WO2010043478A2 - Sensoreinrichtung zum erfassen der drehlage eines rotierenden bauteils - Google Patents

Sensoreinrichtung zum erfassen der drehlage eines rotierenden bauteils Download PDF

Info

Publication number
WO2010043478A2
WO2010043478A2 PCT/EP2009/062359 EP2009062359W WO2010043478A2 WO 2010043478 A2 WO2010043478 A2 WO 2010043478A2 EP 2009062359 W EP2009062359 W EP 2009062359W WO 2010043478 A2 WO2010043478 A2 WO 2010043478A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
flux
flux guide
magnet
transmitter magnet
Prior art date
Application number
PCT/EP2009/062359
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2010043478A3 (de
Inventor
Martin Heyder
Torsten Wilharm
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2011531431A priority Critical patent/JP2012506034A/ja
Priority to EP09783355A priority patent/EP2338031A2/de
Priority to CN200980141224.1A priority patent/CN102187181B/zh
Publication of WO2010043478A2 publication Critical patent/WO2010043478A2/de
Publication of WO2010043478A3 publication Critical patent/WO2010043478A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders

Definitions

  • the invention relates to a sensor device for detecting the rotational position of a rotating component according to the preamble of claim 1.
  • an electric motor which has a stator and a rotatably mounted rotor, wherein the rotational position of the rotor is detected by means of a sensor device.
  • the sensor device is formed by a transmitter magnet rotating with the rotor and a Hall sensor arranged on the stator, which detects changes in the magnetic flux density which occur when the rotor rotates.
  • a flux guide of ferromagnetic material is arranged on the rotor adjacent to the transmitter magnet in such a way that the magnetic flux of the transmitter magnet is directed in the direction of the Hall sensor, which is arranged in close proximity to the flux on the stator. In this way, the magnetic flux density can be increased directly at the location of the Hall sensor, so that the Hall sensor provides a better measurement signal.
  • the flux guide must extend in the direction of both poles of the transmitter magnet to produce a magnetic return flow. Result from this constructive restrictions in the design of the sensor device.
  • the invention is based on the object, a sensor device for detecting the rotational position of a rotating component with simple constructive measures in such a way that a measurement signal of high quality at the same time compact dimensions of the device is generated.
  • the sensor device according to the invention is particularly suitable for applications in electric motors, preferably in electric motors for auxiliary equipment in motor vehicles such as a water pump in the vehicle cooling circuit, a drive motor in windscreen wipers, actuators for electrically actuated vehicle components or servomotors in steering devices with electric steering assistance.
  • electric motors preferably in electric motors for auxiliary equipment in motor vehicles such as a water pump in the vehicle cooling circuit, a drive motor in windscreen wipers, actuators for electrically actuated vehicle components or servomotors in steering devices with electric steering assistance.
  • an application in electric motors of machine tools especially in hand tool machines into consideration. But it is also possible to use the
  • Sensor device in motor vehicles or in machine tools outside of electric motors, for example on waves such. a steering shaft or a tool spindle to determine the angular position of the shaft can.
  • the sensor device comprises an annular encoder magnet, which is axially magnetized with two poles, and two flux guide elements enclosing the annular encoder magnets, of which a flux guide element has at least one flux guide claw extending axially on the outer circumference of the transmitter magnet whose free end face lies at a distance from the second flux guide element. Due to the ferromagnetic or If necessary, soft magnetic material of the flux-conducting elements they are able to direct the magnetic field emanating from the transmitter magnet in the direction of the Hall sensor, so that at the location of the Hall sensor, a higher flux density of the magnetic field than without such flux guides can be achieved.
  • the geometric design of the flux guiding elements according to the invention with at least one flux guide claw arranged on the outer circumference ensures that, despite the simply executed axial magnetization of the transmitter magnet, when the magnet is rotating, a changing magnetic flux density occurs at the location of the registering Hall sensor.
  • This design makes it possible to dispense with relatively expensive, multi-pole magnetized encoder magnets and instead a simple, annular design
  • encoder magnet which is provided only with an axial magnetization, which extends over the entire circumference of the encoder magnet. Changes in the magnetic field are achieved via the at least one flux guide claw on the outer circumference of the transmitter magnet. This change is registered in the circulation of the encoder magnet of the Hall sensor.
  • Magnetic field change in the transition from the first to the second flux guide can be taken.
  • the flux guide claw extends at least substantially over the axial width of the transmitter magnet on its outer circumference.
  • the encoder magnet in combination with a disk-shaped base body, which rests axially on an end face of the encoder magnet, results in the encoder magnet axially and partially enclosing the outer circumference geometric configuration of the flux guide. Since the magnetic field lines of the axially magnetized encoder magnet in the axial direction over the - A -
  • a bundling of the magnetic field lines is achieved by the arrangement of the Flussleitklaue in the axial direction on the outer circumference.
  • the transmitter magnet is bordered and thus protected by at least one axial end side, which is also achieved in a space-saving manner, since the main body of the flux-conducting element extends parallel to the axial end side of the transmitter magnet and the flux-conducting claw extends parallel to the outside in the axial direction, then the outer dimensions of the transmitter magnet are only slightly enlarged by the flux-guiding elements.
  • the course of the magnetic flux density is influenced via the air gap between the adjoining sections of the flux guide elements.
  • the section of the second flux guide element in the section adjacent to the flux guide claw of the first flux guide element extends only in a plane which coincides with the end face of the transmitter magnet or is arranged slightly offset parallel thereto.
  • This embodiment can be realized structurally simple, since the second flux guide is formed in this adjacent section without Flußleitklaue, so that the Flussleitklaue the first Flußleitelements directly adjacent to the disc or annular, flat or plate-shaped base body of the second flux guide adjacent to the second axial end face of the ring magnet is applied.
  • the second flux guide radially projects beyond the outer circumference of the transmitter magnet in this area, so that the air gap between the first flux guide in the region of the flux guide claw and the second flux guide is radially spaced from the outer circumference of the transmitter magnet.
  • the second flux-conducting element also has at least one flux-conducting claw which extends in the axial direction on the outer circumference of the transmitter magnet and whose free end side is at a distance from the first one Fluxing element is located.
  • the flux guide elements also an air gap, so that the magnetic field lines extend not only in the axial direction between the first Flußleitklaue and the adjacent portion of the second flux guide, but also in the circumferential direction of the encoder magnet between the first and second Flußleitklaue. Since each flux-conducting element is connected in each case to one pole of the transmitter magnet, the flux-conducting claws also assume a corresponding magnetization, so that when the flux-conducting claws are arranged adjacent to one another in the circumferential direction of the transmitter magnet, corresponding field lines also run in this direction.
  • a plurality of flux guide claws distributed on the circumference are arranged on the first flux guide element and expediently also on the second flux guide element.
  • the flux guide claws can be produced in a simple manner by designing a star-shaped base plate made of ferromagnetic or soft magnetic material, which forms the starting material for the flux guide element, by reshaping so that the radially projecting flux guide claws are bent by 90 ° relative to the main body.
  • the transmitter magnet and the two flux guide elements are arranged rotationally fixed on the rotating component whose rotational position is to be determined by means of the sensor device.
  • the Hall sensor is stationary. During the rotation of the component, the flux guide elements move past the stationary Hall sensor; During the relative movement between the rotating component and the stationary Hall sensor, the magnetic field changes are registered by the Hall sensor.
  • the Hall sensor is firmly connected to the rotating component and the encoder magnet is held stationary, including the flux guide, so that the Hall sensor is moved past the stationarily positioned transmitter magnet over.
  • 1 is a perspective view of one of two complementarily trained to each other formed flux guide elements encoder magnets as part of a sensor device for detecting the
  • Fig. 2 is a section through the encoder magnet.
  • Sensor device 1 an annular encoder magnet 2, which is axially magnetized, which is shown in Fig. 2 with "N" for North Pole and “S” for South Pole.
  • the donor magnet 2 is held on a non-magnetic centering ring 3, via which the donor magnet 2 rotatably seated on a rotating component, for example, on the armature shaft of a rotor in one Electric motor. In operation, the component runs around the axis of rotation 6, which at the same time forms the axis of rotation of the encoder magnet 2.
  • the transmitter magnet 2 is bordered by two identically constructed flux guide elements 4 and 5, which consist of a ferromagnetic or a soft magnetic material and have the function of directing the magnetic field generated by the transmitter magnet in a desired direction or to guide.
  • two flux guide elements 4 and 5 seen over the circumference of the encoder magnet 2, an uneven
  • Magnetic field generated magnetic flux density differences from a Hall sensor 7 (Fig. 2), which is part of the sensor device 1, are detected.
  • the magnetic flux density unevenly distributed over the circumference by means of the flux guide elements 4 and 5 is registered by the Hall sensor 7, each flux density change generating a corresponding signal in the Hall sensor 7. In this way, the current rotational position of the encoder magnet 2 and thus also of the rotating component can be detected.
  • Each flux guide 4 or 5 consists of a disc-shaped base 4a and 5a and flux guide 4b and 5b, which are angled relative to the base body by 90 °.
  • the main body 4a, 5a is disc-shaped or ring-shaped and abuts against the axial end face of the encoder magnet 2.
  • the main body 4a of the first flux-conducting element 4 is located at the north pole, the main body 5a of the second flux-conducting element 5 at the south pole of the transmitter magnet 2.
  • the flux-conducting claws 4b and 5b of the two flux-conducting elements 4 and 5 are bent over 90 ° relative to the respective base body 4a or 5a are, are the Flussleitklauen on the outer circumference of the encoder magnet 2 and extend in the axial direction.
  • the flux guide claws 4b and 5b are designed so that they extend at least approximately over the axial extent of the encoder magnet on the outer circumference of the encoder magnet 2.
  • a plurality of uniformly distributed Flußleitklauen 4b and 5b are provided on the flux guide over the circumference, wherein the distance between adjacent Flussleitklauen 4b and 5b is dimensioned in such a way that a Flußleitklaue the other flux guide fits into the resulting gap.
  • a narrow air gap between each immediately adjacent Flussleitklauen 4b and 5b of different Flußleitieri is in each case a narrow air gap, as well in the axial direction between the end face of a Flussleitklaue 4b and 5b to the main body 5a and 4a of the respective other flux guide.
  • the main body of a flux-conducting element projects radially beyond the outer circumference of the transmitter magnet.
  • each flux-conducting element 4 or 5 has a total of nine flux-conducting claws 4b and 5b.
  • the Hall sensor 7 is preferably arranged at a radial distance from the outer circumference of the transmitter magnet or the flux guide claws. In principle, however, is also possible, as also shown in Fig. 2, a positioning of the Hall sensor 7 adjacent to one of the end faces of the
  • Encoder magnets either as shown within the radial outer circumference of the transmitter magnet or outside the outer circumference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
PCT/EP2009/062359 2008-10-16 2009-09-24 Sensoreinrichtung zum erfassen der drehlage eines rotierenden bauteils WO2010043478A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011531431A JP2012506034A (ja) 2008-10-16 2009-09-24 回転構成部材の回転位置を検出するためのセンサ装置
EP09783355A EP2338031A2 (de) 2008-10-16 2009-09-24 Sensoreinrichtung zum erfassen der drehlage eines rotierenden bauteils
CN200980141224.1A CN102187181B (zh) 2008-10-16 2009-09-24 用于检测旋转部件的旋转位置的传感装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008042912.0 2008-10-16
DE102008042912A DE102008042912A1 (de) 2008-10-16 2008-10-16 Sensoreinrichtung zum Erfassen der Drehlage eines rotierenden Bauteils

Publications (2)

Publication Number Publication Date
WO2010043478A2 true WO2010043478A2 (de) 2010-04-22
WO2010043478A3 WO2010043478A3 (de) 2011-01-27

Family

ID=42034702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/062359 WO2010043478A2 (de) 2008-10-16 2009-09-24 Sensoreinrichtung zum erfassen der drehlage eines rotierenden bauteils

Country Status (5)

Country Link
EP (1) EP2338031A2 (zh)
JP (1) JP2012506034A (zh)
CN (1) CN102187181B (zh)
DE (1) DE102008042912A1 (zh)
WO (1) WO2010043478A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801251A (zh) * 2011-05-23 2012-11-28 阿斯莫有限公司 旋转检测装置及电机
WO2015185262A1 (de) * 2014-06-05 2015-12-10 Robert Bosch Gmbh Magnetsensor für eine rotorwelle einer elektrischen maschine sowie elektrische maschine
US20210190055A1 (en) * 2019-12-19 2021-06-24 Contelec Ag Axial Piston Pump

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202634A1 (de) * 2012-02-21 2013-08-22 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln an einem rotierenden Bauteil in einem Fahrzeug
JP5656900B2 (ja) * 2012-03-27 2015-01-21 日立オートモティブシステムズ株式会社 回転角計測装置及びこの回転角計測装置を備えた回転機械
NL2008990C2 (nl) * 2012-06-12 2013-12-16 Mci Mirror Controls Int Nl Bv Verstelinrichting en werkwijze voor het verstellen van afsluitelementen.
DE102014213829A1 (de) * 2014-07-16 2016-01-21 Schaeffler Technologies AG & Co. KG Sensorsystem und Kolben-Zylinder-Anordnung
US10866123B2 (en) * 2016-06-10 2020-12-15 Harmonic Drive Systems Inc. Rotation detecting device and hollow actuator
EP3333646A1 (fr) * 2016-12-06 2018-06-13 ETA SA Manufacture Horlogère Suisse Objet portable comprenant une tige de commande rotative dont l'actionnement est détecté au moyen de deux capteurs inductifs
CN106975555A (zh) * 2017-04-26 2017-07-25 柳州市乾阳机电设备有限公司 粉碎机刀具
FR3088501B1 (fr) * 2018-11-08 2021-10-22 Valeo Equip Electr Moteur Dispositif de detection de la position angulaire d'un rotor d'une machine electrique tournante
DE102023000252A1 (de) 2023-01-27 2024-08-01 Mercedes-Benz Group AG Elektrische Maschine, insbesondere für ein Kraftfahrzeug, Verfahren zum Herstellen einer solchen elektrischen Maschine sowie Verfahren zum Betreiben einer solchen elektrischen Maschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523374A1 (de) * 1985-06-29 1987-01-08 Teves Gmbh Alfred Sensor fuer eine induktive geschwindigkeitsmesseinrichtung, insbesondere fuer radgeschwindigkeitsmessungen bei antiblockieranlagen
DE4442371A1 (de) * 1994-11-29 1996-05-30 Heidenhain Gmbh Dr Johannes Maßverkörperung
EP1223409A2 (en) * 2001-01-10 2002-07-17 Hitachi, Ltd. Non-contact position sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103790A (ja) * 1993-10-06 1995-04-18 Hotsukou Denshi Kk 磁気式センサ
JP3379235B2 (ja) * 1994-09-02 2003-02-24 日産自動車株式会社 磁石ロータ
JP2002262515A (ja) * 2001-03-02 2002-09-13 Mitsuba Corp 減速機構付き電動モータ
FR2865273B1 (fr) * 2004-01-21 2006-03-03 Siemens Vdo Automotive Dispositif pour determiner la position angulaire d'un organe rotatif
DE102005004322A1 (de) 2005-01-31 2006-08-03 Robert Bosch Gmbh Rotorlageerkennung mittels Hallsensor und Flussleitelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523374A1 (de) * 1985-06-29 1987-01-08 Teves Gmbh Alfred Sensor fuer eine induktive geschwindigkeitsmesseinrichtung, insbesondere fuer radgeschwindigkeitsmessungen bei antiblockieranlagen
DE4442371A1 (de) * 1994-11-29 1996-05-30 Heidenhain Gmbh Dr Johannes Maßverkörperung
EP1223409A2 (en) * 2001-01-10 2002-07-17 Hitachi, Ltd. Non-contact position sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2338031A2 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801251A (zh) * 2011-05-23 2012-11-28 阿斯莫有限公司 旋转检测装置及电机
CN102801251B (zh) * 2011-05-23 2016-04-27 阿斯莫有限公司 旋转检测装置及电机
WO2015185262A1 (de) * 2014-06-05 2015-12-10 Robert Bosch Gmbh Magnetsensor für eine rotorwelle einer elektrischen maschine sowie elektrische maschine
US20210190055A1 (en) * 2019-12-19 2021-06-24 Contelec Ag Axial Piston Pump
US11692534B2 (en) * 2019-12-19 2023-07-04 Contelec Ag Axial piston pump
US20230258165A1 (en) * 2019-12-19 2023-08-17 Contelec Ag Axial Piston Pump
US12092091B2 (en) 2019-12-19 2024-09-17 Contelec Ag Axial piston pump

Also Published As

Publication number Publication date
CN102187181B (zh) 2014-03-26
DE102008042912A1 (de) 2010-04-22
JP2012506034A (ja) 2012-03-08
CN102187181A (zh) 2011-09-14
EP2338031A2 (de) 2011-06-29
WO2010043478A3 (de) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2010043478A2 (de) Sensoreinrichtung zum erfassen der drehlage eines rotierenden bauteils
EP1670121B2 (de) Elektrische Maschine, insbesondere bürstenloser Gleichstrommotor
EP3073622B1 (de) Elektronisch kommutierter elektromotor mit direktabtastung des rotormagnetfelds
DE3710658A1 (de) Elektronisch kommutierter, kollektorloser gleichstrommotor
DE102008060262B4 (de) Sensorsystem für elektrische Maschinen mit mehrpoligen Sensormagneten und mindestens einem Hall-IC
EP1456935B1 (de) Bürstenloser elektro-motor sowie instrument für eine medizinische vorrichtung mit einem solchen motor
EP2047585B1 (de) Synchronmotor, geberloses motorsystem, sowie ein verfahren zum betreiben eines geberlosen motorsystems mit einem synchronmotor
DE112007000289T5 (de) Elektrische Servolenkungsvorrichtung
EP2350594B1 (de) Sensoreinrichtung zur drehmomentmessung in lenksystemen
DE19523789C2 (de) Bürstenloser Elektromotor
EP3400423B1 (de) Abschirmsystem für magnetisches drehgeber-sensorsystem
DE102006059135A1 (de) Elektrische Maschine
WO2017118556A1 (de) Drehmomentsensorvorrichtung für ein kraftfahrzeug, elektrisches lenksystem sowie kraftfahrzeug, mit einer solchen drehmomentsensorvorrichtung
DE102006015392A1 (de) Antriebs- und Auswerteeinrichtung
DE102006032144A1 (de) Anordnung zur Erfassung der Rotorstellung in einem Elektromotor
DE4307337A1 (de) Elektronisch kommutierter Gleichstrommotor
DE2424761B2 (de) Vorrichtung zum fuehlen der drehgeschwindigkeit der raeder von fahrzeugen
DE102015201160B4 (de) Bürstenloser Gleichstrommotor
DE3942811A1 (de) Handrad mit taktiler rastung
WO2010003801A1 (de) Einrichtung zur erfassung eines rotierenden magnetfelds
DE102008042402A1 (de) Rotorlagesensorik in einem elektrischen Antriebsmotor
WO2015185262A1 (de) Magnetsensor für eine rotorwelle einer elektrischen maschine sowie elektrische maschine
DE4103561A1 (de) Drehstellungsgeber fuer die erfassung einer rotorposition
DE10152502A1 (de) Permanentmagneterregte elektrische Maschine
DE9303414U1 (de) Elektronisch kommutierter Gleichstrommotor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141224.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09783355

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009783355

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011531431

Country of ref document: JP