WO2010055729A1 - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
WO2010055729A1
WO2010055729A1 PCT/JP2009/065824 JP2009065824W WO2010055729A1 WO 2010055729 A1 WO2010055729 A1 WO 2010055729A1 JP 2009065824 W JP2009065824 W JP 2009065824W WO 2010055729 A1 WO2010055729 A1 WO 2010055729A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
electrode
treatment apparatus
water treatment
Prior art date
Application number
PCT/JP2009/065824
Other languages
English (en)
French (fr)
Inventor
泰祐 能勢
田島 陽介
靖史 南谷
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008289467A external-priority patent/JP2009241055A/ja
Priority claimed from JP2009045908A external-priority patent/JP2010194527A/ja
Priority claimed from JP2009164250A external-priority patent/JP2011016118A/ja
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US13/128,976 priority Critical patent/US20110240539A1/en
Priority to EP09825982.3A priority patent/EP2363380A4/en
Priority to CN2009801451462A priority patent/CN102216225B/zh
Publication of WO2010055729A1 publication Critical patent/WO2010055729A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2322Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles using columns, e.g. multi-staged columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • B01F25/72Spray-mixers, e.g. for mixing intersecting sheets of material with nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/052Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being electric fields for electrostatically charging of the ingredients or compositions for mixing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4619Supplying gas to the electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the present invention relates to a water treatment apparatus for decomposing organic substances, inorganic substances, microorganisms contained in clean water, sewage, drainage, etc., with radicals generated by discharge, active species such as ozone.
  • ozone has been used for treatments such as oxidative decomposition, sterilization, and deodorization of organic substances in water in fields such as clean water, sewage, industrial wastewater, and pools (see Patent Document 1).
  • ozone has a weak oxidizing power and cannot be mineralized even if it can be made hydrophilic and low molecular.
  • hardly decomposable organic substances such as dioxins cannot be decomposed.
  • an object of the present invention is to provide a water treatment apparatus capable of improving the treatment speed by causing active species such as radicals generated by discharge to efficiently act on the water to be treated.
  • a water treatment apparatus comprises at least one electrode pair comprising a cylindrical electrode and a linear electrode disposed along the central axis of the cylindrical electrode in the treatment chamber. And water to be treated is supplied into a discharge space generated by applying a high voltage between the cylindrical electrode and the linear electrode in a mist state with water droplets having a particle size of 1500 ⁇ m or less. It is characterized by having a supply means.
  • the water to be treated is not particularly limited as long as the water to be treated can be in a mist state composed of water droplets having a particle size of 1500 ⁇ m or less.
  • the particle size of the water droplet which comprises the said to-be-processed water mist is limited to 1500 micrometers or less (preferably 10 micrometers or more and 1500 micrometers or less), the reason is generate
  • the method for measuring the particle size of the water droplets is based on an immersion method. Water droplets were sprayed onto a petri dish filled with silicon oil from the tip of an injection nozzle installed at the top of the petri dish and collected by a petri dish placed perpendicular to the injection axis. The collected water droplets were quickly imaged, the particle size for each size was counted, and the Sauter average particle size was obtained as the particle size of the water droplets.
  • the spray angle of the spray nozzle can perform the treatment more efficiently, the water droplet located at the outermost edge of the mist out of the water droplets to be treated ejected from the spray nozzle is along the outermost edge of the discharge space.
  • the injection angle of the injection nozzle is adjusted. That is, even if it is sprayed so as to spread to the outside from the outermost edge of the discharge space, the efficiency is lowered, and it may collide with the inner wall surface of the processing chamber and become a large water droplet and flow down along the inner wall surface, which may worsen the efficiency.
  • the spray of the water mist to be treated by the spray nozzle is not particularly limited. For example, for example, from the top to the bottom of the discharge space, from the bottom of the discharge space to the discharge space, and from the side of the discharge space to the discharge space. Be injected.
  • the spray angle means that the water droplets in the treated water mist ejected from the nozzle fall while drawing a parabola, so that the treated water mist immediately after coming out of the nozzle ejection port. Means the spread angle.
  • the number of spray nozzles is not particularly limited as long as it is one or more. When providing a plurality of electrode pairs, two or more spray nozzles may be provided.
  • the material of the cylindrical electrode and the linear electrode is not particularly limited as long as it is conductive and has excellent corrosion resistance, but stainless steel and titanium are suitable.
  • the cylindrical electrode is preferably provided with a large number of holes on the wall surface through which the water droplets constituting the treated water mist can pass, and a wire mesh or punching metal can be used.
  • the aperture ratio of the cylindrical electrode is preferably 50% or more of the apparent surface area of the outer peripheral surface of the cylinder (surface area when the outer peripheral surface of the cylinder is a smooth surface).
  • the size of the hole is not particularly limited as long as it can maintain a cylindrical shape and allows water droplets ejected from the ejection nozzle to pass through, but the opening area is generally about 0.01 mm 2 to 625 mm 2 .
  • the shape of the linear electrode is not particularly limited, and examples thereof include a wire electrode, a screw electrode, a sword mountain electrode, and a wire brush electrode.
  • tips, such as a brush-shaped electrode, were sharply sharp is preferable.
  • two or more pairs of cylindrical electrodes and linear electrodes are provided in one processing chamber.
  • two or more electrode pairs are provided, and the central axes of the cylindrical electrodes of each electrode pair are arranged in parallel. Further, as described above, water droplets constituting the water mist to be treated can pass through the cylindrical electrodes. If a large number of holes having a large size are provided on the wall surface, water drops once inside the cylindrical electrode come out through the holes and enter the adjacent cylindrical electrode. Therefore, processing can be performed efficiently.
  • the spray nozzle direction of the spray nozzle and the central axis of each cylindrical electrode The injection nozzle side end face of the cylindrical electrode arranged at a position far from the injection axis of the injection nozzle is parallel to the injection nozzle side end face of the cylindrical electrode arranged at a position close to the injection axis. It is preferable that the configuration is provided at a position far from the center. That is, if it is set as the above structures, to-be-processed water mist can be supplied to discharge space without waste, and it can process more efficiently.
  • the voltage applied between the cylindrical electrode and the linear electrode is not particularly limited as long as it causes a streamer discharge.
  • a high-voltage power source that applies a high voltage between the cylindrical electrode and the linear electrode, a receiving tank that receives water that has passed through the processing chamber, and water stored in the receiving tank
  • a treated water circulation structure comprising a pump that feeds the treated water to the treated water supply means may be provided. That is, if the said to-be-processed water circulation structure is provided, to-be-processed water will pass the inside of discharge space in multiple times, and the decomposition rate of a process target substance can be improved.
  • the water treatment apparatus of the present invention includes gas suction supply means for sucking the gas in the treatment chamber and supplying the gas sucked into the water to be treated in the previous step for forming the water to be treated in the form of bubbles. May be.
  • the gas suction supply means sucks the gas in the processing chamber and makes the gas into a bubble
  • the gas sucked into the water to be treated in the previous step of making the water to be treated into water droplets is supplied in a bubble state.
  • the ozone remaining in the gas contained in the treatment chamber that has not been used can be efficiently used for the decomposition treatment of the substance to be treated in the water to be treated. Therefore, the processing capability can be improved by effectively using the streamer discharge energy that has been used for ozone generation, and the cost can be reduced by improving the energy efficiency.
  • the gas suction supply means preferably has a structure in which the gas can be supplied into the water to be treated in a microbubble state in which the diameter of the bubbles is 100 ⁇ m or less (more preferably 50 ⁇ m or less). That is, although the active component in the supplied gas reacts with the substance to be treated in the water to be treated, it becomes only in the vicinity of the gas-liquid interface due to the low solubility of the active component in water. Therefore, in order to increase the decomposition efficiency of the substance to be treated, it is effective to increase the area of the gas-liquid interface, that is, to reduce the bubble diameter of bubbles to be introduced.
  • the microbubble generation means is not particularly limited, and examples thereof include an ultra-high speed swirl shear method, a venturi reduced pressure foaming method, and a high speed stirring method.
  • the place where the gas suction supply means supplies the gas is not particularly limited as long as it is a pre-process for forming water to be treated into water droplets. Treated water piping and the like.
  • the water treatment apparatus of the present invention preferably includes an oxygen supply means for supplying oxygen into the treatment chamber in order to increase the generation efficiency of ozone, O radicals, and OH radicals by enriching the oxygen. That is, if the oxygen supply means for supplying oxygen into the processing chamber is provided, the processing chamber becomes an oxygen-rich atmosphere, and the generation of nitrogen oxides accompanying the oxidation of nitrogen components in the air can be suppressed. it can. In addition, since O radicals, OH radicals, and ozone are generated at high concentrations, organic substances can be decomposed more efficiently.
  • the oxygen supply means may supply only oxygen or supply oxygen-containing gas, for example, air.
  • the water treatment apparatus of the present invention comprises a plurality of electrode units having at least one pair of electrodes, and these electrode units are detachable at a mounting position provided along the peripheral wall of the treatment chamber, It is good also as a structure provided so that the injection nozzle of the to-be-processed water supply means may inject the to-be-processed water toward the electrode unit mounted
  • the material of the processing chamber is not particularly limited as long as the inner surface is excellent in corrosion resistance. Examples thereof include stainless steel and fiber reinforced resin, and it is preferably made of an insulator or covered with an insulator in order to prevent leakage. Further, in consideration of maintainability, the processing chamber preferably includes an electrode unit attachment / detachment port in the processing chamber on its peripheral wall. Alternatively, the electrode unit may be taken out of the processing chamber simply by providing a support fixing portion of the electrode unit on the lid of the attachment / detachment opening and opening the lid.
  • the treated water supply pipe is introduced into the treatment chamber, and the treated water sent via the pump is provided at the end of the treated water supply pipe.
  • a method of spraying into the discharge space in the form of a mist from the spray nozzle is adopted, but when the electrode unit has a large number of electrode pairs arranged in parallel and the cylindrical electrode has a mesh or a through hole
  • the spray nozzle is disposed so as to spray from a direction orthogonal to the side surface of the cylindrical electrode, and the sprayed mist is supplied to the discharge space through the mesh or through hole of the cylindrical electrode.
  • an injection nozzle having a structure for injecting into a quadrangular pyramid mist As an injection nozzle provided with the structure which injects into a quadrangular pyramid mist, for example, a commercial name full pyramid nozzle SSXP of Ikeuchi company can be used.
  • the water treatment apparatus of the present invention includes a receiving tank that receives treated water that has been processed through the discharge space at the bottom of the processing chamber, and also includes an air supply unit that supplies air into the receiving tank. It is preferable. That is, by supplying air into the receiving tank, oxygen consumed by oxidation of the processing target substance can be newly supplied into the processing chamber. Furthermore, by supplying air through the treated water in the receiving tank, high-humidity air can be supplied into the processing chamber, and more OH radicals with high oxidizing power can be generated.
  • air supply means it does not specifically limit as said air supply means, It is preferable that air can be supplied in a receiving tank by making air bubbles as fine as possible.
  • the method of making fine bubbles is not particularly limited, but is a diffuser equipped with a hard porous body that generates fine bubbles by sintering a synthetic resin such as ABS resin, polymethyl methacrylate, polyethylene, or polypropylene, or ceramic, and the like.
  • High-speed swirl shear method, Venturi decompression foaming method, high-speed agitation method, and a method of installing a microbubble nozzle (for example, a product name Nano Planet M2 type microbubble generator) at the tip of the air supply pipe piped in the receiving tank Can be mentioned.
  • the air supplied into the receiving tank is prevented from flowing out together with the treated water from the receiving tank so that the supplied air can be used more effectively.
  • a treated water outflow path for allowing the treated water to flow out of the processing chamber when the treated water received in the receiving tank overflows, and an inlet for the treated water outflow path is provided near the bottom of the receiving tank.
  • the treated water outflow path as described above is not particularly limited, for example, it can be formed by a baffle plate that partitions the inside of the receiving tank except a part on the bottom side of the receiving tank.
  • the water treatment apparatus has at least one electrode pair including a cylindrical electrode and a linear electrode disposed along the central axis of the cylindrical electrode in the processing chamber, Treated water supply means for supplying treated water into a discharge space generated by applying a high voltage between the cylindrical electrode and the linear electrode in a mist state composed of water droplets having a particle diameter of 1500 ⁇ m or less; Therefore, organic substances in the water droplets of the water mist to be treated are efficiently decomposed by active species such as ozone, OH radicals and O radicals generated by discharge. That is, a long discharge space can be formed in a cylindrical shape by applying a high voltage between the cylindrical electrode and the linear electrode.
  • the to-be-processed water becomes a water droplet of a fine particle diameter as 1500 micrometers or less and is supplied in this cylindrical long discharge space, the contact area with respect to the said active species of to-be-processed water becomes large. Therefore, the substance to be treated in the for-treatment water is efficiently decomposed in a short time.
  • the cylindrical electrode is provided with a large number of holes on the wall surface through which water droplets constituting the treated water mist can pass, the discharge space can be discharged even if the treated water mist is sprayed from the side of the cylindrical electrode. Water droplets can be supplied inside.
  • FIG. 14 is a sectional view taken along line XX in FIG. 13. It is a figure which shows the inside of the processing tank explaining the mounting state of the electrode unit in the water treatment apparatus of FIG.
  • FIG. 16 is a cross-sectional view taken along line YY of FIG. It is a principal part perspective view of the state which the opening / closing of the water treatment apparatus of FIG. 13 opened.
  • It is a front view of the electrode unit of the water treatment apparatus of FIG.
  • It is a front view of the cylindrical electrode block of the electrode unit of FIG.
  • It is a top view of the cylindrical electrode fixing plate of the cylindrical electrode block of FIG.
  • FIG. 6 is a diagram showing a comparison of ethylene glycol decomposition performance in Examples 14 to 17.
  • FIG. 5 is a diagram showing a comparison of parachlorophenol decomposition performance in Examples 18 to 21.
  • FIG. 1 shows a first embodiment of a water treatment apparatus according to the present invention.
  • this water treatment apparatus 1a includes a treatment chamber 2, a cylindrical electrode 3, a linear electrode 4, a treated water tank 5 that also serves as a receiving tank, a pump 6, and a shower that is a spray nozzle.
  • a nozzle 7, a treated water supply hose 71, a high voltage pulse generator 8 that is a high-voltage power source, and a treated water tank storage box 9 are provided.
  • the processing chamber 2 includes a processing chamber main body 21, a lower lid portion 22, and an upper lid portion 23.
  • the processing chamber body 21 is formed of an insulating material such as acrylic resin and has a cylindrical shape.
  • the lower lid portion 22 is provided so as to close the lower end of the processing chamber main body 21 except for the water passage hole 22a.
  • the upper lid part 23 is provided so as to close the upper end of the processing chamber main body 21 except for the shower nozzle installation hole 23a. And the processing chamber 2 is received by the periphery of the opening part 91 of the to-be-processed water tank accommodation box 9 in the state which the lower cover part 22 blocked the opening part 91 of the to-be-treated water tank accommodation box 9.
  • the cylindrical electrode 3 is obtained, for example, by processing a net of 1 to 100 mesh made of stainless steel having a thickness of 0.35 mm into a cylindrical shape, and the outer diameter is slightly smaller than the inner diameter of the processing chamber body 21.
  • the linear electrode 4 is formed of, for example, a stainless steel wire having a diameter of 0.28 mm, and is provided along the central axis of the cylindrical electrode 3.
  • the treated water tank 5 is accommodated in the treated water tank accommodation box 9 so that the water passage hole 22a of the lower lid portion 22 faces from below.
  • the pump 6 is provided adjacent to the treated water tank 5 in the treated water tank storage box 9, and the treated water W in the treated water tank 5 is supplied to the shower nozzle 7 via the treated water supply hose 71. To send.
  • the shower nozzle 7 sprays the water to be treated W sent via the water to be treated water supply hose 71 in a mist state composed of water droplets having a particle diameter of 1500 ⁇ m or less toward the upper opening of the cylindrical electrode 3. It has become. Moreover, the spray angle of the shower nozzle 7 is adjusted to an angle along the inner wall surface of the cylindrical electrode 3 that is the outermost edge of the discharge space at the maximum spread portion of the sprayed water mist M to be sprayed.
  • the high voltage pulse generator 8 is connected to the cylindrical electrode 3 and the linear electrode 4 so that the cylindrical electrode 3 is a ground electrode and the linear electrode 4 is a high voltage application electrode. A high voltage is applied in a pulsed manner between the cylindrical electrode 4 and a streamer discharge is generated between the cylindrical electrode 3 and the linear electrode 4.
  • To-be-treated water W containing a to-be-treated substance such as an organic substance is charged into the to-be-treated water tank 5.
  • a high voltage pulse generator 8 applies a high voltage in a pulsed manner between the cylindrical electrode 3 and the linear electrode 4, and a streamer discharge is formed in a cylindrical shape in the vertical direction in the cylindrical electrode 3. Create a space.
  • the pump 6 is driven, and the water W to be treated in the water tank 5 to be treated is sent to the shower nozzle 7 through the hose 71, and from above the cylindrical electrode 3 toward the central axis of the cylindrical electrode 3. Inject towards.
  • the treated water W that has passed through the treatment chamber 21 is received by the treated water tank 5 again and sent again to the spray nozzle 7 by the pump.
  • this water treatment device 1a treats the water to be treated W while circulating it as described above. Then, active species such as ozone, OH radicals and O radicals are generated in the discharge space by the streamer discharge, and water droplets in the treated water mist M sprayed from the shower nozzle 7 fall in the cylindrical discharge space. Since these active species come into contact with each other during the process, the substances to be treated such as organic substances in each water droplet are efficiently oxidized and decomposed. That is, a long discharge space can be formed in a cylindrical shape by applying a high voltage between the cylindrical electrode and the linear electrode.
  • the to-be-processed water becomes a water droplet of a fine particle diameter as 1500 micrometers or less and is supplied in this cylindrical long discharge space, the contact area with respect to the said active species of to-be-processed water becomes large. Therefore, the substance to be treated in the for-treatment water is efficiently decomposed in a short time.
  • FIG. 2 shows a second embodiment of the water treatment apparatus according to the present invention.
  • this water treatment apparatus 1 b is the same as the above water treatment except that the cylindrical electrode 3 and the linear electrode 4 of the same size are arranged in the horizontal direction in the 4-pair treatment chamber 2. It is the same as the apparatus 1a.
  • FIG. 3 shows a third embodiment of the water treatment apparatus according to the present invention.
  • this water treatment apparatus 1c is the same as the water treatment apparatus 1b except that the shower nozzle 7 is provided below the cylindrical electrode 3 and the treated water mist is jetted vertically upward. It has become.
  • the water mist M to be treated is sprayed from the lower side of the discharge space toward the discharge space, so that each water droplet in the water mist M to be treated once rises, and then due to its gravity. By descending, the residence time in the discharge space is increased, and the treatment can be performed more efficiently.
  • FIG. 4 shows a fourth embodiment of the water treatment apparatus according to the present invention.
  • this water treatment apparatus 1 d is provided with a shower nozzle 7 on the side of the cylindrical electrode and sprays water to be treated from the side surface of the cylindrical electrode 3 in the horizontal direction. It is the same as that of the said water treatment apparatus 1a.
  • FIG. 5 shows a fifth embodiment of the water treatment apparatus according to the present invention.
  • the water treatment device 1 e has a length in the central axis direction of the two cylindrical electrodes 3 b farther from the two cylindrical electrodes 3 a closer to the injection axis C of the shower nozzle 7.
  • the upper end surface of the short cylindrical electrode 3b is arranged at a position away from the shower nozzle 7 from the upper end surface of the long cylindrical electrode 3a, that is, positioned below, and sprayed from the shower nozzle 7
  • the water treatment apparatus 1b is the same as the water treatment apparatus 1b except that the outermost edge of the treated water mist M is adjusted so as to be surely stored in the short cylindrical electrode 3b.
  • FIG. 6 shows a sixth embodiment of the water treatment apparatus according to the present invention.
  • the water treatment device 1 f includes six electrode pairs each including a cylindrical electrode 3 and a linear electrode 4.
  • One electrode pair is arranged such that the linear electrode 4 coincides with the central axis of the processing chamber body 21.
  • the other five electrode pairs radially surround the one electrode pair and are arranged so that the linear electrodes 4 of the five electrode pairs are arranged at equal intervals on the same circumference.
  • this water treatment apparatus 1f is the same as that of the said water treatment apparatus 1a except having set it as arrangement
  • FIG. 7 shows a seventh embodiment of the water treatment apparatus according to the present invention.
  • this water treatment apparatus 1g is the same as the water treatment apparatus 1a shown in FIG. 1 except that it further comprises a gas suction supply means 300 and an oxygen supply means 400.
  • the gas suction supply means 300 includes an intake pipe 310, an intake pump 320, an exhaust pipe 330, and a microbubble-forming nozzle (for example, a trade name Nano Planet M2 type microbubble generator) 340.
  • One end of the intake pipe 310 passes through the wall surface of the processing chamber main body 21 below the lower ends of the cylindrical electrode 3 and the linear electrode 4 and faces the processing chamber main body 21, and the other end serves as an intake port of the intake pump 320. It is connected.
  • the penetration part of the intake pipe 310 of the process chamber main body 21 is sealed in an airtight state.
  • the microbubble nozzle 340 is connected to the other end of the exhaust pipe 330 in the water tank 5 to be treated. That is, the gas suction supply means 300 sucks the gas in the processing chamber 2 through the intake pipe 310 by the intake pump 320, sends it into the treated water tank 5 through the exhaust pipe 330, and the microbubble nozzle 340 Gas is supplied to the water to be treated W in the water tank 5 to be treated in a microbubble state.
  • the oxygen supply unit 400 includes an oxygen cylinder 410 and an oxygen supply pipe 420.
  • One end of the oxygen supply pipe 420 is connected to the oxygen cylinder 410, and the other end passes through the upper lid portion 23 and faces the processing chamber body 21.
  • a water treatment method using the water treatment apparatus 1g will be described.
  • a high voltage is applied between the linear electrode 4 and the cylindrical electrode 3 from the high voltage pulse generator 8 with the treated water W stored in the treated water tank 5, and the linear electrode 4 and the cylindrical A cylindrical streamer discharge space is formed between the cylindrical electrodes 3.
  • the to-be-processed water W of the to-be-processed water tank 5 is supplied to the injection nozzle 7 via the pump 6, and is injected as the to-be-processed water mist M which consists of a fine water droplet from the injection nozzle 7 to a streamer discharge space.
  • oxygen is supplied into the processing chamber 2 by the oxygen supply means 400 to increase the oxygen concentration in the processing chamber 2, and the gas in the processing chamber 2 is sucked from the intake pipe 310 by the gas suction supply means 300 and exhausted.
  • the microbubble state is supplied to the treated water in the treated water tank 5 through 330 and the microbubble generation nozzle 340.
  • the to-be-processed water W which passed the streamer discharge space returns to the to-be-processed water tank 5 through the water flow hole 22a, and is supplied to the injection nozzle 7 again.
  • the water treatment apparatus 1g supplies the treated water W in a mist state composed of fine water droplets into the streamer discharge space, so that the treated water W is generated in the discharge space.
  • the active species such as radicals and ozone are efficiently contacted, and the target substance such as organic matter in the water to be treated W is efficiently decomposed with less energy.
  • the gas suction supply means 300 since the gas suction supply means 300 is provided, ozone generated in the discharge space can be used for the decomposition treatment of the target substance without waste. Therefore, the substance to be treated can be decomposed more efficiently. That is, in the discharge space, among the active species generated, radicals have a short lifetime and immediately change to stable molecules, whereas ozone has a long lifetime. Accordingly, among the generated ozone, the ozone that does not come into contact with the water to be treated W and is not consumed in the decomposition treatment of the substance to be treated remains in the treatment chamber 2.
  • the water treatment apparatus 1g sucks the gas in the treatment chamber 2 by the gas suction supply means 300, and makes the gas into fine bubbles and supplies it to the treated water W in the treated water tank 5, thereby supplying the water in the gas.
  • the treatment target substance in the water to be treated W can be decomposed even by ozone that is not consumed but wasted. Further, since the gas is made into microbubbles, the contact area with the organic matter is increased, and the treatment target substance can be decomposed more efficiently.
  • the water treatment apparatus 1g is configured such that oxygen is supplied into the processing chamber 2 by the oxygen supply means 400, the inside of the processing chamber 2 becomes an oxygen-rich atmosphere. Therefore, the generation of nitrogen oxides accompanying the oxidation of nitrogen components in the air can be suppressed, and O radicals, OH radicals, and ozone are generated at high concentrations. As a result, the substance to be treated can be decomposed more efficiently.
  • FIG. 8 shows an eighth embodiment of the water treatment apparatus according to the present invention.
  • the water treatment apparatus 1 h has a point that the oxygen supply unit 400 is not provided and an intake port of the intake pipe 310 of the gas suction supply unit 301 faces the inside of the treated water tank storage box 9. Except for the points provided as described above, the water treatment device 1g is the same as the above.
  • the water treatment apparatus 1h is not provided with an oxygen supply means, and thus has a processing capability slightly inferior to that of the water treatment apparatus 1g, but is not provided with a gas suction supply means 301. Compared with the device, the processing capacity is improved. Moreover, the water treatment device 1h can be reduced in cost because the device structure is simple compared to the water treatment device 1g.
  • FIG. 9 shows a ninth embodiment of the water treatment apparatus according to the present invention.
  • this water treatment apparatus 1i is provided with an oxygen supply means 400, a gas suction supply means 302, an intake pipe 310, and a water pipe to be treated as shown in FIG.
  • the water treatment apparatus 1g is the same as the above-described water treatment apparatus 1g except that it is constituted by an aspirator unit 350 incorporated in the vicinity of 71 injection nozzles 7. That is, the gas suction supply unit 302 sucks and sucks the gas in the processing chamber 2 through the intake pipe 310 when negative pressure is generated by the water to be processed flowing through the water pipe 71 to be processed in the aspirator unit 350. The gas is bubbled and supplied to the water to be treated W.
  • the water treatment apparatus 1i is slightly inferior to the water treatment apparatus 1g, but the treatment capacity is improved as compared with the case where the gas suction supply means 302 is not provided.
  • the gas suction supply unit 302 does not require the intake pump 320, so that the cost can be further reduced.
  • FIG. 11 shows a tenth embodiment of a water treatment apparatus according to the present invention.
  • this water treatment device 1j is similar to the water treatment device 1g except that the treatment chamber body 21 is provided with six electrode pairs consisting of a linear electrode 4 and a cylindrical electrode 3. It is the same.
  • FIG. 12 shows an eleventh embodiment of a water treatment apparatus according to the present invention.
  • the water treatment apparatus 1 k includes six electrode pairs each including a linear electrode 4 and a cylindrical electrode 3 in the processing chamber body 21, and these electrode pairs are cylindrical.
  • the electrode 3 is the same as the water treatment apparatus 1g except that the center axis of the cylinder is parallel to the installation surface of the water treatment apparatus 1k and arranged in the horizontal direction.
  • the water treatment apparatus 1m includes a treatment tank 502, four electrode units 503, a treated water supply means 504, a control box 505, an air supply means 506, a high voltage And a pulse generator 10.
  • the processing tank 502 includes a processing chamber 502a and a receiving tank 502b, and is formed of a fiber reinforced resin (FRP) containing a wire mesh.
  • FRP fiber reinforced resin
  • the processing chamber 502a includes a main body cylinder portion 521 having a substantially square cylindrical shape, and a top plate portion 522 that closes an upper opening of the main body cylinder portion 521.
  • the top plate 522 is provided so that a high-pressure cable introduction pipe 522a, a connection pipe 522b, two vent pipes 522c, and a high-voltage cable protection pipe 522d protrude from the upper surface.
  • the high-voltage cable introduction pipe 522a is provided at the center of the top plate portion 522, is formed of an insulator such as an insulator, and a high-voltage cable 528a, which will be described later, is inserted therethrough.
  • the connection pipe 522b is provided at a position avoiding the high-voltage cable introduction pipe 522a of the top plate portion 522, and is interposed between the external pipe 541 and the internal pipe 542 of the treated water supply means 504, which will be described later.
  • An internal pipe 542 is connected.
  • the two ventilation pipes 522c are provided at symmetrical positions around the high-pressure cable introduction pipe 522a at positions avoiding the high-voltage cable introduction pipe 522a and the connection pipe 522b of the top plate 522, and the atmosphere in the treatment tank 502 is treated as a treatment tank. 502 communicates with the outside.
  • the high-voltage cable protection tube 522d is obtained, for example, by processing a galvanized steel sheet into a duct shape, and is provided so as to cover the high-voltage cable introduction tube 522a and a high-voltage cable 528a described later.
  • the main body cylinder portion 521 includes attachment / detachment openings 523 on the four walls.
  • the attachment / detachment port 523 includes a flange 523a projecting to the periphery on the inlet side, and can be opened and closed by a lid 524.
  • the attachment / detachment opening 523 can be attached and removed with an electrode unit 503 to be described later by removing the lid 524 and opening it.
  • the lid 524 is provided with two substantially U-shaped handles 524a, and the peripheral edge portion is fixed to the flange 523a by a bolt 524b via a seal packing (not shown), thereby sealing the attachment / detachment port 523 in a watertight manner. It is like that. Further, the lid 524 can open the attachment / detachment opening 523 by loosening and removing the bolt 524b.
  • upper electrode supports 525 a are provided at the four corners of the main body cylindrical portion 521 slightly below the upper end of the attachment / detachment opening 523, and the lower electrode support is slightly above the lower end of the attachment / detachment opening 523. 525b is provided.
  • the upper electrode support 525a is substantially L-shaped in plan view as shown in FIG. 17, and as shown in FIGS. 15 and 18, the attachment / detachment openings 523 are respectively located at the positions facing the attachment / detachment openings 523 on both sides of the L-shape. A notch 5251 opening on the side is formed.
  • the notch 5251 is formed to be slightly wider than the bolt 537 and narrower than the outer diameter of the nuts 536 and 539.
  • the notch 5251 is provided so that the interval between the notch 5251 of the adjacent upper electrode support 525a of the main body cylinder portion 521 is the same as the interval between two bolts 537 of the electrode unit 503 described later.
  • the upper electrode support 525a is supported from below by a reinforcing rib 5252 having a triangular bottom view whose lower surface is fixed to the inner wall surface of the main body cylinder portion 521.
  • the lower electrode support 525b has a shape obtained by translating the upper electrode support 525a downward.
  • an overflow pipe 527 is attached to one side wall surface of the side wall processed in the processing chamber 502a. Further, the receiving tank 502b is provided with a baffle plate (baffle) 520 along the side wall surface where the overflow pipe 527 is provided.
  • the baffle plate 520 has an upper end side substantially the same as or slightly higher than the upper end of the overflow pipe 527, and a gap 520 a is provided between the baffle plate 520 and the bottom plate portion of the processing tank 502.
  • the receiving tank 502b is provided with a baffle plate 520 and an overflow pipe 527 serving as a treated water outflow path through which the treated water W2 treated in the treatment chamber 502a passes through a gap 520a provided at the lower end of the baffle plate 520. It passes between the side wall surfaces and is discharged from the overflow pipe 527 to the outside.
  • the electrode unit 503 includes a cylindrical electrode block 503 a, 10 linear electrodes 531, two linear electrode fixing plates 532 having a rectangular shape, and four insulators 533. I have.
  • the cylindrical electrode block 503 a includes ten cylindrical electrodes 534 and two cylindrical electrode fixing plates 535.
  • Each cylindrical electrode 534 is obtained by, for example, processing a 2.5 mesh, stainless steel net having an aperture ratio of 79.5% into a cylindrical shape using a stainless steel wire having a wire diameter of 1.1 mm, and has an inner diameter of The length in the central axis direction of the cylindrical portion is 500 mm.
  • the cylindrical electrode fixing plate 535 is obtained, for example, by processing a stainless steel plate. As shown in FIG. 21, ten cylindrical electrode mounting holes 535a and two bolt insertion holes 535b are formed. .
  • the ten cylindrical electrode mounting holes 535a have a circular shape with an outer diameter substantially the same as or slightly larger than the outer diameter of the cylindrical electrode 534, and are provided at a pitch of 50 mm, for example.
  • the bolt insertion holes 535b are provided at both ends of the cylindrical electrode mounting hole 535a, and the bolts 537b of the insulator 533 are inserted therethrough.
  • each cylindrical electrode 534 is inserted into the corresponding cylindrical electrode mounting holes 535a of the two cylindrical electrode fixing plates 535, as shown in FIG.
  • the edge portion is bent outward, and the bent portion is fixed and integrated in an electrically conductive state by contacting the peripheral edge of the cylindrical electrode mounting hole 535a of the cylindrical electrode fixing plate 535.
  • the linear electrode fixing plate 532 is obtained, for example, by processing a stainless steel plate, and has the same size as the cylindrical electrode fixing plate 535 as shown in FIG. Further, the linear electrode fixing plate 532 is provided with a linear electrode insertion hole 532a having a diameter of 2 mm, for example, at a position corresponding to the central axis of each cylindrical electrode 534. Further, the linear electrode fixing plate 532 is provided with bolt insertion holes 532b through which the bolts 537a of the insulator 533 are inserted at both ends, similarly to the cylindrical electrode fixing plate 535.
  • the insulator 533 is integrally provided with bolts 537a and 537b so as to protrude from both ends. 24 and 25, the bolt 537a and the bolt 537b are insulative inside the insulator 533, and the bolt 537b on the fixed side of the cylindrical electrode fixing plate 535 is fixed to the linear electrode. Compared to the bolt 537 a on the fixed side of the plate 532, it protrudes slightly longer from the end face of the insulator 533. As shown in FIG. 19, the insulator 533 is inserted into the bolt insertion hole 535b of the cylindrical electrode fixing plate 535 until the end surface of the insulator 533 comes into contact with the cylindrical electrode fixing plate 535. The cylindrical electrode fixing plate 535 is fixed by tightening 536.
  • the insulator 533 is inserted by inserting the bolt 537a into the bolt insertion hole 532b of the linear electrode fixing plate 532 until the end surface of the insulator 533 comes into contact with the linear electrode fixing plate 532, and then tightening the nut 536.
  • the electrode fixing plate 532 is fixed. Further, in this fixed state, the interval between the linear electrode fixing plate 532 and the cylindrical electrode fixing plate 535 is the interval at which no discharge occurs between the linear electrode fixing plate 532 and the cylindrical electrode fixing plate 535 (for example, 100 mm). Further, a nut 536 and a nut 539 for clamping the upper electrode support 525a or the lower electrode support 525b are screwed into the bolt 537b.
  • the linear electrode 531 is made of, for example, titanium and has a diameter of 1 mm, and its length is slightly longer than the distance (for example, 750 mm) between the two linear electrode fixing plates 532, and a screw (see FIG. Not shown).
  • the linear electrode 531 passes through the cylindrical electrode 534, and both ends thereof are inserted into the linear electrode insertion holes 532 a of the linear electrode fixing plate 532 and screwed into the screws of the linear electrode 531.
  • the end portions are fixed in an electrically conductive state with respect to the linear electrode fixing plate 532.
  • the electrode unit 503 thus assembled is mounted in the processing chamber 502a as follows. That is, as shown in FIG. 6, the lid 524 is removed, and the attachment / detachment port 23 is opened. Then, as shown in FIG. 19, the nut 539 is loosened, and the electrode unit 503 is removed from the attachment / detachment port 23 with a gap more than the thickness of the upper electrode support 525a and the lower electrode support 525b formed between the nut 536 and the nut 536. Insert into the processing chamber 502a. Next, after sliding the portion between the nut 539 and the nut 536 of the bolt 537b into the notch 251 of the upper electrode support 525a and the lower electrode support 525b, as shown in FIG. 24 or FIG. Is tightened to the nut 536 side, and the side edge portion of the notch 251 is sandwiched between the nut 539 and the nut 536 to fix the electrode unit 503 to the upper electrode support 525a and the lower electrode support 525b.
  • the treated water supply means 504 includes a treated water supply pipe 504a and a treated water supply pump 504b.
  • the to-be-processed water supply piping 504a is provided with the external piping 541 and the internal piping 542 as shown in FIG.15 and FIG.16.
  • One end of the external pipe 541 is connected to the connection pipe 522b of the treatment tank 502, and as shown in FIGS. 13 and 14, a water supply pump 504b to be treated is disposed in the middle, and the other end is not shown. Is connected to the water tank to be treated.
  • One end of the internal pipe 542 is connected to the connecting pipe 522b in the processing tank 502, and is once suspended and bent toward the center of the processing chamber 502a below the bus bar 528b described later, as shown in FIGS. Then, after being dropped again at the center of the processing chamber 502a, it is branched into four branch pipes 542a so as to be directed toward the electrode units 503 set in the processing chamber 502a.
  • An injection nozzle 542b is provided at the tip of each branch pipe 542a.
  • the spray nozzle 542b is configured to spray the water W1 to be treated in a mist shape smaller than the mesh size of the cylindrical electrode 534 in a quadrangular pyramid shape. Further, when each injection nozzle 542b reaches the electrode unit 503, the spread width in the vertical direction of the mist substantially matches the length in the central axis direction of the substantially cylindrical electrode 534, and the spread width in the width direction is the electrode unit.
  • the distance between the cylindrical electrodes 534 disposed at both ends of 503 is set to be substantially the same as the distance.
  • the high voltage pulse generator 10 includes a high voltage DC power supply 101, a capacitor 102, a resistor 103, a trigger tron gap switch 104, a pulse transformer 105, and a trigger circuit 106, as shown in FIG.
  • the high voltage pulse generator 10 operates as follows. That is, the current from the high voltage DC power supply 101 is supplied to the capacitor 102 via the resistor 103, and the capacitor 102 is charged. After the capacitor 102 is charged to the target voltage, the trigger tron gap switch 104 is turned on by a high voltage trigger pulse from the trigger circuit 106. At this time, the electric charge charged in the capacitor 102 flows into the primary side of the pulse transformer 105, and a pulse-like induced voltage is generated on the secondary side due to the mutual inductance.
  • the high voltage pulse generated on the secondary side of the pulse transformer 105 in this way is applied between the linear electrode 531 and the cylindrical electrode 534. That is, the terminal 107 is connected to one end of the high-voltage cable 528a and is brought into conduction with the linear electrode 531 via the high-voltage cable 528a, the bus bar 528b, and the linear electrode fixing plate 532 as described later.
  • the terminal 108 is connected to one end of the high-voltage cable protection tube 522d and is in a conductive state with the cylindrical electrode 534 through the high-voltage cable protection tube 522d, the ground wire 529, and the cylindrical electrode fixing plate 535, as will be described later. To be.
  • the number of repetitions of pulses output between the terminals 107 and 108 is controlled by changing the trigger pulse output frequency in the trigger circuit 106.
  • the voltage of the output pulse is controlled by switching the output voltage of the high-voltage DC power supply 101.
  • One end of the high voltage cable 528a is connected to the terminal 107 of the high voltage pulse generation circuit 10, and the other end is inserted into the processing chamber 502a via the high voltage cable introduction tube 522a and connected to the bus bar 528b.
  • the bus bar 528b has a cross shape made of stainless steel in plan view and is not shown in the figure. However, the other end of the high voltage cable 528a is connected to the center of the cross by welding or bolting. It is connected. As shown in FIGS. 15 and 16, the bus bar 528b has bolts and nuts (not shown) attached to the linear electrode fixing plate 532 of one of the electrode units 503 having the respective cross-shaped tip portions mounted at the mounting positions. And are made conductive to the respective linear electrodes 531.
  • one end of the ground wire 529 is connected to the high-voltage cable protection tube 522d, and the other end is supported with each electrode unit 503 supported and fixed by the upper electrode support 525a and the lower electrode support 525b. It is fixed to the cylindrical electrode fixing plate 535 on the upper side of the electrode unit 503 in a conductive state by bolts and nuts.
  • the air supply unit 506 includes an air supply pump 506a and an air supply pipe 506b.
  • the air supply pump 506a is provided adjacent to the processing tank 502, and sucks the atmosphere to supply air to the air supply pipe 506b.
  • the air supply pipe 506b penetrates the wall surface of the receiving tank 502b, faces the receiving tank 502b, branches in the receiving tank 502b, and an air diffuser (for example, a product name manufactured by Daisen Membrane Systems Co., Ltd.) is attached to the tip of each branch pipe 561. Pearlcon) 562 is installed.
  • the air supply means 506 sucks air in the atmosphere, sends it into the receiving tank 502b, and supplies it to the treated water stored in the receiving tank 502b from the air diffuser 62.
  • control box 505 is not shown, the control circuit of the to-be-processed water supply means 504 and the air supply means 506 is incorporated.
  • the water treatment apparatus 1m treats the for-treatment water W1 as follows. First, the lid 24 is opened and each electrode unit 503 is set to the mounting position as described above.
  • the bus bar 528 b is connected to the upper linear electrode fixing plate 532 of each electrode unit 503 and the four ground wires 529 are connected to the upper cylindrical electrode fixing plate 535 of each electrode unit 503.
  • the high voltage pulse generator 10 is operated, and a high voltage pulse voltage is applied between each linear electrode 531 and the cylindrical electrode 534 to generate streamer discharge.
  • the treated water supply means 504 is actuated to make the treated water mist from the spray nozzle 542b and sprayed in the direction of each electrode unit 503, and the treated water is supplied to the cylindrical electrode 534.
  • the mist-like water to be treated supplied into the streamer discharge space comes into contact with active species such as ozone, OH radicals, and O radicals generated in the streamer discharge space.
  • active species such as ozone, OH radicals, and O radicals generated in the streamer discharge space.
  • the organic substance etc. in to-be-processed water are decomposed
  • the decomposed treated water W2 is received by the receiving tank 502b and then flows out of the processing tank 502 through the overflow pipe 527, and is discharged as it is or reused as cleaning water, for example.
  • Air is supplied to the treated water W2 in the receiving tank 502b by the air supply means 506.
  • the lid 24 is closed with the treated water supply means 504, the high voltage pulse generator 10 and the air supply means 506 stopped.
  • the connection between the electrode unit 503 of the linear electrode 531 and the cylindrical electrode 534, the bus bar 528b, and the ground wire 529 that are opened and needs to be replaced is released, and the upper electrode support 525a and the lower electrode support 525b of the electrode unit 503 Disconnect the.
  • the electrode unit 503 is taken out from the attachment / detachment port 23, and after replacing the linear electrode 531 or the cylindrical electrode 534 that needs to be replaced, the electrode unit 503 is fixed again as described above, and the bus bar 528b and the ground wire 529 are fixed. Connect with. Alternatively, the entire electrode unit 503 may be replaced.
  • the water treatment apparatus 1m is configured to cause a streamer discharge between the linear electrode 531 and the cylindrical electrode 534 as described above, ozone, OH is generated between the linear electrode 531 and the cylindrical electrode 534. Active species such as radicals and O radicals are efficiently generated. And since the to-be-processed water W1 was supplied in the mist form in the streamer discharge space where these active species generate
  • the spray nozzle 542b of the treated water supply means 504 is provided in the central portion of the treatment tank 502, the number of spray nozzles 542b can be reduced, the treated water supply pipe becomes compact, and the apparatus The whole can be downsized.
  • the spray nozzle 542b sprays the water W1 to be treated into a mist smaller than the mesh size of the cylindrical electrode 534 in a quadrangular pyramid shape and reaches the electrode unit 503, the spread width of the mist in the vertical direction is increased.
  • the length of the substantially cylindrical electrode 534 substantially coincides with the length in the central axis direction, and the spread width in the width direction is substantially the same as the distance between the cylindrical electrodes disposed at both ends of the electrode unit 503. It is often supplied into the streamer discharge space, and the processing efficiency can be increased.
  • this water treatment apparatus 1m is provided with an air supply means 506 and supplies air to the treated water W2 in the receiving tank 502b, oxygen consumed by the oxidation of the substance to be treated is newly introduced into the treatment chamber 502a. Further, by supplying air through the treated water W2, high-humidity air can be supplied into the processing chamber 502a. Therefore, more OH radicals with high oxidizing power can be generated, and the processing efficiency is further improved. Also, since the receiving tank 502b is separated from the bubbling portion of the air by the air supply means 506 and the overflow pipe 527 by the baffle plate 520, the air dissolved in the treated water W2 by the bubbling overflows together with the treated water W2. There is nothing to do. Therefore, air can be used more effectively.
  • the treated water W2 contains active species such as ozone generated in the treatment chamber 502a and has a long life
  • a baffle plate 520 is provided in the receiving tank 502b and the decomposition treatment is further promoted by retaining for a sufficient time. Can do.
  • FIG. 27 shows a thirteenth embodiment of a water treatment apparatus according to the present invention.
  • a total of eight electrode units 503 are vertically arranged two by two along the inner wall surface of the treatment tank 502, and the spray nozzle 542b is also to correspond to each electrode unit 503.
  • the treated water outflow path is provided by a bent pipe 200 that is disposed in the vicinity of the bottom of the receiving tank 502 b and whose other end is connected to the overflow pipe 527 instead of the baffle plate 520. Is forming.
  • the high voltage pulse voltage is not supplied to the lower electrode unit 503, but a bus bar provided so as to penetrate the wall surface of the processing tank 502 is fixed to the upper linear electrode fixing plate 532 with bolts and nuts. Is to be done.
  • this water treatment apparatus 1n is the same as that of the said water treatment apparatus 1m except the above-mentioned structure. Thus, when there is much quantity of to-be-processed water W1, an installation space can be made small by making it multistage.
  • the present invention is not limited to the above embodiment.
  • the high voltage pulse generator is provided.
  • a commercially available high voltage pulse generator may be prepared separately.
  • the water treatment apparatus of the sixth embodiment has a double structure in which the periphery of one electrode pair is surrounded by five electrode pairs. However, many electrode pairs are further arranged in triples and quadruples on the outside.
  • the upper end surface of the cylindrical electrode disposed on the outer side of the container main body may be positioned below the upper end surface of the cylindrical electrode disposed on the inner side as in the water treatment apparatus of the fifth embodiment. You may make it provide in.
  • the gas suction supply means sucks the gas at one place in the processing chamber, but it may suck at a plurality of places. Further, the supply location of the sucked gas may be provided on both sides of the water tank to be treated and the supply pipe. Furthermore, even if the gas suction supply unit of the seventh embodiment and the gas suction supply unit of the eighth embodiment are used in combination, the gas suction of the seventh embodiment and / or the eighth embodiment is performed. You may use together a supply means and the gas suction supply means of 9th Embodiment.
  • the treated water in the receiving tank overflows from the overflow pipe and is discharged as it is, but the overflowed treated water is returned to the treated water tank and circulated for a predetermined time, After the passage of time, it may be a method of discharging all the circulating water.
  • Example 1 Using the water treatment device 1a shown in FIG. 1, the water to be treated containing indigo carmine at a concentration of 20 ppm in purified water under the following experimental conditions was treated with water, and the decomposition completion time of indigo carmine was examined.
  • the decomposition completion time was determined by examining the absorbance of the water to be treated at 610 nm using an ultraviolet-visible spectrophotometer (trade name UVmini-1240 manufactured by Shimadzu Corporation), and the time when the absorbance became zero was defined as the decomposition completion time. .
  • Untreated water volume 15 liter
  • Untreated water injection speed 12-15 L / min
  • Charging voltage 25 kV
  • Number of discharges 100 times / second
  • Mesh of cylindrical electrode 10 mesh
  • Inner diameter of cylindrical electrode 39.5 mm
  • Length of cylindrical electrode (length in the central axis direction): 300 mm
  • Particle size of water mist to be treated 750 to 970 ⁇ m
  • shower nozzle spray angle 30 °
  • Distance from shower nozzle to cylindrical electrode The outermost edge of the water mist to be treated was adjusted so as to be the upper end of the outer circumferential edge of the cylindrical electrode.
  • Example 2 The indigo carmine decomposition completion time was examined in the same manner as in Example 1 except that the particle size of the water mist to be treated was 480 to 660 ⁇ m and the spray angle of the shower nozzle was 85 °.
  • Example 1 The decomposition completion time of indigo carmine was examined in the same manner as in Example 1 except that the particle size of the water mist to be treated was 2000 to 2500 ⁇ m.
  • Example 3 Indigo carmine in the same manner as in Example 1 except that three pairs of cylindrical electrodes and linear electrodes as in Example 1 were arranged in parallel with the central axis of the cylindrical electrodes in the vertical direction as shown in FIG. The decomposition completion time of was investigated.
  • Example 4 The indigo carmine decomposition completion time was examined in the same manner as in Example 3 except that the mesh of the cylindrical electrode was changed to 200 mesh.
  • Example 5 Using the same water treatment apparatus 1a as in Example 1, 1 liter of water to be treated containing 90 ppm of ethylene glycol was treated under the same conditions as in Example 1 except that the jet speed of the water to be treated was 3 L / min. When the decomposition completion time was examined, as shown in FIG. 28, ethylene glycol was decomposed in 4 hours.
  • Example 6 Using the water treatment apparatus 1a shown in FIG. 1, treated water containing indigo carmine at a concentration of about 20 ppm in purified water under the following experimental conditions is treated with water, and an ultraviolet-visible spectrophotometer (trade name UVmini manufactured by Shimadzu Corporation) is used. -1240) was used to measure the absorbance of water to be treated at 610 nm every minute to determine the decomposition rate. In addition, processing time was made into the time which passed the part of the cylindrical electrode 3 of the water treatment apparatus 1a. In addition, the degradation rate (mg / L ⁇ min) was graphed with the indigo carmine concentration (ppm) on the vertical axis and the treatment time (min) on the horizontal axis as shown in FIG.
  • an ultraviolet-visible spectrophotometer trade name UVmini manufactured by Shimadzu Corporation
  • Example 7 The decomposition rate of indigo carmine was examined in the same manner as in Example 6 except that the particle size of the water mist to be treated was 480 to 660 ⁇ m and the spray angle of the shower nozzle was 85 °.
  • Example 8 The decomposition rate of indigo carmine was examined in the same manner as in Example 6 except that the particle size of the water mist to be treated was 340 to 420 ⁇ m and the spray angle of the shower nozzle was 120 °.
  • Example 9 The decomposition rate of indigo carmine was determined in the same manner as in Example 6 except that six electrode pairs consisting of a cylindrical electrode (length: 50 mm) and a linear electrode were arranged as shown in FIG. 6 under the following experimental conditions. Examined.
  • Example 10 The decomposition rate of indigo carmine was examined in the same manner as in Example 9 except that 2.5 mesh, a wire diameter of 1.1 mm, an aperture ratio of 79.5%, and a plain woven wire mesh were used.
  • Example 11 The decomposition rate of indigo carmine was examined in the same manner as in Example 8 except that a 3.5-mesh electrode, a wire diameter of 1.1 mm, an aperture ratio of 63.3%, and a plain woven wire mesh were used.
  • Example 12 The decomposition rate of indigo carmine was examined in the same manner as in Example 8 except that a 6.5-mesh electrode, a wire diameter of 0.75 mm, an aperture ratio of 65.3%, and a plain woven wire mesh were used.
  • Example 13 The decomposition rate of indigo carmine was examined in the same manner as in Example 8 except that a 36-mesh electrode, a wire diameter of 0.29 mm, an aperture ratio of 35%, and a plain woven wire mesh were used.
  • Example 2 The decomposition rate of indigo carmine was examined in the same manner as in Example 6 except that the particle size of the water mist to be treated was 2000 to 2500 ⁇ m.
  • Table 2 shows the results of the decomposition rates examined in Examples 6 to 13 and Comparative Example 2.
  • Example 14 Using the water treatment apparatus 1g having the structure shown in FIG. 7, a 5 L ethylene glycol aqueous solution was treated as water to be treated with an initial concentration adjusted to 500 ppm under the following treatment conditions.
  • Linear electrode Stainless steel wire cylindrical electrode with a wire diameter of 0.28 mm: Stainless steel net with a wire diameter of 0.28 mm ⁇ 16 mesh formed into a cylindrical shape with an outer diameter of ⁇ 40 ⁇ length of 300 mm
  • Primary applied voltage 29 kV Generated pulse: 100pps Pulse width: 100ns
  • Gas supply conditions Intake air at 0.3 L / min with an intake pump, and blow into the ethylene glycol aqueous solution in the water storage tank with an average bubble diameter of about 50 ⁇ m using a microbubble generator (M2-MS / PVC manufactured by Nano Planet).
  • M2-MS / PVC microbubble generator
  • Example 15 The ethylene glycol aqueous solution was treated in the same manner as in Example 14 except that oxygen was not supplied from the oxygen supply means.
  • Example 16 The ethylene glycol aqueous solution was treated in the same manner as in Example 1 except that gas was not supplied into the water storage tank using the gas suction supply means.
  • Example 17 5 L of ethylene adjusted to an initial concentration of 500 ppm in the same manner as in Example 14 except that gas was not supplied into the water storage tank using the gas suction supply means and oxygen was not supplied from the oxygen supply means. Treatment with an aqueous glycol solution was performed.
  • the COD (Chemical® Oxygen® Demand) of the ethylene glycol aqueous solution in Examples 14 to 17 with the treatment time elapsed was measured, and the residual rate of ethylene glycol was calculated using the maintenance rate of the COD amount. The result is shown in FIG. It was.
  • Example 18 The parachlorophenol aqueous solution was treated under the same treatment conditions as in Example 14 except that 5 L of parachlorophenol aqueous solution having an initial concentration adjusted to 500 ppm was used as water to be treated.
  • Example 19 A parachlorophenol aqueous solution was treated in the same manner as in Example 18 except that oxygen was not supplied from the oxygen supply means.
  • Example 20 A parachlorophenol aqueous solution was treated in the same manner as in Example 18 except that the gas was not supplied into the water storage tank using the gas suction supply means.
  • Example 21 The parachlorophenol aqueous solution was treated in the same manner as in Example 18 except that gas was not supplied into the water storage tank using the gas suction supply means and oxygen was not supplied from the oxygen supply means.
  • the water treatment apparatus of the present invention is not particularly limited, it can be used, for example, for purification of waste water containing organic matter, sterilization of contaminated water, and the like.

Abstract

【課題】放電によって発生するラジカル等の活性種を被処理水に効率よく作用させて、処理速度を向上させることができる水処理装置を提供することを目的としている。 【解決手段】少なくとも1対の円筒状電極3と、この円筒状電極3の中心軸に沿って配置された線状電極4とを容器2内に有するとともに、円筒状電極3と線状電極4との間に高電圧を印加することによって生じる放電空間内に被処理水を粒径が1500μm以下の水滴からなるミスト状態にして供給する被処理水ミスト供給手段7とを備えていることを特徴としている。

Description

水処理装置
 本発明は、上水、下水、排水等に含有される有機物、無機物、微生物を放電により発生するラジカル、オゾン等の活性種により分解処理する水処理装置に関する。
 従来から、上水、下水、産業排水、プールなどの分野で、水中の有機物の酸化分解、殺菌、脱臭等の処理のためにオゾンが用いられている(特許文献1参照)。
 しかしながら、オゾンは酸化力が弱く、親水化、低分子化はできても無機化することはできない。また、ダイオキシン等の難分解性有機物は分解できない。
 そこで、処理能力を向上させるために、放電によりオゾンを発生させるとともに、オゾンより酸化力が強いOHラジカルやOラジカル等を発生させ、このオゾン及びラジカルを含む放電空間(「放電場」とも言う)に被処理水を曝すことによって、オゾンだけでなく、ラジカルによっても酸化処理するようにした水処理装置が提案されている(特許文献2参照)。
 しかし、ラジカルは寿命が短く、消滅しやすく、そのため効率が悪く、上記のような先に提案された水処理装置ではラジカルによる酸化作用を十分に発揮させることができない。
特開平9-267096号公報 特開2000-279977号公報
 本発明は、上記事情に鑑みて、放電によって発生するラジカル等の活性種を被処理水に効率よく作用させて、処理速度を向上させることができる水処理装置を提供することを目的としている。
 上記目的を達成するために、本発明にかかる水処理装置は、処理室内に、円筒状電極とこの円筒状電極の中心軸に沿って配置された線状電極とからなる電極対を少なくとも1対有するとともに、前記円筒状電極と線状電極との間に高電圧を印加することによって生じる放電空間内に被処理水を、粒径が1500μm以下の水滴からなるミスト状態にして供給する被処理水供給手段を備えていることを特徴としている。
 本発明において、被処理水供給手段としては、被処理水を粒径が1500μm以下の水滴からなるミスト状態にすることができれば、特に限定されないが、例えば、噴射ノズルからの噴射によって供給する方法が好適であるが、蒸気発生装置により水蒸気化して供給するようにしても構わない。
 上記蒸気発生装置としては、特に限定されず、加熱式、超音波式及びこれらを併用したものが挙げられる。
 なお、上記被処理水ミストを構成する水滴の粒径は、1500μm以下(好ましくは10μm以上1500μm以下)に限定されるが、その理由は、粒径が大きくなりすぎると、放電空間内で発生するオゾンやラジカル等の活性種に接触する体積あたりの表面積が小さくなり、処理効率が悪くなるためである。
 本発明において、水滴の粒径の測定方法は液浸法による。水滴はシリコンオイルを満たしたシャーレに、シャーレの上部に設置した噴射ノズルの先端から水滴を噴霧し、噴射軸に対して垂直に置かれたシャーレにより採取した。採取した水滴は素早く撮像し、サイズ毎の粒径をカウントし、ザウター平均粒径を求め水滴の粒径とした。         
 噴射ノズルの噴角は、より効率的に処理を行うことができることから、噴射ノズルから噴射される被処理水の水滴のうち、ミストの最外縁に位置する水滴が、放電空間の最外縁に沿うように噴射ノズルの噴角が調整されていることが好ましい。
 すなわち、放電空間の最外縁より外側まで広がるように噴射させても効率が落ちるとともに、処理室の内壁面にぶつかり、大きな水滴となり内壁面に沿って流れ落ちてより効率が悪くなるおそれがある。
 噴射ノズルによる被処理水ミストの噴射は、特に限定されないが、例えば、放電空間の上から下側、放電空間の下側から放電空間に向かって上側、放電空間の側方から放電空間に向かって噴射される。
 なお、本発明において、噴角(噴霧角度)とは、ノズルから噴射された被処理水ミスト中の水滴は放物線を描きつつ落下するため、ノズルの噴射口から出た直後の被処理水ミストの広がり角度を意味する。
 噴射ノズルの数は、特に限定されず、1つ以上備えていればよい。また、複数の電極対を設ける場合は、噴射ノズルは2つ以上備えていてもよい。
 円筒状電極及び線状電極の材質は、導電性があり耐食性に優れたものであれば、特に限定されないが、ステンレス鋼、チタンが好適である。
 また、円筒状電極は、円筒状電極が被処理水ミストを構成する水滴が通過可能な大きさの多数の孔を壁面に備えていることが好ましく、金網やパンチングメタルを用いることができる。
 円筒状電極の開孔率は、処理効率を考えると、円筒の外周面の見かけ表面積(円筒の外周面が平滑面としたときの表面積)の50%以上であることが好ましい。
 孔の大きさは、円筒形状を保持できるとともに、噴射ノズルから噴射された水滴が通過可能であれば特に限定されないが、一般的には開口面積が0.01mm2~625mm2程度である。
 線状電極の形状は、特に限定されないが、例えば、ワイヤー電極、ネジ状電極、剣山状電極、ワイヤーブラシ状電極が挙げられ、ストリーマ発生効率を高めるために、ネジ状電極、剣山状電極、ワイヤーブラシ状電極などの放電先端がシャープに尖った形状を備えたものが好ましい。
 円筒状電極及び線状電極の電極対は、処理効率を考えると1つの処理室内に2対以上備えていることが好ましい。
 また、2対以上の電極対を備え、各電極対の円筒状電極の中心軸を平行にして配置し、さらに、上記のように円筒状電極を、被処理水ミストを構成する水滴が通過可能な大きさの多数の孔を壁面に備えたものとすれば、円筒状電極の内側に一旦入った水滴が孔を介して外側に出て、隣接する円筒状電極内に入る。したがって、効率よく処理を行うことができる。
 また、上記電極対を複数平行に並べ、被処理水ミストを上方から1つの噴射ノズルでこれらの電極対に向けて噴射する場合、噴射ノズルの噴射軸方向と、各円筒状電極の中心軸とが平行になっていて、噴射ノズルの噴射軸から遠い位置に配置された円筒状電極の噴射ノズル側端面が噴射軸に近い位置に配置された円筒状電極の噴射ノズル側端面に比べ、噴射ノズルから遠い位置に設けられている構成とすることが好ましい。
 すなわち、上記のような構成とすれば、放電空間へ無駄なく、被処理水ミストを供給することができ、より効率よく処理できる。
 円筒状電極と線状電極との間に印加される電圧は、ストリーマ放電が起きる電圧であれば特に限定されない。
 さらに、本発明の水処理装置においては、円筒状電極と線状電極との間に高電圧を印加する高圧電源や、処理室を通過した水を受ける受槽と、この受槽に貯められた水を被処理水として被処理水供給手段に送るポンプとからなる被処理水循環構造を備えていてもよい。
 すなわち、上記被処理水循環構造を備えていれば、被処理水が複数回放電空間内を通過することになり、処理対象物質の分解率を向上させることができる。
 また、本発明の水処理装置は、処理室内の気体を吸引するとともに、被処理水を水滴化する前工程で被処理水中に吸引した気体を気泡状態にして供給する気体吸引供給手段を備えていてもよい。
 すなわち、気体吸引供給手段が処理室内の気体を吸引し、この気体を気泡状にして被処理水を水滴化する前工程で被処理水中に吸引した気体を気泡状態にして供給するようにすれば、処理室内の気体中に含まれる使用されずに残っていたオゾンを被処理水中の処理対象物質の分解処理に効率よく使用できる。
 したがって、オゾン発生に使用されていたストリーマ放電エネルギーを有効に用いることで処理能力を向上できるとともに、エネルギー効率の向上により低コスト化を図ることができる。
 また、気体吸引供給手段は、気泡の直径が100μm以下(より好ましくは50μm以下)のマイクロバブル状態にして気体を被処理水中に供給できる構造とすることが好ましい。
 すなわち、この供給した気体中の活性成分が被処理水中の処理対象物質と反応するものの、その活性成分の水への溶解性の低さから気液界面近傍のみとなる。
 従って、処理対象物質の分解効率を高めようとするには、気液界面の面積を広くする、つまり導入する気泡の気泡径を小さくすることが有効である。
 マイクロバブル化手段については、特に限定されないが、超高速旋回せん断方式、ベンチュリー減圧発泡方式、高速攪拌方式などが挙げられる。
 気体吸引供給手段が、気体を供給する場所は、被処理水を水滴化する前工程であれば、特に限定されないが、例えば、被処理水の貯水タンク、貯水タンクから水滴化する場所までの被処理水配管などが挙げられる。
 本発明の水処理装置には、酸素リッチにしてオゾンやOラジカル、OHラジカルの発生効率を上げるために、処理室内に酸素を供給する酸素供給手段を備えていることが好ましい。すなわち、上記処理室内に酸素を供給する酸素供給手段を備えている構成とすれば、処理室内が酸素リッチな雰囲気になり、空気中の窒素成分の酸化に伴う窒素酸化物の生成を抑えることができる。しかも、Oラジカル、OHラジカル及びオゾンが高濃度で発生するので、更に効率よく有機物を分解処理することができる。
 なお、酸素供給手段は、酸素のみを供給するものでも、酸素を含むガス、例えば空気を供給するものであっても構わない。
 さらに、本発明の水処理装置は、少なくとも1対の電極対を有する複数の電極ユニットを備え、これらの電極ユニットが、処理室の周壁に沿って設けられた装着位置に着脱自在であるとともに、被処理水供給手段の噴射ノズルが処理室の中央部から装着位置に装着された電極ユニットに向けて被処理水を噴射するように設けられている構成としてもよい。
そして、上記電極ユニットは、処理室の上下方向に複数並んでいる構成としてもよい。
 処理室の材質は、内面が耐食性に優れたものであれば、特に限定されないが、例えば、
ステンレス鋼や、繊維強化樹脂が挙げられ、漏電防止のため絶縁体でできているか絶縁体で覆われていることが好ましい。
 また、処理室は、メンテナンス性を考慮すれば、その周壁に処理室内の電極ユニットの着脱口を備えていることが好ましい。また、着脱口の蓋に電極ユニットの支持固定部を設け、蓋を開けるだけで、電極ユニットが処理室外に取り出せる構成としても構わない。
 被処理水をミスト状にして放電空間に供給するには、被処理水供給配管を処理室内に導入し、ポンプを介して送られてくる被処理水を被処理水供給配管の端末部に設けた噴射ノズルからミスト状にして放電空間内に噴射する方法が採られるが、電極ユニットに多数の電極対が平行に並んでいるとともに、円筒状電極が網目あるいは透孔を備えたものである場合、噴射ノズルを円筒状電極の側面に直交する方向から噴射するように配置し、噴射されたミストを円筒状電極の網目あるいは透孔を通して放電空間に供給することが好ましい。
 また、このように、ミストを円筒状電極の網目あるいは透孔を通して放電空間に噴射する場合、特に限定されないが、より効率よく放電空間に被処理水を供給することができるため、被処理水を四角錐状のミストにして噴射する構造を備えた噴射ノズルを用いることが好ましい。
 四角錐状のミストにして噴射する構造を備えた噴射ノズルとしては、例えば、市販のいけうち社の商品名充角錐ノズルSSXPが使用できる。
 また、本発明の水処理装置は、処理室の下部に放電空間内を通り処理された処理済み水を受ける受槽を備えているとともに、受槽内に空気を供給する空気供給手段を備えていることが好ましい。
 すなわち、受槽内に空気を供給することによって、処理対象物質の酸化により消費された酸素を処理室内に新たに供給することができる。さらに、受槽内の処理済み水を通して空気を供給することで、湿度の高い空気を処理室内に供給することができ、酸化力の高いOHラジカルをより多く発生させることができる。
 上記空気供給手段としては、特に限定されないが、空気をできるだけ細かい気泡にして受槽内に供給できることが好ましい。
 細かい気泡にする方法としては、特に限定されないが、ABS樹脂、ポリメチルメタアクリレート、ポリエチレン、ポリプロピレン等の合成樹脂やセラミック等を焼結した微細気泡を発生する硬質多孔体を備える散気装置、超高速旋回せん断方式、ベンチュリー減圧発泡方式、高速攪拌方式、受槽内に配管した空気供給管の先端にマイクロバブル化ノズル(例えば、商品名ナノプラネット社M2型マイクロバブル発生装置)を設ける方法などが挙げられる。
 また、受槽は、上記空気供給手段を設けた場合、受槽内に供給された空気が、受槽から処理済み水とともに、流れ出ることを防止して、供給された空気をより有効に利用できるように、受槽に受けられた処理済み水がオーバーフローすることにより処理済み水を処理室外に流出させる処理済み水流出経路を備えるとともに、処理済み水流出経路の入口が受槽の底近傍に設けられていることが好ましい。
 上記のような処理済み水流出経路は、特に限定されないが、例えば、受槽の底側の一部を除き受槽内部を仕切る邪魔板によって形成されていることができる。
 上記のように、本発明にかかる水処理装置は、処理室内に、円筒状電極とこの円筒状電極の中心軸に沿って配置された線状電極とからなる電極対を少なくとも1対有するとともに、前記円筒状電極と線状電極との間に高電圧を印加することによって生じる放電空間内に被処理水を、粒径が1500μm以下の水滴からなるミスト状態にして供給する被処理水供給手段を備えているので、放電によって発生するオゾン、OHラジカル、Oラジカル等の活性種によって被処理水ミストの水滴中の有機物が効率よく分解される。
 すなわち、円筒状電極と線状電極との間に高電圧を印加することによって円柱状に長い放電空間を形成することができる。そして、被処理水が1500μm以下と細かい粒径の水滴となってこの円柱状に長い放電空間内に供給されるから、被処理水の前記活性種に対する接触面積が大きくなる。したがって、被処理水中の処理対象物質が短時間で効率よく分解される。
 また、円筒状電極が被処理水ミストを構成する水滴が通過可能な大きさの多数の孔を壁面に備えていれば、円筒状電極の側方から被処理水ミストを噴霧しても放電空間内に水滴を供給することができる。
本発明にかかる水処理装置の第1の実施の形態の断面図である。 本発明にかかる水処理装置の第2の実施の形態を模式的にあらわした図である。 本発明にかかる水処理装置の第3の実施の形態を模式的にあらわした図である。 本発明にかかる水処理装置の第4の実施の形態を模式的にあらわした図である。 本発明にかかる水処理装置の第5の実施の形態を模式的にあらわした図である。 本発明にかかる水処理装置の第6の実施の形態の円筒状電極と線状電極を上面側から見た状態を模式的にあらわした図である。 本発明にかかる水処理装置の第7の実施の形態を模式的にあらわす断面図である。 本発明にかかる水処理装置の第8の実施の形態を模式的にあらわす断面図である。 本発明にかかる水処理装置の第9の実施の形態を模式的にあらわす断面図である。 図9の水処理装置の要部断面図である。 本発明にかかる水処理装置の第10の実施の形態を模式的にあらわす処理室本体部分を水平面で切断した横断面図である。 本発明にかかる水処理装置の第11の実施の形態をあらわし、その処理室本体部分を垂直面で切断した縦断面図である。 本発明にかかる水処理装置の第12の実施の形態の正面図である。 図13の水処理装置の平面図である。 図13のX-X線断面図である。 図13の水処理装置における電極ユニットの装着状態を説明する処理槽内を断面でみてあらわす図である。 図15のY-Y線断面図である。 図13の水処理装置の着脱口の開口した状態の要部斜視図である。 図13の水処理装置の電極ユニットの正面図である。 図19の電極ユニットの円筒状電極ブロックの正面図である。 図20の円筒状電極ブロックの円筒状電極固定板の平面図である。 図20の円筒状電極ブロックの円筒状電極と円筒状電極固定板との固定状態を説明する要部断面図である。 図19の電極ユニットの線状電極固定板の平面図である。 図19の電極ユニットの上部電極サポートへの固定状態を説明する断面図である。 図19の電極ユニットの下部電極サポートへの固定状態を説明する断面図である。 図13の水処理装置の高電圧パルス発生装置の配線図である。 本発明にかかる水処理装置の第13の実施の形態であって、その処理槽を模式的にあらわした断面図である。 実施例5で実施したエチレングリコールの分解処理時間と、エチレングリコールの濃度変化を示すグラフである。 実施例6で実施したインジゴカルミンの分解速度を求めるためのグラフである。 実施例14~17のエチレングリコール分解性能を比較してあらわす図である。 実施例18~21のパラクロロフェノール分解性能を比較してあらわす図である。
1a,1b,1c,1d,1e,1f,1g,1h,1i,1j,1k 水処理装置
1m,1n 水処理装置
2 処理室
21 処理室本体
3,3a,3b 円筒状電極
4 線状電極
5 被処理水タンク(受槽)
6 ポンプ
7 シャワーノズル(噴霧ノズル)
8 高電圧パルス発生装置(高圧電源)
W 被処理水
M 被処理水ミスト
300,301,302 気体吸引供給手段
310 吸気管
320 吸気ポンプ
330 排気管
340 マイクロバブル化ノズル
350 アスピレータ部
400 酸素供給手段
410 酸素ボンベ
420 酸素供給管
10 高電圧パルス発生装置
W1 被処理水
W2 処理済み水
502 処理槽
502a 処理室
502b 受槽
523 着脱口
524 蓋
525a 上部電極サポート
525b 下部電極サポート
527 オーバーフロー管
520 邪魔板
520a  隙間
503 電極ユニット
531 線状電極
534 円筒状電極
504 被処理水供給手段
542b 噴射ノズル
506 空気供給手段
200 曲がり管(処理済み水流出経路)
 以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
 図1は、本発明にかかる水処理装置の第1の実施の形態をあらわしている。
 図1に示すように、この水処理装置1aは、処理室2と、円筒状電極3と、線状電極4と、受槽ともなる被処理水タンク5と、ポンプ6と、噴射ノズルであるシャワーノズル7と、被処理水供給ホース71と、高圧電源である高電圧パルス発生装置8と、被処理水タンク収容ボックス9とを備えている。
 処理室2は、処理室本体21と、下部蓋部22と、上部蓋部23とを備えている。
 処理室本体21は、例えば、アクリル樹脂等の絶縁材料で形成され、円筒状をしている。
 下部蓋部22は、処理室本体21の下端を、通水孔22a部分を除いて閉鎖するように設けられている。
 上部蓋部23は、処理室本体21の上端を、シャワーノズル設置孔23a部分を除いて閉鎖するように設けられている。
 そして、処理室2は、下部蓋部22が被処理水タンク収容ボックス9の開口部91を塞いだ状態で被処理水タンク収容ボックス9の開口部91周縁に受けられている。
 円筒状電極3は、例えば、ステンレス鋼製の1~100メッシュの厚さ0.35mmの網を円筒状に加工することによって得られ、外径が処理室本体21の内径より少し小さくなっている。
 線状電極4は、例えば、直径0.28mmのステンレス鋼線で形成され、円筒状電極3の中心軸に沿うように設けられている。
 被処理水タンク5は、下部蓋部22の通水孔22aを下方から臨むように処理水タンク収容ボックス9内に収容されている。
 ポンプ6は、処理水タンク収容ボックス9内で被処理水タンク5に隣接して設けられ、被処理水タンク5内の被処理水Wを、被処理水供給ホース71を介してシャワーノズル7に送るようになっている。
 シャワーノズル7は、被処理水供給ホース71を介して送られてきた被処理水Wを粒径が1500μm以下の水滴からなるミスト状態にして円筒状電極3の上部開口に向かって噴射するようになっている。
 また、シャワーノズル7の噴角は、噴射される被処理水ミストMの最大広がり部で放電空間の最外縁である円筒状電極3の内壁面に沿うような角度に調整されている。
 高電圧パルス発生装置8は、円筒状電極3が接地電極、線状電極4が高電圧印加電極となるように円筒状電極3及び線状電極4に接続されていて、円筒状電極3と線状電極4との間にパルス状に高電圧を印加して円筒状電極3と線状電極4との間でストリーマ放電を起こすようになっている。
 以下に、この水処理装置1aを用いた水処理方法を説明する。
(1)被処理水タンク5に有機物等の処理対象物質を含む被処理水Wを仕込む。
(2)高電圧パルス発生装置8によって、円筒状電極3と線状電極4との間に、高電圧をパルス状に印加し、円筒状電極3内に上下方向に円柱状となったストリーマ放電空間を形成する。
(3)ポンプ6を駆動させて、被処理水タンク5内の被処理水Wを、ホース71を介してシャワーノズル7に送り、円筒状電極3の上方から円筒状電極3の中心軸方向に向かって噴射する。
(4)処理室21を通った被処理水Wは、再び被処理水タンク5に受けられ、再びポンプによって噴射ノズル7に送られる。
 すなわち、この水処理装置1aは、上記のように、被処理水Wを循環しながら処理するようになっている。
 そして、ストリーマ放電によって、オゾン、OHラジカル、Oラジカル等の活性種が放電空間内に発生し、シャワーノズル7から噴射された被処理水ミストM中の水滴が円筒状をした放電空間内を落下していく間にこれら活性種に接触するので、各水滴中の有機物等の処理対象物質が効率よく酸化分解処理される。
 すなわち、円筒状電極と線状電極との間に高電圧を印加することによって円柱状に長い放電空間を形成することができる。そして、被処理水が1500μm以下と細かい粒径の水滴となってこの円柱状に長い放電空間内に供給されるから、被処理水の前記活性種に対する接触面積が大きくなる。したがって、被処理水中の処理対象物質が短時間で効率よく分解される。
 図2は、本発明にかかる水処理装置の第2の実施の形態をあらわしている。
 図2に示すように、この水処理装置1bは、同じサイズの円筒状電極3及び線状電極4が4対処理室2内で水平方向に並ぶように配置されている以外は、上記水処理装置1aと同様になっている。
 図3は、本発明にかかる水処理装置の第3の実施の形態をあらわしている。
 図3に示すように、この水処理装置1cは、シャワーノズル7が円筒状電極3の下方に設けられ、被処理水ミストを垂直上向き噴射するようにした以外は、上記水処理装置1bと同様になっている。
 この水処理装置1cによれば、被処理水ミストMが、放電空間の下側から放電空間に向かって噴射されるので、被処理水ミストM中の各水滴が一旦上昇した後、その重力により下降することにより、放電空間での滞留時間が増加し、より効率的に処理することができる。
 図4は、本発明にかかる水処理装置の第4の実施の形態をあらわしている。
 図4に示すように、この水処理装置1dは、シャワーノズル7を円筒状電極の側方に設け、被処理水ミストを円筒状電極3の側面から水平方向に噴射するようにした以外は、上記水処理装置1aと同様になっている。
 図5は、本発明にかかる水処理装置の第5の実施の形態をあらわしている。
 図5に示すように、この水処理装置1eは、シャワーノズル7の噴射軸Cに近い側の2本の円筒状電極3aより、遠い側の2本の円筒状電極3bの中心軸方向の長さが短くなっているとともに、短い円筒状電極3bの上端面を長い円筒状電極3aの上端面よりシャワーノズル7から離れた位置、すなわち、下方に位置するように配置し、シャワーノズル7から噴射された被処理水ミストMの最外縁が短い円筒状電極3b内に確実に納まるように調整した以外は、上記水処理装置1bと同様になっている。
 図6は、本発明にかかる水処理装置の第6の実施の形態をあらわしている。
 図6に示すように、この水処理装置1fは、円筒状電極3及び線状電極4からなる電極対を6対備えている。
 そして、1つの電極対は、線状電極4を処理室本体21の中心軸に一致するように配置されている。
 他の5つの電極対は、上記の1つの電極対の周囲を放射状に囲むとともに、5つの電極対の線状電極4が同一円周上に等間隔で並ぶように配置されている。
 そして、この水処理装置1fは、上記した電極対の配置とした以外は、上記水処理装置1aと同様になっている。
 図7は、本発明にかかる水処理装置の第7の実施の形態をあらわしている。
 図7に示すように、この水処理装置1gは、気体吸引供給手段300と、酸素供給手段400とをさらに備えている以外は、図1に示す水処理装置1aと同様になっている。
 気体吸引供給手段300は、吸気管310と、吸気ポンプ320と、排気管330と、マイクロバブル化ノズル(例えば、商品名ナノプラネット社M2型マイクロバブル発生装置)340とを備えている。
 吸気管310は、一端が円筒状電極3及び線状電極4の下端より下側で処理室本体21の壁面を貫通して処理室本体21内に臨み、他端が吸気ポンプ320の吸気口に接続されている。なお、処理室本体21の吸気管310の貫通部は気密状態にシールされている。
 排気管330は、一端が吸気ポンプ320の排気口に接続されるとともに、他端が処理水タンク収容ボックス9及び被処理水タンク5の側壁を貫通して被処理水タンク5内に臨んでいる。
 マイクロバブル化ノズル340は、被処理水タンク5内で排気管330の他端に接続されている。
 すなわち、気体吸引供給手段300は、吸気ポンプ320によって吸気管310を介して処理室2内の気体を吸気し、排気管330を介して被処理水タンク5内に送り込み、マイクロバブル化ノズル340によってマイクロバブル状態で被処理水タンク5内の被処理水Wに気体を供給するようになっている。
 酸素供給手段400は、酸素ボンベ410と、酸素供給管420とを備えている。
 酸素供給管420が、一端が酸素ボンベ410と接続され、他端が上部蓋部23を貫通して処理室本体21内に臨んでいる。
 つぎに、この水処理装置1gを用いた水処理方法を説明する。
 まず、被処理水タンク5内に被処理水Wを貯水した状態で高電圧パルス発生装置8から線状電極4と円筒状電極3と間に高電圧を印加して、線状電極4と円筒状電極3と間で円柱状のストリーマ放電空間を形成する。そして、被処理水タンク5の被処理水Wを、ポンプ6を介して噴射ノズル7に供給し、噴射ノズル7からストリーマ放電空間に細かい水滴からなる被処理水ミストMとして噴射する。
 同時に、酸素供給手段400によって処理室2内に酸素を供給し、処理室2内の酸素濃度を上げるとともに、気体吸引供給手段300によって処理室2内の気体を吸気管310から吸引して排気管330及びマイクロバブル化ノズル340を介してマイクロバブル状態にして被処理水タンク5内の被処理水に供給する。
 なお、ストリーマ放電空間を通過した被処理水Wは、通水孔22aを通り、被処理水タンク5に戻り、再び噴射ノズル7に供給される。
 この水処理装置1gは、上記のように、ストリーマ放電空間中に被処理水Wを細かい水滴からなるミスト状態にして供給するようになっているので、被処理水Wが放電空間中で発生するラジカル及びオゾンなどの活性種に効率よく接触し、被処理水W中の有機物等の処理対象物質が少ないエネルギーで効率よく分解処理される。
 しかも、気体吸引供給手段300を備えているので、放電空間で発生するオゾンを無駄なく処理対象物質の分解処理に用いることができる。したがって、より効率よく処理対象物質を分解処理することができる。
 すなわち、放電空間において、発生する活性種のうちラジカルはその寿命が短くすぐに安定な分子に変化するが、オゾンは、その寿命が長い。したがって、発生したオゾンのうち、被処理水Wに接触せず、処理対象物質の分解処理に消費されないものは、処理室2内に残った状態になる。
 そこで、この水処理装置1gは、気体吸引供給手段300によって処理室2内の気体を吸引し、この気体を細かい気泡にして被処理水タンク5内の被処理水Wに供給することによって気体中に含まれる消費されず、無駄になっていたオゾンによっても被処理水W中の処理対象物質を分解処理できるようにした。
 また、気体がマイクロバブル化されているので、有機物との接触面積が大きくなり、より効率よく処理対象物質を分解できる。
 さらに、この水処理装置1gは、酸素供給手段400によって処理室2内に酸素が供給されるようにしたので、処理室2内が酸素リッチな雰囲気になる。したがって、空気中の窒素成分の酸化に伴う窒素酸化物の生成を抑えられるとともに、Oラジカル、OHラジカル及びオゾンが高濃度で発生する。その結果、更に効率よく処理対象物質を分解処理することができる。
 図8は、本発明にかかる水処理装置の第8の実施の形態をあらわしている。
 図8に示すように、この水処理装置1hは、酸素供給手段400が設けられていない点、及び、気体吸引供給手段301の吸気管310の吸気口が、処理水タンク収容ボックス9内を臨むように設けた点を除き、上記水処理装置1gと同様になっている。
 この水処理装置1hは、上記のように、酸素供給手段が設けられていないため、上記水処理装置1gに比べ、処理能力は少し劣るのであるが、気体吸引供給手段301を設けていない水処理装置に比べると処理能力が向上する。しかも、この水処理装置1hは、上記水処理装置1gに比べ、装置構造が単純であるから低コスト化を図ることができる。
 図9は、本発明にかかる水処理装置の第9の実施の形態をあらわしている。
 図9に示すように、この水処理装置1iは、酸素供給手段400が設けられていない点、及び、気体吸引供給手段302を、吸気管310と、図10に示すように、被処理水配管71の噴射ノズル7近傍に組み込んだアスピレータ部350とで構成した点を除き、上記水処理装置1gと同様になっている。
 すなわち、気体吸引供給手段302は、アスピレータ部350において、被処理水配管71を流れる被処理水によって負圧が生じることによって吸気管310を介して処理室2内の気体を吸引するとともに、吸引した気体を気泡状にして被処理水Wに供給するようにしている。
 したがって、この水処理装置1iは、上記水処理装置1gに比べ、処理能力は少し劣るのであるが、気体吸引供給手段302を設けていない場合に比べると処理能力が向上する。しかも、気体吸引供給手段302は、吸気ポンプ320が不要となるため、より低コスト化を図ることができる。
 図11は、本発明にかかる水処理装置の第10の実施の形態をあらわしている。
 図11に示すように、この水処理装置1jは、処理室本体21内に線状電極4と、円筒状電極3とからなる電極対を6対備えている以外は、上記水処理装置1gと同様になっている。
 図12は、本発明にかかる水処理装置の第11の実施の形態をあらわしている。
 図12に示すように、この水処理装置1kは、処理室本体21内に線状電極4と、円筒状電極3とからなる電極対を6対備えているとともに、これらの電極対が円筒状電極3の、円筒の中心軸が水処理装置1kの設置面に対して平行となった状態で水平方向に並べて配置されている以外は、上記水処理装置1gと同様になっている。
 図13~図17は、本発明にかかる水処理装置の第12の実施の形態をあらわしている。
 図13~図17に示すように、この水処理装置1mは、処理槽502と、4つの電極ユニット503と、被処理水供給手段504と、制御ボックス505と、空気供給手段506と、高電圧パルス発生装置10と、を備えている。
 処理槽502は、図15及び図16に示すように、処理室502aと、受槽502b とを備え、金網入りの繊維強化樹脂(FRP)で形成されている。
 処理室502aは、略四角筒状をした本体筒部521と、この本体筒部521の上部開口を閉じる天板部522とから構成されている。
 天板部522は、高圧ケーブル導入管522aと、接続管522bと、2つの通気管522cと、高圧ケーブル保護管522dとがそれぞれ上面から突出するように設けられている。
 高圧ケーブル導入管522aは、天板部522の中央に設けられ、碍子等の絶縁体で形成されていて、内部に後述する高圧ケーブル528aが挿通されるようになっている。
 接続管522bは、天板部522の高圧ケーブル導入管522aを避けた位置に設けられ、後述する被処理水供給手段504の外部配管541と内部配管542との間に介在し、外部配管541と内部配管542とを接続するようになっている。
 2つの通気管522cは、天板部522の高圧ケーブル導入管522a及び接続管522bを避けた位置で高圧ケーブル導入管522aを中心にして対称位置に設けられ、処理槽502内の雰囲気を処理槽502外と連通させるようになっている。
 高圧ケーブル保護管522dは、例えば、亜鉛メッキ鋼板をダクト形状に加工することによって得られ、高圧ケーブル導入管522aと、後述する高圧ケーブル528aを覆うように設けられている。
 本体筒部521は、図13,図15~図18に示すように、着脱口523を四方の壁にそれぞれ備えている。
 着脱口523は、その入口側に周囲に張り出すフランジ523aを備えていて、蓋524によって開閉自在になっている。
 そして、着脱口523は、蓋524を取り除き開放状態にすることによって、後述する電極ユニット503を取り付け及び取り外しを行えるようになっている。
 蓋524は、略コの字形をした2つの把手524aを備え、周縁部がシールパッキン(図示せず)を介してボルト524bによってフランジ523aに固定されることによって着脱口523を水密に封止するようになっている。また、蓋524は、ボルト524bを緩めて取り外すことによって着脱口523を開放できるようになっている。
 本体筒部521内の4隅には、図15~図18に示すように、着脱口523の上端より少し下方に上部電極サポート525aが設けられ、着脱口523の下端より少し上方に下部電極サポート525bが設けられている。
 上部電極サポート525aは、図17に示すように平面視略L字形をしていて、図15及び図18に示すように、L字の両辺の着脱口523を臨む位置に、それぞれ、着脱口523側で開口する切欠5251が穿設されている。
 切欠5251は、ボルト537より少し幅広で、ナット536,539の外径より狭い幅に形成されている。
 切欠5251は、本体筒部521の隣接する上部電極サポート525aの切欠5251との間隔が、後述する電極ユニット503の2本のボルト537間の間隔と同じになるように設けられている。
 上部電極サポート525aは、その下面が本体筒部521の内壁面に固定した側面視三角形をした補強リブ5252によって下方から支持されている。
 下部電極サポート525bは、上部電極サポート525aを下方に平行移動させた形状になっている。
 受槽502bは、処理室502aで処理された側壁部の1つの側壁面にオーバーフロー管527が取り付けられている。
 また、受槽502bは、このオーバーフロー管527が設けられた側壁面に沿って邪魔板(バッフル)520が設けられている。
 邪魔板520は、その上端側がオーバーフロー管527の上端と略同じか少し高くなっていて、処理槽502の底板部との間に隙間520aが設けられている。
 すなわち、受槽502bは、処理室502aで処理された処理済み水W2が邪魔板520の下端に設けられた隙間520aを通り、処理済み水流出経路となる邪魔板520とオーバーフロー管527が設けられた側壁面との間を通り、オーバーフロー管527から外部に排出されるようになっている。
 電極ユニット503は、図19に示すように、円筒状電極ブロック503aと、10本の線状電極531と、長方形をした2枚の線状電極固定板532と、4つの絶縁碍子533と、を備えている。
 円筒状電極ブロック503aは、図20に示すように、10本の円筒状電極534と、2枚の円筒状電極固定板535とを備えている。
 各円筒状電極534は、例えば、線径1.1mmのステンレス鋼線を用いた2.5メッシュ、開口率79.5%のステンレス鋼製網を円筒状に加工することによって得られ、内径が40mmになっているとともに、その円筒部分の中心軸方向の長さが500mmとなっている。
 円筒状電極固定板535は、例えば、ステンレス板を加工することによって得られ、図21に示すように、10個の円筒状電極装着孔535aと、2つのボルト挿通孔535bが穿設されている。
 10個の円筒状電極装着孔535aは、上記円筒状電極534の外径と略同じか少し大きい外径をした円形をしていて、例えば、50mmピッチで設けられている。
 ボルト挿通孔535bは、円筒状電極装着孔535aの両端に設けられていて、絶縁碍子533のボルト537bが挿通されるようになっている。
 そして、円筒状電極ブロック503aは、図22に示すように、各円筒状電極534が、その両端部を2つの円筒状電極固定板535の対応する円筒状電極装着孔535aに挿入されたのち、端縁部が外側に折り曲げられ、折り曲げ部分が円筒状電極固定板535の円筒状電極装着孔535aの周縁に接することにより電気的に導通状態で固定一体化されて形成されている。
 線状電極固定板532は、例えば、ステンレス板を加工することによって得られ、図23に示すように、円筒状電極固定板535と同じ大きさをしている。
 また、線状電極固定板532は、各円筒状電極534の中心軸に対応する位置に、例えば、直径2mmの線状電極挿通孔532aが穿設されている。
 さらに、線状電極固定板532は、両端部に円筒状電極固定板535と同様に絶縁碍子533のボルト537aが挿通されるボルト挿通孔532bが穿設されている。
 絶縁碍子533は、両端から突出するようにボルト537a,537bを一体に備えている。ボルト537aとボルト537bとは、図24及び図25に示すように、絶縁碍子533の内部で絶縁状態になっているとともに、円筒状電極固定板535の固定側のボルト537bが、線状電極固定板532の固定側のボルト537aに比べて、絶縁碍子533の端面から少し長く突出している。
 そして、絶縁碍子533は、図19に示すように、絶縁碍子533の端面が円筒状電極固定板535に当接するまでボルト537bを円筒状電極固定板535のボルト挿通孔535bに挿通したのち、ナット536を締め込むことによって円筒状電極固定板535が固定される。
 また、絶縁碍子533は、絶縁碍子533の端面が線状電極固定板532に当接するまでボルト537aを線状電極固定板532のボルト挿通孔532bに挿通したのち、ナット536を締めこむことによって線状電極固定板532が固定される。
 また、この固定状態で、線状電極固定板532と円筒状電極固定板535との間隔は、線状電極固定板532と円筒状電極固定板535との間で放電が発生しない間隔(例えば、100mm)に保持されるようになっている。
 さらに、ボルト537bには、ナット536と上部電極サポート525aあるいは下部電極サポート525bの挟着用のナット539とが螺合されている。
 線状電極531は、例えば、チタン製で直径が1mm、その長さが、両線状電極固定板532間に距離より少し長く(例えば、750mm)なっているとともに、その外周面にねじ(図示せず)が設けられている。
 そして、線状電極531は、円筒状電極534内を貫通し、その両端部が線状電極固定板532の線状電極挿通孔532aに挿通されるとともに、線状電極531のねじに螺合させた2つのナット38によって線状電極固定板532を挟み込むことによって端部が線状電極固定板532に対して電気的に導通状態で固定されている。
 このように組み立てられた電極ユニット503は、以下のようにして、処理室502a内に装着される。
 すなわち、図6に示すように、蓋524を取り除き、着脱口23を開放状態とする。
 そして、図19に示すように、ナット539を緩めて、ナット536との間に上部電極サポート525a及び下部電極サポート525bの厚み分以上の隙間を形成した状態にして電極ユニット503を着脱口23から処理室502a内に挿入する。
 次に、ボルト537bのナット539とナット536との間の部分が上部電極サポート525a及び下部電極サポート525bの切欠251に入り込むようにスライドさせたのち、図24あるいは図25に示すように、ナット539を、ナット536側に締めこんで、ナット539とナット536との間で切欠251の側縁部を挟み込むことで上部電極サポート525a及び下部電極サポート525bに電極ユニット503を固定する。
 被処理水供給手段504は、図13及び図14に示すように、被処理水供給配管504aと、被処理水供給ポンプ504bと、を備えている。
 被処理水供給配管504aは、図15及び図16に示すように、外部配管541と、内部配管542とを備えている。
 外部配管541は、一端が処理槽502の接続管522bに接続され、図13及び図14に示すように、中間部に被処理水供給ポンプ504bが配設され、図示していないが、他端が被処理水タンクに接続されている。
 内部配管542は、一端が処理槽502内で接続管522bに接続されるとともに、図15及び図16に示すように、一旦垂下され、後述するブスバー528bより下方で処理室502aの中心方向に折れ曲がり、処理室502aの中心で再び垂下されたのち、処理室502aにセットされた各電極ユニット503方向にそれぞれ向かうように4つの分岐管542aに分岐されている。
 各分岐管542aの先端には、噴射ノズル542bが設けられている。
 噴射ノズル542bは、被処理水W1を円筒状電極534の網目の大きさより小さなミスト状にして四角錐状に噴射するようになっている。
 また、各噴射ノズル542bは、電極ユニット503に達したときに、ミストの上下方向の広がり幅が略円筒状電極534の中心軸方向の長さと略一致し、幅方向の広がり幅が、電極ユニット503の両端に配置された円筒状電極534間に距離と略同じなるように設けられている。
 高電圧パルス発生装置10は、図26に示すように、高圧直流電源101、コンデンサ102、抵抗103、トリガトロンギャップスイッチ104、パルストランス105およびトリガ回路106を備えている。
 そして、高電圧パルス発生装置10は、以下のように動作する。
 すなわち、高圧直流電源101からの電流が抵抗103を介してコンデンサ102に供給され、コンデンサ102が充電される。目標電圧までコンデンサ102が充電された後、トリガ回路106からの高電圧のトリガパルスによりトリガトロンギャップスイッチ104がオン状態になる。このとき、コンデンサ102に充電された電荷がパルストランス105の1次側に流れ込み、相互インダクタンスにより2次側にパルス状の誘起電圧が発生する。
 このようにしてパルストランス105の2次側に生じた高電圧パルスは、線状電極531と円筒状電極534との間に印加される。
 すなわち、端子107が、高圧ケーブル528aの一端に接続されるとともに、後述するように、高圧ケーブル528a、ブスバー528b、線状電極固定板532を介して線状電極531に導通状態にされる。また、端子108が、高圧ケーブル保護管522dの一端に接続されるとともに、後述するように、高圧ケーブル保護管522d、アース線529、円筒状電極固定板535を介して円筒状電極534と導通状態にされる。
 端子107、108間に出力されるパルスの繰り返し数は、トリガ回路106におけるトリガパルスの出力頻度を変えることによって制御される。また出力パルスの電圧は、高圧直流電源101の出力電圧を切り替えることによって制御される。
 高圧ケーブル528aは、高圧パルス発生回路10の端子107に一端が接続され、他端部が高圧ケーブル導入管522aを介して処理室502a内に挿入され、ブスバー528bに接続されている。
 ブスバー528bは、図17に示すように、ステンレス鋼からなる平面視十字状をしていて、図示していないが、十字の中央部に高圧ケーブル528aの他端が溶接やボルト止めによって導通状態で接続されている。
 そして、ブスバー528bは、図15及び図16に示すように、十字の各先端部が装着位置に装着されたいずれかの電極ユニット503の線状電極固定板532にボルト・ナット(図示せず)によって固定されて各線状電極531に導通状態とされるようになっている。
 アース線529は、図15に示すように、一端が高圧ケーブル保護管522dに接続され、他端が、各電極ユニット503が上部電極サポート525a及び下部電極サポート525bによって支持固定された状態で、各電極ユニット503の上側の円筒状電極固定板535に、ボルト・ナットによって導通状態で固定される。
 空気供給手段506は、図13~図16に示すように、空気供給ポンプ506aと、空気供給管506bとを備えている。
 空気供給ポンプ506aは、処理槽502に隣接して設けられ、大気を吸気して空気供給管506bに空気を供給するようになっている。
 空気供給管506bは、受槽502b の壁面を貫通して受槽502b内に臨み、受槽502b 内で分岐し、各分岐管561の先端に、散気装置(例えば、ダイセン・メンブレン・システムズ社製商品名パールコン)562が装着されている。
 すなわち、空気供給手段506は、大気中の空気を吸気して受槽502b内に送り込み、散気装置62から受槽502b内に溜められた処理済み水に供給するようになっている。
 制御ボックス505は、図示していないが、被処理水供給手段504及び空気供給手段506の制御回路が内蔵されている。
 この水処理装置1mは、例えば、以下のようにして被処理水W1を処理するようになっている。
 まず、蓋24を開放して各電極ユニット503を上述のようにしてその装着位置にセットする。
 そして、ブスバー528bを各電極ユニット503の上側の線状電極固定板532に接続するとともに、4つのアース線529を各電極ユニット503の上側の円筒状電極固定板535に接続する。
 つぎに、蓋24を閉じたのち、高電圧パルス発生装置10を作動させ、各線状電極531と円筒状電極534との間に高圧パルス電圧を印加してストリーマ放電を発生させる。
 ストリーマ放電が発生しだした段階で、被処理水供給手段504を作動させて被処理水を噴射ノズル542bからミスト状にして各電極ユニット503方向に噴霧させて、被処理水を円筒状電極534の網目を介してストリーマ放電空間内に供給する。
 すなわち、上記のようにして、ストリーマ放電空間内に供給されたミスト状の被処理水は、ストリーマ放電空間内で発生するオゾン、OHラジカル、Oラジカル等の活性種と接触する。そして、これらの活性種によって被処理水中の有機物等が上記活性種によって分解処理される。
 分解処理された処理済み水W2は、受槽502bに受けられたのち、オーバーフロー管527を介して処理槽502外に流出し、例えば、そのまま放流あるいは洗浄水として再利用される。
 また、受槽502b内の処理済み水W2には、空気供給手段506によって空気が供給される。
 一方、線状電極531及び円筒状電極534の交換の必要がある場合には、被処理水供給手段504、高電圧パルス発生装置10、及び、空気供給手段506を停止した状態で、蓋24を開放し、交換の必要な線状電極531及び円筒状電極534の電極ユニット503と、ブスバー528b及びアース線529との接続を解除するとともに、電極ユニット503の上部電極サポート525a及び下部電極サポート525bとの接続を解除する。
 そして、電極ユニット503を着脱口23から取り出し、交換が必要な線状電極531あるいは円筒状電極534を交換したのち、電極ユニット503を再び上記のようにして固定するとともに、ブスバー528b及びアース線529と接続する。または、電極ユニット503ごと交換しても構わない。
 この水処理装置1mは、以上のように、線状電極531と円筒状電極534との間でストリーマ放電させるようになっているので、線状電極531と円筒状電極534と間にオゾン、OHラジカル、Oラジカル等の活性種が効率よく発生する。そして、これら活性種が発生したストリーマ放電空間内に被処理水W1をミスト状にして供給するようにしたので、活性種と被処理水W1との接触面積が大きくなり、活性種が被処理水W1中で処理対象物質を攻撃するまでに減衰せず、効率よく処理対象物質を分解処理できる。したがって、少ない電力によって短時間で分解処理を行うことができる。
 しかも、10対の線状電極531と円筒状電極534とを有する4つの電極ユニット503を備え、この電極ユニット503を着脱口523から簡単に着脱できる。したがって、メンテナンスが容易である。
 さらに、被処理水供給手段504の噴射ノズル542bが処理槽502の中央部に設けられているので、噴射ノズル542bの本数を少なくすることができ、被処理水の供給配管がコンパクトになり、装置全体を小型化できる。
 また、噴射ノズル542bが、被処理水W1を円筒状電極534の網目の大きさより小さなミスト状にして四角錐状に噴射し、電極ユニット503に達したときに、ミストの上下方向の広がり幅が略円筒状電極534の中心軸方向の長さと略一致し、幅方向の広がり幅が、電極ユニット503の両端に配置された円筒状電極間に距離と略同じなるので、被処理水W1が効率よくストリーマ放電空間内に供給され、処理効率を高いものとすることができる。
 この水処理装置1mは、空気供給手段506を備え、受槽502b 内の処理済み水W2に空気を供給するようにしたので、処理対象物質の酸化により消費された酸素を処理室502a内に新たに供給することができ、さらに処理済み水W2を通して空気を供給することで、湿度の高い空気を処理室502a内に供給することができる。したがって、酸化力の高いOHラジカルをより多く発生させることができ、処理効率がさらによくなる。
 また、受槽502bが邪魔板520によって空気供給手段506による空気のバブリング部と、オーバーフロー管527の部分とを分離されているので、バブリングによって処理済み水W2に溶け込んだ空気が処理済み水W2とともにオーバーフローすることがない。したがって、空気をより有効に利用できる。
 さらに、処理済み水W2は、処理室502aで発生したオゾン等の寿命の長い活性種を含んでいるので、受槽502bに邪魔板520を設け、十分な時間滞留させることによりさらに分解処理をすすめることができる。
 図27は、本発明にかかる水処理装置の第13の実施の形態をあらわしている。
 図27に示すように、この水処理装置1nは、合計8基の電極ユニット503が処理槽502の内壁面に沿って2つずつ上下配置され、噴射ノズル542bも各電極ユニット503に対応するべく上下方向に2段に設けられているとともに、邪魔板520に代えて、受槽502bの底近傍に開口端が配置され他端がオーバーフロー管527に接続された曲がり管200によって、処理済み水流出経路を形成している。
 そして、下段の電極ユニット503へ高圧パルス電圧の給電は、図示していないが、処理槽502の壁面を貫通するように設けたブスバーを上側の線状電極固定板532にボルト・ナットで固定することによって行われるようになっている。
 また、この水処理装置1nは、上記以外の構成は、上記水処理装置1mと同様になっている。
 このように被処理水W1の量が多い場合は多段にすることにより、設置スペースを小さくすることができる。
 なお、本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、高電圧パルス発生装置を備えていたが、高電圧パルス発生装置は市販のものを別途用意するようにしても構わない。
 上記第6の実施の形態の水処理装置では、1つの電極対の周囲を5つの電極対で囲む2重構造であったが、さらに外側に多くの電極対を3重、4重に配置するようにしても構わないし、第5の実施の形態の水処理装置のように容器本体の外側に配置された円筒状電極の上端面の位置を内側に配置された円筒状電極の上端面より下方に設けるようにしても構わない。
 上記の第7の実施の形態では、気体吸引供給手段が処理室の1箇所で気体を吸引していたが、複数個所で吸引して構わない。また、吸引された気体の供給場所も被処理水タンク及び供給配管の両側に行うようにしても構わない。
 さらに、第7の実施の形態の気体吸引供給手段と第8の実施の形態の気体吸引供給手段とを併用しても、第7の実施の形態及び/または第8の実施の形態の気体吸引供給手段と、第9の実施の形態の気体吸引供給手段とを併用しても構わない。
 上記第12の実施の形態では、受槽の処理済み水をオーバーフロー管からオーバーフローさせそのまま放流するようになっていたが、オーバーフローした処理済み水を被処理水タンクに戻し、所定時間循環させて、所定時間経過後、循環水を全て放流する方式としても構わない。
 以下に、本発明の具体的な実施例を比較例と対比させて説明する。
 (実施例1)
 図1に示す水処理装置1aを用い、以下の実験条件で精製水にインジゴカルミンが20ppmの濃度で含まれる被処理水を水処理し、インジゴカルミンの分解完了時間を調べた。
 なお、分解完了時間は、紫外可視分光光度計(島津製作所社製商品名UVmini-1240)を用いて610nmでの被処理水の吸光度を調べ、吸光度が0になった時間を分解完了時間とした。
 〔実験条件〕
 被処理水量:15リットル
 被処理水の噴射速度(循環速度):12~15L/分
 充電電圧:25kV
 放電回数:100回/秒
 円筒状電極のメッシュ:10メッシュ
 円筒状電極の内径:39.5mm
 円筒状電極の長さ(中心軸方向の長さ):300mm
 被処理水ミストの粒径:750~970μm
 シャワーノズルの噴角:30°
 シャワーノズルから円筒状電極までの距離:被処理水ミストの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
 (実施例2)
 被処理水ミストの粒径を480~660μm、シャワーノズルの噴角を85°とした以外、上記実施例1と同様にしてインジゴカルミンの分解完了時間を調べた。
 (比較例1)
 被処理水ミストの粒径を2000~2500μmとした以外は、上記実施例1と同様にしてインジゴカルミンの分解完了時間を調べた。
 (実施例3)
 実施例1と同様の円筒状電極及び線状電極を3対、図2のように円筒状電極の中心軸を鉛直方向にして平行に並べた以外は、上記実施例1と同様にしてインジゴカルミンの分解完了時間を調べた。
(実施例4)
 円筒状電極のメッシュを200メッシュとした以外は、実施例3と同様にしてインジゴカルミンの分解完了時間を調べた。
Figure JPOXMLDOC01-appb-T000001
 上記表1から本発明のようにすれば、有機物が短時間で効率よく分解処理できることがわかる。
 (実施例5)
 実施例1と同様の水処理装置1aを用いて90ppm濃度のエチレングリコールを含む被処理水1リットルを被処理水の噴射速度を3L/分とした以外は実施例1と同じ条件で処理し、分解完了時間を調べたところ、図28に示すように、4時間でエチレングリコールが分解処理できた。
 (実施例6)
 図1に示す水処理装置1aを用い、以下の実験条件で精製水にインジゴカルミンが約20ppmの濃度で含まれる被処理水を水処理し、紫外可視分光光度計(島津製作所社製商品名UVmini-1240)を用いて610nmでの被処理水の吸光度を1分毎に測定し、分解速度を求めた。
 なお、処理時間は、水処理装置1aの円筒状電極3の部分を通過した時間とした。また、分解速度(mg/L・分)は、図29のように縦軸にインジゴカルミンの濃度(ppm)、横軸に処理時間(分)としてグラフ化し、濃度の減少を表す傾きとした。そして、その傾きの絶対値が大きい程、処理性能は高いということになる。
 〔実験条件〕
 被処理水量:5リットル
 被処理水の噴射速度(循環速度):14L/分
 充電電圧:25kV
 放電回数:100回/秒
 円筒状電極の性状:16メッシュ、線径0.29mm、開孔率66.8%、平織金網
 円筒状電極の内径:39.5mm
 円筒状電極の長さ(中心軸方向の長さ):300mm
 被処理水ミストの粒径:750~970μm
 シャワーノズルの噴角:30°
 シャワーノズルから円筒状電極までの距離:被処理水ミストの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
 (実施例7)
 被処理水ミストの粒径を480~660μm、シャワーノズルの噴角を85°とした以外、上記実施例6と同様にしてインジゴカルミンの分解速度を調べた。
 (実施例8)
 被処理水ミストの粒径を340~420μm、シャワーノズルの噴角を120°とした以外は、上記実施例6と同様にしてインジゴカルミンの分解速度を調べた。
 (実施例9)
 以下の実験条件で円筒状電極(長さ50mm)及び線状電極からなる6対の電極対を、図6のように配置した以外は、上記実施例6と同様にしてインジゴカルミンの分解速度を調べた。
〔実験条件〕
 被処理水量:5リットル
 被処理水の噴射速度(循環速度):14L/分
 充電電圧:25kV
 放電回数:100回/秒
 円筒状電極の性状:16メッシュ、線径0.29mm、開孔率66.8%、平織金網
 円筒状電極の内径:39.5mm
 円筒状電極の長さ(中心軸方向の長さ):50mm×6本
 被処理水ミストの粒径:750~970μm
 シャワーノズルの噴角:30°
(実施例10)
 円筒状電極を、2.5メッシュ、線径1.1mm、開孔率79.5%、平織金網を用いた以外は、実施例9と同様にしてインジゴカルミンの分解速度を調べた。
(実施例11)
 円筒状電極を、3.5メッシュ、線径1.1mm、開孔率63.3%、平織金網を用いた以外は実施例8と同様にしてインジゴカルミンの分解速度を調べた。
(実施例12)
 円筒状電極を、6.5メッシュ、線径0.75mm、開孔率65.3%、平織金網を用いた以外は実施例8と同様にしてインジゴカルミンの分解速度を調べた。
(実施例13)
 円筒状電極を、36メッシュ、線径0.29mm、開孔率35%、平織金網を用いた以外は実施例8と同様にしてインジゴカルミンの分解速度を調べた。
 (比較例2)
 被処理水ミストの粒径を2000~2500μmとした以外は、上記実施例6と同様にしてインジゴカルミンの分解速度を調べた。
 上記実施例6~13及び比較例2で調べた分解速度の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2の実施例6~8及び比較例2から被処理水の粒径が小さいほど有機物が短時間で効率よく分解処理できることがわかる。
 また、上記表2の実施例6~8及び実施例9~13から円筒状電極及び線電極を複数対備えているほうが、有機物が短時間で効率よく分解処理できることがわかる。
 また、上記表2の実施例9~13から円筒状電極の開孔率は高いほうが、有機物が短時間で効率よく分解処理できることがわかる。
 (実施例14)
 上記図7の構造をした水処理装置1gを用いて以下の処理条件で初期濃度を500ppmに調整した被処理水としての5Lのエチレングリコール水溶液の処理を行った。
 〔放電条件〕
線状電極:線径0.28mmのステンレス鋼線
円筒状電極:線径0.28mm×16メッシュのステンレス鋼製の網を外径φ40×長さ300mmの円筒形にしたもの
一次印加電圧:29kV
発生パルス:100pps
パルス幅:100ns
 〔気体供給条件〕
 吸気ポンプにて0.3L/minで吸気し、マイクロバブル発生器(ナノプラネット社製M2-MS/PVC)を用いて平均気泡径約50μmにして貯水タンク内のエチレングリコール水溶液内に吹き込みを行った
 〔酸素供給条件〕
 0.3L/minで供給した。
〔被処理水循環条件〕
 エチレングリコール水溶液を0.3MPa×5L/minで噴射ノズルから噴射、循環処理した。
 (実施例15)
 酸素供給手段から酸素を供給しなかった以外は、実施例14と同様にしてエチレングリコール水溶液の処理を行った。
 (実施例16)
 気体吸引供給手段を用いた気体の貯水タンク内への供給を行わなかった以外は、実施例1と同様にしてエチレングリコール水溶液の処理を行った。
 (実施例17)
 気体吸引供給手段を用いた気体の貯水タンク内への供給を行わないとともに、酸素供給手段から酸素を供給しなかった以外は、実施例14と同様にして初期濃度を500ppmに調整した5Lのエチレングリコール水溶液の処理を行った。
 処理時間経過に伴う上記実施例14~17におけるエチレングリコール水溶液のCOD(Chemical Oxygen Demand)を測定しCOD量の維持率を以ってエチレングリコールの残存率を算出し、その結果を図30に示した。
 (実施例18)
 被処理水として初期濃度を500ppmに調整した5Lのパラクロロフェノール水溶液を用いた以外は、実施例14と同じ処理条件でパラクロロフェノール水溶液の処理を行った。
 (実施例19)
 酸素供給手段から酸素を供給しなかった以外は、実施例18と同様にしてパラクロロフェノール水溶液の処理を行った。
 (実施例20)
 気体吸引供給手段を用いた気体の貯水タンク内への供給を行わなかった以外は、実施例18と同様にしてパラクロロフェノール水溶液の処理を行った。
 (実施例21)
 気体吸引供給手段を用いた気体の貯水タンク内への供給を行わないとともに、酸素供給手段から酸素を供給しなかった以外は、実施例18と同様にしてパラクロロフェノール水溶液の処理を行った。
 処理時間経過に伴う上記実施例18~21におけるパラクロロフェノール水溶液のCODを測定し、COD量の維持率を以ってパラクロロフェノールの残存率を算出し、その結果を図31に示した。
 図30及び図31から、気体吸引供給手段を設けることによってストリーマ放電のみの処理に比べ処理対象物質の分解処理速度が上がることがわかる。そして、酸素供給手段を設けて処理室内を酸素リッチにすればより分解処理速度が上がることがわかる。
 本発明の水処理装置は、特に限定されないが、例えば、有機物を含む排水の浄化、汚染水の殺菌などに用いることができる。

Claims (19)

  1.  処理室内に、円筒状電極とこの円筒状電極の中心軸に沿って配置された線状電極とからなる電極対を少なくとも1対有するとともに、
    前記円筒状電極と線状電極との間に高電圧を印加することによって生じる放電空間内に
    被処理水を、粒径が1500μm以下の水滴からなるミスト状態にして供給する被処理水供給手段を備えていることを特徴とする水処理装置。
  2.  噴射ノズルから被処理水をミスト状に噴射する被処理水供給手段を備えている請求項1に記載の水処理装置。
  3.  噴射ノズルから噴射される被処理水の水滴のうち、ミストの最外縁に位置する水滴が、放電空間の最外縁に沿うように噴射ノズルの噴角が調整されている請求項2に記載の水処理装置。
  4.  円筒状電極が、被処理水の水滴が通過可能な大きさの多数の孔を壁面に備えている請求項1~請求項3のいずれかに記載の水処理装置。
  5.  円筒状電極の開孔率が50%以上である請求項4に記載の水処理装置。
  6.  電極対を2対以上備えている請求項1~請求項5のいずれかに記載の水処理装置。
  7.  噴射ノズルの噴射軸方向と、各円筒状電極の中心軸とが平行になっていて、噴射ノズルの噴射軸から遠い位置に配置された円筒状電極の噴射ノズル側端面が噴射軸に近い位置に配置された円筒状電極の噴射ノズル側端面に比べ、噴射ノズルから遠い位置に設けられている請求項6に記載の水処理装置。
  8.  円筒状電極と線状電極との間に高電圧を印加する高圧電源を備えている請求項1~請求項7のいずれかに記載の水処理装置。
  9.  処理室を通過した水を受ける受槽と、この受槽に貯められた水を被処理水として被処理水供給手段に送るポンプとを備える請求項1~請求項8のいずれかに記載の水処理装置。
  10.  処理室内の気体を吸引するとともに、被処理水を水滴化する前工程で被処理水中に吸引した気体を気泡状態にして供給する気体吸引供給手段を備えている請求項1~請求項9のいずれかに記載の水処理装置。
  11.  気体吸引供給手段が、気泡の直径が100μm以下のマイクロバブル状態にして気体を被処理水中に供給する請求項10に記載の水処理装置。
  12.  上記処理室内に酸素を供給する酸素供給手段を備えている請求項1~請求項11のいずれかに記載の水処理装置。
  13.  少なくとも1対の電極対を有する複数の電極ユニットを備え、これらの電極ユニットが、処理室の周壁に沿って設けられた装着位置に着脱自在であるとともに、被処理水供給手段の噴射ノズルが処理室の中央部から装着位置に装着された電極ユニットに向けて被処理水を噴射するように設けられている請求項1~請求項12のいずれかに記載の水処理装置。
  14.  電極ユニットが処理室の上下方向に複数並んでいる請求項13に記載の水処理装置。
  15.  処理室が、その周壁に電極ユニットの着脱口を備えている請求項13または請求項14に記載の水処理装置。
  16.  被処理水を四角錐状のミストにして噴射する噴射ノズルを備えている請求項13~請求項15のいずれかに記載の水処理装置。
  17.  処理室の下部に放電空間内を通り処理された処理済み水を受ける受槽を備えているとともに、受槽内に空気を供給する空気供給手段を備えている請求項13~請求項16のいずれかに記載の水処理装置。
  18.  受槽に受けられた処理済み水がオーバーフローすることにより処理済み水を処理室外に流出させる処理済み水流出経路を備えるとともに、処理済み水流出経路の入口が受槽の底近傍に設けられている請求項17に記載の水処理装置。
  19.  処理済み水流出経路が、受槽の底側を除き受槽内部を仕切る邪魔板によって形成されている請求項18に記載の水処理装置。
PCT/JP2009/065824 2008-11-12 2009-09-10 水処理装置 WO2010055729A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/128,976 US20110240539A1 (en) 2008-11-12 2009-09-10 Water treatment system
EP09825982.3A EP2363380A4 (en) 2008-11-12 2009-09-10 DEVICE FOR TREATING WATER
CN2009801451462A CN102216225B (zh) 2008-11-12 2009-09-10 水处理装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008289467A JP2009241055A (ja) 2008-03-12 2008-11-12 水処理装置
JP2008-289467 2008-11-12
JP2009045908A JP2010194527A (ja) 2009-02-27 2009-02-27 水処理装置
JP2009-045908 2009-02-27
JP2009164250A JP2011016118A (ja) 2009-07-10 2009-07-10 水処理装置
JP2009-164250 2009-07-10

Publications (1)

Publication Number Publication Date
WO2010055729A1 true WO2010055729A1 (ja) 2010-05-20

Family

ID=42169867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065824 WO2010055729A1 (ja) 2008-11-12 2009-09-10 水処理装置

Country Status (5)

Country Link
US (1) US20110240539A1 (ja)
EP (1) EP2363380A4 (ja)
CN (1) CN102216225B (ja)
TW (1) TW201018649A (ja)
WO (1) WO2010055729A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251275A (ja) * 2010-06-04 2011-12-15 Sekisui Chem Co Ltd 水処理方法及びこの水処理方法に用いる水処理装置
JP2012236130A (ja) * 2011-05-11 2012-12-06 Sekisui Chem Co Ltd 水処理装置
US20130180859A1 (en) * 2010-09-06 2013-07-18 Huazhong University Of Science And Technology Water treatment reactor
WO2015111465A1 (ja) * 2014-01-23 2015-07-30 三菱電機株式会社 水処理装置及び水処理方法
US9914655B2 (en) 2015-01-21 2018-03-13 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
US10035718B2 (en) 2015-01-20 2018-07-31 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
JP6765582B1 (ja) * 2019-12-25 2020-10-07 三菱電機株式会社 水処理装置及び水処理方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977225B2 (ja) * 2010-03-15 2012-07-18 株式会社東芝 紫外線水処理装置
US20120292262A1 (en) * 2011-04-25 2012-11-22 University Of Florida Research Foundation, Inc. Apparatuses and Methods for Purifying Liquids
EP2902370B1 (en) * 2012-09-28 2020-10-21 Daikin Industries, Ltd. Water treatment device
PL2767517T3 (pl) * 2013-02-18 2017-03-31 Scandinavian Innovation Group Oy Dozownik pitnej wody zintegrowany z odwaniającym systemem z przepływem typu grawitacyjnego do polepszania organoleptycznych właściwości wody
US9932252B2 (en) 2013-05-01 2018-04-03 Nch Corporation System and method for treating water systems with high voltage discharge and ozone
US9868653B2 (en) * 2013-05-01 2018-01-16 Nch Corporation System and method for treating water systems with high voltage discharge and ozone
CN103752192A (zh) * 2014-01-09 2014-04-30 广东华美骏达电器有限公司 臭氧水发生器
KR101731856B1 (ko) * 2014-11-06 2017-05-02 호서대학교 산학협력단 고전압 임펄스를 이용한 수처리 장치
ITUA20162129A1 (it) * 2016-03-11 2017-09-11 Giovanni Laudicina Apparato per la disinfezione e potabilizzazione di acque denominato sinteticamente "astorm".
US10975479B2 (en) * 2018-03-08 2021-04-13 Ugsi Solutions, Inc. Electrolytic cells and water treatment systems containing the same
WO2019175997A1 (ja) 2018-03-14 2019-09-19 三菱電機株式会社 水処理装置
US11938441B2 (en) * 2020-12-08 2024-03-26 City University Of Hong Kong Fog-based electrical power generator and self-powered system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267096A (ja) 1996-04-01 1997-10-14 Fuji Electric Co Ltd オゾンを用いた水処理装置
JP2000015260A (ja) * 1998-07-02 2000-01-18 Masanori Tashiro 水処理装置
JP2000279977A (ja) 1999-03-30 2000-10-10 Shinko Pantec Co Ltd 流体処理方法及び流体処理装置
JP2000288547A (ja) * 1999-04-05 2000-10-17 Taiyo Kagaku Kogyo Kk 廃水の浄化処理方法及びその装置
JP2002001340A (ja) * 2000-06-26 2002-01-08 Kobe Steel Ltd 液体処理法
JP2003062579A (ja) * 2001-08-27 2003-03-04 Kobe Steel Ltd 液体の処理方法及びその装置
JP2004268003A (ja) * 2003-03-06 2004-09-30 Masayuki Sato 水中放電プラズマ方法及び液体処理装置
JP2006187743A (ja) * 2005-01-07 2006-07-20 Toshiba Corp ラジカル処理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2545732B1 (fr) * 1983-05-10 1989-10-27 Lyonnaise Eaux Eclairage Appareil pour la dissolution d'ozone dans un fluide
DE4236723C1 (de) * 1992-10-30 1994-04-28 Wt Wassertechn Gmbh Vorrichtung zur Reinigung und Aufbereitung von Schmutzwässern mittels Elektroflotation
US6258225B1 (en) * 1999-03-23 2001-07-10 Tateki Yamaoka Device for producing ion water
WO2002070816A2 (en) * 2001-03-02 2002-09-12 Sep Technologies, Llc Electrical field apparatus and methods for fluid for decontamination and other purposes
JP4073240B2 (ja) * 2002-04-26 2008-04-09 株式会社東芝 ラジカル処理装置
JP2005137470A (ja) * 2003-11-05 2005-06-02 Matsushita Electric Ind Co Ltd 浄化装置
CN100349804C (zh) * 2006-01-27 2007-11-21 哈尔滨工业大学 高压脉冲电场中填料床去除水中难降解有机物的方法
US7919053B2 (en) * 2006-05-26 2011-04-05 Radu Burlica Pulsed gliding arc electrical discharge reactors
WO2007138773A1 (ja) * 2006-05-31 2007-12-06 Kabushiki Kaisha Yaskawa Denki 水処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267096A (ja) 1996-04-01 1997-10-14 Fuji Electric Co Ltd オゾンを用いた水処理装置
JP2000015260A (ja) * 1998-07-02 2000-01-18 Masanori Tashiro 水処理装置
JP2000279977A (ja) 1999-03-30 2000-10-10 Shinko Pantec Co Ltd 流体処理方法及び流体処理装置
JP2000288547A (ja) * 1999-04-05 2000-10-17 Taiyo Kagaku Kogyo Kk 廃水の浄化処理方法及びその装置
JP2002001340A (ja) * 2000-06-26 2002-01-08 Kobe Steel Ltd 液体処理法
JP2003062579A (ja) * 2001-08-27 2003-03-04 Kobe Steel Ltd 液体の処理方法及びその装置
JP2004268003A (ja) * 2003-03-06 2004-09-30 Masayuki Sato 水中放電プラズマ方法及び液体処理装置
JP2006187743A (ja) * 2005-01-07 2006-07-20 Toshiba Corp ラジカル処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2363380A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251275A (ja) * 2010-06-04 2011-12-15 Sekisui Chem Co Ltd 水処理方法及びこの水処理方法に用いる水処理装置
US20130180859A1 (en) * 2010-09-06 2013-07-18 Huazhong University Of Science And Technology Water treatment reactor
JP2012236130A (ja) * 2011-05-11 2012-12-06 Sekisui Chem Co Ltd 水処理装置
WO2015111465A1 (ja) * 2014-01-23 2015-07-30 三菱電機株式会社 水処理装置及び水処理方法
WO2015111240A1 (ja) * 2014-01-23 2015-07-30 三菱電機株式会社 水処理装置及び水処理方法
JP5819031B1 (ja) * 2014-01-23 2015-11-18 三菱電機株式会社 水処理装置及び水処理方法
US10093566B2 (en) 2014-01-23 2018-10-09 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
US10035718B2 (en) 2015-01-20 2018-07-31 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
US9914655B2 (en) 2015-01-21 2018-03-13 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
JP6765582B1 (ja) * 2019-12-25 2020-10-07 三菱電機株式会社 水処理装置及び水処理方法
WO2021130882A1 (ja) * 2019-12-25 2021-07-01 三菱電機株式会社 水処理装置及び水処理方法

Also Published As

Publication number Publication date
CN102216225B (zh) 2013-07-17
EP2363380A4 (en) 2014-07-09
EP2363380A1 (en) 2011-09-07
US20110240539A1 (en) 2011-10-06
TW201018649A (en) 2010-05-16
CN102216225A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2010055729A1 (ja) 水処理装置
US7704401B2 (en) Liquid treatment apparatus and liquid treatment method
KR101986293B1 (ko) 모듈형미세분사부가 구비된 복합 탈취 장치
WO2008091036A1 (en) Plasma and bio filter hybrid gas cleaning system
KR100799663B1 (ko) 오존을 이용한 살균수 제조장치
US20150307371A1 (en) Electric arc for aqueous fluid treatment
JP2009241055A (ja) 水処理装置
CN101780999B (zh) 放电雾化和催化协同水处理法
JP2012236130A (ja) 水処理装置
JP4934119B2 (ja) 水処理装置
US9914655B2 (en) Water treatment apparatus and water treatment method
JP5534846B2 (ja) 水処理装置
JP2011067790A (ja) 水処理装置
WO2019175998A1 (ja) 水処理装置及び水処理方法
KR102584115B1 (ko) 오염 가스 처리 장치
JP2011072905A (ja) 水処理装置
JP2011016118A (ja) 水処理装置
JP2009034583A (ja) 流体処理装置及び流体処理方法
JP4760567B2 (ja) 放電装置、空気浄化装置、及び液処理装置
JP2014117639A (ja) 被処理水中のジオキサン分解処理方法
CN210332244U (zh) 废气处理装置
KR101804979B1 (ko) 수산화라디칼 수 분사 장치
JP2010207718A (ja) 水処理装置
JP2011031216A (ja) 水処理装置
JP2012236131A (ja) 水処理方法及び水処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145146.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2153/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13128976

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009825982

Country of ref document: EP