WO2010047395A1 - 超音波処置具と超音波手術システム - Google Patents
超音波処置具と超音波手術システム Download PDFInfo
- Publication number
- WO2010047395A1 WO2010047395A1 PCT/JP2009/068285 JP2009068285W WO2010047395A1 WO 2010047395 A1 WO2010047395 A1 WO 2010047395A1 JP 2009068285 W JP2009068285 W JP 2009068285W WO 2010047395 A1 WO2010047395 A1 WO 2010047395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- treatment
- sheath
- probe
- tip
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320069—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320072—Working tips with special features, e.g. extending parts
- A61B2017/320073—Working tips with special features, e.g. extending parts probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320082—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0807—Indication means
- A61B2090/0809—Indication of cracks or breakages
Definitions
- the present invention relates to an ultrasonic treatment tool and an ultrasonic surgical system for performing treatment such as incision of a living tissue using ultrasonic vibration.
- an ultrasonic treatment instrument that performs treatment such as incision of a living tissue using ultrasonic waves
- an ultrasonic treatment instrument disclosed in Patent Document 1 is generally known.
- a proximal side operation unit is connected to a proximal end portion of an elongated insertion unit.
- An ultrasonic transducer that generates ultrasonic vibrations is disposed in the operation unit.
- a treatment portion for processing the living tissue is disposed.
- the insertion part has an elongated circular tubular sheath.
- a rod-shaped vibration transmission member (probe) is inserted into the sheath.
- the proximal end portion of the vibration transmitting member is connected to the ultrasonic transducer.
- the ultrasonic vibration generated by the ultrasonic vibrator is transmitted to the probe tip.
- a hook-shaped treatment portion is provided at the probe distal end portion.
- the ultrasonic vibration is transmitted to the probe tip while tension is applied to the living tissue by hooking the hook-shaped portion of the treatment portion at the tip to the living tissue.
- the living tissue is incised by the treatment portion at the tip of the insertion portion, and the bleeding portion is coagulated by frictional heat due to contact with the living tissue.
- a failure detection system configured to detect a failure of the ultrasonic treatment device by detecting a change in the vibration system that performs ultrasonic vibration with the drive power source during the ultrasonic treatment may be incorporated in the drive power source. is there.
- the treatment portion is made small so that a fine treatment can be performed at the tip portion of the probe, cracks or the like are generated at the tip portion of the probe, and the change in the vibration system that performs ultrasonic vibration is small even when the probe is broken. Therefore, there is a possibility that the drive power supply cannot detect the failure of the ultrasonic treatment instrument in the failure detection system configured as described above when the distal end portion of the probe is damaged during the ultrasonic treatment and the ultrasonic treatment instrument fails.
- the present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide an ultrasonic treatment tool and an ultrasonic operation system that can detect a failure reliably when it is broken even if the treatment portion is made small.
- An ultrasonic treatment device is disposed at a sheath having a distal end portion and a proximal end portion, an insertion portion that is inserted into the sheath and is positioned in the sheath, and a distal end portion of the insertion portion.
- An ultrasonic probe having a hook-shaped treatment portion protruding from the sheath, and the treatment portion extends obliquely forward and obliquely downward from an upper portion of the distal end of the interior portion. It has an extension part, and has a shape that forms a recess under the extension part.
- the treatment portion has a tip hook portion that is shaped to warp upward from the tip portion of the extension portion.
- the extension portion and the tip hook portion are formed in a balanced state in which the center of gravity of the entire treatment portion substantially matches the position of the center of gravity of the entire ultrasonic probe.
- the treatment section includes an axis parallel portion extending substantially parallel to the axial direction of the ultrasonic probe between the extension portion and the tip hook portion.
- An ultrasonic surgical system includes an ultrasonic transducer capable of generating ultrasonic vibration, an ultrasonic oscillation unit for driving the ultrasonic transducer, a distal end portion, and a proximal end portion.
- An ultrasonic transducer capable of generating ultrasonic vibration
- an ultrasonic oscillation unit for driving the ultrasonic transducer
- a distal end portion a distal end portion
- a proximal end portion a proximal end portion.
- An ultrasonic wave having an extension part extending forwardly and obliquely downwardly from the upper part of the tip of the insertion part, and having a recess formed below the extension part A probe, a crack detection unit for detecting a crack generated in the ultrasonic probe, and when the crack detection unit detects a crack, the driving of the ultrasonic transducer by the ultrasonic oscillation unit is stopped.
- the ultrasonic oscillator And a control unit for controlling.
- an ultrasonic treatment instrument that can reliably detect a failure when it is broken even if the treatment portion is made small.
- FIG. 1 is a cross-sectional view showing an overall schematic configuration of the ultrasonic treatment apparatus according to the first embodiment of the present invention.
- FIG. 2 is a perspective view showing a distal end portion of the probe unit of the ultrasonic treatment apparatus according to the first embodiment.
- FIG. 3 is a side view showing a distal end portion of the probe unit of the ultrasonic treatment apparatus according to the first embodiment.
- FIG. 4 is a perspective view showing a portion of the distal treatment portion of the vibration transmitting member of the ultrasonic treatment instrument according to the first embodiment.
- FIG. 5 is a side view showing the distal treatment section of the vibration transmitting member of the ultrasonic treatment apparatus according to the first embodiment.
- FIG. 6 is a characteristic diagram of ultrasonic vibration when the probe tip of the ultrasonic treatment instrument according to the first embodiment is normal.
- FIG. 7 is a characteristic diagram of ultrasonic vibration when the tip of the probe of the ultrasonic treatment instrument according to the first embodiment is abnormal.
- FIG. 8 is a diagram illustrating a schematic configuration of the entire ultrasonic surgical system including the ultrasonic treatment instrument according to the first embodiment.
- FIG. 9 is a block diagram illustrating a schematic configuration of the entire ultrasonic surgical system according to the first embodiment.
- FIG. 8 shows a schematic configuration of the entire ultrasonic surgical system including the ultrasonic treatment instrument 1 according to the first embodiment.
- 51 is a drive power supply.
- the drive power source 51 is connected to the handpiece 2 of the ultrasonic treatment instrument 1 and the foot switch 52.
- FIG. 1 shows a schematic configuration of the entire ultrasonic treatment instrument 1 of the present embodiment.
- the ultrasonic treatment instrument 1 includes a handpiece 2 and a probe unit 3.
- the handpiece 2 has a casing 4 and a bolted Langevin type ultrasonic transducer (BLT) 5.
- the casing 4 is made of an electrically insulating resin material.
- the BLT 5 is built in the casing 4.
- the BLT 5 has a plurality of piezoelectric elements 7 and two electrodes 8 and 9. The two electrodes 8 and 9 are in contact with both end faces of the piezoelectric element 7.
- One end of the cord 10 is connected to the base end of the handpiece 2.
- the other end of the cord 10 is electrically connected to the drive power source 51 via the connector 10a.
- a vibrator wire 11 and a switch wire 12 are arranged within the cord 10.
- the vibrator wire 11 in the cord 10 is connected to the two electrodes 8 and 9.
- Drive power is supplied from the drive power supply 51 to the BLT 5 through the vibrator wire 11 in the cord 10.
- a switch 13 is disposed on the front end side of the handpiece 2.
- the switch 13 includes, for example, a first switch 13a that is driven in a set output state and a second switch 13b that is driven in a maximum output state.
- the first switch 13 a and the second switch 13 b are electrically connected to a control circuit, which will be described later, in the drive power supply 51 via the switch wire 12.
- the first switch 13a can be driven with a set amplitude
- the second switch 13b can be driven with a maximum amplitude.
- the output shaft portion 15 is connected to the front portion of the BLT 5 via a conical horn 14.
- the output shaft portion 15 of the BLT 5 is made of a titanium alloy.
- the distal end portion of the output shaft portion 15 extends to the vicinity of the distal end of the handpiece 2.
- a connecting recess 15 a is formed at the center of the distal end surface of the output shaft portion 15.
- the handpiece 2 is provided with a resin vibrator cover 16 and a resin output shaft cover 17 in a casing 4.
- the vibrator cover 16 is a cover member that covers the plurality of piezoelectric elements 7 of the BLT 5 and the two electrodes 8 and 9.
- the front end of the transducer cover 16 extends to the position of the horn 14.
- the output shaft portion cover 17 is a tubular cover member that covers the output shaft portion 15 of the BLT 5. At the base end portion of the output shaft cover 17, a circular connecting portion 17a having a larger diameter than other portions is formed. The connecting portion 17 a of the output shaft portion cover 17 extends to a position where it is inserted into the transducer cover 16. The connecting portion 17a of the output shaft portion cover 17 and the front end portion of the vibrator cover 16 are connected in a state where the front end portion of the vibrator cover 16 is externally fitted to the outer peripheral surface of the connecting portion 17a of the output shaft portion cover 17. Has been. A seal member such as an O-ring 18 is attached to the joint surface between the connecting portion 17 a of the output shaft portion cover 17 and the front end portion of the vibrator cover 16.
- a probe receiver 19 is provided at the tip of the handpiece 2.
- the probe receiver 19 is a cylindrical member made of a resin material.
- the proximal end portion of the probe receiver 19 is connected in a state of being fitted on the outer peripheral surface of the distal end portion of the output shaft portion cover 17.
- the distal end portion of the probe receiver 19 extends to a position protruding forward from the distal end portion of the output shaft portion 15.
- a connecting portion 20 that is detachably connected to the probe unit 3 is provided on the inner peripheral surface of the probe receiver 19.
- the connecting portion 20 is formed by, for example, a cam mechanism having a cam groove 21 or a screw hole.
- the probe unit 3 includes a sheath 22 and a vibration transmission member (ultrasonic probe) 23 arranged concentrically therewith.
- the sheath 22 is provided with a cylindrical grip portion 25 held by a user at a proximal end portion of a tube 24 formed of an electrically insulating resin material.
- the distal end portion of the grip portion 25 is connected in a state of being fitted on the proximal end portion of the tube 24.
- the vibration transmission member 23 is made of a titanium alloy.
- the length of the vibration transmitting member 23 is set to an integral multiple of 1/2 of the wavelength of the drive frequency of the BLT 5.
- a treatment portion 26 described later is provided at the tip of the vibration transmitting member 23.
- a horn 27 having a conical tapered surface is provided at the proximal end portion of the vibration transmitting member 23. With this horn 27, the amplitude of the treatment section 26 can be expanded to a required size.
- a flange 28 is provided in the middle of the horn 27 of the vibration transmitting member 23. The flange 28 is disposed at a vibration node position.
- a convex portion 23b that is detachably engaged with the coupling concave portion 15a of the output shaft portion 15 is provided.
- a plurality of ring-shaped lining rubbers 29 are attached to a portion of the vibration transmitting member 23 covered with the tube 24.
- the lining rubber 29 is disposed at a vibration node position. With this lining rubber 29, the vibration transmitting member 23 and the tube 24 are arranged concentrically and without contact.
- the grip portion 25 includes a front member 30 and a rear member 31.
- An engagement hole 32 into which the flange 28 is inserted is formed at the rear end portion of the front member 30.
- the engagement hole 32 has an inner diameter that is substantially the same as the diameter of the flange 28.
- the rear member 31 has three portions 31a, 31b, and 31c having different outer diameter dimensions.
- the three portions 31a, 31b, and 31c include a front portion 31a disposed on the front side along the axial direction of the sheath 22, a center portion 31b disposed at the center position, and a rear portion 31c disposed on the rear side. It consists of.
- the outer diameter of the front portion 31 a is set to a size that is inserted into the engagement hole 32 of the front member 30.
- the inner diameter of the front portion 31 a is set to be smaller than the diameter of the flange 28.
- the central portion 31 b is set to have a larger diameter than the outer diameter of the rear end portion of the front member 30.
- a ring-shaped pressing member 33 is disposed in the engagement hole 32 of the front side member 30.
- the front end of the flange 28 inserted into the engagement hole 32 of the front member 30 of the grip portion 25 is brought into contact with the pressing member 33.
- the front part 31 a of the rear member 31 is inserted into the engagement hole 32 of the front member 30, and the flange 28 is sandwiched between the front part 31 a of the rear member 31 and the pressing member 33.
- the sheath 22 and the vibration transmitting member 23 are fixed via the flange 28.
- the rear portion 31c on the proximal end side of the grip portion 25 is formed in a size that can be inserted into and removed from the probe receiver 19 at the tip of the handpiece 2.
- the rear portion 31c is provided with a connecting portion 34 that is detachably connected to the probe receiver 19 at the tip of the handpiece 2.
- This connection part 34 has the engaging claw 35 engaged with the cam groove 21 of the probe receiver 19 of the handpiece 2, for example. When the handpiece 2 and the probe unit 3 are connected, the engaging claw 35 of the probe unit 3 is engaged with the cam groove 21 of the probe receiver 19.
- the convex portion 23 b of the rear end surface 23 a of the vibration transmitting member 23 is inserted into the coupling concave portion 15 a of the output shaft portion 15 and is detachably engaged.
- the rear end face 23a of the vibration transmitting member 23 and the output end of the output shaft portion 15 of the BLT 5 are pressed against each other, so that ultrasonic vibration can be transmitted from the BLT 5 to the vibration transmitting member 23.
- the connecting portion 20 of the probe unit 3 is a screw hole
- the connecting portion 34 of the grip portion 25 is formed by a male screw that is screwed into the screw hole of the probe unit 3.
- the vibration transmission member 23 includes an insertion portion 23 c positioned in the sheath 22 and a hook-shaped treatment portion 26 that is disposed at a distal end portion of the insertion portion 23 c and protrudes from the sheath 22.
- the insertion portion 23c is formed by a round bar having a substantially circular cross section.
- the treatment portion 26 is formed by a plate-like body that is processed into a flat shape on both side surfaces of the round bar portion of the insertion portion 23c substantially in parallel.
- FIG. 4 and 5 show the portion of the treatment portion 26 at the tip of the vibration transmitting member 23.
- FIG. The treatment portion 26 has an extending portion 36 that extends forward and obliquely downward from the upper portion of the tip of the interior portion 23c.
- a recessed portion 37 is formed below the extending portion 36.
- the treatment portion 26 has a tip hook portion 38 having a shape that warps upward from the tip portion of the extension portion 36. Further, the treatment portion 26 includes an axis parallel portion 39 that extends substantially parallel to the axial direction of the vibration transmitting member 23 between the extension portion 36 and the tip hook portion 38.
- a smooth curved surface (R portion) 40 that is connected to the lower end portion of the distal end of the interior portion 23 c of the vibration transmitting member 23 is formed at the proximal end portion of the extending portion 36.
- the curved surface 40 forms the wall surface of the recess 37.
- the upper and lower two curved surface portions (upper curved surface portion 41 and lower curved surface portion 42), which are smooth curved surfaces, are formed at the portion connecting the axis parallel portion 39 and the tip hook portion 38. .
- the tip hook portion 38 is disposed on the upper surface side, and the concave portion 37 is disposed on the lower surface side.
- the extension portion 36 and the tip hook portion 38 are formed in a balanced state in which the center of gravity position of the entire treatment portion 26 substantially matches the position of the center of gravity of the entire vibration transmission member 23.
- FIG. 9 is a block diagram showing a schematic configuration of the entire ultrasonic surgical system.
- the drive power supply 51 includes an ultrasonic oscillation circuit 53 and a control circuit 54. Further, the ultrasonic oscillation circuit 53 is connected to a detection circuit 55 in which an output current detection circuit for detecting the output current and output voltage of the ultrasonic oscillation circuit 53 and an output voltage detection circuit are incorporated.
- a foot switch detection circuit 56, an abnormality detection circuit 57, and the ultrasonic oscillation circuit 53 are connected to the control circuit 54.
- a foot switch 52 is connected to the foot switch detection circuit 56.
- the abnormality detection circuit 57 is connected to an impedance detection circuit 58 and an electric circuit 59 containing a resonance frequency detection circuit and a setting circuit.
- the impedance detection circuit 58 and the electric circuit 59 incorporating the resonance frequency detection circuit and the setting circuit are connected to the detection circuit 55.
- the handpiece 2 and the probe unit 3 are set in a connected state.
- the rear portion 31 c of the grip portion 25 of the probe unit 3 is inserted into the probe receiver 19 at the tip of the handpiece 2.
- the engaging claw 35 of the probe unit 3 is engaged with the cam groove 21 of the probe receiver 19.
- the convex portion 23 b of the rear end surface 23 a of the vibration transmitting member 23 is inserted into the coupling concave portion 15 a of the output shaft portion 15 and is detachably engaged.
- the rear end surface 23a of the vibration transmission member 23 and the output end of the output shaft portion 15 of the BLT 5 are pressed against each other, and the ultrasonic transmission is assembled from the BLT 5 to the vibration transmission member 23.
- the tip hook portion 38 of the treatment portion 26 at the tip of the probe unit 3 is hooked on the living tissue. Then, ultrasonic vibration is transmitted to the treatment portion 26 at the tip of the probe unit 3 in a state where tension is applied to the living tissue. As a result, the living tissue is incised by the treatment portion 26 at the tip of the probe unit 3 and the bleeding portion is coagulated by frictional heat due to contact with the living tissue.
- a failure detection system configured to detect a failure of the ultrasonic treatment instrument 1 by detecting a change in the vibration system that performs ultrasonic vibration with the drive power supply 51 during the ultrasonic treatment. It is incorporated in the drive power supply 51.
- FIG. 6 is a characteristic diagram of ultrasonic vibration when the treatment section 26 at the tip of the probe unit 3 of the ultrasonic treatment instrument 1 is normal.
- the horizontal axis represents frequency (f)
- the vertical axis represents impedance (z)
- the solid characteristic curve X represents the ultrasonic vibration characteristic curve
- the dotted characteristic curve Y represents the phase ( ⁇ ).
- Point B indicates an impedance resonance point
- points A and C indicate antiresonance points.
- the drive power supply 51 is controlled so that the treatment section 26 at the tip of the probe unit 3 is driven at the resonance point B.
- ultrasonic treatment is performed in a state where the tip hook portion 38 of the probe unit 3 is hooked on the living tissue.
- the treatment section 26 has a shape having an extending portion 36 that extends forward and obliquely downward from the upper portion of the tip of the interior portion 23c. Therefore, when the distal hook portion 38 of the probe unit 3 is hooked on the living tissue, the treatment portion 26 generates maximum stress on the curved surface 40 of the proximal end portion of the extending portion 36. In this state, if a crack or the like occurs in the treatment portion 26 during the ultrasonic treatment, it occurs on the curved surface 40 of the proximal end portion of the extension portion 36.
- the output of the handpiece 2 of the ultrasonic treatment instrument 1 can be stopped by the following method, for example.
- the control circuit 54 controls to output the ultrasonic oscillation circuit 53, and the ultrasonic oscillation circuit 53 outputs a current for driving the ultrasonic transducer 5 in the handpiece 2.
- the resonance frequency detection circuit 59 obtains the phase difference between the output current and the output voltage based on the signal from the detection circuit 55 in which the output current detection circuit and the output voltage detection circuit are incorporated, and this phase difference becomes zero. This point is regarded as the resonance frequency of the probe (vibration transmission member 23) and set as a driving frequency when driving the ultrasonic transducer 5.
- the vibration characteristics of the probe (vibration transmission member 23) change, and the driving frequency of the probe (vibration transmission member 23) defined by the ultrasonic oscillation circuit 53 is changed.
- the resonance frequency detection circuit of the electric circuit 59 cannot set the resonance frequency.
- the abnormality detection circuit 57 transmits a control signal to the control circuit 54 so as to stop driving the ultrasonic oscillation circuit 53, assuming that an abnormality has occurred in the probe (vibration transmission member 23).
- a crack can be generated on the proximal end side of the treatment portion 26. Therefore, when a crack occurs, the resonance frequency of the probe (vibration transmission member 23) also changes greatly, and the output current and the output voltage are varied within the drive frequency range of the probe (vibration transmission member 23) defined by the ultrasonic oscillation circuit 53. The point where the phase difference becomes zero cannot be found. Therefore, when a crack occurs, the occurrence of the crack can be detected more reliably, and the oscillation of the ultrasonic transducer 5 in the handpiece 2 can be stopped.
- the treatment portion 26 has a shape having an extension portion 36 that extends obliquely downward and obliquely downward from the upper portion of the distal end of the interior portion 23c. Formed. Thereby, when the distal end hook portion 38 of the probe unit 3 is hooked on the living tissue, a portion where the maximum stress is generated in the treatment portion 26 is set to the curved surface 40 of the proximal end portion of the extending portion 36. be able to.
- the treatment portion 26 can be adjusted to be generated on the curved surface 40 of the proximal end portion of the extension portion 36 where the maximum stress is generated.
- the characteristic change of the vibration system that performs ultrasonic vibration when a crack or the like occurs in the treatment portion 26 during the ultrasonic treatment can be increased, ultrasonic vibration is generated by the drive power source 51 during the ultrasonic treatment. It becomes easy to detect the change of the vibration system to be performed. Accordingly, it is possible to quickly detect the occurrence of a crack or the like in the treatment portion 26 during the ultrasonic treatment, so that even if the treatment portion 26 is reduced for delicate treatment, the treatment portion 26 is broken. It is possible to prevent the drive power supply 51 from being stopped before the large breakage occurs.
- the treatment portion 26 has an extension portion 36 that extends forward and obliquely downward from the upper portion of the distal end of the interior portion 23c, and the extension portion 36 A recess 37 is formed on the lower side. Therefore, since the treatment portion 26 can be lightened by the amount of the concave portion 37, the moment generated in the treatment portion 26 when ultrasonically vibrated can be reduced. As a result, it is possible to make it difficult for cracks or the like to occur in the treatment section 26 during the ultrasonic treatment, and the durability can be improved.
- the treatment portion 26 has the front end hook portion 38 disposed on the upper surface side and the concave portion 37 disposed on the lower surface side, whereby the center of gravity position of the entire treatment portion 26 is changed to the center position of the vibration transmitting member 23. It is formed in a balanced state that almost matches. Therefore, there is an effect that the lateral vibration transmitted through the vibration transmitting member 23 can be suppressed.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
超音波処置具であって、先端部及び基端部を有するシース(22)と、前記シース(22)に挿入され、前記シース(22)内に位置する内挿部(23c)と、前記内挿部(23c)の先端部に配置され、前記シース(22)から突出するフック形状の処置部(26)とを有する超音波プローブ(23)と、を具備し、前記処置部(26)は、前記内装部(23c)の先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部(36)を有し、前記延出部(36)の下側に凹部(37)を形成する形状となっている。
Description
本発明は、超音波振動を利用して生体組織の切開等の処置を行う超音波処置具と超音波手術システムに関する。
超音波を利用して生体組織の切開等の処置を行う一般的な超音波処置具の一例として、例えば、特許文献1に開示されている超音波処置具が一般に知られている。この超音波処置具は、細長い挿入部の基端部に手元側の操作部が連結されている。この操作部には超音波振動を発生する超音波振動子が配設されている。挿入部の先端部には、生体組織を処理するための処置部が配設されている。
挿入部は、細長い円管状のシースを有する。シースの内部には棒状の振動伝達部材(プローブ)が挿通されている。振動伝達部材の基端部は超音波振動子に接続されている。そして、超音波振動子が発生した超音波振動をプローブ先端部に伝達するようになっている。プローブ先端部には、フック形状の処置部が設けられている。
超音波処置時には、先端の処置部のフック形状部を生体組織に引っ掛けることで、生体組織にテンションを与えた状態で、超音波振動をプローブ先端部に伝達する。これにより、挿入部の先端の処置部で生体組織を切開するとともに、生体組織との接触による摩擦熱により出血部の凝固を行う。
特許文献1に開示されているようなフック形状の先端を持つプローブでは、フック形状の処置部を生体組織に引っ掛けた状態で超音波処置を行う際に、超音波振動と処置時の荷重とによりフック形状の処置部に最大応力が発生する。そのため、フック形状の処置部を超音波振動や、生体組織に引っ掛けた際の荷重に耐えられるような形状にした場合は、プローブの先端部が大きくなり、細かい処置が行い難くなる。
また、超音波処置中に、駆動電源で超音波振動を行う振動系の変化を検知することにより、超音波処置具の故障を検知する構成の故障検知システムが駆動電源に組み込まれている場合がある。しかしながら、プローブの先端部で細かい処置ができるように処置部を小さくした場合は、プローブの先端部にクラックなどが発生し、破損したときでも超音波振動を行う振動系の変化が小さい。そのため、超音波処置中に、プローブの先端部が破損し、超音波処置具の故障が生じた場合に上記構成の故障検知システムでは超音波処置具の故障を駆動電源が検知できないおそれがある。
本発明は上記事情に着目してなされたもので、その目的は、処置部を小さくしても、破損時に確実に故障を検知できる超音波処置具と超音波手術システムを提供することにある。
本発明の一態様における超音波処置具は、先端部及び基端部を有するシースと、前記シースに挿入され、前記シース内に位置する内挿部と、前記内挿部の先端部に配置され、前記シースから突出するフック形状の処置部とを有する超音波プローブと、を具備し、前記処置部は、前記内装部の先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部を有し、前記延出部の下側に凹部を形成する形状となっている。
好ましくは、前記処置部は、前記延出部の先端部分から上方に反り上がる形状の先端フック部を有する。
好ましくは、前記処置部は、前記処置部全体の重心位置を前記超音波プローブ全体の重心位置とほぼ一致させるバランス状態で、前記延出部と前記先端フック部とが形成されている。
好ましくは、前記処置部は、前記延出部と前記先端フック部との間に前記超音波プローブの軸線方向とほぼ平行に延出される軸平行部を有する。
本発明の他の態様における超音波手術システムは、超音波振動を発生可能な超音波振動子と、前記超音波振動子を駆動するための超音波発振部と、先端部及び基端部を有するシースと、前記シースに挿入され、前記シース内に位置する内挿部と、前記内挿部の先端部に配置され、前記シースから突出するフック形状の処置部とを有し、前記処置部は、前記内挿部の先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部を有し、前記延出部の下側に凹部を形成する形状となっている超音波プローブと、前記超音波プローブに発生したクラックを検知するためのクラック検知部と、前記クラック検知部によってクラックを検知した場合には前記超音波発振部による前記超音波振動子の駆動を停止するように前記超音波発振部を制御する制御部と、を備える。
本発明によれば、処置部を小さくしても、破損時に確実に故障を検知できる超音波処置具を提供することができる。
以下、本発明の第1の実施の形態を図1乃至図9を参照して説明する。図8は、第1の実施の形態の超音波処置具1を備えた超音波手術システム全体の概略構成を示す。図8中で、51は駆動電源である。この駆動電源51には、超音波処置具1のハンドピース2と、フットスイッチ52とが接続されている。
図1は、本実施の形態の超音波処置具1全体の概略構成を示す。超音波処置具1は、ハンドピース2と、プローブユニット3とを有する。
ハンドピース2は、ケーシング4と、ボルト締めランジュバン型超音波振動子(BLT)5とを有する。ケーシング4は、電気絶縁性の樹脂材料で形成されている。ケーシング4の内部には、前記BLT5が内蔵されている。BLT5は、複数枚の圧電素子7と、2つの電極8、9とを有している。2つの電極8、9は、圧電素子7の両端面に接している。
ハンドピース2の基端部には、コード10の一端部が接続されている。このコード10の他端部は、コネクタ10aを介して駆動電源51に電気的に接続されている。コード10内は、振動子用電線11とスイッチ用電線12とが配設されている。コード10内の振動子用電線11は、2つの電極8,9と接続されている。前記駆動電源51からコード10内の振動子用電線11を介してBLT5に駆動電力が供給されるようになっている。
ハンドピース2の先端側には、スイッチ13が配設されている。スイッチ13は、例えば設定出力状態で駆動する第1スイッチ13aと、最大出力状態で駆動する第2スイッチ13bとを有する。第1スイッチ13aと、第2スイッチ13bとは、前記スイッチ用電線12を介して前記駆動電源51内の後述する制御回路に電気的に接続されている。第1スイッチ13aによって設定振幅、第2スイッチ13bによって最大振幅で駆動できるようになっている。
前記BLT5の前部には、円錐形状のホーン14を介して出力軸部15が連結されている。前記BLT5の出力軸部15は、チタン合金でできている。出力軸部15の先端部は、ハンドピース2の先端付近まで延びている。出力軸部15の先端面には、中心部に連結用凹部15aが形成されている。
ハンドピース2は、ケーシング4内に樹脂製の振動子カバー16と、樹脂製の出力軸部カバー17とが配設されている。振動子カバー16は、BLT5の複数枚の圧電素子7と、2つの電極8、9とを覆うカバー部材である。振動子カバー16の前端部は、ホーン14の位置まで延設されている。
出力軸部カバー17は、前記BLT5の出力軸部15を覆う管状のカバー部材である。出力軸部カバー17の基端部には、他の部分よりも大径な円形の連結部17aが形成されている。出力軸部カバー17の連結部17aは、振動子カバー16の内部に挿入される位置まで延設されている。そして、出力軸部カバー17の連結部17aの外周面に振動子カバー16の前端部が外嵌される状態で、出力軸部カバー17の連結部17aと振動子カバー16の前端部とが連結されている。出力軸部カバー17の連結部17aと振動子カバー16の前端部との接合面には、Oリング18などのシール部材が装着されている。
ハンドピース2の先端部には、プローブ受け19が設けられている。プローブ受け19は、樹脂材料で形成された円筒状の部材である。プローブ受け19の基端部は、出力軸部カバー17の先端部外周面に外嵌される状態で連結されている。プローブ受け19の先端部は、出力軸部15の先端部よりも前方に突出する位置まで延設されている。
プローブ受け19の内周面には、プローブユニット3と着脱自在に接続される接続部20が設けられている。この接続部20は、例えばカム溝21を有するカム機構や、ネジ穴などによって形成されている。
前記プローブユニット3は、シース22と、それと同心に配置された振動伝達部材(超音波プローブ)23とを有する。シース22は、電気絶縁性の樹脂材料で形成されているチューブ24の基端部に使用者が把持する円筒状のグリップ部25が設けられている。グリップ部25の先端部は、チューブ24の基端部に外嵌される状態で接続されている。
振動伝達部材23は、チタン合金でできている。振動伝達部材23の長さは、BLT5の駆動周波数の波長の1/2の整数倍に設定されている。振動伝達部材23の先端には、後述する処置部26が設けられている。振動伝達部材23の基端部分には、円錐形状のテーパー面を有するホーン27が設けられている。このホーン27によって処置部26の振幅を必要な大きさまで拡大させることができるようになっている。また、振動伝達部材23のホーン27の途中には、フランジ28が設けられている。フランジ28は、振動の節位置に配置されている。振動伝達部材23の後端面23aの中心部には、出力軸部15の連結用凹部15aと係脱可能に係合する凸部23bが設けられている。
振動伝達部材23のチューブ24に覆われる部分には、複数のリング状のライニングゴム29が取り付けられている。ライニングゴム29は、振動の節位置に配置されている。このライニングゴム29により振動伝達部材23とチューブ24は同心に、また接触することなく配置される。
前記グリップ部25は、前側部材30と、後ろ側部材31とを有する。前側部材30の後端部には、フランジ28が挿入される係合穴32が形成されている。この係合穴32の内径は、フランジ28の径とほぼ同径に形成されている。
後ろ側部材31は、外径寸法が異なる3つの部分31a,31b,31cを有する。前記3つの部分31a,31b,31cは、シース22の軸方向に沿って前側に配置された前側部分31aと、中央位置に配置された中央部分31bと、後ろ側に配置された後ろ側部分31cとからなる。前側部分31aの外径は、前側部材30の係合穴32内に挿入される大きさに設定されている。前側部分31aの内径は、フランジ28の径よりも小径に設定されている。中央部分31bは、前側部材30の後端部の外径よりも大径に設定されている。
前側部材30の係合穴32には、リング状の押し当て部材33が配設されている。そして、前記グリップ部25の前側部材30の係合穴32に挿入されたフランジ28の前端は、押し当て部材33に当接される。この状態で、前側部材30の係合穴32に後ろ側部材31の前側部分31aが挿入されて後ろ側部材31の前側部分31aと押し当て部材33との間でフランジ28が挟持される。これにより、シース22と振動伝達部材23は、フランジ28を介して固定される。
グリップ部25の基端側の後ろ側部分31cは、ハンドピース2先端のプローブ受け19内に挿脱可能な大きさに形成されている。前記後ろ側部分31cには、ハンドピース2先端のプローブ受け19と着脱自在に接続される接続部34が設けられている。この接続部34は、例えば、ハンドピース2のプローブ受け19のカム溝21と係合する係合爪35を有する。ハンドピース2とプローブユニット3との接続時には、プローブユニット3の係合爪35がプローブ受け19のカム溝21と係合される。このとき、振動伝達部材23の後端面23aの凸部23bは、出力軸部15の連結用凹部15aの内部に挿入されて係脱可能に係合される。この状態で、振動伝達部材23の後端面23aとBLT5の出力軸部15の出力端とがお互いに押し付けられ、BLT5から振動伝達部材23へ超音波振動が伝達できるようになっている。なお、プローブユニット3の接続部20がネジ穴の場合には、グリップ部25の接続部34は、プローブユニット3のネジ穴と螺合する雄ねじによって形成されている。
図2および図3は、プローブユニット3の先端部分を示す。前記振動伝達部材23は、シース22内に位置する内挿部23cと、前記内挿部23cの先端部に配置され、前記シース22から突出するフック形状の前記処置部26とを有する。前記振動伝達部材23は、前記内挿部23cの部分がほぼ円形断面の丸棒によって形成されている。前記処置部26は、前記内挿部23cの丸棒部分の両側面をほぼ平行に平面状に加工された板状体によって形成されている。
図4および図5は、振動伝達部材23の先端の前記処置部26の部分を示す。前記処置部26は、前記内装部23cの先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部36を有する。前記延出部36の下側には、凹部37が形成されている。
前記処置部26は、前記延出部36の先端部分から上方に反り上がる形状の先端フック部38を有する。さらに、前記処置部26は、前記延出部36と前記先端フック部38との間に前記振動伝達部材23の軸線方向とほぼ平行に延出される軸平行部39を有する。
また、前記延出部36の基端部分には、振動伝達部材23の前記内装部23cの先端の下端部と連結される滑らかな湾曲面(R部)40が形成されている。この湾曲面40は、凹部37の壁面を形成する。さらに、軸平行部39と先端フック部38と接続している部分には、滑らかな湾曲面である上下の2つの曲面部(上曲面部41と、下曲面部42と)が形成されている。
また、前記処置部26は、上面側に前記先端フック部38が配置され、下面側に前記凹部37が配置されている。これにより、前記処置部26全体の重心位置を前記振動伝達部材23全体の重心位置とほぼ一致させるバランス状態で、前記延出部36と前記先端フック部38とが形成されている。
図9は、超音波手術システム全体の概略構成を示すブロック図である。駆動電源51は、超音波発振回路53と、制御回路54とを有する。さらに、超音波発振回路53には、超音波発振回路53の出力電流と出力電圧を検出する出力電流検出回路と出力電圧検出回路とが内蔵された検出回路55が接続されている。制御回路54には、フットスイッチ検出回路56と、異常検出回路57と、前記超音波発振回路53とが接続されている。フットスイッチ検出回路56にはフットスイッチ52が接続されている。異常検出回路57には、インピーダンス検出回路58と、共振周波数検出回路と設定回路とが内蔵された電気回路59が接続されている。インピーダンス検出回路58と、共振周波数検出回路と設定回路とが内蔵された電気回路59とは、検出回路55に接続されている。
次に、上記構成の本実施の形態の作用について説明する。本実施の形態の超音波処置具1の使用時には、ハンドピース2とプローブユニット3とが接続された状態にセットされる。このとき、プローブユニット3のグリップ部25の後ろ側部分31cがハンドピース2先端のプローブ受け19内に挿入される。そして、プローブユニット3の係合爪35がプローブ受け19のカム溝21と係合される。このとき、振動伝達部材23の後端面23aの凸部23bは、出力軸部15の連結用凹部15aの内部に挿入されて係脱可能に係合される。この状態で、振動伝達部材23の後端面23aとBLT5の出力軸部15の出力端とがお互いに押し付けられ、BLT5から振動伝達部材23へ超音波振動が伝達できる状態に組み付けられる。
超音波処置時には、プローブユニット3の先端の処置部26の前記先端フック部38を生体組織に引っ掛ける。そして、生体組織にテンションを与えた状態で、超音波振動をプローブユニット3の先端の処置部26に伝達する。これにより、プローブユニット3の先端の処置部26で生体組織を切開するとともに、生体組織との接触による摩擦熱により出血部の凝固を行う。
さらに、本実施の形態では、上記超音波処置中に、駆動電源51で超音波振動を行う振動系の変化を検知することにより、超音波処置具1の故障を検知する構成の故障検知システムが駆動電源51に組み込まれている。
図6は、超音波処置具1のプローブユニット3の先端の処置部26が正常な場合の超音波振動の特性図である。図6中で、横軸は、周波数(f)、縦軸はインピーダンス(z)、実線の特性曲線Xは、超音波振動の特性曲線、点線の特性曲線Yは、位相(θ)をそれぞれ示す。また、B点は、インピーダンス共振点、A点、C点は反共振点を示す。通常は、B点の共振点で、プローブユニット3の先端の処置部26が駆動される状態に駆動電源51が制御される。
また、本実施の形態ではプローブユニット3の前記先端フック部38を生体組織に引っ掛けた状態で超音波処置が行われる。このとき、前記処置部26は、前記内装部23cの先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部36を有する形状になっている。そのため、プローブユニット3の前記先端フック部38を生体組織に引っ掛けた際に、処置部26では前記延出部36の基端部分の湾曲面40で最大応力が発生する。この状態では、上記超音波処置中に、処置部26にクラックなどが発生する場合は、前記延出部36の基端部分の湾曲面40で発生する。
したがって、超音波処置中に、処置部26にクラックなどが発生した場合は、上曲面部41でクラックが発生したときよりもクラックが発生した湾曲面40の箇所から先端側の体積が大きくなる。その結果、処置部26にクラックなどが発生した際の振動系(例えば図7に示す共振周波数(f)、インピーダンス(z)、位相(θ)など)の変化が大きくなる。この場合は、超音波処置中に、駆動電源51で超音波振動を行う振動系の変化を検知し易くなるので、超音波処置中に、処置部26の故障を検知しやすくなる。
クラックが発生した場合の超音波処置具1のハンドピース2の出力の停止は、例えば、下記のような方法で行うことが出来る。
術者によってフットスイッチ52が押されるとフットスイッチ検出回路56が検出した信号を受信し、制御回路54へ送信する。そうすると制御回路54は超音波発振回路53を出力するように制御し、超音波発振回路53はハンドピース2内の超音波振動子5を駆動するための電流を出力する。このとき、共振周波数検出回路59は、出力電流検出回路と出力電圧検出回路とが内蔵された検出回路55からの信号を基に出力電流と出力電圧の位相差を求め、この位相差がゼロになる点をプローブ(振動伝達部材23)の共振周波数とみなして超音波振動子5を駆動する際の駆動周波数として設定する。
ここで、もしプローブ(振動伝達部材23)にクラックが発生した場合、プローブ(振動伝達部材23)の振動特性が変化し、超音波発振回路53が規定するプローブ(振動伝達部材23)の駆動周波数範囲において、出力電流と出力電圧の位相差がゼロになる点が見つけられないことがある。そうすると、電気回路59の共振周波数検出回路は共振周波数を設定することができなくなる。この場合、異常検出回路57はプローブ(振動伝達部材23)に異常が発生したとして、制御回路54へ超音波発振回路53を駆動するのを止めるように制御信号を送信する。
本発明に係るプローブ(振動伝達部材23)の場合には、クラックを処置部26の基端部側で発生させることができる。そのため、クラックが発生した場合にプローブ(振動伝達部材23)の共振周波数も大きく変化し、超音波発振回路53が規定するプローブ(振動伝達部材23)の駆動周波数範囲において、出力電流と出力電圧の位相差がゼロになる点が見つけられないようになる。よって、クラックが発生した場合にはより確実にクラックの発生を検知することができ、ハンドピース2内の超音波振動子5の発振を停止することが出来る。
本実施の形態の効果は、次の通りである。すなわち、本実施の形態の超音波処置具1では、前記処置部26を前記内装部23cの先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部36を有する形状に形成した。これにより、プローブユニット3の前記先端フック部38を生体組織に引っ掛けた際に、処置部26の中で最大応力が発生する部分を前記延出部36の基端部分の湾曲面40に設定することができる。そのため、上記超音波処置中に、処置部26にクラックなどが発生する場合は、最大応力が発生する前記延出部36の基端部分の湾曲面40に発生させるように調整することができる。その結果、上記超音波処置中に、処置部26にクラックなどが発生する場合の超音波振動を行う振動系の特性変化を大きくできるので、超音波処置中に、駆動電源51で超音波振動を行う振動系の変化を検知し易くなる。したがって、超音波処置中に、処置部26にクラックなどが発生した状態を迅速に検出することができるので、繊細な処置のために処置部26を小さくしても、処置部26が破断するなどの大きな破損が発生する前に駆動電源51を停止して大きな破損が発生することを防止することができる。
また、本実施の形態では、前記処置部26は、前記内装部23cの先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部36を有し、前記延出部36の下側には、凹部37が形成されている。そのため、凹部37を設けた分だけ、処置部26を軽くできるため、超音波振動させた際に、処置部26に発生するモーメントを小さくできる。その結果、超音波処置中に、処置部26にクラックなどが発生しにくくすることができ、耐久性の向上が図れる。
さらに、前記処置部26は、上面側に前記先端フック部38を配置し、下面側に前記凹部37を配置することにより、前記処置部26全体の重心位置を前記振動伝達部材23全体の重心位置とほぼ一致させるバランス状態で形成されている。そのため、振動伝達部材23を介して伝達される横振動を抑制できる効果がある。
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施できることは勿論である。
22…シース、23c…内挿部、26…処置部、23…振動伝達部材(超音波プローブ)、36…延出部、37…凹部、38…先端フック部。
Claims (5)
- 先端部及び基端部を有するシースと、
前記シースに挿入され、前記シース内に位置する内挿部と、前記内挿部の先端部に配置され、前記シースから突出するフック形状の処置部とを有する超音波プローブと、
を具備し、
前記処置部は、前記内装部の先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部を有し、前記延出部の下側に凹部を形成する形状となっている超音波処置具。 - 前記処置部は、前記延出部の先端部分から上方に反り上がる形状の先端フック部を有する請求項1に記載の超音波処置具。
- 前記処置部は、前記処置部全体の重心位置を前記超音波プローブ全体の重心位置とほぼ一致させるバランス状態で、前記延出部と前記先端フック部とが形成されている請求項2に記載の超音波処置具。
- 前記処置部は、前記延出部と前記先端フック部との間に前記超音波プローブの軸線方向とほぼ平行に延出される軸平行部を有する請求項2に記載の超音波処置具。
- 超音波振動を発生可能な超音波振動子と、
前記超音波振動子を駆動するための超音波発振部と、
先端部及び基端部を有するシースと、
前記シースに挿入され、前記シース内に位置する内挿部と、前記内挿部の先端部に配置され、前記シースから突出するフック形状の処置部とを有し、前記処置部は、前記内挿部の先端の上側部分から前向きに、かつ斜め下向きに傾斜して延出する延出部を有し、前記延出部の下側に凹部を形成する形状となっている超音波プローブと、
前記超音波プローブに発生したクラックを検知するためのクラック検知部と、
前記クラック検知部によってクラックを検知した場合には前記超音波発振部による前記超音波振動子の駆動を停止するように前記超音波発振部を制御する制御部と、
を備えた超音波手術システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010516318A JP4642935B2 (ja) | 2008-10-23 | 2009-10-23 | 超音波処置具と超音波手術システム |
EP09822092.4A EP2338426B1 (en) | 2008-10-23 | 2009-10-23 | Ultrasonic treatment device and ultrasonic operation system |
CN200980140121.3A CN102176874B (zh) | 2008-10-23 | 2009-10-23 | 超声波处理器具和超声波手术系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/256,837 | 2008-10-23 | ||
US12/256,837 US20100106173A1 (en) | 2008-10-23 | 2008-10-23 | Ultrasonic surgical device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010047395A1 true WO2010047395A1 (ja) | 2010-04-29 |
Family
ID=42118202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068285 WO2010047395A1 (ja) | 2008-10-23 | 2009-10-23 | 超音波処置具と超音波手術システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100106173A1 (ja) |
EP (1) | EP2338426B1 (ja) |
JP (1) | JP4642935B2 (ja) |
CN (1) | CN102176874B (ja) |
WO (1) | WO2010047395A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013537085A (ja) * | 2010-09-17 | 2013-09-30 | アルコン リサーチ, リミテッド | 平衡型水晶体超音波乳化吸引術用チップ |
WO2013183714A1 (ja) * | 2012-06-06 | 2013-12-12 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ及び超音波プローブの製造方法 |
WO2014024550A1 (ja) | 2012-08-07 | 2014-02-13 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ及び超音波プローブの製造方法 |
WO2014065406A1 (ja) * | 2012-10-25 | 2014-05-01 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ |
WO2015046348A1 (ja) * | 2013-09-27 | 2015-04-02 | オリンパスメディカルシステムズ株式会社 | プローブユニット、処置具及び処置システム |
WO2016111051A1 (ja) * | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | 超音波プローブ |
WO2016111049A1 (ja) * | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | 超音波プローブ |
JP2018519917A (ja) * | 2015-07-01 | 2018-07-26 | エシコン エルエルシーEthicon LLC | 切断及び凝固特性が改善された超音波外科用ブレード |
JP2019524314A (ja) * | 2016-08-09 | 2019-09-05 | エシコン エルエルシーEthicon LLC | 改善されたヒール部分を有する超音波外科用ブレード |
US10555749B2 (en) | 2013-09-27 | 2020-02-11 | Olympus Corporation | Probe unit, treatment instrument, and treatment system |
Families Citing this family (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US7846155B2 (en) | 2004-10-08 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Handle assembly having hand activation for use with an ultrasonic surgical instrument |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
JP2010540186A (ja) | 2007-10-05 | 2010-12-24 | エシコン・エンド−サージェリィ・インコーポレイテッド | 人間工学的外科用器具 |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8623040B2 (en) * | 2009-07-01 | 2014-01-07 | Alcon Research, Ltd. | Phacoemulsification hook tip |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9060776B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
EP2811932B1 (en) | 2012-02-10 | 2019-06-26 | Ethicon LLC | Robotically controlled surgical instrument |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
CN103417263A (zh) * | 2012-05-18 | 2013-12-04 | 北京速迈医疗科技有限公司 | 一种超声切割止血手术系统 |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
IN2015DN02432A (ja) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
JP6030464B2 (ja) * | 2013-02-04 | 2016-11-24 | 日本光電工業株式会社 | 生体情報モニタ |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US9211137B2 (en) * | 2013-06-28 | 2015-12-15 | Misonix, Incorporated | Ultrasonic cutting blade with cooling liquid conduction |
CN203354613U (zh) | 2013-07-22 | 2013-12-25 | 曹群 | 一种钩形超声骨刀刀头 |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
CN105682587B (zh) * | 2013-11-01 | 2019-03-08 | 奥林巴斯株式会社 | 超声波探头及超声波处理装置 |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
CN106102620B (zh) * | 2014-05-23 | 2018-09-28 | 奥林巴斯株式会社 | 处理器具和探头 |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
CN106456226B (zh) * | 2015-01-07 | 2019-08-23 | 奥林巴斯株式会社 | 超声波探头及超声波处理器具 |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
EP3291579A4 (en) * | 2015-04-27 | 2019-04-24 | Olympus Corporation | PROCESS FOR PRODUCING ULTRASONIC TRANSDUCER AND ULTRASONIC TRANSDUCER |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) * | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10751108B2 (en) | 2015-09-30 | 2020-08-25 | Ethicon Llc | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) * | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10881424B2 (en) | 2018-02-13 | 2021-01-05 | Covidien Lp | Removable fluid reservoir and ultrasonic surgical instrument including the same |
US20220240970A1 (en) * | 2019-07-08 | 2022-08-04 | Covidien Lp | Ultrasonic transducer assembly and ultrasonic surgical instrument incorporating the same |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US20210196361A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with monopolar and bipolar energy capabilities |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
USD974558S1 (en) | 2020-12-18 | 2023-01-03 | Stryker European Operations Limited | Ultrasonic knife |
CN116430139B (zh) * | 2023-03-29 | 2023-12-05 | 河南省驼人医疗科技有限公司 | 一种超声切割止血刀故障检测系统及其检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000254136A (ja) | 1999-03-09 | 2000-09-19 | Olympus Optical Co Ltd | 超音波処置具 |
JP2001258089A (ja) * | 2000-03-14 | 2001-09-21 | Olympus Optical Co Ltd | 超音波駆動装置及び超音波手術装置 |
JP2002514958A (ja) * | 1997-05-19 | 2002-05-21 | アンジオソニックス インコーポレイテッド | 超音波探針用のフィードバック制御システム |
JP2006043348A (ja) * | 2004-08-09 | 2006-02-16 | Olympus Corp | 超音波手術装置及びその異常判断方法 |
JP2008212693A (ja) * | 2001-02-08 | 2008-09-18 | Tyco Healthcare Group Lp | 超音波手術器具 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2598474B2 (ja) * | 1987-12-09 | 1997-04-09 | オリンパス光学工業株式会社 | 超音波吸引装置 |
EP0767720B1 (en) * | 1994-06-30 | 1999-08-18 | Dentsply Research and Development Corporation | Transducer activated tool tip |
US5669922A (en) * | 1996-02-20 | 1997-09-23 | Hood; Larry | Ultrasonically driven blade with a radial hook that defines a circular recess |
US5906628A (en) * | 1996-06-26 | 1999-05-25 | Olympus Optical Co., Ltd. | Ultrasonic treatment instrument |
US6309400B2 (en) * | 1998-06-29 | 2001-10-30 | Ethicon Endo-Surgery, Inc. | Curved ultrasonic blade having a trapezoidal cross section |
CA2276316C (en) * | 1998-06-29 | 2008-02-12 | Ethicon Endo-Surgery, Inc. | Method of balancing asymmetric ultrasonic surgical blades |
US20020049551A1 (en) * | 2000-10-20 | 2002-04-25 | Ethicon Endo-Surgery, Inc. | Method for differentiating between burdened and cracked ultrasonically tuned blades |
-
2008
- 2008-10-23 US US12/256,837 patent/US20100106173A1/en not_active Abandoned
-
2009
- 2009-10-23 CN CN200980140121.3A patent/CN102176874B/zh not_active Expired - Fee Related
- 2009-10-23 WO PCT/JP2009/068285 patent/WO2010047395A1/ja active Application Filing
- 2009-10-23 EP EP09822092.4A patent/EP2338426B1/en active Active
- 2009-10-23 JP JP2010516318A patent/JP4642935B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002514958A (ja) * | 1997-05-19 | 2002-05-21 | アンジオソニックス インコーポレイテッド | 超音波探針用のフィードバック制御システム |
JP2000254136A (ja) | 1999-03-09 | 2000-09-19 | Olympus Optical Co Ltd | 超音波処置具 |
JP2001258089A (ja) * | 2000-03-14 | 2001-09-21 | Olympus Optical Co Ltd | 超音波駆動装置及び超音波手術装置 |
JP2008212693A (ja) * | 2001-02-08 | 2008-09-18 | Tyco Healthcare Group Lp | 超音波手術器具 |
JP2006043348A (ja) * | 2004-08-09 | 2006-02-16 | Olympus Corp | 超音波手術装置及びその異常判断方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2338426A4 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013537085A (ja) * | 2010-09-17 | 2013-09-30 | アルコン リサーチ, リミテッド | 平衡型水晶体超音波乳化吸引術用チップ |
JP2015226816A (ja) * | 2010-09-17 | 2015-12-17 | アルコン リサーチ, リミテッド | 平衡型水晶体超音波乳化吸引術用チップ |
WO2013183714A1 (ja) * | 2012-06-06 | 2013-12-12 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ及び超音波プローブの製造方法 |
US9265973B2 (en) | 2012-06-06 | 2016-02-23 | Olympus Corporation | Ultrasonic treatment probe providing superposed lateral and longitudinal vibration |
JP5572780B2 (ja) * | 2012-06-06 | 2014-08-13 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ及び超音波プローブの製造方法 |
US9289629B2 (en) | 2012-08-07 | 2016-03-22 | Olympus Corporation | Ultrasonic probe and manufacturing method of ultrasonic probe |
JP5663704B2 (ja) * | 2012-08-07 | 2015-02-04 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ及び超音波プローブの製造方法 |
WO2014024550A1 (ja) | 2012-08-07 | 2014-02-13 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ及び超音波プローブの製造方法 |
JP5663706B2 (ja) * | 2012-10-25 | 2015-02-04 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ |
WO2014065406A1 (ja) * | 2012-10-25 | 2014-05-01 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ |
US9713457B2 (en) | 2012-10-25 | 2017-07-25 | Olympus Corporation | Ultrasonic probe |
WO2015046348A1 (ja) * | 2013-09-27 | 2015-04-02 | オリンパスメディカルシステムズ株式会社 | プローブユニット、処置具及び処置システム |
CN105578978A (zh) * | 2013-09-27 | 2016-05-11 | 奥林巴斯株式会社 | 探头单元、处理器具及处理系统 |
US9526517B2 (en) | 2013-09-27 | 2016-12-27 | Olympus Corporation | Probe, treatment device, and treatment system |
US10555749B2 (en) | 2013-09-27 | 2020-02-11 | Olympus Corporation | Probe unit, treatment instrument, and treatment system |
CN105578978B (zh) * | 2013-09-27 | 2019-07-02 | 奥林巴斯株式会社 | 探头、处理器具及处理系统 |
WO2016111051A1 (ja) * | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | 超音波プローブ |
JP6033519B1 (ja) * | 2015-01-07 | 2016-11-30 | オリンパス株式会社 | 超音波プローブと超音波処置具 |
EP3243462A4 (en) * | 2015-01-07 | 2018-09-19 | Olympus Corporation | Ultrasonic probe |
US10219823B2 (en) | 2015-01-07 | 2019-03-05 | Olympus Corporation | Ultrasonic probe |
US10231748B2 (en) | 2015-01-07 | 2019-03-19 | Olympus Corporation | Ultrasonic probe |
JP5959790B1 (ja) * | 2015-01-07 | 2016-08-02 | オリンパス株式会社 | 超音波プローブ |
WO2016111049A1 (ja) * | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | 超音波プローブ |
JP2018519917A (ja) * | 2015-07-01 | 2018-07-26 | エシコン エルエルシーEthicon LLC | 切断及び凝固特性が改善された超音波外科用ブレード |
JP2019524314A (ja) * | 2016-08-09 | 2019-09-05 | エシコン エルエルシーEthicon LLC | 改善されたヒール部分を有する超音波外科用ブレード |
JP7086932B2 (ja) | 2016-08-09 | 2022-06-20 | エシコン エルエルシー | 改善されたヒール部分を有する超音波外科用ブレード |
Also Published As
Publication number | Publication date |
---|---|
JP4642935B2 (ja) | 2011-03-02 |
US20100106173A1 (en) | 2010-04-29 |
CN102176874B (zh) | 2014-05-21 |
EP2338426B1 (en) | 2020-03-25 |
JPWO2010047395A1 (ja) | 2012-03-22 |
EP2338426A4 (en) | 2013-02-27 |
CN102176874A (zh) | 2011-09-07 |
EP2338426A1 (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4642935B2 (ja) | 超音波処置具と超音波手術システム | |
US10966777B2 (en) | Treatment device | |
CN109561912B (zh) | 具有压电中心内腔换能器的超声外科器械 | |
US10688321B2 (en) | Ultrasonic surgical instruments | |
US8663223B2 (en) | Surgical treatment apparatus | |
US8461744B2 (en) | Rotating transducer mount for ultrasonic surgical instruments | |
EP3263054B1 (en) | Ultrasonic surgical instruments having clamp | |
US9017326B2 (en) | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments | |
ES2218712T3 (es) | Dispositivo para unir componentes de transmision. | |
JP2005027907A (ja) | 超音波手術システムおよびプローブ | |
WO2006016476A1 (ja) | 超音波手術装置及びその異常判断方法 | |
WO2018105105A1 (ja) | 超音波手術システム及び超音波手術システムの作動方法 | |
JP5802843B2 (ja) | 処置具 | |
JP4493625B2 (ja) | 超音波手術システム | |
CN112040890B (zh) | 医疗设备系统、异常判定方法以及计算机可读记录介质 | |
JP2009056315A (ja) | 超音波手術装置 | |
JP2001161706A (ja) | 超音波手術装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980140121.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010516318 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09822092 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009822092 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |