WO2010044132A1 - ハイブリッド車両の制御装置および制御方法 - Google Patents

ハイブリッド車両の制御装置および制御方法 Download PDF

Info

Publication number
WO2010044132A1
WO2010044132A1 PCT/JP2008/068539 JP2008068539W WO2010044132A1 WO 2010044132 A1 WO2010044132 A1 WO 2010044132A1 JP 2008068539 W JP2008068539 W JP 2008068539W WO 2010044132 A1 WO2010044132 A1 WO 2010044132A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
rotating electrical
electrical machine
travel
hybrid
Prior art date
Application number
PCT/JP2008/068539
Other languages
English (en)
French (fr)
Inventor
憲治 板垣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US12/991,959 priority Critical patent/US8718847B2/en
Priority to CN2008801315251A priority patent/CN102186710B/zh
Priority to JP2010533733A priority patent/JP4788842B2/ja
Priority to PCT/JP2008/068539 priority patent/WO2010044132A1/ja
Priority to EP08877392.4A priority patent/EP2351676B1/en
Publication of WO2010044132A1 publication Critical patent/WO2010044132A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to control of a hybrid vehicle, and more particularly, to control of a hybrid vehicle including a plurality of power sources capable of receiving and transmitting power with a rotating electrical machine as a power source.
  • Hybrid vehicles are equipped with a power source that can exchange electric power with a rotating electrical machine that is a power source.
  • Patent Document 1 discloses a hybrid vehicle including a power supply control system for using a high voltage inverter and a motor in a low voltage battery module.
  • a power supply control system disclosed in Japanese Patent Application Laid-Open No. 2003-209969 includes at least one inverter that provides adjusted electric power to an electric traction motor of a vehicle, and each includes a battery, a boost / buck DC / DC A plurality of power supply stages having a converter, wired in parallel, and providing DC power to at least one inverter; The power supply stage is controlled to maintain an output voltage to at least one inverter.
  • Patent Document 1 includes at least one inverter that provides adjusted electric power to an electric traction motor of a vehicle, and each includes a battery, a boost / buck DC / DC A plurality of power supply stages having a converter, wired in parallel, and providing DC power to at least one inverter; The power supply stage is controlled to maintain an output voltage to at least one inverter.
  • a hybrid vehicle usually has an electric travel mode and a hybrid travel mode as travel modes. These travel modes differ in the voltage range to be supplied to the motor.
  • the vehicle in the hybrid travel mode, the vehicle is driven using the power of both the engine and the motor, so that the voltage supplied to the motor can be set lower than in the electric travel mode using only the power of the motor. Become.
  • Patent Document 1 discloses a hybrid vehicle having a plurality of power sources capable of receiving and transmitting electric power to and from a motor. No mention is made of how to control the state and what value the output voltage of each power supply is set in consideration of the driving mode and the connection state of a plurality of power supplies.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to secure a necessary power capacity in the electric travel mode in a hybrid vehicle having the electric travel mode and the hybrid travel mode as travel modes.
  • an object of the present invention is to secure a necessary power capacity in the electric travel mode in a hybrid vehicle having the electric travel mode and the hybrid travel mode as travel modes.
  • it is to provide a control device and a control method capable of setting the power supply voltage at the time of hybrid travel control to an optimum value.
  • the control device controls a hybrid vehicle that uses at least one of an internal combustion engine and a rotating electric machine as a power source.
  • the control device is connected to the rotating electrical machine and is provided between the main power source capable of transmitting and receiving electric power to and from the rotating electrical machine, a plurality of sub power sources capable of transmitting and receiving power to and from the rotating electrical machine, and the plurality of sub power sources and the rotating electrical machine.
  • a switching device configured to be able to connect any one of a plurality of sub-power supplies to the rotating electrical machine according to a given command, a switching control unit that controls the switching device, and at least one of the power of the internal combustion engine and the rotating electrical machine.
  • a travel control unit that executes any one of travel control of hybrid travel control for traveling the hybrid vehicle and electric travel control for traveling the hybrid vehicle with the power of the rotating electric machine without using the internal combustion engine.
  • the switching control unit controls the switching device so that the number of the plurality of sub power sources connected to the rotating electrical machine is smaller during the hybrid traveling control than during the electric traveling control.
  • the switching control unit connects any one of the plurality of sub power sources to the rotating electricity during the electric traveling control, and disconnects the plurality of sub power sources from the rotating electrical machine during the hybrid traveling control.
  • the switching control unit is configured such that when the charge state of the first sub power source connected to the rotating electrical machine among the plurality of sub power sources is lower than a predetermined state, the first control unit The sub power supply is disconnected from the rotating electrical machine, and another second sub power supply is connected to the rotating electrical machine.
  • the traveling control unit performs hybrid traveling control instead of electric traveling control when all the charging states of the plurality of sub power sources are lower than a predetermined state.
  • control device further includes an input unit through which a driver inputs a hybrid travel request indicating that travel by hybrid travel control is requested.
  • the travel control unit stops the electric travel control and forcibly executes the hybrid travel control.
  • the switching control unit includes the rotating electric machine and any one of the plurality of sub power sources at the time when the hybrid travel request is input. Maintain the connection status.
  • the output voltage of the main power supply is set to a value lower than any output voltage of the plurality of sub power supplies.
  • the control device is provided between the rotating electrical machine and the main power source, and converts the output voltage of the main power source into a value included in the control voltage range of the rotating electrical machine and outputs the value to the rotating electrical machine.
  • a second converter that is provided between the rotating electrical machine and the plurality of sub power sources and converts the output voltages of the plurality of sub power sources into values included in the control voltage range of the rotating electrical machine and outputs the values to the rotating electrical machine.
  • the first lower limit value of the optimum control voltage range of the rotating electrical machine during the hybrid travel control is lower than the second lower limit value of the control voltage range of the rotating electrical machine during the electrical travel control.
  • the output voltage of the main power supply is set to a first lower limit value, and the output voltages of the plurality of sub power supplies are set to a value between the first lower limit value and the second lower limit value.
  • a plurality of battery cells connected in series are provided inside each of the main power source and the plurality of sub power sources.
  • Each of the main power supply and the plurality of sub power supplies outputs an output voltage corresponding to the number of battery cells provided therein.
  • the main power source includes a number of battery cells in which the output voltage of the main power source is the first lower limit value out of the total number of battery cells necessary to ensure a travelable distance at the time of electric travel control equal to or greater than a predetermined target distance. Is provided.
  • the remaining number of battery cells other than the number provided in the main power source out of the total number of necessary battery cells are equally provided in each of the plurality of sub power sources.
  • the hybrid vehicle is a plug-in hybrid vehicle capable of charging power from a power source outside the vehicle to a main power source and a plurality of sub power sources.
  • a control method is a control method performed by a hybrid vehicle control device using at least one of an internal combustion engine and a rotating electric machine as a power source.
  • the control device is connected to the rotating electrical machine and is provided between the rotating electrical machine, a plurality of sub power sources capable of transmitting and receiving power to the rotating electrical machine, and the plurality of subsidiary power supplies and the rotating electrical machine.
  • a switching device configured to connect any one of the plurality of sub power sources to the rotating electrical machine in accordance with a given command.
  • the control method includes any one of hybrid travel control in which the hybrid vehicle travels with the power of at least one of the internal combustion engine and the rotary electric machine, and electric travel control in which the hybrid vehicle travels with the power of the rotary electric machine without using the internal combustion engine.
  • the step of executing the control and the step of controlling the switching device so that the number of the plurality of sub power sources connected to the rotating electrical machine is smaller during the hybrid traveling control than during the electric traveling control.
  • the present invention it is possible to set the power supply voltage at the time of hybrid travel control to an optimum value while ensuring the necessary power capacity in the electric travel mode.
  • FIG. 1 is an overall block diagram of a vehicle including a control device according to an embodiment of the present invention. It is a figure which shows the relationship between the voltage control range at the time of EV driving
  • 1 power system 2 driving force generator, 10-1 to 10-3 power storage device, 11 charging device, 12-1, 12-2 converter, 13 connector, 14-1 to 14-3 current sensor, 15 paddle, 16 -1 to 16-3, 20 voltage sensor, 17 HV switch, 18-1, 18-2 switching device, 19 AC power supply, 22 converter ECU, 30-1, 30-2 inverter, 32-1, 32-2 MG , 34 Power split device, 36 engine, 38 drive wheel, 100 vehicle, 8000 ECU, 8100 input interface, 8200 arithmetic processing unit, 8210 travel control unit, 8220 SOC calculation unit, 8230 switching control unit, 8300 storage unit, 8400 output interface , MPL main positive bus, MNL main negative bus, C smoothing control Capacitors, RY1, RY2, RY3 system relay.
  • FIG. 1 is an overall block diagram of a vehicle provided with a control device according to an embodiment of the present invention.
  • vehicle 100 includes a power supply system 1, a driving force generation unit 2, and an ECU (Electronic Control Unit) 8000.
  • ECU Electronic Control Unit
  • the driving force generator 2 includes a first inverter 30-1, a second inverter 30-2, a first MG (Motor-Generator) 32-1, a second MG 32-2, a power split device 34, an engine 36, Drive wheel 38.
  • MG Motor-Generator
  • the first MG 32-1, the second MG 32-2, and the engine 36 are connected to the power split device 34.
  • the vehicle 100 travels by driving force from at least one of the engine 36 and the second MG 32-2. More specifically, vehicle 100 travels in any one of an electric travel mode (hereinafter also referred to as “EV travel mode”) and a hybrid travel mode (hereinafter also referred to as “HV travel mode”).
  • EV travel mode is a travel mode in which the vehicle 100 travels with the power of the second MG 32-2 without using the power of the engine 36.
  • the HV travel mode is a travel mode in which the vehicle 100 travels with the power of the engine 36 and the second MG 32-2.
  • the ECU 8000 performs either EV traveling control for traveling the vehicle 100 in the EV traveling mode or HV traveling control for traveling the vehicle 100 in the HV traveling mode.
  • the power generated by the engine 36 is divided into two paths by the power split device 34. That is, one is a path transmitted to the drive wheel 38 and the other is a path transmitted to the first MG 32-1.
  • Each of the first MG 32-1 and the second MG 32-2 is an AC rotating electric machine, for example, a three-phase AC rotating electric machine including a rotor in which a permanent magnet is embedded.
  • SOC State Of Charge
  • a predetermined range for example, about 40% to 60%.
  • the engine 36 is operated, and power is generated by the first MG 32-1 using the power of the engine 36 divided by the power split device 34.
  • the electric power generated by the first MG 32-1 is supplied to the power supply system 1.
  • the second MG 32-2 generates driving force using at least one of the power supplied from the power supply system 1 and the power generated by the first MG 32-1. Then, the driving force of the second MG 32-2 is transmitted to the driving wheel 38.
  • the second MG 32-2 is driven by the drive wheel 38, and the second MG 32-2 operates as a generator.
  • second MG 32-2 operates as a regenerative brake that converts braking energy into electric power. Then, the electric power generated by the second MG 32-2 is supplied to the power supply system 1.
  • the power split device 34 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 36.
  • the sun gear is connected to the rotation shaft of the first MG 32-1.
  • the ring gear is connected to the rotation shaft of the second MG 32-2.
  • the first inverter 30-1 and the second inverter 30-2 are connected to the main positive bus MPL and the main negative bus MNL. Then, first inverter 30-1 and second inverter 30-2 convert drive power (DC power) supplied from power supply system 1 into AC power and output the AC power to first MG 32-1 and second MG 32-2, respectively. . The first inverter 30-1 and the second inverter 30-2 convert the AC power generated by the first MG 32-1 and the second MG 32-2, respectively, into DC power and output it as regenerative power to the power supply system 1.
  • each of the first inverter 30-1 and the second inverter 30-2 includes, for example, a bridge circuit including switching elements for three phases.
  • Each inverter drives a corresponding MG by performing a switching operation in accordance with drive signals PWIV1 and PWIV2 from ECU 8000, respectively.
  • ECU 8000 calculates vehicle required power Ps based on detection signals of respective sensors (not shown), travel conditions, accelerator opening, and the like, and torques of first MG 32-1 and second MG 32-2 based on the calculated vehicle required power Ps. A target value and a rotational speed target value are calculated. ECU 8000 controls first inverter 30-1 and second inverter 30-2 so that the generated torque and rotation speed of first MG 32-1 and second MG 32-2 become target values.
  • the power supply system 1 includes a first power storage device 10-1, a second power storage device 10-2, a third power storage device 10-3, a first converter 12-1, a second converter 12-2, Switching device 18-1, second switching device 18-2, main positive bus MPL, main negative bus MNL, smoothing capacitor C, current sensors 14-1 to 14-3, voltage sensors 16-1 to 16-3, 20, charging device 11, and connector 13.
  • the charging device 11 converts electric power from an AC power supply 19 of an electric power company provided outside the vehicle into direct current, and the first power storage device 10-1, the second power storage device 10-2, and the third power storage device 10-3. Output to.
  • the ECU 8000 includes the first power storage device 10-1, the second power storage device 10-2, and the third power storage device 10-3.
  • the charging device 11 is controlled such that SOCm, SOCs1, and SOCs2, which are values indicating the respective charging states, become upper limit values (for example, about 80%).
  • vehicle 100 is a vehicle capable of traveling with electric power supplied from a power source outside the vehicle (hereinafter also referred to as “plug-in vehicle”).
  • the vehicle to which the control device according to the present invention is applicable is not limited to a plug-in vehicle.
  • Each of the first power storage device 10-1, the second power storage device 10-2, and the third power storage device 10-3 is a DC power source in which a plurality of battery cells such as nickel hydride and lithium ion are connected in series.
  • the output voltages of first power storage device 10-1, second power storage device 10-2, and third power storage device 10-3 are adjusted by the number of battery cells provided therein.
  • the output voltage (number of battery cells) of each power storage device will be described later.
  • any of first power storage device 10-1, second power storage device 10-2, and third power storage device 10-3 may be a rechargeable large-capacity capacitor, for example.
  • the first power storage device 10-1 is connected to the first converter 12-1, and the second power storage device 10-2 and the third power storage device 10-3 are connected to the second switching device 18-2.
  • First switching device 18-1 is provided between first power storage device 10-1 and first converter 12-1, and in accordance with switching signal SW1 from ECU 8000, first power storage device 10-1 and first converter 12 are connected. Switches the electrical connection state with -1. More specifically, the first switching device 18-1 includes a system relay RY1. When the switching signal SW1 is deactivated, the system relay RY1 is turned on. When the switching signal SW1 is activated, the system relay RY1 is turned on. The switching signal SW1 is activated when an unillustrated ignition switch is turned on by the user. That is, system relay RY1 is kept on when vehicle 100 is traveling.
  • Second switching device 18-2 is provided between second power storage device 10-2 and third power storage device 10-3 and second converter 12-2, and in accordance with switching signal SW2 from ECU 8000, second power storage device The electrical connection state between the second converter 12-2 and the second power storage device 10-3 is switched. More specifically, the second switching device 18-2 includes system relays RY2 and RY3. System relay RY2 is arranged between second power storage device 10-2 and second converter 12-2. System relay RY3 is arranged between third power storage device 10-3 and second converter 12-2. ECU 8000 generates switching signal SW2 for controlling on / off of each of system relays RY2 and RY3, and outputs the switching signal SW2 to second switching device 18-2.
  • the first converter 12-1 and the second converter 12-2 are connected in parallel to the main positive bus MPL and the main negative bus MNL.
  • First converter 12-1 performs voltage conversion between first power storage device 10-1 and main positive bus MPL and main negative bus MNL based on drive signal PWC1 from ECU 8000.
  • Smoothing capacitor C is connected between main positive bus MPL and main negative bus MNL, and reduces power fluctuation components included in main positive bus MPL and main negative bus MNL.
  • Voltage sensor 20 detects voltage Vh between main positive bus MPL and main negative bus MNL, and outputs the detected value to ECU 8000.
  • the voltage Vh is a voltage input to the first inverter 30-1 and the second inverter 30-2.
  • this voltage Vh is also referred to as “system voltage Vh”.
  • Current sensors 14-1 to 14-3 include current Ib1 input / output to / from first power storage device 10-1, current Ib2 input / output to / from second power storage device 10-2, and third power storage device. Current Ib3 input / output to / from 10-3 is detected, and the detected value is output to ECU 8000.
  • Each of current sensors 14-1 to 14-3 detects a current (discharge current) output from the corresponding power storage device as a positive value and a current (charge current) input to the corresponding power storage device as a negative value. Detect as. FIG. 1 shows the case where each of the current sensors 14-1 to 14-3 detects the current of the positive line, but each of the current sensors 14-1 to 14-3 detects the current of the negative line. May be.
  • Voltage sensors 16-1 to 16-3 detect voltage Vb1 of first power storage device 10-1, voltage Vb2 of second power storage device 10-2, and voltage Vb3 of third power storage device 10-3, respectively. The detected value is output to ECU 8000.
  • the ECU 8000 determines the first converter 12-1 and the second converter 12 based on the detected values from the current sensors 14-1 to 14-3 and the voltage sensors 16-1 to 16-3, 20 and the vehicle required power Ps.
  • Drive signals PWC1 and PWC2 for driving -2 respectively
  • ECU 8000 uses the generated drive signals PWC1, PWC2, PWIV1, PWIV2, and PWENG as the first converter 12-1, the second converter 12-2, the first inverter 30-1, the second inverter 30-2, Output to the engine 36.
  • ECU 8000 is a first power storage device 10-1 connected to first converter 12-1 in a discharge mode in which power is supplied from power supply system 1 to driving force generation unit 2 (that is, vehicle required power Ps> 0). Between the discharge margin power amount of the second power storage device 10-2 and the third power storage device 10-3 connectable to the second converter 12-2 by the second switching device 18-2 Accordingly, a discharge distribution ratio indicating the distribution of power discharged from the first power storage device 10-1 and the power storage device electrically connected to the second converter 12-2 by the second switching device 18-2 is calculated. To do. ECU 8000 controls first converter 12-1 and second converter 12-2 in accordance with the calculated discharge distribution ratio.
  • ECU 8000 in the charging mode in which electric power is supplied from driving force generating unit 2 to power supply system 1 (that is, vehicle required power Ps ⁇ 0), the amount of remaining charging power of first power storage device 10-1 and the second switching Connected to the first power storage device 10-1 and the second converter 12-2 according to the ratio of the charge margin power amount of the power storage device electrically connected to the second converter 12-2 by the device 18-2 A charge distribution ratio indicating distribution of electric power charged to the power storage device is calculated. ECU 8000 controls first converter 12-1 and second converter 12-2 in accordance with the calculated charge distribution ratio.
  • the vehicle 100 is provided with an HV switch 17.
  • the HV switch 17 is a switch for the driver to input an HV request indicating that HV traveling is requested.
  • the HV switch 17 When the HV switch 17 is turned on by the driver, the HV switch 17 outputs an HV request signal Rhv to the ECU 8000.
  • ECU 8000 executes any travel control of EV travel control and HV travel control based on vehicle required power Ps, SOC of each power source, HV request signal Rhv from HV switch 17, and the like.
  • each MG During HV running control, power generation, regeneration, and motor output by each MG are controlled so that the SOC of each power source is included in a predetermined range. For example, as described above, the ECU 8000 increases the amount of power generated by each MG by starting the stopped engine 36 or increasing the output of the operating engine 36 when each power supply needs to be charged. Increase the amount of charge for each power supply.
  • ECU 8000 controls system voltage Vh and each MG by controlling at least one of first converter 12-1 and second converter 12-2 in both HV traveling control and EV traveling control. Is adjusted to a value included in the optimum voltage range (hereinafter also simply referred to as “voltage control range”).
  • FIG. 2 shows the relationship between the voltage control range described above and the output voltage of each power storage device.
  • first power storage device 10-1 is “master power source”
  • second power storage device 10-2 is “first slave power source”
  • third power storage device 10-3 is “second slave power source”. Also called.
  • the voltage control range ⁇ during EV travel control is a range from the lower limit value Vlow (EV) to the upper limit value Vhi.
  • the voltage control range ⁇ during HV traveling control is a range from the lower limit value Vlow (HV) to the upper limit value Vhi.
  • the lower limit value Vlow (EV) is higher than the lower limit value Vlow (HV).
  • the upper limit value Vhi may be about 650 volts
  • the lower limit value Vlow (EV) may be about 500 volts
  • the lower limit value Vlow (HV) may be about 200 volts.
  • ECU 8000 includes first converter 12-1 and second converter 12-2 so that system voltage Vh is included in voltage control range ⁇ during EV travel control, and system voltage Vh is included in voltage control range ⁇ during HV travel control. Control at least one of the following.
  • the output voltage Vm of the master power source (first power storage device 10-1) is set to the lower limit value Vlow (HV) of the voltage control range ⁇ during HV running control.
  • the output voltage Vs1 of the first slave power supply (second power storage device 10-2) and the output voltage Vs2 of the second slave power supply (third power storage device 10-3) are the lower limit value Vlow (HV) and the lower limit value Vlow ( EV).
  • the distribution of the battery cells of the master power supply, the first slave power supply, and the second slave power supply for realizing such an output voltage will be described below.
  • total number of required cells When the number of battery cells (hereinafter also referred to as “total number of required cells”) necessary for realizing a predetermined target travelable distance by EV travel is N, first, the output voltage Vm of the master power supply is set to the lower limit value Vlow ( HV), the number Nm of battery cells of the master power source is determined. Next, the remaining (N ⁇ Nm) battery cells obtained by subtracting the number Nm of battery cells of the master power source from the necessary total number N are distributed to the first slave power source and the second slave power source. In this embodiment, the remaining (N ⁇ Nm) battery cells are equally distributed to the first slave power source and the second slave power source.
  • the output voltage of one battery cell is about 3.6 volts
  • the total number of required cells N is 288, and the lower limit value Vlow (HV) is about 200 volts
  • the number of battery cells Nm of the master power supply is 56, 116 battery cells are distributed to the first slave power supply and the second slave power supply, respectively.
  • Vm about 201 volts
  • the voltage value Vave indicated by the one-dot chain line in FIG. 2 indicates the output voltage of each power supply when the required total number N of cells is evenly distributed among the three power supplies of the master power supply, the first slave power supply, and the second slave power supply. .
  • FIG. 3 shows a functional block diagram of the ECU 8000 which is a vehicle control apparatus according to this embodiment.
  • ECU 8000 includes an input interface 8100, a calculation processing unit 8200, a storage unit 8300, and an output interface 8400.
  • the input interface 8100 receives the detection results of each sensor and transmits them to the arithmetic processing unit 8200.
  • the storage unit 8300 stores various types of information, programs, threshold values, maps, and the like, and data is read from or stored in the arithmetic processing unit 8200 as necessary.
  • the arithmetic processing unit 8200 includes a travel control unit 8210, an SOC calculation unit 8220, and a switching control unit 8230.
  • the traveling control unit 8210 executes any traveling control of EV traveling control and HV traveling control based on the SOC of each power source, the HV request signal Rhv, and the like. Travel control unit 8210 executes EV travel control when either SOCs1 of the first slave power supply or SOCs2 of the second slave power supply exceeds a predetermined threshold (for example, 20%), and the first slave power supply When both SOCs1 and SOCs2 of the second slave power supply drop below the threshold value, HV running control is executed. In addition, when the HV request signal Rhv is received during EV traveling control, traveling control unit 8210 stops EV traveling control and forcibly executes HV traveling control. In the following description, the HV traveling control executed based on the HV request signal Rhv is also referred to as “forced HV traveling control” in order to distinguish it from normal HV traveling control.
  • traveling control unit 8210 switches the control range of the system voltage Vh according to the traveling control to be executed. That is, traveling control unit 8210 includes first converter 12 so that system voltage Vh is included in voltage control range ⁇ described above during EV traveling control, and system voltage Vh is included in voltage control range ⁇ described above during HV traveling control. -1 and / or the second converter 12-2 is controlled.
  • the traveling control unit 8210 generates drive signals PWC1, PWC2, PWIV1, PWIV2, and PWENG that realize these controls, and the first converter 12-1, the second converter 12-2, the first inverter 30-1, 2 Output to the inverter 30-2 and the engine 36 via the output interface 8400.
  • the SOC calculation unit 8220 is configured to use the SOCm of the master power supply, the SOCs1 of the first slave power supply, the second Calculate SOCs2 of the slave power supply.
  • the switching control unit 8230 generates a switching signal SW2 for switching an electrical connection state between the first slave power source and the second slave power source and the second converter 12-2 based on the travel control to be executed, the SOC of each power source, and the like. And output to the second switching device 18-2 via the output interface 8400.
  • the switching control unit 8230 connects the first slave power supply and disconnects the second slave power supply (turns on the system relay RY2 and turns on the system relay RY3.
  • the switching signal SW2 is generated so as to be turned off.
  • the switching control unit 8230 disconnects the first slave power supply and turns off the second slave power supply.
  • the switching signal SW2 is generated so as to be connected (the system relay RY2 is turned off and the system relay RY3 is turned on).
  • the switching control unit 8230 disconnects both the first slave power supply and the second slave power supply (system relays RY2, RY3).
  • the switching signal SW2 is generated so that both are turned off.
  • the switching control unit 8230 switches the switching signal for disconnecting both the first slave power supply and the second slave power supply. Instead of generating SW2, the switching signal SW2 at the time when the HV request signal Rhv is received is maintained as it is.
  • the functions described above may be realized by software or hardware.
  • the above-described function is realized by software, specifically, when the CPU that is the arithmetic processing unit 8200 executes the program stored in the storage unit 8300, the above-described function is realized. Will be described.
  • step (hereinafter, step is abbreviated as S) 100 ECU 8000 determines whether or not SOCs1 of the first slave power source exceeds a threshold value. If SOCs1 exceeds the threshold value (YES in S100), the process proceeds to S102. Otherwise (NO in S100), the process proceeds to S104.
  • ECU 8000 In S102, ECU 8000 generates a switching signal SW2 for connecting the first slave power source and disconnecting the second slave power source, and outputs the switching signal SW2 to second switching device 18-2. As a result, the master power supply and the first slave power supply are connected to each inverter.
  • ECU 8000 determines whether or not SOCs2 of the second slave power supply exceeds a threshold value. If SOCs2 exceeds the threshold value (YES in S104), the process proceeds to S106. Otherwise (NO in S104), the process proceeds to S108.
  • ECU 8000 In S106, ECU 8000 generates a switching signal SW2 for disconnecting the first slave power source and connecting the second slave power source, and outputs the switching signal SW2 to second switching device 18-2. As a result, the master power source and the second slave power source are connected to each inverter.
  • ECU 8000 executes EV traveling control.
  • first converter 12-1 and second converter 12-2 are controlled so that system voltage Vh is included in voltage control range ⁇ described above. More specifically, ECU 8000 controls system voltage Vh to lower limit value Vlow (EV) of voltage control range ⁇ , and raises system voltage Vh within voltage control range ⁇ as necessary.
  • Vh system voltage
  • Vlow EV
  • ECU 8000 determines whether or not HV switch 17 is turned on by the driver during EV traveling control (whether or not HV request signal Rhv is received). If HV switch 17 is turned on (YES in S110), the process proceeds to S112. Otherwise (NO in S110), this process ends.
  • ECU 8000 executes forced HV traveling control.
  • forced HV traveling control the switching signal SW2 when the HV request signal Rhv is received is maintained as it is.
  • ECU 8000 In S114, ECU 8000 generates a switching signal SW2 for disconnecting both the first slave power supply and the second slave power supply, and outputs it to second switching device 18-2. Thereby, only the master power supply is connected to each inverter.
  • ECU 8000 executes HV traveling control.
  • the first converter 12-1 is controlled so that the system voltage Vh is included in the voltage control range ⁇ described above. More specifically, ECU 8000 controls system voltage Vh to lower limit value Vlow (HV) of voltage control range ⁇ , and raises system voltage Vh within voltage control range ⁇ as necessary.
  • HV lower limit value
  • ECU 8000 which is the control device according to the present embodiment, based on the above-described structure and flowchart will be described.
  • FIG. 5 shows the SOC of each power source, the travel control to be executed, and the connection state of each power source when the vehicle is continuously driven after the SOC of each power source is charged to an upper limit value (for example, a value of about 80%). It is a timing chart which shows.
  • the system relay RY1 When the vehicle 100 is running (when the ignition is on), the system relay RY1 is kept on, so that the power source of the master is always connected to each inverter via the first converter 12-1.
  • EV traveling control is executed in a state where the first slave power source is connected to second converter 12-2 (S102) ( S108). Therefore, until the time t1 when SOCs1 falls to the threshold value, EV running control is performed with the power of the master power supply and the first slave power supply.
  • charging / discharging of the master power supply is controlled so that the SOCm of the master power supply also becomes the lower limit value at the timing when the SOCs2 of the second slave power supply becomes the lower limit value.
  • EV traveling control is performed until the SOC of each power source reaches the lower limit value.
  • the total number of battery cells provided in each power supply is the required total number N. Therefore, a predetermined target travelable distance can be realized by EV travel.
  • the lower limit value Vlow (EV) of the voltage control range ⁇ during EV traveling control is higher than the output voltage Vm of the master power supply, the output voltage Vs1 of the first slave power supply, and the output voltage Vs2 of the second slave power supply. Therefore, as shown by the arrows in FIG. 5, during EV traveling control, Vm, Vs1, and Vs2 are boosted to at least the lower limit value Vlow (EV) by the first converter 12-1 and the second converter 12-2, respectively. .
  • both the first slave power supply and the second slave power supply are disconnected from second converter 12-2 (S114), and the EV running control is started from HV. Switching to traveling control is performed (S116). Therefore, after time t2, HV traveling control is performed only by the master power source.
  • the output voltage of the master power source becomes Vave shown in FIG. 5, and the lower limit value Vlow (HV) of the voltage control range ⁇ during HV traveling control. Will be exceeded. Therefore, the system voltage Vh at the time of HV traveling control becomes unnecessarily high, and the optimum voltage setting is not achieved.
  • the master power source is used for the HV running control, and the output voltage Vm of the master power source out of the necessary N cells in total is the lower limit value Vlow (HV) of the voltage control range ⁇ during the HV running control.
  • Nm battery cells are distributed to the master power source, and the remaining (N ⁇ Nm) battery cells are evenly distributed to the first slave power source and the second slave power source.
  • the system voltage Vh during the HV running control becomes the lower limit value Vlow (HV) without performing the boosting operation by the first converter 12-1. Therefore, power loss due to boosting can be reduced. Furthermore, it is possible to reduce power consumption by suppressing the system voltage Vh from becoming unnecessarily high as compared to the case where the necessary total number N of cells is evenly distributed among the power sources.
  • forced HV traveling control is executed (S112).
  • the connection state with each power source is maintained at the time when the HV switch 17 is turned on (when the HV request signal Rhv is received). Therefore, it is possible to run while maintaining the SOC of the main power supply and the slave power supply within a predetermined range.
  • Such traveling is effective when the driver wants to maintain the power for some reason, for example, when the power of each power source is required after arrival at the destination.
  • the control device only the master power source is connected to the MG at the time of HV traveling control, and the output voltage of the master power source among the necessary number of cells is the voltage at the time of HV traveling control.
  • the number of battery cells to be the lower limit value of the control range is distributed to the master power source, and the remaining number of battery cells is evenly distributed to the remaining slave power sources.
  • the present invention can also be applied to a hybrid vehicle including three or more slave power supplies.

Abstract

 走行中にMG(Motor-Generator)に常時接続されるマスタ電源と、走行中にMGとの接続状態の切替が可能な第1スレーブ電源および第2スレーブ電源を備えたハイブリッド車両において、ECUは、第1スレーブ電源のSOCs1および第2スレーブ電源のSOCs2の双方がしきい値よりも低下するまでは(S100にてYES、S104にてYES)、第1スレーブ電源および第2スレーブ電源のいずれかを接続して(S102、S106)、マスタ電源といずれか一方のスレーブ電源とでEV走行制御を実行する(S108)。一方、ECUは、SOCs1およびSOCs2の双方がしきい値よりも低下すると(S104にてNO)、第1スレーブ電源および第2スレーブ電源の双方を切り離して(S114)、マスタ電源のみでHV走行制御を実行する(S116)。

Description

ハイブリッド車両の制御装置および制御方法
 本発明は、ハイブリッド車両の制御に関し、特に、動力源である回転電機と電力を授受可能な複数の電源を備えたハイブリッド車両の制御に関する。
 ハイブリッド車両には、動力源である回転電機と電力を授受可能な電源が備えられる。特開2003-209969号公報(特許文献1)には、高電圧インバータおよびモータを低電圧電池モジュールで使用するための電源制御システムを備えたハイブリッド車両が開示されている。
 特開2003-209969号公報(特許文献1)に開示された電源制御システムは、車両の電動牽引モータに調整済みの電力を提供する少なくとも1つのインバータと、それぞれが電池とブースト/バック直流・直流コンバータを有し、並列に配線され、少なくとも1つのインバータに直流電力を提供する複数の電源ステージとを備える。電源ステージは、少なくとも1つのインバータへの出力電圧を維持するよう制御される。
特開2003-209969号公報 特開2008-109840号公報 特開2007-335151号公報
 ところで、通常、ハイブリッド車両は、走行モードとして、電気走行モードとハイブリッド走行モードとを有する。これらの走行モードは、モータに供給すべき電圧範囲が異なる。すなわち、ハイブリッド走行モードでは、エンジンとモータとの双方の動力を用いて車両を走行させるため、モータの動力のみを用いる電気走行モードと比べて、モータに供給する電圧を低く設定することが可能となる。
 特開2003-209969号公報(特許文献1)には、モータと電力を授受可能な複数の電源を備えたハイブリッド車両が開示されているが、走行モードに応じて複数の電源とモータとの接続状態をどのように制御するのか、また、走行モードおよび複数の電源の接続状態を考慮して、各電源の出力電圧をどのような値に設定するのかについて、何ら言及されていない。
 本発明は、上述の課題を解決するためになされたものであって、その目的は、電気走行モードとハイブリッド走行モードとを走行モードとして有するハイブリッド車両において、電気走行モード時に必要な電源容量を確保しつつ、ハイブリッド走行制御時の電源電圧を最適な値にすることができる制御装置および制御方法を提供することである。
 この発明に係る制御装置は、内燃機関および回転電機の少なくともいずれかを動力源とするハイブリッド車両を制御する。この制御装置は、回転電機に接続され、回転電機と電力を授受可能な主電源と、回転電機と電力を授受可能な複数の副電源と、複数の副電源と回転電機との間に設けられ、与えられる指令に従って複数の副電源のいずれか1つを回転電機に接続可能に構成された切替装置と、切替装置を制御する切替制御部と、内燃機関および回転電機の少なくともいずれかの動力でハイブリッド車両を走行させるハイブリッド走行制御、および内燃機関を用いずに回転電機の動力でハイブリッド車両を走行させる電気走行制御のいずれかの走行制御を実行する走行制御部とを含む。切替制御部は、ハイブリッド走行制御中は、電気走行制御中よりも、回転電機に接続される複数の副電源の数が少なくなるように、切替装置を制御する。
 好ましくは、切替制御部は、電気走行制御中は、複数の副電源のいずれか1つを回転電気に接続し、ハイブリッド走行制御中は、複数の副電源を回転電機から切り離す。
 さらに好ましくは、切替制御部は、電気走行制御中である場合に、複数の副電源のうち回転電機に接続された第1の副電源の充電状態が所定状態よりも低下したとき、第1の副電源を回転電機から切り離して他の第2の副電源を回転電機に接続する。
 さらに好ましくは、走行制御部は、複数の副電源のすべての充電状態が所定状態よりも低下した場合、電気走行制御に代えてハイブリッド走行制御を実行する。
 さらに好ましくは、制御装置は、ハイブリッド走行制御での走行を要求していることを示すハイブリッド走行走行要求を運転者が入力する入力部をさらに含む。走行制御部は、電気走行制御中にハイブリッド走行要求が入力された場合、電気走行制御を停止してハイブリッド走行制御を強制的に実行する。切替制御部は、ハイブリッド走行要求が入力されたことに応じてハイブリッド走行制御が強制的に実行される場合は、ハイブリッド走行要求が入力された時点における回転電機と複数の副電源のいずれか1つとの接続状態を維持する。
 さらに好ましくは、主電源の出力電圧は、複数の副電源のいずれの出力電圧よりも低い値に設定される。
 さらに好ましくは、制御装置は、回転電機と主電源との間に設けられ、主電源の出力電圧を回転電機の制御電圧範囲に含まれる値に変換して回転電機に出力する第1のコンバータと、回転電機と複数の副電源との間に設けられ、複数の副電源の出力電圧を回転電機の制御電圧範囲に含まれる値に変換して回転電機に出力する第2のコンバータとをさらに含む。ハイブリッド走行制御時における回転電機の最適制御電圧範囲の第1の下限値は、電気走行制御時における回転電機の制御電圧範囲の第2の下限値よりも低い。主電源の出力電圧は、第1の下限値に設定され、複数の副電源の出力電圧は、第1の下限値と第2の下限値の間の値に設定される。
 さらに好ましくは、主電源および複数の副電源の各々の内部には、直列に接続された複数の電池セルが備えられる。主電源および複数の副電源の各々は、内部に備えられた電池セルの数に応じた出力電圧を出力する。主電源には、電気走行制御時の走行可能距離を所定の目標距離以上に確保するために必要な電池セルの総数のうち、主電源の出力電圧が第1の下限値となる数の電池セルが備えられる。複数の副電源には、必要な電池セルの総数のうち、主電源に備えられた数以外の残余の数の電池セルが複数の副電源の各々に均等に備えられる。
 さらに好ましくは、ハイブリッド車両は、車両外部の電源からの電力を主電源および複数の副電源に充電可能なプラグインハイブリッド車両である。
 この発明の別の局面に係る制御方法は、内燃機関および回転電機の少なくともいずれかを動力源とするハイブリッド車両の制御装置が行なう制御方法である。制御装置には、回転電機に接続され、回転電機と電力を授受可能な主電源と、回転電機と電力を授受可能な複数の副電源と、複数の副電源と回転電機との間に設けられ、与えられる指令に従って複数の副電源のいずれか1つを回転電機に接続可能に構成された切替装置とが備えられる。制御方法は、内燃機関および回転電機の少なくともいずれかの動力でハイブリッド車両を走行させるハイブリッド走行制御、および内燃機関を用いずに回転電機の動力でハイブリッド車両を走行させる電気走行制御のいずれかの走行制御を実行するステップと、ハイブリッド走行制御中は、電気走行制御中よりも、回転電機に接続される複数の副電源の数が少なくなるように、切替装置を制御するステップとを含む。
 本発明によれば、電気走行モード時に必要な電源容量を確保しつつ、ハイブリッド走行制御時の電源電圧を最適な値にすることができる。
本発明の実施例に係る制御装置を備えた車両の全体ブロック図である。 EV走行制御時の電圧制御範囲と、HV走行制御時の電圧制御範囲と、各蓄電装置の出力電圧との関係を示す図である。 本発明の実施例に係る制御装置の機能ブロック図である。 本発明の実施例に係る制御装置の制御構造を示すフローチャートである。 本発明の実施例に係る制御装置によって制御される各電源のSOC、走行制御、および各電源の接続状態を示すタイミングチャートである。
符号の説明
 1 電源システム、2 駆動力発生部、10-1~10-3 蓄電装置、11 充電装置、12-1,12-2 コンバータ、13 コネクタ、14-1~14-3 電流センサ、15 パドル、16-1~16-3,20 電圧センサ、17 HVスイッチ、18-1,18-2 切替装置、19 交流電源、22 コンバータECU、30-1,30-2 インバータ、32-1,32-2 MG、34 動力分割装置、36 エンジン、38 駆動輪、100 車両、8000 ECU、8100 入力インターフェイス、8200 演算処理部、8210 走行制御部、8220 SOC算出部、8230 切替制御部、8300 記憶部、8400 出力インターフェイス、MPL 主正母線、MNL 主負母線、C 平滑コンデンサ、RY1,RY2,RY3 システムリレー。
 以下、本発明の実施例について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施例に係る制御装置を備えた車両の全体ブロック図である。図1を参照して、車両100は、電源システム1と、駆動力発生部2とを、ECU(Electronic Control Unit)8000とを含む。
 駆動力発生部2は、第1インバータ30-1と、第2インバータ30-2と、第1MG(Motor-Generator)32-1と、第2MG32-2と、動力分割装置34と、エンジン36と、駆動輪38とを含む。
 第1MG32-1、第2MG32-2およびエンジン36は、動力分割装置34に連結される。そして、この車両100は、エンジン36および第2MG32-2の少なくとも一方からの駆動力によって走行する。より具体的には、車両100は、電気走行モード(以下「EV走行モード」ともいう)およびハイブリッド走行モード(以下「HV走行モード」ともいう)のいずれかの走行モードで走行する。EV走行モードは、エンジン36の動力を用いずに第2MG32-2の動力によって車両100を走行させる走行モードである。HV走行モードは、エンジン36と第2MG32-2との動力によって車両100を走行させる走行モードである。ECU8000は、車両100の走行時に、EV走行モードで車両100を走行させるEV走行制御と、HV走行モードで車両100を走行させるHV走行制御とのいずれかの制御を行なう。
 エンジン36が発生する動力は、動力分割装置34によって2経路に分割される。すなわち、一方は駆動輪38へ伝達される経路であり、もう一方は第1MG32-1へ伝達される経路である。
 第1MG32-1および第2MG32-2の各々は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える三相交流回転電機から成る。HV走行制御中においては、電源システム1に含まれる蓄電装置(後述)の充電状態を示す値であるSOC(State Of Charge)を所定範囲(たとえば40%程度~60%程度)に維持するようにエンジン36が運転されて、動力分割装置34によって分割されたエンジン36の動力を用いて第1MG32-1による発電が行なわれる。第1MG32-1によって発電された電力は電源システム1へ供給される。
 第2MG32-2は、電源システム1から供給される電力および第1MG32-1により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、第2MG32-2の駆動力は、駆動輪38に伝達される。なお、車両の制動時等には、駆動輪38により第2MG32-2が駆動され、第2MG32-2が発電機として作動する。これにより、第2MG32-2は、制動エネルギを電力に変換する回生ブレーキとして作動する。そして、第2MG32-2により発電された電力は、電源システム1へ供給される。
 動力分割装置34は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン36のクランクシャフトに連結される。サンギヤは、第1MG32-1の回転軸に連結される。リングギヤは第2MG32-2の回転軸に連結される。
 第1インバータ30-1および第2インバータ30-2は、主正母線MPLおよび主負母線MNLに接続される。そして、第1インバータ30-1および第2インバータ30-2は、電源システム1から供給される駆動電力(直流電力)を交流電力に変換してそれぞれ第1MG32-1および第2MG32-2へ出力する。また、第1インバータ30-1および第2インバータ30-2は、それぞれ第1MG32-1および第2MG32-2が発電する交流電力を直流電力に変換して回生電力として電源システム1へ出力する。
 なお、第1インバータ30-1および第2インバータ30-2の各々は、たとえば、三相分のスイッチング素子を含むブリッジ回路から成る。そして、各インバータは、それぞれECU8000からの駆動信号PWIV1,PWIV2に応じてスイッチング動作を行なうことにより、対応のMGを駆動する。
 ECU8000は、図示されない各センサの検出信号、走行状況およびアクセル開度などに基づいて車両要求パワーPsを算出し、その算出した車両要求パワーPsに基づいて第1MG32-1および第2MG32-2のトルク目標値および回転数目標値を算出する。そして、ECU8000は、第1MG32-1および第2MG32-2の発生トルクおよび回転数が目標値となるように第1インバータ30-1および第2インバータ30-2を制御する。
 電源システム1は、第1蓄電装置10-1と、第2蓄電装置10-2と、第3蓄電装置10-3と、第1コンバータ12-1と、第2コンバータ12-2と、第1切替装置18-1と、第2切替装置18-2と、主正母線MPLと、主負母線MNLと、平滑コンデンサCと、電流センサ14-1~14-3と、電圧センサ16-1~16-3,20と、充電装置11と、コネクタ13とを含む。
 充電装置11は、車両外部に設けられた電力会社の交流電源19からの電力を直流に変換して、第1蓄電装置10-1、第2蓄電装置10-2、第3蓄電装置10-3へ出力する。ECU8000は、電力会社の交流電源19に接続されたパドル15が車両側のコネクタ13に接続された場合、第1蓄電装置10-1、第2蓄電装置10-2、第3蓄電装置10-3の各々の充電状態を示す値であるSOCm、SOCs1、SOCs2が上限値(たとえば80%程度)になるように、充電装置11を制御する。すなわち、車両100は、車両外部の電源から供給された電力での走行が可能な車両(以下、「プラグイン車両」ともいう)である。なお、本発明に係る制御装置が適用可能な車両は、プラグイン車両であることに限定されない。
 第1蓄電装置10-1、第2蓄電装置10-2および第3蓄電装置10-3の各々は、たとえばニッケル水素やリチウムイオン等の電池セルを複数直列に接続した直流電源である。第1蓄電装置10-1、第2蓄電装置10-2および第3蓄電装置10-3の各々の出力電圧は、内部に備えられる電池セルの数で調整される。各蓄電装置の出力電圧(電池セルの数)については後述する。なお、第1蓄電装置10-1、第2蓄電装置10-2および第3蓄電装置10-3のいずれかが、たとえば再充電可能な大容量のキャパシタ等であってもよい。
 第1蓄電装置10-1は第1コンバータ12-1に接続され、第2蓄電装置10-2および第3蓄電装置10-3は第2切替装置18-2に接続される。
 第1切替装置18-1は、第1蓄電装置10-1と第1コンバータ12-1との間に設けられ、ECU8000からの切替信号SW1に従って、第1蓄電装置10-1と第1コンバータ12-1との電気的な接続状態を切り替える。より具体的には、第1切替装置18-1は、システムリレーRY1を含む。切替信号SW1が非活性化されているとき、システムリレーRY1はオンされ、切替信号SW1が活性化されているとき、システムリレーRY1はオンされる。切替信号SW1は、図示しないイグニッションスイッチがユーザによってオンされた時に活性化される。すなわち、車両100の走行時においては、システムリレーRY1はオンに維持される。
 第2切替装置18-2は、第2蓄電装置10-2および第3蓄電装置10-3と第2コンバータ12-2との間に設けられ、ECU8000からの切替信号SW2に従って、第2蓄電装置10-2および第3蓄電装置10-3と第2コンバータ12-2との電気的な接続状態を切り替える。より具体的には、第2切替装置18-2は、システムリレーRY2,RY3を含む。システムリレーRY2は、第2蓄電装置10-2と第2コンバータ12-2との間に配設される。システムリレーRY3は、第3蓄電装置10-3と第2コンバータ12-2との間に配設される。そして、ECU8000は、システムリレーRY2,RY3のそれぞれのオン,オフを制御するための切替信号SW2を生成して第2切替装置18-2へ出力する。
 第1コンバータ12-1および第2コンバータ12-2は、互いに並列して主正母線MPLおよび主負母線MNLに接続される。第1コンバータ12-1は、ECU8000からの駆動信号PWC1に基づいて、第1蓄電装置10-1と主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。第2コンバータ12-2は、ECU8000からの駆動信号PWC2に基づいて、第2切替装置18-2によって第2コンバータ12-2に電気的に接続される第2蓄電装置10-2および第3蓄電装置10-3のいずれかと主正母線MPLおよび主負母線MNLとの間で電圧変換を行なう。
 平滑コンデンサCは、主正母線MPLと主負母線MNLとの間に接続され、主正母線MPLおよび主負母線MNLに含まれる電力変動成分を低減する。電圧センサ20は、主正母線MPLと主負母線MNLとの間の電圧Vhを検出し、その検出値をECU8000へ出力する。なお、電圧Vhは、第1インバータ30-1および第2インバータ30-2に入力される電圧である。以下においては、この電圧Vhを「システム電圧Vh」とも記載する。
 電流センサ14-1~14-3は、第1蓄電装置10-1に対して入出力される電流Ib1、第2蓄電装置10-2に対して入出力される電流Ib2、および第3蓄電装置10-3に対して入出力される電流Ib3をそれぞれ検出し、その検出値をECU8000へ出力する。なお、各電流センサ14-1~14-3は、対応の蓄電装置から出力される電流(放電電流)を正値として検出し、対応の蓄電装置に入力される電流(充電電流)を負値として検出する。なお、この図1では、各電流センサ14-1~14-3が正極線の電流を検出する場合が示されているが、各電流センサ14-1~14-3は負極線の電流を検出してもよい。
 電圧センサ16-1~16-3は、第1蓄電装置10-1の電圧Vb1、第2蓄電装置10-2の電圧Vb2、および第3蓄電装置10-3の電圧Vb3をそれぞれ検出し、その検出値をECU8000へ出力する。
 ECU8000は、電流センサ14-1~14-3および電圧センサ16-1~16-3,20からの各検出値、ならびに車両要求パワーPsに基づいて、第1コンバータ12-1および第2コンバータ12-2をそれぞれ駆動するための駆動信号PWC1,PWC2、第1インバータ30-1および第2インバータ30-2をそれぞれ駆動するための駆動信号PWIV1,PWIV2、エンジン36を制御するPWENGを生成する。そして、ECU8000は、その生成した駆動信号PWC1,PWC2,PWIV1,PWIV2,PWENGを、それぞれ第1コンバータ12-1、第2コンバータ12-2、第1インバータ30-1、第2インバータ30-2、エンジン36へ出力する。
 ここで、ECU8000は、電源システム1から駆動力発生部2へ電力を供給する放電モード時(すなわち車両要求パワーPs>0)、第1コンバータ12-1に接続される第1蓄電装置10-1の放電余裕電力量と、第2切替装置18-2によって第2コンバータ12-2に接続可能な第2蓄電装置10-2および第3蓄電装置10-3の放電余裕電力量の合計との比率に応じて、第1蓄電装置10-1と第2切替装置18-2によって第2コンバータ12-2に電気的に接続された蓄電装置とから放電される電力の配分を示す放電分配率を算出する。そして、ECU8000は、その算出された放電分配率に従って第1コンバータ12-1および第2コンバータ12-2を制御する。
 また、ECU8000は、駆動力発生部2から電源システム1へ電力が供給される充電モード時(すなわち車両要求パワーPs<0)、第1蓄電装置10-1の充電余裕電力量と、第2切替装置18-2によって第2コンバータ12-2に電気的に接続された蓄電装置の充電余裕電力量との比率に応じて、第1蓄電装置10-1と第2コンバータ12-2に接続された蓄電装置とへ充電される電力の配分を示す充電分配率を算出する。そして、ECU8000は、その算出された充電分配率に従って第1コンバータ12-1および第2コンバータ12-2を制御する。
 さらに、車両100には、HVスイッチ17が備えられる。HVスイッチ17は、HV走行を要求していることを示すHV要求を運転者が入力するためのスイッチである。運転者によってHVスイッチ17がオンされると、HVスイッチ17は、HV要求信号RhvをECU8000に出力する。
 ECU8000は、車両要求パワーPs、各電源のSOC、HVスイッチ17からのHV要求信号Rhvなどに基づいて、EV走行制御およびHV走行制御のいずれの走行制御を実行する。
 HV走行制御時には、各電源のSOCが所定の範囲に含まれるように各MGによる発電や回生、モータ出力が制御される。たとえば、ECU8000は、上述したように、各電源の充電が必要な場合には、停止中のエンジン36を始動したり運転中のエンジン36の出力を増加したりして各MGによる発電量を増やして各電源に対する充電量を増加させる。
 ECU8000は、HV走行制御時およびEV走行制御のいずれにおいても、第1コンバータ12-1および第2コンバータ12-2の少なくともいずれかを制御することによって、システム電圧Vhを、各MGを作動するのに最適な電圧範囲(以下、単に「電圧制御範囲」ともいう)に含まれる値に調整する。
 図2に、上述の電圧制御範囲と、各蓄電装置の出力電圧との関係を示す。なお、以下の説明においては、第1蓄電装置10-1を「マスタ電源」、第2蓄電装置10-2を「第1スレーブ電源」、第3蓄電装置10-3を「第2スレーブ電源」とも称する。
 図2に示すように、EV走行制御時の電圧制御範囲αは、下限値Vlow(EV)から上限値Vhiまでの範囲である。一方、HV走行制御時の電圧制御範囲βは、下限値Vlow(HV)から上限値Vhiまでの範囲である。下限値Vlow(EV)は、下限値Vlow(HV)よりも高い値である。たとえば、上限値Vhiは650ボルト程度、下限値Vlow(EV)は500ボルト程度、下限値Vlow(HV)は200ボルト程度の値であってもよい。
 ECU8000は、EV走行制御時にはシステム電圧Vhが電圧制御範囲αに含まれ、HV走行制御時にはシステム電圧Vhが電圧制御範囲βに含まれるように、第1コンバータ12-1および第2コンバータ12-2の少なくともいずれかを制御する。
 マスタ電源(第1蓄電装置10-1)の出力電圧Vmは、HV走行制御時の電圧制御範囲βの下限値Vlow(HV)に設定されている。第1スレーブ電源(第2蓄電装置10-2)の出力電圧Vs1と、第2スレーブ電源(第3蓄電装置10-3)の出力電圧Vs2とは、下限値Vlow(HV)と下限値Vlow(EV)との間の値に設定される。
 このような出力電圧を実現するための、マスタ電源、第1スレーブ電源、第2スレーブ電源の電池セルの配分について以下に説明する。
 所定の目標走行可能距離をEV走行で実現するために必要な電池セルの数(以下「必要セル総数」ともいう)がN個である場合、まず、マスタ電源の出力電圧Vmが下限値Vlow(HV)になるようにマスタ電源の電池セル数Nmを決定する。次に、必要セル総数Nからマスタ電源の電池セル数Nmを除いた残余の(N-Nm)個の電池セルを、第1スレーブ電源と、第2スレーブ電源とに分配する。本実施例においては、残余の(N-Nm)個の電池セルを第1スレーブ電源と、第2スレーブ電源とに均等に分配している。すなわち、第1スレーブ電源および第2スレーブ電源にはそれぞれ{(N-Nm)/2}個の電池セルが分配される。これにより、第1スレーブ電源の出力電圧Vs1と、第2スレーブ電源の出力電圧Vs2とが同じ値となっている。
 たとえば、1つの電池セルの出力電圧が約3.6ボルト、必要セル総数Nが288個、下限値Vlow(HV)が200ボルト程度である場合、マスタ電源の電池セル数Nmを56個とし、第1スレーブ電源および第2スレーブ電源にそれぞれ116個の電池セルを分配する。これにより、Vm=約201ボルト、Vs1=Vs2=約417ボルトとなる。
 なお、図2の一点鎖線で示す電圧値Vaveは、必要セル総数N個をマスタ電源、第1スレーブ電源、第2スレーブ電源の3つの電源で均等に分配した場合の各電源の出力電圧を示す。
 図3に、本実施例に係る車両の制御装置であるECU8000の機能ブロック図を示す。ECU8000は、入力インターフェイス8100と、演算処理部8200と、記憶部8300と、出力インターフェイス8400とを含む。
 入力インターフェイス8100は、各センサなどの検出結果を受信して、演算処理部8200に送信する。
 記憶部8300には、各種情報、プログラム、しきい値、マップ等が記憶され、必要に応じて演算処理部8200からデータが読み出されたり、格納されたりする。
 演算処理部8200は、走行制御部8210と、SOC算出部8220と、切替制御部8230とを含む。
 走行制御部8210は、各電源のSOC、HV要求信号Rhvなどに基づいて、EV走行制御およびHV走行制御のいずれの走行制御を実行する。走行制御部8210は、第1スレーブ電源のSOCs1および第2スレーブ電源のSOCs2のいずれかが所定のしきい値(たとえば20%)を超えていると、EV走行制御を実行し、第1スレーブ電源のSOCs1および第2スレーブ電源のSOCs2の双方がしきい値よりも低下すると、HV走行制御を実行する。また、走行制御部8210は、EV走行制御中にHV要求信号Rhvが受信されると、EV走行制御を停止して強制的にHV走行制御を実行する。以下の説明においては、HV要求信号Rhvに基づいて実行されるHV走行制御を、通常のHV走行制御と区別するために「強制HV走行制御」とも記載する。
 さらに、走行制御部8210は、実行される走行制御に応じてシステム電圧Vhの制御範囲を切り替える。すなわち、走行制御部8210は、EV走行制御時にはシステム電圧Vhが上述の電圧制御範囲αに含まれ、HV走行制御時にはシステム電圧Vhが上述した電圧制御範囲βに含まれるように、第1コンバータ12-1および第2コンバータ12-2の少なくともいずれかを制御する。
 走行制御部8210は、これらの制御を実現させる駆動信号PWC1,PWC2,PWIV1,PWIV2,PWENGを生成し、それぞれ第1コンバータ12-1、第2コンバータ12-2、第1インバータ30-1、第2インバータ30-2、エンジン36へ、出力インターフェイス8400経由で出力する。
 SOC算出部8220は、電流センサ14-1~14-3および電圧センサ16-1~16-3,20からの各検出値に基づいて、マスタ電源のSOCm、第1スレーブ電源のSOCs1、第2スレーブ電源のSOCs2を算出する。
 切替制御部8230は、実行される走行制御や各電源のSOCなどに基づいて、第1スレーブ電源および第2スレーブ電源と第2コンバータ12-2との電気的な接続状態を切り替える切替信号SW2を生成し、第2切替装置18-2に出力インターフェイス8400経由で出力する。
 切替制御部8230は、第1スレーブ電源のSOCs1がしきい値を超えていると、第1スレーブ電源を接続させて第2スレーブ電源を切り離す(システムリレーRY2をオンさせ、かつ、システムリレーRY3をオフさせる)ように切替信号SW2を生成する。
 切替制御部8230は、第1スレーブ電源のSOCs1がしきい値よりも低下し、かつ第2スレーブ電源のSOCs2がしきい値を超えている場合、第1スレーブ電源を切り離して第2スレーブ電源を接続する(システムリレーRY2をオフさせ、かつ、システムリレーRY3をオンさせる)ように切替信号SW2を生成する。
 切替制御部8230は、第1スレーブ電源のSOCs1および第2スレーブ電源のSOCs2の双方がしきい値よりも低下した場合、第1スレーブ電源および第2スレーブ電源の双方を切り離す(システムリレーRY2、RY3を双方ともオフさせる)ように切替信号SW2を生成する。
 なお、切替制御部8230は、EV走行制御中にHV要求信号Rhvが受信されたことに応じて強制HV走行制御が実行される場合、第1スレーブ電源および第2スレーブ電源の双方を切り離す切替信号SW2を生成するのではなく、HV要求信号Rhvが受信された時点の切替信号SW2をそのまま維持する。
 上述した機能は、ソフトウェアによって実現されるようにしてもよく、ハードウェアにより実現されるようにしてもよい。以下の説明では、上述した機能がソフトウェアによって実現される場合、具体的には、演算処理部8200であるCPUが記憶部8300に記憶されたプログラムを実行することによって上述した機能が実現される場合について説明する。
 以下、図4を参照して、本実施例に係る制御装置であるECU8000で実行されるプログラムの制御構造について説明する。なお、このプログラムは、予め定められたサイクルタイムで繰り返し実行される。
 ステップ(以下、ステップをSと略す)100にて、ECU8000は、第1スレーブ電源のSOCs1がしきい値を超えているか否かを判断する。SOCs1がしきい値を超えていると(S100にてYES)、処理はS102に移される。そうでないと(S100にてNO)、処理はS104に移される。
 S102にて、ECU8000は、第1スレーブ電源を接続させて第2スレーブ電源を切り離す切替信号SW2を生成して第2切替装置18-2に出力する。これにより、各インバータにマスタ電源と第1スレーブ電源とが接続された状態となる。
 S104にて、ECU8000は、第2スレーブ電源のSOCs2がしきい値を超えているか否かを判断する。SOCs2がしきい値を超えていると(S104にてYES)、処理はS106に移される。そうでないと(S104にてNO)、処理はS108に移される。
 S106にて、ECU8000は、第1スレーブ電源を切り離して第2スレーブ電源を接続させる切替信号SW2を生成して第2切替装置18-2に出力する。これにより、各インバータにマスタ電源と第2スレーブ電源とが接続された状態となる。
 S108にて、ECU8000は、EV走行制御を実行する。なお、EV走行制御時には、システム電圧Vhが上述の電圧制御範囲αに含まれるように、第1コンバータ12-1および第2コンバータ12-2が制御される。より具体的には、ECU8000は、システム電圧Vhを電圧制御範囲αの下限値Vlow(EV)に制御するとともに、必要に応じてシステム電圧Vhを電圧制御範囲α内で上昇させる。
 S110にて、ECU8000は、EV走行制御中において、運転者によってHVスイッチ17がオンされたか否か(HV要求信号Rhvを受信したか否か)を判断する。HVスイッチ17がオンされると(S110にてYES)、処理はS112に移される。そうでないと(S110にてNO)、この処理は終了する。
 S112にて、ECU8000は、強制HV走行制御を実行する。なお、強制HV走行制御時においては、HV要求信号Rhvが受信された時点の切替信号SW2がそのまま維持される。
 S114にて、ECU8000は、第1スレーブ電源および第2スレーブ電源の双方を切り離す切替信号SW2を生成して第2切替装置18-2に出力する。これにより、各インバータにマスタ電源のみが接続された状態となる。
 S116にて、ECU8000は、HV走行制御を実行する。なお、HV走行制御時には、システム電圧Vhが上述の電圧制御範囲βに含まれるように、第1コンバータ12-1が制御される。より具体的には、ECU8000は、システム電圧Vhを電圧制御範囲βの下限値Vlow(HV)に制御するとともに、必要に応じてシステム電圧Vhを電圧制御範囲β内で上昇させる。
 以上のような構造およびフローチャートに基づく、本実施例に係る制御装置であるECU8000の制御動作について説明する。
 図5は、各電源のSOCを上限値(たとえば80パーセント程度の値)まで充電した後に車両を継続走行させた場合の、各電源のSOCと、実行される走行制御と、各電源の接続状態とを示すタイミングチャートである。
 車両100の走行時(イグニッションオン時)においては、システムリレーRY1はオンに維持されるため、マスダ電源は第1コンバータ12-1経由で各インバータに常時接続されている。
 走行開始直後は、SOCs1がしきい値を超えているため(S100にてYES)、第2コンバータ12-2に第1スレーブ電源が接続された状態(S102)でEV走行制御が実行される(S108)。したがって、SOCs1がしきい値まで低下する時刻t1までは、マスタ電源と第1スレーブ電源との電力でEV走行制御が行なわれる。
 時刻t1にてSOCs1がしきい値まで低下すると(S100にてNO)、SOCs2がしきい値を超えているため(S104にてYES)、第1スレーブ電源が切り離されるとともに、第2コンバータ12-2に第2スレーブ電源が接続されて(S106)、EV走行制御が継続して実行される(S108)。SOCs2がしきい値まで低下する時刻t2までは、マスタ電源と第2スレーブ電源との電力でEV走行制御が行なわれる。
 なお、図5に示すように、EV走行制御中は、第2スレーブ電源のSOCs2が下限値となるタイミングで、マスタ電源のSOCmも下限値となるように、マスタ電源の充放電が制御される。
 このように、各電源のSOCがそれぞれ下限値になるまでEV走行制御が行なわれる。ここで、各電源に備えられる電池セル数の合計は、必要セル総数N個である。したがって、所定の目標走行可能距離をEV走行で実現することができる。
 なお、EV走行制御時の電圧制御範囲αの下限値Vlow(EV)は、マスタ電源の出力電圧Vm、第1スレーブ電源の出力電圧Vs1、および第2スレーブ電源の出力電圧Vs2よりも高い。そのため、図5の矢印に示すように、EV走行制御時においては、Vm、Vs1およびVs2がそれぞれ第1コンバータ12-1および第2コンバータ12-2によって少なくとも下限値Vlow(EV)まで昇圧される。
 時刻t2にてSOCs2がしきい値まで低下すると(S104にてNO)、第1スレーブ電源および第2スレーブ電源の双方が第2コンバータ12-2から切り離される(S114)とともに、EV走行制御からHV走行制御に切り替えられる(S116)。したがって、時刻t2以降は、マスタ電源のみでHV走行制御が行なわれる。
 ここで、たとえば、必要セル総数N個を各電源に均等に分配した場合、マスタ電源の出力電圧は、図5に示すVaveとなり、HV走行制御時の電圧制御範囲βの下限値Vlow(HV)を超えてしまう。そのため、HV走行制御時のシステム電圧Vhが不必要に高くなってしまい、最適な電圧設定とならない。
 そこで、本実施例においては、HV走行制御時の電源をマスタ電源のみとし、必要セル総数N個のうち、マスタ電源の出力電圧VmをHV走行制御時の電圧制御範囲βの下限値Vlow(HV)にするNm個の電池セルをマスタ電源に分配し、残余の(N-Nm)個の電池セルを、第1スレーブ電源と、第2スレーブ電源とに均等に分配する。
 これにより、HV走行制御時のシステム電圧Vhが、第1コンバータ12-1による昇圧動作を行なうことなく下限値Vlow(HV)となる。そのため、昇圧による電力損失を低減することができる。さらに、必要セル総数N個を各電源で均等に分配した場合に比べて、システム電圧Vhが不必要に高くなることを抑制して消費電力の低減を図ることができる。
 なお、本実施例においては、EV走行制御中において、運転者によってHVスイッチ17がオンされると(S110にてYES)、強制HV走行制御を実行される(S112)。強制HV走行制御時においては、各電源との接続状態は、HVスイッチ17がオンされた時点(HV要求信号Rhvが受信された時点)の状態に維持される。したがって、メイン電源およびスレーブ電源のSOCを所定の範囲に維持した走行が可能となる。このような走行は、たとえば、目的地到着後に各電源の電力が必要となる場合など、何らかの事情で運転者が電力を維持しておきたい場合に有効である。
 以上のように、本実施例に係る制御装置によれば、HV走行制御時にMGに接続される電源をマスタ電源のみとし、必要セル総数のうち、マスタ電源の出力電圧をHV走行制御時の電圧制御範囲の下限値にする電池セル数をマスタ電源に分配し、残余の電池セル数を、残りのスレーブ電源に均等に分配する。これにより、EV走行時に必要な電池容量を確保しつつ、HV走行制御時のシステム電圧を最適な電圧に設定することができる。
 なお、本実施例においては、2つのスレーブ電源を備える場合について説明したが、本発明は、スレーブ電源を3つ以上備えるハイブリッド車両にも適用可能である。
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (10)

  1.  内燃機関(36)および回転電機(32-2)の少なくともいずれかを動力源とするハイブリッド車両の制御装置であって、
     前記回転電機(32-2)に接続され、前記回転電機(32-2)と電力を授受可能な主電源(10-1)と、
     前記回転電機(32-2)と電力を授受可能な複数の副電源(10-2、10-3)と、
     前記複数の副電源(10-2、10-3)と前記回転電機(32-2)との間に設けられ、与えられる指令に従って前記複数の副電源(10-2、10-3)のいずれか1つを前記回転電機(32-2)に接続可能に構成された切替装置(18-2)と、
     前記切替装置(18-2)を制御する切替制御部(8230)と、
     前記内燃機関(36)および前記回転電機(32-2)の少なくともいずれかの動力で前記ハイブリッド車両を走行させるハイブリッド走行制御、および前記内燃機関(36)を用いずに前記回転電機(32-2)の動力で前記ハイブリッド車両を走行させる電気走行制御のいずれかの走行制御を実行する走行制御部(8210)とを含み、
     前記切替制御部(8230)は、前記ハイブリッド走行制御中は、前記電気走行制御中よりも、前記回転電機(32-2)に接続される前記複数の副電源(10-2、10-3)の数が少なくなるように、前記切替装置を制御する、ハイブリッド車両の制御装置。
  2.  前記切替制御部(8230)は、前記電気走行制御中は、前記複数の副電源(10-2、10-3)のいずれか1つを前記回転電気に接続し、前記ハイブリッド走行制御中は、前記複数の副電源(10-2、10-3)を前記回転電機(32-2)から切り離す、請求の範囲第1項に記載のハイブリッド車両の制御装置。
  3.  前記切替制御部(8230)は、前記電気走行制御中である場合に、前記複数の副電源(10-2、10-3)のうち前記回転電機(32-2)に接続された第1の副電源(10-2)の充電状態が所定状態よりも低下したとき、前記第1の副電源(10-2)を前記回転電機(32-2)から切り離して他の第2の副電源(10-3)を前記回転電機(32-2)に接続する、請求の範囲第1または2項に記載のハイブリッド車両の制御装置。
  4.  前記走行制御部(8210)は、前記複数の副電源(10-2、10-3)のすべての充電状態が前記所定状態よりも低下した場合、前記電気走行制御に代えて前記ハイブリッド走行制御を実行する、請求の範囲第3項に記載のハイブリッド車両の制御装置。
  5.  前記制御装置は、前記ハイブリッド走行制御での走行を要求していることを示すハイブリッド走行走行要求を運転者が入力する入力部(17)をさらに含み、
     前記走行制御部(8210)は、前記電気走行制御中に前記ハイブリッド走行要求が入力された場合、前記電気走行制御を停止して前記ハイブリッド走行制御を強制的に実行し、
     前記切替制御部(8230)は、前記ハイブリッド走行要求が入力されたことに応じて前記ハイブリッド走行制御が強制的に実行される場合は、前記ハイブリッド走行要求が入力された時点における前記回転電機(32-2)と前記複数の副電源(10-2、10-3)のいずれか1つとの接続状態を維持する、請求の範囲第1項に記載のハイブリッド車両の制御装置。
  6.  前記主電源(10-1)の出力電圧は、前記複数の副電源(10-2、10-3)のいずれの出力電圧よりも低い値に設定される、請求の範囲第1項に記載のハイブリッド車両の制御装置。
  7.  前記制御装置は、
     前記回転電機(32-2)と前記主電源(10-1)との間に設けられ、前記主電源(10-1)の出力電圧を前記回転電機(32-2)の制御電圧範囲に含まれる値に変換して前記回転電機(32-2)に出力する第1のコンバータ(12-1)と、
     前記回転電機(32-2)と前記複数の副電源(10-2、10-3)との間に設けられ、前記複数の副電源(10-2、10-3)の出力電圧を前記回転電機(32-2)の制御電圧範囲に含まれる値に変換して前記回転電機(32-2)に出力する第2のコンバータ(12-2)とをさらに含み、
     前記ハイブリッド走行制御時における前記回転電機(32-2)の最適制御電圧範囲の第1の下限値は、前記電気走行制御時における前記回転電機(32-2)の制御電圧範囲の第2の下限値よりも低く、
     前記主電源(10-1)の出力電圧は、前記第1の下限値に設定され、
     前記複数の副電源(10-2、10-3)の出力電圧は、前記第1の下限値と前記第2の下限値の間の値に設定される、請求の範囲第1項に記載のハイブリッド車両の制御装置。
  8.  前記主電源(10-1)および前記複数の副電源(10-2、10-3)の各々の内部には、直列に接続された複数の電池セルが備えられ、
     前記主電源(10-1)および前記複数の副電源(10-2、10-3)の各々は、内部に備えられた電池セルの数に応じた出力電圧を出力し、
     前記主電源(10-1)には、前記電気走行制御時の走行可能距離を所定の目標距離以上に確保するために必要な電池セルの総数のうち、前記主電源(10-1)の出力電圧が前記第1の下限値となる数の電池セルが備えられ、
     前記複数の副電源(10-2、10-3)には、前記必要な電池セルの総数のうち、前記主電源(10-1)に備えられた数以外の残余の数の電池セルが前記複数の副電源(10-2、10-3)の各々に均等に備えられる、請求の範囲第1項に記載のハイブリッド車両の制御装置。
  9.  前記ハイブリッド車両は、車両外部の電源(19)からの電力を前記主電源(10-1)および前記複数の副電源(10-2、10-3)に充電可能なプラグインハイブリッド車両である、請求の範囲第1項に記載のハイブリッド車両の制御装置。
  10.  内燃機関(36)および回転電機(32-2)の少なくともいずれかを動力源とするハイブリッド車両の制御装置(8000)が行なう制御方法であって、前記制御装置(8000)には、前記回転電機(32-2)に接続され、前記回転電機(32-2)と電力を授受可能な主電源(10-1)と、前記回転電機(32-2)と電力を授受可能な複数の副電源(10-2、10-3)と、前記複数の副電源(10-2、10-3)と前記回転電機(32-2)との間に設けられ、与えられる指令に従って前記複数の副電源(10-2、10-3)のいずれか1つを前記回転電機(32-2)に接続可能に構成された切替装置(18-2)とが備えられ、
     前記制御方法は、
     前記内燃機関(36)および前記回転電機(32-2)の少なくともいずれかの動力で前記ハイブリッド車両を走行させるハイブリッド走行制御、および前記内燃機関(36)を用いずに前記回転電機(32-2)の動力で前記ハイブリッド車両を走行させる電気走行制御のいずれかの走行制御を実行するステップと、
     前記ハイブリッド走行制御中は、前記電気走行制御中よりも、前記回転電機(32-2)に接続される前記複数の副電源(10-2、10-3)の数が少なくなるように、前記切替装置を制御するステップとを含む、ハイブリッド車両の制御方法。
PCT/JP2008/068539 2008-10-14 2008-10-14 ハイブリッド車両の制御装置および制御方法 WO2010044132A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/991,959 US8718847B2 (en) 2008-10-14 2008-10-14 Control apparatus and control method for hybrid vehicle
CN2008801315251A CN102186710B (zh) 2008-10-14 2008-10-14 混合动力车辆的控制装置和控制方法
JP2010533733A JP4788842B2 (ja) 2008-10-14 2008-10-14 ハイブリッド車両の制御装置および制御方法
PCT/JP2008/068539 WO2010044132A1 (ja) 2008-10-14 2008-10-14 ハイブリッド車両の制御装置および制御方法
EP08877392.4A EP2351676B1 (en) 2008-10-14 2008-10-14 Hybrid vehicle control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/068539 WO2010044132A1 (ja) 2008-10-14 2008-10-14 ハイブリッド車両の制御装置および制御方法

Publications (1)

Publication Number Publication Date
WO2010044132A1 true WO2010044132A1 (ja) 2010-04-22

Family

ID=42106310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/068539 WO2010044132A1 (ja) 2008-10-14 2008-10-14 ハイブリッド車両の制御装置および制御方法

Country Status (5)

Country Link
US (1) US8718847B2 (ja)
EP (1) EP2351676B1 (ja)
JP (1) JP4788842B2 (ja)
CN (1) CN102186710B (ja)
WO (1) WO2010044132A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013150448A (ja) * 2012-01-19 2013-08-01 Toyota Motor Corp 車両および車両の制御方法
JP2013150447A (ja) * 2012-01-19 2013-08-01 Toyota Motor Corp 車両および車両の制御方法
EP2671772A4 (en) * 2011-02-03 2018-05-02 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2353922A4 (en) 2008-10-31 2017-03-15 Toyota Jidosha Kabushiki Kaisha Electromotive vehicle power supply system, electromotive vehicle, and electromotive vehicle control method
US8571733B2 (en) * 2008-10-31 2013-10-29 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling the same
JP5152408B2 (ja) 2009-06-10 2013-02-27 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US8760115B2 (en) * 2009-08-20 2014-06-24 GM Global Technology Operations LLC Method for charging a plug-in electric vehicle
WO2011126076A1 (ja) * 2010-04-09 2011-10-13 大日本印刷株式会社 薄膜トランジスタ基板
JP5998454B2 (ja) * 2011-11-07 2016-09-28 ソニー株式会社 制御装置、制御方法および制御システム
BR112014010959B1 (pt) * 2011-11-08 2020-10-20 Volvo Lastvagnar Ab método e disposição em um veículo híbrido
JP5772784B2 (ja) * 2012-10-19 2015-09-02 トヨタ自動車株式会社 車両、電源システムおよび電源システムの制御方法
US9434378B2 (en) 2014-12-23 2016-09-06 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving the vehicle feel, fuel efficiency and performance of a hybrid vehicle
US10020759B2 (en) * 2015-08-04 2018-07-10 The Boeing Company Parallel modular converter architecture for efficient ground electric vehicles
JP6348929B2 (ja) * 2016-05-23 2018-06-27 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
CN107554345A (zh) * 2017-09-18 2018-01-09 江西爱驰亿维实业有限公司 双源电池包、管理方法和系统以及电动汽车
US11040628B2 (en) * 2018-02-05 2021-06-22 Hitachi, Ltd. Method and system for controlling discharge ratio between primary and secondary battery in a vehicle
JP6922820B2 (ja) * 2018-04-13 2021-08-18 トヨタ自動車株式会社 電源制御装置
CN109720236A (zh) * 2018-12-29 2019-05-07 凯博易控驱动(苏州)股份有限公司 双电机动力电源构架、控制系统和控制器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251714A (ja) * 1995-03-10 1996-09-27 Mitsubishi Motors Corp 電気自動車の電源装置
JP2003209969A (ja) 2001-12-06 2003-07-25 General Motors Corp <Gm> 電動モータ電源管理システム
JP2007062639A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車
JP2007098981A (ja) * 2005-09-30 2007-04-19 Toyota Motor Corp 車両用電源装置
JP2007244093A (ja) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd 車両用電力供給装置の電力供給制御方法、及び車両用電力供給装置
JP2007269249A (ja) * 2006-03-31 2007-10-18 Daihatsu Motor Co Ltd 車両の走行動力切り替え制御方法
JP2007335151A (ja) 2006-06-13 2007-12-27 Toyota Motor Corp 燃料電池車両の電力制御装置
JP2008109840A (ja) 2006-09-28 2008-05-08 Toyota Motor Corp 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140202A (ja) * 1994-11-07 1996-05-31 Hitachi Ltd 電気車用保護装置及び保護方法
JP3682685B2 (ja) * 1999-03-10 2005-08-10 スズキ株式会社 車両推進装置の制御装置
JP2001065437A (ja) * 1999-08-25 2001-03-16 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP4479919B2 (ja) * 2006-03-29 2010-06-09 株式会社デンソー 電気自動車の制御装置
JP4501893B2 (ja) * 2006-04-24 2010-07-14 トヨタ自動車株式会社 電源システムおよび車両
CN2936821Y (zh) * 2006-08-29 2007-08-22 比亚迪股份有限公司 一种混合动力驱动系统
RU2412514C2 (ru) * 2006-09-29 2011-02-20 Тойота Дзидося Кабусики Кайся Устройство источника питания и транспортное средство с устройством источника питания
US8234025B2 (en) * 2006-11-28 2012-07-31 GM Global Technology Operations LLC Control system for a hybrid powertrain system
JP4513812B2 (ja) * 2007-01-04 2010-07-28 トヨタ自動車株式会社 車両の電源装置および車両
JP4569603B2 (ja) * 2007-01-04 2010-10-27 トヨタ自動車株式会社 電源システムおよびそれを備える車両、ならびにその制御方法
CN201128379Y (zh) * 2007-11-23 2008-10-08 吉林市北华航天科技有限公司 车用太阳能-超级电容混合动力电源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251714A (ja) * 1995-03-10 1996-09-27 Mitsubishi Motors Corp 電気自動車の電源装置
JP2003209969A (ja) 2001-12-06 2003-07-25 General Motors Corp <Gm> 電動モータ電源管理システム
JP2007062639A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp ハイブリッド自動車
JP2007098981A (ja) * 2005-09-30 2007-04-19 Toyota Motor Corp 車両用電源装置
JP2007244093A (ja) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd 車両用電力供給装置の電力供給制御方法、及び車両用電力供給装置
JP2007269249A (ja) * 2006-03-31 2007-10-18 Daihatsu Motor Co Ltd 車両の走行動力切り替え制御方法
JP2007335151A (ja) 2006-06-13 2007-12-27 Toyota Motor Corp 燃料電池車両の電力制御装置
JP2008109840A (ja) 2006-09-28 2008-05-08 Toyota Motor Corp 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351676A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671772A4 (en) * 2011-02-03 2018-05-02 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
EP3460994A1 (en) * 2011-02-03 2019-03-27 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP2013150448A (ja) * 2012-01-19 2013-08-01 Toyota Motor Corp 車両および車両の制御方法
JP2013150447A (ja) * 2012-01-19 2013-08-01 Toyota Motor Corp 車両および車両の制御方法
US8975839B2 (en) 2012-01-19 2015-03-10 Toyota Jidosha Kabushiki Kaisha Vehicle, and control method for vehicle

Also Published As

Publication number Publication date
JPWO2010044132A1 (ja) 2012-03-08
EP2351676A4 (en) 2018-01-24
US8718847B2 (en) 2014-05-06
CN102186710A (zh) 2011-09-14
US20110066311A1 (en) 2011-03-17
CN102186710B (zh) 2013-11-20
JP4788842B2 (ja) 2011-10-05
EP2351676B1 (en) 2021-12-22
EP2351676A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4788842B2 (ja) ハイブリッド車両の制御装置および制御方法
US8742718B2 (en) Charging apparatus for vehicle
EP2353920B1 (en) Electrically driven vehicle and electrically driven vehicle control method
US8594873B2 (en) Power supply system for electric powered vehicle and control method thereof
JP5621845B2 (ja) 車両用制御装置および車両用制御方法
US8502412B2 (en) Power supply system for vehicle and electrically-powered vehicle having the power supply system
WO2010050038A1 (ja) 電動車両の電源システムおよびその制御方法
WO2010050044A1 (ja) 電動車両の電源システムおよびその制御方法
WO2010143277A1 (ja) 電動車両の電源システムおよびその制御方法
WO2010143280A1 (ja) 電動車両および電動車両の制御方法
WO2010128550A1 (ja) 電源システムおよびそれを備える車両
JP5245780B2 (ja) 車両
EP2403103B1 (en) Control apparatus and method for vehicle
WO2010050040A1 (ja) 電動車両の電源システムおよびその制御方法
US20110068740A1 (en) Power supply system for vehicle, electric vehicle having the same, and method of controlling power supply system for vehicle
JP4569696B2 (ja) 電動車両およびその制御方法
EP2353921B1 (en) Vehicle control device and control method
WO2008133154A1 (ja) 電気機器および電気機器の制御方法
JP2010115050A (ja) 車両の電源システム
US10569656B2 (en) Regenerative control device
JP2010089719A (ja) ハイブリッド車両の電源システム
JP6665582B2 (ja) ハイブリッド車両
JP2011223719A (ja) 電源装置
WO2010089888A1 (ja) 電源システム
JP2023067409A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131525.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877392

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12991959

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010533733

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008877392

Country of ref document: EP