WO2010053071A1 - インク滴検知装置の光軸調節方法および組付け方法、ならびに光軸調節装置 - Google Patents

インク滴検知装置の光軸調節方法および組付け方法、ならびに光軸調節装置 Download PDF

Info

Publication number
WO2010053071A1
WO2010053071A1 PCT/JP2009/068775 JP2009068775W WO2010053071A1 WO 2010053071 A1 WO2010053071 A1 WO 2010053071A1 JP 2009068775 W JP2009068775 W JP 2009068775W WO 2010053071 A1 WO2010053071 A1 WO 2010053071A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
receiving element
light receiving
light emitting
emitting element
Prior art date
Application number
PCT/JP2009/068775
Other languages
English (en)
French (fr)
Inventor
伊藤 和正
宏尚 林
Original Assignee
リコーエレメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リコーエレメックス株式会社 filed Critical リコーエレメックス株式会社
Priority to EP09824770.3A priority Critical patent/EP2347903A4/en
Priority to CN200980143639.2A priority patent/CN102202893B/zh
Priority to US13/127,679 priority patent/US8439476B2/en
Publication of WO2010053071A1 publication Critical patent/WO2010053071A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2142Detection of malfunctioning nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16579Detection means therefor, e.g. for nozzle clogging

Definitions

  • an ink droplet detection device for detecting an ejection state of an ink droplet ejected from an ink droplet ejection head is assembled on an ink jet recording apparatus body such as a printer, a copy, or a facsimile that records an image on a recording material such as paper.
  • the present invention relates to a method of assembling an ink droplet detection device to be attached.
  • the present invention relates to an optical axis adjustment method for an ink droplet detection device that performs optical axis adjustment between a light emitting element and a light receiving element in the ink droplet detection device.
  • the present invention relates to an optical axis adjustment device used when optical axis adjustment is performed by the optical axis adjustment method.
  • Patent Document 1 As an ink drop detection device, a light emitting module and a light receiving module are fixed to a base member, the light emitting side can be adjusted in the vertical direction, the light receiving side can be adjusted in horizontal movement, An axial adjustment is disclosed. Then, while moving the ink droplet ejection head, ink droplets are ejected sequentially from the ink droplet ejection head, the laser light emitted from the light emitting side is applied to the flying ink droplets, and the received light amount change at the light receiving side at that time In addition, it is disclosed to detect an ejection state such as non-ejection or bending of an ink droplet.
  • an ejection state such as non-ejection or bending of an ink droplet.
  • ink droplets are ejected from the nozzle holes of the ink droplet ejection head in synchronization with the optical axis of the laser beam tilt of 26 degrees and emitted from the light emitting side to the flying ink droplets. It seems that it is quite difficult to apply laser light unless some planar positioning accuracy is ensured between the ink droplet detection apparatus and the recording apparatus main body. Furthermore, in the optical axis adjustment for obtaining the parallelism between the optical axis of the ink droplet detection device and the nozzle hole array of the ink droplet ejection head, consideration is given to the light emission side so that the inclination does not vary as the vertical adjustment. No consideration was given to the positional relationship with the nozzle hole array of the ink droplet ejection head including the light receiving side.
  • a first object of the present invention is to facilitate adjustment of the optical axis in the ink droplet detection device.
  • a second object of the present invention is to make it possible to easily obtain the parallelism between the optical axis of the ink droplet detection device and the nozzle hole array in the ink droplet ejection head on the ink jet recording apparatus main body side. It is in.
  • the invention according to claim 1 Light-emitting element that emits light, light-emitting element holder that holds the light-emitting element, and detection of ejection failure of an ink droplet that receives scattered light after a light beam formed by the light emitted from the light-emitting element collides with the ink droplet
  • Light receiving element a light receiving element holder for holding the discharge defect detecting light receiving element, a light receiving side holder shaft portion of the light receiving element holder, and a light emitting side holder shaft portion of the light emitting element holder, and temporarily positioning the light emitting element holder
  • a base member to which each of the light receiving element holders is attached While the light emitting element holder is held to the base member so as to be rotatable and adjustable around the light emitting side holder shaft portion,
  • the light receiving element holder is slidably held in the axial direction of the light receiving side holder shaft portion perpendicular to the rotation adjustment direction of the light emitting element holder with respect to the base member
  • the ink droplet detection device is positioned by the light emitting side holder shaft portion and the light receiving side holder shaft portion and fixed to the optical axis adjusting device, (2) After power is supplied and light emission of the light emitting element is turned on, and the detection circuit of the position adjusting light receiving element is turned on, (3) When the light emitting element holder is rotated and the light beam formed by the light emitted from the light emitting element has entered the positioning target provided on the light receiving element side for detecting ejection failure, Detected from the output value of the light receiving element for position adjustment, (4) While the light emitting element holder is permanently fixed to the base member, (5) Even if the light emitting element holder is rotated, if it is not detected from the output value of the position adjusting light receiving element that it has entered the positioning target, the height position of the light receiving element holder is slide adjusted. After that, the light emitting element holder is rotated again, and the height position adjustment of the light receiving element holder and the
  • the invention according to claim 2 The method of adjusting an optical axis of an ink droplet detection device according to claim 1, After the light emitting element holder is permanently fixed to the base member, (6) The detection circuit of the discharge failure detection light receiving element is turned on, and the height position of the light reception element holder is slid to determine whether the output value of the discharge failure detection light receiving element is an appropriate value, (7) When it is an appropriate value, the light receiving element holder is permanently fixed to the base member. On the other hand, when it is not an appropriate value, the height position of the light receiving element holder is slid again, The height position adjustment of the light receiving element holder is repeated until the output value of the light receiving element for ejection failure detection enters an appropriate value. It is characterized by that.
  • the invention according to claim 3 The method of adjusting an optical axis of an ink droplet detection device according to claim 1 or 2,
  • the ejection failure detection light-receiving element is used as the position adjustment light-receiving element, and the ejection failure is formed on the vertical plane of the light-receiving element holder passing through the central axis of the ejection failure detection light-receiving element as the positioning target.
  • a light-shielding shape is formed to cover the light-receiving element for detection and prevent light emitted from the light-emitting element from directly entering the light-receiving element for detecting ejection failure.
  • the invention according to claim 4 The method of adjusting an optical axis of an ink droplet detection device according to claim 1 or 2,
  • the discharge defect detecting light receiving element is used as the position adjusting light receiving element, and the light emitting element is disposed on the vertical plane passing through the central axis of the discharge defect detecting light receiving element of the light receiving element holder as the positioning target.
  • a translucent shape is formed that allows light emitted from the light to pass through and allows the light to directly enter the light-receiving element for detecting ejection failure.
  • the invention according to claim 5 The method of adjusting an optical axis of an ink droplet detection device according to claim 1 or 2,
  • the positioning target is formed by providing a reflecting surface on a vertical surface passing through the central axis of the ejection failure detection light receiving element of the light receiving element holder, and receives light from the light emitting element reflected by the reflecting surface.
  • the position adjusting light receiving element is provided in the optical axis adjusting device separately from the ejection defect detecting light receiving element.
  • the invention according to claim 6 Insert and position the holder shaft on the light emitting side and the light receiving side into the shaft holes of the ink jet recording apparatus body, An ink droplet detection apparatus after optical axis adjustment is assembled to the recording apparatus main body by the optical axis adjustment method according to any one of claims 1 to 5. This is a method for assembling the ink droplet detection device.
  • the invention according to claim 7 provides: A light emitting element that emits light, a light emitting element holder that holds the light emitting element, a light receiving element for detecting ejection failure of an ink droplet that receives scattered light after the light emitted from the light emitting element collides with the ink droplet, and A light receiving element holder for holding a light receiving element for detecting ejection failure, a light receiving side holder shaft portion of the light receiving element holder and a light emitting side holder shaft portion of the light emitting element holder, and positioning the light emitting element and the light emitting element for detecting ejection failure
  • the invention according to claim 8 provides: The optical axis adjustment device for an ink droplet detection device according to claim 7, Control means for controlling the rotation adjustment jig, the vertical adjustment jig, or both based on the output value of the position adjusting light receiving element is provided.
  • the optical axis angle between the light emitting element and the light receiving element in the ink drop detection device before assembling the ink jet recording apparatus main body.
  • the optical axis can be easily adjusted.
  • the work efficiency can be improved by automation.
  • the holder shafts on the light emitting side and the light receiving side are respectively inserted and positioned in the shaft holes of the ink jet recording apparatus main body, and the optical axis according to any one of claims 1 to 5. Since the ink droplet detection device after adjustment of the optical axis is assembled to the recording device main body according to the adjustment method, the ink droplet detection device is attached accurately to the recording device main body without requiring adjustment of the optical axis at the time of attachment, and the optical axis angle The parallelism between the adjusted optical axis of the ink droplet detection device and the nozzle hole array of the ink droplet ejection head on the recording device main body side can be obtained, and the detection performance can be improved while improving the assemblability.
  • the optical axis adjustment device is used to adjust the optical axis angle between the light emitting element and the light receiving element in the ink droplet detection device before assembling the ink jet recording apparatus main body. This makes it possible to easily adjust the optical axis in the ink droplet detection device. The work efficiency can be improved by automation.
  • FIG. 1-1 is a schematic front view of an ink jet printer.
  • FIG. 1-2 is a schematic partial perspective view showing a part of the ink jet printer as viewed obliquely from above.
  • FIG. 2 is a view showing an ink droplet detection device provided in the ink jet printer shown in FIG. 1 together with an ink droplet ejection head.
  • FIG. 3 is an external view of the ink droplet detection device.
  • FIG. 4 is a longitudinal sectional view along the length direction of the ink droplet detection device.
  • FIG. 5 is a perspective view of a base member constituting the ink droplet detection device.
  • FIG. 6 is a perspective view of the light emitting module attached to the base member.
  • FIG. 7 is a perspective view of a light receiving module attached to the base member.
  • FIG. 8 is a perspective view of the base member with both modules attached thereto.
  • FIG. 9 is an enlarged vertical sectional view of each module mounting portion.
  • FIG. 10 is an enlarged perspective view of the positioning target formed on the light guide cover of the light receiving module.
  • FIG. 11 is a fixed state diagram of the ink droplet detection device with respect to the optical axis adjustment device.
  • FIG. 12A is a diagram illustrating a state in which the light emitting element holder is rotated and the light emitted from the light emitting element enters the positioning target.
  • FIG. 12B is a diagram illustrating a state in which light emitted from the light emitting element does not enter the positioning target.
  • FIG. 13 is a diagram showing the light receiving module as viewed from the light emitting module side.
  • FIG. 14A is a diagram illustrating that the position of the light beam LB that strikes the light guide cover changes from a to e when the light emitting element is rotated in the horizontal direction.
  • FIG. 14B is a diagram illustrating a change in the output value of the position adjusting light receiving element at positions a to e in FIG. 14A.
  • FIG. 15 is a flow chart for adjusting the optical axis of the light emitting element in the horizontal direction.
  • FIG. 16 is a diagram showing the attachment adjustment state on the light receiving side as seen from the side orthogonal to the light beam.
  • FIG. 17 is a diagram showing a mounting adjustment state on the light receiving side as viewed from the light emitting side.
  • FIG. 18 is a flow chart for adjusting the optical axis in the vertical direction of the light-receiving element for detecting defective ejection.
  • FIG. 19 is a diagram illustrating a state in which the light receiving module is attached to the base member as viewed from the light emitting module side.
  • FIG. 20A is a diagram illustrating a case where a light shielding shape is formed by projecting toward the light receiving surface in a parting shape around the light receiving surface of the ejection failure detection light receiving element as a positioning target.
  • FIG. 20B is a diagram illustrating a change in the output value of the position adjusting light receiving element at positions a to e in FIG. FIG.
  • FIG. 21A is a diagram illustrating a case where a through-hole shape is formed as a parting shape around a light receiving surface of a discharge failure detecting light receiving element as a positioning target.
  • FIG. 21B is a diagram illustrating a change in the output value of the position adjusting light receiving element at positions a to e in FIG.
  • FIG. 22-1 is a diagram showing that the position of the light beam changes from a to e by moving the ejection failure detection light receiving element in the vertical direction in the case of the configuration shown in FIG. 20-1.
  • FIG. 22-2 is a diagram showing a change in the output value of the position adjusting light receiving element at positions a to e in FIG. 22-1.
  • FIG. 23 is a diagram showing a state in which the ink droplet detection device is attached to the casing of the ink jet recording apparatus main body after positioning at the light emitting side positioning position and the light receiving side positioning position.
  • FIG. 1-1 is a front view of an ink jet printer.
  • FIG. 1-2 is a diagram of the ink jet printer as viewed obliquely from above.
  • Numeral 10 in the figure is a casing.
  • a guide shaft 13 and a guide plate 14 are provided in parallel on the left and right side plates 11 and 12 of the housing 10.
  • the carriage 15 is supported by the guide shaft 13 and the guide plate 14.
  • An endless belt (not shown) is attached to the carriage 15.
  • the endless belt is wound around a driving pulley and a driven pulley (not shown) provided on the left and right sides of the housing 10. Then, the driven pulley is driven to rotate along with the rotation of the driving pulley to travel on the endless belt, and the carriage 15 is provided so as to be movable to the left and right as indicated by arrows in FIG.
  • each ink droplet ejection head 16 has a nozzle hole row in which a plurality of nozzle holes are arranged in a straight line on the downward nozzle surface.
  • the linear nozzle hole rows are provided in, for example, two rows in a direction orthogonal to the moving direction of the carriage 15.
  • each ink droplet ejection head 16 is opposed to a single recovery device 18 installed on the bottom plate 17 in the housing 10.
  • the single recovery device 18 is a device that sucks out ink from the nozzle holes where the ink droplet detection device 20 has detected the ink droplet discharge failure and recovers the liquid discharge failure independently by the inkjet printer itself.
  • the ink droplet detection device 20 is installed on the bottom plate 17 in the housing 10 in the direction perpendicular to the moving direction of the carriage 15 next to the single recovery device 18.
  • the ink droplet detection device 20 will be described in detail with reference to FIG.
  • a plate-like platen 22 is installed at a position adjacent to the ink droplet detection device 20.
  • a paper feed table 24 for supplying a sheet 23 as a recording material is provided on the platen 22 in an oblique manner.
  • a paper feed roller for feeding the paper 23 on the paper feed table 24 onto the platen 22 is provided.
  • a transport roller 25 is provided for transporting the paper 23 on the platen 22 in the direction of the arrow and discharging it to the front side.
  • a driving device 26 is further installed at the left end.
  • the driving device 26 drives a feed roller (not shown), a conveying roller 25, and the like, and drives the above-described driving pulley to travel the endless belt and move the carriage 15.
  • the paper 23 is driven on the platen 22 by being driven by the driving device 26 and positioned at a predetermined position, and the carriage 15 is moved to scan the paper 23 and move leftward. Images are recorded on the paper 23 by ejecting ink droplets from the respective nozzle holes in order using the four-color ink droplet ejection heads 16y, 16c, 16m, and 16b. After the image recording, the carriage 15 is returned to the right and the sheet 23 is conveyed by a predetermined amount in the direction of the arrow in FIG.
  • FIG. 2 is a view showing the ink droplet detection device 20 provided in the ink jet printer shown in FIG.
  • nozzle 2 is provided with a head nozzle surface 16a facing downward.
  • a plurality of nozzle holes N1, N2,... Nx are provided in the head nozzle surface 16a. From each nozzle hole, an ink droplet P as a droplet is selectively ejected.
  • the ink droplet detection device 20 detects the ejection failure of the ink droplet P from each nozzle hole N1, N2,... Nx,.
  • the illustrated ink droplet detection apparatus 20 includes a light emitting element 41 that emits light, a collimating lens 42 that forms a light beam LB using the light emitted from the light emitting element 41 as parallel light, and a photodiode that receives the light emitted from the light emitting element 41. And the like.
  • the ink droplet detection device 20 is installed in a direction intersecting the liquid ejection direction so that the light beam LB collides with the ink droplet P ejected from the head nozzle surface 16a and flies, and is fixed distance from the head nozzle surface 16a. At a distant position, the optical axis L of the light beam LB is provided in parallel with the nozzle hole row.
  • the light receiving element 46 is positioned below the optical axis L of the light beam LB so that the light receiving surface 46a is positioned outside the beam diameter of the light beam LB having an elliptical cross section. Is arranged.
  • the ink droplet P is ejected from the nozzle Nx on the head nozzle surface 16a, and the light beam LB collides with the ink droplet P to generate the scattered light S.
  • the scattered light S particularly the forward scattered light S3 is received.
  • Light reception data is obtained by receiving light at the light receiving surface 46a of the element 46 and measuring the output of the light receiving element 46 as a voltage value (light output value). From the output change of the light receiving element 46, whether ink droplets P are ejected, Liquid discharge defects such as bending are detected.
  • FIG. 3 is a diagram showing the appearance of the ink droplet detection device 20.
  • FIG. 4 is a view showing a longitudinal section along the length direction of the ink droplet detection device 20.
  • the ink droplet detection device 20 is provided with a base member 28 having a U-shaped vertical cross-sectional shape obtained by bending both sides of an elongated plate member, and the light emitting module 30 is disposed at one end in the length direction thereof.
  • the light receiving module 32 is covered and installed by the light receiving side module cover 33 in the other end in the length direction.
  • FIG. 5 is a diagram showing the base member 28.
  • the base member 28 has a light emitting side positioning hole 34 having a round hole shape on the light emitting side, and a light receiving side positioning hole 35 having a long oval shape toward the light emitting side on the light receiving side.
  • An elongated and rectangular opening 36 is provided between the gaps 35 in the length direction.
  • a cut-and-raised piece 37 is cut and raised by a folding line in the width direction.
  • the cut-and-raised piece 37 has a guide surface 38 formed on the outer surface and a guide groove 39 in the vertical direction.
  • FIG. 6 is a diagram showing the light emitting module 30.
  • the light emitting module 30 is configured by attaching a light emitting element 41, a collimating lens 42, an aperture 43, a circuit board 44, and the like to a light emitting element holder 40.
  • the light emitting element holder 40 is formed in a three-dimensional inverted T-shape with a square bottom plate portion 40a and a vertical plate portion 40b that rises vertically from the middle position.
  • the bottom plate portion 40a is provided with a light emitting side holder shaft portion 40c projecting downward from the center of the bottom surface (see FIG. 4 and FIG. 9 to be described later), and at the same corner is a diagonal groove-like jig engagement.
  • a protrusion 40e having a joint 40d is provided.
  • the light emitting element 41, the collimating lens 42, the aperture 43, the circuit board 44, and the like are attached to the vertical plate portion 40b.
  • FIG. 7 shows the light receiving module 32.
  • the light receiving module 32 is configured by attaching a light receiving element 46 (see FIG. 4), a circuit board 47, and the like to a light receiving element holder 45 for detecting ejection failure.
  • the light receiving element holder 45 is formed in a three-dimensional L-shape by an elongated plate-like bottom plate portion 45a and a vertical plate portion 45b that rises vertically from one longitudinal edge thereof.
  • the bottom plate portion 45a is provided with a light receiving side holder shaft portion 45c protruding downward from the bottom surface (see FIG. 4 and FIG. 9 described later).
  • the vertical plate portion 45b is provided with the light receiving element 46, the circuit board 47 and the like, and a slide surface 45d parallel to the axis of the light receiving side holder shaft portion 45c is formed on the outer surface.
  • a guide protrusion 45e is formed on the slide surface 45d (see FIG. 9 described later).
  • FIG. 8 is a view showing a state in which the light emitting module 30 and the light receiving module 32 are attached to the base member 28.
  • FIG. 9 is an enlarged vertical cross-sectional view of each module mounting portion.
  • the light emitting module 30 is placed on the receiving surface 28a of the base member 28 with the light emitting side holder shaft portion 40c fitted into the light emitting side positioning hole 34 formed at the positioning position of the base member 28, and the light emitting element 30 A holder 40 is attached to the base member 28 so as to be adjustable.
  • the light emitting module 30 after the rotation adjustment is fixed on the base member 28 by fastening a plurality of fastening members 48.
  • the light emitting element 41 and the collimating lens 42 on the optical axis L of the light beam LB are fixed by performing focus adjustment to obtain a desired beam diameter, and further, the flare light of the beam
  • an aperture 43 is disposed in front of the collimating lens 42.
  • the light emitting module 30 is covered with a module cover 31.
  • the light receiving side holder shaft portion 45 c is fitted into the light receiving side positioning hole 35 formed at the positioning position of the base member 28, so that the light receiving element holder 45 moves vertically with respect to the base member 28. It is attached so that the slide is adjustable.
  • a parting shape 45f is formed around the light receiving surface 46a of the discharge failure detecting light receiving element 46.
  • the light guide cover 53 is integrally attached to the light receiving element holder 45.
  • a positioning target 54 is formed on the light guide cover 53.
  • the light receiving module 32 is covered by the light receiving side module cover 33.
  • FIG. 10 is an enlarged view showing the positioning target 54 formed on the light guide cover 53.
  • the positioning target 54 is a vertical surface passing through the central axis of the light-receiving element 46 for detecting defective ejection, on the downwardly inclined surface 53a of the light guide cover 53 attached integrally to the light-receiving element holder 45 (see FIG. 10). 13 is projected with a narrow width of about 0.2 mm, and the top surface inclined upward is the reflecting surface 54a.
  • the light emitting point 41a of the light emitting element 41 is provided on the axis of the light emitting side holder shaft portion 40c. Accordingly, the light axis 41a can be rotated around the light emitting point 41a, and the optical axis angle can be adjusted in consideration of alignment accuracy while minimizing the positional deviation of the light emitting point 41a.
  • the axis of the light receiving side holder shaft portion 45 c is provided in parallel with the light receiving surface 46 a of the light receiving element 46.
  • the structure can be moved up and down, and can be fastened to the base member 28 with the optical axis L aligned with the center of the light receiving element 46.
  • the light receiving side holder shaft portion 45c is on a vertical plane F described later.
  • the light emitting element holder 40 of the light emitting module 30 is temporarily fastened to the base member 28 by the fastening member 48 with a turnable fastening force.
  • the ink droplet detection device 20 is positioned by the light emitting side holder shaft portion 40c and the light receiving side holder shaft portion 45c and fixed to the optical axis adjusting device 55 (FIG. 15 described later). Step S1).
  • FIG. 11 is a view showing a state where the ink droplet detection device 20 is fixed to the optical axis adjustment device 55.
  • the figure shows a state in which both the light emitting side and light receiving side module covers 31 and 33 are removed. However, for example, on the light emitting side, adjustment can be performed with the module covers 31 and 33 being covered.
  • the light emitting element holder 40 exposes the fastening member through hole and the jig engaging portion 40 d to the outside of the module cover 31.
  • the convex portion of the rotation adjusting jig 50 is engaged with the groove-shaped jig engaging portion 40d of the light emitting element holder 40, and the rotating body 51 of the rotation adjusting jig 50 is rotated, whereby the light emitting side positioning hole is obtained.
  • the light emitting element holder 40 is pivotally adjusted around the light emitting side holder shaft portion 40c that fits in 34, and the light beam LB from the light emitting element 41 can be rotated in the horizontal direction.
  • the optical axis adjusting device 55 includes an installation location where the ink droplet detection device 20 is mounted by positioning with the light emitting side holder shaft portion 40c and the light receiving side holder shaft portion 45c, and the light emitting element holder 40 with respect to the base member 28 on the light emitting side.
  • the rotation adjusting jig 50 that is rotated and adjusted around the holder shaft portion 40c, and the axis of the light receiving side holder shaft portion 45c perpendicular to the rotation adjusting direction of the light emitting element holder 40 with respect to the base member 28.
  • the vertical adjustment jig 52 that is slid in the direction and the light emitting element holder 40 are rotated, and the light emitted from the light emitting element 41 enters the positioning target 54 provided on the light receiving element 46 side for detecting ejection failure.
  • This is provided with a position adjusting light receiving element (reference numeral 56 in FIGS. 12-1 and 12-2) for detecting this from the output value.
  • FIG. 12A shows that the light emitted from the light emitting element 41 is rotated and the light emitted from the light emitting element 41 enters the positioning target 54 provided on the light receiving element 46 side for ejection failure detection.
  • FIG. 6 is a diagram showing a state where detection is performed by an element 56.
  • FIG. 12B is a diagram illustrating a state in which the light emitted from the light emitting element 41 does not enter the positioning target 54.
  • FIG. 13 is a diagram showing the light receiving module 32 as viewed from the light emitting module 30 side.
  • the positioning target 54 is formed so as to protrude narrowly on a vertical surface F of the downward inclined surface 53 a of the light guide cover 53 passing through the central axis of the ejection failure detection light receiving element 46, and upward
  • the top surface which inclines is a reflection surface 54a.
  • the light guide cover 53 is integrally attached to the light receiving element holder 45 that holds the light receiving element 46 for detecting ejection failure, strays the light that enters the interior and is reflected by the parting shape 45f, and the light is received again. 46 so that it does not enter 46.
  • the parting shape 45f has a mirror-finished surface, for example.
  • FIG. 14-1 is a diagram showing that the position of the light beam LB that strikes the light guide cover 53 changes from a to e when the light emitting element 41 is rotated in the horizontal direction.
  • FIG. 14B is a diagram illustrating a change in the output value of the position adjusting light receiving element 56 at the positions a to e.
  • the position of the light beam LB becomes c
  • the light beam LB enters the positioning target 54
  • the reflecting surface 54 a of the positioning target 54 is changed. It is possible to detect the irradiation and adjust the optical axis of the light emitting element 41.
  • FIG. 15 is a diagram showing an optical axis adjustment flow of the light emitting element 41 in the horizontal direction.
  • the ink droplet detection device 20 includes the light emitting side holder shaft portion 40c and the light receiving side.
  • the holder shaft 45c is positioned and fixed to the optical axis adjusting device 55 (see step S1).
  • FIG. 16 is a view of the mounting adjustment state on the light receiving side as viewed from the side orthogonal to the light beam LB.
  • FIG. 17 is a view of the mounting adjustment state on the light receiving side as viewed from the light emitting side.
  • step S2 power is supplied from a power source (not shown) mounted on the optical axis adjusting device 55 or installed outside the optical axis adjusting device 55 to turn on the light emitting element 41.
  • step S3 a detection circuit for the position adjusting light receiving element 56 described later is turned on.
  • step S4 the rotation adjusting jig 50 is rotated to rotate the light emitting element holder 40 (see step S4), and it is determined whether the output value of the position adjusting light receiving element 56 is equal to or greater than an appropriate value (see step S5).
  • the positioning target provided on the side of the light-receiving element 46 for detecting ejection failure is waited until the output value reaches the maximum value, and the light beam LB formed by the light emitted from the light-emitting element 41. 54 is detected from the output value of the position adjusting light receiving element 56 (see step S6).
  • the light emitting element holder 40 is permanently fixed to the base member 28 by tightening the fastening member 48 (see step S7), the detection circuit of the position adjusting light receiving element 56 is turned off (see step S8), and then. Then, the nozzle level adjustment shown in FIG.
  • step S9 When the output value of the light receiving element 56 for position adjustment is less than or equal to the appropriate value, it is checked whether or not all the rotation adjustment ranges have been viewed (see step S9), and if not, the process returns to step S4 and rotation adjustment control is performed.
  • the light emitting element holder 40 is rotated by rotating the tool 50 by a predetermined angle.
  • step S10 when all the rotation adjustment ranges are viewed, it is confirmed whether or not all the vertical adjustment ranges have been viewed next (see step S10), and when not, the vertical adjustment jig 52 is moved up and down by a predetermined length. Thereafter (see step S11), the process returns to step S4, and similarly, the rotation adjusting jig 50 is rotated to rotate the light emitting element holder 40.
  • step S12 when all the rotation adjustment ranges are viewed, an error is displayed (see step S12) and the process is terminated. That is, even if the light emitting element holder 40 is rotated, if the fact that it has entered the positioning target 54 is not detected from the output value of the position adjusting light receiving element 56, the height position of the light receiving element holder 45 is adjusted by sliding. Thereafter, the height position adjustment of the light receiving element holder 45 and the rotation adjustment of the light emitting element holder 40 are repeated until the light emitting element holder 40 is rotated again and the light beam LB enters the positioning target 54.
  • FIG. 18 is a diagram showing an optical axis adjustment flow in the vertical direction of the ejection failure detection light receiving element 46, that is, a nozzle level adjustment flow.
  • the light receiving element holder 45 is permanently fixed to the base member 28 by tightening the fastening member 49 (see step S24), the light emission of the light emitting element 41 is turned off, and the discharge defect detecting light receiving element 46 is detected. Is turned off (see step S25), and the process ends.
  • step S26 When the output value of the ejection failure detection light receiving element 46 is not an appropriate value, it is checked whether or not all the vertical adjustment ranges have been viewed (see step S26). The height of the light receiving element holder 45 is adjusted until the adjustment jig 52 is moved up and down by a predetermined length and the height position of the light receiving element holder 45 is slid to adjust the output value of the light receiving element 46 for detecting ejection failure to an appropriate value. The position adjustment is repeated. On the other hand, when all the vertical adjustment ranges are viewed, an error is displayed (see step S27), the light emission of the light emitting element 41 is turned off, and the detection circuit for the discharge defect detecting light receiving element 46 is displayed. Is turned off (see step S25), and the process ends.
  • FIG. 19 is a view showing a state in which the light receiving module 32 is attached to the base member 28 as viewed from the light emitting module 30 side.
  • a guide protrusion 45e formed on the slide surface 45d of the light receiving element holder 45 is fitted into the guide groove 39 provided in the cut and raised piece 37 of the base member 28, and the slide surface 45d of the light receiving element holder 45 is fitted to the base member.
  • the movement of the light receiving element holder 45 is guided by contact with a guide surface 38 formed on the cut and raised piece 37 of the 28, and the light receiving module 32 after the slide adjustment up and down fastens a plurality of fastening members 49. By doing so, it is fixed on the base member 28.
  • the optical axis adjustment device 55 is provided with a control means for controlling the rotation adjustment jig 50 or the vertical adjustment jig 52 or both based on the output value of the light receiving element 56 for position adjustment.
  • the optical axis adjustment of the ink droplet detection device 20 is automated by controlling both the jigs 50 and 52 based on the detection output of the position adjusting light receiving element 56, thereby improving the working efficiency and stabilizing the detection performance. It is also possible to plan.
  • the position adjusting light receiving element 56 that receives the light from the light emitting element 41 reflected by the reflecting surface 54 a is provided in the optical axis adjusting device 55 separately from the ejection defect detecting light receiving element 46.
  • the ejection failure detection light receiving element 46 can also be used as the position adjusting light receiving element 56.
  • FIG. 20-1, FIG. 20-2, FIG. 21-1, and FIG. 21-2 are examples in which the ejection failure detection light receiving element 46 is also used as the position adjustment light receiving element 56.
  • FIG. FIG. 20A is a diagram illustrating a case where a light shielding shape 57 is formed as a positioning target 54 in a parting shape 45f around the light receiving surface 46a of the ejection failure detection light receiving element 46 so as to protrude toward the light receiving surface 46a.
  • FIG. 21A is a diagram illustrating a case where a through hole shape 58 is formed by making a through hole or the like.
  • the light shielding shape 57 passes through the central axis of the ejection failure detection light receiving element 46 of the light receiving element holder 45, and on the vertical plane F passing through the light receiving side holder shaft 45c as described above, the ejection failure detection light receiving element 46.
  • the light emitted from the light emitting element 41 is prevented from directly entering the light receiving element 46 for detecting ejection failure.
  • the through hole shape 58 allows light emitted from the light emitting element 41 to pass through the vertical surface F of the light receiving element holder 45 passing through the central axis of the discharge defect detecting light receiving element 46, and the light is directly discharged defectively. It is formed so as to allow entry into the light receiving element 46 for detection.
  • FIGS. 20-2 and 21-2 are diagrams for position adjustment at the a to e positions. It is a figure which shows the change of the output value of the light receiving element.
  • FIG. 20-2 when the light emitting element 41 is rotated in the horizontal direction and the position of the light beam LB becomes c, the light beam LB hits the light shielding shape 57 and is received by the light emitting element 46 for detecting ejection failure. Since the output value of the position adjusting light receiving element 56 becomes the smallest, it is possible to detect that the light beam LB has entered the positioning target 54. On the other hand, in the case of FIG.
  • the light emitting element 41 when the light emitting element 41 is rotated in the horizontal direction and the position of the light beam LB becomes c, the light beam LB enters the through-hole shape 58, and the light reception for detecting ejection failure is received.
  • the output value of the position adjusting light receiving element 56 becomes the largest, so that it can be detected that the light beam LB enters the positioning target 54.
  • FIG. 22-1 is a diagram showing that the position of the light beam LB changes from a to e when the ejection failure detection light receiving element 46 is moved in the vertical direction in the case of the configuration shown in FIG. 20-1. It is.
  • FIG. 22-2 is a diagram showing a change in the output value of the position adjusting light receiving element 56 at the positions a to e.
  • the output value of the light-receiving element 56 for position adjustment shows a minimum value at the positions c to d.
  • the light beam LB hits during this time, thereby detecting highly efficient scattered light. If the noise level NL is experimentally obtained from the beam cross section and the target shape, the adjustment can be easily performed.
  • FIG. 23 shows a state in which the ink droplet detection device 20 is attached to the casing 10 of the ink jet recording apparatus main body after positioning at the light emitting side positioning position and the light receiving side positioning position, respectively.
  • the ink droplet detection device 20 After the light emitting module 30 and the light receiving module 32 are attached to the base member 28 and the module covers 31 and 33 are covered and the angle is adjusted, the ink droplet detection device 20 has a light emitting side holder shaft that penetrates the light emitting side positioning hole 34 as shown in the figure.
  • the light receiving side holder shaft portion 45c penetrating the portion 40c and the light receiving side positioning hole 35 is fitted into the positioning shaft holes 10a and 10b, respectively, and attached to the casing 10 of the ink jet recording apparatus main body.
  • One positioning shaft hole 10a is formed in a round hole shape into which the light emitting side holder shaft portion 40c is just inserted, and the other positioning shaft hole 10b is formed in an oval shape that is long in the direction of the one positioning shaft hole 10
  • the optical axis adjustment method of the ink droplet detection device, the method of assembling the ink droplet detection device, and the optical axis adjustment device according to the present invention are useful for an ink jet recording apparatus main body such as a printer, a copy, and a facsimile.
  • it is suitable for adjusting the optical axis between the light emitting element and the light receiving element in the ink droplet detection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Ink Jet (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 発光素子ホルダが回動されて、発光素子が発した光により形成された光ビームが、吐出不良検出用受光素子側に設けられている位置決めターゲットに入ったことが、位置調節用受光素子の出力値から検知され、発光素子ホルダがベース部材に本固定される一方、発光素子ホルダが回動されても、位置決めターゲットに入ったことが、位置調節用受光素子の出力値から検知されないときは、受光素子ホルダの高さ位置がスライド調節された後、再度発光素子ホルダが回動され、光ビームが位置決めターゲットに入るまで、受光素子ホルダの高さ位置調節と発光素子ホルダの回動調節が繰り返される。

Description

インク滴検知装置の光軸調節方法および組付け方法、ならびに光軸調節装置
 この発明は、用紙等の記録材に画像を記録するプリンタ、コピー、ファクシミリなどのインクジェット式記録装置本体に、インク滴吐出ヘッドから吐出されるインク滴の吐出状態を検知するインク滴検知装置を組付けるインク滴検知装置の組付け方法に関する。および、インク滴検知装置における発光素子と受光素子間の光軸調節を行うインク滴検知装置の光軸調節方法に関する。ならびに、その光軸調節方法で光軸調節を行うときに用いる光軸調節装置に関する。
 従来、この種のインクジェット式記録装置としては、例えば特許文献1に記載されているものがある。特許文献1には、インク滴検知装置として、ベース部材に発光モジュールと受光モジュールを固定してなり、発光側は上下方向に角度調節可能とされ、受光側は水平移動調節可能とされて、光軸調節を行うことが開示されている。そして、インク滴吐出ヘッドを移動しながら順次そのインク滴吐出ヘッドからインク滴を吐出し、飛翔するインク滴に発光側から発したレーザ光を当てて、そのとき受光側で受光する受光光量変化から、インク滴の不吐出や曲がりなどの吐出状態を検知することが開示されている。
 このような特許文献1に記載されているインクジェット式記録装置では、記録装置本体にインク滴検知装置を組付けた後、そのインク滴検知装置における発光素子と受光素子間の光軸調節を行う構成であった。
特許第3509706号公報
 ところが、インク滴吐出ヘッドの移動に伴い、レーザ光の傾き26度の光軸にタイミングを合わせてインク滴吐出ヘッドの各ノズル穴からインク滴を吐出し、飛翔するインク滴に発光側から発したレーザ光を当てることは、インク滴検知装置と記録装置本体との間に何らかの平面的な位置決め精度が確保されていないと、なかなか難しいと思われる。さらに、インク滴検知装置の光軸とインク滴吐出ヘッドのノズル穴列との平行度を出す光軸調節においては、発光側は上下方向調節として傾きがばらつかないように配慮されているが、受光側を含めてインク滴吐出ヘッドのノズル穴列との位置関係については何ら配慮されていなかった。
 そして、特許文献1に記載されているようなインクジェット式記録装置では、記録装置本体にインク滴検知装置を組付けた後、そのインク滴検知装置における発光素子と受光素子間の光軸調節を行う構成であったから、光軸調節が面倒であるという問題があった。
 そこで、この発明の第1の目的は、インク滴検知装置における光軸調節を容易とすることにある。
 この発明の第2の目的は、インク滴検知装置の光軸とインクジェット式記録装置本体側のインク滴吐出ヘッドに有するノズル穴列との間の平行度を容易に出すことができるようにすることにある。
 請求項1に係る発明は、
 光を発する発光素子と、その発光素子を保持する発光素子ホルダと、前記発光素子が発した光により形成された光ビームがインク滴に衝突した後の散乱光を受光するインク滴の吐出不良検出用受光素子と、その吐出不良検出用受光素子を保持する受光素子ホルダと、その受光素子ホルダの受光側ホルダ軸部と前記発光素子ホルダの発光側ホルダ軸部で仮位置決めして前記発光素子ホルダと前記受光素子ホルダとが各々取り付けられるベース部材とが設けられ、
 前記発光素子ホルダが前記ベース部材に対し、前記発光側ホルダ軸部を中心として回動調節自在に保持される一方、
 前記受光素子ホルダが前記ベース部材に対し、前記発光素子ホルダの回動調節方向と直交する前記受光側ホルダ軸部の軸方向にスライド調節自在に保持されている、
 インク滴検知装置にあって、その光軸調節を行う光軸調節方法である。
 そして、そのような光軸調節方法において、
(1)前記インク滴検知装置が、前記発光側ホルダ軸部および前記受光側ホルダ軸部で位置決めして光軸調節装置に固定され、
(2)電源供給して前記発光素子の発光がオンされるとともに、位置調節用受光素子の検出回路がオンされた後、
(3)前記発光素子ホルダが回動されて、前記発光素子が発した光により形成された光ビームが、前記吐出不良検出用受光素子側に設けられている位置決めターゲットに入ったことが、前記位置調節用受光素子の出力値から検知され、
(4)前記発光素子ホルダが前記ベース部材に本固定される一方、
(5)前記発光素子ホルダが回動されても、前記位置決めターゲットに入ったことが、前記位置調節用受光素子の出力値から検知されないときは、前記受光素子ホルダの高さ位置がスライド調節された後、再度前記発光素子ホルダが回動され、前記光ビームが前記位置決めターゲットに入るまで、前記受光素子ホルダの高さ位置調節と前記発光素子ホルダの回動調節が繰り返される、
 ことを特徴とする。
 請求項2に係る発明は、
 請求項1に記載のインク滴検知装置の光軸調節方法において、
 前記発光素子ホルダが前記ベース部材に本固定された後、
(6)前記吐出不良検出用受光素子の検出回路がオンされるとともに、前記受光素子ホルダの高さ位置がスライド調節されて、前記吐出不良検出用受光素子の出力値が適正値か判断され、
(7)適正値であるときは、前記受光素子ホルダが前記ベース部材に本固定される一方、(8)適正値でないときは、再度前記受光素子ホルダの高さ位置がスライド調節されて、前記吐出不良検出用受光素子の出力値が適正値に入るまで、前記受光素子ホルダの高さ位置調節が繰り返される、
 ことを特徴とする。
 請求項3に係る発明は、
 請求項1または2に記載のインク滴検知装置の光軸調節方法において、
 前記位置調節用受光素子として、前記吐出不良検出用受光素子が使用され、前記位置決めターゲットとして、前記受光素子ホルダの、前記吐出不良検出用受光素子の中心軸を通る垂直面上に、前記吐出不良検出用受光素子を被って、前記発光素子が発した光が直に前記吐出不良検出用受光素子に入ることを阻止する遮光形状が形成されていることを特徴とする。
 請求項4に係る発明は、
 請求項1または2に記載のインク滴検知装置の光軸調節方法において、
 前記位置調節用受光素子として、前記吐出不良検出用受光素子が使用され、前記位置決めターゲットとして、前記受光素子ホルダの、前記吐出不良検出用受光素子の中心軸を通る垂直面上に、前記発光素子が発した光を透過してその光が直に前記吐出不良検出用受光素子に入ることを許容する透光形状が形成されていることを特徴とする。
 請求項5に係る発明は、
 請求項1または2に記載のインク滴検知装置の光軸調節方法において、
 前記位置決めターゲットが、前記受光素子ホルダの、前記吐出不良検出用受光素子の中心軸を通る垂直面上に反射面を設けて形成され、その反射面で反射された前記発光素子からの光を受光する位置調節用受光素子が、前記吐出不良検出用受光素子とは別に前記光軸調節装置に設けられていることを特徴とする。
 請求項6に係る発明は、
 インクジェット式記録装置本体の軸穴に各々発光側および受光側のホルダ軸部を挿入して位置決めし、
 請求項1ないし5のいずれか1に記載の光軸調節方法により光軸調節後のインク滴検知装置が前記記録装置本体に組付けられる、
 ことを特徴とするインク滴検知装置の組付け方法である。
 請求項7に係る発明は、
 光を発する発光素子と、その発光素子を保持する発光素子ホルダと、前記発光素子が発した光がインク滴に衝突した後の散乱光を受光するインク滴の吐出不良検出用受光素子と、その吐出不良検出用受光素子を保持する受光素子ホルダと、その受光素子ホルダの受光側ホルダ軸部と前記発光素子ホルダの発光側ホルダ軸部で位置決めして前記発光素子と前記吐出不良検出用受光素子とが各々定位置で取り付けられるベース部材とが設けられ、
 前記発光素子ホルダが前記ベース部材に対し、前記発光側ホルダ軸部を中心として回動調節自在に取り付けられる一方、
 前記受光素子ホルダが前記ベース部材に対し、前記発光素子ホルダの回動調節方向と直交する前記受光側ホルダ軸部の軸方向にスライド調節自在に取り付けられている、
 インク滴検知装置にあって、その光軸調節を行う光軸調節装置である。
 そして、そのような光軸調節装置にあって、
 前記発光側ホルダ軸部および前記受光側ホルダ軸部で位置決めして前記インク滴検知装置が取り付けられる設置場所と、
 前記発光素子ホルダが前記ベース部材に対し、前記発光側ホルダ軸部を中心として回動調節される回転調節治具と、
 前記受光素子ホルダが前記ベース部材に対し、前記発光素子ホルダの回動調節方向と直交する前記受光側ホルダ軸部の軸方向にスライド調節される垂直調節治具と、
 前記発光素子ホルダが回動されて、前記発光素子が発した光が、前記受光素子側に設けられている位置決めターゲットに入ったことを、出力値から検知する位置調節用受光素子と、
 が備えられていることを特徴とする。
 請求項8に係る発明は、
 請求項7に記載のインク滴検知装置の光軸調節装置において、
 前記位置調節用受光素子の出力値に基づき、前記回転調節治具もしくは前記垂直調節治具、またはそれらの双方を制御する制御手段が備えられていることを特徴とする。
 請求項1~5に係る発明によれば、インクジェット式記録装置本体に組付ける前に、インク滴検知装置における発光素子と受光素子間の光軸角度調節を行うことを可能として、インク滴検知装置における光軸調節を容易とすることができる。自動化による作業効率の向上を図ることもできる。
 請求項6に係る発明によれば、インクジェット式記録装置本体の軸穴に各々発光側および受光側のホルダ軸部を挿入して位置決めし、請求項1ないし5のいずれか1に記載の光軸調節方法により光軸調節後のインク滴検知装置が記録装置本体に組付けられる構成とするので、記録装置本体に取り付け時の光軸調節を不要としてインク滴検知装置を精度よく取り付け、光軸角度調節後のインク滴検知装置の光軸と記録装置本体側のインク滴吐出ヘッドのノズル穴列との平行度を出し、組み立て性を向上しながら検知性能のアップを図ることができる。
 請求項7、8に係る発明によれば、光軸調整装置を用いることで、インクジェット式記録装置本体に組付ける前に、インク滴検知装置における発光素子と受光素子間の光軸角度調節を行うことを可能として、インク滴検知装置における光軸調節を容易とすることができる。自動化による作業効率の向上を図ることもできる。
図1-1は、インクジェットプリンタの概略正面図である。 図1-2は、インクジェットプリンタの一部を斜め上から見て示す概略部分斜視図である。 図2は、図1に示すインクジェットプリンタに備えるインク滴検知装置をインク滴吐出ヘッドとともに示す図である。 図3は、インク滴検知装置の外観図である。 図4は、インク滴検知装置の長さ方向に沿う縦断面図である。 図5は、インク滴検知装置を構成するベース部材の斜視図である。 図6は、ベース部材に取り付ける発光モジュールの斜視図である。 図7は、ベース部材に取り付ける受光モジュールの斜視図である。 図8は、ベース部材に両モジュールを取り付けた状態の斜視図である。 図9は、各モジュール取付部の拡大縦断面図である。 図10は、受光モジュールの導光カバーに形成された位置決めターゲットの拡大斜視図である。 図11は、光軸調節装置に対するインク滴検知装置の固定状態図である。 図12-1は、発光素子ホルダが回動されて、発光素子が発した光が位置決めターゲットに入っている状態を示す図である。 図12-2は、発光素子が発した光が位置決めターゲットに入っていない状態を示す図である。 図13は、受光モジュールを発光モジュール側から見て示す図である。 図14-1は、発光素子を水平方向に回動すると導光カバーに当たる光ビームLBの位置がa~eと変化することを示す図である。 図14-2は、図14-1のa~e位置における位置調節用受光素子の出力値の変化を示す図である。 図15は、発光素子の水平方向の光軸調節フロー図である。 図16は、受光側の取付調節状態を光ビームと直交する側から見て示す図である。 図17は、受光側の取付調節状態を発光側から見て示す図である。 図18は、吐出不良検出用受光素子の垂直方向の光軸調節フロー図である。 図19は、ベース部材に対する受光モジュールの取り付け状態を発光モジュール側から見て示す図である。 図20-1は、位置決めターゲットとして吐出不良検出用受光素子の受光面まわりの見切り形状に受光面側に突出して遮光形状を形成した場合を示す図である。 図20-2は、図20-1のa~e位置における位置調節用受光素子の出力値の変化を示す図である。 図21-1は、位置決めターゲットとして吐出不良検出用受光素子の受光面まわりの見切り形状に透孔形状を形成した場合を示す図である。 図21-2は、図21-1のa~e位置における位置調節用受光素子の出力値の変化を示す図である。 図22-1は、図20-1に示す構成とした場合において吐出不良検出用受光素子を垂直方向に移動して光ビームの位置がa~eと変化することを示す図である。 図22-2は、図22-1のa~e位置における位置調節用受光素子の出力値の変化を示す図である。 図23は、発光側位置決め位置および受光側位置決め位置で各々位置決めし、インク滴検知装置が、インクジェット式記録装置本体の筐体に取り付けられた状態を示す図である。
 以下、図面を参照しつつ、この発明の実施の最良形態につき説明する。図1-1は、インクジェットプリンタを正面から見た図である。図1-2は、インクジェットプリンタの部を斜め上から見た図である。
 図中符号10は、筐体である。筐体10の左右の側板11、12には、ガイドシャフト13とガイド板14とが平行に掛け渡して設けられている。それらガイドシャフト13とガイド板14で、キャリッジ15が支持される。キャリッジ15には、不図示の無端ベルトが取り付けられている。無端ベルトは、筐体10内の左右に設ける図示しない駆動プーリと従動プーリに掛けまわされる。そして、駆動プーリの回転とともに従動プーリを従動回転して無端ベルトを走行し、キャリッジ15が図1-1中で矢示するごとく左右に移動自在に備えられている。
 キャリッジ15には、イエロ、シアン、マゼンタ、ブラックの4色のインク滴吐出ヘッド16y、16c、16m、16bがキャリッジ15の移動方向に並べて搭載される。各インク滴吐出ヘッド16は、下向きのノズル面に複数のノズル穴を直線状に並べてノズル穴列を有している。図示しないが、直線状のノズル穴列は、キャリッジ15の移動方向と直交する方向に例えば2列に設けられている。
 そして、キャリッジ15が図示する右端のホームポジションにあるときには、各インク滴吐出ヘッド16が、筐体10内の底板17上に設置する単独回復装置18と対向されるようになっている。単独回復装置18は、インク滴検知装置20でインク滴吐出不良を検出したノズル穴からインクを吸い出し、インクジェットプリンタ自身で単独で液体吐出不良を回復する装置である。
 インク滴検知装置20は、単独回復装置18の隣りにおいて、筐体10内の底板17上に、キャリッジ15の移動方向と直交する方向に細長に設置されている。このインク滴検知装置20については、図2以下を用いて詳しく説明する。
 インク滴検知装置20に隣接する位置には、板状のプラテン22が設置される。そのプラテン22の背面側には、プラテン22上に記録材である用紙23を供給する給紙台24が斜めに立てて設けられている。また、図示は省略するが、給紙台24上の用紙23をプラテン22上に送り出す給紙ローラが備えられている。さらには、プラテン22上の用紙23を矢示方向に搬送して正面側に排出する搬送ローラ25が設けられている。
 筐体10内の底板17上には、さらに左端に駆動装置26が設置されている。駆動装置26は、不図示の給紙ローラや搬送ローラ25などを駆動するとともに、上述した駆動プーリを駆動することにより無端ベルトを走行してキャリッジ15を移動する。
 そして、記録時は、駆動装置26で駆動して用紙23がプラテン22上に移動され、所定位置に位置決めされるとともに、キャリッジ15を移動して用紙23上を走査し、左方向に移動しながら4色のインク滴吐出ヘッド16y、16c、16m、16bを用いて順にそれぞれのノズル穴からインク滴を吐出して用紙23上に画像が記録される。画像記録後、キャリッジ15が右方向に戻されるとともに、用紙23が図1-2中の矢示方向に所定量搬送される。
 次いで、再びキャリッジ15を左方向に移動しながら往路で4色のインク滴吐出ヘッド16y、16c、16m、16bを用いて順にそれぞれのノズル穴からインク滴を吐出して用紙23上に画像が記録される。そして、同様に画像記録後、キャリッジ15が右方向に戻されるとともに、用紙23が図1-2中の矢示方向に所定量搬送される。以下同様に繰り返し、1枚の用紙23上に画像が記録される。図2は、図1に示すインクジェットプリンタに備えるインク滴検知装置20を、インク滴吐出ヘッド16とともに示す図である。
 図2に示すインク滴吐出ヘッド16には、下向きにヘッドノズル面16aが設けられている。ヘッドノズル面16aには、複数のノズル穴N1、N2、………Nx、………Nnを直線的に並べてあけてノズル列が形成されている。各ノズル穴からは、選択的に液滴であるインク滴Pが吐出される。
 インク滴検知装置20は、インク滴吐出ヘッド16の各ノズル穴N1、N2、………Nx、………Nnからのインク滴Pの吐出不良を検出する。図示インク滴検知装置20には、光を発する発光素子41、その発光素子41が発した光を平行光として光ビームLBを形成するコリメートレンズ42、発光素子41が発した光を受光するフォトダイオード等の吐出不良検出用受光素子46などが備えられている。
 インク滴検知装置20は、光ビームLBが、ヘッドノズル面16aから吐出して飛翔するインク滴Pに衝突するように液吐出方向と交差する方向に向けて設置され、ヘッドノズル面16aから一定距離離れた位置において、光ビームLBの光軸Lがノズル穴列と平行となるように設けられている。
 一方、受光素子46は、断面楕円形状の光ビームLBのビーム径を外れた位置に受光面46aが位置するように、この例では光ビームLBの光軸Lに対して角度θ開いた下方位置に配置されている。
 そして、ヘッドノズル面16aのノズルNxからインク滴Pを吐出し、そのインク滴Pに光ビームLBが衝突することにより散乱光Sを生じ、その散乱光Sのうち、特に前方散乱光S3が受光素子46の受光面46aで受光されてその受光素子46の出力を電圧値(光出力値)として計測することにより受光データを得、受光素子46の出力変化から、インク滴Pの吐出の有無、曲がりなどの液吐出不良が検出されるようになっている。
 図3は、インク滴検知装置20の外観を示す図である。図4には、インク滴検知装置20の長さ方向に沿う縦断面を示す図である。インク滴検知装置20には、図示するとおり、細長な板材の両側を折り曲げたU字状縦断面形状をなすベース部材28が備えられ、その長さ方向一端内に、発光モジュール30が発光側モジュールカバー31によって被われて設置され、また長さ方向他端内に、受光モジュール32が受光側モジュールカバー33によって被われて設置されている。
 図5は、ベース部材28を示す図である。ベース部材28には、発光側に丸孔形状の発光側位置決め孔34が、受光側に発光側に向けて長い小判型形状の受光側位置決め孔35があけられており、それらの位置決め孔34、35間に長さ方向に細長で矩形状の開口36が設けられている。また、受光側位置決め孔35を挟んで幅方向両側には、幅方向の折り曲げ線で折り曲げて切り起こし片37が切り起こされている。切り起こし片37には、外面にガイド面38が形成されるとともに、各々縦方向のガイド溝39が形成されている。
 図6は、発光モジュール30を示す図である。発光モジュール30は、発光素子ホルダ40に、発光素子41、コリメートレンズ42、アパーチャ43、回路基板44などが取り付けられて構成されている。発光素子ホルダ40は、四角い底板部40aと、その真ん中位置から垂直に立ち上がる縦板部40bとで、立体逆T字型形状に形成されている。そして、その底板部40aには、底面中央から下向きに突出して発光側ホルダ軸部40cが設けられる(図4および後述の図9参照)とともに、一コーナーに、対角線方向に溝状の治具係合部40dを有する突部40eが設けられている。一方、縦板部40bには、前述の発光素子41、コリメートレンズ42、アパーチャ43、回路基板44などが取り付けられている。
 図7は、受光モジュール32を示す図である。受光モジュール32は、吐出不良検出用受光素子ホルダ45に、受光素子46(図4参照)、回路基板47などが取り付けられて構成されている。受光素子ホルダ45は、細長板状の底板部45aと、その一方の長手辺縁から垂直に立ち上がる縦板部45bとで、立体L字型形状に形成されている。そして、その底板部45aには、底面から下向きに突出して受光側ホルダ軸部45cが設けられている(図4および後述の図9参照)。一方、縦板部45bには、前述の受光素子46、回路基板47などが取り付けられているとともに、外面に受光側ホルダ軸部45cの軸心と平行なスライド面45dが形成されており、そのスライド面45dにはガイド突起45eが形成されている(後述の図9参照)。
 図8は、ベース部材28に発光モジュール30と受光モジュール32を取り付けた状態を示す図である。図9は、各モジュール取付部の拡大縦断面を示す図である。発光モジュール30は、その発光側ホルダ軸部40cがベース部材28の位置決め位置に形成されている発光側位置決め孔34にはめ付けられて、ベース部材28の受け面28a上に載置され、発光素子ホルダ40がベース部材28に対して回動調節自在に取り付けられている。回動調節後の発光モジュール30は、複数の締結部材48を締結することによりベース部材28上に固定されるようになっている。これにより、受け面28aと平行に、発光素子41と、その光ビームLBの光軸L上のコリメートレンズ42とが所望のビーム径を得るために焦点調節を行い固定され、さらにビームのフレアー光をカットするために、コリメートレンズ42の前方にアパーチャ43が配されている。そして、発光モジュール30は、モジュールカバー31によって被われる。
 一方、受光モジュール32は、その受光側ホルダ軸部45cがベース部材28の位置決め位置に形成されている受光側位置決め孔35にはめ付けられて、受光素子ホルダ45がベース部材28に対して上下にスライド調節自在に取り付けられている。受光素子ホルダ45には、吐出不良検出用受光素子46の受光面46aのまわりに見切り形状45fが形成されている。ここで、受光素子ホルダ45には、導光カバー53が一体的に取り付けられる。導光カバー53には、例えば図10に示すように、位置決めターゲット54が形成されている。そして、受光モジュール32は、受光側モジュールカバー33によって被われる。
 図10は、導光カバー53に形成された位置決めターゲット54を拡大して示す図である。この図10から判るように、位置決めターゲット54は、受光素子ホルダ45に一体的に取り付けた導光カバー53の下向き傾斜面53aの、吐出不良検出用受光素子46の中心軸を通る垂直面(図13の符号F)上に、0.2mm程度の細幅で突出して形成され、上向きに傾斜する頂面が反射面54aとなっている。
 なお、図9から判るように、このとき発光側ホルダ軸部40cの軸心上に発光素子41の発光点41aが設けられている。これにより、光軸Lの発光点41aを中心として回転でき、発光点41aの位置ズレを最小限にとどめて、位置合わせ精度を考慮した光軸角度調節を行うことができる。一方、受光側ホルダ軸部45cの軸心が受光素子46の受光面46aと平行に設けられている。これにより、上下移動可能な構成とし、光軸Lを受光素子46の中心に合わせてベース部材28に締結を可能としている。なお、受光側ホルダ軸部45cは、後述する垂直面F上にある。
 回動調節前、インク滴検知装置20では、発光モジュール30の発光素子ホルダ40が、締結部材48にてベース部材28に、回動可能な締結力で仮締結されている。この状態で、まず図11に示すように、インク滴検知装置20が、発光側ホルダ軸部40cおよび受光側ホルダ軸部45cで位置決めして光軸調節装置55に固定される(後述の図15のステップS1参照)。
 図11は、インク滴検知装置20が光軸調節装置55に固定された状態を示す図である。図では、発光側および受光側のモジュールカバー31、33をともに外した状態を示すが、調節は、それらのモジュールカバー31、33を被せた状態でも行うことができるように、例えば発光側では、発光素子ホルダ40がその締結部材貫通孔と治具係合部40dとをモジュールカバー31外に露出するようになっている。そして、発光素子ホルダ40の溝状の治具係合部40dに回転調節治具50の凸部を係合してその回転調節治具50の回転体51を回転することにより、発光側位置決め孔34にはまり込む発光側ホルダ軸部40cを中心として発光素子ホルダ40が回動調節され、発光素子41からの光ビームLBを水平方向に回動することができる。
 光軸調節装置55には、発光側ホルダ軸部40cおよび受光側ホルダ軸部45cで位置決めしてインク滴検知装置20が取り付けられる設置場所と、発光素子ホルダ40がベース部材28に対し、発光側ホルダ軸部40cを中心として回動調節される回転調節治具50と、受光素子ホルダ45がベース部材28に対し、発光素子ホルダ40の回動調節方向と直交する受光側ホルダ軸部45cの軸方向にスライド調節される垂直調節治具52と、発光素子ホルダ40が回動されて、発光素子41が発した光が、吐出不良検出用受光素子46側に設けられている位置決めターゲット54に入ったことを、出力値から検知する位置調節用受光素子(図12-1、12-2の符号56)とが備えられている。
 図12-1は、発光素子ホルダ40が回動されて、発光素子41が発した光が、吐出不良検出用受光素子46側に設けられている位置決めターゲット54に入ったことを位置調節用受光素子56により検知している状態を示す図である。図12-2は、発光素子41が発した光が位置決めターゲット54に入っていない状態を示す図である。
 図13は、受光モジュール32を発光モジュール30側から見て示す図である。この図13から判るように、位置決めターゲット54は、導光カバー53の下向き傾斜面53aの、吐出不良検出用受光素子46の中心軸を通る垂直面F上に細幅で突出して形成され、上向きに傾斜する頂面が反射面54aとなっている。垂直面F上には、上述したように、受光側ホルダ軸部45cがある。導光カバー53は、吐出不良検出用受光素子46を保持する受光素子ホルダ45に一体的に取り付けられ、内部に入り込んで見切り形状45fで反射された光を迷光処理して、光が再び受光素子46に入射することがないようにしている。見切り形状45fは、表面が、例えば鏡面仕上げされている。
 図14-1は、発光素子41を水平方向に回動すると、導光カバー53に当たる光ビームLBの位置が、a~eと変化することを示す図である。図14-2は、そのa~e位置における位置調節用受光素子56の出力値の変化を示す図である。図から判るとおり、位置調節用受光素子56の出力値がもっとも大きくなったことから、光ビームLBの位置がcとなって光ビームLBが位置決めターゲット54に入り、位置決めターゲット54の反射面54aを照射したことを検知し、発光素子41の光軸調節を行うことができる。
 図15は、発光素子41の水平方向の光軸調節フローを示す図である。上述したとおり、発光素子ホルダ40が締結部材48にてベース部材28に仮締結されている状態で、まず図11に示すように、インク滴検知装置20が、発光側ホルダ軸部40cおよび受光側ホルダ軸部45cで位置決めして光軸調節装置55に固定される(ステップS1参照)。
 図16は、受光側の取付調節状態を光ビームLBと直交する側から見た図である。図17は、受光側の取付調節状態を発光側から見た図である。インク滴検知装置20が光軸調節装置55に取り付けられると、垂直調節治具52で受光側モジュールカバー33外に突出した受光素子ホルダ45の上部角部45gと下部の受部45hを上下に、受光側ホルダ軸部45cと平行に挟み込み、受光側ホルダ軸部45cと受光側位置決め孔35との嵌合、およびガイド突起45eとガイド溝39との嵌合によって、上下方向にスライド調節されるように保持される。前述したとおり、スライド調節後は、複数の締結部材49を締結することにより、受光モジュール32は、ベース部材28上に固定される。
 次いで、図15に示すように、光軸調節装置55に搭載したり光軸調節装置55の外に設置したりする不図示の電源から、電源供給して発光素子41の発光がオンされるとともに(ステップS2参照)、後述する位置調節用受光素子56の検出回路がオンされる(ステップS3参照)。その後、回転調節治具50が回転されて発光素子ホルダ40が回動され(ステップS4参照)、位置調節用受光素子56の出力値が適正値以上か判断される(ステップS5参照)。
 適正値以上のときは、出力値が最大値になるのを待って、発光素子41が発した光により形成された光ビームLBが、吐出不良検出用受光素子46側に設けられている位置決めターゲット54に入ったことが、位置調節用受光素子56の出力値から検知される(ステップS6参照)。そして、調節後は、締結部材48を締め付けることによって発光素子ホルダ40がベース部材28に本固定され(ステップS7参照)、位置調節用受光素子56の検出回路がOFFされ(ステップS8参照)、続いて図18に示すノズルレベル調節へと移る。
 位置調節用受光素子56の出力値が適正値以下のときには、すべての回動調節範囲を見たか否かを確認し(ステップS9参照)、見ていないときには、ステップS4へと戻って回転調節治具50が所定角度回転されて発光素子ホルダ40が回動される。他方、すべての回動調節範囲を見たときには、次にすべての上下調節範囲を見たか否かを確認し(ステップS10参照)、見ていないときには、垂直調節治具52を所定長さ上下動して後(ステップS11参照)、ステップS4へと戻り、同様に回転調節治具50が回転されて発光素子ホルダ40が回動される。他方、すべての回動調節範囲を見たときには、エラー表示をして(ステップS12参照)終了される。すなわち、発光素子ホルダ40が回動されても、位置決めターゲット54に入ったことが、位置調節用受光素子56の出力値から検知されないときは、受光素子ホルダ45の高さ位置がスライド調節された後、再度発光素子ホルダ40が回動され、光ビームLBが位置決めターゲット54に入るまで、受光素子ホルダ45の高さ位置調節と発光素子ホルダ40の回動調節が繰り返される。
 図18は、吐出不良検出用受光素子46の垂直方向の光軸調節フロー、すなわちノズルレベル調節フローを示す図である。発光素子41の水平方向の光軸調節を終了して発光素子ホルダ40がベース部材28に本固定された後、吐出不良検出用受光素子46の検出回路がオンされるとともに(ステップS21参照)、垂直調節治具52が上下動されて受光素子ホルダ45の高さ位置がスライド調節され(ステップS22参照)、吐出不良検出用受光素子46の出力値が適正値以上か否か判断される(ステップS23参照)。
 適正値であるときは、締結部材49を締め付けることによって受光素子ホルダ45がベース部材28に本固定され(ステップS24参照)、発光素子41の発光がオフされるとともに、吐出不良検出用受光素子46の検出回路がOFFされ(ステップS25参照)、終了される。
 吐出不良検出用受光素子46の出力値が適正値でないときは、すべての上下調節範囲を見たか否かを確認し(ステップS26参照)、見ていないときには、ステップS22へと戻り、同様に垂直調節治具52が所定長さ上下動されて受光素子ホルダ45の高さ位置がスライド調節されて、吐出不良検出用受光素子46の出力値が適正値に入るまで、受光素子ホルダ45の高さ位置調節が繰り返される、他方、すべての上下調節範囲を見たときには、エラー表示をして(ステップS27参照)、発光素子41の発光がオフされるとともに、吐出不良検出用受光素子46の検出回路がOFFされ(ステップS25参照)、終了される。
 図19は、ベース部材28に対する受光モジュール32の取り付け状態を発光モジュール30側から見て示す図である。図示するように、ベース部材28の切り起こし片37に設けるガイド溝39に、受光素子ホルダ45のスライド面45dに形成したガイド突起45eがはまり込んで、受光素子ホルダ45のスライド面45dがベース部材28の切り起こし片37に形成したガイド面38に接触されて受光素子ホルダ45の移動が案内されるようになっており、上下にスライド調節後の受光モジュール32は、複数の締結部材49を締結することによりベース部材28上に固定される。
 なお、光軸調節装置55には、位置調節用受光素子56の出力値に基づき、回転調節治具50もしくは垂直調節治具52、またはそれらの双方を制御する制御手段が備えられているようにし、位置調節用受光素子56の検知出力を元に両治具50、52を制御するなどしてインク滴検知装置20の光軸調節を自動化して、作業効率の向上と検知性能の安定化を図ることも可能である。
 ところで、上述して例では、反射面54aで反射された発光素子41からの光を受光する位置調節用受光素子56が、吐出不良検出用受光素子46とは別に光軸調節装置55に設けられている場合について説明した。しかし、吐出不良検出用受光素子46を位置調節用受光素子56としても利用することもできる。
 図20-1、図20-2、図21-1、図21-2には、吐出不良検出用受光素子46を位置調節用受光素子56としても利用する場合の例である。図20-1は、位置決めターゲット54として、吐出不良検出用受光素子46の受光面46aまわりの見切り形状45fに、受光面46a側に突出して遮光形状57を形成した場合を示す図である。図21-1は、貫通穴などをあけて透孔形状58を形成した場合を示す図である。
 遮光形状57は、受光素子ホルダ45の、吐出不良検出用受光素子46の中心軸を通り、かつ上述したように受光側ホルダ軸部45cを通る垂直面F上に、吐出不良検出用受光素子46を被って、発光素子41が発した光が直に吐出不良検出用受光素子46に入ることを阻止するように形成されている。他方、透孔形状58は、受光素子ホルダ45の、吐出不良検出用受光素子46の中心軸を通る垂直面F上に、発光素子41が発した光を透過してその光が直に吐出不良検出用受光素子46に入ることを許容するように形成されている。
 そして、発光素子41を水平方向に回動すると、光ビームLBの位置が、a~eと変化することを示し、図20-2、図21-2は、そのa~e位置における位置調節用受光素子56の出力値の変化を示す図である。図20-2の場合は、発光素子41を水平方向に回動して光ビームLBの位置がcとなったとき、光ビームLBが遮光形状57に当たって、吐出不良検出用受光素子46で受光されることを阻止し、位置調節用受光素子56の出力値がもっとも小さくなったことから、光ビームLBが位置決めターゲット54に入ったことを検知することができるようにする。他方、図21-2の場合は、発光素子41を水平方向に回動して光ビームLBの位置がcとなったとき、光ビームLBが透孔形状58に入って、吐出不良検出用受光素子46で受光されることで、逆に位置調節用受光素子56の出力値がもっとも大きくなったことから、光ビームLBが位置決めターゲット54に入ったことを検知することができるようにする。
 図22-1は、図20-1に示す構成とした場合において、吐出不良検出用受光素子46を垂直方向に移動して、光ビームLBの位置が、a~eと変化することを示す図である。図22-2は、そのa~e位置における位置調節用受光素子56の出力値の変化を示す図である。位置調節用受光素子56の出力値は、c~dの位置で最小値を示し、実際の散乱光検知方式においては、この間に光ビームLBが当たるようにすることにより、高効率の散乱光検知が可能となり、そのノイズレベルNLをビーム断面とターゲット形状から実験的に求めておけば、調節は容易に行うことができる。
 図23は、発光側位置決め位置および受光側位置決め位置で各々位置決めし、インク滴検知装置20が、インクジェット式記録装置本体の筐体10に取り付けられた状態を示す。ベース部材28に発光モジュール30および受光モジュール32を取り付けてモジュールカバー31、33を被せ、角度調節後、インク滴検知装置20は、図示するように、発光側位置決め孔34を貫通した発光側ホルダ軸部40c、および受光側位置決め孔35を貫通した受光側ホルダ軸部45cが各々位置決め軸穴10a、10bにはめ付けられて、インクジェット式記録装置本体の筐体10に取り付けられる。一方の位置決め軸穴10aは、発光側ホルダ軸部40cが丁度はまり込む丸孔形状に、他方の位置決め軸穴10bは、一方の位置決め軸穴10aの方向に長い小判型形状に形成されている。
 以上のように、本発明にかかるインク滴検知装置の光軸調節方法、インク滴検知装置の組付け方法、および光軸調節装置は、プリンタ、コピー、ファクシミリなどのインクジェット式記録装置本体に有用であり、特に、インク滴検知装置における発光素子と受光素子間の光軸調節に適している。
 10  筐体
 10a 位置決め軸穴
 10b 位置決め軸穴
 15  キャリッジ
 16  インク滴吐出ヘッド
 16a ヘッドノズル面
 16y、16c、16m、16b  インク滴吐出ヘッド
 20  インク滴検知装置
 28  ベース部材
 30  発光モジュール
 31  発光側モジュールカバー
 32  受光モジュール
 33  受光側モジュールカバー
 34  発光側位置決め孔
 35  受光側位置決め孔
 36  開口
 37  切り起こし片
 38  ガイド面
 39  ガイド溝
 40  発光素子ホルダ
 40c 発光側ホルダ軸部
 40d 治具係合部
 40e 突部
 41  発光素子
 45  受光素子ホルダ
 45c 受光側ホルダ軸部
 45d スライド面
 45e ガイド突起
 45f 見切り形状
 45g 上部角部
 45h 下部の受部
 46  吐出不良検出用受光素子
 46a 受光面
 47  回路基板
 48  締結部材
 49  締結部材
 50  回転調節治具
 51  回転体
 52  垂直調節治具
 53  導光カバー
 53a 傾斜面
 54  位置決めターゲット
 54a 反射面
 55  光軸調節装置
 56  位置調節用受光素子
 57  遮光形状
 58  透光形状
 F   吐出不良検出用受光素子46の中心軸を通る垂直面
 L   光ビームLBの光軸
 N1、N2、………Nx、………Nn  ノズル穴
 P   インク滴
 LB  光ビーム
 NL  ノイズレベル
 S、S1、S2………  散乱光

Claims (8)

  1.  光を発する発光素子と、その発光素子を保持する発光素子ホルダと、前記発光素子が発した光により形成された光ビームがインク滴に衝突した後の散乱光を受光するインク滴の吐出不良検出用受光素子と、その吐出不良検出用受光素子を保持する受光素子ホルダと、その受光素子ホルダの受光側ホルダ軸部と前記発光素子ホルダの発光側ホルダ軸部で仮位置決めして前記発光素子ホルダと前記受光素子ホルダとが各々取り付けられるベース部材とが設けられ、
     前記発光素子ホルダが前記ベース部材に対し、前記発光側ホルダ軸部を中心として回動調節自在に保持される一方、
     前記受光素子ホルダが前記ベース部材に対し、前記発光素子ホルダの回動調節方向と直交する前記受光側ホルダ軸部の軸方向にスライド調節自在に保持されている、
     インク滴検知装置にあって、その光軸調節を行う光軸調節方法において、
     前記インク滴検知装置が、前記発光側ホルダ軸部および前記受光側ホルダ軸部で位置決めして光軸調節装置に固定され、
     電源供給して前記発光素子の発光がオンされるとともに、位置調節用受光素子の検出回路がオンされた後、
     前記発光素子ホルダが回動されて、前記発光素子が発した光により形成された光ビームが、前記吐出不良検出用受光素子側に設けられている位置決めターゲットに入ったことが、前記位置調節用受光素子の出力値から検知され、
     前記発光素子ホルダが前記ベース部材に本固定される一方、
     前記発光素子ホルダが回動されても、前記位置決めターゲットに入ったことが、前記位置調節用受光素子の出力値から検知されないときは、前記受光素子ホルダの高さ位置がスライド調節された後、再度前記発光素子ホルダが回動され、前記光ビームが前記位置決めターゲットに入るまで、前記受光素子ホルダの高さ位置調節と前記発光素子ホルダの回動調節が繰り返される、
     ことを特徴とするインク滴検知装置の光軸調節方法。
  2.  前記発光素子ホルダが前記ベース部材に本固定された後、
     前記吐出不良検出用受光素子の検出回路がオンされるとともに、前記受光素子ホルダの高さ位置がスライド調節されて、前記吐出不良検出用受光素子の出力値が適正値か判断され、
     適正値であるときは、前記受光素子ホルダが前記ベース部材に本固定される一方、
     適正値でないときは、再度前記受光素子ホルダの高さ位置がスライド調節されて、前記吐出不良検出用受光素子の出力値が適正値に入るまで、前記受光素子ホルダの高さ位置調節が繰り返される、
     ことを特徴とする、請求項1に記載のインク滴検知装置の光軸調節方法。
  3.  前記位置調節用受光素子として、前記吐出不良検出用受光素子が使用され、前記位置決めターゲットとして、前記受光素子ホルダの、前記吐出不良検出用受光素子の中心軸を通る垂直面上に、前記吐出不良検出用受光素子を被って、前記発光素子が発した光が直に前記吐出不良検出用受光素子に入ることを阻止する遮光形状が形成されていることを特徴とする、請求項1または2に記載のインク滴検知装置の光軸調節方法。
  4.  前記位置調節用受光素子として、前記吐出不良検出用受光素子が使用され、前記位置決めターゲットとして、前記受光素子ホルダの、前記吐出不良検出用受光素子の中心軸を通る垂直面上に、前記発光素子が発した光を透過してその光が直に前記吐出不良検出用受光素子に入ることを許容する透光形状が形成されていることを特徴とする、請求項1または2に記載のインク滴検知装置の光軸調節方法。
  5.  前記位置決めターゲットが、前記受光素子ホルダの、前記吐出不良検出用受光素子の中心軸を通る垂直面上に反射面を設けて形成され、その反射面で反射された前記発光素子からの光を受光する位置調節用受光素子が、前記吐出不良検出用受光素子とは別に前記光軸調節装置に設けられていることを特徴とする、請求項1または2に記載のインク滴検知装置の光軸調節方法。
  6.  インクジェット式記録装置本体の軸穴に各々発光側および受光側のホルダ軸部を挿入して位置決めし、
     請求項1ないし5のいずれか1に記載の光軸調節方法により光軸調節後のインク滴検知装置が前記記録装置本体に組付けられる、
     ことを特徴とするインク滴検知装置の組付け方法。
  7.  光を発する発光素子と、その発光素子を保持する発光素子ホルダと、前記発光素子が発した光がインク滴に衝突した後の散乱光を受光するインク滴の吐出不良検出用受光素子と、その吐出不良検出用受光素子を保持する受光素子ホルダと、その受光素子ホルダの受光側ホルダ軸部と前記発光素子ホルダの発光側ホルダ軸部で位置決めして前記発光素子と前記吐出不良検出用受光素子とが各々定位置で取り付けられるベース部材とが設けられ、
     前記発光素子ホルダが前記ベース部材に対し、前記発光側ホルダ軸部を中心として回動調節自在に取り付けられる一方、
     前記受光素子ホルダが前記ベース部材に対し、前記発光素子ホルダの回動調節方向と直交する前記受光側ホルダ軸部の軸方向にスライド調節自在に取り付けられている、
     インク滴検知装置の光軸調節を行う光軸調節装置であって、
     前記発光側ホルダ軸部および前記受光側ホルダ軸部で位置決めして前記インク滴検知装置が取り付けられる設置場所と、
     前記発光素子ホルダが前記ベース部材に対し、前記発光側ホルダ軸部を中心として回動調節される回転調節治具と、
     前記受光素子ホルダが前記ベース部材に対し、前記発光素子ホルダの回動調節方向と直交する前記受光側ホルダ軸部の軸方向にスライド調節される垂直調節治具と、
     前記発光素子ホルダが回動されて、前記発光素子が発した光が、前記受光素子側に設けられている位置決めターゲットに入ったことを、出力値から検知する位置調節用受光素子と、
     が備えられていることを特徴とするインク滴検知装置の光軸調節装置。
  8.  前記位置調節用受光素子の出力値に基づき、前記回転調節治具もしくは前記垂直調節治具、またはそれらの双方を制御する制御手段が備えられていることを特徴とする、請求項7に記載のインク滴検知装置の光軸調節装置。
PCT/JP2009/068775 2008-11-04 2009-11-02 インク滴検知装置の光軸調節方法および組付け方法、ならびに光軸調節装置 WO2010053071A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09824770.3A EP2347903A4 (en) 2008-11-04 2009-11-02 METHOD FOR ADJUSTING THE OPTICAL AXIS OF AN ORIGINAL CINSTICK DETECTION DEVICE, METHOD FOR CONSTRUCTING THE DEVICE, AND DEVICE FOR ADJUSTING SAID OPTICAL AXIS
CN200980143639.2A CN102202893B (zh) 2008-11-04 2009-11-02 墨滴检测装置的光轴调节方法和安装方法以及光轴调节装置
US13/127,679 US8439476B2 (en) 2008-11-04 2009-11-02 Method of adjusting optical axis of ink droplet detecting device, method of assembling ink droplet detecting device, and apparatus for adjusting optical axis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-283059 2008-11-04
JP2008283059A JP5081792B2 (ja) 2008-11-04 2008-11-04 インク滴検知装置の光軸調節方法および組付け方法、ならびに光軸調節装置

Publications (1)

Publication Number Publication Date
WO2010053071A1 true WO2010053071A1 (ja) 2010-05-14

Family

ID=42152879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068775 WO2010053071A1 (ja) 2008-11-04 2009-11-02 インク滴検知装置の光軸調節方法および組付け方法、ならびに光軸調節装置

Country Status (5)

Country Link
US (1) US8439476B2 (ja)
EP (1) EP2347903A4 (ja)
JP (1) JP5081792B2 (ja)
CN (1) CN102202893B (ja)
WO (1) WO2010053071A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222042B2 (ja) 2008-06-26 2013-06-26 リコーエレメックス株式会社 インクジェット式記録装置
JP5343753B2 (ja) * 2009-08-03 2013-11-13 株式会社リコー 液吐出検出装置およびインクジェット記録装置
JP5716314B2 (ja) * 2010-08-06 2015-05-13 株式会社リコー 液吐出不良検出装置、その調整方法、およびインクジェット記録装置
US9527276B2 (en) 2013-01-23 2016-12-27 Hewlett-Packard Development Company, L.P. Testing a printhead
JP6278556B2 (ja) * 2014-01-06 2018-02-14 株式会社ミマキエンジニアリング インクジェットプリンター

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144597A (ja) * 2000-11-09 2002-05-21 Seiko Epson Corp インクジェット式記録装置におけるインク滴吐出状態検出器の光モジュール位置調整治具および方法
JP2004209460A (ja) * 2002-11-12 2004-07-29 Seiko Epson Corp 描画装置におけるノズルの異常判別方法および描画装置、並びに電気光学装置、電気光学装置の製造方法および電子機器
JP2007331158A (ja) * 2006-06-13 2007-12-27 Ricoh Elemex Corp 液吐出不良検出装置、およびインクジェット記録装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509706B2 (ja) * 2000-06-21 2004-03-22 セイコーエプソン株式会社 インクジェット式記録装置
JP3520825B2 (ja) * 2000-01-12 2004-04-19 セイコーエプソン株式会社 インクジェット式記録装置
EP1127694B1 (en) * 2000-02-23 2006-05-03 Seiko Epson Corporation Detection of non-operating nozzle by light beam passing through aperture
US6641246B2 (en) * 2000-02-23 2003-11-04 Seiko Epson Corporation Detection of non-operating nozzle by light beam passing through aperture
EP1445106B1 (en) * 2001-10-15 2010-03-03 Olympus Corporation Image recording apparatus
US6877838B2 (en) * 2002-12-20 2005-04-12 Hewlett-Packard Development Company, L.P. Detection of in-flight positions of ink droplets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144597A (ja) * 2000-11-09 2002-05-21 Seiko Epson Corp インクジェット式記録装置におけるインク滴吐出状態検出器の光モジュール位置調整治具および方法
JP2004209460A (ja) * 2002-11-12 2004-07-29 Seiko Epson Corp 描画装置におけるノズルの異常判別方法および描画装置、並びに電気光学装置、電気光学装置の製造方法および電子機器
JP2007331158A (ja) * 2006-06-13 2007-12-27 Ricoh Elemex Corp 液吐出不良検出装置、およびインクジェット記録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2347903A4 *

Also Published As

Publication number Publication date
EP2347903A4 (en) 2014-05-07
JP2010110908A (ja) 2010-05-20
CN102202893A (zh) 2011-09-28
EP2347903A1 (en) 2011-07-27
US20110227989A1 (en) 2011-09-22
JP5081792B2 (ja) 2012-11-28
US8439476B2 (en) 2013-05-14
CN102202893B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5222042B2 (ja) インクジェット式記録装置
JP5691466B2 (ja) 液体噴射ヘッドユニット、および、その製造方法
JP5081792B2 (ja) インク滴検知装置の光軸調節方法および組付け方法、ならびに光軸調節装置
JP2015166174A (ja) 液滴検出装置及びこれを用いたインクジェット記録装置及び液滴検出方法
US9259925B2 (en) Drop detector
JP4730825B2 (ja) 液吐出不良検出用光軸とノズル列との位置合わせ方法、液吐出不良検出方法、液吐出不良検出装置、およびインクジェット記録装置
JP2010018022A (ja) 液吐出不良検出装置、およびインクジェット記録装置
JP5760346B2 (ja) 液体噴射装置
JP4925184B2 (ja) 液吐出不良検出装置、およびインクジェット記録装置
JP2012111098A (ja) 液体噴射ヘッドユニット、および、その製造方法
JP2013039762A (ja) 液体噴射ヘッドユニット、液体噴射装置、および、液体噴射ヘッドユニットの製造方法
CN108885183B (zh) 液滴检测器
JP2009113225A (ja) 液吐出不良検出装置、およびインクジェット記録装置
JP2012106446A (ja) 液滴検出装置およびインクジェット記録装置
JP5134381B2 (ja) 液滴吐出ヘッド、液滴吐出装置および記録装置
JP5343753B2 (ja) 液吐出検出装置およびインクジェット記録装置
JP3509706B2 (ja) インクジェット式記録装置
JP5038164B2 (ja) 液滴吐出装置
JP2008012782A (ja) 液吐出不良検出装置、インクジェット記録装置、および液吐出不良検出方法
JP2010030069A (ja) 液体噴射ヘッドモジュール、及び、液体噴射ヘッドモジュールの製造方法
JP2006026990A (ja) インクジェット記録装置
JP2015030103A (ja) 画像形成装置
JP2012192552A (ja) 液滴吐出状態検出装置、ヘッドアレイユニットおよび画像形成装置
JP2005271254A (ja) キャリッジ、液体噴射装置、キャリッジ用取り付け治具、及びキャリッジの組み立て方法
JP2013244677A (ja) 記録装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143639.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009824770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13127679

Country of ref document: US