WO2010050668A2 - Cu(NH₃)₄Cl₂ 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법 - Google Patents

Cu(NH₃)₄Cl₂ 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법 Download PDF

Info

Publication number
WO2010050668A2
WO2010050668A2 PCT/KR2009/004710 KR2009004710W WO2010050668A2 WO 2010050668 A2 WO2010050668 A2 WO 2010050668A2 KR 2009004710 W KR2009004710 W KR 2009004710W WO 2010050668 A2 WO2010050668 A2 WO 2010050668A2
Authority
WO
WIPO (PCT)
Prior art keywords
copper oxide
solution
waste liquid
chlorine
high purity
Prior art date
Application number
PCT/KR2009/004710
Other languages
English (en)
French (fr)
Other versions
WO2010050668A3 (ko
Inventor
박성종
Original Assignee
Park Sung-Jong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Sung-Jong filed Critical Park Sung-Jong
Publication of WO2010050668A2 publication Critical patent/WO2010050668A2/ko
Publication of WO2010050668A3 publication Critical patent/WO2010050668A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/04Halides
    • C01G3/05Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention provides a solution (especially 20 to 40% Cu (NH 3 ) 4 Cl 2 , 1 to 2) generated from a process such as etching a copper plate to form a pattern in manufacturing a printed circuit board (PCB).
  • a solution especially 20 to 40% Cu (NH 3 ) 4 Cl 2 , 1 to 2
  • Copper oxide particles having a porous structure in the process of preparing copper oxide and the like from a solution containing% NH 4 Cl, 1 to 2% NH 4 OH and 56 to 78% H 2 O).
  • a method for producing high quality copper oxide exhibiting suitable trace amounts of chlorine, high purity and good acid solubility.
  • Wastewater from the process of etching copper plates to form patterns by printed circuit board manufacturers is approximately 20 to 40% Cu (NH 3 ) 4 Cl 2 , approximately 1 to 2% NH 4 Cl, approximately 1 to 2% NH 4 OH and approximately 56 to 78% of H 2 O. These waste liquids are used as the main raw material for the production of copper oxide, copper hydroxide, etc. in the field of impurities because the content of impurities is low from several tens to several hundred ppm.
  • Cu (NH 3 ) 4 Cl 2 -containing waste solution is added to a sodium hydroxide solution to generate copper oxide particles, followed by washing and drying to prepare copper oxide.
  • the copper oxide obtained by such a conventional method has a problem that it does not satisfy the solubility and chlorine content in the acid required in the copper oxide product for plating.
  • the present inventors have made diligent research efforts to solve the problems of the conventional copper oxide production method.
  • the present inventors have found that porous intermediates as an intermediate having an easy-to-clean structure in the production of copper oxide from Cu (NH 3 ) 4 Cl 2 -containing waste liquid.
  • the present invention was completed by developing a method for producing a high quality copper oxide having a porous structure having a low chlorine content, high purity, and high solubility in acid by producing a copper oxide particle, washing and drying it.
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to contain a trace amount of chlorine that is effective for use as a copper plating material from a waste solution containing Cu (NH 3 ) 4 Cl 2 , high purity, and
  • the present invention provides a method for producing a high-purity copper oxide containing a trace amount of chlorine from a Cu (NH 3 ) 4 Cl 2 -containing waste liquid capable of producing a copper oxide having a porous structure having excellent solubility.
  • the method for producing a high-purity copper oxide containing trace amounts of chlorine from the Cu (NH 3 ) 4 Cl 2 -containing waste liquid of the present invention comprises: a) removing the impurities by filtration of the Cu (NH 3 ) 4 Cl 2 -containing waste liquid with a microfilter; step; b) A waste solution containing Cu (NH 3 ) 4 Cl 2 , after mixing a substance capable of generating a large amount of bubbles and a sodium hydroxide solution, and heating the resulting mixed solution and maintaining a constant temperature until the end of the reaction. Adding to the mixed solution and aging for a predetermined time; And c) filtering, washing, and dehydrating the product from step b), followed by heating and drying under air-supplied conditions.
  • the material using the drug capable of generating a large amount of bubbles is any one of sodium carbonate solution, carbon dioxide gas, and sodium hydrogen carbonate that can generate carbon dioxide.
  • step b) after mixing a substance capable of generating a large amount of bubbles and a sodium hydroxide solution, the resulting mixed solution is heated to 80 ° C. to 100 ° C. and the temperature is maintained until the end of the reaction. 3 ) A waste solution containing 4 Cl 2 is added to the mixed solution and aged for 10-20 minutes.
  • step b copper hydroxide (Cu (OH) 2 ) is produced by the reaction of Cu (NH 3 ) 4 Cl 2 with sodium hydroxide solution, and the copper hydroxide is dehydrated continuously at 80 ° C. to 100 ° C. The reaction is converted into copper oxide (CuO), carbon dioxide gas is generated by a material that is capable of generating a large amount of bubbles to convert the copper oxide into a porous structure.
  • Cu (OH) 2 copper hydroxide
  • CuO copper oxide
  • carbon dioxide gas is generated by a material that is capable of generating a large amount of bubbles to convert the copper oxide into a porous structure.
  • the material using the drug capable of generating a large amount of bubbles is made of sodium carbonate solution, and the waste solution containing Cu (NH 3 ) 4 Cl 2 contains ammonium chloride (NH 4 Cl), and in step b)
  • the ammonium chloride is decomposed into ammonia gas and hydrochloric acid by heating, and the sodium carbonate reacts with the hydrochloric acid to generate carbon dioxide gas so that the copper oxide is converted into a porous structure.
  • the material using the drug capable of generating a large amount of bubbles is composed of a sodium carbonate solution, and in step b), the waste solution containing Cu (NH 3 ) 4 Cl 2 is the sodium carbonate solution and the sodium hydroxide solution based on the volume. Is added to the mixed solution in an amount of 0.7 to 1.4 times.
  • the material using the drug capable of generating a large amount of bubbles is composed of sodium carbonate solution, and the concentration of the sodium carbonate solution used in the step b) is 5 to 15% (w / v).
  • a waste solution containing Cu (NH 3 ) 4 Cl 2 which is a solution that forms a copper ammonia complex by injecting ammonia water or ammonia gas into a copper solution containing a waste copper chloride (CuCl 2 ) solution, is used.
  • the production method of the present invention can produce a high-quality copper oxide having a porous structure with a large specific surface area by producing copper oxide particles having a porous structure to more effectively remove the chlorine compound to obtain a high purity copper oxide. There is this.
  • a copper oxide having a porous structure is produced using a mixed solution of a high temperature sodium carbonate solution and a sodium hydroxide solution. Therefore, it is easy to remove the chlorine compound, the chlorine content is 5 ppm or less, the purity is 99.5% or more, and has a porous structure to produce high quality copper oxide having excellent dissolution rate with respect to acid.
  • FIG. 1 to 4 are photographs taken by scanning electron microscopy (SEM) of copper oxide particles prepared according to the method of the present invention (FIG. 1: 100 magnification; FIG. 2: 200 magnification; FIG. 3: 400 magnification) 4: 1000 magnification)
  • the term Cu (NH 3 ) 4 Cl 2 -containing waste liquid is a solution resulting from a process such as etching a copper plate to form a pattern in the manufacture of a printed circuit board, unless otherwise specified. , In particular 20 to 40% Cu (NH 3 ) 4 Cl 2 , 1 to 2% NH 4 Cl, 1 to 2% NH 4 OH and 56 to 78% H 2 O It must be understood.
  • This waste liquid is also referred to in the art as waste alpine solution.
  • the copper hydroxide is converted to copper oxide (CuO) by a continuous dehydration reaction at a high temperature of 80 to 100 °C, this process can be represented by the following scheme 2.
  • ammonium chloride (NH 4 Cl) is decomposed at the above temperature to produce ammonia gas and hydrochloric acid.
  • carbon dioxide is generated as sodium carbonate is decomposed by the generated hydrochloric acid.
  • the carbon dioxide is produced, a large amount of fine bubbles are generated, and the copper oxide generated by the reaction scheme 2 is converted into porous particles by the bubbles.
  • the waste liquid containing Cu (NH 3 ) 4 Cl 2 is preferably added in an amount of 1 to 2 times the sodium carbonate solution based on the volume. If the volume of waste liquid containing Cu (NH 3 ) 4 Cl 2 added to the sodium carbonate solution is more than two times, the conversion to the porous structure is not complete when copper oxide is produced. Increasing problems may arise.
  • the concentration of the sodium carbonate solution is 5 to 15% (w / v). If it is less than 5%, the reactor becomes large and a large amount of heat is consumed to heat the solution. If it is more than 15%, crystal precipitation of by-products after the reaction adversely affects the quality of the product.
  • the mixed solution of the sodium carbonate solution and the sodium hydroxide solution is heated to a high temperature of 80 to 100 ° C., and then Cu (NH 3 ) 4 Cl 2 -containing waste solution is added thereto, copper hydroxide can be easily converted to copper oxide by a dehydration process. It can be made easily and the decomposition of sodium carbonate.
  • the temperature of the mixed solution exceeds 100 °C it is desirable to maintain the above temperature range because only the energy is wasted unnecessarily without increasing the efficiency any more.
  • Copper oxide can be filtered, washed and dehydrated by conventional methods and then heated to a temperature of 100-200 ° C. under air-supplied conditions to remove moisture:
  • the copper oxide finally obtained through this step has a chlorine content of 5 ppm or less, a purity of 99.5% or more, and excellent solubility in acid.
  • the copper oxide produced by the manufacturing method by observing the copper oxide produced by the manufacturing method with a scanning electron microscope to confirm that it has a structure that is easy to wash it is composed of porous particles (see Figs. 1 to 4).
  • the copper oxide finally obtained by the production method of the present invention has a porous structure, it is confirmed that the specific surface area is wide and the liquid has a high solubility in acid solution because it has a fast penetration (see FIGS. 1 to 4). ).
  • the production method of the present invention is very useful for producing a high quality copper oxide suitable for use as a copper plating material exhibiting a trace amount of chlorine content, high purity and excellent acid solubility characteristics from waste liquid containing Cu (NH 3 ) 4 Cl 2. Can be.
  • the production method of the present invention is an economical and simple method, which has a chlorine content of 5 ppm or less and a purity of 99.5% or more in a short time, and has a porous structure to easily remove chlorine compounds and to dissolve in acid. It can be seen that excellent quality copper oxide can be produced.
  • the present invention as a material for the drug capable of generating a large amount of bubbles in addition to the sodium carbonate solution, for example, carbon dioxide gas, may be used sodium hydrogen carbonate that can generate carbon dioxide, it is preferable to use sodium carbonate solution .
  • the waste liquid containing Cu (NH 3 ) 4 Cl 2 which is a solution for forming a copper ammonia complex, can also be used by injecting ammonia water or ammonia gas into a copper liquid containing a waste copper chloride (CuCl 2 ) solution.
  • Example 2 Compared with the preparation process of Example 1, the addition of sodium carbonate solution was omitted, except that the copper oxide was prepared by the same method as in Example 1.
  • the final obtained copper oxide had a Cl content of 328 ppm and a purity of 99.1%. Scanning electron microscopy analysis also confirmed that the final obtained copper oxide did not have a porous structure (SEM, JSM6490LV, see FIG. 5).
  • the present invention generates copper oxide particles having a porous structure in the process of manufacturing copper oxide, etc. from the waste liquid generated in the manufacturing process of the printed circuit board, thereby showing a high quality showing a very small amount of chlorine content, high purity and excellent acid solubility suitable for use as a copper plating material Copper oxide of can be manufactured.

Abstract

본 발명은 Cu(NH3)4Cl2 함유 폐액으로부터 고순도의 산화동을 제조하는 방법에 관한 것이다. 본 발명의 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법은, a) Cu(NH3)4Cl2 함유 폐액을 마이크로 필터로 여과하여 불순물 제거하는 단계; b) 다량의 기포발생이 가능한 약품을 원료로 하는 물질과 수산화나트륨 용액을 혼합한 후 생성된 혼합 용액을 가열하고 일정 온도를 반응 종료시까지 유지하면서, Cu(NH3)4Cl2를 함유한 폐액을 상기 혼합 용액에 첨가하고 일정시간 동안 숙성시키는 단계; 및 c) 상기 단계 b)로부터의 생성물을 여과, 세척, 탈수한 후, 공기가 공급되는 조건 하에서 가열하여 건조시키는 단계를 포함하여 이루어진 것을 특징으로 한다. 본 발명의 산화동 제조방법은 비표면적이 넓은 다공성 구조의 산화동을 생성하기 때문에 염소 화합물의 제거가 용이하여 염소 함량이 5 ppm 이하이고 순도가 99.5% 이상이며 산에 대한 용해도가 우수한 고품질의 산화동을 제조할 수 있다.

Description

Cu(NH₃)₄Cl₂ 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법
본 발명은 인쇄회로기판(Printed Circuit Board, PCB) 제조시 패턴을 형성시키기 위해 동판을 에칭하는 등의 공정으로부터 발생하는 용액(특히 20 내지 40%의 Cu(NH3)4Cl2, 1 내지 2%의 NH4Cl, 1 내지 2%의 NH4OH 및 56 내지 78%의 H2O를 함유하는 용액)으로부터 산화동 등을 제조하는 과정에서 다공성 구조를 갖는 산화동 입자를 생성시켜 동도금 재료로 사용하는데 적합한 극미량의 염소 함량, 고순도 및 우수한 산 용해도를 나타내는 고품질의 산화동을 제조하기 위한 방법에 관한 것이다.
인쇄회로기판 제조업체에서 패턴을 형성시키기 위해 동판을 에칭하는 공정에서 발생하는 폐액은 대략 20 내지 40%의 Cu(NH3)4Cl2, 대략 1 내지 2%의 NH4Cl, 대략 1 내지 2%의 NH4OH 및 대략 56 내지 78%의 H2O를 함유하고 있다. 이러한 폐액은 불순물의 함량이 수십에서 수백 ppm 수준으로 낮아서 해당 분야에서 산화동, 수산화동 등의 제조에 필요한 주원료로 사용되고 있다.
종래에는, 수산화나트륨 용액에 Cu(NH3)4Cl2 함유 폐액을 첨가하여 산화동 입자를 생성시킨 후 세척, 건조하여 산화동을 제조하였다. 그러나, 이러한 종래의 방법으로 수득한 산화동은 도금용 산화동 제품에서 요구하는 산에 대한 용해도와 염소 함량을 만족시키지 못하는 문제점이 있다.
이에, 본 발명자는 종래 산화동 제조방법의 문제점을 해결하기 위하여 예의 연구 노력한 결과, Cu(NH3)4Cl2 함유 폐액으로부터 산화동을 제조함에 있어서 세척이 용이한 구조를 갖는 중간체로서 다공성(porous)의 산화동 입자를 생성한 후 세척, 건조하여 염소 함량이 낮고, 순도가 높으며, 산에 대한 용해도가 높은 다공성 구조를 갖는 고품질의 산화동을 간단한 공정으로 제조하는 방법을 개발함으로써 본 발명을 완성하였다.
본 발명은 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 Cu(NH3)4Cl2 함유 폐액으로부터 동도금 재료로 사용하는데 효과적인 극미량의 염소를 함유하고, 순도가 높으며, 산에 대한 용해도가 우수한 다공성 구조의 산화동을 간단한 공정으로 제조할 수 있는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법을 제공하는 데에 있다.
본 발명의 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법은, a) Cu(NH3)4Cl2 함유 폐액을 마이크로 필터로 여과하여 불순물 제거하는 단계; b) 다량의 기포발생이 가능한 약품을 원료로 하는 물질과 수산화나트륨 용액을 혼합한 후 생성된 혼합 용액을 가열하고 일정 온도를 반응 종료시까지 유지하면서, Cu(NH3)4Cl2를 함유한 폐액을 상기 혼합 용액에 첨가하고 일정시간 동안 숙성시키는 단계; 및 c) 상기 단계 b)로부터의 생성물을 여과, 세척, 탈수한 후, 공기가 공급되는 조건 하에서 가열하여 건조시키는 단계를 포함하여 이루어진 것을 특징으로 한다.
상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은, 탄산나트륨 용액, 이산화탄소 가스, 이산화탄소가 발생될 수 있는 탄산수소나트륨 중 어느 하나이다.
상기 단계 b)에서는 다량의 기포발생이 가능한 약품을 원료로 하는 물질과 수산화나트륨 용액을 혼합한 후 생성된 혼합 용액을 80℃ 내지 100℃로 가열하고 상기 온도를 반응 종료시까지 유지하면서, Cu(NH3)4Cl2를 함유한 폐액을 상기 혼합 용액에 첨가하고 10 내지 20분 동안 숙성시킨다.
상기 단계 b)의 숙성 과정 동안 Cu(NH3)4Cl2 와 수산화나트륨 용액의 반응에 의해 수산화동(Cu(OH)2)이 생성되고, 상기 수산화동은 80℃ 내지 100℃에서 연속되는 탈수반응에 의해 산화동(CuO)으로 전환되며, 상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질에 의해 이산화탄소 가스가 발생되어 상기 산화동이 다공성 구조로 전환된다.
상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은, 탄산나트륨 용액으로 이루어지고, 상기 Cu(NH3)4Cl2 함유 폐액에는 염화암모늄(NH4Cl)이 함유되어 있으며, 상기 b) 단계에서의 가열에 의해 상기 염화암모늄은 암모니아 가스와 염산으로 분해되고, 상기 탄산나트륨은 상기 염산과 반응하여 이산화탄소 가스를 발생시켜 상기 산화동이 다공성 구조로 전환되도록 한다.
상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은, 탄산나트륨 용액으로 이루어지고, 상기 단계 b)에서, 상기 Cu(NH3)4Cl2 함유 폐액은 부피를 기준으로 상기 탄산나트륨 용액과 수산화나트륨 용액의 혼합 용액에 0.7 내지 1.4배의 양으로 첨가된다.
상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은, 탄산나트륨 용액으로 이루어지고, 상기 단계 b)에서 사용되는 탄산나트륨 용액의 농도가 5 내지 15 %(w/v)이다.
폐염화동(CuCl2) 용액을 포함한 동액에 암모니아수 또는 암모니아 가스를 주입하여 구리 암모니아 착물을 형성하는 용액인 상기 Cu(NH3)4Cl2 를 함유한 폐액을 생성하여 사용한다.
본 발명의 제조방법은 염소 화합물을 보다 효과적으로 제거하여 고순도의 산화동을 얻기 위해 다공성 구조를 갖는 산화동 입자를 생성시킴으로써 비표면적이 넓어 세척이 용이한 다공성 구조를 갖는 고품질의 산화동을 제조할 수 있다는 데 특징이 있다.
본 발명의 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법에 의하면, 고온의 탄산나트륨 용액과 수산화나트륨 용액의 혼합용액을 이용하여 다공성 구조의 산화동을 생성하기 때문에 염소 화합물의 제거가 용이하여 염소 함량이 5 ppm 이하, 순도가 99.5% 이상이며, 다공성 구조를 가져 산에 대한 용해속도가 탁월한 고품질의 산화동을 제조할 수 있다.
도 1 내지 도 4는 본 발명의 방법에 따라 제조된 산화동 입자를 주사전자현미경(scanning electron microscopy, SEM)으로 촬영한 사진이다(도 1: 100배율; 도 2 : 200배율; 도 3 : 400배율; 도 4 : 1000배율),
도 5는 비교예 1에 따라 수득된 산화동 입자를 전자주사현미경으로 촬영한 사진이다(400배율).
본원에서 사용되는 용어 Cu(NH3)4Cl2 함유 폐액은 달리 명시하지 않는 한 가령 인쇄회로기판(Printed Circuit Board, PCB) 제조시 패턴을 형성시키기 위해 동판을 에칭하는 등의 공정으로부터 발생하는 용액, 특히 20 내지 40%의 Cu(NH3)4Cl2, 1 내지 2%의 NH4Cl, 1 내지 2%의 NH4OH 및 56 내지 78%의 H2O를 함유하는 용액을 의미하는 것으로 이해되어야 한다. 당해기술분야에서는 이러한 폐액을 폐알파인 용액이라고도 일컫기도 한다.
이하에서는 본 발명의 방법을 단계별로 구체적으로 설명한다.
반응기 내에서 10% (w/v) 농도의 탄산나트륨 용액에 50%(w/w) 농도의 수산화나트륨 용액을 첨가한 후 80℃ 내지 100℃로 가열하고 상기 온도를 반응이 종료될 때까지 유지한다. Cu(NH3)4Cl2 함유 폐액을 탄산나트륨 용액과 수산화나트륨용액의 혼합용액에 0.7 내지 1.4배가 될 때까지 첨가하여 수산화동 입자를 생성 시키고 연속되는 탈수과정에 의해 산화동 입자를 생성시키고 이를 80 내지 100℃에서 10 내지 20분간 숙성시켜 생성된 입자의 크기를 균일하게 만든다. 구체적으로 하기의 세 과정으로 세분화될 수 있다.
먼저, 반응 초기에는, Cu(NH3)4Cl2 함유 폐액 내 (Cu(NH3)4Cl2)가 NaOH와 반응하여 수산화동(Cu(OH)2)이 생성된다. 이 과정은 하기 반응식 1로 표시될 수 있다.
(반응식 1)
Cu(NH3)4Cl2 + 2NaOH → Cu(OH)2 + 4NH3 ↑+ 2NaCl
반응 중기에는 수산화동이 80 내지 100℃의 고온에서 연속되는 탈수반응에 의해 산화동(CuO)으로 전환되는데, 이 과정은 하기 반응식 2로 표시될 수 있다.
(반응식 2)
Cu(OH)2 → CuO + H2O
마지막으로, 반응 말기에는 상기 온도에서 염화암모늄(NH4Cl)이 분해되어 암모니아 가스와 염산을 생성시키게 되는데 이때 생성된 염산에 의해 탄산나트륨이 분해되면서 이산화탄소가 발생하게 된다. 이 이산화탄소가 생성되면서 다량이 미세한 기포가 발생하게 되는데 이 기포에 의하여 상기 반응식 2에 의해 생성된 산화동은 다공성 입자로 전환된다. 이 과정은 하기 반응식 3으로 표시될 수 있다.
(반응식 3)
NH4Cl → NH3↑ + HCl
Na2CO3+2HCl → 2NaCl+H2O+CO2
전술한 바와 같이, 반응 초기에 생성된 수산화동 입자가 연속되는 탈수반응에 의하여 상화동 입자로 전환될 때 탄산나트륨이 분해하면서 생성되는 이산화탄소 가스가 물리적인 영향을 주어 다공성 구조를 갖는 산화동 입자가 형성된다. 반응식 1에서 생성된 수산화동 입자는 반응식 2에서와 같이 산화동입자가 생성될때 반응식 3에서 이산화탄소 가스가 생성될 때에는 이산화탄소 가스가 없는 상태에서 생성될 때(도 5 참조)와는 다른 구조(도 1 내지 도 4 참조)를 갖게 한다.
탄산나트륨 용액의 농도가 10 %(w/v)일 때, Cu(NH3)4Cl2 함유 폐액은 부피를 기준으로 탄산나트륨 용액의 1 내지 2배의 양으로 첨가되는 것이 바람직하다. 만약, 탄산나트륨 용액에 첨가되는 Cu(NH3)4Cl2 함유 폐액의 부피가 2배 이상인 경우에는 산화동 생성시 다공성 구조로의 전환이 완전하게 이루어지지 않으며, 1배 미만인 경우에는 약품 소비량을 불필요하게 증가시키는 문제점이 발생할 수 있다.
이 때, 탄산나트륨 용액의 농도는 5 ~ 15 %(w/v)로 하는 것이 적당하다. 5% 미만인 경우 반응기가 커지고 용액을 가열하는데 많은 열량이 소비되며, 15% 이상인 경우에는 반응 후 부산물의 결정 석출로 제품의 품질에 악영향을 준다.
또한, 탄산나트륨 용액과 수산화나트륨 용액의 혼합용액을 80 내지 100℃의 고온으로 가열한 후 여기에 Cu(NH3)4Cl2 함유 폐액을 첨가하기 때문에, 수산화동이 쉽게 탈수과정에 의해 산화동으로 전환될 수 있고 탄산나트륨의 분해도 용이하게 이루어질 수 있다. 그러나 혼합용액의 온도가 100℃를 초과하는 경우에는 효율은 더 이상 증가하지 않으면서 불필요하게 에너지만 낭비되므로 상기 온도 범위를 유지하는 것이 바람직하다.
산화동을 통상적인 방법에 의해 여과, 세척, 탈수한 후, 공기가 공급되는 조건 하에서 100 내지 200℃의 온도으로 가열하여 수분을 제거 할 수 있다:
이때, 가열 온도가 100℃ 미만인 경우에는 건조 시간이 오래 걸리고, 가열 온도가 200℃를 초과하는 경우에는 효율은 증가하나 설비의 재질에 악영향을 발생한다.
이 단계를 거쳐 최종적으로 수득되는 산화동은 염소 함량이 5 ppm 이하이고 순도가 99.5% 이상이며 산에 대한 용해도가 매우 우수한 특성을 나타낸다.
본 발명의 바람직한 실시예에서는, 상기 제조방법에 의해 생성된 산화동을 주사전자현미경으로 관찰하여 다공성 입자들로 구성되어 있어 세척이 용이한 구조를 가짐을 확인한다(도 1 내지 도 4 참조). 또한, 본 발명의 제조방법에 의해 최종적으로 수득되는 산화동은 다공성 구조를 갖기 때문에 비표면적이 넓어 액의 침투가 빠르므로 산용액에 대한 용해도가 우수한 특성을 가짐을 확인한다(도 1 내지 도 4 참조).
따라서, 본 발명의 제조방법은 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소 함량, 고순도 및 우수한 산 용해도 특성을 나타내는, 동도금 재료로 사용하기에 적합한 고품질의 산화동을 제조하는데 매우 유용하게 사용될 수 있다.
이하 본 발명은 하기의 실시예를 통하여 상세히 설명하고자 한다. 그러나, 본 발명은 이들 실시예에만 한정되지 아니함은 당 분야의 업자들에게는 매우 자명한 일이다.
실시예 1
탄산나트륨 50 g을 증류수 500 ㎖에 녹여 10%(w/v) 탄산나트륨 용액을 제조하였다. 상기 탄산나트륨 용액 500 ㎖를 반응기에 주입하고 50% 수산화나트륨 250g을 첨가하고 90℃로 승온시킨 후, 이 온도를 계속 유지하면서 마이크로 필터로 여과하여 불순물 제거된 Cu(NH3)4Cl2 함유 폐액(Cu(NH3)4Cl2: 32%) 500 g을 약 30분간 주입하여 반응시켰다. 90℃를 유지하면서 상기 반응용액을 20분간 숙성시킨 후 반응용액을 여과지(ADVANTEC, No.2)를 이용한 감압여과 장치로 여과하여 반응용액을 제거하였고, 이로부터 분리된 반응 생성물을 연속적으로 1ℓ의 물로 세척 및 탈수하고 200℃에서 2시간 동안 건조하였다. 최종적으로 수득된 산화동의 성분을 분석한 결과, 순도는 99.7%이고, Cl 함량은 전위차적정기(Orion 960)를 이용하여 분석한 결과 3 ppm이하인 것으로 확인되었다. 또한, 생성물의 구조를 주사전자현미경(SEM, JSM6490LV)으로 관찰한 결과, 산의 침투가 용이한 다공성 구조를 갖고 20 내지 100 ㎛의 평균 입도를 갖는 산화동이 생성되었음을 확인하였다(도 3).
따라서, 상기 결과들로부터 본 발명의 제조방법은 경제적이고 간단한 방법으로 단시간에 염소 함량이 5 ppm 이하, 순도가 99.5% 이상이며, 다공성 구조를 가져 염소 화합물이 용이하게 제거되고 산에 대한 용해속도가 탁월한 고품질의 산화동을 제조할 수 있음을 알 수 있다.
본 발명은, 상기 탄산나트륨 용액 이외에 다량의 기포발생이 가능한 약품을 원료하는 물질로써, 예를 들어, 이산화탄소 가스, 이산화탄소가 발생될 수 있는 탄산수소나트륨 등을 사용할 수도 있으나, 탄산나트륨 용액을 사용함이 바람직하다.
또한, 구리 암모니아 착물을 형성하는 용액인 상기 Cu(NH3)4Cl2 를 함유한 폐액은, 폐염화동(CuCl2) 용액을 포함한 동액에 암모니아수 또는 암모니아 가스를 주입하여 생성함으로써 사용할 수도 있다.
비교예 1
실시예 1의 제조 과정과 비교하여 볼 때, 탄산나트륨 용액을 첨가하는 것이 생략되며, 그 외에는 실시예 1과 동일한 방법에 의해 산화동을 제조하였다.
전위차적정기(Orion 960)로 성분을 분석한 결과, 최종 수득된 산화동의 Cl 함량은 328 ppm이었으며, 순도는 99.1%이었다. 또한, 주사전자현미경 분석 결과, 최종 수득된 산화동은 다공성 구조를 갖지 않는 것으로 확인되었다(SEM, JSM6490LV, 도 5 참조).
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명은 인쇄회로기판의 제조 공정에서 발생하는 폐액으로부터 산화동 등을 제조하는 과정에서 다공성 구조를 갖는 산화동 입자를 생성시킴으로써, 동도금 재료로 사용하는데 적합한 극미량의 염소 함량, 고순도 및 우수한 산 용해도를 나타내는 고품질의 산화동을 제조할 수 있다.

Claims (8)

  1. a) Cu(NH3)4Cl2 함유 폐액을 마이크로 필터로 여과하여 불순물 제거하는 단계;
    b) 다량의 기포발생이 가능한 약품을 원료로 하는 물질과 수산화나트륨 용액을 혼합한 후 생성된 혼합 용액을 가열하고 일정 온도를 반응 종료시까지 유지하면서, Cu(NH3)4Cl2를 함유한 폐액을 상기 혼합 용액에 첨가하고 일정시간 동안 숙성시키는 단계; 및
    c) 상기 단계 b)로부터의 생성물을 여과, 세척, 탈수한 후, 공기가 공급되는 조건 하에서 가열하여 건조시키는 단계를 포함하여 이루어진 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
  2. 제 1항에 있어서,
    상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은,
    탄산나트륨 용액, 이산화탄소 가스, 이산화탄소가 발생될 수 있는 탄산수소나트륨 중 어느 하나인 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
  3. 제 1항에 있어서,
    상기 단계 b)에서는 다량의 기포발생이 가능한 약품을 원료로 하는 물질과 수산화나트륨 용액을 혼합한 후 생성된 혼합 용액을 80℃ 내지 100℃로 가열하고 상기 온도를 반응 종료시까지 유지하면서, Cu(NH3)4Cl2를 함유한 폐액을 상기 혼합 용액에 첨가하고 10 내지 20분 동안 숙성시키는 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
  4. 제 2항 또는 제 3항에 있어서,
    상기 단계 b)의 숙성 과정 동안 Cu(NH3)4Cl2 와 수산화나트륨 용액의 반응에 의해 수산화동(Cu(OH)2)이 생성되고, 상기 수산화동은 80℃ 내지 100℃에서 연속되는 탈수반응에 의해 산화동(CuO)으로 전환되며, 상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질에 의해 이산화탄소 가스가 발생되게 하여 상기 산화동이 다공성 구조로 전환되는 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
  5. 제 4항에 있어서,
    상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은, 탄산나트륨 용액으로 이루어지고,
    상기 Cu(NH3)4Cl2 함유 폐액에는 염화암모늄(NH4Cl)이 함유되어 있으며,
    상기 b) 단계에서의 가열에 의해 상기 염화암모늄은 암모니아 가스와 염산으로 분해되고,
    상기 탄산나트륨은 상기 염산과 반응하여 이산화탄소 가스를 발생시켜 상기 산화동이 다공성 구조로 전환되도록 하는 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
  6. 제 2항 또는 제 3항에 있어서,
    상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은, 탄산나트륨 용액으로 이루어지고,
    상기 단계 b)에서, 상기 Cu(NH3)4Cl2 함유 폐액은 부피를 기준으로 상기 탄산나트륨 용액과 수산화나트륨 용액의 혼합 용액에 0.7 내지 1.4배의 양으로 첨가되는 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
  7. 제 2항 또는 제 3항에 있어서,
    상기 다량의 기포발생이 가능한 약품을 원료로 하는 물질은, 탄산나트륨 용액으로 이루어지고,
    상기 단계 b)에서 사용되는 탄산나트륨 용액의 농도가 5 내지 15 %(w/v)인 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
  8. 제 2항 또는 제 3항에 있어서,
    폐염화동(CuCl2) 용액을 포함한 동액에 암모니아수 또는 암모니아 가스를 주입하여 구리 암모니아 착물을 형성하는 용액인 상기 Cu(NH3)4Cl2 를 함유한 폐액을 생성하여 사용하는 것을 특징으로 하는 Cu(NH3)4Cl2 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법.
PCT/KR2009/004710 2008-10-31 2009-08-24 Cu(NH₃)₄Cl₂ 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법 WO2010050668A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080107447A KR100882896B1 (ko) 2008-10-31 2008-10-31 Cu(NH₃)₄Cl₂ 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법
KR10-2008-0107447 2008-10-31

Publications (2)

Publication Number Publication Date
WO2010050668A2 true WO2010050668A2 (ko) 2010-05-06
WO2010050668A3 WO2010050668A3 (ko) 2010-06-24

Family

ID=40681408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004710 WO2010050668A2 (ko) 2008-10-31 2009-08-24 Cu(NH₃)₄Cl₂ 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법

Country Status (2)

Country Link
KR (1) KR100882896B1 (ko)
WO (1) WO2010050668A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140375910A1 (en) * 2012-02-09 2014-12-25 Sharp Kabushiki Kaisha Touch-panel substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110231B1 (ko) 2009-04-14 2012-02-16 주식회사 대창 산화동 나노 분말의 제조 방법
KR101149984B1 (ko) * 2009-08-21 2012-05-31 신오케미칼 주식회사 폐동에칭용액으로부터 고순도 및 저염소의 황산동5수화물을 제조하는 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393270A1 (en) * 1989-04-21 1990-10-24 Ming-Hsing Lee Process for etching copper with ammoniacal etchant solution and reconditioning the used etchant solution
KR0122510B1 (ko) * 1994-06-03 1997-11-11 손상욱 폐염화동 용액으로부터 산화동을 회수하는 방법
KR100562048B1 (ko) * 2004-01-16 2006-03-22 씨피텍 주식회사 산성 염화구리 폐액으로부터 염기성 탄산구리를 제조하는방법
KR100840553B1 (ko) * 2007-06-12 2008-06-23 에코 서비스 코리아(주) 폐염화동 용액으로부터 극미량의 염소를 함유하는 고순도의산화동을 제조하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393270A1 (en) * 1989-04-21 1990-10-24 Ming-Hsing Lee Process for etching copper with ammoniacal etchant solution and reconditioning the used etchant solution
KR0122510B1 (ko) * 1994-06-03 1997-11-11 손상욱 폐염화동 용액으로부터 산화동을 회수하는 방법
KR100562048B1 (ko) * 2004-01-16 2006-03-22 씨피텍 주식회사 산성 염화구리 폐액으로부터 염기성 탄산구리를 제조하는방법
KR100840553B1 (ko) * 2007-06-12 2008-06-23 에코 서비스 코리아(주) 폐염화동 용액으로부터 극미량의 염소를 함유하는 고순도의산화동을 제조하는 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140375910A1 (en) * 2012-02-09 2014-12-25 Sharp Kabushiki Kaisha Touch-panel substrate

Also Published As

Publication number Publication date
KR100882896B1 (ko) 2009-02-10
WO2010050668A3 (ko) 2010-06-24

Similar Documents

Publication Publication Date Title
CN101935062B (zh) 采用酸性蚀刻废液制备高纯氧化铜的方法
CN105776269B (zh) 微粉氢氧化铝制备方法及设备、该微粉氢氧化铝
WO2010050668A2 (ko) Cu(NH₃)₄Cl₂ 함유 폐액으로부터 극미량의 염소를 함유하는 고순도의 산화동을 제조하는 방법
KR100840553B1 (ko) 폐염화동 용액으로부터 극미량의 염소를 함유하는 고순도의산화동을 제조하는 방법
JP2010105912A (ja) Cu(NH3)4Cl2含有廃液から極微量の塩素を含有する高純度の酸化銅を製造する方法
CN111804704B (zh) 一种四氯铝酸钠固渣的处理方法
KR102190217B1 (ko) 전기동으로부터 구리도금용 고순도 산화제2구리를 제조하는 방법
CN113697831A (zh) 高钠镁比工业废水净化除镁及制备氢氧化镁阻燃剂方法
CN112062148A (zh) 一种利用电镀线路板废水含铜污泥制取氯化亚铜的方法
CN113816406B (zh) 一种环保型水滑石合成工艺
CN113511746B (zh) 一种石墨烯生产废水的处理方法及其应用
CN101550487B (zh) 一种从工业废料中回收金属铂的方法
TW384318B (en) Process for producing sodium persulfate
JP2753855B2 (ja) 銅メッキ材料の製造方法
KR101552934B1 (ko) 산성 염화구리 폐액과 염기성 염화구리 폐액의 혼합물을 사용한 산화구리의 제조방법
US20220324718A1 (en) Method for preparing basic copper carbonate
KR101313844B1 (ko) 동폐액으로부터 동 도금 재료용 및 고품위 산화동을 제조하는 방법
CN111732133A (zh) 一种硫酸四氨钯的制备方法
KR20110019852A (ko) 폐동에칭용액으로부터 고순도 및 저염소의 황산동5수화물을 제조하는 방법
KR0122510B1 (ko) 폐염화동 용액으로부터 산화동을 회수하는 방법
JP4118495B2 (ja) 泥漿の再利用方法
KR100740561B1 (ko) 화학공정에서 발생하는 폐부식제를 이용한 황산칼슘제조방법
KR100380033B1 (ko) 염화동 폐액으로부터 고순도 황산동의 제조방법
KR101017669B1 (ko) 탄산나트륨의 가성화법을 이용한 고수율 및 고순도의 수산화나트륨용액 제조방법
JP2004329989A (ja) フッ素吸着剤の製造方法及び廃液処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823748

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823748

Country of ref document: EP

Kind code of ref document: A2