WO2010055636A1 - センサ付車輪用軸受 - Google Patents

センサ付車輪用軸受 Download PDF

Info

Publication number
WO2010055636A1
WO2010055636A1 PCT/JP2009/005971 JP2009005971W WO2010055636A1 WO 2010055636 A1 WO2010055636 A1 WO 2010055636A1 JP 2009005971 W JP2009005971 W JP 2009005971W WO 2010055636 A1 WO2010055636 A1 WO 2010055636A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
wheel bearing
generating member
rolling element
strain generating
Prior art date
Application number
PCT/JP2009/005971
Other languages
English (en)
French (fr)
Inventor
壹岐健太郎
乗松孝幸
西川健太郎
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008293050A external-priority patent/JP5300429B2/ja
Priority claimed from JP2008302297A external-priority patent/JP2010127376A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP09825890.8A priority Critical patent/EP2360384A4/en
Priority to CN200980145679.0A priority patent/CN102216635B/zh
Publication of WO2010055636A1 publication Critical patent/WO2010055636A1/ja
Priority to US13/067,134 priority patent/US8578791B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0094Hubs one or more of the bearing races are formed by the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • This invention relates to a wheel bearing with a sensor incorporating a load sensor for detecting a load applied to a bearing portion of the wheel.
  • a sensor unit including a strain generating member and a strain sensor attached to the strain generating member is attached to a fixed ring of a bearing, and the strain generating member is attached to the fixed wheel.
  • a sensor-equipped wheel bearing has been proposed which has at least two contact fixing portions, and has at least one notch portion between adjacent contact fixing portions, and the strain sensor is disposed in the notch portion. (For example, Patent Document 1).
  • the fixed wheel when a load is applied to the rotating wheel as the vehicle travels, the fixed wheel is deformed via the rolling elements, and this deformation causes distortion of the sensor unit.
  • the strain sensor provided in the sensor unit detects the strain of the sensor unit. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the strain sensor.
  • An object of the present invention is to provide a wheel bearing with a sensor capable of accurately detecting a load acting on a wheel bearing or a tire contact surface without being affected by a rolling element.
  • the sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing for supporting a wheel rotatably with respect to a vehicle body, wherein the fixed member is an outer member and an inner member.
  • One or more sensor units comprising a strain generating member having two or more contact fixing portions fixed in contact with the side member, and a sensor attached to the strain generating member and detecting the strain of the strain generating member.
  • the strain generating member is disposed so as to deviate from a line segment extending in a direction passing through the center of the rolling element and forming a rolling element contact angle.
  • the sensor unit is provided so that the entirety of the sensor unit deviates from a line segment extending in a direction that forms the rolling element contact angle.
  • the fixed side member is, for example, the outer member.
  • the stationary member is deformed by the load of the rolling element that passes through.
  • the deformation due to the rolling element load is large on a line segment that extends in the direction that forms the contact angle of the rolling element through the center of the rolling element. That is, it is easily affected by the rolling element load.
  • the sensor unit is provided on the fixed-side member so that the strain generating member is positioned away from the line extending in the direction passing through the center of the rolling element and forming the rolling element contact angle.
  • the distortion generating member of the unit is less affected by the rolling element load. Therefore, the deformation of the fixed side member due to the original load can be accurately detected by the sensor unit, and the load acting between the tire of the wheel and the road surface can be accurately detected from the output signal.
  • the strain generating member of the sensor unit may be arranged at an axially intermediate position of the double row rolling elements. As described above, when the sensor unit is provided so that the strain generating member is positioned at the intermediate position in the axial direction of the rolling elements in the double row, the strain generating member is disposed at the position farthest from the rolling elements in any row. Therefore, the influence of the rolling element load can be further eliminated, and the load can be accurately detected accordingly.
  • the sensor unit may be disposed on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that is in the vertical position and the horizontal position with respect to the tire ground contact surface.
  • loads in a plurality of directions can be estimated. That is, the vertical load Fz and the axial load Fy can be estimated from the output signals of the two sensor units arranged on the upper surface and the lower surface on the outer diameter surface of the fixed side member, and the right side on the outer diameter surface of the fixed side member.
  • the load Fx due to the driving force or braking force can be estimated from the output signals of the two sensor units arranged on the surface portion and the left surface portion.
  • the strain generating member of the sensor unit may be made of a thin plate material having a belt-like outline and a cutout portion on a side portion.
  • the distortion of the fixed side member is easily transmitted to the distortion generating member, the distortion is detected with high sensitivity by the sensor, the hysteresis generated in the output signal is reduced, and the load can be estimated with high accuracy.
  • the shape of the strain generating member can be simplified, and it can be made compact and inexpensive.
  • the strain generating member of the sensor unit is not plastically deformed even in a state where the assumed maximum force is applied as an external force acting on the stationary member or an acting force acting between the tire and the road surface. It is good as a thing. Even if an excessive load is applied to the bearing, the assumed maximum force is the maximum force within a range in which the normal function as the bearing excluding the sensor system is restored when the load is removed. If plastic deformation occurs before the assumed maximum force is applied, the deformation of the fixed side member is not accurately transmitted to the sensor unit and affects the strain measurement. It is desirable that plastic deformation does not occur even in a state where is applied.
  • correction means for correcting the output signal of the sensor of the sensor unit, and estimation means for estimating a load acting on the tire contact surface or a load acting on the wheel bearing from the output signal corrected by the correction means.
  • the fixed side member is provided with rolling element detection means for detecting the position of the rolling element, and as one of the correction means, the output signal of the sensor of the sensor unit is corrected by the detection output of the rolling element detection means. Means may be provided. As described above, by devising the installation position of the sensor unit, the output signal of the sensor unit can reduce the influence of the rolling elements that pass through, but the influence still remains.
  • the output signal of the sensor unit in this case has a waveform whose amplitude changes with the arrangement pitch of the rolling elements as a period. Therefore, for example, a rolling element detection unit that detects the rotational position of the rolling element is provided separately, and the correction unit increases or decreases the amplitude of the output signal of the sensor unit according to the rolling element position detected by the rolling element detection unit. If it is assumed, the influence of the position of the rolling element can be eliminated.
  • an L-shaped strain generating member having both sides attached to the fixed side race and the flange of the fixed side race, and a sensor attached to the strain generating member to detect the strain of the strain generating member
  • Axial load direction discriminating means for discriminating the direction of the axial load acting in the axial direction of the wheel bearing or the tire may be provided.
  • the axial load is estimated from the output signal of the sensor unit, the direction may not be determined.
  • an axial load direction discriminating means for discriminating the direction of the axial load is provided separately from the sensor unit, the axial load can be accurately estimated.
  • the L-shaped strain generating member is used as the axial load direction determining means, the load direction can be determined effectively.
  • the strain generating member of the sensor unit may be arranged at a position on the inboard side further than the inboard side rolling element of the double row rolling elements.
  • three or more sensor units are provided, and radial loads acting in the radial direction of the wheel bearing or tire and shafts acting in the axial direction of the wheel bearing or tire from the output signals of the sensors of these sensor units.
  • An estimation means for estimating the directional load may be provided.
  • load estimation accuracy improves by providing three or more sensor units.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. It is sectional drawing of the bearing for wheels with a sensor concerning 2nd Embodiment of this invention. It is a figure showing combining the sectional view of the bearing for wheels with a sensor concerning a 3rd embodiment of this invention, and the block diagram of the conceptual composition of the detection system.
  • (A) is sectional drawing of the rolling element detection means in the wheel bearing with a sensor
  • (B) is the same front view. It is a wave form diagram of the output signal of the sensor unit in the bearing for wheels with the sensor.
  • (A)-(C) are explanatory drawings of the influence of the rolling element position on the output signal of the sensor unit. It is a figure which combines and shows the sectional view of the bearing for wheels with a sensor concerning 4th Embodiment of this invention, and the block diagram of the conceptual structure of the detection system. (A)-(C) are explanatory drawings of the influence of rolling element revolution with respect to the output signal of a sensor unit. It is a figure showing combining the sectional view of the bearing for wheels with a sensor concerning a 5th embodiment of this invention, and the block diagram of the conceptual composition of the detection system.
  • FIG. 1 It is a figure which combines and shows the sectional view of the wheel bearing with a sensor concerning 6th Embodiment of this invention, and the block diagram of the conceptual structure of the detection system. It is a partially expanded sectional view of FIG. It is a figure which combines and shows the sectional view of the wheel bearing with a sensor concerning 7th Embodiment of this invention, and the block diagram of the conceptual structure of the detection system. It is a front view of the outward member of the wheel bearing with a sensor. It is an enlarged plan view of a sensor unit in the wheel bearing with sensor. It is the XVIII-XVIII sectional view taken on the line in FIG.
  • FIG. 10 It is a figure showing combining the sectional view of the bearing for wheels with a sensor concerning a 10th embodiment of this invention, and the block diagram of the conceptual composition of the detection system. It is a figure which combines and shows the sectional view of the bearing for wheels with a sensor concerning 11th Embodiment of this invention, and the block diagram of the conceptual structure of the detection system. It is a partially expanded sectional view of FIG. It is a front view of the outward member of the wheel bearing with a sensor.
  • This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
  • the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3.
  • the inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2.
  • This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row.
  • the rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.
  • the outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle (not shown) in the suspension device of the vehicle body on the outer periphery, and the whole is an integral part.
  • the flange 1a is provided with screw holes 14 for mounting the vehicle body at a plurality of locations in the circumferential direction, and knuckle bolts (not shown) inserted into the bolt insertion holes of the knuckle from the inboard side are screwed into the screw holes 14.
  • the vehicle body mounting flange 1a is attached to the knuckle.
  • the inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become.
  • the hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows.
  • An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12.
  • a through hole 11 is provided at the center of the hub wheel 9.
  • the hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the vehicle body mounting flange 1a of the outer member 1 is a projecting piece 1aa in which a circumferential portion provided with each screw hole 14 protrudes to the outer diameter side from the other portion.
  • two sets of sensor unit pairs 19 each including two sensor units 20 are provided on the outer diameter surface of the outer member 1 that is a fixed member.
  • the two sensor units 20 constituting the sensor unit pair 19 are arranged at a position that forms a phase difference of 180 degrees in the circumferential direction of the outer diameter surface of the outer member 1.
  • the tire contact In addition to a pair of sensor units 19 composed of two sensor units 20 arranged on the upper surface and the lower surface of the outer diameter surface of the outer member 1 that is positioned vertically with respect to the tire ground contact surface, the tire contact Another pair of sensor units 19 including two sensor units 20 disposed on the right surface portion and the left surface portion of the outer diameter surface of the outer member 1 that is the front-rear position relative to the ground is provided.
  • the two sensor units 20 constituting the sensor unit pair 19 By providing the two sensor units 20 constituting the sensor unit pair 19 at two locations on the outer diameter surface of the outer member 1 that are positioned above and below the tire ground contact surface, the upper surface portion and the lower surface portion.
  • the acting vertical load Fz is detected.
  • the two sensor units 20 constituting the sensor unit pair 19 are provided at two locations on the right surface portion and the left surface portion of the outer diameter surface of the outer member 1 which are front and rear positions with respect to the tire ground contact surface, thereby driving force.
  • a load Fx serving as a braking force is detected.
  • one sensor unit 20 is arranged at the center between two adjacent projecting pieces 1aa on the upper surface portion of the outer diameter surface of the outer member 1.
  • Another sensor unit 20 is arranged at the center between the two adjacent projecting pieces 1aa on the lower surface portion of the outer diameter surface of the outer member 1.
  • these sensor units 20 are attached to the strain generating member 21 and the strain generating member 21 to reduce the strain of the strain generating member 21. It consists of the strain sensor 22 to detect.
  • the strain generating member 21 is made of an elastically deformable metal such as a steel material and is made of a thin plate material having a thickness of 2 mm or less.
  • the corner of the notch 21b has an arcuate cross section.
  • the strain generating member 21 has two contact fixing portions 21 a that are fixed to the outer diameter surface of the outer member 1 at both ends. Note that, depending on the shape of the strain generating member 21, two or more contact fixing portions 21a may be provided.
  • the strain sensor 22 is affixed to a location where the strain increases with respect to the load in each direction on the strain generating member 21.
  • the location the central portion sandwiched between the notch portions 21b on both sides is selected on the outer surface side of the strain generating member 21, and the strain sensor 22 detects the strain in the circumferential direction around the notch portion 21b.
  • the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because when the plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the sensor unit 20 and affects the measurement of strain.
  • the assumed maximum force is the maximum force within a range in which the normal function as the bearing excluding the sensor system is restored when the load is removed.
  • the load acting on the bearing is the maximum force within a range where the normal function of the bearing excluding the sensor system is not impaired.
  • the sensor unit 20 is positioned so that the strain generating member 21 is located away from a line segment L indicated by a one-dot chain line extending in a direction passing through the center of the rolling element 5 and forming a rolling element contact angle. It is provided on the outer diameter surface of the outer member 1. In this case, the entire sensor unit 20 is provided so as to be located away from the line segment L.
  • the sensor unit 20 is provided on the outer diameter surface of the outer member 1 so that the distortion generating member 21 is positioned slightly on the outboard side from the intermediate position in the axial direction of the double row rolling elements 5.
  • the sensor unit 20 includes two contact fixing portions 21a of the strain generating member 21 at the same position in the axial direction of the outer member 1, and the two contact fixing portions 21a are circumferential with respect to each other.
  • the contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 23, respectively.
  • Each bolt 23 is inserted into a bolt insertion hole 24 provided in the contact fixing portion 21a in the radial direction and screwed into a screw hole 25 provided in the outer peripheral portion of the outer member 1.
  • Part 1b is formed.
  • grooves 1c are formed at two intermediate portions on the outer diameter surface of the outer member 1 where the two contact fixing portions 21a of the strain generating member 21 are fixed.
  • the strain generating member 21 is formed on the outer diameter surface of the outer member 1. Is fixed with the bolt 23, the central portion having the cutout portion 21b in the thin plate-shaped strain generating member 21 is separated from the outer diameter surface of the outer member 1, and distortion deformation around the cutout portion 21b is easy. It becomes.
  • strain sensors 22 can be used.
  • the strain sensor 22 can be composed of a metal foil strain gauge.
  • the distortion generating member 21 is usually fixed by adhesion.
  • the strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.
  • the strain sensor 22 of the sensor unit 20 is connected to the estimation means 30 as shown in FIG.
  • the estimation means 30 acts on the acting force between the tire of the wheel and the road surface (the radial load acting on the wheel bearing or the radial direction of the tire and the axial direction of the wheel bearing or the tire based on the output signal of the strain sensor 22.
  • Axial load is estimated and includes a signal processing circuit, a correction circuit, and the like.
  • the estimation means 30 has relationship setting means (not shown) in which the relationship between the acting force between the tire of the wheel and the road surface and the output signal of the strain sensor 22 is set by an arithmetic expression or a table or the like.
  • the action force is output from the output signal 22 using the relationship setting means.
  • the setting contents of the relationship setting means are obtained by a test or simulation in advance.
  • the load When a load acts between the tire of the wheel and the road surface, the load is also applied to the outer member 1 which is a stationary member of the wheel bearing, and deformation occurs. Since the two contact fixing portions 21a of the strain generating member 21 which is a constituent member of the sensor unit 20 are fixed in contact with the outer member 1, the strain of the outer member 1 is transmitted to the strain generating member 21 in an enlarged manner, The strain is detected by the strain sensor 22, and the load can be estimated from the output signal.
  • the contact fixing portion 21 a of the strain generating member 21 that is a constituent member of the sensor unit 20 is fixed to the outer member 1 that is a fixed member with the bolts 23, between the outer member 1 and the sensor unit 20.
  • the output signal of the strain sensor 22 is distorted.
  • the outer member 1 is deformed by the load of the rolling element 5 that passes therethrough.
  • the deformation due to the rolling element load is large on a line segment L (FIG. 1) that extends in the direction that forms the contact angle of the rolling element through the center of the rolling element 5. That is, it is easily affected by the rolling element load.
  • the outer diameter of the outer member 1 is such that the strain generating member 21 of the sensor unit 20 is positioned away from the line segment L that extends in the direction of forming the rolling element contact angle through the center of the rolling element 5. Arranged on the surface. For this reason, the distortion generating member 21 of the sensor unit 20 is less affected by the rolling element load. Therefore, the deformation of the outer member 1 due to the original load can be accurately detected by the sensor unit 20, and the load acting between the wheel tire and the road surface can be accurately estimated by the estimation means 30 from the output signal.
  • the case where the acting force between the wheel tire and the road surface is detected is shown.
  • the force acting on the wheel bearing for example, the preload amount
  • the detected load obtained from the sensor-equipped wheel bearing for vehicle control of the automobile, it is possible to contribute to stable running of the automobile.
  • a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.
  • the strain generating member 21 of the sensor unit 20 is made of a thin plate material having a flat shape with a constant width over the entire length and having a notch portion 21b on the side portion. Strain is easily transmitted to the strain generating member 21 in an enlarged manner, and the strain is detected by the strain sensor 22 with high sensitivity. Hysteresis generated in the output signal is also reduced, so that the load can be estimated with high accuracy. Further, the shape of the strain generating member 21 can be simplified, and it can be made compact and low-cost and excellent in mass productivity.
  • FIG. 5 shows a second embodiment of the present invention.
  • the strain generating member 21 of the sensor unit 20 is disposed so as to be positioned at an intermediate position in the axial direction of the double row rolling elements 5.
  • Other configurations are the same as those of the first embodiment shown in FIGS.
  • the strain generating member 21 is located farthest from the rolling elements 5 in any row. Therefore, the influence of the rolling element load can be further eliminated, and the load estimation accuracy is improved accordingly.
  • FIGS. 6 to 9 (A) to (C) show a third embodiment of the present invention.
  • correction means 31 for correcting the output signal of the strain sensor 22 of the sensor unit 20 is provided before the estimation means 30.
  • a rolling element position detection unit 40 that detects the position of the rolling elements 5 in the outboard side row is provided on the inner periphery of the outer member 1.
  • the rolling element position detecting means 40 has a plurality of rolling element sensors 42 as shown in FIG. 7B described later, and the correction means 31 is connected to the strain sensor 22 of the sensor unit 20 and the rolling element sensors 42. Is done.
  • Other configurations are the same as those of the first embodiment shown in FIGS.
  • the rolling element position detecting means 40 is provided on the inner periphery of the outer member 1, and as shown in the sectional view and the front view in FIGS.
  • the sensor support member 41 includes a cylindrical portion 41a that fits to the inner diameter surface of the outer member 1, and a standing plate portion 41b that extends from one end of the cylindrical portion 41a toward the inner diameter side.
  • the circumferential length of the standing plate portion 41 b is a length corresponding to the arrangement pitch P of the rolling elements 5. As shown in FIG.
  • the sensor support member 41 has an upright plate portion 41 b positioned on the outboard side with respect to the rolling surface 4 in the outboard side row, and is axially aligned with the rolling elements 5 in the outboard side row. Is attached to the inner diameter surface of the outer member 1 so as to face the outer surface.
  • the plurality of rolling element sensors 42 are mounted on the one surface facing the inboard side of the upright plate portion 41b of the sensor support member 41 so as to be equally distributed in the circumferential direction.
  • a magnetic sensor such as a Hall sensor, MR sensor, or MI sensor is used, and a magnetic change accompanying the rolling element 5 passing through the front surface thereof is detected.
  • the correcting means 31 is a means for correcting the output signal of the strain sensor 22 of the sensor unit 20 based on the rolling element position detected by the rolling element position detecting means 40, that is, the output signal of the rolling element sensor 42.
  • the output signal of the strain sensor 22 of the sensor unit 20 can reduce the influence of the rolling element 5 that passes through, but the influence still remains. That is, during the rotation of the wheel bearing, a periodic change as shown in the waveform diagram of FIG. 8 occurs in the amplitude of the output signal of the strain sensor 22 of the sensor unit 20. Even when the bearing is stopped, the output signal of the strain sensor 22 is affected by the position of the rolling element 5.
  • the amplitude of the output signal of the strain sensor 22 becomes the maximum value, and decreases as the rolling element 5 moves away from the position (or when the rolling element 5 is located away from the position).
  • the rolling elements 5 sequentially pass through the vicinity of the installation portion of the sensor unit 20 at a predetermined arrangement pitch P. Therefore, the output signal of the strain sensor 22 has an amplitude whose period is the arrangement pitch P of the rolling elements 5. As shown by a solid line in FIG. 9C, the waveform changes periodically.
  • the correction means 31 corrects the output signal of the strain sensor 22 as follows according to the rolling element position detected by the rolling element position detection means 40. That is, for example, when the rolling element 5 is at a position closest to the strain sensor 22, the amplitude (the maximum value at this time) of the output signal of the strain sensor 22 is corrected to decrease by a predetermined maximum value. When the rolling element 5 is located ⁇ P / 2 away from the position closest to the strain sensor 22, the amplitude (minimum value at this time) of the output signal of the strain sensor 22 is corrected to be increased by a predetermined maximum amount.
  • the amplitude of the output signal of the strain sensor 22 is corrected to increase or decrease by linear interpolation or the like according to the position. Thereby, the amplitude of the output signal of the strain sensor 22 is corrected as indicated by a chain line in FIG. 9C, and the influence of the rolling element 5 is eliminated.
  • the estimating means 30 can accurately estimate the loads acting on the wheel bearings and the tires of the wheels and the road surface (vertical load Fz, load Fx serving as driving force and braking force, and axial load Fy).
  • FIG. 10 and FIGS. 11A to 11C show a fourth embodiment of the present invention.
  • an averaging process is performed in which the output signal of the strain sensor 22 is averaged as a correcting means before the estimating means 30.
  • Processing means 33 is provided.
  • a rotation detector 43 that detects the rotation of the inner member 2 is provided at an intermediate position in the axial direction in the bearing.
  • the rotation detector 43 is a radial type and includes a pulsar ring 44 and a magnetic sensor 45.
  • the averaging processing means 33 is connected to the strain sensor 22 of the sensor unit 20 and the magnetic sensor 45 of the rotation detector 43.
  • Other configurations are the same as those of the first embodiment shown in FIGS.
  • the rotation detector 43 includes a pulsar ring 44 that is a sensor target fitted to the outer periphery of the inner member 2, and a magnetic sensor 45 that is provided on the inner periphery of the outer member 1 and faces the pulsar ring 44 in the radial direction. It consists of. Even if the pulsar ring 44 is a multipolar magnet in which the magnetic poles N and S are arranged in the circumferential direction, the pulsar ring 44 has a periodic magnetic change in the circumferential direction, such as a magnetic ring formed by arranging gear-shaped irregularities in the circumferential direction. It may be a thing.
  • the magnetic sensor 45 detects a magnetic change of the pulsar ring 44 that rotates together with the inner member 2, and a Hall sensor, MR sensor, MI sensor, or the like is used.
  • the averaging processing means 33 averages the amplitude of the output signal of the strain sensor 22 during the period in which the rolling element 5 revolves the arrangement pitch P as shown by the chain line in FIG. Is solved.
  • the averaging process by the averaging processing unit 33 is performed as follows, for example. First, the rotational speed of the inner member 2 is calculated from the output signal of the magnetic sensor 45 of the rotation detector 43, and the required time T for the rolling elements 5 to revolve in the array pitch P is calculated from the calculated rotational speed. . Within this required time T, an arithmetic average of amplitude values of the output signal of the strain sensor 22 sampled at a predetermined period t is obtained. In this case, the sampling period t is sufficiently shorter than the required time T.
  • the output signal of the strain sensor 22 remains affected by the passage of the rolling element 5 as it is, but in this case, since the averaging processing means 33 averages the output signal, the output of the rolling element passes. The effect is eliminated.
  • the estimating means 30 can accurately estimate the loads acting on the wheel bearings and the tires of the wheels and the road surface (vertical load Fz, load Fx serving as driving force and braking force, and axial load Fy).
  • FIG. 12 shows a fifth embodiment of the present invention.
  • the strain sensor of the sensor unit 20 is arranged in front of the estimating means 30 according to the temperature of the wheel bearing or its surrounding temperature as the correcting means.
  • a temperature correction means 34 for correcting the 22 output signals is provided.
  • a temperature sensor 46 is provided in the vicinity of the installation portion of each sensor unit 20 on the outer diameter surface of the outer member 1 or on the outer surface side of the strain generating member 21 in the sensor unit 20.
  • a thermistor or a platinum resistance element can be used as the temperature sensor 46.
  • the strain sensor 22 and the temperature sensor 46 of the sensor unit 20 are connected to the temperature correction unit 34.
  • Other configurations are the same as those of the first embodiment shown in FIGS.
  • the temperature correction means 34 corrects the output signal of the corresponding strain sensor 22 of the sensor unit 20 based on the output signal of the temperature sensor 46. Therefore, the output signal of the strain sensor 22 corrected by the temperature correction unit 34 is input to the estimation unit 30.
  • the temperature correction means 34 outputs the output of the strain sensor 22 according to the output signal of the temperature sensor 46 provided on the outer diameter surface of the outer member 1 or the strain generating member 21 of the sensor unit 20. Since the signal is corrected, the output signal of the strain sensor 22 is corrected in accordance with the measured values of the wheel bearing and its surrounding temperature, and the load can be estimated with high accuracy.
  • a direction discrimination sensor 47 is provided which is a means for discriminating the direction of the axial load Fy estimated by the estimation means 30.
  • This direction determination sensor 47 is a sensor unit 55 having a strain generating member 56 and a sensor 57 attached to the strain generating member 56 and detecting the strain of the strain generating member 56 fixed to the outer member 1. .
  • the strain generating member 56 of the direction determination sensor 47 is formed by bending a plate material made of a metal material such as a steel material into an L shape, and the screw hole 14 in the flange 1 a of the outer member 1. , A radial piece 56a that faces the side surface facing the outboard side, and an axial piece 56b that faces the outer diameter surface of the outer member 1.
  • the sensor 57 is fixed to one surface of the radial piece 56a.
  • the strain generating member 56 is fastened to the outer peripheral portion of the outer member 1 with bolts 59 and 60.
  • the installation position of the direction determination sensor 47 has a large deformation amount with respect to the axial load Fy, but is a portion where the deformation amount is small with respect to the radial load such as the vertical load Fz and the load Fx due to the driving force / braking force. is there. If installed at this location, the force acting on the direction discrimination sensor 47 is switched between the compression force and the pulling force. For example, if the magnitude of the output signal is determined with respect to a predetermined threshold value, the direction of the axial load Fy is changed. Can be determined.
  • the output signal of the direction determination sensor 47 is input to the estimation means 30, and the estimation means 30 determines the direction of the axial load Fy from the input signal.
  • a seventh embodiment of the present invention will be described with reference to FIGS.
  • the same or corresponding parts as those in the first embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the seventh embodiment is the first embodiment in that the strain generating member 21 of the sensor unit 20 is arranged at a position closer to the inboard side than the inboard side rolling elements 5 of the double row rolling elements 5. Different from form. In this embodiment, three or more sensor units 20 are provided.
  • FIG. 16 shows a front view of the outer member 1 of the wheel bearing as viewed from the outboard side.
  • FIG. 15 is a sectional view taken along line XV-XV in FIG. 15 and FIG. 16 correspond to FIG. 1 and FIG. 2 showing the first embodiment, and the same or corresponding parts are denoted by the same reference numerals.
  • 15 and 16 show the hub bolt 16 that is not shown in the first embodiment shown in FIGS. 1 and 2.
  • FIGS. 17 and 18 are both FIGS. 4, the same or corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the strain generating member 21 of the sensor unit 20 deviates from a line segment L indicated by a one-dot chain line extending in a direction passing through the center of the rolling element 5 and forming a rolling element contact angle.
  • the in-board side rolling elements 5 are arranged at a position closer to the inboard side.
  • the sensor unit 20 is disposed on the outer diameter surface of the outer member 1 on the inboard side of the vehicle body mounting flange 1a.
  • the sensor unit 20 has two contact fixing portions 21a of the strain generating member 21 at the same position in the axial direction of the outer member 1 and at positions away from each other in the circumferential direction. These contact fixing portions 21a are fixed to the outer diameter surface of the outer member 1 by bolts 23 via spacers 28, respectively. Thereby, the strain sensor 22 of the sensor unit 20 detects the strain in the outer member circumferential direction around the notch 21 b of the strain generating member 21.
  • Each of the bolts 23 is inserted into a bolt insertion hole 26 of the spacer 28 from a bolt insertion hole 24 provided in the contact fixing portion 21a in a radial direction, and is provided in the outer peripheral portion of the outer member 1. Screwed on.
  • the central portion having the notch portion 21b in the strain generating member 21 that is a thin plate shape is the outer member 1. It becomes a state away from the outer diameter surface of this, and distortion deformation around the notch 21b becomes easy.
  • the strain generating member 21 of the sensor unit 20 is double-rowed at a position deviating from the line segment L extending in the direction passing through the center of the rolling element 5 and forming the rolling element contact angle. Since the rolling element 5 is disposed at a position closer to the inboard side than the rolling element 5 on the inboard side, the distortion generating member 21 of the sensor unit 20 is less affected by the rolling element load. Therefore, the deformation of the outer member 1 due to the original load can be accurately detected by the sensor unit 20, and the load acting between the wheel tire and the road surface can be accurately estimated by the estimation means 30 from the output signal. Moreover, load estimation accuracy improves by providing three or more sensor units.
  • FIGS. 15 to 18 show an eighth embodiment of the present invention.
  • correction means 31 for correcting the output signal of the strain sensor 22 of the sensor unit 20 is provided before the estimation means 30.
  • a rolling element detection means 40 for detecting the position of the rolling elements 5 in the inboard side row is provided on the inner periphery of the outer member 1.
  • the rolling element detection unit 40 includes a plurality of rolling element sensors 42, and the correction unit 31 is connected to the strain sensor 22 of the sensor unit 20 and the rolling element sensor 42.
  • Other configurations are the same as those of the seventh embodiment shown in FIGS.
  • FIGS. 9A to 9C correspond to FIGS. 9A to 9C described in the third embodiment, and the description of FIGS. 9A to 9C can be applied as they are. Detailed description thereof will be omitted.
  • FIG. 21 and FIGS. 22A to 22C show a ninth embodiment of the present invention.
  • averaging is performed to average the output signal of the strain sensor 22 as a correction means before the estimation means 30.
  • Processing means 33 is provided.
  • the averaging processing means 33 is the same as the averaging processing means 33 of the previous fourth embodiment, and the description in the fourth embodiment can be applied as it is, so a detailed description is omitted.
  • Other configurations are the same as those of the seventh embodiment shown in FIGS. 22A to 22C correspond to FIGS. 9A to 9C, and the description of FIGS. 9A to 9C can be applied as it is.
  • FIG. 23 shows a tenth embodiment of the present invention.
  • the correction means is provided in front of the estimation means 30 according to the temperature of the wheel bearing or its surrounding temperature.
  • the temperature correction means 34 for correcting the output signal of the strain sensor 22 of the sensor unit 20 is provided.
  • the temperature correction means 34 is the same as the temperature correction means 34 of the previous fifth embodiment, and the description in the fifth embodiment can be applied as it is.
  • Other configurations are the same as those of the seventh embodiment shown in FIGS.
  • a direction discrimination sensor 47 is provided as a means for discriminating the direction of the axial load Fy estimated by the estimation means 30.
  • This direction discrimination sensor 47 is also the same as the direction discrimination sensor 47 of the previous sixth embodiment, and the description in the sixth embodiment can be applied as it is, and thus detailed description thereof is omitted.
  • FIG. 25 corresponds to FIG. 13 described in the previous sixth embodiment, and the description in FIG. 13 can be applied to FIG. 25 as it is, and detailed description thereof is omitted.
  • the strain generating member 56 is fastened to the outer peripheral portion of the outer member 1 by bolts 59 and 60 via spacers 58A and 58B. That is, the bolt 59 inserted from the bolt insertion hole 61 formed in the radial piece 56a into the bolt insertion hole 62 of the spacer 58A is provided in the vicinity of the vehicle body mounting screw hole 14 in the flange 1a of the outer member 1.
  • the screw hole 63 is screwed.
  • the bolt 60 inserted through the bolt insertion hole 65 of another spacer 58B from the bolt insertion hole 64 formed in the axial piece 56b is screwed into the screw hole 66 provided on the outer diameter surface of the outer member 1. Let Thereby, the distortion generating member 56 is fastened to the outer member 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 転動体の影響を受けることなく、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できるセンサ付車輪用軸受を提供する。車輪用軸受は、外方部材(1)と内方部材(2)の対向し合う複列の転走面間に転動体(5)を介在させたものである。外方部材(1)と内方部材(2)のうちの固定側部材に1つ以上のセンサユニット(20)を備える。センサユニット(20)は、固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材と、その歪みを検出するセンサを有する。センサユニット(20)の歪み発生部材が前記転動体(5)の中心を通り転動体接触角をなす方向に延びる線分から外れて位置するように配置する。

Description

センサ付車輪用軸受 関連出願
 本出願は、2008年11月17日出願の特願2008-293050、および2008年11月27日出願の特願2008-302297の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。
 自動車の各車輪にかかる荷重を検出する技術として、歪み発生部材およびこの歪み発生部材に取付けた歪みセンサからなるセンサユニットを軸受の固定輪に取付け、前記歪み発生部材は、前記固定輪に対して少なくとも2箇所の接触固定部を有し、隣り合う接触固定部の間で少なくとも1箇所に切欠き部を有し、この切欠き部に前記歪みセンサを配置したセンサ付車輪用軸受が提案されている(例えば特許文献1)。
 このセンサ付車輪用軸受によると、車両走行に伴い回転輪に荷重が加わったとき、転動体を介して固定輪が変形するので、その変形がセンサユニットに歪みをもたらす。センサユニットに設けられた歪みセンサは、センサユニットの歪みを検出する。歪みと荷重の関係を予め実験やシミュレーションで求めておけば、歪みセンサの出力から車輪にかかる荷重等を検出することができる。
特開2007-057299号公報
 しかし、上記センサ付車輪用軸受では、転動体がセンサユニットの設置部の近傍を通過する毎に、固定輪が転動体荷重で変形してセンサユニットの出力信号の振幅が大きくなる。すなわち、センサユニットの出力信号が転動体の影響を受けた周期的な波形となり、荷重を精度良く検出できない。
 この発明の目的は、転動体の影響を受けることなく、車輪用軸受やタイヤ接地面に作用する荷重を正確に検出できるセンサ付車輪用軸受を提供することである。
 この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサからなる1つ以上のセンサユニットを備え、前記歪み発生部材が前記転動体の中心を通り転動体接触角をなす方向に延びる線分から外れて位置するように配置されている。すなわち、前記センサユニットは、その全体が前記転動体接触角をなす方向に延びる線分から外れて位置するように設けられる。前記固定側部材は、例えば前記外方部材である。センサユニットは複数としても良い。
 固定側部材は通過する転動体の荷重で変形する。とくに、転動体の中心を通り転動体接触角をなす方向に延びる線分上では、転動体荷重による変形が大きい。すなわち、転動体荷重の影響を受け易い。このセンサ付車輪用軸受では、センサユニットを、その歪み発生部材が転動体の中心を通り転動体接触角をなす方向に延びる線分から外れて位置するように固定側部材に設けているので、センサユニットの歪み発生部材はそれだけ転動体荷重の影響を受け難くなる。したがって、本来の荷重による固定側部材の変形をセンサユニットで精度良く検出でき、その出力信号から車輪のタイヤと路面間に作用する荷重を正確に検出できる。
 この発明において、前記センサユニットの歪み発生部材が前記複列の転動体の軸方向中間位置に配置しても良い。
 このように、複列の転動体の軸方向中間位置に歪み発生部材が位置するようにセンサユニットを設けると、いずれの列の転動体からも最も離れた位置に歪み発生部材が配置されることになるので、さらに転動体荷重の影響を無くすことができ、それだけ荷重を正確に検出できる。
 この発明において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置しても良い。この構成の場合、複数方向の荷重を推定することができる。すなわち、固定側部材の外径面における上面部と下面部に配置される2個のセンサユニットの出力信号から垂直方向荷重Fz と軸方向荷重Fy を推定でき、固定側部材の外径面における右面部と左面部に配置される2個のセンサユニットの出力信号から駆動力や制動力による荷重Fx を推定できる。
 この発明において、前記センサユニットの歪み発生部材は、平面概形が帯状で側辺部に切欠き部を有する薄板材からなるものであっても良い。この構成の場合、固定側部材の歪みが歪み発生部材に拡大して伝達されやすく、その歪みがセンサで感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。また、歪み発生部材の形状も簡単なものとなり、コンパクトで低コストなものとできる。
 この発明において、前記センサユニットの歪み発生部材は、前記固定側部材に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても塑性変形しないものとしても良い。想定される最大の力は、軸受に過大な荷重が作用しても、その荷重が除かれると、センサ系を除く軸受としての正常な機能が復元される範囲の最大の力である。想定される最大の力が印加された状態になるまでに塑性変形が生じると、固定側部材の変形がセンサユニットに正確に伝わらず、歪みの測定に影響を及ぼすので、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。
 この発明において、前記センサユニットのセンサの出力信号を補正する補正手段と、この補正手段で補正された出力信号からタイヤ接地面に作用する荷重もしくは車輪用軸受に作用する荷重を推定する推定手段を設けても良い。例えば、前記固定側部材に、転動体の位置を検出する転動体検出手段を設け、前記補正手段の一つとして、前記転動体検出手段の検出出力によって前記センサユニットのセンサの出力信号を補正する手段を設けても良い。
 上記したように、センサユニットの設置位置を工夫することにより、センサユニットの出力信号は通過する転動体の影響を低減できるが、それでもその影響は残る。この場合のセンサユニットの出力信号は、その振幅が転動体の配列ピッチを周期として変化する波形となる。そこで、例えば、転動体の回転位置を検出する転動体検出手段を別に設け、前記補正手段として、前記転動体検出手段が検出する転動体位置に応じてセンサユニットの出力信号の振幅を増減補正するものとすれば、転動体の位置による影響を解消できる。
 この発明において、固定側軌道輪とこの固定側軌道輪のフランジとに両辺が取付けられたL字状の歪み発生部材と、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサとを含み、車輪用軸受もしくはタイヤの軸方向に作用する軸方向荷重の方向を判別する軸方向荷重方向判別手段を設けても良い。
 センサユニットの出力信号から軸方向荷重を推定する場合、その方向を判別できない場合がある。そこで、センサユニットとは別に、軸方向荷重の方向を判別する軸方向荷重方向判別手段を設けると、軸方向荷重を正確に推定することができる。軸方向荷重方向判別手段として、上記L字状の歪み発生部材を用いると、効果的に荷重の方向を判別することができる。
 この発明において、さらに、前記センサユニットの歪み発生部材が、前記複列の転動体のうちのインボード側の転動体よりもさらにインボード側の位置に配置しても良い。
 この発明において、前記センサユニットを3つ以上設け、これらのセンサユニットのセンサの出力信号から車輪用軸受もしくはタイヤの径方向に作用する径方向荷重および車輪用軸受もしくはタイヤの軸方向に作用する軸方向荷重を推定する推定手段を設けても良い。このように、センサユニットを3つ以上設けることで荷重推定精度が向上する。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 図1におけるII-II線断面図である。 (A)は同センサ付車輪用軸受におけるセンサユニットの取付状態を示す拡大断面図、(B)は同センサユニットの拡大平面図である。 図3(A)におけるIV-IV線断面図である。 この発明の第2実施形態にかかるセンサ付車輪用軸受の断面図である。 この発明の第3実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 (A)は同センサ付車輪用軸受における転動体検出手段の断面図、(B)は同正面図である。 同センサ付車輪用軸受におけるセンサユニットの出力信号の波形図である。 (A)~(C)はセンサユニットの出力信号に対する転動体位置の影響の説明図である。 この発明の第4実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 (A)~(C)はセンサユニットの出力信号に対する転動体公転の影響の説明図である。 この発明の第5実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 この発明の第6実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 図13の一部拡大断面図である。 この発明の第7実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 同センサ付車輪用軸受の外方部材の正面図である。 同センサ付車輪用軸受におけるセンサユニットの拡大平面図である。 図17におけるXVIII-XVIII線断面図である。 この発明の第8実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 (A)~(C)はセンサユニットの出力信号に対する転動体位置の影響の説明図である。 この発明の第9実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 (A)~(C)はセンサユニットの出力信号に対する転動体公転の影響の説明図である。 この発明の第10実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 この発明の第11実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。 図24の一部拡大断面図である。 同センサ付車輪用軸受の外方部材の正面図である。
 この発明の第1実施形態を図1ないし図4と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。
 外方部材1は固定側部材となるものであって、車体の懸架装置におけるナックル(図示せず)に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには円周方向の複数箇所に車体取付用のねじ孔14が設けられ、インボード側よりナックルのボルト挿通孔に挿通したナックルボルト(図示せず)を前記ねじ孔14に螺合することにより、車体取付用フランジ1aがナックルに取付けられる。
 内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
 図2は、図1のII-II線断面図を示す。外方部材1の車体取付用フランジ1aは、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。同図に示すように、固定側部材である外方部材1の外径面には、2つのセンサユニット20を1組とするセンサユニット対19が2組設けられている。センサユニット対19を構成する2つのセンサユニット20は、外方部材1の外径面の円周方向における180度の位相差をなす位置に配置される。ここでは、タイヤ接地面に対して上下位置となる外方部材1の外径面の上面部と下面部とに配置した2つのセンサユニット20からなる1組のセンサユニット対19のほか、タイヤ接地面に対して前後位置となる外方部材1の外径面の右面部と左面部とに配置した2つのセンサユニット20からなる別の1組のセンサユニット対19を設けている。
 センサユニット対19を構成する2つのセンサユニット20を、タイヤ接地面に対して上下位置となる外方部材1の外径面における上面部および下面部の2箇所に設けることで、車輪用軸受に作用する垂直方向の荷重Fz が検出される。また、センサユニット対19を構成する2つのセンサユニット20を、タイヤ接地面に対して前後位置となる外方部材1の外径面の右面部および左面部の2箇所に設けることで、駆動力や制動力となる荷重Fx が検出される。垂直方向の荷重Fz を検出するセンサユニット対19については、外方部材1の外径面における上面部の、隣り合う2つの突片1aaの間の中央部に1つのセンサユニット20が配置され、外方部材1の外径面における下面部の、隣り合う2つの突片1aaの間の中央部に他の1つのセンサユニット20が配置される。
 これらのセンサユニット20は、図3(A)および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する歪みセンサ22とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり一定幅の帯状で中央の両側辺部に切欠き部21bを有する。切欠き部21bの隅部は断面円弧状とされている。また、歪み発生部材21は、図4に示すように、外方部材1の外径面に接触固定される2つの接触固定部21aを両端部に有する。なお、歪み発生部材21の形状によっては、接触固定部21aを2つ以上有するものとしても良い。歪みセンサ22は、歪み発生部材21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材21の外面側で両側辺部の切欠き部21bで挟まれる中央部位が選ばれており、歪みセンサ22は切欠き部21b周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、軸受に過大な荷重が作用しても、その荷重が除かれると、センサ系を除く軸受としての正常な機能が復元される範囲の最大の力である。軸受に作用する荷重が、センサ系を除く軸受としての正常な機能が損なわれない範囲の最大の力である。
 図1のように、前記センサユニット20は、その歪み発生部材21が前記転動体5の中心を通り転動体接触角をなす方向に延びる1点鎖線で示す線分Lから外れて位置するように外方部材1の外径面に設けられる。この場合に、センサユニット20の全体が、前記線分Lから外れて位置するように設ける。ここでは、複列の転動体5の軸方向中間位置よりややアウトボード側に歪み発生部材21が位置するように、センサユニット20が外方部材1の外径面に設けられる。
 また、図4のように、センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向における同一位置で、かつ両接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれボルト23により外方部材1の外径面に固定される。前記各ボルト23は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔24に挿通し、外方部材1の外周部に設けられたねじ孔25に螺合させる。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記歪み発生部材21の2つの接触固定部21aが接触固定される箇所には平坦部1bが形成されている。また、外方部材1の外径面における前記歪み発生部材21の2つの接触固定部21aが固定される2箇所の中間部に溝1cが形成されている。
 このように、外方部材1の外径面における2つの接触固定部21aが固定される2箇所の中間部に溝1cを形成することで、外方部材1の外径面に歪み発生部材21をボルト23で固定すると、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。
 歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。
 センサユニット20の歪みセンサ22は、図1に示すように、推定手段30に接続される。推定手段30は、ここでは歪みセンサ22の出力信号により、車輪のタイヤと路面間の作用力(車輪用軸受もしくはタイヤの径方向に作用する径方向荷重および車輪用軸受もしくはタイヤの軸方向に作用する軸方向荷重)を推定する手段であり、信号処理回路や補正回路などが含まれる。推定手段30は、車輪のタイヤと路面間の作用力と歪みセンサ22の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された歪みセンサ22の出力信号から前記関係設定手段を用いて作用力を出力する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。
 車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。センサユニット20の構成部材である歪み発生部材21の2つの接触固定部21aが外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みが歪みセンサ22で検出され、その出力信号から荷重を推定できる。
 また、センサユニット20の構成部材である歪み発生部材21の接触固定部21aを固定側部材である外方部材1にボルト23で固定しているので、外方部材1とセンサユニット20の間での滑りを抑えることができ、滑りに伴い歪みセンサ22の出力信号に歪みが生じるのを回避できる。
 従来例の説明でも述べたように、外方部材1は通過する転動体5の荷重で変形する。とくに、転動体5の中心を通り転動体接触角をなす方向に延びる線分L(図1)上では、転動体荷重による変形が大きい。すなわち、転動体荷重の影響を受け易い。このセンサ付車輪用軸受では、センサユニット20の歪み発生部材21が転動体5の中心を通り転動体接触角をなす方向に延びる線分Lから外れて位置するように外方部材1の外径面に配置されている。このため、センサユニット20の歪み発生部材21はそれだけ転動体荷重の影響を受け難くなる。したがって、本来の荷重による外方部材1の変形をセンサユニット20で精度良く検出でき、その出力信号から車輪のタイヤと路面間に作用する荷重を推定手段30により精度よく推定できる。
 上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば予圧量)を検出するものとしても良い。
 このセンサ付車輪用軸受から得られた検出荷重を自動車の車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。
 また、この実施形態の場合、センサユニット20の歪み発生部材21は、平面概形が全長にわたり一定幅の帯状で側辺部に切欠き部21bを有する薄板材からなるので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪みセンサ22で感度良く検出され、その出力信号に生じるヒステリシスも小さくなり、荷重を精度良く推定できる。また、歪み発生部材21の形状も簡単なものとなり、コンパクトで低コストなものとでき量産性に優れたものとなる。
 また、この実施形態では、固定側部材である外方部材1の外径面に、その周方向における180度の位相差をなす位置に配置されたセンサユニット20の2つを1組とするセンサユニット対19を2組設けているので、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち、ある方向への荷重が大きくなると、転動体5と転走面3が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせてセンサユニット20を180度位相差で設置すれば、どちらかのセンサユニット20には必ず転動体5を介して外方部材1に印加される荷重が伝達され、その荷重をセンサ22により検出可能となる。
 図5は、この発明の第2実施形態を示す。このセンサ付車輪用軸受では、センサユニット20の歪み発生部材21が複列の転動体5の軸方向中間位置に位置するように配置されている。その他の構成は図1~図4に示す第1実施形態の場合と同じである。このように、複列の転動体5の軸方向中間位置に歪み発生部材21が位置するようにセンサユニット20を配置すると、いずれの列の転動体5からも最も離れた位置に歪み発生部材21が配置されることになるので、さらに転動体荷重の影響を無くすことができ、それだけ荷重の推定精度が向上する。
 図6ないし図9(A)~(C)は、この発明の第3実施形態を示す。このセンサ付車輪用軸受では、図1~図4の第1実施形態において、前記推定手段30の前段に、センサユニット20の歪みセンサ22の出力信号を補正する補正手段31を設けている。また、外方部材1の内周には、アウトボード側列の転動体5の位置を検出する転動体位置検出手段40が設けられている。転動体位置検出手段40は、後述する図7(B)に示すように複数の転動体センサ42を有し、前記補正手段31にはセンサユニット20の歪みセンサ22と前記転動体センサ42が接続される。その他の構成は図1~図4に示す第1実施形態の場合と同様である。
 前記転動体位置検出手段40は外方部材1の内周に設けられ、図7(A),(B)に断面図および正面図で示すように、正面形状が軸受と同心の円弧状とされたセンサ支持部材41と、このセンサ支持部材41に取付けられた複数の転動体センサ42とでなる。センサ支持部材41は、図7(A)に示すように、外方部材1の内径面に嵌合する円筒部41aと、この円筒部41aの一端から内径側に延びる立板部41bとを有する断面L字状で、その立板部41bの周方向長さは、転動体5の配列ピッチPに相当する長さとされている。このセンサ支持部材41は、図6のように、その立板部41bがアウトボード側列の転走面4よりもアウトボード側の軸方向位置となり、アウトボード側列の転動体5と軸方向に対向するように外方部材1の内径面に取付けられる。複数の転動体センサ42は、図7(B)のように前記センサ支持部材41の立板部41bのインボード側を向く片面において、円周方向に等配して取付けられている。転動体センサ42としては、例えばホールセンサ、MRセンサ、MIセンサなどの磁気センサが使用され、その前面を転動体5が通過するのに伴う磁気変化を検出する。
 補正手段31は、転動体位置検出手段40が検出する転動体位置、つまり前記転動体センサ42の出力信号に基づき、センサユニット20の歪みセンサ22の出力信号を補正する手段である。
 先述したように、センサユニット20の設置位置を工夫することにより、センサユニット20の歪みセンサ22の出力信号は通過する転動体5の影響を低減できるが、それでもその影響は残る。つまり、車輪用軸受の回転中には、センサユニット20の歪みセンサ22の出力信号の振幅に、図8に示す波形図のような周期的な変化が生じる。また、軸受の停止時においても、歪みセンサ22の出力信号は、転動体5の位置の影響を受ける。すなわち、図9(A),(B)のように転動体5がセンサユニット20における歪みセンサ22に最も近い位置を通過するとき(または、その位置に転動体5があるとき)、図9(C)のように歪みセンサ22の出力信号の振幅は最大値となり、転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記センサユニット20の設置部の近傍を順次通過するので、歪みセンサ22の出力信号は、その振幅が転動体5の配列ピッチPを周期として図9(C)に実線で示すように周期的に変化する波形となる。そこで、前記補正手段31は、前記転動体位置検出手段40が検出する転動体位置に応じて、前記歪みセンサ22の出力信号を以下のように補正する。すなわち、例えば転動体5が歪みセンサ22に最も近い位置にあるときには、歪みセンサ22の出力信号の振幅(このとき最大値)を所定の最大値だけ減少補正する。歪みセンサ22に最も近い位置から±P/2離れた位置に転動体5があるときには、歪みセンサ22の出力信号の振幅(このとき最小値)を所定の最大量だけ増加補正する。転動体5が上記両位置の途中にあるときには、その位置に応じて直線補間等で、歪みセンサ22の出力信号の振幅を増減補正する。これにより、歪みセンサ22の出力信号の振幅は、図9(C)に鎖線で示すように補正され、転動体5の影響が解消される。
 センサユニット20の設置位置について工夫しても、センサユニット20の歪みセンサ22の出力信号には転動体5の位置の影響が残るが、この場合、転動体位置検出手段40の検出する転動体位置に基づき補正手段31が歪みセンサ22の出力信号を補正するので、軸受の回転時と停止時を問わず転動体5の位置による影響が解消される。これにより、推定手段30では、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を精度良く推定できる。
 図10および図11(A)~(C)は、この発明の第4実施形態を示す。このセンサ付車輪用軸受では、図6~図9(A)~(C)の第3実施形態において、前記推定手段30の前段に、補正手段として歪みセンサ22の出力信号を平均化する平均化処理手段33を設けている。また、軸受内における軸方向中間位置には、内方部材2の回転を検出する回転検出器43が設けられている。回転検出器43はラジアル型のものであって、パルサリング44と磁性体センサ45とで構成される。平均化処理手段33には、センサユニット20の歪みセンサ22と回転検出器43の磁性体センサ45が接続される。その他の構成は、図1~図4に示した第1実施形態の場合と同様である。
 回転検出器43は、内方部材2の外周に嵌合させたセンサターゲットであるパルサリング44と、外方部材1の内周に設けられ前記パルサリング44に対して径方向に対面する磁性体センサ45とで構成される。パルサリング44は、円周方向に磁極N,Sを並べた多極磁石であっても、ギヤ状の凹凸を円周方向に並べて形成した磁性体リング等、周方向に周期的な磁気変化を有するものであっても良い。磁性体センサ45は,内方部材2と一体に回転する前記パルサリング44の磁気変化を検出するものであり、ホールセンサ、MRセンサ、MIセンサなどが使用される。
 平均化処理手段33は、転動体5が配列ピッチP分を公転する期間での歪みセンサ22の出力信号の振幅を図11(C)に鎖線で示すように平均化して、転動体5の影響を解消する。平均化処理手段33による平均化処理は、例えば以下のように行なわれる。先ず、回転検出器43の磁性体センサ45の出力信号から内方部材2の回転速度を演算し、演算した回転速度から、転動体5が配列ピッチPの区間を公転する所要時間Tを算出する。この所要時間T内に、所定の周期tでサンプリングした歪みセンサ22の出力信号の振幅値の相加平均を求める。なお、この場合のサンプリング周期tは前記所要時間Tに比べて十分短い値とする。
 先述したように、歪みセンサ22の出力信号には、そのままでは転動体5の通過の影響が残るが、この場合、平均化処理手段33がその出力信号を平均化処理するので、転動体通過の影響が解消される。これにより、推定手段30では、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を精度良く推定できる。
 図12は、この発明の第5実施形態を示す。このセンサ付車輪用軸受では、図6~図9の第3実施形態において、前記推定手段30の前段に、補正手段として車輪用軸受の温度またはその周辺温度に応じて、センサユニット20の歪みセンサ22の出力信号を補正する温度補正手段34を設けている。また、外方部材1の外径面における各センサユニット20の設置部の近傍、あるいはセンサユニット20における歪み発生部材21の外面側に、温度センサ46が設けられている。温度センサ46としては、例えばサーミスタや白金抵抗素子を用いることができる。温度補正手段34には、センサユニット20の歪みセンサ22と温度センサ46が接続される。その他の構成は、図1~図4に示した第1実施形態の場合と同様である。
 温度補正手段34は、前記温度センサ46の出力信号に基づいて、対応するセンサユニット20の歪みセンサ22の出力信号を補正する。したがって、推定手段30には、温度補正手段34によって補正された歪みセンサ22の出力信号が入力される。
 このように、この実施形態では、温度補正手段34が、外方部材1の外径面あるいはセンユニット20の歪み発生部材21に設けた温度センサ46の出力信号に応じて、歪みセンサ22の出力信号を補正するようにしているので、車輪用軸受やその周辺温度の測定値に応じて、歪みセンサ22の出力信号を補正することになり、荷重を精度良く推定できる。
 図13および図14は、この発明の第6実施形態を示す。このセンサ付車輪用軸受では、図1~図4の第1実施形態において、推定手段30で推定される軸方向荷重Fy の方向を判別する手段である方向判別センサ47が設けられている。この方向判別センサ47は、歪み発生部材56と、この歪み発生部材56に取付けられて歪み発生部材56の歪みを検出するセンサ57を有するセンサユニット55を、外方部材1に固定したものである。
 方向判別センサ47の歪み発生部材56は、図14に拡大して示すように、鋼材等の金属材からなる板材をL字状に折り曲げて形成され、外方部材1のフランジ1aにおけるねじ孔14の近傍のアウトボード側を向く側面に対向する径方向片56aと、外方部材1の外径面に対向する軸方向片56bとを有する。センサ57は径方向片56aの片面に固定される。この歪み発生部材56は、外方部材1の外周部に、ボルト59,60で締結される。
 方向判別センサ47の設置位置は、軸方向荷重Fy に対して変形量が大きいが、垂直方向荷重Fz や駆動力・制動力による荷重Fx のような径方向荷重に対して変形量の小さい部位である。この部位に設置すると、方向判別センサ47に作用する力が圧縮力と引っ張り力で切り替わるため、例えばその出力信号の大小判別を所定のしきい値に対して行なえば、軸方向荷重Fy の方向を判別することができる。方向判別センサ47の出力信号は、推定手段30に入力され、その入力信号から推定手段30は軸方向荷重Fy の方向を判別する。
 この発明の第7実施形態を図15ないし図18と共に説明する。この実施形態において、図1ないし図4に示す第1実施形態と同一または相当する部分には同一の符号を付してその詳しい説明は省略する。この第7実施形態は、センサユニット20の歪み発生部材21が、複列の転動体5のうちのインボード側の転動体5よりもさらにインボード側の位置に配置された点で第1実施形態と異なる。この実施形態では、前記センサユニット20を3つ以上設けている。
 図16は、この車輪用軸受の外方部材1をアウトボード側から見た正面図を示す。なお、図15は、図16におけるXV-XV線断面図を示す。図15および図16は、第1実施形態を示す図1および図2に対応するものであって、同一または相当する部分には同一の符号を付している。なお、図15および図16では、図1および図2に示す第1実施形態において図示を省略したハブボルト16を図示している。
 これらのセンサユニット20は、図17および図18に拡大平面図および拡大断面図で示すように形成されているが、図17および図18はいずれも第1実施形態の図3(A)および図4に対応したものであって、同一または相当する部分には同一の符号を付してその詳しい説明は省略する。
 この第7実施形態では、図15のように、前記センサユニット20の歪み発生部材21が前記転動体5の中心を通り転動体接触角をなす方向に延びる1点鎖線で示す線分Lから外れた位置で、複列の転動体5のうちのインボード側の転動体5よりもさらにインボード側の位置に配置されている。具体的には、外方部材1における車体取付用フランジ1aよりもインボード側の外径面にセンサユニット20が配置される。
 また、図17のように、センサユニット20は、その歪み発生部材21の2つの接触固定部21aが、外方部材1の軸方向における同一位置で、かつ互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ28を介してボルト23により外方部材1の外径面に固定される。これにより、センサユニット20の歪みセンサ22は、歪み発生部材21の切欠き部21b周辺における外方部材円周方向の歪みを検出することになる。前記各ボルト23は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔24からスペーサ28のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔25に螺合させる。このように、スペーサ28を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する中央部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。
 この第7実施形態にかかるセンサ付車輪用軸受では、センサユニット20の歪み発生部材21が転動体5の中心を通り転動体接触角をなす方向に延びる線分Lから外れた位置で、複列の転動体5のうちのインボード側の転動体5よりもさらにインボード側の位置に配置されているので、センサユニット20の歪み発生部材21はそれだけ転動体荷重の影響を受け難くなる。したがって、本来の荷重による外方部材1の変形をセンサユニット20で精度良く検出でき、その出力信号から車輪のタイヤと路面間に作用する荷重を推定手段30により精度よく推定することができる。また、センサユニットを3つ以上設けることで荷重推定精度が向上する。
 図19ないし図20(A)~(C)は、この発明の第8実施形態を示す。このセンサ付車輪用軸受では、図15~図18の第7実施形態において、前記推定手段30の前段に、センサユニット20の歪みセンサ22の出力信号を補正する補正手段31を設けている。また、外方部材1の内周には、インボード側列の転動体5の位置を検出する転動体検出手段40が設けられている。転動体検出手段40は複数の転動体センサ42を有し、前記補正手段31にはセンサユニット20の歪みセンサ22と前記転動体センサ42が接続される。その他の構成は図15~図18に示す第7実施形態の場合と同様である。
 図20(A)~(C)は、第3実施形態で説明した図9(A)~(C)に対応しており、図9(A)~(C)での説明がそのまま適用できるので、その詳しい説明は省略する。
 図21および図22(A)~(C)は、この発明の第9実施形態を示す。このセンサ付車輪用軸受では、図19~図20(A)~(C)の第8実施形態において、前記推定手段30の前段に、補正手段として歪みセンサ22の出力信号を平均化する平均化処理手段33を設けている。この平均化処理手段33は、先の第4実施形態の平均化処理手段33と同様であり、第4実施形態での説明がそのまま適用できるので、詳しい説明は省略する。その他の構成は、図15~図18に示した第7実施形態の場合と同様である。図22(A)~(C)は図9(A)~(C)に対応しており、図9(A)~(C)についての説明がそのまま適用できる。
 図23は、この発明の第10実施形態を示す。このセンサ付車輪用軸受では、図19~図20(A)~(C)の第8実施形態において、前記推定手段30の前段に、補正手段として車輪用軸受の温度またはその周辺温度に応じて、センサユニット20の歪みセンサ22の出力信号を補正する温度補正手段34を設けている。この温度補正手段34は、先の第5実施形態の温度補正手段34と同様であり、第5実施形態での説明がそのまま適用できるので、詳しい説明は省略する。その他の構成は、図15~図18に示した第7実施形態の場合と同様である。
 図24ないし図26は、この発明の第11実施形態を示す。このセンサ付車輪用軸受では、図15~図18の第7実施形態において、推定手段30で推定される軸方向荷重Fy の方向を判別する手段である方向判別センサ47が設けられている。この方向判別センサ47も先の第6実施形態の方向判別センサ47と同様であり、第6実施形態での説明がそのまま適用できるので、詳しい説明は省略する。
 図25は、先の第6実施形態で説明した図13に対応するもので、図13での説明がそのまま図25にも適用でき、詳しい説明は省略する。第6実施形態と異なり、この第11実施形態では、この歪み発生部材56は、スペーサ58A,58Bを介して外方部材1の外周部に、ボルト59,60で締結される。すなわち、径方向片56aに形成されたボルト挿通孔61からスペーサ58Aのボルト挿通孔62に挿通させたボルト59を、外方部材1のフランジ1aにおける車体取付用のねじ孔14の近傍に設けられたねじ孔63に螺合させる。また、軸方向片56bに形成されたボルト挿通孔64から別のスペーサ58Bのボルト挿通孔65に挿通させたボルト60を、外方部材1の外径面に設けられたねじ孔66に螺合させる。これにより、歪み発生部材56が外方部材1に締結される。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まるこの発明の範囲内のものと解釈される。
1…外方部材
1a…車体取付用フランジ
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
21b…切欠き部
22…歪みセンサ
30…推定手段
31…補正手段
33…平均化処理手段
34…温度補正手段
47…方向判別センサ(軸方向荷重方向判別手段)
56…歪み発生部材

Claims (12)

  1.  複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、
     上記外方部材および内方部材のうちの固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサからなる1つ以上のセンサユニットを備え、前記歪み発生部材が前記転動体の中心を通り転動体接触角をなす方向に延びる線分から外れて位置するように配置されたセンサ付車輪用軸受。
  2.  請求項1において、前記固定側部材が前記外方部材であるセンサ付車輪用軸受。
  3.  請求項1において、前記センサユニットの歪み発生部材が前記複列の転動体の軸方向中間位置に配置されたセンサ付車輪用軸受。
  4.  請求項1において、前記センサユニットを複数としたセンサ付車輪用軸受。
  5.  請求項4において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置したセンサ付車輪用軸受。
  6.  請求項1において、前記センサユニットの歪み発生部材は、平面概形が帯状で側辺部に切欠き部を有する薄板材からなるセンサ付車輪用軸受。
  7.  請求項1において、前記センサユニットの歪み発生部材は、前記固定側部材に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても塑性変形しないものとしたセンサ付車輪用軸受。
  8.  請求項1において、前記センサユニットのセンサの出力信号を補正する補正手段と、この補正手段で補正された出力信号からタイヤ接地面に作用する荷重もしくは車輪用軸受に作用する荷重を推定する推定手段を設けたセンサ付車輪用軸受。
  9.  請求項8において、前記固定側部材に、転動体の位置を検出する転動体検出手段を設け、前記補正手段の一つとして、前記転動体検出手段の検出出力によって前記センサユニットのセンサの出力信号を補正する手段を設けたセンサ付車輪用軸受。
  10.  請求項1において、固定側軌道輪とこの固定側軌道輪のフランジとに両辺が取付けられたL字状の歪み発生部材と、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出するセンサとを含み、車輪用軸受もしくはタイヤの軸方向に作用する軸方向荷重の方向を判別する軸方向荷重方向判別手段を設けたセンサ付車輪用軸受。
  11.  請求項1において、さらに、前記センサユニットの歪み発生部材が、前記複列の転動体のうちのインボード側の転動体よりもさらにインボード側の位置に配置されたセンサ付車輪用軸受。
  12.  請求項11において、前記センサユニットを3つ以上設け、これらのセンサユニットのセンサの出力信号から車輪用軸受もしくはタイヤの径方向に作用する径方向荷重および車輪用軸受もしくはタイヤの軸方向に作用する軸方向荷重を推定する推定手段を設けたセンサ付車輪用軸受。
PCT/JP2009/005971 2008-11-17 2009-11-10 センサ付車輪用軸受 WO2010055636A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09825890.8A EP2360384A4 (en) 2008-11-17 2009-11-10 BEARING EQUIPPED WITH WHEEL SENSOR
CN200980145679.0A CN102216635B (zh) 2008-11-17 2009-11-10 带有传感器的车轮轴承
US13/067,134 US8578791B2 (en) 2008-11-17 2011-05-11 Sensor-equipped bearing for wheel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008293050A JP5300429B2 (ja) 2008-11-17 2008-11-17 センサ付車輪用軸受
JP2008-293050 2008-11-17
JP2008-302297 2008-11-27
JP2008302297A JP2010127376A (ja) 2008-11-27 2008-11-27 センサ付車輪用軸受

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/067,134 Continuation US8578791B2 (en) 2008-11-17 2011-05-11 Sensor-equipped bearing for wheel

Publications (1)

Publication Number Publication Date
WO2010055636A1 true WO2010055636A1 (ja) 2010-05-20

Family

ID=42169782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005971 WO2010055636A1 (ja) 2008-11-17 2009-11-10 センサ付車輪用軸受

Country Status (5)

Country Link
US (1) US8578791B2 (ja)
EP (1) EP2360384A4 (ja)
KR (1) KR101596398B1 (ja)
CN (1) CN102216635B (ja)
WO (1) WO2010055636A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140745A (zh) * 2010-09-10 2013-06-05 Ntn株式会社 带有传感器的车轮用轴承

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012208592A1 (de) * 2012-05-23 2013-11-28 Schaeffler Technologies AG & Co. KG Radlagerkappe und Radlager
JP6084893B2 (ja) * 2013-05-08 2017-02-22 富士重工業株式会社 車輪分力検出装置
DE102015207476A1 (de) * 2015-04-23 2016-10-27 Aktiebolaget Skf Mehrreihiges Wälzlager und Windkraftanlage mit zumindest einem mehrreihigen Wälzlager
WO2017051886A1 (ja) * 2015-09-25 2017-03-30 Ntn株式会社 車輪用軸受装置
KR102091931B1 (ko) * 2018-08-13 2020-03-20 한국타이어앤테크놀로지 주식회사 나사 방식으로 고정되는 타이어용 센서 및 이를 적용한 타이어
DE102018222421A1 (de) * 2018-12-20 2020-06-25 CEROBEAR GmbH Wälzlager
IT201900023355A1 (it) * 2019-12-09 2021-06-09 Skf Ab Gruppo sospensione sensorizzato per veicoli, includente una unità mozzo ruota ed un montante o articolazione di sospensione, metodo e unità mozzo ruota associati
IT202000020608A1 (it) * 2020-08-28 2022-02-28 Skf Ab Unità mozzo ruota sensorizzata per veicoli, sistema e metodo associati per rilevamento dei carichi finali su ruota
US11820168B2 (en) 2020-09-28 2023-11-21 Aktiebolaget Skf Wheel hub assembly with internal load sensors
IT202000024982A1 (it) 2020-10-22 2022-04-22 Skf Ab Gruppo mozzo di ruota con sensori esterni posizionati per evitare interferenza

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057299A (ja) 2005-08-23 2007-03-08 Ntn Corp センサ付車輪用軸受
JP2008185497A (ja) * 2007-01-31 2008-08-14 Ntn Corp センサ付き車輪用軸受装置
WO2008117534A1 (ja) * 2007-03-27 2008-10-02 Ntn Corporation センサ付車輪用軸受
JP2008249566A (ja) * 2007-03-30 2008-10-16 Ntn Corp センサ付車輪用軸受
JP2008293050A (ja) 1999-12-03 2008-12-04 Seiko Epson Corp 液晶装置および電子機器
JP2008302297A (ja) 2007-06-07 2008-12-18 Toppan Printing Co Ltd 塗布膜の乾燥装置および乾燥方法、それらを用いた塗布物の製造装置および製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394189C (zh) 2003-02-07 2008-06-11 株式会社捷太格特 带传感器的滚动轴承单元
FR2869982B1 (fr) * 2004-05-04 2006-07-14 Snr Roulements Sa Roulement capteur de deformations comprenant deux jauges de contraintes
WO2007018072A1 (ja) 2005-08-08 2007-02-15 Ntn Corporation センサ付車輪用軸受
FR2893106B1 (fr) 2005-11-09 2008-01-04 Snr Roulements Sa Roulement capteur de deformations comprenant au moins trois jauges de contrainte
WO2007105365A1 (ja) * 2006-03-08 2007-09-20 Ntn Corporation センサ付車輪用軸受
JP2007292158A (ja) * 2006-04-24 2007-11-08 Ntn Corp センサ付車輪用軸受
US8028589B2 (en) * 2007-01-17 2011-10-04 Ntn Corporation Sensor-equipped bearing for wheel
WO2008093491A1 (ja) * 2007-01-31 2008-08-07 Ntn Corporation センサ付き車輪用軸受装置
JP4919827B2 (ja) 2007-01-31 2012-04-18 Ntn株式会社 センサ付き車輪用軸受装置
JP5147254B2 (ja) * 2007-02-08 2013-02-20 Ntn株式会社 センサ付車輪用軸受
JP4889548B2 (ja) 2007-03-30 2012-03-07 Ntn株式会社 センサ付車輪用軸受
US8393793B2 (en) * 2007-11-27 2013-03-12 Ntn Corporation Sensor-equipped bearing for wheel
JP5153373B2 (ja) 2008-02-06 2013-02-27 Ntn株式会社 センサ付車輪用軸受

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293050A (ja) 1999-12-03 2008-12-04 Seiko Epson Corp 液晶装置および電子機器
JP2007057299A (ja) 2005-08-23 2007-03-08 Ntn Corp センサ付車輪用軸受
JP2008185497A (ja) * 2007-01-31 2008-08-14 Ntn Corp センサ付き車輪用軸受装置
WO2008117534A1 (ja) * 2007-03-27 2008-10-02 Ntn Corporation センサ付車輪用軸受
JP2008249566A (ja) * 2007-03-30 2008-10-16 Ntn Corp センサ付車輪用軸受
JP2008302297A (ja) 2007-06-07 2008-12-18 Toppan Printing Co Ltd 塗布膜の乾燥装置および乾燥方法、それらを用いた塗布物の製造装置および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360384A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140745A (zh) * 2010-09-10 2013-06-05 Ntn株式会社 带有传感器的车轮用轴承
CN103140745B (zh) * 2010-09-10 2015-07-08 Ntn株式会社 带有传感器的车轮用轴承
US9518609B2 (en) 2010-09-10 2016-12-13 Ntn Corporation Wheel bearing with sensor

Also Published As

Publication number Publication date
KR20110087288A (ko) 2011-08-02
CN102216635A (zh) 2011-10-12
EP2360384A1 (en) 2011-08-24
EP2360384A4 (en) 2015-06-03
KR101596398B1 (ko) 2016-02-22
US20110214513A1 (en) 2011-09-08
US8578791B2 (en) 2013-11-12
CN102216635B (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2010055636A1 (ja) センサ付車輪用軸受
JP5274343B2 (ja) センサ付車輪用軸受
JP5100567B2 (ja) センサ付車輪用軸受
JP5424565B2 (ja) センサ付車輪用軸受
JP5063270B2 (ja) センサ付車輪用軸受
JP5094457B2 (ja) センサ付車輪用軸受
WO2009098843A1 (ja) センサ付車輪用軸受
JP5268756B2 (ja) センサ付車輪用軸受
JP2010127376A (ja) センサ付車輪用軸受
JP5142683B2 (ja) センサ付車輪用軸受
JP5268755B2 (ja) センサ付車輪用軸受
JP5085290B2 (ja) センサ付車輪用軸受
JP2010090982A (ja) センサ付車輪用軸受
JP5072608B2 (ja) センサ付車輪用軸受
JP5300429B2 (ja) センサ付車輪用軸受
JP2010121745A (ja) センサ付車輪用軸受
JP2010101720A (ja) センサ付車輪用軸受
JP5072551B2 (ja) センサ付車輪用軸受
JP5224805B2 (ja) センサ付車輪用軸受
JP5264206B2 (ja) センサ付車輪用軸受
JP5014107B2 (ja) センサ付車輪用軸受
JP5219424B2 (ja) センサ付車輪用軸受
JP5489929B2 (ja) センサ付車輪用軸受
JP2010243190A (ja) センサ付車輪用軸受
JP2009185888A (ja) センサ付車輪用軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145679.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825890

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3425/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117010930

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009825890

Country of ref document: EP