800, preferably 80 to 800, more preferably 100 to 700, most preferably 110 to 600, and a hydroxyl value higher than 70 mg KOH/g, preferably 70-700 mg KOH/g, more preferably 80-560 mg KOH/g, most preferably 90-510 mg KOH/g,
  • (b2) a second isocyanate-reactive component the isocyanate-reactive component having an average hydroxyl functionality of less than 6.0, preferably from 1. 8 to 6. 0, more preferably from 1.85 to 4.5, and a hydroxyl equivalent of from 600 to 6 000, preferably from 700 to 50,000, more preferably from 800 to 4,500, having a hydroxyl value of from 9 to 94 mg KOH/g, preferably from 19 to 80 mg KOH/g, more preferably from 14 to 70 mg KOH/g,
  • the primary hydroxyl group content is at least 30 parts by weight, preferably at least 40 parts by weight, more preferably at least 51 parts by weight, based on 100 parts by weight of the total weight of the hydroxyl groups of the second isocyanate active component,
  • the first isocyanate active component is used in an amount of 20 to 90 parts by weight, preferably 20 to 70 parts by weight
  • the second isocyanate active component is used in an amount of 10 to 80 parts by weight, preferably 30 to 80 parts by weight, based on 100 parts by weight of the isocyanate active mixture if;
  • An optional crosslinking agent having a weight average molecular weight of from 60 to 420 g/moK having at least two isocyanate reactive functional groups wherein if used, the crosslinking agent is used in an amount of from 0.2 to 15 parts by weight, preferably from 0.5 to 15 parts by weight. More preferably, it is 0.5 to 12 parts by weight, and most preferably 1.2 to 12 parts by weight, based on 100 parts by weight of the isocyanate-active mixture.
  • the isocyanate-reactive component may further comprise 0-50 parts by weight, preferably 0-40 parts by weight (based on 100 parts by weight of the isocyanate active component) of a polymer polyol, the polymer polyol having a solid content of 5-55 parts by weight, more preferably 10-45 parts by weight (based on 100 parts by weight of the polymer polyol), the hydroxyl value is 15-50 mg KOH/g.
  • the isocyanate-reactive component may comprise 0-5.0 parts by weight, preferably 0-3.5 parts by weight (based on 100 parts by weight total foam) of polypropylene oxide (b3) as a cell opener, the polyepoxy
  • the propane has a nominal hydroxyl functionality of 1 and a weight average molecular weight of from 400 to 9,600 g/mol, preferably from 600 to 9,000 g/mol, more preferably from 800 to 8,500 g/mol.
  • the isocyanate-reactive components useful in the present invention include a large number of compounds. Good examples thereof include, but are not limited to, the following: (a) polyether polyols, alkylene oxide adducts including polyhydroxyalkanes; (b) poly(tetradecyl ether) glycol and (c) poly (Sanya Methyl ether) diol.
  • alkylene oxide adducts of polyhydroxyalkanes include alkylene oxide adducts of the following materials: ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2-propanediol, butanediol , pentanediol, tripropylene oxide adduct of glycerol, trihydrocarbyl propane monoallyl ether, 1,1,1-trihydroxydecylethane, 1,1,1-trihydroxydecylpropane 1,2,3-trihydroxyhexane, glycerol, pentaerythritol, polycaprolactone, xylitol, arabitol, sorbitol, and mannitol.
  • alkylene oxides used ethylene oxide, propylene oxide and butyl oxide are most preferred.
  • Polyether polyols prepared from such initiators are typically prepared by an anionic polymerization process in which an alkylene oxide is mixed with an initiator compound and a strong basic catalyst such as potassium hydroxide or some organic amine. Polymerization of alkylene oxides with these strongly basic catalysts leads to unsaturation The increase and the average functionality of the resulting polyether polyol are reduced. These unsaturated components have a strong odor and delay the formation of ethyl amino decanoate during the reaction of the polyol with the isocyanate.
  • a strong basic catalyst such as potassium hydroxide or some organic amine
  • Double metal cyanide (DMC) complexes are well known alkylene oxide polymerization catalysts. These active catalysts can be used to prepare polyether polyols having very low unsaturation compared to similar polyols prepared using strong basic catalysts. Polyether polyols having an unsaturation level as low as 0.02 meq/g can be prepared using a DMC catalyst.
  • a DMC-based polyether polyol such as the product described in EP 0894108 B1 issued on November 7, 2001, can be used to prepare a flexible polyurethane low resilience foam with reduced odor and improved mechanical properties, and thus is a preferred one in the present invention. a polyether polyol.
  • any material having active hydrogen can be used as a component of the polyether polyol.
  • any material having active hydrogen can be used as a component of the polyether polyol.
  • amine terminated polyether polyols are known and can be used.
  • the isocyanate reactive group most preferably 2. 7-5. 5 isocyanate reactive groups, to satisfy the degree of crosslinking required for preparing a low resilience foam, in the range of functional group values, to achieve the desired reactivity, hydroxyl group
  • the equivalent weight must be less than 800.
  • a too high hydroxyl equivalent will make the polyol reactive too low to be suitable for reaction with a low reactivity isocyanate, and is not suitable for use in the present invention. If the hydroxyl equivalent is too low, the proper polymer molecular chain required for low resilience foam properties cannot be achieved.
  • Preferred hydroxyl equivalents range from 80 to 800, more preferably from 100 to 700, and most preferred hydroxyl equivalents range from 110 to 600.
  • the number of hydroxyl functional groups must be less than 6.0 to achieve the requirement of providing low resilience foam properties. Too high a number of functional groups are required to match a large hydroxyl equivalent, so that the reactivity is too low to be suitable for use in the present invention. Conversely, too low a functional group greatly detracts from the physical properties of the foam, especially tensile strength and tear strength.
  • the number of preferred hydroxyl functional groups is 1. 8 - 6. 0, more preferably the number of hydroxyl functional groups It is 1. 85 - 4. 5.
  • the hydroxyl equivalent is preferably in the range of from 600 to 6, 000, more preferably in the range of from 700 to 5,000, and most preferably in the range of from 800 to 4,500. Too high a hydroxyl equivalent will result in a low reactivity, making it unsuitable for use in the present invention. Too low a hydroxyl equivalent will cause the crosslink density of the foam to be too high, making the resulting foam too stiff and increasing the relative hardness of the foam as it changes in temperature.
  • the second isocyanate-reactive component (b2) in order to match the preferred number of hydroxyl functional groups and hydroxyl equivalents, it is necessary to use a highly reactive primary hydroxyl-terminated polyol.
  • the second isocyanate active component (b2) selected must contain at least 30 parts by weight, preferably at least 40 parts by weight, more preferably at least 51 parts by weight.
  • the primary hydroxyl end groups are based on the weight of the hydroxyl groups of the second isocyanate active component (b2).
  • poly(tetradecylether) glycols are the above poly(tetradecylether) glycols.
  • Poly(tetramethylene ether) glycol is a ring-opening polymerization product of tetrahydrofuran (THF).
  • the poly(tetramethylene ether) glycol is a polyether polyol. It is also known as PTMEG or polytetrahydrofuran and various trade names such as " Terathane” and "PolyTHF. It is prepared by acid-catalyzed polymerization of tetrahydrofuran.
  • the resulting polymer is suitably sized, usually having a number average molecular weight of from 250 to 3,000 g/mol.
  • poly(tetradecylether) diols are primary hydroxyl groups.
  • poly(tetramethylene ether) glycol having an average molecular weight of from 800 to 3,000, more preferably 1,200 to 2,400 is a particularly preferred poly(tetradecylether) glycol.
  • a third type of polyol useful in the present invention is poly(trimethylene ether) glycol.
  • Poly(trimethylene ether) glycol can be prepared by 1,3-propanediol initiated oxetane ring-opening polymerization or a novel multi-step continuous polycondensation reaction of 1,3-propanediol, as promulgated on July 11, 2006. It is described in U.S. Patent 7,074,968 to Sunkara et al. The 1,3-propanediol obtained from biomass fermentation can be used as a feed in the production process to prepare a renewable, biodegradable poly(trimethylene ether) glycol.
  • poly(trimethylene ether) glycols have a primary hydroxyl group and a low melting point and high flexibility.
  • poly(trimethylene ether) diols those having a weight average molecular weight of 800 to 3,000, particularly 1,200 to 3,000 g/mol are most preferable to prepare a flexible polyurethane low resilience foam.
  • Adopt Another motivation for this poly(trimethylene ether) glycol comes from its biodegradable nature.
  • bio-based poly(trimethylene ether) diols up to 50% by weight of the total foam weight can be used to prepare biodegradable polyurethane low resilience foams.
  • Preferred polyols for use in the present invention include poly(propylene oxide-ethylene oxide) glycols.
  • ethylene oxide can be incorporated into the polymer chain in any manner.
  • Ethylene oxide can be bonded to the internal segments, as end segments or randomly distributed along the polyol chain.
  • Most preferred is an ethylene oxide-capped poly(ethylene oxide-propylene oxide) diol.
  • the crosslinker component may be a OH, NH or NH 2 group, more particularly an aliphatic or alicyclic OH, NH or NH 2 group, having a weight average molecular weight of 40 to 640, preferably 60 to 420 g/moK.
  • a crosslinking agent of two isocyanate reactive functional groups wherein if used, the crosslinking agent is used in an amount of from 0.2 to 15, preferably from 0.5 to 15, more preferably from 0.5 to 12, most preferably from 1.2 to 12 parts by weight, based on 100 parts by weight The isocyanate reactive mixture is counted.
  • crosslinking agents are: ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol having a number average molecular weight of less than 600, propylene glycol, propylene glycol, polypropylene glycol having a molecular weight of less than 450, Butylene glycol, pentanediol, hexanediol, 1,1,1-trihydroxydecylethane, 1,1,1-trihydroxydecylpropane, 1,2,3-trihydroxyhexane, glycerin, Poly(propylene oxide-ethylene oxide), poly(propylene oxide), poly(ethylene oxide), 2-mercapto-1,3-propanediol, 3-mercapto-1,5-pentanediol , 1,4-cyclohexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, ethylenediamine, monoethanolamine, di
  • a stable dispersed polymer polyol may be added to the isocyanate reactive mixture as needed for the low resilience foam hardness.
  • the stably dispersed polymer polyol component can be any polyalkylene oxide polyol having a polymer of ethylenically unsaturated monomers dispersed therein.
  • Typical examples of the stably dispersed polymer polyol include a polyalkylene oxide polyol in which poly(styrene acrylonitrile) and/or polyurea are dispersed.
  • the stably dispersed polymer polyols are commercially available from several companies including Bayer (trade name “Polymer Polyol"), BASF (BASF) (trade name “Graft Polyol” Branch polyol)”:), Dow (trade name “Copolymer Polyol", and) and Mobay (trade name "PHD Polyol (PHD Polyol)”;) Bayer, BASF and Dow products, in accordance with US Patent 4,272,619, US Patent Poly(styrene acrylonitrile) is dispersed in a polyol as described in U.S. Patent No. 5,494,957. Examples of stable dispersed polymer polyols are listed in Table 1 below: Table 1
  • the activity is lower, preferably having a nominal functionality of from 2.4 to 6 (preferably from 2.4 to 5.6, most preferably from 2.4 to 5.4), an equivalent weight of from 800 to 2,000 (more preferably from 800 to 1,600, most preferably from 1,000 to 1,600).
  • a matrix polyol having a g mol, ethylene oxide content of 4 to 28 (preferably 4 to 24 )% by weight based on the weight of the polyol.
  • a cell opener may be added to the isocyanate reactive mixture to improve shrinkage of the low resilience foam.
  • Typical examples of the cell opener include: a stably dispersed polymer polyol, a poly(ethylene oxide-propylene oxide) copolymer having an ethylene oxide content of more than 50% by weight, and a poly(ring) having a weight average molecular weight of more than 800.
  • Oxybutane-propylene oxide copolymer polyethylene glycol having a weight average molecular weight of more than 600, polypropylene oxide having a weight average molecular weight of more than 400, microsilica having a particle diameter of less than 150 ⁇ m, and polycondensation having a particle diameter of less than 200 ⁇ m Tetrafluoroethylene resin powder, aliphatic carboxylic acid and alkali metal or alkaline earth metal salt thereof, alicyclic carboxylic acid and alkali metal or alkaline earth metal salt thereof, aliphatic alkane, alicyclic alkane and dimercapto silicone oil.
  • the cell opener component is a stably dispersed polymer polyol, a poly(ethylene oxide-propylene oxide) copolymer having an ethylene oxide content of more than 50% by weight, and a poly(epoxy) having a weight average molecular weight of more than 800.
  • the preferred cell opener component is generally used in an amount of from 0.05 to 20 parts by weight, preferably from 0.5 to 10 parts by weight, based on 100 parts by total of the total mass of the foam.
  • the cell opener component is a polypropylene oxide having a weight average molecular weight of more than 400, said polypropylene oxide cell opener having a nominal hydroxyl functionality of 1, and a weight average molecular weight of from 400 to 9,600 g/mol, preferably 600. -9,000 g/mol, more preferably 800-8,500 g/mol
  • the polypropylene oxide open cell is generally used in an amount of 0 to 5.0 parts by weight, preferably 0 to 3.5 parts by weight (based on 100 parts by weight of the total foam) Quality meter). Mixtures of several cell openers can also be used if desired.
  • a number of polyurethane catalyst commercial products are useful in the preparation of the flexible polyurethane low resilience foams of the present invention.
  • the usual level of use of the catalyst is from 0.05 to 2.0 php (parts by weight per 100 parts by weight of the polyol).
  • Representative catalysts include: (1) tertiary amines such as bis(2,2,-diamino)ethyl ether, bis(diguanidinoaminoethyl)ether, N-methylmorpholine, N-ethylmorpholine, anthracene, ⁇ -dimercaptobenzylamine, hydrazine, hydrazine-dimercaptoethanolamine, hydrazine, hydrazine, hydrazine, hydrazine, -tetradecyl-1,3-butanediamine, pentamethyldipropylenetriamine, three Indoleamine, triethylamine, triethanolamine, triethylenediamine and pyridine oxide;
  • organotin compounds have been found to be particularly useful in the preparation of the flexible polyurethane low resilience foams of the present invention.
  • Preferred organotin compounds are dialkyl tin salts of carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate, dimethyl tin dilaurate, dibutyltin maleate, dilauryl tin diacetate and diacetic acid.
  • Dioctyl tin are trialkyltin hydroxide, dialkyltin oxide, dialkyltin dialkoxide, dialkyltin dichloride, and dialkyltin dithiolate.
  • organotin compound is generally used in an amount of from about 0.05 to about 0.8% by weight, preferably from about 0.15 to about 0.55% by weight, based on the isocyanate reactive mixture (b).
  • Another catalyst useful in the preparation of the flexible polyurethane low resilience foams of the present invention is a salt of Bronsted acid with various alkali or alkaline earth metals.
  • Sodium bicarbonate or sodium carbonate was found to be particularly useful in the preparation of the soft shield polyurethane low resilience foam of the present invention.
  • the alkali metal or alkaline earth metal Bronsted acid salt is generally used in an amount of from about 0.01 to about 0.8% by weight, preferably from about 0.1 to about 0.6% by weight based on the isocyanate-reactive mixture (b).
  • One or more surfactants can also be used in the foaming composition.
  • the surfactant reduces the surface tension of the body, promotes nucleation of the bubbles, stabilizes the foam and emulsifies the incompatible components.
  • Surfactants commonly used in polyurethane foams are polysiloxane-polyalkylene oxide copolymers, typically used at levels of from about 0.2% to about 3% by weight, preferably from about 0.6% to about 2.5% by weight, Total isocyanate reactive mixture.
  • Conventional surfactants useful in the preparation of aromatic diisocyanate based polyurethane foams are also useful in the present invention.
  • 0.5 to 6.5 parts by weight (based on 100 parts by weight of the isocyanate reactive mixture) of water is used to produce carbon dioxide by reacting with the isocyanate as a foaming agent for the foaming reaction.
  • auxiliary blowing agents can be used if desired. It is particularly preferable to directly use carbon dioxide (gas or liquid) as an auxiliary blowing agent other than water. It is also found that the gas pressure is adjusted during the foaming reaction and/or the mechanical foaming technique is employed, as described in WO 93/24304, issued on Dec. 9, 1993, and U.S. Patent No. 5,194,453, issued on Mar. , can be used to change the foam density.
  • additives may optionally be incorporated into the foaming compositions of the present invention.
  • additives include, but are not limited to, pigments, antioxidants, UV absorbers, UV stabilizers, flame retardants, fillers, recycled foams, stabilizers, antimicrobial compounds, and antistatic agents. This additive should not adversely affect the performance of the flexible polyurethane low resilience foam.
  • the flexible polyurethane low resilience foam of the present invention can be prepared by a molding method and/or a block method.
  • the molding method is a method in which an active mixture is injected, foamed, and molded in a closed mold.
  • the block method refers to pouring the active mixture onto a conveyor belt and foaming in an open system.
  • the flexible polyurethane low resilience foam of the present invention has a density in the range of from about 10 to about 200 kg/m 3 , preferably from about 16 to about 160 kg per cubic meter, as determined by the JIS K6400 method (1997 edition).
  • the soft polyurethane low resilience foam of the present invention has a falling ball resilience of not more than 20%, preferably not more than 15%, as determined by the JIS K6400 method (1997 edition).
  • the flexible polyurethane low resilience foam of the present invention has the hardness understood in the art for flexible polyurethane foams.
  • the foam of the present invention has a hardness of less than 150 N/314 cm 2 .
  • the foam of the invention has a hardness of from 6 to 120 N/314 cm 2 or from 6 to 90 N/314 cm 2 .
  • the hardness of the flexible polyurethane low resilience foam of the present invention can be adjusted by adjusting the ratio between the first isocyanate active component (b1) and the second isocyanate active component (b2), and by selecting an appropriate isocyanate index.
  • the soft polyurethane low resilience foam of the present invention has an IFD 25% hardness as low as 6 N/314 cm 2 .
  • the IFC 25% hardness of the flexible polyurethane low resilience foam of the present invention can be adjusted up to 120 N/314 cm 2 using a larger amount of the first isocyanate active component (bl) in combination with an isocyanate index of not less than 95.
  • the IFD 25% hardness was determined according to the JIS K6400 method (1997 edition).
  • flexible polyurethane low resilience foams for pillows and mattresses require an IFD 25% hardness between about 12 N/314 cm 2 and 24 N/314 cm 2 for both load bearing and comfort.
  • high hardness is required to achieve shock absorption and impact resistance. detailed description
  • ISO 1 is isophorone diisocyanate, a product of Desmodur I from Bayer AG (Bayer).
  • ISO 2 is a mixture of 50% by weight of isophorone diisocyanate (Desmodur I) and 50% by weight of hexamethylene diisocyanate trimer (Desmodur N3600 commercial product), both of which are manufactured by Bayer AG.
  • ISO 3 is a terpene diisocyanate, a composition of 80% by weight of 2,4-nonyl diisocyanate and 20% by weight of 2,6-nonyl diisocyanate, manufactured by Bayer AG. (Bayer).
  • ISO 4 is a hexamethylene diisocyanate available from Bayer AG (Bayer) Desmodur H.
  • ISO 5 is a trimerylene diisocyanate trimer prepared by trimerization of hexamethylene diisocyanate, available from Bayer AG (Bayer) Desmodur N3600.
  • ISO 6 is benzene dimethylene diisocyanate, a Takenate 500 product from Mitsui-Takeda Chemicals Inc. (Mitsui - Takeda Chemical).
  • P1 is a glycerol-initiated polypropylene oxide having an average molecular weight of 550 g/mol and a hydroxyl value of 310 mg KOH/g, produced by SK Chemicals of Korea (YUKOL 1030 o)
  • P2 is a sorbitol-initiated polypropylene oxide having an average hydroxyl equivalent of about 117.
  • P3 is a poly(tetradecylether) diol having a hydroxyl equivalent weight of about 900 and is produced by Dairen Chemical Corp of Taiwan (Dalian Chemical Company, Taiwan;).
  • P4 is a poly(trimethylene ether) glycol prepared from bio-based 1,3-propanediol having an average hydroxyl equivalent of about 1,070 and an APHA color of about 25, produced by E ⁇ du Pont (DuPont).
  • P5 is a low unsaturation polyether polyol prepared by addition polymerization of propylene oxide to a propylene glycol initiator using a DMC catalyst, followed by capping with ethylene oxide, an average molecular weight of 4,000 g/mol, hydroxyl value It is about 28 mg KOH/g, has a nominal functionality of 2, and has a primary hydroxyl functional group content of about 87% by weight based on the total hydroxyl weight, available from Bayer AG (Bayer) ACCLAIM POLYOL 4220N.
  • P6 is a low unsaturation polyether polyol prepared by addition polymerization of propylene oxide to a propylene glycol initiator using a DMC catalyst, having an average molecular weight of 4,000 g/mol and a hydroxyl value of about 28 mg KOH/g.
  • the saturation is 0.005 meq/g, 100% by weight of the secondary hydroxyl functional group, and the nominal functionality is 2, available from Bayer AG (Bayer) ACCLAIM POLYOL 4200.
  • P7 is a low unsaturation polyether polyol prepared by the addition polymerization of propylene oxide to a 1,1,1-trihydroxydecylpropane initiator using a DMC catalyst, having an average molecular weight of 3,000 and a hydroxyl value of about 57.6 mg. KOH/g, unsaturation 0.005 meq/g, 100% by weight secondary hydroxyl functional group, nominal functionality 3, sold by ACCLAIM POLYOL 3300N from Bayer AG (Bayer).
  • P8 is a low unsaturation polyether polyol prepared by the addition polymerization of propylene oxide to a propylene glycol initiator by a DMC catalyst, followed by capping with ethylene oxide, and an average molecular weight of 2,000 g/mol, a hydroxyl value. It is about 56 mg KOH/g, has a nominal functionality of 2, and has a primary hydroxyl functional group content of about 87% by weight based on the total hydroxyl weight, sold by Bayer AG (Bayer) ACCLAIM POLYOL 2220N.
  • P9 is a low unsaturation polyether polyol prepared by the addition polymerization of propylene oxide to a propylene glycol initiator using a DMC catalyst, having an average molecular weight of 8,000 g/mol and a hydroxyl value of about 14 mgKOH/g, 100%. Weight secondary hydroxyl functional group with a nominal functionality of 2, available from Bayer AG (Bayer) ACCLAIM POLYOL 8200.
  • P10 is a poly(propylene oxide-ethylene oxide) copolymer prepared by addition polymerization of propylene oxide to a propylene glycol initiator using a potassium hydroxide catalyst, followed by capping with ethylene oxide, epoxy B.
  • the alkane content is 19% by weight
  • the primary hydroxyl functional group content is 53% by weight based on the total hydroxyl group
  • the average molecular weight is 2,000 g/mol
  • the hydroxyl value is about 56.1 mg KOH/g
  • the degree of unsaturation is 0.03 meq/g
  • the nominal functionality is Is 2.
  • P11 is a poly(propylene oxide-ethylene oxide) copolymer prepared by the addition polymerization of propylene oxide to a sorbitol initiator by a potassium hydroxide catalyst, followed by capping with ethylene oxide, epoxy B.
  • the alkane content was 28% by weight
  • the primary hydroxyl functional group content was 85% by weight based on the total hydroxyl group
  • the hydroxyl value was about 31.3 mg KOH/g
  • the nominal functionality was 6.
  • P12 is a polymer polyol dispersed with 45% by weight of a styrene-acrylonitrile copolymer having a hydroxyl group value of 28.5 mg KOH g.
  • the base polyol is a randomly fed poly(propylene oxide-e-oxyethylene) triol having a hydroxyl equivalent weight of 1,050, sold by Bayer AG of ARCOL POLYOL HS-100.
  • P13 is a monohydric alcohol which is subjected to addition polymerization of propylene oxide to a butanol initiator by using a potassium hydroxide catalyst, and has a hydroxyl value of 8.5 mg KOH/g.
  • DEOA is a diethanolamine having a purity of more than 99% by weight and is produced by Sigma-Aldrich (Sigma Aldrich).
  • PEG 400 is a reagent grade poly(ethylene glycol) with an average molecular weight of 400 and a purity of over 98.5% from Sigma-Aldrich (Sigma Aldrich).
  • Glycerol is a GC reagent grade glycerol with a purity of over 99% from Sigma-Aldrich (Sigma Aldrich).
  • SC is a 2M aqueous solution of sodium carbonate prepared from deionized water and reagent grade sodium carbonate having a purity of more than 99%, produced by Sigma-Aldrich (Sigma Aldrich).
  • SBC is a 0.5 M aqueous solution of sodium bicarbonate prepared from deionized water and reagent grade sodium bicarbonate having a purity of more than 99% from Sigma-Aldrich (Sigma Aldrich).
  • DC 5950 is a polysiloxane-polyalkylene oxide copolymer surfactant available from Air Products and Chemicals Inc. of DABCO DC 5950.
  • DC 5179 is a low release polysiloxane-polyalkylene oxide copolymer surfactant available from Air Products and Chemicals Inc. of DABCO DC 5179.
  • Ax A-230 is a mixture of tertiary amines available from Chemtura Corp.
  • DBTDL refers to dibutyltin dilaurate, DABCO Tl 2 from Air Products and Chemicals Inc.
  • UV is 2-(2,-hydroxy-3,5,-di-tert-amylphenyl)benzotriazole, Chemical Abstracts No. 25973-55-1, sold by Everlight Chemical Industrial Corp. (Taiwan Yongguang Chemical Industry Co., Ltd. Limited).
  • Index means the ratio of the total moles of reactive isocyanate groups in the reaction mixture divided by the total moles of isocyanate reactive groups in the reaction mixture multiplied by 100.
  • IFD Index Force Deflection
  • CLD compression Load Deflection
  • the “hardness change” means the ratio (in %) of the CLD hardness measured at -5 °C in comparison with the CLD hardness measured at 23 °C.
  • the CLD hardness of 25% is determined in accordance with the JIS K6400 method (1997 edition). Test samples were conditioned at the specified temperature for at least 24 hours prior to testing.
  • Dry compression set refers to the dry heat compression deformation determined in accordance with the JIS K6400 method (1997 edition).
  • Weight compression set refers to the wet heat compression deformation determined in accordance with the JIS K6400 method (1997 edition).
  • the "UV Stability" value is a color fastness measurement obtained according to AATCC 16-1990, Option E.
  • the foam samples were placed under a UV lamp and exposed to UV light for 20 hours.
  • the result is expressed as a rating of 1-5.
  • Level 5 means no color change at all, level 1 means almost dark. Values of level 4 and above indicate that there are no visual changes that are discernible by the eye.
  • Molding processability is a mold evaluation. A foam having a good surface layer after foaming and a non-shrinkage foam is rated as “good”, and the one which shrinks after foaming but recovers after rolling twice is rated as “rollable”. “The one that does not recover after shrinking and rolling twice is rated as “poor”.
  • Examples 1-10 and Comparative Examples C1-C5 Soft polyurethane low resilience foams of Examples 1-10 and Comparative Examples C1-C5 were prepared by mixing the components shown in Tables 2-1 and 2-2. . Prior to foaming, all selected ingredients were conditioned for at least 24 hours in an oven controlled at 23 ⁇ 1 °C. Prior to the addition of the organotin compound, the ingredients other than the organotin compound and the isocyanate were premixed in a 1.5 liter stainless steel cup using a Cowles type mixer set at 1,500 rpm. After premixing, the organotin compound (if used) was then added to the cup, mixed for another 20 seconds, and the rotational speed was set to 1,500 rpm.
  • the selected isocyanate compound was then added to the resulting mixture and mixed with the resulting composition at 3,000 rpm for 5 seconds. Then pour the mixture into the top open 45 cm (length) X 45 cm (width) X45 cm (High) paper lining wooden box and foaming. After the foam reaches its final height, let it rest in the box for another 10 minutes and then remove it from the box. The resulting foam was then stored in a ventilated and temperature controlled storage room at 27 ⁇ 2 °C for at least 72 hours.
  • the foam sample was then cut from the prepared foam core using a laboratory scale electric saw according to the sample size described in the JIS K6400 method (1997 edition).
  • Samples for testing tear strength, tensile strength and elongation were then cut from a foam plate of a specified thickness according to the sample size described in JIS K6400 method (1997 edition). All samples were conditioned for at least 24 hours in a constant temperature and humidity chamber controlled to a temperature of 23 ⁇ 1 °C and a humidity of 50% prior to physical performance testing.
  • Example 1-10 Comparison of common standard foam formulations (Comparative Example C5) illustrates processability, foam mechanical properties and formulation flexibility in the preparation of flexible polyurethane low resilience foams. Both the conventional highly unsaturated polyol and the DMC low unsaturated polyol were used in Comparative Example C5. Comparative Examples C1-C4 only produced collapsed or "marstle-like, foamed foam, no strength and could not be used for further foam physical property testing. Examples 1-10 illustrate the isocyanate-reactive compositions of the present invention (b) It can provide sufficient activity to react with aliphatic or alicyclic isocyanates in addition polymerization of soft polyurethane low resilience foam preparation.
  • Examples 11-18 were prepared using the same procedure as used in the preparation of Examples 1-10, except that the selected polyols P3 and P4 were first melted in an oven at a temperature of 60 ⁇ 1 °C. When the polyol was completely melted, the polyol was then transferred to a conditioning chamber at 28 ⁇ 1 °C for 6 hours before further foaming. All other ingredients selected were conditioned for at least 24 hours prior to foaming in another incubator with a temperature control of 23 ⁇ 1 °C. The selected polyol P3 or P4 was first mixed into the other polyols at 3,000 rpm in 60 seconds using a Cowles type high shear mixer. The flexible polyurethane low resilience foam of Example 1 1-18 was prepared by mixing the components shown in Table 3.
  • the ingredients other than the organotin compound and the isocyanate were premixed together in a 1.5 liter stainless steel cup using a Cowles type mixer set at 2,000 rpm. After premixing, the organotin compound (if used) was then added to the cup, mixed for another 20 seconds, and the rotational speed was set to 2,000 rpm. The selected isocyanate compound was then added to the resulting mixture and mixed with the resulting composition at 3,000 rpm for 5 seconds. Then pour the mixture into the top open 45 cm (length) X 45 cm (width) X 45 cm (height) paper-lined wooden box and foam. Once the foam has reached its final height, let it rest in the box for another 10 minutes and then remove it from the box. The resulting foam was then stored in a ventilated and temperature controlled storage room at 27 ⁇ 2 °C for at least 72 hours.
  • a foam sample was cut from the prepared foam core using a laboratory scale electric silver machine according to the sample size described in the JIS K6400 method (1997 edition).
  • the samples for testing the tear strength, tensile strength and elongation were then cut from a foam plate of a specified thickness according to the sample size described in the JIS K6400 method (1997 edition). All samples were conditioned for at least 24 hours in a constant temperature and humidity chamber controlled to a temperature of 23 ⁇ 1 °C and a humidity of 50% prior to further physical performance testing.
  • (+) Results from foam samples recovered after rolling.
  • a closed cell foam was obtained in Example 15, and when the internal temperature began to decrease, the foam began to shrink.
  • the foam was rolled by passing the foam through a pair of electric stainless steel roll-type breakers to prevent further shrinkage. Laminated before further physical performance testing The foam was conditioned for at least 72 hours in a constant temperature and humidity chamber controlled to a temperature of 23 ⁇ 1 ° C and a humidity of 50 %.
  • the physical properties illustrated in Example 15 were determined using samples cut from the rolled foam core.
  • the flexible polyurethane low resilience foam of Examples 19-27 was prepared by mixing the components shown in Table 4. Examples 19-27 were prepared using the same procedure as described in the preparation of Examples 1-18. The UV additive is added to the resulting isocyanate reactive mixture in a premixing step.
  • Example 19-27 The foam physical properties of Examples 19-27 were tested in accordance with the same procedure as shown in Examples 1-18 except for the UV stability test.
  • UV stability test a sample of 5 cm (width) * 10 cm (length) * 0.5 cm (thickness) was placed in an oven with an internal temperature set at 80 ⁇ 1 "C, and the OSRAM ULTRA-VITALUX 300 watt UV bulb was installed in the oven.
  • the foam sample is 30 cm directly above.
  • the sample is exposed to ultraviolet light for 20 hours.
  • the result is expressed as a grade of 1-5.
  • Grade 5 means no color change at all, grade 1 means almost dark color. Values of level 4 and above indicate that there are no visual changes that can be discerned by the eye. Table 4
  • the disclosed isocyanate-reactive mixture can be used to prepare non-yellowing polyurethanes with densities as low as 24 kg/M 3 (about 1.5 pcf). Rebound foam. These low density, non-yellowing polyurethane low resilience foams are especially useful in apparel applications such as bra pads and shoulder pads.
  • the soft shield polyurethane low resilience foam of Examples 28-30 was prepared by mixing the components shown in Table 5. Prior to foaming, all selected ingredients were conditioned for at least 24 hours in a box controlled at 23 ⁇ 1 °C. Prior to the addition of the organotin compound, a composition other than the organotin compound and the isocyanate was premixed in a 1.5 liter stainless steel cup using a Cowles type mixer set at 1,500 rpm. After premixing, add the organotin compound (if used) to the cup, mix for another 20 seconds, and set the rotation speed to 1,500 rpm. The selected isocyanate compound was then added to the resulting mixture and mixed with the resulting composition at 3,000 rpm for 5 seconds.
  • the polyurethane foam of the invention has low resilience and is suitable as a filling material for bra pads and shoulder pads, and is also suitable for mattresses, pillows, furniture mats and car seat cushions. It is especially suitable for mattresses and pillows.

Description

聚氨酯低回弹泡沫及其制备方法 技术领域
本发明涉及脂肪族异氰酸酯和 /或脂环族异氰酸酯和 /或异氰酸酯 基不直接连接到芳环上的芳族异氰酸酯基聚氨酯低回弹泡沫及其制 备方法。 它还涉及可用于所述方法中的反应体系及具体异氰酸酯活 性组分组合物。 背景技术
软质低回弹聚氨酯泡沫具有压缩后緩慢、 逐渐回复的特征, 通常 称为 "†曼回弹" 泡沫、 "粘弹性"泡沫、 "死"泡沫、 "高阻尼"泡沫、 "形状记忆"泡沫或 "慢回复"泡沫。 尽管其大多数物理性能类似于常规 聚氨酯泡沫, 但低回弹泡沫的回弹性低许多, 通常低于约 15%。
低回弹聚氨酯泡沫具有优异抗沖击性和优异减振性。 它还具有形 状调整和能量衰减特征, 使之成为理想的座垫材料。 所述低回弹泡 沫可用于床垫、 枕头、 汽车座垫和家具垫来减少压力点, 作为抗冲 击物用于运动垫或头盔。
软质低回弹聚氨酯泡沫具有类似于人胸脯的手感, 因此可用于胸 罩垫和肩垫中。
通常低回弹聚氨酯泡沫采用多元醇共混物制备, 所述多元醇共混 物包含当量低于 450 的硬质或半^:三元醇和当量超过 800 的软质 三元醇。 大多数软盾低回弹聚氨酯泡沫在低异氰酸酯指数 (异氰酸酯 基与异氰酸酯活性基的摩尔比乘以 100)下制备。 大多数情况下, 该 指数低于 90。 这产生高交联、 低分子量泡沫聚合物, 从而具有较低 力学性能, 特别是撕裂强度和伸长。 还会导致窄操作范围, 通常引 起泡沫收缩。 因此通过调整多元醇、 多异氰酸酯、 表面活性剂、 交 联剂、 催化剂或其它添加剂的量和类型制备低回弹聚氨酯泡沫, 以
确认本 获得具有低回弹、 实用力学性能和可重现性生产特征的泡沫。
美国专利 7,388,037公开了采用羟基值 (多元醇中可反应的活性羟 基量的量度, ASTM D-4274-88中描述的方法)为 5-15 mg KOH/g的 软质多元醇提供泡沫柔顺性并减少交联, 从而提高加工性能。
美国专利 6,617,369 中公开了类似方法。 通过采用由环氧乙烷含 量高达 50重量份 (以 100重量份总多元醇组合物计)多元醇组成的多 元醇组合物可制备具有低回弹和提高的加工性能的泡沫。
美国专利 6,391,935描述了采用聚酯或数均当量超过约 1,000且 OH值低于约 56 的聚环氧烷烃一元醇和半硬质多元醇以获得回弹性 不到约 15%, 同时保持异氰酸酯指数超过 90的泡沫。
增塑剂的用途已有报道, 如参见美国专利 6,790,871, 其中采用 卤代石蜡、 包含伯羟基的 (C2/C4)脂肪族聚合物及其混合物制备在寒冷 气候下具有良好柔软性的低回弹泡沫。
软质聚氨酯低回弹泡沫首先于 60年代中期作为 NASA(National Aeronautics and Space Administration, 美国国家航空航天局)的 AMES 研究技术项目的成果开发。 该开发的目的旨在让所述低回弹泡沫重 新分配在起飞和降落过程中宇航员受到的 G 力 (G-Force)并在长期飞 行过程中提供商业飞行员更舒服的座席 (如' 'IN*TOUCH", 第 11 卷第 1 期第 1 页, 2003 年 6 月, 聚氨酯泡沫协会 (PFA)的定期出版物, Ρ.Ο,Βοχ 1459, Wayne, NJ)。 不巧的是, 由于其 4氐指数性质和配制 需要大量挥发性胺催化剂, 开发的低回弹泡沫释放大量挥发性有机 化合物 (voc), 从而妨碍其用于密闭空间。 从那以后, 其从未用于任 何飞船或飞机。
随着近来越来越关心芳族胺安全性, 如作为由曱苯二异氰酸酯
(TDI)或二苯基曱烷二异氰酸酯 (MDI)制备的聚氨酯泡沫的劣化反应产 物的曱苯二胺 (TDA)和二氨基二苯曱烷 (MDA), 已开发多种合成方法 来减少这种排放。 TDA和 MDA 为引起公众关注的高毒性化合物和 可能致癌物。 美国专利 6,391,935(2002年 5月 21 日发布, Bayer发 明)进一步公开了"当釆用曱苯二异氰酸酯 (TDI)在低指数下制备粘弹 性泡沫时, 所得泡沫会含不希望的高水平曱苯二胺, 特别是在正常 的^ ^化过程后"。
EU OPUR (欧洲软质聚氨酯泡沫生产商协会, 该协会成立于 1966) 于 2007年宣布了一项称为" CertiPUR"的志愿项目。 CertiPUR为强调该 工业承诺其产品安全、 健康和环境 (SHE)性能的项目。 为了与 CertiPUR标准一致, 对许多有害物质进行了限制或禁止。 根据 CertiPUR标准, 聚氨酯泡沫中的 2,4-TDA和 4,4,-MDA总量和 2,4-TDA 和 4,4,-MDA各自量的上限为 5 ppm, 以泡沫重量计。
欧盟于 2007年 6月 1日正式实施 " REACH " ( Registration, Evaluation and Authorization of Chemicals, 关于化学品注册、 评估、 许可和限制) 法案, 对欧盟市场上和进入欧盟市场的所有化学品强 制要求注册、 评估和许可, 实施安全监控。 欧洲化学总署依据该法 案第 57条第 1项于 2008年 11月 28日公布了 15种高度关切物质 ( SVHC, Substance of Very High Concern ) , 4,4,-MDA名列其一。
美国专利申请 U.S.2005/0176838A1描述了釆用包含至少一种羟基 值为 15-50 mg KOH/g的丙烯酸酯多元醇的多元醇组合物来减少氨基 曱酸乙酯和脲键的水解断裂。 该专利描述了 "这种断裂不仅在性能特 征明显劣化上显然, 还会产生芳族胺, 如曱苯二胺 (TDA)和二氨基二 苯曱坑 (MDA)"。
美国专利 6,800,607公开了将至少一种有机或无机酸酐加入异氰酸 酯组分, 然后使所得异氰酸酯组分与多元醇组分反应来制备软质聚 氨酯泡沫的方法。 所述聚氨酯泡沫中的酸酐进一步水解成相关酸, 特别是在潮湿、 温暖条件下。 水解后形成的这些酸阻断了泡沫中存 在的所有胺催化剂, 因此阻止氨基曱酸酯和 /或脲键在温暖、 潮湿奈 件下再离解。 不巧的是, 由于反应混合物中酸度提高, 这种方法会 降低聚氨酯泡沫活性。 由于其活性较低, 其仅可用于更具活性的芳 族异氰酸酯而不是脂肪族或脂环族异氰酸酯反应。 采用上述处理的显著缺点是这种处理仅能推迟 TDA和 MDA的形 成, 而不能阻止这种芳族胺的形成。 美国专利申请 U.S. 2005/0176838A1和美国专利 6,800,607中说明的所有实施例报道了老 化样品中减少但仍高水平的 TDA或 MDA, 即使经过特定的处理 (参考 该两专利中说明的实施例, 所有泡沫样品中的 2,4-TDA和 4,4,-MDA水 平远远超过 5ppm, 这是 CertiPUR标准中的上限)。
由于软质聚氨酯低回弹泡沫具有其它传统弹性泡沫材料无法替代 的独特性能, 因此需要开发不使用芳族异氰酸酯来制备软质聚氨酯 低回弹泡沫的方法。 基于脂肪族和 /或脂环族异氰酸酯的软质聚氨酯 低回弹泡沫提供了针对这种需求的良好解决方法。
由于脂肪族和脂环族异氰酸酯的活性低许多 , 它们极少用于制备 聚氨酯泡沫。 集中在较强催化剂、 更活性多异氰酸酯组合物、 采用 高活性多元醇的多元醇组合物或其它生产方法选择上开发了仅很少 几种合成方法来制备具有实用物理性能的脂肪族或脂环族异氰酸酯 基聚氨酯泡沫。
美国专利申请 U.S.2008/0114088公开了一种制备软质聚氨酯泡沫 的方法, 所述方法包括在形成氨基曱酸乙酯的催化剂、 发泡剂和泡 沫稳定剂存在下, 在异氰酸酯指数超过 90下使多元醇混合物与多异 氰酸酯化合物反应。 所述多元醇混合物组合物由多元醇 (A)和多元醇 (B), 一元醇 (D)和任选多元醇 (C)组成, 多元醇 (A)为聚醚多元醇, 平 均具有 2-3个羟基, 羟基值为 10-90 mg KOH/g, 通过采用双金属氰化 物络合物催化剂将环氧烷烃开环加聚到引发剂上获得; 多元醇 (B)为 聚醚多元醇, 平均具有 2-3个羟基, 羟基值为 15-250 mg KOH/g; —元 醇 (D)为聚醚一元醇, 羟基值为 10-200 mg KOH/g; 多元醇 (C)为平均 具有 2-6个羟基、 羟基值为 300-1,830 mg KOH/g 的多元醇, 至多为整 个多元醇混合物的 10°/。质量。 它还公开了合适异氰酸酯化合物选自: TDI、 MDI、 多亚甲基多苯基多异氰酸酯 (也称为粗 MDI)、 苯二亚曱 基二异氰酸酯 (XDI)、 异佛尔酮二异氰酸酯 (IPDI)、 六亚曱基二异氰 酸酯及其衍生物。 然而, 没有针对这些脂肪族和脂环族二异氰酸酯 及 XDI等异氰酸酯基不直接连接到芳环上的芳族异氰酸酯按照所述方 法在任何聚氨酯泡沫制备中的使用的实施例或详细说明。 事实上, 由于这些脂肪族和脂环族二异氰酸酯的活性低许多, 采用仅脂肪族 和脂环族二异氰酸酯难以实施所公开的多元醇混合物 (参见以下对比 实施例 Cl-C4)。
1992年 9月 15日颁布给 Morimoto等的美国专利 5,147,897公开了采 用脂肪族多异氰酸酯预聚物制备不黄变聚氨酯泡沫。 所述方法包括 在 C2-C1()烷酸的钾或钠盐或二氮双环烯烃催化剂存在下使脂肪族多异 氰酸酯预聚物与 0.4-5倍于异氰酸酯当量的水反应。 所述预聚物为通 过平均分子量为 100-5,000的多元醇与 1.4-2.6倍于羟基当量的脂肪族多 异氰酸酯的加成聚合获得的脂肪族异氰酸酯封端预聚物。 所述脂肪 族异氰酸酯的活性通常低于芳族异氰酸酯的活性。 当脂肪族异氰酸 酯变成预聚物时, 分子移动性进一步下降, 导致活性进一步减小。 由于所得预聚物活性减小和粘度高, Morimoto等的方法不能用于制 备密度低于 80 kg/m3的聚氨酯泡沫且不能用于制备软盾聚氨酯低回弹 泡沫。
2001年 6月 5日颁布给 Du Prez等的美国专利 6,242,555描述了用于 制备密度至少为 900 kg/m3 (56 pcf,磅 /立方英尺)的微孔或无孔、 光稳 定弹性、 软质或半软质聚氨酯的反应注射模塑 (RIM)法。 发明方法包 括: 在选自有机铅、 有机铋和有机锡催化剂的催化剂存在下, NCO 含量为 24.5-34%重量的异佛尔酮二异氰酸酯三聚体 /单体混合物与异 氰酸酯活性组合物的反应。 所述异氰酸酯活性组合物包含 (1)低不饱 和度聚醚多元醇, 如美国专利 5,470,813和美国专利 5,498,583中所述 釆用 DMC (双金属氰化物)催化剂制备, 平均名义官能度为 2-4, 平均 当量为 800-4,000 g/moK (2)约 3-约 20%重量的至少一种增链剂, 仅具 有脂肪族或脂环族 OH基作为官能团, 官能度为 2, 当量至多为 80 g/mol, 伯 OH基含量为至少 50%和 (3)约 2-约 10%重量助催化剂体系, 包含具有 2-3个官能脂肪族 NH、 NH2或 OH基且当量至多为 150 g/mol 的催化剂, 至少一种所述催化剂为仲或伯胺基且至少一种所述催化 剂为胺引发催化剂。 该发明提供了制备不黄变聚氨酯材料的方法, 然而它仅能用于反应注射模塑法和致密模塑部件生产。
2003年 9月 19日公开、 Mitsui-Takeda Chemicals Inc.的日本专利申 请 JP 2003-261643 A公开了制备脂环族多异氰酸酯基聚氨酯泡沫的方 法。 新型 (更昂贵且限制生产的)降冰片烷二异氰酸酯 (2,5(2,6)-二 (异氰 酸根合曱基)双环 [2.2.1]庚烷, 产自 Mitsui-Takeda Chemicals Inc.的 "Cosmonate NBDI"商品)与聚醚多元醇及大量 UV稳定剂一起反应, 得 到几乎不黄变的聚氨酯泡沫。 没有针对所得泡沫力学性能的描述, 没有实施例来说明其在软质聚氨酯低回弹泡沫制备中的用途。
2006年 9月 28日公开、 Kurashiki Boseki Corp.的日本专利申请 JP 2006-257187A公开了制备衣服、 保健或化妆品用的几乎不黄变聚氨 酯泡沫的方法。 所述聚氨酯泡沫通过如下制备: 使聚醚多元醇与多 异氰酸酯组合物反应, 所述组合物包含 (异佛尔酮二异氰酸酯 (IPDI)和 /或 IPDI三聚体或其衍生物): (六亚曱基二异氰酸酯 (HDI)的三聚体和 /或 HDI衍生物)盾量调节到 (70-30):(30-70)的混合物。 还解释了: 由于交 联增多, 所得泡沫具有提高的泡沫硬度和低的湿压缩变形。 没有针 对多异氰酸酯组合物在软盾低回弹泡沫制备中的用途进行描述。 采 用这些多异氰酸酯组合物制备的软质低回弹泡沫由于大量交联而会 是硬质的, 因此导致加工困难。 此外, 由于这种三聚体及衍生物中 异氰酸酯含量 (NCO%)减'少, 与仅采用二异氰酸酯相比, 需要比采用 脂肪族或脂环族二异氰酸酯高许多量的异氰酸酯混合物来获得任何 指定的异氰酸酯指数。 提高了这些聚氨酯泡沫的成本。 增加的异氰 酸酯还意味着聚合物中硬链段增加, 这会导致劣化加快。
2001年 3月 21日公开、 INOAC MTP KK.的日本专利申请 JP 2001- 72738A公开了具有优异耐水性且在阳光下不会变色的聚氨酯泡沫, 通过在选自二氮双环烯烃或其苯基盐的催化剂和弱酸的碱金属盐存 在下使脂肪族二异氰酸酯与环氧乙烷含量不到 18重量份 (以 100重量份 总多元醇环氧烷烃计)的多元醇反应。 特別有用的是 1,8-二氮双环- (5,4,0)十一碳烯 -5(DBU)、 DBU的苯基盐、 1,5-二氮双环 -(4,3,0)壬烯- 5(DBN)、 DBN的苯基盐。 由于这些非异氰酸酯活性二氮双环烯烃的 沸点低, 如 DBU的沸点在 532Pa的气压下仅为 100°C, 这种催化剂将 保留在成品泡沫中并逐渐从泡沫中排放出来。 从而, 制备的聚氨酯 泡沫具有大量 VOC排放。
2003年 1月 15日公开、 INOAC MTP KK.的日本专利申请 JP 2003- 012756A公开了采用脂环族二异氰酸酯与胺封端的多元醇反应制备的 几乎不能黄变聚氨酯泡沫。 该申请还描述了仅由环氧丙烷单元组成 的这些多元醇。 这些胺封端聚环氧丙烷 贵且仅有限供应。 难以获 得有用的胺封端聚环氧丙烷分子来制备软质聚氨酯低回弹泡沫。
因此, 需要开发软质聚氨酯低回弹泡沫, 所述软质聚氨酯低回弹 泡沫容易通过采用脂肪族和 /或脂环族二异氰酸酯与市售可得的聚醚 多元醇反应制得, 这种泡沫可在常规聚氨酯泡沫生产设备上制备, 无需对设备进行进一步改变。 发明内容
本发明一个目标是提供制备软质聚氨酯低回弹泡沫的方法, 所述 软质聚氨酯低回弹泡沫基于异氰酸酯活性组分与基本不含异氰酸酯 基直接连接到芳环上的芳族异氰酸酯的异氰酸酯组分的反应产物。
本发明另一目标是提供一种新型异氰酸酯活性组分组合物, 所述 组合物适合与脂肪族和 /或脂环族异氰酸酯和 /或异氰酸酯基不直接连 接到芳环上的芳族异氰酸酯及一种或多种催化剂、 水、 作为泡孔调 节剂的表面活性剂和其它添加剂反应制备软质聚氨酯低回弹泡沫。
本发明另一目标是提供制备不黄变软质聚氨酯低回弹泡沫的方 法。
本发明另一目标是提供制备密度较低的不黄变聚氨酯低回弹泡沫 的一步法。
本发明另一目标是提供制备模塑软盾聚氨酯低回弹泡沫的方法。 本发明另一目标是提供制备软质聚氨酯氐回弹泡沫的方法, 所述 软质聚氨酯低回弹泡沫在热、 潮湿环境下劣化时不会产生有毒芳族 胺。
本发明另一目标是提供制备软质聚氨酯低回弹泡沫的方法, 所述 软质聚氨酯低回弹泡沫由不挥发性催化剂催化, 释放较少量的 本发明另一目标是提供制备聚氨酯低回弹泡沫的方法, 所述聚氨 酯低回弹泡沫在异氰酸酯指数为 75-105 下具有提高的力学性能, 特 别是撕裂强度、 拉伸强度和伸长。
' 本发明另一目标是制备软质聚氨酯低回弹泡沫, 所述 聚氨酯 低回弹泡沫的低回弹和耐用性优异, 而没有使用增塑剂, 且在温度 变化下显示艮小的硬度变化, 同时具有高透气性。
本发明另一目标是提供采用可再生生物源多元醇制备生物可降解 聚氨酯低回弹泡沫的方法。
本发明另一目标是提供新型不变黄聚氨酯低回弹泡沫, 所述聚氨 酯低回弹泡沫可用于胸罩垫、 肩垫、 床垫、 枕头、 家具垫和汽车座 藝领域。
本发明另一目标是提供采用较少量或不采用常规和 /或活性叔胺 催化剂制备聚氨酯泡沫以减少汽车内部雾化的方法。
本发明一个实施方案公开了一种软质聚氨酯低回弹泡沫。 本发明 软质聚氨酯低回弹泡沫包含以下物质的反应产物:
a. 一种异氰酸酯组分, 所述异氰酸酯组分基本不含异氰酸酯基 直接连接到芳环上的芳族异氰酸酯;
b. 一种异氰酸酯活性混合物, 所述异氰酸酯活性混合物包含: (bl) 第一异氰酸酯活性组分, 具有至少 2. 6个异氰酸酯活性 基、 优选为 2. 6-6. 5 个异氰酸酯活性基、 更优选为 2. 65-6. 0个异氰酸酯活性基、 最优选为 2. 7-5. 5个异 氰酸酯活性基, 羟基当量低于 800、 优选为 80 - 800、 更优选为 100 - 700、 最优选为 110-600, 羟基 值高于 70 mg KOH/g、 优选为 70-700 mg KOH/g、 更 优选为 80-560 mg KOH/g、 最优选为 90-510 mg
KOH/g,
(b2) 第二异氰酸酯活性组分, 平均羟基官能度低于 6. 0、 优 选为 1. 8 - 6. 0、 更优选为 1.85-4.5, 羟基当量为 600 - 6, 000、 优选为 700 - 5, 000、 更优选为 800-4,500, 羟基值为 9-94 mg KOH/g、 优选为 19-80 mg KOH/g, 更优选为 14-70 mg KOH/g, 伯羟基含量为至少 30重 量份、 优选至少 40重量份、 更优选至少 51重量份, 以所述第二异氰酸酯活性组分羟基总重量为 100重量 份计,
其中所述第一异氰酸酯活性组分的使用量为 20-90 重量份, 优选 20-70 ,重量份, 所述第二异氰酸酯活性组分的使用量 为 10-80重量份, 优选 30-80重量份, 都以 100重量份所 述异氰酸酯活性混合物计;
c. 催化剂;
d. 任选地一种或多种选自以下的物质: 水、 表面活性剂、 交联 剂及添加剂;
所述任选的交联剂的重均分子量为 60-420 g/mol并具有至少两个 异氰酸酯活性官能团; 其中如果使用, 所述交联剂的使用量为 0.2-15重量份, 最优选 1.2-12重量份, 以 100重量份所述异氰酸 酯活性混合物计。
其中所述泡沫在异氰酸酯指数为 75-105下制备。
任选, 所述异氰酸酯活性组分还包含 0-40重量份 (以 100重量份 异氰酸酯活性组分计)聚合物多元醇, 所述聚合物多元醇的固含 量为 5-55重量份 (以 100重量份聚合物多元醇计), 羟基值为 15- 50 mg KOH/g。
所述异氰酸酯活性组分可包含 0-3.5重量份聚环氧丙烷 (b3)作为开 孔剂(以 100 重量份总泡沫质量计), 所述聚环氧丙烷 (b3)的名义 羟基官能度为 1, 重均分子量为 800-8,500 g/mol。
本发明另一实施方案涉及制备软质聚氨酯低回弹泡沫的方法。 本 发明方法包括制备泡沫制剂, 所述制剂包含异氰酸酯活性混合物、 基本不含异氰酸酯基直接连接到芳环上的异氰酸酯的异氰酸酯组 分、 水、 催化剂以在泡沫配方中形成氨基曱酸酯键和泡沫稳定剂 /表 面活性剂, 然后发泡, 之后将所得泡沫制剂固化。 所述异氰酸酯活 性混合物选自上述异氰酸酯活性混合物。
本发明另一实施方案涉及通过采用一步法制备软质聚氨酯低回弹 泡沫的方法。
本发明另一实施方案涉及通过上述方法制备、 密度为 16-160 千 克 /立方米的软盾聚氨酯低回弹泡沫。
本发明另一实施方案涉及制备软质模塑聚氨酯低回弹泡沫的方 法。
本发明软质聚氨酯低回弹泡沫制备中, 不需要对现有聚氨酯泡沫 生产设备进行特殊改变。
本发明异氰酸酯活性组合物在较大密度和硬度范围的软质聚氨酯 低回弹泡沫制备中提供更大配方组分范围。 优选实施方案详述
本发明涉及新型软质聚氨酯低回弹泡沫, 通过使基本不含异氰酸 酯基直接连接到芳环上的芳族异氰酸酯的异氰酸酯组分与已公开异 氰酸酯活性组分及催化剂、 任选地水、 表面活性剂、 交联剂和添加 剂反应来制备。
所述异氰酸酯组分选自一种或多种以下的异氰酸酯: 脂肪族异氰 酸酯、 脂环族异氰酸酯和异氰酸酯基不直接连接到芳环上的芳族异 氰酸酯。 当使用脂肪族和 /或脂环族和 /或异氰酸酯基不直接连接到芳 环上的芳族异氰酸酯时, 本发明提供具有优异加工性能和低泡沫弹 性的软质聚氨酯低回弹泡沫。 此外, 本发明公开了制备较宽硬度范 围的软质聚氨酯低回弹泡沫、 而不使用不同于水的其它发泡剂的一 步法。
本发明公开了一种新型脂肪族或脂环族或异氰酸酯基不直接连接 到芳环上的芳族异氰酸酯基聚氨酯材料。 本发明聚氨酯材料适合制 备软质聚氨酯低回弹泡沫, 所述软质聚氨酯低回弹泡沫可用作胸罩 垫、 肩垫的材料, 还适用于床垫、 枕头、 家具垫、 毡片和汽车座 垫。 它特别适用于床垫和枕头。
本发明一步法中, 将配方材料同时注入混合头, 然后倒入模具内 或传送带上。 发泡反应进行非常快。 根据所用催化剂, 上升的泡沫 在 2-7分钟内基本完全固化。 然后使所得泡沫后固化 24小时以获得 其最终性能。
本发明方法中, 反应组合物包含异氰酸酯组分、 异氰酸酯活性组 分、 催化剂、 表面活性剂、 作为发泡剂的水和本身已知的添加剂。 需要的情况下, 还可使用其它添加剂如颜料 /染料、 抗氧剂、 UV吸 收剂、 阻燃剂、 填料、 回收泡沫粉、 稳定剂、 抗菌化合物和抗静电 剂。
所述异氰酸酯包括脂肪族和 /或脂环族和 /或异氰酸酯基不直接连 接到芳环上的芳族二异氰酸酯单体, 或脂肪族和 /或脂环族和 /或异氰 酸酯基不直接连接到芳环上的芳族二异氰酸酯单体与三聚体的共混 物, 所述三聚体为脂肪族或脂环族或异氰酸酯基不直接连接到芳环 上的芳族二异氰酸酯三聚反应的产物, 所述共混物中的 NCO含量为 20.5-50.0重量份 (以异氰酸酯组分中 100重量份总异氰酸酯^ 5出计), 计算官能度为 2-3。 所述脂肪族或脂环族或异氰酸酯基不直接连接到 芳环上的^族异氰酸酯可为选自但不局限于以下的至少一种: 六亚 曱基二异氰酸酯、 双环庚烷三异氰酸酯、 十一烷三异氰酸酯、 异佛 尔酮二异氰酸酯、 二环己基曱烷二异氰酸酯、 曱基环己烷二异氰酸 酯、 甲基环己烷二异氰酸酯、 苯二亚甲基二异氰酸酯、 四曱基苯 二亚曱基二异氰酸酯、 其二聚体和三聚体。 这些异氰酸酯中, 特别 优选六亚曱基二异氰酸酯和异佛尔酮二异氰酸酯。
除了脂肪族和 /或脂环族和 /或异氰酸酯基不直接连接到芳环上的 芳族异氰酸酯单体和三聚体外, 所述异氰酸酯组分任选还包含至多 35%重量 (以异氰酸酯组分总重计)、 包含 2-4 个异氰酸酯官能团的脂 肪族或脂环族或异氰酸酯基不直接连接到芳环上的芳族异氰酸酯预 聚物。
所述异氰酸酯的使用水平一般为: 异氰酸酯指数为约 65-110, 优 选约 70-105, 更优选为约 75-105。
所述异氰酸酯活性混合物包含:
(bl) 第一异氰酸酯活性组分, 所述异氰酸酯活性组分具有至 少 2. 6个异氰酸酯活性基、 优选为 2. 6-6. 5 个异氰酸酯活性 基、 更优选为 2. 65-6. 0 个异氰酸酯活性基、 最优选为 2. 7- 5. 5 个异氰酸酯活性基, 羟基当量低于 800、 优选为 80 - 800、 更优选为 100 - 700、 最优选为 110-600, 羟基值高于 70 mg KOH/g、 优选为 70-700 mg KOH/g、 更优选为 80-560 mg KOH/g、 最优选为 90-510 mg KOH/g,
(b2) 第二异氰酸酯活性组分, 所述异氰酸酯活性组分的平均 羟基官能度低于 6. 0、 优选为 1. 8 - 6. 0、 更优选为 1.85-4.5, 羟基当量为 600 - 6, 000、 优选为 700 - 5, 000、 更优选为 800- 4,500, 羟基值为 9-94 mg KOH/g, 优选为 19-80 mg KOH/g、 更优选为 14-70 mg KOH/g, 伯羟基含量为至少 30重量份、 优选至少 40重量份、 更优选至少 51 重量份, 以所述第二异 氰酸酯活性组分的羟基总重量为 100重量份计,
其中所述第一异氰酸酯活性组分的使用量为 20-90 重量份, 优选 20-70 重量份, 所述第二异氰酸酯活性组分的使用量为 10-80 重量 份, 优选 30-80 重量份, 都以 100 重量份所述异氰酸酯活性混合物 if; 和
任选的重均分子量为 60-420 g/moK 具有至少两个异氰酸酯活性 官能团的交联剂, 其中如果使用, 所述交联剂的使用量为 0.2-15 重 量份, 优选 0.5-15重量份, 更优选 0.5-12重量份, 最优选 1.2-12重 量份, 以 100 重量份所述异氰酸酯活性混合物计。
任选, 所述异氰酸酯活性组分可还包含 0-50 重量份, 优选 0-40 重量份 (以 100重量份异氰酸酯活性组分计)聚合物多元醇, 所述聚合 物多元醇的固含量为 5-55 重量份, 更优选 10-45重量份 (以 100重量 份聚合物多元醇计), 羟基值为 15-50 mg KOH/g。
任选, 所述异氰酸酯活性组分可包含 0-5.0重量份, 优选 0-3.5重 量份 (以 100 重量份泡沫总质量计)聚环氧丙烷 (b3)作为开孔剂, 所述 聚环氧丙烷的名义羟基官能度为 1 , 重均分子量为 400-9,600 g/mol, 优选 600-9,000 g/mol, 更优选 800-8,500 g/mol。
可用于本发明的异氰酸酯活性组分包括大量化合物。 它们的良好 实例包括但不局限于以下: (a)聚醚多元醇, 包括多羟基烷烃的环氧 烷烃加成物; (b)聚 (四亚曱基醚)二醇和 (c)聚 (三亚甲基醚)二醇。
上述多羟基烷烃的环氧烷烃加成物实例包括以下物质的环氧烷烃 加成物: 乙二醇、 二甘醇、 一缩丙二醇、 1,3-丙二醇、 1,2-丙二醇、 丁二醇、 戊二醇、 甘油的三环氧丙烷加成物、 三羟曱基丙烷单烯丙 基醚、 1,1,1-三羟曱基乙烷、 1,1,1-三羟曱基丙烷、 1,2,3-三羟基己 烷、 甘油、 季戊四醇、 聚己内酯、 木糖醇、 阿拉伯糖醇、 山梨醇和 甘露醇。 使用的环氧烷烃中, 最优选环氧乙烷、 环氧丙烷和环氧丁 燒。
由这种引发剂制备的聚醚多元醇通常通过阴离子聚合法制备, 其 中将环氧烷烃与引发剂化合物和强碱性催化剂如氢氧化钾或某些有 机胺混合。 采用这些强碱性催化剂使环氧烷烃聚合会导致不饱和度 提高和所得聚醚多元醇的平均官能度减少。 这些不饱和组分具有强 的气味且会延迟多元醇与异氰酸酯反应过程中氨基曱酸乙酯的形 成。
双金属氰化物 (DMC)络合物为众所周知的环氧烷烃聚合催化剂。 与采用强碱性催化剂制备的类似多元醇相比, 这些活性催化剂可用 于制备具有极低不饱和度的聚醚多元醇。 不饱和水平低至 0.02meq/g 的聚醚多元醇可采用 DMC催化剂制备。 基于 DMC的聚醚多元醇, 如 2001年 11月 7日颁布的 EP 0894108B1中描述的产物, 可用于制 备气味减轻、 力学性能提高的软质聚氨酯低回弹泡沫, 因此是本发 明中优选的一种聚醚多元醇。
实际上, 具有活泼氢 (通过 Zerewitinoff C泽尔维季诺夫)测试确定) 的任何材料可用作聚醚多元醇的组分。 例如, 胺封端的聚醚多元醇 是已知的且可使用。
在本发明中, 第一异氰酸酯活性组份 ( bl )必需具备至少 2. 6 个 异氰酸酯活性基、 优选为 2. 6-6. 5 个异氰酸酯活性基、 更优选为 2. 65-6. 0 个异氰酸酯活性基、 最优选为 2. 7-5. 5 个异氰酸酯活性 基, 以满足制备低回弹泡沫所需的交联度, 在此官能基值范围下, 为达所需的反应活性, 羟基当量必须低于 800, 太高的羟基当量将使 多元醇反应活性过低, 以致无法适用于和低反应性的异氰酸酯反 应, 而不适用于本发明。 羟基当量过低, 则无法达到低回弹泡沫物 性所需的适当聚合物分子链。 优选的羟基当量范围为 80 - 800, 更优 选的羟基当量范围为 100 - 700 , 最优选的羟基当量范围为 110 - 600。
本发明所用的第二异氰酸酯活性组份(b2 ) 中, 羟基官能基数必 须低于 6. 0, 以达到提供低回弹泡沫物性的需求。 过高的官能基数需 配合较大的羟基当量, 从而使反应性过低, 无法适用于本发明。 反 之, 过低的官能基数则大幅减损泡沫的物性, 特别是拉伸强度及撕 裂强度。 优选的羟基官能基数为 1. 8 - 6. 0, 更优选的羟基官能基数 为 1. 85 - 4. 5。
第二异氰酸酯活性组份(b2 ) 中, 羟基当量优选的范围为 600 - 6, 000 , 更优选的范围为 700 - 5, 000, 最优选的范围为 800 - 4, 500。 过高的羟基当量将造成反应活性低下, 致使不能适用于本发 明。 太低的羟基当量, 将使泡沫的交联密度过高, 使制得的泡沫太 硬, 并且增加泡沫在温度变化时相对硬度的变化。
在第二异氰酸酯活性组份(b2 ) 中, 为配合优选的羟基官能基数 和羟基当量范围, 必须使用高反应性的伯羟基封端的多元醇。 为满 足本发明中与低反应性异氰酸酯制备低回弹泡沫的需求, 所选用的 第二异氰酸酯活性组份(b2 ) 中必须含有至少 30 重量份, 优选至少 40重量份, 更优选至少 51重量份的伯羟基封端, 均以所述第二异氰 酸酯活性组份 ( b2 ) 的羟基重量计。
可用于本发明的另一类多元醇为上述聚 (四亚曱基醚)二醇。 聚 (四亚甲基醚)二醇为四氢呋喃 (THF)的开环聚合产物。 聚 (四亚甲基醚) 二醇为聚醚多元醇。 它还已知为 PTMEG或聚四氢呋喃和各种商品名 如" Terathane"和" PolyTHF,。 它通过四氢呋喃的酸催化聚合制备。 所 得聚合物为适当大小, 通常数均分子量为 250-3,000 g/mol„ 这些聚 (四亚曱基醚)二醇中的所有羟基为伯羟基。 本发明中, 平均分子量为 800-3,000、 更优选 1,200-2,400 的聚 (四亚甲基醚)二醇为特别优选的 聚 (四亚曱基醚)二醇。
可用于本发明的第三类多元醇为聚 (三亚曱基醚)二醇。 聚 (三亚曱 基醚)二醇可通过 1,3-丙二醇引发的氧杂环丁烷开环聚合或 1,3-丙二 醇的新型多步连续缩聚反应而制备, 如 2006年 7 月 11 日颁布给 Sunkara等的美国专利 7,074,968中所述。 从生物质发酵获得的 1,3-丙 二醇可用作所述生产法中的进料来制备可再生、 可生物降解的聚 (三 亚甲基醚)二醇。 这些聚 (三亚曱基醚)二醇具有伯羟基和低熔点及高 柔顺性。 聚 (三亚曱基醚)二醇中, 最优选重均分子量为 800-3,000、 特别是 1,200-3,000 g/mol的那些来制备软质聚氨酯低回弹泡沫。 采用 这种聚 (三亚甲基醚)二醇的另一动机来自其可生物降解性质。 可釆用 高达总泡沫重量 50%重量的这些生物基聚 (三亚曱基醚)二醇来制备生 物可降解的聚氨酯低回弹泡沫。
优选用于本发明的多元醇包括聚 (环氧丙烷 -环氧乙烷)二醇。 当 使用时, 环氧乙烷可以任何方式结合到聚合物链上。 环氧乙烷可结 合到内部链段、 作为端链段或沿着多元醇链随机分布。 最优选为环 氧乙烷封端的聚(环氧乙烷 -环氧丙烷)二醇。
交联剂组分可为带 OH、 NH或 NH2基, 更具体地脂肪族或脂环 族 OH、 NH或 NH2基、 重均分子量为 40-640、 优选 60-420 g/moK 具有至少两个异氰酸酯活性官能团的交联剂, 其中如果使用, 所述 交联剂的使用量为 0.2-15、 优选 0.5-15、 更优选 0.5-12、 最优选 1.2 - 12重量份, 以 100重量份所述异氰酸酯活性混合物计。
交联剂的典型实例为: 乙二醇、 二甘醇、 三甘醇、 四甘醇、 数均 分子量低于 600的聚乙二醇、 丙二醇、 一缩丙二醇、 分子量低于 450 的聚丙二醇、 丁二醇、 戊二醇、 己二醇、 1,1,1-三羟曱基乙烷、 1,1,1- 三羟曱基丙烷、 1,2,3-三羟基己烷、 甘油、 聚 (环氧丙烷-环氧乙烷)、 聚 (环氧丙烷)、 聚 (环氧乙烷)、 2-曱基 -1,3-丙二醇、 3-曱基 -1,5-戊二 醇、 1,4-环己二醇、 新戊二醇、 1,4-环己烷二曱醇、 乙二胺、 单乙醇 胺、 二乙醇胺、 2-氨基 -2-曱基 -1-丙醇、 N-曱基乙醇胺、 异佛尔酮二 胺和肼。 所述交联剂的优选实例为单乙醇胺和二乙醇胺。 如果需 要, 还可使用几种交联剂的混合物。
视所述低回弹泡沫硬度的需要, 在所述异氰酸酯活性混合物中可 添加稳定分散的聚合物多元醇。 稳定分散的聚合物多元醇组分可为 任何聚环氧烷烃多元醇, 具有分散于其中的烯属不饱和单体的聚合 物。 稳定分散的聚合物多元醇的典型实例包括聚环氧烷烃多元醇, 其中分散有聚 (苯乙烯丙烯腈)和 /或聚脲。 所述稳定分散的聚合物多元 醇可购自几个公司, 包括 Bayer (拜耳)(商品名为" Polymer Polyol (聚合 物多元醇)" )、 BASF (巴斯夫) (商品名为" Graft Polyol (接枝多元醇)":)、 Dow (商品名为" Copolymer Polyol (共聚物多元醇),,)和 Mobay (商品名 为" PHD Polyol(PHD多元醇)";)。 Bayer, BASF和 Dow产品中, 按照 美国专利 4,272,619、 美国专利 4,640,935和美国专利 5,494,957中所 述方法将聚 (苯乙烯丙烯腈)分散于多元醇。 稳定分散的聚合物多元醇 商品的实例列于如下表 1: 表 1
聚环氧烷经多元醇 种类
HS-100
Bayer "Polymer Polyol(聚合物多元醇)"
Niax E694
Pluracol 1103
BASP'Graft Polyol (接枝多元醇)"
Pluracol 994LV
Dow"Copolymer Polyol (共聚物多元醇)" Voranol 3943
Mobay'THD Polyol (PHD 多元醇)" E9232 所述稳定分散的聚合物多元醇可按照 Oertel 在" Polyurethane Handbook"(Polyurethane Handbook (聚氨酯手册), G. Oertel, ISBN 0- 02-948920-2, Hanser Publisher, 1985)中描述的步骤制备。 在这种稳 定分散的聚合物多元醇制备中可使用任何聚环氧烷烃多元醇作为分 散体基体。 这种稳定分散的聚合物多元醇的活性主要取决于这种稳 定分散的聚合物多元醇制备过程中使用的基体多元醇的活性。 由于 本发明中所用脂肪族和 /或脂环族和 /或异氰酸酯基不直接连接到芳环 上的芳族多异氰酸酯的活性较低, 优选名义官能度为 2.4-6(优选 2.4- 5.6, 最优选 2.4-5.4)、 当量为 800-2,000(更优选 800-1,600, 最优选 l,000-l,600)g mol、 环氧乙烷含量为 4_28(优选 4_24)%重量 (以 ^出多 元醇的重量计)的基体多元醇。
视所述低回弹发泡体操作性的需要, 在所述异氰酸酯活性混合物 中可添加开孔剂来改善所述低回弹发泡体的收缩。 开孔剂的典型实 例包括: 稳定分散的聚合物多元醇、 环氧乙烷含量超过 50%重量份 的聚(环氧乙烷 -环氧丙烷)共聚物、 重均分子量超过 800 的聚(环 氧丁烷 -环氧丙烷)共聚物、 重均分子量超过 600 的聚乙二醇、 重均 分子量超过 400 的聚环氧丙烷、 粒径小于 150微米的微硅粉、 粒径 小于 200微米的聚四氟乙烯树脂粉末、 脂肪族羧酸及其碱金属或碱 土金属盐、 脂环族羧酸及其碱金属或碱土金属盐、 脂肪族烷烃、 脂 环族烷烃和二曱基硅油。 优选开孔剂组分为稳定分散的聚合物多元 醇、 环氧乙烷含量超过 50%重量份的聚(环氧乙烷 -环氧丙烷)共聚 物、 重均分子量超过 800 的聚(环氧丁烷 -环氧丙烷)共聚物和重均 分子量超过 400 的聚环氧丙烷。 所述优选开孔剂组分的通常使用量 为 0.05-20重量份、 优选 0.5-10重量份, 以 100重量份发泡体总质量 计。 最优选开孔剂组分为重均分子量超过 400 的聚环氧丙烷, 所述 聚环氧丙烷开孔剂的名义羟基官能度为 1, 重均分子量为 400- 9,600g/mol、 优选 600-9,000g/mol、 更优选 800-8,500g/mol, 所述聚环 氧丙烷开孔剂的通常使用量为 0-5.0重量份、 优选 0-3.5 重量份(以 100重量份发泡体总质量计)。 如果需要, 还可使用几种开孔剂的混 合物。
许多聚氨酯催化剂商品可用于制备本发明软质聚氨酯低回弹泡 沫。 催化剂的通常使用水平为 0.05-2.0 php (每 100重量份多元醇的重 量份数)。 代表性催化剂包括: (1)叔胺如二 (2,2,-二曱氨基)乙醚、 二 (二曱氨基乙基)醚、 N-甲基吗啉、 N-乙基吗啉、 Ν,Ν-二曱基苄胺、 Ν,Ν-二曱基乙醇胺、 Ν,Ν,Ν,,Ν,-四曱基 -1,3-丁二胺、 五甲基二亚丙基 三胺、 三曱胺、 三乙胺、 三乙醇胺、 三亚乙基二胺和氧化吡啶; (2) 二氮双环浠烃, 如 1,5-二氮双环 -(4,3,0)壬烯 -5、 1,8-二氮双环 -(5,4,0) 十一烯 -7、 1,8-二氮双环 -(5,3,0)癸烯 -7、 1,5-二氮双环 -(5,4,0)十一烯- 5、 1,4-二氮双环 -(3,3,0)辛烯 -4 和二氮双环烯烃的有机盐如苯酚盐; (3)强碱如碱和碱土金属醇盐、 氢氧化物和酚盐; (4)强酸的酸性金属 盐如氯化亚锡、 氯化铁、 三氯化锑、 氯化铋和硝酸盐; (5)各种金属 的螯合物如采用乙酰丙酮、 苯曱酰丙酮、 三氟乙酰丙酮、 乙酰乙酸 乙酯、 水杨醛、 环戊酮 -2-羧酸酯、 乙酰丙酮亚胺、 二乙酰丙酮 -亚烷 基二亚胺和水杨醛亚胺和各种金属: ¾σ Be、 Mg、 Zn、 Pb、 Ti、 Zr、 Sn、 Bi、 Mo、 Mn、 Fe、 Co和 Ni获得的那些; (6)各种金属的醇盐和 酚盐如 Sn(OR)4、 Sn(OR)2、 Ti(OR)4和 Al(OR)3, 其中 R为烷基或芳 基, 和醇盐与羧酸、 β-二酮和 2-(Ν,Ν-二烷氨基)烷醇的反应产物, 如 通过这样或类似步骤获得的钛螯合物; (7)有机酸与各种金属如碱金 属和碱土金属的盐如己酸 、 醋酸亚锡、 辛酸亚锡和油酸亚锡; (8) 四价錫、 三价和五价 As、 Sb和 Bi 的有机金属衍生物, 和铁和钴的 金属羰基化合物。
上述催化剂中, 发现有机锡化合物特别可用于制备本发明软质聚 氨酯低回弹泡沫。 优选的有机锡化合物为羧酸的二烷基锡盐, 如二 醋酸二丁基锡、 二月桂酸二丁基锡、 二月桂酸二甲基锡、 马来酸二 丁基锡、 二醋酸二月桂基锡和二醋酸二辛基锡。 其它有用有机锡化 合物为氢氧化三烷基锡、 氧化二烷基锡、 二烷氧基二烷基锡、 二氯 化二烷基锡和二硫醇二烷基锡。 这些化合物的实例包括氢氧化三甲 基锡、 氢氧化三丁基锡、 氢氧化三辛基锡、 氧化二丁基锡、 氧化二 辛基锡、 氧化二月桂基锡、 二氯二丁基锡、 二氯二辛基锡、 二硫醇 二丁基锡和二硫醇二曱基锡。 所述有机锡化合物的使用量一般为异 氰酸酯活性混合物(b ) 的约 0.05-约 0.8 %重量, 优选约 0.15-约 0.55 %重量。
另一可用于本发明软质聚氨酯低回弹泡沫制备中的催化剂为布朗 斯台德酸与各种碱金属或碱土金属的盐。 发现碳酸氢钠或碳酸钠特 别可用于制备本发明软盾聚氨酯低回弹泡沫。 所述碱金属或碱土金 属布朗斯台德酸盐的使用量一般为异氰酸酯活性混合物 (b ) 的约 0.01-约 0.8 %重量, 优选约 0.1-约 0.6 %重量。
一种或多种表面活性剂也可用于发泡组合物。 表面活性剂降低本 体表面张力, 促进气泡的成核, 使起的泡稳定并使不相容成分乳 化。 通常用于聚氨酯泡沫的表面活性剂为聚硅氧烷-聚环氧烷烃共聚 物, 通常使用水平为约 0.2-约 3 %重量, 优选约 0.6-约 2.5%重量, 以 总异氰酸酯活性混合物计。 用于制备芳族二异氰酸酯基聚氨酯泡沫 的传统表面活性剂也可用于本发明。
使用 0.5-6.5重量份 (以 100重量份异氰酸酯活性混合物计)水, 以 通过与所述异氰酸酯反应产生二氧化碳, 作为发泡反应的发泡剂。 此外, 如果需要, 可使用水和其它已知辅助发泡剂的组合物。 特别 优选直接使用二氧化碳 (气体或液体)作为除了水以外的辅助发泡剂。 还发现发泡反应过程中调节气压和 /或采用机械起泡技术, 如 1993年 12月 9日颁布的 WO 93/24304和 1993年 3月 16日颁布的美国专利 5,194,453中所述, 可用来改变泡沫密度。
其它添加剂可任选结合到本发明发泡组合物中。 这些其它添加剂 包括但不局限于: 颜料、 抗氧剂、 UV 吸收剂、 UV稳定剂、 阻燃 剂、 填料、 回收泡沫粉、 稳定剂、 抗微生物化合物和抗静电剂。 这 种添加剂不应对软质聚氨酯低回弹泡沫的性能有不利影响。
本发明软质聚氨酯低回弹泡沫可采用模塑法和 /或块料法制备。 模塑法是其中注入活性混合物, 发泡并在密闭模具中模塑的方法。 块料法是指将活性混合物倒在传送带上并在开放系统中发泡。
本发明软质聚氨酯低回弹泡沫密度范围为约 10-约 200千克 /立方 米、 优选约 16-约 160千克 /立方米, 按照 JIS K6400方法( 1997版) 确定。
本发明软质聚氨酯低回弹泡沫的落球回弹性不高于 20 %、 优选 不高于 15 % , 按照 JIS K6400方法( 1997版)确定。
本发明软质聚氨酯低回弹泡沫具有本领域中对于软质聚氨酯泡沫 所理解的硬度。 在一个实施方案中, 本发明泡沫的硬度小于 150N/314cm2。 在另一个实施方案中本发明泡沫的硬度为 6- 120N/314cm2或者 6-90N/314cm2。 本发明软质聚氨酯低回弹泡沫的硬 度可通过调整第一异氰酸酯活性组份(bl ) 和第二异氰酸酯活性组 份(b2 ) 间的比例, 和选用适当的异氰酸酯指数而加以调整。 使用 较多的第二异氰酸酯活性组份(b2 ) 配合不高于 80 的异氰酸酯指 数, 本发明的软质聚氨酯低回弹泡沫的 IFD25%硬度可调低至 6N/314cm2。 使用较多的第一异氰酸酯活性组份(bl )配合不低于 95 的异氰酸酯指数, 本发明的软质聚氨酯低回弹泡沫的 IFD25%硬度可 调高至 120N/314cm2。 IFD25%硬度的测定依据 JIS K6400 方法 ( 1997年版)确定。 一般而言, 枕头及床垫用的软质聚氨酯低回弹 泡沫要求 IFD25%硬度界于约 12 N/314cm2到 24 N/314cm2之间, 以 兼顾承载力及舒适性。 运动垫或头盔等用途则要求高硬度, 以达到 吸震、 抗冲击的效果。 具体实施方式
以下详细说明中, 使用的符号、 术语和缩写将具有以下定义: ISO 1 是异佛尔酮二异氰酸酯, 产自 Bayer AG (拜耳)的 Desmodur I商品。
ISO 2是 50%重量异佛尔酮二异氰酸酯 (Desmodur I)和 50%重量六 亚曱基二异氰酸酯三聚体 (Desmodur N3600 商品)的混合物, 两者都 产自 Bayer AG. (拜耳)。
ISO 3 是曱苯二异氰酸酯, 为 80%重量 2,4-曱苯二异氰酸酯和 20%重量 2,6-曱苯二异氰酸酯的组合物, 产自 Bayer AG. (拜耳)。
ISO 4是六亚曱基二异氰酸酯, 产自 Bayer AG (拜耳)的 Desmodur H商品。
ISO 5 是由六亚曱基二异氰酸酯经三聚化反应所制备的六亚曱基 二异氰酸酯三聚体, 产自 Bayer AG (拜耳)的 Desmodur N3600商品。
ISO 6是苯二亚甲基二异氰酸酯, 产自 Mitsui-Takeda Chemicals Inc. (三井 -武田化学) 的 Takenate 500 商品。
P1 是甘油引发的聚环氧丙烷, 平均分子量为 550 g/mol, 羟基值 为 310 mg KOH/g, 产自 SK Chemicals of Korea (韩国 SK化工)的 YUKOL 1030o
P2是山梨醇引发的聚环氧丙烷, 平均羟基当量为约 117。 P3 是聚(四亚曱基醚)二醇, 羟基当量为约 900, 产自 Dairen Chemical Corp of Taiwan (台湾大连化学公司;)。
P4是由生物基 1,3-丙二醇制备的聚 (三亚曱基醚)二醇, 平均羟基 当量为约 1,070, APHA色度大约 25, 产自 E丄 du Pont (杜邦)。
P5 是低不饱和度聚醚多元醇, 通过采用 DMC催化剂使环氧丙烷 加成聚合到一缩丙二醇引发剂, 然后用环氧乙烷封端而制备, 平均 分子量为 4,000 g/mol, 羟基值为约 28 mg KOH/g, 名义官能度为 2, 伯羟基官能团含量为总羟基重量的约 87 %重量, 售自 Bayer AG (拜 耳) 的 ACCLAIM POLYOL 4220N。
P6是低不饱和度聚醚多元醇, 通过采用 DMC催化剂使环氧丙烷 加成聚合到一缩丙二醇引发剂而制备, 平均分子量为 4,000 g/mol, 羟基值为约 28 mg KOH/g, 不饱和度为 0.005 meq/g, 100%重量仲羟 基官能团, 名义官能度为 2, 售自 Bayer AG (拜耳)的 ACCLAIM POLYOL 4200。
P7是低不饱和度聚醚多元醇, 通过采用 DMC催化剂使环氧丙烷 加成聚合到 1,1,1-三羟曱基丙烷引发剂而制备, 平均分子量为 3,000, 羟基值为约 57.6 mg KOH/g, 不饱和度为 0.005 meq/g, 100% 重量仲羟基官能团, 名义官能度为 3, 售自 Bayer AG (拜耳)的 ACCLAIM POLYOL 3300N。
P8是低不饱和度聚醚多元醇, 通过采用 DMC催化剂使环氧丙烷 加成聚合到一缩丙二醇引发剂, 然后用环氧乙烷封端而制备, 平均 分子量为 2,000 g/mol, 羟基值为约 56 mg KOH/g, 名义官能度为 2, 伯羟基官能团含量为总羟基重量的约 87 %重量, 售自 Bayer AG (拜 耳) 的 ACCLAIM POLYOL 2220N。
P9是低不饱和度聚醚多元醇, 通过采用 DMC催化剂使环氧丙烷 加成聚合到一缩丙二醇引发剂而制备, 平均分子量为 8,000 g/mol, 羟 基值为约 14 mgKOH/g, 100%重量仲羟基官能团, 名义官能度为 2, 售自 Bayer AG (拜耳)的 ACCLAIM POLYOL 8200。 P10是聚 (环氧丙烷 -环氧乙烷)共聚物, 通过采用氢氧化钾催化剂 使环氧丙烷加成聚合到一缩丙二醇引发剂, 然后用环氧乙烷封端而 制备, 环氧乙烷含量为 19%重量, 伯羟基官能团含量为总羟基重量 的 53%重量, 平均分子量为 2,000 g/mol , 羟基值为约 56.1mg KOH/g, 不饱和度为 0.03 meq/g, 名义官能度为 2。
P11 是聚 (环氧丙烷 -环氧乙烷)共聚物, 通过釆用氢氧化钾催化剂 使环氧丙烷加成聚合到山梨醇引发剂, 然后用环氧乙烷封端而制 备, 环氧乙烷含量为 28%重量, 伯羟基官能团含量为总羟基重量的 85%重量, 羟基值为约 31.3mg KOH/g, 名义官能度为 6。
P12是聚合物多元醇, 分散有 45%重量苯乙烯-丙烯腈共聚物, 羟 基值为 28.5 mg KOH g。 基体多元醇为随机进料的聚(环氧丙烷-环 氧乙烷)三醇, 羟基当量为 1,050, 售自 Bayer AG (拜耳)的 ARCOL POLYOL HS-100„
P13 是一元醇, 通过采用氢氧化钾催化剂使环氧丙烷加成聚合到 丁醇引发剂, 羟基值为 8.5 mg KOH/g。
DEOA是二乙醇胺, 纯度超过 99%重量, 产自 Sigma-Aldrich (西 格玛奥德里奇)。
PEG 400 为试剂级聚(乙二醇), 平均分子量为 400, 纯度超过 98.5%, 产自 Sigma-Aldrich (西格玛奥德里奇)。
甘油为纯度超过 99%的 GC试剂级甘油, 产自 Sigma-Aldrich (西 格玛奥德里奇)。
SC为碳酸钠的 2M水溶液, 由去离子水和纯度超过 99%的试剂级 碳酸钠制备, 产自 Sigma-Aldrich (西格玛奥德里奇)。
SBC为碳酸氢钠的 0.5M水溶液, 由去离子水和纯度超过 99%的 试剂级碳酸氢钠制备, 产自 Sigma-Aldrich (西格玛奥德里奇)。
DC 5950 为聚硅氧烷 -聚环氧烷烃共聚物表面活性剂, 售自 Air Products and Chemicals Inc. (美国空气化工产品有限公司)的 DABCO DC 5950。 DC 5179为低释放型聚硅氧烷-聚环氧烷烃共聚物表面活性剂, 售 自 Air Products and Chemicals Inc. (美国空气化工产品有限公司)的 DABCO DC 5179。
ax A-230为叔胺混合物, 售自 Chemtura Corp. (科聚亚化工有限 公司)。
SO是指辛酸亚锡, 产自 Air Products and Chemicals Inc. (美国空气 化工产品有限公司)的 DABCO T-9。
DBTDL是指二月桂酸二丁基锡, 产自 Air Products and Chemicals Inc. (美国空气化工产品有限公司)的 DABCO T-l2
UV 是 2-(2,-羟基 -3,,5,-二叔戊基苯基)苯并三唑, 化学文摘号 25973-55-1, 售自 Everlight Chemical Industrial Corp.(台湾永光化学工 业股份有限公司)。
"指数 "是指反应混合物中活性异氰酸酯基的总摩尔数除以反应混 合物中异氰酸酯活性基的总摩尔数之比乘以 100。
"pbw"是指重量份。
以下详细说明中, 实施例中给出的聚氨酯泡沫性能按照以下测试 方法确定:
"芯密度"按照 US K6400 方法 (1997版)确定。
"IFD(Indentation Force Deflection, 压陷力变形)硬度 25%,,是指按 照 JIS K6400方法(1997版)采用 25%压缩负荷确定。
"CLD (Compression Load Deflection, 压缩受力变形)硬度 25% " 是指按照 JIS K6400方法 (1997版)采用 25%压缩负荷确定。
"硬度变化"是指与在 23°C测定的 CLD硬度对照, 在 -5°C测定的 CLD硬度的提高比例 (in %)。 CLD硬度 25%按照 JIS K6400 方法 (1997版)确定。 测试样品在测试前在指定温度下调节至少 24小时。
"拉伸强度"按照 JIS K6400方法 (1997版)确定。
"伸长 "按照 JIS K6400方法 (1997版)确定。
"撕裂强度,,按照 JIS K6400方法(1997版)确定。 芯的"落球回弹性,,按照 JIS K6400方法 (1997版)确定。
"干压缩变形 "是指按照 JIS K6400方法 (1997版)确定的干热压缩 变形。
"湿压缩变形 "是指按照 JIS K6400方法 (1997版)确定的湿热压缩 变形。
"UV稳定性 "值是按照 AATCC 16-1990, 选项 E方法获得的色牢 度测量。 将泡沫样品放在 UV灯下并暴露于紫外光 20小时。 与标准 灰度卡对比, 结果表示为 1-5 的等级。 等级 5 是指根本没有颜色变 化, 等级 1 是指几乎为深色。 等级 4及以上的值表明没有棵眼可辨 别的目视变化。
"模压加工性"是模塑评估, 发泡后具有好的表层且无收缩的泡沫 评定为 "良好", 发泡后有收缩但碾压两次后恢复的那种评定为"可碾 压的", 有收缩且碾压两次后不恢复的那种评定为"差"。
以下实施例用来说明本发明, 而不应理解为以任何方式对本发明 范围进行任何限定。 除非另有说明, 所有份和百分比为重量份和重 量百分比。 实施例 1-30和对比实施例 C1-C5
实施例 1-10和对比实施例 C1-C5 通过将表 2-1和 2-2中所示的组分混合制备实施例 1-10和对比实 施例 C1-C5 的软质聚氨酯低回弹泡沫。 发泡之前, 将选定的所有成 分在温度控制在 23±1 °C的恒温箱内调节至少 24小时。 加入有机锡化 合物之前, 在 1.5 升不锈钢杯内采用旋转速度设定为 1,500 rpm 的 Cowles型混合器在 40秒内将除了有机锡化合物和异氰酸酯外的成分 预混和在一起。 预混合后, 接着将有机锡化合物 (如果使用)加入杯 中, 再混合 20秒, 旋转速度设定为 1,500 rpm。 然后将选定异氰酸酯 化合物加入所得混合物并以 3,000 rpm与所得组合物混合 5秒。 然后 将混合物倒入顶部打开的 45厘米(长) X45厘米(宽) X45 厘米 (高)纸衬木盒并发泡。 泡沫达到其最终高度后, 让之在盒中静止 另外 10分钟, 然后从盒中移出来。 然后将所制泡沫保存在通风且温 度控制在 27±2°C的储存室内至少 72小时。
然后根据 JIS K6400方法 (1997版)中描述的样品尺寸, 采用实验 室规模电动锯机从所制泡沫芯切割出泡沫样品。 接着根据 JIS K6400 方法 (1997版)中描述的样品尺寸, 从指定厚度的泡沫板模切出用于测 试撕裂强度、 拉伸强度和伸长的样品。 在物理性能测试之前, 使所 有样品在温度控制在 23士 1 °C、 湿度为 50%的恒温恒湿箱内调节至少 24小时。 表 2-1
泡沫等级 60 kg/m
实施例 1 2 3 4 5 6 8 9 10 配方:
PP 11 ((ppbbww)) -- 4488 4400 4400 ---- 4400 4400 4400 4400 5500
P 2 (pbw) 30 ― ― -- 36 ― -- ― ― --
P 5 (pbw) 60 - 58 - 62 54
P 6 (pbw) - - -- --
P 7 (pbw) -- --
P 8 (pbw) -- -- -- 58 ― ― 57 -- -- --
P 9 (pbw) -- - --■ - - -
P 10 (pbw) -- 50 - -- -- 55 -- --
P 11 (pbw) 60 50
P 12 (pbw) 6 4
P 13 (pbw) - 3 3 3 3 1.5 1.5 水(pbw) 0.67 0.51 0.39 0.39 0.51 0.51 0.68 0.68 0.51 0.51
PEG 400 (pbw) 4 2 2 2 2 2 3 5 - --
DEOA (pbw) 1.3 1.1 1.5 1.5 1.35 1.5 1.2 1.2 - ―
ISO 1 指数 - - 95 105
ISO 2指数 85 90 - - 90 90 - - 95 90
ISO 3 指数 - , - -
ISO 4指数 95 95 - -
Niax A-230(pbw)
SC (pbw) 0.8 1.0 1.15 1.15 1.0 1.0 0.8 0.8 1.0 1.0
DBTDL (pbw) 0.48 0.36 0.36 0.31 0.31 0.45 0.54 0.57 0.32 0.36 SO (pbw) -- -- -
DC 5950 (pbw) 0.7 0.85 0.85 0.85 0.85 0.85 0.7 0.85 0.8 0.8 泡沫性能: 目视 OK OK O OK OK OK OK OK O O 芯密度 (kg/m3) 68.2 61.3 62.9 64.9 59.7 60.6 67.1 69.2 56.3 59.8
IFD 25% (N/314 cm2) 87 58 31 42 48 67 32 29 33 31
CLD 25%¾>¾.(N/cm2) 0.257 0.156 0.097 0.113 0.139 0.198 未测 未测 未测 未测 硬度变化(%) 22.3 7.2 4.6 5.8 18.7 5.3 未测 未测 未测 未测 拉伸强度(kPa) 86 166 173 186 127 134 213 197 171 162 伸长 (%) 164 227 292 274 248 238 315 302 216 237 撕裂强度 (N/m) 131 152 173 191 176 161 196 181 177 182 芯的落球回弹性 (%) 4 4 6 5 3 3 8 10 4 2 干压缩变形 (%) 9.2 4.4 3.1 3.1 4.1 3.4 4.7 5.2 7.3 8.6 湿压缩变形 (%) 8.8 4.6 3.4 2.6 5 4.5 未测 未测 未测 未测
表 2-2
泡沫等级 60 kg/m3
实施例 CI C2 C3 C4 C5
配方:
P 1 (pbw) 55 50 50 31
P 2 (pbw) 10
P 5 (pbw)
P 6 (pbw) 50
P 7 (pbw) 50 55 50 P 8 (pbw)
P 9 (pbw) 45
P 10 (pbw)
P 12 (pbw)
P 13 (pbw)
水 (pbw) 1.3 0.39 0.39 1.3 PEG 400 (pbw) 4 4
DEOA (pbw) 1.2 1.2
ISO 1 指数 90 90
ISO 2指数 90 95
ISO 3 指数 90 ISO 4指数 -- - -- -- -
Niax A-230(pbw) 0.6 0.6 -- -- 0.6
SC (pbw) -- -- 1.15 1.15 -
DBTDL (pbw) 0.35 ― 0.45 0.45 --
SO (pbw) ― 0.35 -- -- 0.4
DC 5950 (pbw) 0.25 0.25 1.2 1.2 0.25 泡沫性能:
棉花糖 棉花糖
目视 坍塌 坍塌 OK
状泡泳 状泡'沫
芯密度 (kg/m3) - - -- -- 60.5
IFD 25% (N/314 cm2) -- -- -- -- 54
CLD 25%¾> (N/cm2) ― -- -- -- 0.152 硬度变化 (%) ― -- -- -- 6.1
拉伸强度(kPa) -- -- -- - 107
伸长(%) - -- -- ― 241
撕裂强度 (N/m) -- ― -- -- 124
芯的落球回弹性 (%) -- ― - -- 5 干压缩变形 (%) -- -- -- -- 3.2
湿压缩变形 (%) ― ― ― ― 3.1 实施例 1-10对比常见标准泡沫配方 (对比实施例 C5)说明了软质 聚氨酯低回弹泡沫制备中的加工性能、 泡沫力学性能和配制灵活 性。 传统高不饱和多元醇和 DMC低不饱和多元醇都用于对比实施例 C5。 对比实施例 C1-C4仅产生坍塌的或变成 "棉花糖状,,泡沫块的泡 沫, 没有强度且不能用于进一步泡沫物理性能测试。 实施例 1-10说 明本发明异氰酸酯活性组合物 (b)可提供足够活性以在软质聚氨酯低 回弹泡沫制备的加成聚合中与脂肪族或脂环族异氰酸酯反应。
实施例 11-18
采用实施例 1-10 制备中所用的相同步驟制备实施例 11-18, 所 不同的是首先使选定的多元醇 P3和 P4在温度为 60士 1°C的烘箱中熔 化。 当多元醇完全熔化时, 接着在进一步发泡之前将多元醇移到 28士 1 °C的调理室保持 6 小时。 发泡之前在温度控制在 23士 1 °C的另一 恒温箱内将选定的所有其它成分调节至少 24小时。 首先釆用 Cowles型高剪切混合器以 3,000 rpm在 60秒内将选定 的多元醇 P3或 P4 混合到其它多元醇。 通过将表 3中所示的组分混 合制备实施例 1 1-18的软质聚氨酯低回弹泡沫。 加入有机锡化合物之 前, 在 1.5 升不锈钢杯内采用旋转速度设定为 2,000 rpm 的 Cowles 型混合器在 40秒内将除了有机錫化合物和异氰酸酯以外的成分预混 合在一起。 预混合后, 然后将有机锡化合物 (如果使用)加入杯中, 再 混合 20秒, 旋转速度设定为 2,000 rpm。 然后将选定异氰酸酯化合物 加入所得混合物并以 3,000 rpm与所得组合物混合 5秒。 然后将混合 物倒入顶部打开的 45 厘米(长) X 45 厘米(宽) X 45厘米(高) 纸衬木盒并发泡。 泡沫达到其最终高度后, 让之在盒中静止另外 10 分钟, 然后从盒中移出来。 然后将所制泡沫保存在通风且温度控制 在 27±2°C的储存室内至少 72小时。
根据 JIS K6400方法 (1997版)中描述的样品尺寸, 采用实验室规 模电动银机从所制泡沫芯切割出泡沫样品。 接着根据 JIS K6400方法 (1997版)中描述的样品尺寸, 从指定厚度的泡沫板模切出用于测试撕 裂强度、 拉伸强度和伸长的样品。 在进一步物理性能测试之前, 使 所有样品在温度控制在 23士 1 °C、 湿度为 50%的恒温恒湿箱内调节至 少 24小时。 表 3
泡沫等级 60 kg/m3
Figure imgf000030_0001
配方:
P 1 (pbw) 31 31 36 36 21 21 15 17 P 2 (pbw) -- - -- - 10 10 -- - P 3 (pbw) -- 65 -- 60 -- -- 79 79 P 4 (pbw) 65 -- 60 - 65 65 - -- P 13 (pbw) - - 2.5 2 2 水(pbw) 0.71 0.71 0.67 0.69 0.55 0.55 0.71 0.71 甘油 (pbw) 5 5 5 5 5 5 6 4
DEOA(pbw) 2.4 2.4 2 2.1 1.8 1.8 1 1
ISO 1 指数 85 85 90 90 ― ― -- ―
ISO 2指数 85 85 -- ―
ISO 6指数 85 85
SC (pbw) 0.8 0.8 0.85 0.85 1.0 1.0 0.8 0.8
DBTDL (pbw) 0.36 0.36 0.3 0.33 0.36 0.36 0.54 0.51
DC 5950 (pbw) 1 1.05 1 1.05 0.25 0.25 0.8 0.8 泡沫性能:
目视 OK OK OK OK 收缩 ΟΚ ΟΚ ΟΚ 芯密度 (kg/m3) 62.3 57.8 60.3 59.8 68.9(" 61.5 59.2 57.3
IFD 25% (N/314
cm2) 67 81 72 69 43(*) 71 92 86
CLD 25%硬度
(N/cm2) 0.204 0.261 0.204 0.208 0.115(*) 0.196 未测 未测 硬度变化(%) 6.2 6.7 7.1 9.6 13.1(*) 13.8 未测 未测 拉伸强度(kPa) 268 294 245 233 315(*) 298 286 273 伸长(%:) 309 331 287 292 280(*) 264 265 282 撕裂强度 (N/m) 296 317 337 351 362(*) 341 389 372 芯的落球回弹性
(%) 7 12 8 10 4(*) 6 11 9 干压缩变形 (%) 3.1 2.4 3 3.1 8.9。 6.8 14.6 16.3 湿压缩变形 (%) 2.9 4.7 3.1 2.9 ιο.ι(φ) 7.8 未测 未测
(+): 来自经碾压后恢复的泡沫样品的结果。 实施例 15 中得到闭孔泡沫, 当内部温度开始下降时, 泡沫开始 收缩。 通过使泡沫通过一对电动不锈钢辊式碾压破泡机两次将泡沫 碾压, 以防其进一步收缩。 在进一步物理性能测试之前, 使经碾压 的泡沫在温度控制在 23±1°C、 湿度为 50 %的恒温恒湿箱内调节至少 72小时。 实施例 15中说明的物理性能采用从经碾压的泡沫芯切出的 样品测定。
实施例 19-27
通过将表 4中所示组分混合制备实施例 19-27的软质聚氨酯低回 弹泡沫。 采用实施例 1-18 制备中所述的相同步骤制备实施例 19- 27。 在预混合步骤中将 UV添加剂加入所得异氰酸酯活性混合物。
除了 UV稳定性测试外, 按照实施例 1-18 中所示相同步骤进行 实施例 19-27 的泡沫物理性能测试。 UV稳定性测试中, 将 5cm (宽 度) * 10cm (长度 )*0.5cm (厚度)的样品放入内部温度设定为 80±1 "C的烘 箱内, OSRAM ULTRA-VITALUX 300瓦 UV灯泡安装在泡沫样品正 上方 30 cm处。 样品暴露在紫外光下 20小时。 与标准灰度卡对比, 结果表示为 1-5的等级。 等级 5是指根本没有颜色变化, 等级 1是指 几乎为深色。 等级 4及以上的值表明没有棵眼可辨别的目视变化。 表 4
泡沫等级 30 kg/m3
实施例 19 20 21 22 23 24 25 26 27 配方:
P 1 (pb ) 20 20 20 20 40 30 60 60 50
P 3 (pbw) 77 ― 76 76 15 15 -- ― --
P 4 (pbw) ― 77 ― ― ― ― ― ― ―
P 11 (pbw) ― ― ― ― 45 55 40 40 50
P 13 (pbw) 1.5 1.2 ― ― 2 2 2 2 2
?J<-(pbw) ― ― 0.44 0.44 3.45 3.45 3.45 3.45 3.45 甘油 (pbw) 3 3 4 4 ― ― ― ― --
DEOA(pbw) 1.6 1.8 1.2 1.2 1 1 1 1 1
ISO 1 指数 85 90 90 • 95 ― -- 80 90 80
ISO 5 指数 -- -- -- ― 85 85 ― ― ―
SC (pbw) ― ― ― ― 0.8 0.8 0.8 0.8 0.8
SBC (pbw) 3.75 3.75 3.75 3.75 ― ― -- ― ― DBTDL (pbw) 0.45 0.45 0.4 0.4 0.28 0.28 0.42 0.42 0.45
DC 5950 (pbw) 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8
UV 2 2 2 2 3 3 3 3 3 泡沫性能:
目视 OK OK OK OK OK OK OK OK OK 芯密度 (kg/m3) 28.6 31.4 26.3 24.1 30.0 29.3 28.7 30.6 29.4
IFD 25% (N/314
cm2) 37 41 43 56 43 38 30 55 26
CLD 25%硬度
(N/cm2) 0.106 0.110 0.117 0.149 未测 未测 0.105 0.149 0.074 硬度变化 (%) 7.2 8.1 11.6 9.8 未测 未测 19.5 34.8 10.9 拉伸强度(kPa) 196 235 210 217 152 148 164 143 172 伸长(%) 287 296 292 258 132 144 142 117 153 撕裂强度 (N/m) 224 244 267 278 160 143 153 128 164 芯的落球回弹性
(%) 6 8 9 11 8 7 4 13 4 干压缩变形 (%) 8.4 5.6 7.4 4.3 14.1 16.1 9.5 22.6 6.4 湿压缩变形 (%) 8.7 4.7 5.6 5.7 未测 未测 14.9 28.7 12.6
UV稳定性 5 5 5 5 4 4 4 4 4 实施例 19-27 中制备的泡沫说明: 公开的异氰酸酯活性混合物 可用于制备密度低至 24 kg/M3 (约 1.5 pcf)的不黄变聚氨酯低回弹泡 沫。 这些低密度、 不黄变聚氨酯低回弹泡沫特别可用于服装应用, 如胸罩垫和肩垫。
实施例 28-30
通过将表 5中所示组分混合制备实施例 28-30的软盾聚氨酯低回 弹泡沫。 发泡之前, 将所有选定成分在温度控制在 23士 1 °C的箱内调 节至少 24小时。 加入有机锡化合物之前, 在 1.5 升不锈钢杯内采用 旋转速度设定为 1,500 rpm 的 Cowles型混合器在 40秒内将除了有机 锡化合物和异氰酸酯 ^外的成分预混合在一起。 预混合后, 然后将 有机锡化合物 (如果使用)加入杯中, 再混合 20 秒, 旋转速度设定为 1,500 rpm。 然后将选定异氰酸酯化合物加入所得混合物并以 3,000 rpm与所得组合物混合 5秒。 立即将混合物倒入事先预热到 60°C的 40厘米(宽) X 40厘米(长) X 10厘米(高)铝模具内, 模具上盖 顶端留有 4个小孔, 将模具温度维持在 60°C并盖上上盖。 将模具温 度保持在 60°C、 10分钟后, 将已模塑成型的软质聚氨酯低回弹泡沫 从模具中取出来。 然后在任何进一步测试之前将所制泡沫保存在通 风且温度控制在 27±2°C的储存室内至少 72小时。
表 5
实施例 28 29 30
配方:
P 1 (pbw) 20 25 25
P 5 (pbw) ― 56 35
P 8 (pbw) 76 ― 36
P 11 (pbw) ― 15 ―
P 12 (pbw) 2 2 3.5
水 (pbw) 0.6 0.54 0.54
PEG 400(pbw) 4 4 4
DEOA(pbw) 1.68 1.46 1.55
ISO l 指数 ― 95 90
ISO 2指数 95 ― ―
SC (pbw) 0.8 0.9 0.9
DBTDL (pbw) 0.55 0.6 0.55
DC 5179 (pbw) 0.9 0.9 0.84
泡沫性能:
模压加工性 可碾压的 良好 良好
芯密度 (kg/m3) 72.6 68.7 74.7 工业适用性
本发明聚氨酯泡沫具有低回弹性, 适用作胸罩垫、 肩垫的填充材 料, 还适用于床垫、 枕头、 家具垫和汽车座垫。 它特别适用于床垫 和枕头。

Claims

权 利 要 求 书
1. 一种低回弹泡沫, 所述低回弹泡沫包含以下物质的反应产 物:
a. 一种异氰酸酯组分, 所述异氰酸酯组分基本不含异氰酸酯基 直接连接到芳环上的芳族异氰酸酯;
b. 一种异氰酸酯活性混合物, 所述异氰酸酯活性混合物包含: (bl) 第一异氰酸酯活性组分, 具有至少 2. 6个异氰酸酯活性基、 优选为 2. 6-6. 5个异氰酸酯活性基、 更优选为 2. 65-6. 0个异氰酸酯 活性基、 最优选为 2. 7-5. 5个异氰酸酯活性基, 羟基当量低于 800、 优选为 80 - 800、 更优选为 100 - 700、 最优选为 110-600, 羟基值高 于 70 mg KOH/g、 优选为 70-700 mg KOH/g、 更优选为 80-560 mg KOH/g、 最优选为 90-510 mg KOH/g,
(b2) 第二异氰酸酯活性组分, 平均羟基官能度低于 6. 0、 优选为 1. 8 - 6. 0、 更优选为 1.85-4.5 , 羟基当量为 600 - 6, 000、 优选为 700 - 5, 000、 更优选为 800-4,500, 羟基值为 9-94 mg KOH/g、 优选为
19- 80 mg KOH/g、 更优选为 14-70 mg KOH/g, 伯羟基含量为至少 30 重量份、 优选至少 40 重量份、 更优选至少 51 重量份, 以所述第二 异氰酸酯活性组分羟基总重量为 100重量份计,
其中所述第一异氰酸酯活性组分的使用量为 20-90重量份, 优选
20- 70 重量份, 所述第二异氰酸酯活性组分的使用量为 10-80 重量 份, 优选 30-80 重量份, 都以 100 重量份所述异氰酸酯活性混合物 计;
c. 催化剂;
d. 任选地一种或多种选自以下的物质: 水、 表面活性剂、 交联 剂及添力口剂;
其中所述泡沫在异氰酸酯指数为约 65-110、 优选约 70-105、 更优 选约 75-105下制备。
2. 权利要求 1 的泡沫, 其中所述异氰酸酯组分选自一种或多种 以下的异氰酸酯: 脂肪族异氰酸酯、 脂环族异氰酸酯和异氰酸酯基 不直接连接到芳环上的芳族异氰酸酯。
3. 权利要求 1 或 2 的泡沫, 其中所述脂肪族异氰酸酯包含脂肪 族多异氰酸酯单体或脂肪族多异氰酸酯单体和三聚体的共混物, 所 述三聚体为脂肪族或脂环族或异氰酸酯基不直接连接到芳环上的芳 族多异氰酸酯三聚反应的产物, 所述共混物中的 NCO含量为 20.5- 50.0 重量份, 以异氰酸酯组分中 100 重量份总异氰酸酯基础计, 平 均计算官能度为 2-3 , 优选所述脂肪族多异氰酸酯为六亚曱基二异氰 酸酯, 所述三聚体为六亚甲基二异氰酸酯三聚反应的产物。
4. 权利要求 1-3任何一项的泡沫, 其中所述脂环族异氰酸酯包含 脂环族多异氰酸酯单体或脂环族多异氰酸酯单体和三聚体的共混 物, 所述三聚体为脂肪族或脂环族或异氰酸酯基不直接连接到芳环 上的芳族多异氰酸酯三聚反应的生成产物, 所述共混物中的 NCO含 量为 20.5-38.0重量份, 以异氰酸酯組分中 100重量份总异氰酸酯基 础计, 平均计算官能度为 2-3 , 优选所述脂环族多异氰酸酯为异佛尔 酮二异氰酸酯, 所述三聚体为六亚曱基二异氰酸酯三聚反应的产 物。
5. 权利要求 1-4任何一项的泡沫, 其中所述异氰酸酯基不直接连 接到芳环上的芳族异氰酸酯包含异氰酸酯基不直接连接到芳环上的 芳族多异氰酸酯单体或异氰酸酯基不直接连接到芳环上的芳族多异 氰酸酯单体和三聚体的共混物, 所述三聚体为脂肪族或脂环族或异 氰酸酯基不直接连接到芳环上的芳族多异氰酸酯三聚反应的生成产 物, 所述共混物中的 NCO含量为 20.5-44.0重量份, 以异氰酸酯组分 中 100重量份总异氰酸酯^ 5出计, 平均计算官能度为 2-3 , 优选所述 异氰酸酯基不直接连接到芳环上的芳族多异氰酸酯为苯二亚曱基二 异氰酸酯或四曱基苯二亚曱基二异氰酸酯, 所述三聚体为六亚曱基 二异氰酸酯三聚反应的产物。
6. 权利要求 1-5任何一项的泡沫, 其中所述脂肪族异氰酸酯包含 选自以下的至少一种: 六亚曱基二异氰酸酯、 六亚曱基三异氰酸 酯、 十一烷三异氰酸酯、 十一烷二异氰酸酯、 其二聚体和三聚体。
7. 权利要求 1-6任何一项的泡沫, 其中所述脂环族异氰酸酯包含 选自以下的至少一种: 双环庚烷三异氰酸酯、 异佛尔酮二异氰酸 酯、 二环己基曱烷二异氰酸酯、 甲基环己烷二异氰酸酯、 二曱基环 己烷二异氰酸酯、 其二聚体和三聚体。
8. 权利要求 1-7任何一项的泡沫, 其中所述异氰酸酯基不直接连 接到芳环上的芳族异氰酸酯为选自以下的至少一种: 苯二亚曱基二 异氰酸酯、 四曱基苯二亚曱基二异氰酸酯、 其二聚体和三聚体。
9. 权利要求 1-8任何一项的泡沫, 其中所述第一异氰酸酯活性组 分 (bl)为聚环氧丙烷, 具有至少 3个异氰酸酯活性基, 不饱和度低于 0.05 meq/g, 优选所述第一异氰酸酯活性组分 (bl)由双金属氰化物络 合物催化的环氧丙烷开环加成聚合制备, 不饱和度低于约 0.020 meq/g。
10.权利要求 1-9任何一项的泡沫, 其中所述第二异氰酸酯活性组 分 (b2)为聚 (四亚曱基醚)二醇, 重均分子量为 1,200-2,400 g/mol, 所 述第二异氰酸酯活性组分 (b2)中的所有羟基官能团为伯羟基。
11.权利要求 1-10任何一项的泡沫, 其中所述第二异氰酸酯活性 组分 (b2)为聚 (三亚曱基醚)二醇, 重均分子量为 1,200-3,000 g/mol, 所述第二异氰酸酯活性组分 (b2)中的所有羟基官能团为伯羟基。
12.权利要求 1-11 任何一项的泡沫, 其中所述第二异氰酸酯活性 组分 (b2)为聚环氧乙烷-聚环氧丙烷共聚物, 包含至少 7.5重量份环氧 乙烷, 以 100重量份所述第二异氰酸酯活性组分计。
13.权利要求 12 的泡沫, 其中所述第二异氰酸酯活性组分 (b2)为 聚环氧乙烷-聚环氧丙烷共聚物, 通过环氧丙烷加成聚合到具有 2 个 羟基的引发剂上, 然后用环氧乙烷封端而制备, 不饱和度低于 0.05 meq/g, 伯羟基含量超过 51%重量, 以所述第二异氰酸酯活性组分 (b2) 中总羟基的重量计。
14.权利要求 1-13 任何一项的泡沫, 其中所述交联剂的重均分子 量为 60-420 g/mol并具有至少两个异氰酸酯活性官能团; 其中所述交 联剂的使用量为 0.2-15重量份, 最优选 1.2-12重量份, 以 100重量 份所述异氰酸酯活性混合物计。
15.权利要求 1-14任何一项的泡沫, 其中所述异氰酸酯活性组分 还包含 0-40重量份, 以 100重量份异氰酸酯活性组分计, 聚合物多 元醇, 所述聚合物多元醇的固含量为 5-55重量份, 以 100重量份聚 合物多元醇计, 羟基值为 15-50 mg KOH/g。
16.权利要求 1-15 任何一项的泡沫, 其中所述异氰酸酯活性组分 还包含 0-5.0重量份、 优选 0-3.5重量份, 以 100重量份泡沫总质量 计, 聚环氧丙烷 (b3)作为开孔剂, 所述聚环氧丙垸的名义羟基官能度 为 1, 重均分子量为 800-8,500 g/mol。
17.权利要求 1-16任何一项的泡沫, 其中所述催化剂 (c)为包含布 朗斯台德酸与碱金属或碱土金属的盐和有机金属催化剂的混合物。
18.权利要求 17 的泡沫, 其中所述布朗斯台德酸与碱金属或碱土 金属的盐为碳酸氢钠或碳酸钠。
19.权利要求 1-18任何一项的泡沫, 其中所述交联剂为式 I化合 物
H(3.xrN-[(CH2)2-OH]x 式 I
其中 X为 1-3的整数。
20.权利要求 19的泡沫, 其中所述交联剂为二乙醇胺。
21. 制备权利要求 1-20任何一项的泡沫的方法, 包括将权利要 求 1-20任何一项中所定义的组分 a-d在异氰酸酯指数为 75-105下反 应。
PCT/CN2009/000226 2008-11-21 2009-03-04 软质聚氨酯低回弹泡沫及其制备方法 WO2010057355A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09827104A EP2360199A1 (en) 2008-11-21 2009-03-04 Soft polyurethane foam with low resilience and the preparation method thereof
US13/130,427 US20110263741A1 (en) 2008-11-21 2009-03-04 Soft polyurethane foam with low resilience and the preparation method thereof
JP2011536723A JP5497057B2 (ja) 2008-11-21 2009-03-04 軟質の低弾性ポリウレタンフォームおよびそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810178640.6 2008-11-21
CN2008101786406A CN101412798B (zh) 2008-11-21 2008-11-21 软质聚氨酯低回弹泡沫及其制备方法

Publications (1)

Publication Number Publication Date
WO2010057355A1 true WO2010057355A1 (zh) 2010-05-27

Family

ID=40593553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000226 WO2010057355A1 (zh) 2008-11-21 2009-03-04 软质聚氨酯低回弹泡沫及其制备方法

Country Status (6)

Country Link
US (1) US20110263741A1 (zh)
EP (1) EP2360199A1 (zh)
JP (1) JP5497057B2 (zh)
CN (1) CN101412798B (zh)
HK (1) HK1130820A1 (zh)
WO (1) WO2010057355A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103275294A (zh) * 2013-06-05 2013-09-04 昆山中海工贸有限公司 慢回弹海绵及其制备方法
JP2013543905A (ja) * 2010-10-27 2013-12-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 親水性脂肪族ポリウレタンフォーム
CN112280280A (zh) * 2020-09-21 2021-01-29 江苏鑫易达新材料科技有限公司 一种汽车贴膜用防雾面tpu膜及其制备方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023683B2 (en) * 2006-06-12 2018-07-17 Evonik Degussa Gmbh Catalyst compositions for improving polyurethane foam performance
ES2544886T3 (es) * 2009-12-11 2015-09-04 Basf Se Cuerpos moldeados de espuma de poliuretano con estabilidad dimensional
JP5463231B2 (ja) * 2010-07-23 2014-04-09 三洋化成工業株式会社 軟質ポリウレタンスラブフォームの製造方法
ITMI20110062A1 (it) * 2011-01-24 2012-07-25 Dow Chemical Co Poliuretani polieteri con migliore resistenza allo scivolo in condizioni umide
CN102153722B (zh) * 2011-02-25 2013-01-09 北京万博汇佳科贸有限公司 一种慢回弹聚醚多元醇及其制造慢回弹软质泡沫的方法
CN102391457A (zh) * 2011-07-28 2012-03-28 胡志刚 一种具有优秀抗黄变性能的聚氨酯记忆海绵
ITRM20120259A1 (it) * 2012-06-06 2013-12-07 Bayer Internat Sa Procedimento per la produzione di schiume poliuretaniche viscoelastiche.
US20140073221A1 (en) * 2012-09-11 2014-03-13 Regina Miracle International (Group) Limited Breast Cup Core, Breast Cup, and Method of Making Same
CN104031235B (zh) 2013-03-05 2016-07-13 万华化学(北京)有限公司 一种粘弹性聚氨酯吸音泡沫的制备方法
KR102187906B1 (ko) 2013-04-02 2020-12-07 이노악 코포레이션 폴리우레탄 발포체 및 그의 제조 방법
JP5913528B2 (ja) * 2013-11-12 2016-04-27 三洋化成工業株式会社 有機溶剤吸収用フォーム
JP2017537206A (ja) * 2014-12-10 2017-12-14 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 粘弾性ポリウレタンフォームの製造方法
EP3241856B1 (en) * 2014-12-31 2021-08-18 Jiangsu Osic Performance Materials Co. Ltd. Polyurethane catalyst and application thereof
PL3292162T3 (pl) 2015-05-05 2021-06-14 Evonik Operations Gmbh Kompozycje katalizatorów żelujących o opóźnionym działaniu i sposoby wytwarzania polimerów poliuretanowych
EP3133097B1 (de) * 2015-08-17 2022-10-05 Evonik Operations GmbH Herstellung von polyurethanweichschäumen mit verbesserter härte
JP2017171897A (ja) * 2016-03-18 2017-09-28 三洋化成工業株式会社 ポリウレタンフォーム製造用ポリオール組成物
US10927212B2 (en) * 2016-05-12 2021-02-23 Basf Se Viscoelastic foams having high density
BR112018077411B1 (pt) * 2016-06-29 2022-12-27 Proprietect L.P. Polímero à base de isocianato em forma de espuma
JP6793249B2 (ja) * 2017-03-31 2020-12-02 三井化学株式会社 軟質ポリウレタンフォーム、衣料材料、ブラジャーのパッド、ブラジャーのカップ、および、軟質ポリウレタンフォームの製造方法
BR112020000738B1 (pt) * 2017-07-17 2023-02-28 Dow Global Technologies Llc Mistura de poliéteres, método para fazer uma espuma de poliuretano e espuma de poliuretano flexível
EP3543268A1 (de) * 2018-03-22 2019-09-25 Covestro Deutschland AG Verfahren zur herstellung von polyurethanweichschaumstoffen
TWI822777B (zh) 2018-05-15 2023-11-21 德商科思創德意志股份有限公司 可撓發泡體
PL3611203T3 (pl) 2018-08-17 2021-06-28 Covestro Deutschland Ag Pianki elastyczne
CN108997552A (zh) * 2018-09-06 2018-12-14 句容宁武新材料股份有限公司 一种低气味高回弹聚氨酯泡沫的制备方法
JP6961837B2 (ja) * 2018-10-11 2021-11-05 三井化学株式会社 発泡ポリウレタンエラストマー原料、発泡ポリウレタンエラストマー、ミッドソールおよび発泡ポリウレタンエラストマーの製造方法
CN109575570A (zh) * 2018-12-06 2019-04-05 镇江利德尔复合材料有限公司 一种新型形状记忆性能优异聚氨酯材料的制备方法
CN110627991B (zh) * 2019-09-30 2021-09-24 长华化学科技股份有限公司 低密度高性能高回弹聚氨酯泡沫塑料及其制备方法和应用
US20230041434A1 (en) 2019-12-24 2023-02-09 Covestro Deutschland Ag Flexible foam
EP3875509A1 (en) 2020-03-02 2021-09-08 Covestro Deutschland AG Flexible foam
CN113292702B (zh) * 2021-07-09 2022-08-09 温州大学 一种油墨专用的水性聚氨酯及其制备方法
CN114316208A (zh) * 2021-12-28 2022-04-12 苏州云裳电子有限公司 一种聚氨酯环保泡棉及其制备方法
WO2024080267A1 (ja) * 2022-10-13 2024-04-18 株式会社イノアックコーポレーション シートパッド

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272619A (en) 1979-04-18 1981-06-09 Bayer Aktiengesellschaft Process for the production of modified polyether polyols and their use in processes for the production of polyurethane plastics
US4640935A (en) 1982-12-09 1987-02-03 The Dow Chemical Company Addition polymerizable adducts for nonaqueous dispersions
US5147897A (en) 1990-08-27 1992-09-15 Nisshinbo Industries, Inc. Method for producing non-yellowing polyurethane urea foam
US5194453A (en) 1990-09-14 1993-03-16 Recticel Method for the manufacture of flexible polyurethane foam
WO1993024304A1 (en) 1992-06-01 1993-12-09 Prefoam Ag Device for the continuous manufacture of slabstock polyurethane foam
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
US5494957A (en) 1991-04-22 1996-02-27 The Dow Chemical Company Stabilizers for preparing polymer polyols, and process for preparing polymer polyols
US5498583A (en) 1993-12-23 1996-03-12 Arco Chemical Technology, Inc. Polyurethane foam-supported double metal cyanide catalysts for polyol synthesis
JP2001072738A (ja) 2000-08-17 2001-03-21 Inoac Corp 無黄変ポリウレタンフォーム
US6242555B1 (en) 1996-10-01 2001-06-05 Recticel Light-stable elastomeric polyurethane mouldings and process for the production thereof
EP0894108B1 (en) 1996-04-19 2001-07-11 Bayer Antwerpen N.V. Highly active double metal cyanide catalysts
US6391935B1 (en) 2000-01-31 2002-05-21 Bayer Antwerp, N.V. Viscoelastic polyurethane foams
JP2002322230A (ja) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd 軟質ポリウレタンフォームの製造方法及びポリオール組成物
JP2003012756A (ja) 2001-06-27 2003-01-15 Inoac Corp 難黄変ポリウレア系フォーム
US6617369B2 (en) 1999-11-02 2003-09-09 Huntsman International Llc Process for making visco-elastic foams, polyols blend and reaction system useful therefor
JP2003261643A (ja) 2002-03-07 2003-09-19 Mitsui Takeda Chemicals Inc 難黄変性軟質ポリウレタンフォームの製造方法
US6790871B1 (en) 2000-11-13 2004-09-14 Woodbridge Foam Corporation Isocyanate-based polymer foam and process for production thereof
US6800607B2 (en) 2000-02-29 2004-10-05 Ltt Bio-Pharma Co., Ltd. Modified BDNF
US20050176838A1 (en) 2002-06-13 2005-08-11 Dieter Rodewald Method for the production of polyurethane foam materials
CN1683427A (zh) * 2004-02-13 2005-10-19 日本聚氨酯工业株式会社 高透气性、低回弹性、软质聚氨酯泡沫体的制造方法
US7074968B2 (en) 1999-12-17 2006-07-11 E. I. Du Pont De Nemours And Company Continuous process for the preparation of polytrimethylene ether glycol
JP2006257187A (ja) 2005-03-16 2006-09-28 Kurabo Ind Ltd 無黄変性軟質ポリウレタンフォーム及びそれを成形してなる成形品
JP2008031241A (ja) * 2006-07-27 2008-02-14 Asahi Glass Co Ltd 軟質ポリウレタンフォームの製造方法
CN101157747A (zh) * 2006-10-08 2008-04-09 杜宗宪 多元醇组合物、聚氨基甲酸乙酯泡沫及其制备方法
US20080114088A1 (en) 2005-04-21 2008-05-15 Asahi Glass Company, Limited Low resilience flexible polyurethane foam and process for its production
US7388037B2 (en) 2001-12-21 2008-06-17 Asahi Glass Company, Limited Low-resilience flexible polyurethane foam and process for producing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2825569A1 (de) * 1978-06-10 1979-12-20 Basf Ag Verfahren zur herstellung von lichtbestaendigen polyurethan-integralschaumstoffen
JPS5829816A (ja) * 1981-07-10 1983-02-22 Sanyo Chem Ind Ltd ポリウレタンの製造法
KR100707407B1 (ko) * 2000-06-13 2007-04-13 도요 고무 고교 가부시키가이샤 폴리우레탄 발포체의 제조방법, 폴리우레탄 발포체 및연마 시트
DE10105557A1 (de) * 2001-02-06 2002-08-08 Basf Ag Verfahren zur Herstellung von geruchsarmen Polyurethanweichschaumstoffen
JP3969058B2 (ja) * 2001-10-31 2007-08-29 東ソー株式会社 軟質ポリウレタンフォームの製造方法
US6852823B2 (en) * 2002-08-09 2005-02-08 E. I. Du Pont De Nemours And Company Polyurethane and polyurethane-urea elastomers from polytrimethylene ether glycol
JP4265956B2 (ja) * 2002-10-09 2009-05-20 三菱化学株式会社 ポリウレタン樹脂及びポリウレタン弾性繊維
EP1567573A1 (en) * 2002-12-04 2005-08-31 Johnson Matthey PLC Organometallic catalyst composition and process for polyurethane manufacture using said catalyst
US7005552B2 (en) * 2003-11-03 2006-02-28 Bayer Materialscience Llc Single reactor synthesis of KOH-capped polyols based on DMC-synthesized intermediates
ES2294699T3 (es) * 2004-03-31 2008-04-01 Dow Global Technologies Inc. Composicion de isocianato modificada con uretano y producto de poliuretano obtenido a partir de esta.
DE102004047524A1 (de) * 2004-09-28 2006-03-30 Basf Ag Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
EP1884529A4 (en) * 2005-05-25 2011-10-12 Asahi Glass Co Ltd POLYURETHANE FUEL, MANUFACTURING METHOD AND CAR SEAT WITH THE POLYURETHANE FUEL
US8729146B2 (en) * 2005-06-14 2014-05-20 Momentive Performance Materials Inc. Catalyst composition and process using same
TW200801060A (en) * 2006-02-28 2008-01-01 Asahi Glass Co Ltd Flexible polyurethane foam and process for producing the same
WO2008007712A1 (fr) * 2006-07-12 2008-01-17 Mitsubishi Chemical Corporation Procédé de fabrication du polyuréthane et utilisation du polyuréthane ainsi produit
JP2008024813A (ja) * 2006-07-20 2008-02-07 Soken To ポリオール組成物、ポリウレタン・フォームおよびその調製方法
US20080039582A1 (en) * 2006-07-28 2008-02-14 Hari Babu Sunkara Polytrimethylene ether-based polyurethane ionomers
EP2078055B1 (en) * 2006-11-01 2017-11-22 Dow Global Technologies LLC Blends and aqueous dispersions comprising nonpolar polyolefin and polyurethane
JP5088865B2 (ja) * 2007-03-30 2012-12-05 東洋ゴム工業株式会社 研磨パッド

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272619A (en) 1979-04-18 1981-06-09 Bayer Aktiengesellschaft Process for the production of modified polyether polyols and their use in processes for the production of polyurethane plastics
US4640935A (en) 1982-12-09 1987-02-03 The Dow Chemical Company Addition polymerizable adducts for nonaqueous dispersions
US5147897A (en) 1990-08-27 1992-09-15 Nisshinbo Industries, Inc. Method for producing non-yellowing polyurethane urea foam
US5194453A (en) 1990-09-14 1993-03-16 Recticel Method for the manufacture of flexible polyurethane foam
US5494957A (en) 1991-04-22 1996-02-27 The Dow Chemical Company Stabilizers for preparing polymer polyols, and process for preparing polymer polyols
WO1993024304A1 (en) 1992-06-01 1993-12-09 Prefoam Ag Device for the continuous manufacture of slabstock polyurethane foam
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
US5498583A (en) 1993-12-23 1996-03-12 Arco Chemical Technology, Inc. Polyurethane foam-supported double metal cyanide catalysts for polyol synthesis
EP0894108B1 (en) 1996-04-19 2001-07-11 Bayer Antwerpen N.V. Highly active double metal cyanide catalysts
US6242555B1 (en) 1996-10-01 2001-06-05 Recticel Light-stable elastomeric polyurethane mouldings and process for the production thereof
US6617369B2 (en) 1999-11-02 2003-09-09 Huntsman International Llc Process for making visco-elastic foams, polyols blend and reaction system useful therefor
US7074968B2 (en) 1999-12-17 2006-07-11 E. I. Du Pont De Nemours And Company Continuous process for the preparation of polytrimethylene ether glycol
US6391935B1 (en) 2000-01-31 2002-05-21 Bayer Antwerp, N.V. Viscoelastic polyurethane foams
US6800607B2 (en) 2000-02-29 2004-10-05 Ltt Bio-Pharma Co., Ltd. Modified BDNF
JP2001072738A (ja) 2000-08-17 2001-03-21 Inoac Corp 無黄変ポリウレタンフォーム
US6790871B1 (en) 2000-11-13 2004-09-14 Woodbridge Foam Corporation Isocyanate-based polymer foam and process for production thereof
JP2002322230A (ja) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd 軟質ポリウレタンフォームの製造方法及びポリオール組成物
JP2003012756A (ja) 2001-06-27 2003-01-15 Inoac Corp 難黄変ポリウレア系フォーム
US7388037B2 (en) 2001-12-21 2008-06-17 Asahi Glass Company, Limited Low-resilience flexible polyurethane foam and process for producing the same
JP2003261643A (ja) 2002-03-07 2003-09-19 Mitsui Takeda Chemicals Inc 難黄変性軟質ポリウレタンフォームの製造方法
US20050176838A1 (en) 2002-06-13 2005-08-11 Dieter Rodewald Method for the production of polyurethane foam materials
CN1683427A (zh) * 2004-02-13 2005-10-19 日本聚氨酯工业株式会社 高透气性、低回弹性、软质聚氨酯泡沫体的制造方法
JP2006257187A (ja) 2005-03-16 2006-09-28 Kurabo Ind Ltd 無黄変性軟質ポリウレタンフォーム及びそれを成形してなる成形品
US20080114088A1 (en) 2005-04-21 2008-05-15 Asahi Glass Company, Limited Low resilience flexible polyurethane foam and process for its production
JP2008031241A (ja) * 2006-07-27 2008-02-14 Asahi Glass Co Ltd 軟質ポリウレタンフォームの製造方法
CN101157747A (zh) * 2006-10-08 2008-04-09 杜宗宪 多元醇组合物、聚氨基甲酸乙酯泡沫及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. ORETEL: "Polyurethane Handbook", 1985, HANSER PUBLISHER
IN-TOUCH, vol. 11, no. 1, June 2003 (2003-06-01), pages 1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543905A (ja) * 2010-10-27 2013-12-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 親水性脂肪族ポリウレタンフォーム
CN103275294A (zh) * 2013-06-05 2013-09-04 昆山中海工贸有限公司 慢回弹海绵及其制备方法
CN112280280A (zh) * 2020-09-21 2021-01-29 江苏鑫易达新材料科技有限公司 一种汽车贴膜用防雾面tpu膜及其制备方法

Also Published As

Publication number Publication date
CN101412798B (zh) 2011-08-10
JP5497057B2 (ja) 2014-05-21
US20110263741A1 (en) 2011-10-27
JP2012509368A (ja) 2012-04-19
HK1130820A1 (en) 2010-01-08
CN101412798A (zh) 2009-04-22
EP2360199A1 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
WO2010057355A1 (zh) 软质聚氨酯低回弹泡沫及其制备方法
JP5628024B2 (ja) 高弾性発泡体
US8791168B2 (en) Viscoelastic foams having high air flow
US8686057B2 (en) Polyurethanes made from hydroxy-methyl containing fatty acids or alkyl esters of such fatty acids
EP3044244B1 (en) Pipa polyol based conventional flexible foam
CA3069802A1 (en) Isocyanate-functional polymer components and polyurethane articles formed from recycled polyurethane articles and associated methods for forming same
CN101157747A (zh) 多元醇组合物、聚氨基甲酸乙酯泡沫及其制备方法
TWI404739B (zh) 軟質聚氨酯低回彈發泡體及其製備方法
JP2008024813A (ja) ポリオール組成物、ポリウレタン・フォームおよびその調製方法
AU2017334874B2 (en) Reduced flammability flexible polyurethane foam
CN113242871A (zh) 具有改善的长期性能特性的软质聚氨酯泡沫
EP3553105A1 (en) A rigid polyurethane foam with low odor
WO2019185611A1 (en) A rigid polyurethane foam with low odor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536723

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009827104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13130427

Country of ref document: US