WO2010050002A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2010050002A1
WO2010050002A1 PCT/JP2008/069605 JP2008069605W WO2010050002A1 WO 2010050002 A1 WO2010050002 A1 WO 2010050002A1 JP 2008069605 W JP2008069605 W JP 2008069605W WO 2010050002 A1 WO2010050002 A1 WO 2010050002A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
refrigerant
temperature
heat medium
Prior art date
Application number
PCT/JP2008/069605
Other languages
English (en)
French (fr)
Inventor
山下 浩司
裕之 森本
祐治 本村
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010535545A priority Critical patent/JP5312471B2/ja
Priority to PCT/JP2008/069605 priority patent/WO2010050002A1/ja
Priority to CN2008801305546A priority patent/CN102112818B/zh
Priority to EP08877714.9A priority patent/EP2309199B1/en
Priority to US13/056,172 priority patent/US8752397B2/en
Publication of WO2010050002A1 publication Critical patent/WO2010050002A1/ja
Priority to US14/261,499 priority patent/US9115931B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This invention relates to an air conditioner such as a multi air conditioner for buildings.
  • a refrigerant is circulated between an outdoor unit that is a heat source device arranged outdoors and an indoor unit that is arranged indoors, thereby conveying cold or hot air into the room. It was.
  • HFC hydrofluorocarbon
  • CO 2 natural refrigerant
  • a chiller which is another conventional air conditioner
  • cold heat or heat is generated by a heat source device arranged outdoors
  • the heat exchanger such as water or antifreeze liquid is cooled or heated by a heat exchanger arranged in the outdoor unit.
  • Warm heat is transmitted, and this is transferred to a fan coil unit or panel heater, which is an indoor unit, for cooling or heating (for example, see Patent Document 1).
  • the refrigerant since the refrigerant is circulated directly to the indoor unit, the heat cannot be supplied to the indoor unit during the defrosting operation, and the indoor temperature has decreased during the defrosting operation. . Moreover, since heating cannot be performed during defrosting, the system efficiency including defrosting has been reduced. In addition, since the chiller exchanges heat between the refrigerant and water outdoors and transports water, the transport power of the water is very large, and even if the heat can be supplied during the defrosting operation, the transport power of the pump is large. For this reason, the system efficiency including defrosting is rather deteriorated, and there is a problem that energy saving is not achieved.
  • the present invention has been made to solve the above-described problems.
  • a decrease in room temperature can be suppressed, and the secondary heat medium
  • the object is to obtain an air conditioner that can reduce the power required for circulation.
  • the air saturation apparatus is An intermediate heat exchanger for heat medium heating and heat medium cooling for exchanging heat between the refrigerant and the heat medium different from the refrigerant;
  • the refrigerant, the refrigerant, the four-way valve that switches the outlet side flow path of the compressor between heating and cooling, the heat source side heat exchanger, at least one expansion valve, and the refrigerant side flow path of the intermediate heat exchanger.
  • a refrigeration cycle circuit connected via circulating piping;
  • a heat medium circulation circuit in which the heat medium side flow path, the pump, and the use side heat exchanger of the intermediate heat exchanger are connected via a pipe through which the heat medium flows;
  • the heat source side heat exchanger, the intermediate heat exchanger, and the use side heat exchanger are formed separately from each other so that they can be installed at locations apart from each other.
  • the pump is operated to circulate the heat medium, and the heating function during defrosting operation for heating by supplying warm heat to the use-side heat exchanger that has a heating request; It is equipped with.
  • the defrosting operation function can be executed by switching the four-way valve to the cooling side and introducing a high-temperature and high-pressure refrigerant into the heat source side heat exchanger.
  • the heating operation is switched to the defrosting operation.
  • the heat source side heat exchanger, the intermediate heat exchanger, and the use side heat exchanger are formed separately from each other so that they can be installed at locations separated from each other. The system efficiency including defrosting can be improved, and it can contribute to energy saving.
  • 1 is an overall configuration diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • 1 is a circuit diagram for a refrigerant and a heat medium of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the circuit diagram which shows the flow of the refrigerant
  • the circuit diagram which shows the flow of the refrigerant
  • coolant and heat medium at the time of heating main operation The circuit diagram which shows the flow of the refrigerant
  • coolant and heat medium of the air conditioning apparatus which concerns on Embodiment 2 of this invention.
  • Heat source device (outdoor unit), 2 indoor unit, 3 relay unit, 3a parent relay unit, 3b (1), 3b (2) child relay unit, 4 refrigerant piping, 5 heat medium piping, 6 outdoor space, 7 indoor space , 8 Non-air-conditioned space, 9 buildings, etc.
  • FIG. 1 and 2 are overall configuration diagrams of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • This air conditioner includes a heat source device (outdoor unit) 1, an indoor unit 2 that is used for air conditioning in a room, and the like, and a relay unit 3 that is separated from the outdoor unit 1 and installed in a non-air-conditioned space 8 or the like.
  • the heat source device 1 and the relay unit 3 are connected by a refrigerant pipe 4 and a refrigerant (primary medium) flows.
  • the relay unit 3 and the indoor unit 2 are connected by a heat medium pipe 5, and a heat medium (secondary medium) such as water or antifreeze flows.
  • the relay unit 3 performs heat exchange and the like between the refrigerant sent from the heat source device 1 and the heat medium sent from the indoor unit 2.
  • the heat source device 1 is usually disposed in an outdoor space 6 that is an external space of a building 9 such as a building.
  • the indoor unit 2 is disposed at a position where the heated or cooled air can be conveyed to an indoor space 7 such as a living room inside the building 9 of the building.
  • the relay unit 3 has a separate housing from the heat source device 1 and the indoor unit 2 and is connected to the refrigerant pipe 4 and the heat medium pipe 5 to be installed at a place different from the outdoor space 6 and the indoor space 7. It has been made possible.
  • the relay unit 3 is installed in a non-air-conditioned space 8 such as a ceiling, which is inside the building 9 but is different from the indoor space 7.
  • the relay unit 3 can also be installed in a common part with an elevator or the like.
  • the heat source device 1 and the relay unit 3 are configured so that they can be connected using two refrigerant pipes 4.
  • the relay unit 3 and each indoor unit 2 are connected to each other using two heat medium pipes 5.
  • the construction of the air conditioner is facilitated by connecting using two pipes.
  • FIG. 2 shows a case where a plurality of relay units 3 are provided. That is, the relay unit 3 is divided into one parent relay unit 3a and two child relay units 3b (1) and (2) derived therefrom. In this way, a plurality of child relay units 3b can be connected to one parent relay unit 3a. In this configuration, there are three connection pipes between the parent relay unit 3a and the child relay unit 3b.
  • the indoor unit 2 is shown as an example of a ceiling cassette type.
  • the indoor unit 2 is not limited to this, and is directly or ducted in the indoor space 7 such as a ceiling embedded type or a ceiling suspended type. Any device may be used as long as it can blow out heated or cooled air.
  • the heat source device 1 has been described as an example in the case where it is installed in the outdoor space 6 outside the building 9, it is not limited thereto.
  • the heat source device 1 may be set in an enclosed space such as a machine room with a ventilation opening.
  • the heat source device 1 is installed inside the building 9 and exhausts waste heat outside the building 9 through an exhaust duct.
  • it may be installed in the building 9 using a water-cooled heat source device.
  • the relay unit 3 can be placed near the heat source device 1 although it is contrary to energy saving.
  • FIG. 3 is a circuit diagram for the refrigerant and heat medium of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • this air conditioner has a heat source device 1, an indoor unit 2, and a relay unit 3.
  • the heat source device 1 includes a compressor 10, a four-way valve 11, a heat source side heat exchanger 12, check valves 13a, 13b, 13c, 13d, and an accumulator 17, and the indoor unit 2 includes use side heat exchangers 26a to 26d.
  • the relay unit 3 includes a parent relay unit 3a and a child relay unit 3b.
  • the parent relay unit 3a includes a gas-liquid separator 14 that separates the gas phase and the liquid phase of the refrigerant, and an expansion valve (for example, an electronic expansion valve). 16e.
  • the slave relay unit 3b includes intermediate heat exchangers 15a and 15b, expansion valves (eg, electronic expansion valves) 16a to 16d, flow path switching valves 22a to 22d and 23a to 23d such as pumps 21a and 21b, and three-way valves. .
  • the flow path switching valves are provided corresponding to the inlet side flow paths and the outlet side flow paths of the use side heat exchangers 26a to 26d, and a plurality of the flow path switching valves 22a to 22d are provided as intermediate heat exchangers. These outlet-side flow paths are switched between, and the flow-path switching valves 23a to 23d switch their inlet-side flow paths.
  • the flow path switching valves 22a to 22d switch their outlet side flow paths between the intermediate heat exchangers 15a and 15b, and the flow path switching valves 23a to 23d switch between the intermediate heat exchangers 15a and 15b. It plays the effect of switching the inlet side flow path.
  • stop valves 24a to 24d for opening and closing the flow path are provided on the inlet side of the use side heat exchangers 26a to 26d, and flow rate adjusting valves 25a to 25d for adjusting the flow rate on the outlet side of the use side heat exchangers 26a to 26d.
  • the inlet-side flow paths and the outlet-side flow paths of the use side heat exchangers 26a to 26d are connected to each other by bypasses 27a to 27d via the flow rate adjusting valves 25a to 25d.
  • the child relay unit 3b further includes the following temperature sensor and pressure sensor.
  • the compressor 10, the four-way valve 11, the heat source side heat exchanger 12, the check valves 13a, 13b, 13c, and 13d, the gas-liquid separator 14, the expansion valves 16a to 16e, the intermediate heat exchangers 15a and 15b, and the accumulator 17 Constitutes a refrigeration cycle circuit. Further, the intermediate heat exchanger 15a, the pump 21a, the flow path switching valves 22a to 22d, the stop valves 24a to 24d, the use side heat exchangers 26a to 26d, the flow rate adjustment valves 25a to 25d, and the flow path switching valves 23a to 23d are heated.
  • a medium circulation circuit is configured.
  • the intermediate heat exchanger 15b, the pump 21b, the flow path switching valves 22a to 22d, the stop valves 24a to 24d, the use side heat exchangers 26a to 26d, the flow rate adjusting valves 25a to 25d, and the flow path switching valves 23a to 23d are provided.
  • a heat medium circulation circuit is configured. As shown in the figure, a plurality of use side heat exchangers 26a to 26d are provided in parallel to the intermediate heat exchanger 15a and the intermediate heat exchanger 15b, respectively, and each constitutes a heat medium circulation circuit. ing.
  • the heat source device 1 is provided with a control device 100 that controls equipment constituting the heat source device 1 and causes the heat source device 1 to operate as a so-called outdoor unit.
  • the relay unit 3 is provided with a control device 300 having means for controlling the devices constituting the relay unit 3 and performing functions and operations described later.
  • These control devices 100 and 300 are constituted by a microcomputer or the like, and are connected so as to communicate with each other. Next, the operation in each operation mode of the air conditioner will be described.
  • FIG. 4 is a circuit diagram showing the flow of the refrigerant and the heat medium during the cooling only operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, and enters the heat source side heat exchanger 12 via the four-way valve 11.
  • the refrigerant is condensed and liquefied there, flows out from the heat source device 1 through the check valve 13 a, and flows into the relay unit 3 through the refrigerant pipe 4.
  • the refrigerant enters the gas-liquid separator 14, and is introduced into the intermediate heat exchanger 15b through the expansion valves 16e and 16a.
  • the refrigerant is expanded by the expansion valve 16a to become a low-temperature and low-pressure two-phase refrigerant, and the intermediate heat exchanger 15b functions as an evaporator.
  • the refrigerant becomes a low-temperature and low-pressure gas refrigerant in the intermediate heat exchanger 15b, flows out of the relay unit 3 through the expansion valve 16c, and flows into the heat source device 1 again through the refrigerant pipe 4.
  • the refrigerant is sucked into the compressor 10 through the check valve 13 d and the four-way valve 11 and the accumulator 17.
  • the expansion valves 16b and 16d have small openings so that the refrigerant does not flow, and the expansion valve 16c is fully opened to prevent pressure loss.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the cold heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the cooled heat medium is caused to flow in the secondary side pipe by the pump 21b.
  • the heat medium exiting the pump 21b passes through the stop valves 24a to 24d through the flow path switching valves 22a to 22d, and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d.
  • the flow path is closed by the stop valves 24a to 24d, and the heat medium flows to the use side heat exchanger. Do not.
  • the use-side heat exchangers 26 a and 26 b have a heat load, so that a heat medium flows. However, the use-side heat exchangers 26 c and 26 d have no heat load and the corresponding stop valves 24 c and 24 d. Is closed.
  • FIG. 5 is a circuit diagram showing the flow of the refrigerant and the heat medium during the heating only operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, flows out from the heat source device 1 through the check valve 13b through the four-way valve 11, and relays through the refrigerant pipe 4. It flows into unit 3.
  • the refrigerant is introduced into the intermediate heat exchanger 15 a through the gas-liquid separator 14, condensed and liquefied in the intermediate heat exchanger 15 a, passed through the expansion valves 16 d and 16 b, and then passed through the relay unit 3. Spill from.
  • the refrigerant is expanded by the expansion valve 16 b to become a low-temperature and low-pressure two-phase refrigerant, and flows again into the heat source device 1 through the refrigerant pipe 4.
  • the refrigerant is introduced into the heat source side heat exchanger 12 through the check valve 13c, and the heat source side heat exchanger 12 acts as an evaporator.
  • the refrigerant then becomes a low-temperature and low-pressure gas refrigerant and is sucked into the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16e and the expansion valve 16a or 16c have a small opening so that the refrigerant does not flow.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the heated heat medium is caused to flow in the secondary side pipe by the pump 21a.
  • the heat medium exiting the pump 21a passes through the stop valves 24a to 24d through the flow path switching valves 22a to 22d, and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d.
  • the flow path is closed by the stop valves 24a to 24d, and the heat medium is transferred to the use side heat exchanger. Do not flow.
  • the use side heat exchangers 26a and 26b have a heat load, and thus a heat medium is passed.
  • the use side heat exchangers 26c and 26d have no heat load and the corresponding stop valves 24c and 24d. Is closed.
  • FIG. 6 is a circuit diagram showing the flow of the refrigerant and the heat medium during the cooling main operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, and is introduced into the heat source side heat exchanger 12 through the four-way valve 11. Therefore, the refrigerant in the gas state condenses into a two-phase refrigerant, flows out of the heat source side heat exchanger 12 in the two-phase state, flows out of the heat source device 1 through the check valve 13a, and passes through the refrigerant pipe 4. Flow into the relay unit 3.
  • the refrigerant enters the gas-liquid separator 14, the gas refrigerant and the liquid refrigerant in the two-phase refrigerant are separated, and the gas refrigerant is introduced into the intermediate heat exchanger 15a, and in the intermediate heat exchanger 15a It is condensed and liquefied, and passes through the expansion valve 16d.
  • the liquid refrigerant separated in the gas-liquid separator 14 flows to the expansion valve 16e, condenses and liquefies in the intermediate heat exchanger 15a, merges with the liquid refrigerant that has passed through the expansion valve 16d, and passes through the expansion valve 16a. And introduced into the intermediate heat exchanger 15b.
  • the refrigerant is expanded by the expansion valve 16a to become a low-temperature and low-pressure two-phase refrigerant, and the intermediate heat exchanger 15b functions as an evaporator.
  • the refrigerant becomes a low-temperature and low-pressure gas refrigerant in the intermediate heat exchanger 15b, flows out of the relay unit 3 through the expansion valve 16c, and flows into the heat source device 1 again through the refrigerant pipe 4.
  • the refrigerant is sucked into the compressor 10 through the check valve 13 d and the four-way valve 11 and the accumulator 17.
  • the expansion valve 16b has a small opening so that the refrigerant does not flow, and the expansion valve 16c is fully opened to prevent pressure loss.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the heated heat medium is caused to flow in the secondary side pipe by the pump 21a.
  • the intermediate heat exchanger 15b the cold heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the cooled heat medium is caused to flow in the secondary side pipe by the pump 21b.
  • the heat medium exiting the pump 21a and the pump 21b passes through the stop valves 24a to 24d via the flow path switching valves 22a to 22d and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d. To do.
  • the flow rate adjusting valves 25a to 25d due to the action of the flow rate adjusting valves 25a to 25d, only the heat medium having a flow rate necessary to cover the air conditioning load required indoors is caused to flow to the use side heat exchangers 26a to 26d, and the rest is the bypass 27a. It does not contribute to heat exchange through ⁇ 27d.
  • the heat medium passing through the bypasses 27a to 27d merges with the heat medium passing through the use side heat exchangers 26a to 26d, and the warm heat medium passes through the flow path switching valves 23a to 23d.
  • the cold heat medium flows into the intermediate heat exchanger 15b and returns to the pump 21b again.
  • the warm heat medium and the cold heat medium are introduced into the use side heat exchangers 26a to 26d having the heat load and the heat load, respectively, without being mixed by the operation of the flow path switching valves 22a to 22d and 23a to 23d.
  • the air conditioning load required indoors can be covered by controlling the temperature difference between the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d to be kept at the target value. .
  • FIG. 6 shows a state in which a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • FIG. 7 is a circuit diagram showing the flow of the refrigerant and the heat medium during the heating main operation.
  • the refrigerant is compressed by the compressor 10 to become a high-temperature and high-pressure gas refrigerant, flows out of the heat source device 1 through the check valve 13b through the four-way valve 11, and relays through the refrigerant pipe 4. It flows into unit 3.
  • the refrigerant passes through the gas-liquid separator 14 and is introduced into the intermediate heat exchanger 15a, where it is condensed and liquefied in the intermediate heat exchanger 15a.
  • the refrigerant passing through the expansion valve 16d is divided into a flow path passing through the expansion valve 16a and a flow path passing through the expansion valve 16b.
  • the refrigerant that has passed through the expansion valve 16a is expanded by the expansion valve 16a to become a low-temperature and low-pressure two-phase refrigerant and flows into the intermediate heat exchanger 15b, and the intermediate heat exchanger 15b functions as an evaporator.
  • the refrigerant leaving the intermediate heat exchanger 15b evaporates to become a gas refrigerant and passes through the expansion valve 16c.
  • the refrigerant that has passed through the expansion valve 16b is expanded by the expansion valve 16b to become a low-temperature and low-pressure two-phase refrigerant, merged with the refrigerant that has passed through the intermediate heat exchanger 15b and the expansion valve 16c, and has a higher degree of dryness. It becomes a low-temperature and low-pressure refrigerant.
  • the merged refrigerant flows out from the relay unit 3 and flows into the heat source device 1 again through the refrigerant pipe 4.
  • the refrigerant is introduced into the heat source side heat exchanger 12 through the check valve 13c, and the heat source side heat exchanger 12 acts as an evaporator.
  • the low-temperature and low-pressure two-phase refrigerant is evaporated to become a gas refrigerant, and is sucked into the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16e has a small opening so that the refrigerant does not flow.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the heated heat medium is caused to flow in the secondary side pipe by the pump 21a.
  • the intermediate heat exchanger 15b the cold heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the cooled heat medium is caused to flow in the secondary side pipe by the pump 21b.
  • the heat medium exiting the pump 21a and the pump 21b passes through the stop valves 24a to 24d via the flow path switching valves 22a to 22d and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d. To do.
  • the flow rate adjusting valves 25a to 25d due to the action of the flow rate adjusting valves 25a to 25d, only the heat medium having a flow rate necessary to cover the air conditioning load required indoors is caused to flow to the use side heat exchangers 26a to 26d, and the rest is the bypass 27a. It does not contribute to heat exchange through ⁇ 27d.
  • the heat medium passing through the bypasses 27a to 27d merges with the heat medium passing through the use side heat exchangers 26a to 26d, and the warm heat medium passes through the flow path switching valves 23a to 23d.
  • the cold heat medium flows into the intermediate heat exchanger 15b and returns to the pump 21b again.
  • the warm heat medium and the cold heat medium are introduced into the use side heat exchangers 26a to 26d having the heat load and the heat load, respectively, without being mixed by the operation of the flow path switching valves 22a to 22d and 23a to 23d.
  • the air conditioning load required indoors can be covered by controlling the temperature difference between the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d to be kept at the target value. .
  • FIG. 7 shows a state in which a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • the flow path is closed by the stop valves 24a to 24d and the heat medium is transferred to the use side heat exchanger.
  • the utilization side heat exchangers 26a and 26b have a heat load, and thus a heat medium is flowing.
  • the utilization side heat exchangers 26c and 26d have no heat load, and the corresponding stop valves 24c and 24d. Is closed.
  • the corresponding flow path switching valves 22a to 22d and 23a to 23d are connected to the intermediate heat exchanger 15a for heating.
  • the corresponding flow path switching valves 22a to 22d and 23a to 23d are connected to the cooling intermediate heat exchanger 15b.
  • the flow path switching valves 22a to 22d and 23a to 23d switch the flow path by combining two switches that can switch the three-way flow path such as a three-way valve and two-way flow paths such as a stop valve. Anything can be used.
  • the flow path switching valve is a combination of two types that can change the flow rate of the three-way flow path such as a stepping motor drive type mixing valve, and the one that can change the flow rate of the two-way flow path such as an electronic expansion valve. You may comprise by these. In that case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the heat load in the use side heat exchangers 26a to 26d is expressed by the following formula (1), and the flow rate and density of the heat medium, the constant pressure specific heat, the heat medium at the inlet and outlet of the use side heat exchangers 26a to 26d. Multiply by temperature difference.
  • Vw is the flow rate of the heat medium
  • ⁇ w is the density of the heat medium
  • Cpw is the constant pressure specific heat of the heat medium
  • Tw is the temperature of the heat medium
  • the subscript in is the heat medium inlet of the use side heat exchangers 26a to 26d.
  • the value and subscript out indicate values at the heat medium outlet of the use side heat exchangers 26a to 26d.
  • the temperature difference at the inlet and outlet of the heat medium changes according to the change of the heat load in the use side heat exchangers 26a to 26d. . Therefore, by setting the temperature difference between the inlet and outlet of the use side heat exchangers 26a to 26d as a target and controlling the flow rate adjusting valves 25a to 25d so as to approach a predetermined target value, the excess heat medium is bypassed 27a. To 27d and the flow rate flowing to the use side heat exchangers 26a to 26d can be controlled.
  • the target value of the temperature difference between the inlet and outlet of the use side heat exchangers 26a to 26d is set to 5 ° C., for example. This operation is performed by the control device 300, which will be described in detail later.
  • FIGS. 3 to 7 the case where the flow rate adjusting valves 25a to 25d are mixing valves installed on the downstream side of the use side heat exchangers 26a to 26d has been described as an example, but the use side heat exchangers 26a to 26d are described. It may be a three-way valve installed on the upstream side.
  • the temperature difference of the heat medium is bypassed.
  • the temperature approaches the inlet temperature of the use side heat exchangers 26a to 26d.
  • the total flow rate is 20 L / min
  • the heat medium inlet temperature of the use side heat exchangers 26a to 26d is 7 ° C.
  • the outlet temperature is 13 ° C.
  • the flow rate flowing to the use side heat exchangers 26a to 26d is 10 L / min.
  • the temperature after the subsequent merging is 10 ° C. from the equation (2).
  • the heat medium having the combined temperature returns from the indoor units and merges and flows into the intermediate heat exchangers 15a and 15b.
  • the inlet / outlet temperature difference becomes substantially the same by heat exchange in the intermediate heat exchanger 15a or 15b.
  • the inlet / outlet temperature difference of the intermediate heat exchanger 15a or 15b is 6 ° C.
  • the inlet temperature of the intermediate heat exchanger 15a or 15b is initially 13 ° C. and the outlet temperature is 7 ° C.
  • the heat load in the use side heat exchangers 26a to 26d is lowered and the inlet temperature of the intermediate heat exchanger 15a or 15b is lowered to 10 ° C. Then, if nothing is done, since the intermediate heat exchanger 15a or 15b exchanges approximately the same amount of heat, the intermediate heat exchanger 15a or 15b flows out from the intermediate heat exchanger 15a or 15b at 4 ° C., and this is repeated to determine the temperature of the heat medium. The temperature is steadily decreasing.
  • the rotational speeds of the pumps 21a and 21b are changed according to changes in the heat load of the use side heat exchangers 26a to 26d so that the heat medium outlet temperature of the intermediate heat exchanger 15a or 15b approaches the target value. And the flow rate of the heat medium flowing through the use side heat exchanger may be adjusted. In this way, when the thermal load is reduced, the rotational speed of the pump is reduced to save energy, and when the thermal load is increased, the rotational speed of the pump is increased to cover the thermal load.
  • the pump 21b operates when a cooling load or a dehumidifying load is generated in any of the usage side heat exchangers 26a to 26d. In any of the usage side heat exchangers 26a to 26d, the cooling load and the dehumidifying load are set. If not, stop. Further, the pump 21a operates when a heating load is generated in any of the usage-side heat exchangers 26a to 26d, and when there is no heating load in any of the usage-side heat exchangers 26a to 26d, Stop.
  • the low-temperature and low-pressure refrigerant flows through the heat source side heat exchanger 12, and the heat source side heat exchanger 12 operates as an evaporator.
  • a frosting phenomenon occurs in which frost adheres around the vessel 12.
  • the heat exchange between the refrigerant and the air is inhibited, and the air path around the heat source side heat exchanger 12 is narrowed by the frost, so that the passing air volume is reduced.
  • the heat exchange amount in the heat source side heat exchanger 12 is reduced, and the evaporation temperature of the refrigerant flowing inside the heat source side heat exchanger 12 is lowered accordingly, so that the operation efficiency of the refrigeration cycle is deteriorated.
  • the air conditioner has a defrosting operation function for melting frost around the heat source side heat exchanger 12.
  • This defrosting operation function is generally performed by switching the four-way valve 11 to the cooling side and sending high-temperature and high-pressure refrigerant into the heat source side heat exchanger 12. The movement of the refrigerant and the heat medium during the defrosting operation is shown in FIG.
  • the refrigerant moves in a similar manner to the cooling only operation. That is, the refrigerant is compressed by the compressor 10, becomes a high-temperature and high-pressure gas refrigerant, and is introduced into the heat source side heat exchanger 12 through the four-way valve 11.
  • the refrigerant is condensed and liquefied there, flows out from the heat source device 1 through the check valve 13 a, and flows into the relay unit 3 through the refrigerant pipe 4.
  • the refrigerant enters the gas-liquid separator 14, and is introduced into the intermediate heat exchanger 15b through the expansion valves 16e and 16a.
  • the refrigerant is expanded by the expansion valve 16a to become a low-temperature and low-pressure two-phase refrigerant, and the intermediate heat exchanger 15b acts as an evaporator to become a low-temperature and low-pressure gas refrigerant.
  • the defrosting operation requires energy for melting the frost, and therefore the frequency of the compressor 10 is set to a high frequency to some extent. Therefore, the refrigerant circulation amount and the cooling load are not balanced, and surplus refrigerant is generated. Therefore, the degree of opening of the expansion valve 16b is controlled and the surplus refrigerant is allowed to flow.
  • the refrigerant that has passed through the expansion valve 16a and the intermediate heat exchanger 15b passes through the expansion valve 16c, merges with the refrigerant that has passed through the expansion valve 16b, flows out of the relay unit 3, and passes through the refrigerant pipe 4 again. Flows into 1.
  • the refrigerant is sucked into the compressor 10 through the check valve 13 d and the four-way valve 11 and the accumulator 17.
  • the expansion valve 16d has a small opening so that the refrigerant does not flow, and the expansion valve 16c is fully opened to prevent pressure loss.
  • frost releases latent heat at 0 ° C. and melts into water at the time of melting.
  • the refrigerant exchanges heat with frost at 0 ° C. in the heat source side heat exchanger 12, so the refrigerant cools to a temperature close to 0 ° C. in the heat source side heat exchanger 12 and flows out of the heat source side heat exchanger 12.
  • the refrigerant that has flowed out of the heat source side heat exchanger 12 is sufficiently cooled to a temperature that can be used as a cooling heat source. Therefore, when there is a cooling demand in the use side heat exchangers 26a to 26d, the refrigerant is used. It is circulated through the side heat exchangers 26a to 26d and used for cooling.
  • the opening degree of the expansion valve 16a is set so as to prevent the refrigerant from flowing, and all the refrigerant flows through the expansion valve 16b.
  • the movement of the secondary side heat medium (water, antifreeze, etc.) will be described.
  • the intermediate heat exchanger 15b When there is a cooling load, in the intermediate heat exchanger 15b, the cold heat of the primary side refrigerant is transmitted to the secondary side heat medium, and the cooled heat medium is caused to flow in the secondary side pipe by the pump 21b. It is done.
  • the heat medium exiting the pump 21b passes through the stop valves 24a to 24d through the flow path switching valves 22a to 22d, and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d.
  • the air conditioning load required indoors is such that the flow rate adjustment valves 25a to 25 are maintained so that the temperature difference between the use side heat exchanger inlet temperatures 33a to 33d and the use side heat exchanger outlet temperatures 34a to 34d is maintained at a target value. It can be covered by controlling 25d.
  • the heat medium in the flow path passing through the heat medium heat exchanger 15a is heated to, for example, 50 ° C. by the heating operation before entering the defrosting operation. Therefore, the heated heat medium is caused to flow in the secondary pipe by the pump 21a.
  • the heat medium exiting the pump 21a passes through the stop valves 24a to 24d through the flow path switching valves 22a to 22d, and flows into the use side heat exchangers 26a to 26d and the flow rate adjusting valves 25a to 25d.
  • the flow rate adjusting valves 25a to 25d only the heat medium having a flow rate necessary to cover the heating load required indoors is caused to flow to the use side heat exchangers 26a to 26d, and the rest is the bypass 27a. It does not contribute to heat exchange through ⁇ 27d.
  • the heat medium passing through the bypasses 27a to 27d merges with the heat medium passing through the use side heat exchangers 26a to 26d, flows into the intermediate heat exchanger 15a through the flow path switching valves 23a to 23d, and pumps again. It is sucked into 21b.
  • the air conditioning load required indoors can be covered by controlling so that the temperature difference between the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d is maintained at a target value.
  • the intermediate heat exchanger 15a is not newly supplied with warm heat, so the temperature of the heat medium is lowered by the heating load in the use side heat exchangers 26a to 26d.
  • heating can be continued while the temperature of the heat medium is at a certain level or higher, for example, 35 ° C. or higher. Specific examples of the heating operation function during the defrosting operation will be described below.
  • the temperature of the heat medium at the start of the defrosting operation is 50 ° C., and heating operation can be performed if it is 35 ° C. or more.
  • the flow rate of the heat medium is 20 L per minute for each of the use side heat exchangers 26a to 26d, and the heating load in the use side heat exchangers 26a to 26d is the difference in the temperature of the heat medium inlet / outlet of each of the use side heat exchangers 26a to 26d. It is assumed that a value that can be just covered by adding 5 ° C. and that the amount of heat with a temperature difference of 5 ° C. is supplied at the entrance and exit of the intermediate heat exchanger 15a during the heating operation before the start of defrosting.
  • the piping through which the heat medium circulates has a length that makes one round in one minute.
  • the amount of heating in the intermediate heat exchanger 15a disappears, and thus the outlet temperature of the intermediate heat exchanger 15a decreases by 5 ° C. in one minute. Therefore, since the heating operation can be continued until the heat medium at the initial 50 ° C. reaches 35 ° C., that is, until the heat medium decreases by 15 ° C., the heating operation can be continued for a total of 3 minutes.
  • the defrosting operation is completed after 3 minutes. That is, it is possible to cover heating during the defrosting operation only by circulation of the heat medium on the secondary side.
  • the time during which the heat cannot be supplied to the room is only the time obtained by subtracting the time during which heating is performed only by circulation of the heat medium from the time of the defrosting operation.
  • the decrease in room temperature can be greatly reduced.
  • the flow rate of the heat medium may be reduced by lowering the rotational speed of the pump 21a than the operation state before entering the defrosting operation. For example, when the rotational speed is reduced to half that at the start of the defrosting operation, the heating operation can be continued for twice the time. By doing in this way, the time which stops heating operation during a defrost operation can be shortened, and indoor comfort improves compared with the case where heating operation is not performed at all.
  • the operation of the pump 21a is performed.
  • the capacity may be reduced or stopped.
  • the set temperature is a lower limit temperature (heating limit temperature) at which heating operation can be performed, and may be determined as appropriate, but may be, for example, 30 to 35 ° C.
  • This control may be performed by arranging a temperature sensor on the inlet side or the outlet side of the pump 21a and using the detected temperature.
  • the operating side heat exchanger during operation may be thermo-off and stop, or conversely, thermo-on and start-up may be considered.
  • the discharge capacity of the pump 21a may be determined according to the required heating capacity of the use side heat exchanger at that time.
  • the required heating capacity of the use side heat exchanger is calculated based on the above equation (1) by installing a flow meter for measuring the flow rate of the heat medium flowing in the use side heat exchanger and measuring the flow rate of the heat medium. I can do things. Moreover, you may determine based on the capability code which shows the heat exchange capacity
  • FIG. 8 shows a case where there is a heating load in the use-side heat exchanger 26a and a cooling load in the use-side heat exchanger 26b, and there is no heat load in the use-side heat exchangers 26c and 26d, and the corresponding stop is shown.
  • the valves 24c and 24d are closed.
  • the control device 300 starts processing (ST0), it determines whether or not there is an indoor unit in cooling (or dehumidifying) operation or heating operation (ST1, ST3). If there is an indoor unit for cooling (or dehumidification) operation, the cooling-side pump 21b is operated (ST2).
  • the flow path switching valves 22 and 23 corresponding to the indoor unit are switched to the intermediate heat exchanger 15a for heating (ST9), and the detected temperatures of the third temperature sensors 33a to 33d T1 and the detected temperature T2 of the fourth temperature sensors 34a to 34d are obtained, and a value obtained by subtracting T2 from T1 is set as ⁇ Tr (ST10).
  • the flow path switching valves 22 and 23 corresponding to the indoor unit are switched to the cooling intermediate heat exchanger 15b (ST11), and the detected temperatures of the third temperature sensors 33a to 33d are switched.
  • T1 and the detected temperature T2 of the fourth temperature sensors 34a to 34d are obtained, and a value obtained by subtracting T1 from T2 is set as ⁇ Tr (ST12).
  • the opening degree (opening area) of the corresponding flow rate adjusting valves 25a to 25d is reduced (ST13, ST14), and the control target value Tmr
  • the opening degree (opening area) of the corresponding flow rate adjusting valve 25a to 25d is increased (ST13, ST15), and ⁇ Tr is controlled so as to approach the control target value. Covers both heating and cooling loads.
  • Trs may be set to 0 ° C. so that the stable range is not provided. However, providing the stable range reduces the number of times of control of the flow rate adjusting valves 25a to 25d and extends the life of the valve.
  • the defrosting operation cold heat is supplied from the refrigerant to the intermediate heat exchanger 15b, but warm heat is not supplied from the refrigerant to the intermediate heat exchanger 15a, and therefore, the first temperature sensor 31a at the inlet of the pump 21a.
  • the pump 21a is stopped (ST4, ST6).
  • the heating operation is also stopped. Instead of stopping the pump 21a, the operating capacity may be reduced.
  • the use side heat exchanger inlet / outlet temperature difference ⁇ Tr is brought closer to the control target.
  • a predetermined heating limit temperature for example, 35 ° C.
  • the heating limit temperature for stopping the heating operation by circulation of the heat medium during the defrosting operation is the detected temperature of the first temperature sensor 31a and the second temperature sensor 32a in addition to the temperature of the inlet or outlet of the pump 21a. Any of the detected temperature, the detected temperature of the third temperature sensors 33a to 33d, and the detected temperature of the fourth temperature sensors 34a to 34d may be used. However, since the detected temperatures of the fourth temperature sensors 34a to 34d vary depending on the control, it is more preferable to use the other three types of detected temperatures.
  • FIG. FIG. 10 is a circuit diagram for the refrigerant and heat medium of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioner of the second embodiment is the same as the air conditioner of the first embodiment, except that two-way flow control valves are used as the flow control valves 25a to 25d and the stop valves 24a to 24d are omitted. .
  • this two-way flow rate adjusting valve for example, a two-way flow rate adjusting valve whose opening area is continuously changed by a stepping motor or the like is used.
  • the control of the two-way flow rate adjustment valve is similar to that of the three-way flow rate adjustment valve, and the flow rate of the two-way flow rate adjustment valve is adjusted to control the flow rate flowing into the use side heat exchangers 26a to 26d. Control is performed so that the temperature difference before and after the heat exchangers 26a to 26d becomes a target value, for example, 5 ° C. Then, the rotational speeds of the pumps 21a and 21b are controlled so that the temperature on the inlet side or the outlet side of the intermediate heat exchangers 15a and 15b becomes a target value.
  • two-way flow control valves are used as the flow control valves 25a to 25d, they can also be used for opening and closing the flow path, so that the stop valves 24a to 24d are not required, and there is an advantage that a system can be constructed at low cost. .
  • the refrigerant includes single refrigerants such as R-22 and R-134a, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, non-azeotropic mixed refrigerants such as R-407C, and double in the chemical formula.
  • a refrigerant containing a bond such as CF 3 CF ⁇ CH 2, having a relatively low global warming coefficient, a mixture thereof, or a natural refrigerant such as CO 2 or propane can be used.
  • the present invention is effective even in a circuit without the accumulator 17. Further, although the case where the check valves 13a to 13d are provided has been described, this is not essential to the present invention, and even without this, the present invention can be configured and its operational effects can be achieved.
  • a fan is attached to the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d to promote condensation or evaporation by blowing air.
  • the present invention is not limited to this.
  • a panel heater using radiation can be used as the use side heat exchangers 26a to 26d.
  • the heat source side heat exchanger 12 a water-cooled type in which heat is transferred by water or an antifreeze liquid can be used, and any structure having a structure capable of radiating heat or absorbing heat can be used.
  • the flow path switching valves 22a to 22d, 23a to 23d, the stop valves 24a to 24d, and the flow rate adjusting valves 25a to 25d have been described as being connected to the use side heat exchangers 26a to 26d one by one.
  • the present invention is not limited to this, and a plurality of each use-side heat exchanger may be connected. In that case, what is necessary is just to operate the some of them connected to the same use side heat exchanger similarly.
  • the flow adjustment valves 25a to 25d, the third temperature sensors 33a to 33d, and the fourth temperature sensors 34a to 34d have been described as an example in the relay unit 3.
  • the present invention is not limited, and even if these are installed in or near the indoor unit 2, the same operation as described above is performed, and the same effect is obtained.
  • the third temperature sensors 33a to 33d and the fourth temperature sensors 34a to 34d are installed in or near the relay unit 3, and the flow rate is adjusted.
  • the regulating valves 25a to 25d may be installed in or near the indoor unit 2.
  • the air-conditioning apparatus of the present embodiment described above can cover the heating load by circulating the secondary warm heat medium during the defrosting operation, and can suppress a decrease in room temperature.
  • the relay unit 3 is formed separately from the use side heat exchangers 26a to 26d and the heat source side heat exchanger 12 so that they can be installed at locations separated from each other, thereby providing pump power for transporting the heat medium.
  • the system efficiency including defrosting can be increased. Therefore, an operation with high energy saving performance can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 熱源側熱交換器12と中間熱交換器15a、15bと利用側熱交換器26a~26dとが、それぞれ別体に形成されて互いに離れた場所に設置できるようにされており、熱源側熱交換器12の周囲に付着した霜を溶かす除霜運転機能と、除霜運転機能動作中に、ポンプ21aを運転して熱媒体を循環させ、暖房要求がある利用側熱交換器26a~26dに対して、温熱を供給し暖房を行う除霜運転中暖房機能とを備えた空気調和装置。除霜運転機能は、四方弁11を冷房側に切り替え、圧縮機10から出た高温高圧の冷媒を熱源側熱交換器12に導入して実行できる。

Description

空気調和装置
 この発明は、ビル用マルチエアコンなどの空気調和装置に関するものである。
 従来の空気調和装置であるビル用マルチエアコンにおいては、室外に配置した熱源装置である室外機と室内に配置した室内機の間に冷媒を循環させることにより、室内に冷熱または温熱を搬送していた。冷媒としては、HFC(ハイドロフルオロカーボン)冷媒が多く使われており、CO2等の自然冷媒を使うものも提案されている。
 また、別の従来の空気調和装置であるチラーにおいては、室外に配置した熱源装置にて、冷熱または温熱を生成し、室外機内に配置した熱交換器で水や不凍液等の熱媒体に冷熱または温熱を伝え、これを室内機であるファンコイルユニットやパネルヒータ等に搬送して冷房または暖房を行っていた(例えば、特許文献1参照)。
特開2003-343936号公報
 従来の空気調和装置では、冷媒を直接室内機に循環させているため、除霜運転中は温熱を室内機に供給することができず、除霜中に室内の温度が低下してしまっていた。また、除霜中に暖房ができないため、除霜を含むシステム効率が低くなってしまっていた。また、チラーは、室外で冷媒と水の熱交換を行い、水を搬送するため、水の搬送動力が非常に大きく、除霜運転中に温熱を供給できたとしても、多大なポンプの搬送動力のため、除霜を含むシステム効率はかえって悪くなってしまい、省エネでないという問題点があった。
 この発明は、上記のような課題を解決するためになされたもので、除霜運転中に室内機に二次熱媒体を循環させることにより、室温の低下を抑制でき、しかも二次熱媒体の循環に要する動力を少なくできる空気調和装置を得ることを目的としている。
 この発明に係る空気飽和装置は、
 冷媒と前記冷媒と異なる熱媒体とを熱交換する熱媒体加熱用および熱媒体冷却用の中間熱交換器と、
 圧縮機、前記圧縮機の出口側流路を暖房時と冷房時で切り替える四方弁、熱源側熱交換器、少なくとも1つの膨張弁、および前記中間熱交換器の冷媒側流路を、前記冷媒が流通する配管を介して接続した冷凍サイクル回路と、
 前記中間熱交換器の熱媒体側流路、ポンプ、および利用側熱交換器を、前記熱媒体が流通する配管を介して接続した熱媒体循環回路とを備え、
 前記熱源側熱交換器と前記中間熱交換器と前記利用側熱交換器とは、それぞれ別体に形成されて互いに離れた場所に設置できるようにされており、
 前記熱源側熱交換器の周囲に付着した霜を溶かす除霜運転機能と、
 前記除霜運転機能動作中に、前記ポンプを運転して前記熱媒体を循環させ、暖房要求がある前記利用側熱交換器に対して、温熱を供給し暖房を行う除霜運転中暖房機能とを備えたものである。
 なお、前記除霜運転機能は、前記四方弁を冷房側に切り替え、高温高圧の冷媒を前記熱源側熱交換器に導入して実行することができる。
 この発明の空気調和装置は、熱源側熱交換器を有する冷凍サイクル回路と、利用側熱交換器に温熱を供給する熱媒体循環回路とが分かれているため、暖房運転から除霜運転に切り替えても、一定の間は利用側熱交換器に温熱を供給し続けることができ、室内を暖房することが可能である。また、熱源側熱交換器と中間熱交換器と利用側熱交換器とは、それぞれ別体に形成されて互いに離れた場所に設置できるようにされているため、熱媒体の搬送動力を小さくすることができ、除霜を含むシステム効率が向上し、省エネにも寄与できる。
この発明の実施の形態1に係る空気調和装置の全体構成図。 この発明の実施の形態1に係る空気調和装置の別の全体構成図。 この発明の実施の形態1に係る空気調和装置の冷媒及び熱媒体用回路図。 全冷房運転時における冷媒および熱媒体の流れを示す回路図。 全暖房運転時における冷媒および熱媒体の流れを示す回路図。 冷房主体運転時における冷媒および熱媒体の流れを示す回路図。 暖房主体運転時における冷媒および熱媒体の流れを示す回路図。 除霜運転時における冷媒および熱媒体の流れを示す回路図。 空気調和装置の制御装置による熱媒体の流量制御動作を説明するフローチャート。 この発明の実施の形態2に係る空気調和装置の冷媒及び熱媒体用回路図。
 1 熱源装置(室外機)、2 室内機、3 中継ユニット、3a 親中継ユニット、3b(1)、3b(2) 子中継ユニット、4 冷媒配管、5 熱媒体配管、6 室外空間、7 室内空間、8 非空調空間、9 ビル等の建物、10 圧縮機、11 四方弁、12 熱源側熱交換器、13a、13b、13c、13d 逆止弁、14 気液分離器、15a、15b 中間熱交換器、16a、16b、16c、16d、16e、膨張弁、17 アキュムレータ、21a、21b ポンプ、22a、22b、22c、22d 流路切替弁、23a、23b、23c、23d 流路切替弁、24a、24b、24c、24d 止め弁、25a、25b、25c、25d 流量調整弁、26a、26b、26c、26d 利用側熱交換器、27a、27b、27c、27d バイパス、31a、31b 第一の温度センサ、32a、32b 第二の温度センサ、33a、33b、33c、33d 第三の温度センサ、34a、34b、34c、34d 第四の温度センサ、35 第五の温度センサ、36 圧力センサ、37 第六の温度センサ、38 第七の温度センサ。
 以下、この発明の実施の形態を詳しく説明する。
実施の形態1.
 図1、図2は、この発明の実施の形態1に係る空気調和装置の全体構成図である。この空気調和装置は、熱源装置(室外機)1と、室内等の空調に供される室内機2と、室外機1から離され、非空調空間8等に設置される中継ユニット3とを備える。熱源装置1と中継ユニット3は冷媒配管4で接続され冷媒(一次媒体)が流れる。中継ユニット3と室内機2は熱媒体配管5で接続され、水や不凍液等の熱媒体(二次媒体)が流れる。中継ユニット3は、熱源装置1から送られてきた冷媒と室内機2から送られてきた熱媒体との間で熱交換等を行う。
 熱源装置1は、通常、ビル等の建物9の外部空間である室外空間6に配置される。室内機2は、ビルの建物9の内部の居室等の室内空間7に、加熱または冷却された空気を搬送できる位置に配置されている。中継ユニット3は、熱源装置1および室内機2とは、別筐体になっており、冷媒配管4および熱媒体配管5で接続されて、室外空間6および室内空間7とは別の場所に設置できるようにされている。図1において、中継ユニット3は、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の非空調空間8に設置されている。なお、中継ユニット3は、エレベータ等がある共用部等に設置することも可能である。
 熱源装置1と中継ユニット3は、2本の冷媒配管4を用いて接続できるように構成されている。また、中継ユニット3と各室内機2は、それぞれが2本の熱媒体配管5を用いて接続されている。このように2本の配管を用いて接続することにより、空気調和装置の施工が容易になる。
 図2には、中継ユニット3を複数備えた場合を示している。すなわち、中継ユニット3を、1つの親中継ユニット3aとそれから派生した2つの子中継ユニット3b(1)、(2)に分けている。このようにすることにより、1つの親中継ユニット3aに対し、子中継ユニット3bを複数接続できるようになる。なお、この構成においては、親中継ユニット3aと子中継ユニット3bの間の接続配管は3本になっている。
 なお、図1および図2では、室内機2は、天井カセット型を例に示してあるが、これに限るものではなく、天井埋込型、天井吊下式等、室内空間7に直接またはダクト等により、加熱または冷却した空気を吹き出せるようになっていればどんなものでもよい。
 また、熱源装置1は、建物9の外の室外空間6に設置されている場合を例に説明を行ったがこれに限られない。たとえば、熱源装置1は換気口付の機械室等の囲まれた空間に設定してもよく、熱源装置1を建物9の内部に設置して排気ダクトで廃熱を建物9の外に排気してもよく、あるいは水冷式の熱源装置を用いてそれを建物9の中に設置する等してもよい。
 また、中継ユニット3は、省エネには反するが、熱源装置1のそばに置くこともできる。
 次に、上記空気調和装置の詳細な構成を説明する。図3は、この発明の実施の形態1に係る空気調和装置の冷媒および熱媒体用回路図である。この空気調和装置は図3に示すように、熱源装置1、室内機2、中継ユニット3を有している。
 熱源装置1は、圧縮機10、四方弁11、熱源側熱交換器12、逆止弁13a、13b、13c、13d、およびアキュムレータ17を備え、室内機2は利用側熱交換器26a~26dを有している。中継ユニット3は、親中継ユニット3aと子中継ユニット3bとを有し、親中継ユニット3aは、冷媒の気相と液相を分離する気液分離器14と、膨張弁(例えば電子膨張弁)16eとを備えている。
 子中継ユニット3bは、中間熱交換器15a、15b、膨張弁(例えば電子膨張弁)16a~16d、ポンプ21a、21b、三方弁などの流路切替弁22a~22d、23a~23dを備えている。流路切替弁は、各利用側熱交換器26a~26dの入口側流路と出口側流路に対応して設けられており、流路切替弁22a~22dは複数設置された中間熱交換器の間でそれらの出口側流路を切り替え、流路切替弁23a~23dはそれらの入口側流路を切り替える。この例では、流路切替弁22a~22dが中間熱交換器15a、15bの間でそれらの出口側流路を切り替え、流路切替弁23a~23dが中間熱交換器15a、15bの間でそれらの入口側流路を切り替える作用を果たしている。
 また、利用側熱交換器26a~26dの入口側に、流路を開閉する止め弁24a~24dを、利用側熱交換器26a~26dの出口側に、流量を調整する流量調整弁25a~25dを、それぞれ備えている。さらに、各利用側熱交換器26a~26dの入口側流路と出口側流路は、流量調整弁25a~25dを介してバイパス27a~27dで接続されている。
 子中継ユニット3bは、さらに次のような温度センサおよび圧力センサを備える。
・中間熱交換器15a、15bの熱媒体出口温度を検出する温度センサ(第一の温度センサ)31a、31b、
・中間熱交換器15a、15bの熱媒体入口温度を検出する温度センサ(第二の温度センサ)32a、32b、
・利用側熱交換器26a~26dの熱媒体入口温度を検出する温度センサ(第三の温度センサ)33a~33d、
・利用側熱交換器26a~26dの熱媒体出口温度を検出する温度センサ(第四の温度センサ)34a~34d、
・中間熱交換器15aの冷媒出口温度を検出する温度センサ(第五の温度センサ)35、
・中間熱交換器15aの冷媒出口圧力を検出する圧力センサ36、
・中間熱交換器15bの冷媒入口温度を検出する温度センサ(第六の温度センサ)37、
・中間熱交換器15bの冷媒出口温度を検出する温度センサ(第七の温度センサ)38。
 なお、これらの温度センサ及び圧力センサには、各種の温度計、温度センサ、圧力計、圧力センサが利用できる。
 そして、圧縮機10、四方弁11、熱源側熱交換器12、逆止弁13a、13b、13c、13d、気液分離器14、膨張弁16a~16e、中間熱交換器15a、15b、アキュムレータ17が冷凍サイクル回路を構成している。
 また、中間熱交換器15a、ポンプ21a、流路切替弁22a~22d、止め弁24a~24d、利用側熱交換器26a~26d、流量調整弁25a~25d、流路切替弁23a~23dが熱媒体循環回路を構成している。同様に、中間熱交換器15b、ポンプ21b、流路切替弁22a~22d、止め弁24a~24d、利用側熱交換器26a~26d、流量調整弁25a~25d、流路切替弁23a~23dが熱媒体循環回路を構成している。
 なお、図示するように、各利用側熱交換器26a~26dは、中間熱交換器15aと中間熱交換器15bに対して、それぞれ並列に複数設けられて、それぞれに熱媒体循環回路を構成している。
 また、熱源装置1にはそれを構成する機器を制御し、熱源装置1にいわゆる室外機としての動作を行わせる制御装置100が設けられている。また、中継ユニット3にはそれを構成する機器を制御し、後述する機能や動作を行わせる手段を備えた制御装置300が設けられている。これらの制御装置100、300はマイコンなどから構成され、互いに通信可能に接続されている。次に、上記空気調和装置の各運転モードの動作について説明する。
<全冷房運転>
 図4は、全冷房運転時における冷媒および熱媒体の流れを示す回路図である。全冷房運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して熱源側熱交換器12に入る。冷媒は、そこで凝縮されて液化し、逆止弁13aを通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14へ入り、膨張弁16eおよび16aを通って、中間熱交換器15bへ導入される。この際、膨張弁16aによって、冷媒は膨張させられて、低温低圧の二相冷媒となり、中間熱交換器15bは蒸発器として作用する。冷媒は、中間熱交換器15bにおいて低温低圧のガス冷媒となり、膨張弁16cを通って、中継ユニット3から流出し、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13dを通って、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16b、16dは冷媒が流れないような小さい開度となっており、膨張弁16cは全開状態とし圧力損失が起きないようにしている。
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15bにて、一次側の冷媒の冷熱が二次側の熱媒体に伝えられ、冷やされた熱媒体はポンプ21bによって二次側の配管内を流動させられる。ポンプ21bを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、中間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。なお、室内にて必要とされる空調負荷は、第三の温度センサ33a~33dと第四の温度センサ34a~34dの検出温度差を、予め定めた目標値に保つように制御することにより、賄うことができる。
 なお、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、当該利用側熱交換器へ熱媒体が流れないようにする。図4においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。
<全暖房運転>
 図5は、全暖房運転時における冷媒および熱媒体の流れを示す回路図である。全暖房運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して、逆止弁13b通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14を通って、中間熱交換器15aへ導入され、中間熱交換器15aにおいて凝縮されて液化し、膨張弁16dおよび16bを通って、中継ユニット3から流出する。この際、膨張弁16bによって、冷媒は膨張させられて、低温低圧の二相冷媒となり、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13cを通って、熱源側熱交換器12へ導入され、熱源側熱交換器12は蒸発器として作用する。冷媒は、そこで低温低圧のガス冷媒となり、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16eと、膨張弁16a若しくは16cは、冷媒が流れないような小さい開度にしている。
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15aにて、一次側の冷媒の温熱が二次側の熱媒体に伝えられ、暖められた熱媒体はポンプ21aによって二次側の配管内を流動させられる。ポンプ21aを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱冷媒は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、中間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。なお、室内にて必要とされる空調負荷は、第三の温度センサ33a~33dと第四の温度センサ34a~34dの検出温度差を目標値に保つように制御することにより、賄うことができる。
 この際、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、当該利用側熱交換器へ熱媒体が流れないようにする。図5においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。
<冷房主体運転>
 図6は、冷房主体運転時における冷媒および熱媒体の流れを示す回路図である。冷房主体運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して熱源側熱交換器12へ導入される。そこで、ガス状態の冷媒が凝縮して二相冷媒になり、二相状態にて熱源側熱交換器12から流出し、逆止弁13aを通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14へ入って、二相冷媒中のガス冷媒と液冷媒が分離され、ガス冷媒は、中間熱交換器15aへ導入され、中間熱交換器15aにおいて凝縮されて液化し、膨張弁16dを通る。一方、気液分離器14において分離された液冷媒は、膨張弁16eへ流され、中間熱交換器15aにて凝縮液化して膨張弁16dを通った液冷媒と合流し、膨張弁16aを通って、中間熱交換器15bへ導入される。この際、膨張弁16aによって、冷媒は膨張させられて、低温低圧の二相冷媒となり、中間熱交換器15bは蒸発器として作用する。冷媒は、中間熱交換器15bにて低温低圧のガス冷媒となり、膨張弁16cを通って、中継ユニット3を流出し、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13dを通って、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16bは冷媒が流れないような小さい開度となっており、膨張弁16cは全開状態とし圧力損失が起きないようにしている。
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15aにて、一次側の冷媒の温熱が二次側の熱媒体に伝えられ、暖められた熱媒体はポンプ21aによって二次側の配管内を流動させられる。また、中間熱交換器15bにて、一次側の冷媒の冷熱が二次側の熱媒体に伝えられ、冷された熱媒体はポンプ21bによって二次側の配管内を流動させられる。そして、ポンプ21aおよびポンプ21bを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、それぞれ、暖かい熱媒体は中間熱交換器15aへ流入し再びポンプ21aへ戻り、冷たい熱媒体は中間熱交換器15bへ流入し再びポンプ21bへ戻る。この間、暖かい熱媒体と冷たい熱媒体は、流路切替弁22a~22dおよび23a~23dの作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26a~26dへ導入される。なお、室内にて必要とされる空調負荷は、第三の温度センサ33a~33dと第四の温度センサ34a~34dの検出温度差を目標値に保つように制御することにより、賄うことができる。
 図6は、利用側熱交換器26aにて温熱負荷が発生し、利用側熱交換器26bにて冷熱負荷が発生している状態を示している。
 また、この際、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、利用側熱交換器へ熱媒体が流れないようにする。図6においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。
<暖房主体運転>
 図7は、暖房主体運転時における冷媒および熱媒体の流れを示す回路図である。暖房主体運転において、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して、逆止弁13b通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14を通って、中間熱交換器15aへ導入され、中間熱交換器15aにおいて凝縮されて液化する。その後、膨張弁16dを通った冷媒は、膨張弁16aを通る流路と膨張弁16bを通る流路に分けられる。膨張弁16aを通った冷媒は、膨張弁16aによって膨張させられて低温低圧の二相冷媒となり、中間熱交換器15bへ流入し、中間熱交換器15bは蒸発器として作用する。中間熱交換器15bを出た冷媒は、蒸発してガス冷媒となって、膨張弁16cを通る。一方、膨張弁16bを通った冷媒は、膨張弁16bによって膨張させられて低温低圧の二相冷媒となり、中間熱交換器15bおよび膨張弁16cを通った冷媒と合流して、より乾き度の大きい低温低圧の冷媒となる。そして、合流された冷媒は、中継ユニット3から流出し、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13cを通って、熱源側熱交換器12へ導入され、熱源側熱交換器12は蒸発器として作用する。そこで、低温低圧の二相冷媒が蒸発されてガス冷媒となり、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16eは冷媒が流れないような小さい開度としている。
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。中間熱交換器15aにて、一次側の冷媒の温熱が二次側の熱媒体に伝えられ、暖められた熱媒体はポンプ21aによって二次側の配管内を流動させられる。また、中間熱交換器15bにて、一次側の冷媒の冷熱が二次側の熱媒体に伝えられ、冷やされた熱媒体はポンプ21bによって二次側の配管内を流動させられる。そして、ポンプ21aおよびポンプ21bを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、それぞれ、暖かい熱媒体は中間熱交換器15aへ流入し再びポンプ21aへ戻り、冷たい熱媒体は中間熱交換器15bへ流入し再びポンプ21bへ戻る。この間、暖かい熱媒体と冷たい熱媒体は、流路切替弁22a~22dおよび23a~23dの作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26a~26dへ導入される。なお、室内にて必要とされる空調負荷は、第三の温度センサ33a~33dと第四の温度センサ34a~34dの検出温度差を目標値に保つように制御することにより、賄うことができる。
 図7は、利用側熱交換器26aにて温熱負荷が発生し、利用側熱交換器26bにて冷熱負荷が発生している状態を示している。
 また、この際、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、利用側熱交換器へ熱媒体が流れないようにする。図7においては、利用側熱交換器26aおよび26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。
 以上のように、利用側熱交換器26a~26dにて暖房負荷が発生している場合は、対応する流路切替弁22a~22dおよび23a~23dを加熱用の中間熱交換器15aに接続される流路へ切り替え、利用側熱交換器26a~26dにて冷房負荷が発生している場合は、対応する流路切替弁22a~22dおよび23a~23dを冷却用の中間熱交換器15bに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行うことができるようになる。
 なお、流路切替弁22a~22dおよび23a~23dは、三方弁等の三方流路を切り替えられるもの、止め弁等の二方流路の開閉を行うものを2つ組み合わせる等、流路を切り替えられるものであればよい。また、流路切替弁は、ステッピングモータ駆動式の混合弁等の三方流路の流量を変化させられるものや、電子式膨張弁等の2方流路の流量を変化させられるものを2つ組み合わせなどにより構成してもよい。その場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。
 利用側熱交換器26a~26dにおける熱負荷は、以下の(1)式で表され、熱媒体の流量と密度と定圧比熱と、利用側熱交換器26a~26dの入口と出口の熱媒体の温度差を乗じたものとなる。ここで、Vwは熱媒体の流量、ρwは熱媒体の密度、Cpwは熱媒体の定圧比熱、Twは熱媒体の温度、添字のinは利用側熱交換器26a~26dの熱媒体入口での値、添字のoutは利用側熱交換器26a~26dの熱媒体出口での値を示す。
Figure JPOXMLDOC01-appb-M000001
 すなわち、利用側熱交換器26a~26dへ流す熱媒体の流量が一定の場合、利用側熱交換器26a~26dでの熱負荷の変化に応じ、熱媒体の入出口での温度差が変化する。そこで、利用側熱交換器26a~26dの入出口の温度差を目標とし、これが予め定めた目標値に近づくように、流量調整弁25a~25dを制御することにより、余分な熱媒体をバイパス27a~27dへ流して、利用側熱交換器26a~26dへ流れる流量を制御することができる。利用側熱交換器26a~26dの入出口の温度差の目標値は、例えば5℃等に設定する。この動作は、制御装置300により行われるが、その詳細な説明は後述する。
 図3~図7では、流量調整弁25a~25dが利用側熱交換器26a~26dの下流側に設置する混合弁である場合を例に説明を行ったが、利用側熱交換器26a~26dの上流側に設置する三方弁であってもよい。
 そして、利用側熱交換器26a~26dと熱交換を行った熱媒体と、熱交換を行わず温度変化をせずバイパス27a~27dを通過した熱媒体は、その後の合流部で合流する。この合流部においては、以下の(2)式が成り立つ。ここで、Twin、Twoutは利用側熱交換器26a~26dの入口および出口の熱媒体温度、Vwは流量調整弁25a~25dへ流入する熱媒体の流量、Vwrは利用側熱交換器26a~26dへ流入する熱媒体の流量、Twは利用側熱交換器26a~26dを流れた熱媒体とバイパス27a~27dを流れた熱媒体が合流した後の熱媒体の温度を表す。
Figure JPOXMLDOC01-appb-M000002
 すなわち、利用側熱交換器26a~26dで熱交換を行った熱媒体と、熱交換を行わずにバイパス27a~27dを通過した熱媒体が合流すると、熱媒体の温度差がバイパスされた流量の分、利用側熱交換器26a~26dの入口温度に近づく。例えば、全流量が20L/min、利用側熱交換器26a~26dの熱媒体入口温度が7℃、出口温度が13℃、利用側熱交換器26a~26dの側へ流した流量が10L/minである時、その後の合流後の温度は、(2)式より、10℃となる。
 この合流された温度の熱媒体が、各室内機から戻ってきて合流し、中間熱交換器15a、15bへ流入する。この際、中間熱交換器15aまたは15bの熱交換量が変わらなければ、中間熱交換器15aまたは15bでの熱交換により、入出口温度差はほぼ同じになる。例えば、中間熱交換器15aまたは15bの入出口温度差が6℃となっており、当初は、中間熱交換器15aまたは15bの入口温度を13℃、出口温度を7℃となっていたとする。そして、利用側熱交換器26a~26dでの熱負荷が下がり、中間熱交換器15aまたは15bの入口温度が10℃に低下したとする。すると、何もしなければ、中間熱交換器15aまたは15bはほぼ同じ量の熱交換を行うため、4℃にて、中間熱交換器15aまたは15bから流出し、これが繰り返されて、熱媒体の温度はどんどん温度が下がっていってしまう。
 これを防ぐためには、中間熱交換器15aまたは15bの熱媒体出口温度が目標値に近づくように、利用側熱交換器26a~26dの熱負荷の変化に応じて、ポンプ21a、21bの回転数を変化させ、利用側熱交換器を流れる熱媒体の流量を調整すればよい。このようにすると、熱負荷が下がったときは、ポンプの回転数が下がって省エネになり、熱負荷が上がった時は、ポンプの回転数が上がって、熱負荷を賄うことができる。
 ポンプ21bは、利用側熱交換器26a~26dのいずれかにて、冷房負荷または除湿負荷が発生した場合に動作し、いずれの利用側熱交換器26a~26dにおいても、冷房負荷および除湿負荷がない場合は、停止させる。また、ポンプ21aは、利用側熱交換器26a~26dのいずれかにて、暖房負荷が発生した場合に動作し、いずれの利用側熱交換器26a~26dにおいても、暖房負荷がない場合は、停止させる。
 さて、以上説明した全暖房運転および暖房主体運転においては、熱源側熱交換器12には低温低圧の冷媒が流れ、熱源側熱交換器12が蒸発器として動作しているため、熱源側熱交換器12の周囲に霜が付着する着霜現象が起きる。熱源側熱交換器12の着霜が進むと、冷媒と空気との熱交換が阻害され、かつ熱源側熱交換器12の周囲の風路が霜によって狭められるため、通過風量が低下する。そのため、熱源側熱交換器12での熱交換量が低下し、それに伴って熱源側熱交換器12の内部を流れる冷媒の蒸発温度が低下するため、冷凍サイクルの運転効率が悪くなる。着霜が更に進むと、風路閉塞に至る。そのため空気調和装置は、熱源側熱交換器12の周囲の霜を溶かす除霜運転機能を備えている。この除霜運転機能は、一般的には、四方弁11を冷房側に切り替え、高温高圧の冷媒を熱源側熱交換器12内に送り込むことにより行われる。この除霜運転中の冷媒および熱媒体の動きを図8に示す。
 除霜運転時、冷媒は、全冷房運転と類似の動きをする。すなわち、冷媒は、圧縮機10により圧縮され、高温高圧のガス冷媒になり、四方弁11を介して熱源側熱交換器12へ導入される。冷媒はそこで凝縮されて液化し、逆止弁13aを通って熱源装置1から流出し、冷媒配管4を通って中継ユニット3へ流入する。中継ユニット3において、冷媒は、気液分離器14へ入り、膨張弁16eおよび16aを通って、中間熱交換器15bへ導入される。この際、膨張弁16aによって、冷媒は膨張させられて、低温低圧の二相冷媒となり、中間熱交換器15bは蒸発器として作用し、低温低圧のガス冷媒となる。しかし、除霜運転においては、冷房運転とは異なり、霜を溶かすためのエネルギーが必要なため、圧縮機10の周波数はある程度高い周波数に設定される。そのため、冷媒循環量と冷房負荷とはバランスせず、余剰冷媒が発生するため、膨張弁16bの開度を制御し、余剰冷媒を流してやる。そして、膨張弁16a、中間熱交換器15bを通った冷媒は膨張弁16cを通り、膨張弁16bを通った冷媒と合流して、中継ユニット3から流出し、冷媒配管4を通って再び熱源装置1へ流入する。熱源装置1において、冷媒は、逆止弁13dを通って、四方弁11、アキュムレータ17を介して、圧縮機10へ吸い込まれる。この時、膨張弁16dは冷媒が流れないような小さい開度となっており、膨張弁16cは全開状態とし圧力損失が起きないようにしている。
 なお、熱源側熱交換器12の周囲には多量の霜が付着しており、霜は融解時に0℃で潜熱を放出し溶けて水になる。除霜運転時、冷媒は熱源側熱交換器12にて0℃の霜と熱交換するため、熱源側熱交換器12においては0℃に近い温度にまで冷えて熱源側熱交換器12から流出する。そこで、熱源側熱交換器12から流出した冷媒は、十分に冷却熱源として使用できる温度にまで冷却されているため、利用側熱交換器26a~26dにて冷房需要がある場合は、冷媒を利用側熱交換器26a~26dに循環させ、冷房に利用する。
 しかし、熱源側熱交換器12への着霜は外気温が低い時に起きるため、除霜運転中に冷房負荷があるとは限らない。冷房負荷がない場合は、膨張弁16aを冷媒が流れないような小さい開度とし、すべての冷媒を膨張弁16bを通して流すようにする。
 次に、二次側の熱媒体(水、不凍液等)の動きについて説明する。冷房負荷がある場合は、中間熱交換器15bにて、一次側の冷媒の冷熱が二次側の熱媒体に伝えられ、冷やされた熱媒体はポンプ21bによって二次側の配管内を流動させられる。ポンプ21bを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる冷房負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、中間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。なお、室内にて必要とされる空調負荷は、利用側熱交換器入口温度33a~33dと利用側熱交換器出口温度34a~34dの温度差を目標値に保つように、流量調整弁25a~25dを制御することにより、賄うことができる。
 また、暖房負荷がある場合は、熱媒体熱交換器15aを通る流路にある熱媒体は、除霜運転に入る前の暖房運転により、例えば50℃に、温められている。そこで、その暖められた熱媒体を、ポンプ21aによって二次側の配管内を流動させる。ポンプ21aを出た熱媒体は、流路切替弁22a~22dを介して、止め弁24a~24dを通り、利用側熱交換器26a~26dおよび流量調整弁25a~25dに流入する。この時、流量調整弁25a~25dの作用により、室内にて必要とされる暖房負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26a~26dに流され、残りはバイパス27a~27dを通って熱交換には寄与しない。バイパス27a~27dを通った熱媒体は、利用側熱交換器26a~26dを通った熱媒体と合流し、流路切替弁23a~23dを通って、中間熱交換器15aへ流入し、再びポンプ21bへ吸い込まれる。なお、室内にて必要とされる空調負荷は、第三の温度センサ33a~33dと第四の温度センサ34a~34dの温度差を目標値に保つように制御することにより、賄うことができる。
 除霜運転中、中間熱交換器15aにおいては、冷媒から新たに温熱を供給されることがないため、利用側熱交換器26a~26dでの暖房負荷の分、熱媒体の温度が低下する。しかし、上記の除霜運転中暖房機能を備えたことで、熱媒体の温度がある程度以上の温度、例えば35℃以上である間は、暖房を継続することができる。この除霜運転中暖房運転機能について、以下にその具体例を説明する。
 例えば、除霜運転開始時の熱媒体の温度が50℃であったとし、35℃以上であれば暖房運転を行えるものとする。熱媒体の流量は各利用側熱交換器26a~26d毎に毎分20Lとし、利用側熱交換器26a~26dでの暖房負荷は各利用側熱交換器26a~26dの熱媒体出入口温度差を5℃付けてちょうど賄える値とし、除霜開始前の暖房運転中は、この状態で、中間熱交換器15aの出入口にて5℃の温度差が付く熱量が供給されていたとする。また、熱媒体が循環する配管は、1分で一巡する程度の長さであるものとする。このような条件の下で除霜運転に入ると、中間熱交換器15aでの加熱量がなくなるため、中間熱交換器15aの出口温度は1分で5℃低下することになる。従って、初期50℃の熱媒体が35℃になるまで、すなわち熱媒体が15℃低下するまで、暖房運転が継続可能であるため、合計3分間、暖房運転が継続できることになる。通常、3分もあれば除霜運転は完了する。すなわち、二次側の熱媒体の循環のみで、除霜運転中の暖房を賄うことが可能である。もし除霜運転が更に長引いた場合でも、室内に温熱を供給できない時間は、除霜運転の時間から熱媒体の循環のみで暖房を行った時間を引いた時間だけであり、除霜時間中、室温の低下を大幅に小さくすることができる。
 また、暖房能力が少し低下しても長く暖房を継続したい場合は、ポンプ21aの回転数を除霜運転に入る前の運転状態よりも下げて、熱媒体の流量を低下させるようにするとよい。例えば、除霜運転開始時の半分の回転数に下げると、2倍の時間、暖房運転を継続することができる。このようにすることにより、除霜運転中の暖房運転を停止させる時間を短くすることができ、暖房運転が全くされない場合に比べて室内の快適性が向上する。
 また、中間熱交換器15aの出入口の温度を検出する、第一の温度センサ31aまたは第二の温度センサ32aの少なくとも一方の検出温度が、予め定めた設定温度以下になったら、ポンプ21aの運転容量を減少させるまたは停止させるようにしてもよい。なお、上記設定温度は暖房運転が可能な下限温度(暖房限界温度)であり、適宜定めて良いが、例えば30~35℃とすることができる。この制御は、ポンプ21aの入口側または出口側に温度センサを配して、その検出温度を利用して行ってもよい。
 また、除霜運転中に、運転中の利用側熱交換器がサーモオフして停止したり、あるいは、逆にサーモオンして起動したりすることも考えられるため、より適切に負荷に対応させるためには、その時の利用側熱交換器の必要暖房能力に応じて、ポンプ21aの吐出容量を決めるとよい。利用側熱交換器の必要暖房能力は、利用側熱交換器に流れる熱媒体の流量を測定する流量計を設置して熱媒体の流量を測定し、前述の(1)式に基づいて算出する事ができる。また、各利用側熱交換器の熱交換容量を示す能力コードに基づき決定してもよい。さらに、各利用側熱交換器の容量が大きく違わない場合は、大まかに利用側熱交換器の運転台数に基づいて決めてもよい。
 また、除霜運転中において、熱負荷のない利用側熱交換器(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24a~24dにより流路を閉じて、利用側熱交換器へ熱媒体が流れないようにする。図8においては、利用側熱交換器26aにおいて暖房負荷、利用側熱交換器26bにおいて冷房負荷がある場合を示しており、利用側熱交換器26cおよび26dにおいては熱負荷がなく、対応する止め弁24c、24dが閉となっている。
 次に、制御装置300による熱媒体の流量制御動作を、図9のフローチャートに基づいて説明する。なおここでは、流路切替弁22a~22dを流路切替弁22として、流路切替弁23a~23dを流路切替弁23として説明する。
 制御装置300は処理を開始すると(ST0)、冷房(又は除湿)運転、あるいは暖房運転の室内機の有無を判断する(ST1、ST3)。冷房(又は除湿)運転の室内機がある場合は、冷房側のポンプ21bを運転する(ST2)。暖房運転の室内機がある場合は、熱媒体の温度が予め定めた暖房限界温度以上であることを確認して(ST4)、暖房側のポンプ21aを運転する(ST5)。そして、関係する室内機について、番号1から順に全ての室内機の状態を確認する(ST7、ST16、ST17)。なお、図中の「n」は室内機の番号を示す。室内機が暖房運転の場合(ST8)、その室内機に対応する流路切替弁22、23を暖房用の中間熱交換器15aに切り替え(ST9)、第三の温度センサ33a~33dの検出温度T1と、第四の温度センサ34a~34dの検出温度T2を求め、T1からT2を減じた値を△Trと置く(ST10)。一方、室内機が冷房運転の場合は、その室内機に対応する流路切替弁22、23を冷房用の中間熱交換器15bに切り替え(ST11)、第三の温度センサ33a~33dの検出温度T1と、第四の温度センサ34a~34dの検出温度T2を求め、T2からT1を減じた値を△Trと置く(ST12)。そして、制御目標値Tmrと△Trの温度差が安定範囲Trsよりも大きい場合は、対応する流量調整弁25a~25dの開度(開口面積)を減らし(ST13、ST14)、制御目標値Tmrと△Trの温度差が安定範囲Trs以下の場合は、対応する流量調整弁25a~25dの開度(開口面積)を増やし(ST13、ST15)、△Trを制御目標値に近づけるように制御して、暖房負荷、冷房負荷のそれぞれを賄う。
 なお、Trsを0℃とし、安定範囲を設けないようにしてもよいが、安定範囲を設けた方が流量調整弁25a~25dの制御回数が減り、弁の寿命が延びる。
 また、除霜運転中は、中間熱交換器15bには冷媒から冷熱が供給されるが、中間熱交換器15aには冷媒から温熱が供給されないため、ポンプ21a入口の第一の温度センサ31aの検出温度が設定された暖房限界温度Tdl、例えば35℃、よりも低くなると、ポンプ21aを停止させる(ST4、ST6)。ポンプ21aが停止された場合には、暖房運転も停止する。なお、ポンプ21aを停止させる代わりに、その運転容量を減少させるようにしてもよい。
 これらの処理が予め定めた時間毎に繰り返される。ここで、例えば、制御目標値が5℃、安定範囲が1℃の場合、利用側熱交換器出入口温度差△Trが3℃であれば、流量調整弁25a~25dの開度(開口面積)を制御し、利用側熱交換器26a~26dに流す流量を減らすように制御する。一方、利用側熱交換器出入口温度差△Trが7℃であれば、利用側熱交換器26a~26dに流す流量が増えるように流量調整弁25a~25dの開度(開口面積)を制御する。そしてそれらにより、利用側熱交換器出入口温度差△Trを制御目標に近づける。また、暖房運転時、暖房開始時のポンプ21aの入口又は出口の温度が45℃であった場合、この温度が予め定めた暖房限界温度、例えば35℃になると、ポンプ21aを停止させるか運転容量を減少させる。
 除霜運転中の熱媒体の循環による暖房運転を停止させるための暖房限界温度は、ポンプ21aの入口または出口の温度に加えて、第一の温度センサ31aの検出温度、第二の温度センサ32aの検出温度、第三の温度センサ33a~33dの検出温度、第四の温度センサ34a~34dの検出温度のうちの、どの値を用いて検出しても構わない。ただ、第四の温度センサ34a~34dの検出温度は制御によって変化するため、他の3種類の検出温度を利用する方がより好ましい。
実施の形態2.
 図10は、この発明の実施の形態2に係る空気調和装置の冷媒及び熱媒体用回路図である。実施の形態2の空気調和装置は、流量調整弁25a~25dとして二方流量調整弁を用い、止め弁24a~24dを省いた点を除いて、実施の形態1の空気調和装置と同じである。この二方流量調整弁としては、例えば、ステッピングモータ等により開口面積を連続的に変化させられる二方流量調整弁を用いる。二方流量調整弁の制御は三方流量調整弁の場合と類似であり、二方流量調整弁の開度を調整して、利用側熱交換器26a~26dへ流入させる流量を制御し、利用側熱交換器26a~26dの前後の温度差が目標値、例えば5℃、になるように制御する。その上で、中間熱交換器15a、15bの入口側または出口側の温度が、目標値になるようにポンプ21a、21bの回転数を制御する。流量調整弁25a~25dとして二方流量調整弁を用いると、それを流路の開閉にも用いることができるため、止め弁24a~24dが不要になり、安価にシステムを構築できるというメリットがある。
 実施の形態1、2では、第一の温度センサ31a、31bおよび第二の温度センサ32a、32bの両方を設置する場合について説明したが、ポンプ21a、21bの制御を行うためには、第一の温度センサ31a、31bか、第二の温度センサ32a、32bのいずれかのみがあればよい。なお、除霜運転中においては、中間熱交換器15aに温熱が供給されていないため、中間熱交換器15aの熱媒体入口温度と熱媒体出口温度とは同じ温度となる。
 また、冷媒としては、R-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3CF=CH2等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCO2やプロパン等の自然冷媒が利用できる。
 また、冷媒回路にアキュムレータ17を含む構成としたが、アキュムレータ17がない回路でも本発明は有効である。また、逆止弁13a~13dがある場合について説明したが、これは本発明に必須のものではなく、これがなくても本発明を構成してその作用効果を奏することができる。
 また、熱源側熱交換器12および利用側熱交換器26a~26dには、送風機が取り付けられ、送風により凝縮あるいは蒸発を促進させることが好ましい。ただし、これに限るものではなく、例えば利用側熱交換器26a~26dとしては放射を利用したパネルヒータのようなものも用いることができる。熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。
 また、利用側熱交換器26a~26dが4台の場合を例に説明を行ったが、本発明においては、利用側熱交換器は少なくとも1台あればよく、その台数に制限はない。
 また、流路切替弁22a~22d、23a~23d、止め弁24a~24d、流量調整弁25a~25dは、各利用側熱交換器26a~26dにそれぞれ1つづつ接続される場合について説明したが、これに限るものではなく、各利用側熱交換器1つに対し、それぞれが複数接続されていてもよい。その場合には、同じ利用側熱交換器に接続されている、複数のそれらを同じように動作させればよい。
 また、中間熱交換器15a、15bが2つである場合を例に説明を行ったが、これに限るものではなく、室内機の台数に応じて中間熱交換器を増やしてもよい。
 また、流量調整弁25a~25d、第三の温度センサ33a~33d、第四の温度センサ34a~34dが、中継ユニット3の内部に設置されている場合を例に説明を行ったが、これに限るものではなく、これらを室内機2の内部または近くに設置するようにしても、上記と同様の動作をし、同様の効果を奏する。また、流量調整弁25a~25dとして二方流量調整弁を用いた場合は、第三の温度センサ33a~33d、第四の温度センサ34a~34dを中継ユニット3の内部あるいは近傍に設置し、流量調整弁25a~25dを室内機2の内部あるいは近傍に設置するようにしてもよい。
 以上に説明した本実施の形態の空気調和装置は、除霜運転中に、二次側の暖かい熱媒体を循環させることにより、暖房負荷を賄うことができ、室温の低下を抑制することができる。また、中継ユニット3を利用側熱交換器26a~26dおよび熱源側熱交換器12とそれぞれ別体に形成し互いに離れた場所に設置できるようにすることにより、熱媒体を搬送するためのポンプ動力を小さく抑えることができ、除霜を含むシステム効率を高くすることができる。従って、省エネ性の高い運転を行うことができる。

Claims (8)

  1.  冷媒と前記冷媒と異なる熱媒体とを熱交換する熱媒体加熱用および熱媒体冷却用の中間熱交換器と、
     圧縮機、前記圧縮機の出口側流路を暖房時と冷房時で切り替える四方弁、熱源側熱交換器、少なくとも1つの膨張弁、および前記中間熱交換器の冷媒側流路を、前記冷媒が流通する配管を介して接続した冷凍サイクル回路と、
     前記中間熱交換器の熱媒体側流路、ポンプ、および利用側熱交換器を、前記熱媒体が流通する配管を介して接続した熱媒体循環回路とを備え、
     前記熱源側熱交換器と前記中間熱交換器と前記利用側熱交換器とは、それぞれ別体に形成されて互いに離れた場所に設置できるようにされており、
     前記熱源側熱交換器の周囲に付着した霜を溶かす除霜運転機能と、
     前記除霜運転機能動作中に、前記ポンプを運転して前記熱媒体を循環させ、暖房要求がある前記利用側熱交換器に対して、温熱を供給し暖房を行う除霜運転中暖房機能とを備えたことを特徴とする空気調和装置。
  2.  前記除霜運転機能は、前記四方弁を冷房側に切り替え、高温高圧の冷媒を前記熱源側熱交換器に導入して実行するものであることを特徴とする請求項1に記載の空気調和装置。
  3.  前記各中間熱交換器に対して複数台の前記利用側熱交換器が並列に接続可能とされており、
     暖房運転を行っている前記利用側熱交換器の能力コードの合計、台数の合計、または必要暖房能力の合計値に応じて、前記ポンプの運転容量を決めることを特徴とする請求項1または2に記載の空気調和装置。
  4.  前記利用側熱交換器の入口側流路または出口側流路に熱媒体の流量を調整する流量調整弁を配置し、
     前記利用側熱交換器の入口側と出口側とに熱媒体の温度を検出する温度センサを配置し、
     前記利用側熱交換器の入口側と出口側の前記温度センサの検出温度差を、予め定めた目標値に近づけるように、前記流量調整弁の流量を調整することを特徴とする請求項1~3のいずれかに記載の空気調和装置。
  5.  前記利用側熱交換器の入口側と出口側に配置した前記温度センサの少なくとも一方の検出温度が、予め定めた暖房限界温度以下になったら、前記ポンプの運転容量を減少させるまたは停止させることを特徴とする請求項4に記載の空気調和装置。
  6.  前記中間熱交換器の入口側または出口側、若しくは前記ポンプの入口側または出口側に熱媒体の温度を検出する温度センサを配置し、それらの温度センサのいずれかの検出温度が、予め定めた暖房限界温度以下になったら、前記ポンプの運転容量を減少させるまたは停止させることを特徴とする請求項1~4のいずれかに記載の空気調和装置。
  7.  除霜運転時の前記ポンプの運転容量を、除霜運転開始前の運転容量よりも小さい値に設定することを特徴とする請求項1~6のいずれかに記載の空気調和装置。
  8.  前記中間熱交換器を、前記利用側熱交換器が空調対象とする空間外に設置したことを特徴とする請求項1~7のいずれかに記載の空気調和装置。
PCT/JP2008/069605 2008-10-29 2008-10-29 空気調和装置 WO2010050002A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010535545A JP5312471B2 (ja) 2008-10-29 2008-10-29 空気調和装置
PCT/JP2008/069605 WO2010050002A1 (ja) 2008-10-29 2008-10-29 空気調和装置
CN2008801305546A CN102112818B (zh) 2008-10-29 2008-10-29 空气调节装置
EP08877714.9A EP2309199B1 (en) 2008-10-29 2008-10-29 Air conditioner
US13/056,172 US8752397B2 (en) 2008-10-29 2008-10-29 Air-conditioning apparatus
US14/261,499 US9115931B2 (en) 2008-10-29 2014-04-25 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/069605 WO2010050002A1 (ja) 2008-10-29 2008-10-29 空気調和装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/056,172 A-371-Of-International US8752397B2 (en) 2008-10-29 2008-10-29 Air-conditioning apparatus
US14/261,499 Continuation US9115931B2 (en) 2008-10-29 2014-04-25 Air-conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2010050002A1 true WO2010050002A1 (ja) 2010-05-06

Family

ID=42128381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/069605 WO2010050002A1 (ja) 2008-10-29 2008-10-29 空気調和装置

Country Status (5)

Country Link
US (2) US8752397B2 (ja)
EP (1) EP2309199B1 (ja)
JP (1) JP5312471B2 (ja)
CN (1) CN102112818B (ja)
WO (1) WO2010050002A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101672A1 (ja) * 2011-01-26 2012-08-02 三菱電機株式会社 空気調和装置
WO2013008278A1 (ja) * 2011-07-14 2013-01-17 三菱電機株式会社 空気調和装置
WO2013088484A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
CN103210262A (zh) * 2010-11-24 2013-07-17 三菱电机株式会社 空气调节装置
EP2618074A1 (en) * 2010-09-14 2013-07-24 Mitsubishi Electric Corporation Air-conditioning device
WO2014128970A1 (ja) 2013-02-25 2014-08-28 三菱電機株式会社 空気調和装置
JPWO2013008365A1 (ja) * 2011-07-14 2015-02-23 三菱電機株式会社 空気調和装置
US20150253020A1 (en) * 2012-10-10 2015-09-10 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2015140887A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015140886A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015140877A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 絞り装置及び冷凍サイクル装置
JP2016023848A (ja) * 2014-07-18 2016-02-08 株式会社コロナ 複合熱源ヒートポンプ装置
WO2016038659A1 (ja) * 2014-09-08 2016-03-17 三菱電機株式会社 冷凍サイクル装置
CN105526680A (zh) * 2016-01-19 2016-04-27 珠海格力电器股份有限公司 多系统风冷冷风机组化霜控制方法和装置
JPWO2015092896A1 (ja) * 2013-12-19 2017-03-16 三菱電機株式会社 空気調和装置及び空気調和装置の制御方法
WO2018087810A1 (ja) * 2016-11-08 2018-05-17 三菱電機株式会社 暖房制御システムおよびヒートポンプ給湯暖房システム
WO2019193685A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 空気調和システムの制御装置、室外機、中継機、熱源機、および空気調和システム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101581466B1 (ko) * 2008-08-27 2015-12-31 엘지전자 주식회사 공기조화시스템
CN102597640B (zh) * 2009-10-27 2014-12-31 三菱电机株式会社 空调装置
WO2012101677A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 空気調和装置
JP5836083B2 (ja) * 2011-11-24 2015-12-24 三菱重工業株式会社 ヒートポンプシステムの除霜運転方法及びヒートポンプシステム
CN103148543B (zh) * 2011-12-07 2015-08-12 珠海格力电器股份有限公司 室外换热装置及空调系统
US10544973B2 (en) 2011-12-16 2020-01-28 Mitsubishi Electric Corporation Air-conditioning apparatus with temperature controlled pump operation
CN103975202B (zh) * 2012-01-05 2016-09-14 三菱电机株式会社 空调装置
US20150219373A1 (en) * 2012-10-01 2015-08-06 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5759080B2 (ja) * 2012-10-01 2015-08-05 三菱電機株式会社 空気調和装置
JP5837231B2 (ja) * 2012-11-30 2015-12-24 三菱電機株式会社 空気調和装置
EP2927612B1 (en) * 2012-11-30 2021-06-09 Mitsubishi Electric Corporation Air conditioning device
EP2927620B1 (en) * 2012-11-30 2024-06-12 Mitsubishi Electric Corporation Air conditioning device
WO2014091572A1 (ja) * 2012-12-12 2014-06-19 三菱電機株式会社 空気調和装置
JP6192706B2 (ja) * 2013-02-25 2017-09-06 三菱電機株式会社 空気調和装置
EP3040642B1 (en) * 2013-08-28 2021-06-02 Mitsubishi Electric Corporation Air conditioner
WO2015059814A1 (ja) * 2013-10-25 2015-04-30 三菱電機株式会社 冷凍サイクル装置
JP6231395B2 (ja) * 2014-02-05 2017-11-15 株式会社コロナ 複合熱源ヒートポンプ装置
JP6231403B2 (ja) * 2014-02-28 2017-11-15 株式会社コロナ 複合熱源ヒートポンプ装置
EP3150935B1 (en) * 2014-05-30 2019-03-06 Mitsubishi Electric Corporation Air conditioner
KR20160055583A (ko) * 2014-11-10 2016-05-18 삼성전자주식회사 히트 펌프
KR101702737B1 (ko) * 2015-01-15 2017-02-03 엘지전자 주식회사 공기 조화 시스템
CN108302651B (zh) * 2016-09-18 2020-09-04 苏州三星电子有限公司 一种多联机空调室外机系统及其除霜方法
WO2018067853A1 (en) 2016-10-05 2018-04-12 Johnson Controls Technology Company System and method for determining efficiency of chillers
JP6477802B2 (ja) * 2017-08-08 2019-03-06 ダイキン工業株式会社 冷凍装置
EP3719409B1 (en) * 2018-02-19 2022-09-28 Daikin Industries, Ltd. Air-conditioning apparatus
JP7069298B2 (ja) * 2018-04-05 2022-05-17 三菱電機株式会社 空気調和装置
US11397035B2 (en) * 2018-07-20 2022-07-26 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
US11525599B2 (en) * 2018-09-28 2022-12-13 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP7097989B2 (ja) * 2018-12-18 2022-07-08 三菱電機株式会社 空気調和装置
KR20200134805A (ko) * 2019-05-23 2020-12-02 엘지전자 주식회사 공기조화장치
CN111928424A (zh) * 2020-06-30 2020-11-13 青岛海尔空调电子有限公司 多联机空调系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016283A (ja) * 1983-07-07 1985-01-28 株式会社荏原製作所 冷凍装置における変流量制御装置
JPH01142356A (ja) * 1987-11-30 1989-06-05 Toshiba Corp 空気調和装置
JPH0317475A (ja) * 1989-06-13 1991-01-25 Matsushita Refrig Co Ltd 多室式空気調和機
JPH05280818A (ja) * 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH06147702A (ja) * 1992-11-12 1994-05-27 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH08285350A (ja) * 1995-04-12 1996-11-01 Sanyo Electric Co Ltd ヒートポンプ式空気調和装置
JPH08291951A (ja) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp 空気調和装置
JPH0926188A (ja) * 1995-07-14 1997-01-28 Osaka Gas Co Ltd 冷媒循環式空調システム
WO1997011317A1 (fr) * 1995-09-20 1997-03-27 Hitachi, Ltd. Climatiseur multi-chambre
JP2001027429A (ja) * 1999-07-13 2001-01-30 Kandenko Co Ltd 氷蓄熱式空調システムの制御方法
JP2002122334A (ja) * 2000-10-16 2002-04-26 Daikin Ind Ltd ヒートポンプ式床暖房装置
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005147609A (ja) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2006046692A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd ヒートポンプ式空気調和機
JP2006145098A (ja) * 2004-11-18 2006-06-08 Hitachi Ltd 蓄熱式空気調和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149389A (en) * 1978-03-06 1979-04-17 The Trane Company Heat pump system selectively operable in a cascade mode and method of operation
JP2727733B2 (ja) * 1990-04-23 1998-03-18 三菱電機株式会社 空気調和機
JP2598550B2 (ja) * 1990-04-23 1997-04-09 三菱電機株式会社 空気調和機
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JP2894421B2 (ja) * 1993-02-22 1999-05-24 三菱電機株式会社 蓄熱式空気調和装置及び除霜方法
JP3404133B2 (ja) * 1994-07-13 2003-05-06 東京電力株式会社 蓄熱式空気調和機
JP2842471B2 (ja) * 1994-08-03 1999-01-06 松下冷機株式会社 蓄熱式空気調和機
US5664421A (en) * 1995-04-12 1997-09-09 Sanyo Electric Co., Ltd. Heat pump type air conditioner using circulating fluid branching passage
US6006528A (en) * 1996-10-31 1999-12-28 Sanyo Electric Co., Ltd. Air conditioning system
US6170270B1 (en) * 1999-01-29 2001-01-09 Delaware Capital Formation, Inc. Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
JP4165681B2 (ja) * 2000-03-17 2008-10-15 松下エコシステムズ株式会社 冷暖房給湯装置とその制御方法
JP3737381B2 (ja) * 2000-06-05 2006-01-18 株式会社デンソー 給湯装置
US6904762B2 (en) * 2003-10-14 2005-06-14 Ford Global Technologies, Llc Pump pressure limiting method
JP5465242B2 (ja) * 2009-05-12 2014-04-09 三菱電機株式会社 空気調和装置
ES2932601T3 (es) * 2009-10-23 2023-01-23 Mitsubishi Electric Corp Dispositivo de aire acondicionado

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016283A (ja) * 1983-07-07 1985-01-28 株式会社荏原製作所 冷凍装置における変流量制御装置
JPH01142356A (ja) * 1987-11-30 1989-06-05 Toshiba Corp 空気調和装置
JPH0317475A (ja) * 1989-06-13 1991-01-25 Matsushita Refrig Co Ltd 多室式空気調和機
JPH08291951A (ja) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp 空気調和装置
JPH05280818A (ja) * 1992-04-01 1993-10-29 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH06147702A (ja) * 1992-11-12 1994-05-27 Matsushita Refrig Co Ltd 多室冷暖房装置
JPH08285350A (ja) * 1995-04-12 1996-11-01 Sanyo Electric Co Ltd ヒートポンプ式空気調和装置
JPH0926188A (ja) * 1995-07-14 1997-01-28 Osaka Gas Co Ltd 冷媒循環式空調システム
WO1997011317A1 (fr) * 1995-09-20 1997-03-27 Hitachi, Ltd. Climatiseur multi-chambre
JP2001027429A (ja) * 1999-07-13 2001-01-30 Kandenko Co Ltd 氷蓄熱式空調システムの制御方法
JP2002122334A (ja) * 2000-10-16 2002-04-26 Daikin Ind Ltd ヒートポンプ式床暖房装置
JP2003343936A (ja) 2002-05-28 2003-12-03 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005147609A (ja) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2006046692A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd ヒートポンプ式空気調和機
JP2006145098A (ja) * 2004-11-18 2006-06-08 Hitachi Ltd 蓄熱式空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2309199A4

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9587861B2 (en) 2010-09-14 2017-03-07 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2618074A1 (en) * 2010-09-14 2013-07-24 Mitsubishi Electric Corporation Air-conditioning device
EP2618074A4 (en) * 2010-09-14 2014-02-26 Mitsubishi Electric Corp AIR CONDITIONING DEVICE
US9664397B2 (en) 2010-11-24 2017-05-30 Mitsubishi Electric Corporation Air-conditioning apparatus with reversible heat medium circuit
CN103210262A (zh) * 2010-11-24 2013-07-17 三菱电机株式会社 空气调节装置
EP2645014A1 (en) * 2010-11-24 2013-10-02 Mitsubishi Electric Corporation Air conditioner
EP2645014A4 (en) * 2010-11-24 2014-06-04 Mitsubishi Electric Corp AIR CONDITIONER
AU2011357097B2 (en) * 2011-01-26 2015-01-22 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2012101672A1 (ja) * 2011-01-26 2012-08-02 三菱電機株式会社 空気調和装置
JPWO2012101672A1 (ja) * 2011-01-26 2014-06-30 三菱電機株式会社 空気調和装置
US20140182320A1 (en) * 2011-07-14 2014-07-03 Mitsubishi Electric Corporation Air-conditioning apparatus
US9494361B2 (en) 2011-07-14 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus with improved defrost operation mode
JPWO2013008365A1 (ja) * 2011-07-14 2015-02-23 三菱電機株式会社 空気調和装置
WO2013008365A1 (ja) * 2011-07-14 2013-01-17 三菱電機株式会社 空気調和装置
WO2013008278A1 (ja) * 2011-07-14 2013-01-17 三菱電機株式会社 空気調和装置
JPWO2013088484A1 (ja) * 2011-12-16 2015-04-27 三菱電機株式会社 空気調和装置
US9829224B2 (en) 2011-12-16 2017-11-28 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2013088484A1 (ja) * 2011-12-16 2013-06-20 三菱電機株式会社 空気調和装置
US20150253020A1 (en) * 2012-10-10 2015-09-10 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014128970A1 (ja) 2013-02-25 2014-08-28 三菱電機株式会社 空気調和装置
JPWO2014128970A1 (ja) * 2013-02-25 2017-02-02 三菱電機株式会社 空気調和装置
JPWO2015092896A1 (ja) * 2013-12-19 2017-03-16 三菱電機株式会社 空気調和装置及び空気調和装置の制御方法
WO2015140877A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 絞り装置及び冷凍サイクル装置
WO2015140886A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
WO2015140887A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍サイクル装置
JPWO2015140887A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍サイクル装置
JPWO2015140877A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 絞り装置及び冷凍サイクル装置
JPWO2015140886A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 冷凍サイクル装置
JP2016023848A (ja) * 2014-07-18 2016-02-08 株式会社コロナ 複合熱源ヒートポンプ装置
JPWO2016038659A1 (ja) * 2014-09-08 2017-04-27 三菱電機株式会社 冷凍サイクル装置
WO2016038659A1 (ja) * 2014-09-08 2016-03-17 三菱電機株式会社 冷凍サイクル装置
CN105526680A (zh) * 2016-01-19 2016-04-27 珠海格力电器股份有限公司 多系统风冷冷风机组化霜控制方法和装置
CN105526680B (zh) * 2016-01-19 2018-09-25 珠海格力电器股份有限公司 多系统风冷冷风机组化霜控制方法和装置
WO2018087810A1 (ja) * 2016-11-08 2018-05-17 三菱電機株式会社 暖房制御システムおよびヒートポンプ給湯暖房システム
WO2019193685A1 (ja) * 2018-04-04 2019-10-10 三菱電機株式会社 空気調和システムの制御装置、室外機、中継機、熱源機、および空気調和システム
US11333388B2 (en) 2018-04-04 2022-05-17 Mitsubishi Electric Corporation Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system

Also Published As

Publication number Publication date
EP2309199A1 (en) 2011-04-13
US20110185756A1 (en) 2011-08-04
US20140230473A1 (en) 2014-08-21
CN102112818A (zh) 2011-06-29
JPWO2010050002A1 (ja) 2012-03-29
CN102112818B (zh) 2013-09-04
JP5312471B2 (ja) 2013-10-09
US9115931B2 (en) 2015-08-25
EP2309199A4 (en) 2018-05-16
EP2309199B1 (en) 2021-08-18
US8752397B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP5312471B2 (ja) 空気調和装置
JP5127931B2 (ja) 空気調和装置
JP5340406B2 (ja) 空気調和装置
JP5247812B2 (ja) 空気調和装置
EP2650621B1 (en) Air conditioner
EP2960602B1 (en) Air conditioner
WO2010050004A1 (ja) 空気調和装置
WO2010109617A1 (ja) 空気調和装置
EP2476966B1 (en) Air conditioning device
JP5274572B2 (ja) 空気調和装置
JP5911590B2 (ja) 空気調和装置
EP2650620B1 (en) Heat pump device
EP2733444B1 (en) Air-conditioning device
WO2013080255A1 (ja) 空気調和装置
EP2963353B1 (en) Air conditioning device
WO2011101889A1 (ja) 空気調和装置
WO2014083679A1 (ja) 空気調和装置、その設計方法
JP5752135B2 (ja) 空気調和装置
WO2014128971A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130554.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535545

Country of ref document: JP

Ref document number: 2008877714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13056172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE