WO2010038779A1 - 金属材の溶接装置及び金属材の溶接方法 - Google Patents

金属材の溶接装置及び金属材の溶接方法 Download PDF

Info

Publication number
WO2010038779A1
WO2010038779A1 PCT/JP2009/067032 JP2009067032W WO2010038779A1 WO 2010038779 A1 WO2010038779 A1 WO 2010038779A1 JP 2009067032 W JP2009067032 W JP 2009067032W WO 2010038779 A1 WO2010038779 A1 WO 2010038779A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
metal material
welding
power source
electrodes
Prior art date
Application number
PCT/JP2009/067032
Other languages
English (en)
French (fr)
Inventor
隆彦 金井
宗久 八田
文昭 生田
一博 川嵜
栄三郎 中西
健 吉田
寿 長井
正夫 早川
孟彦 板垣
Original Assignee
高周波熱錬株式会社
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008255776A external-priority patent/JP5305194B2/ja
Priority claimed from JP2008255777A external-priority patent/JP5305195B2/ja
Application filed by 高周波熱錬株式会社, 独立行政法人物質・材料研究機構 filed Critical 高周波熱錬株式会社
Priority to CN2009801479472A priority Critical patent/CN102227283B/zh
Priority to US13/121,408 priority patent/US9079266B2/en
Priority to KR1020117009214A priority patent/KR101289370B1/ko
Priority to EP09817811.4A priority patent/EP2351628B1/en
Publication of WO2010038779A1 publication Critical patent/WO2010038779A1/ja
Priority to US14/738,364 priority patent/US10189112B2/en
Priority to US16/207,007 priority patent/US20190099829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/26Storage discharge welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/31Electrode holders and actuating devices therefor
    • B23K11/312Electrode holders and actuating devices therefor for several electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/08Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a metal material welding apparatus and a metal material welding method. More particularly, the present invention relates to a metal material welding apparatus and metal material welding, in which a nugget is formed on a work that is a metal material with power from a spot welding power source, and the work is heated with power from a high frequency power source. Regarding the method.
  • FIG. 24 is a cross-sectional view schematically showing spot welding between the steel plates 50.
  • spot welding between the steel plates 50 is performed by sandwiching the overlapping portion of the steel plates 50 with a pair of electrodes 52 and applying a predetermined force to the electrodes 52 in the direction of the arrows to press the steel plates 50 together.
  • a large current of kA order is applied to the electrode 52 while maintaining the pressurized state, and the crimped portion between the steel plates 50 is instantaneously melted by Joule heat generation to form a molten lump called a nugget 54 having a predetermined diameter.
  • a nugget 54 having a predetermined diameter
  • FIG. 25 is a plan view of a sample used in a tensile test for investigating the spot weld strength of a high-tensile steel plate, where (A) shows a sample of a lap joint and (B) shows a sample of a cross joint. .
  • A shows a sample of a lap joint
  • B shows a sample of a cross joint.
  • two rectangular steel plates 50 are overlapped at the ends in the longitudinal direction and spot welded at the ends.
  • the tensile strength of the lap joint increases as the material strength increases, but the peel strength of the cross joint does not increase easily as the material strength increases. It has been reported that it becomes difficult.
  • the reason why a stable tensile strength cannot be obtained with a peeling type load of the cross joint is that the stress concentration on the circumference of the nugget 54 is extremely high and the strength of the base material is high, It is considered that the increase in the surrounding restraining force occurs at the same time.
  • the composition of the carbon amount is set to a certain level or less so that the weld area does not become too hard. It is the current situation that is regulated in terms.
  • the use of a high-strength steel plate is a method that can efficiently reduce the weight of the vehicle body, and a high-strength steel plate that has improved both strength and ductility is desired. Further weight reduction can be expected by further improving the strength of the steel plate for vehicle bodies.
  • By improving the ductility of the steel plate for a vehicle body it is possible to ensure press formability and sufficient deformability at the time of a collision in a product state.
  • a steel plate for a vehicle body tends to decrease in ductility when the strength is increased. It is effective to increase the carbon content of the material to improve the strength and ductility of the steel plate for car bodies at the same time, but the spot welded area is extremely hard and brittle, making it difficult to obtain a stable and sufficient strength. .
  • Patent Document 1 discloses a spot welding apparatus including a spot welder and high-frequency induction heating means in order to improve the fatigue strength of a spot welded portion of a high-tensile steel plate.
  • the high-frequency induction heating means includes a heating coil that induction-heats a welded portion of a workpiece and a high-frequency power source that supplies high-frequency power to the heating coil.
  • the heating location is only a method with the center of the electrode as the apex, and the temperature profile is only a single one.
  • work is needed.
  • the periphery of the electrode of the spot welding apparatus is very narrow, it is difficult to separately install a new heating means. That is, the heating coil becomes larger than the electrode diameter of the spot welder. For this reason, there exists a subject that only the outer periphery of the nugget 54 which needs reheating most cannot be heated.
  • an object of the present invention is to provide a metal material welding apparatus that enables heat treatment such as tempering by partial temperature increase in spot welding.
  • Another object of the present invention is to provide a welding method for performing preheating of a metal material and heat treatment of a spot welded nugget outer peripheral region in a short time.
  • the metal material welding apparatus of the present invention sandwiches a metal material between a pair of electrodes and energizes the metal material while maintaining the pair of electrodes at the same position.
  • a metal material welding apparatus for heating different regions wherein the first heating means is connected to a pair of electrodes and heats a predetermined region by applying power of a first frequency to the metal material, and connected to the pair of electrodes.
  • the second heating means for applying power of the second frequency to the metal material to heat the area different from the predetermined area, and the energization for independently controlling the first heating means and the second heating means, respectively.
  • a control unit for controlling the first heating means and the second heating means, respectively.
  • the inside of the predetermined region of the metal material is heated by the first heating unit
  • the vicinity of the predetermined region of the metal material is heated by the second heating unit
  • the heating by the first heating unit and the second heating unit Heating by the heating means may be controlled independently by the energization control unit.
  • the first heating means is a heating means for heating the inside of the region where the axial cross section of the electrode is projected onto the metal material
  • the second heating means is an outline of the region where the axial cross section of the electrode is projected onto the metal material.
  • the heating by the first heating unit and the heating by the second heating unit may be independently controlled by the energization control unit.
  • the first frequency may be lower than the second frequency, and the circular interior may be welded by supplying power of the first frequency to the metal material.
  • the second frequency is higher than the first frequency, and when the power of the second frequency is applied to the metal material, the ring-shaped region is resistance-heated, or resistance heating and high-frequency induction heating are performed. Also good.
  • a metal material welding apparatus includes a pair of electrodes arranged so as to sandwich the metal material, a welding power source for supplying welding power to the pair of electrodes, and a pair of electrodes.
  • a high-frequency power source for supplying high-frequency power, a welding power source and a high-frequency power source are respectively connected in parallel to the pair of electrodes, and a current blocking inductance is connected between the welding power source and the pair of electrodes.
  • a current blocking capacitor is connected between the power source and the pair of electrodes, and the current blocking inductance prevents the high frequency current supplied from the high frequency power source to the pair of electrodes from flowing into the welding power source, thereby blocking the current.
  • the capacitor is characterized in that current supplied from the welding power source to the pair of electrodes is prevented from flowing into the high frequency power source side.
  • the current preventing inductance may be the stray inductance of the gun arm.
  • the power supply for spot welding connected via the current blocking inductance and the high frequency power supply connected to the pair of electrodes via the current blocking capacitor are provided.
  • a welding apparatus capable of supplying each power to the metal material is obtained.
  • a high frequency voltage can be applied through a pair of electrodes for spot welding, and the metal material can be heated by direct energization of the outer periphery of the electrodes.
  • the metal welding apparatus may include a gun arm, and a spot welding power source and a high-frequency power source may be connected to the pair of electrodes via the gun arm.
  • You may provide the electricity supply control part which controls an output time and an output current with respect to the power supply for welding and a high frequency power supply, respectively.
  • the welding power source may be a low frequency power source. This low-frequency power source can be configured by being connected to a pair of electrodes via a transformer, and a bypass capacitor being connected in parallel to the winding on the pair of electrodes of the transformer.
  • the welding power source may be a DC power source.
  • a series resonance circuit can be constituted by the current blocking capacitor and the current blocking inductance.
  • a parallel resonance circuit may be configured by the current blocking inductance and the parallel resonance capacitors connected to the upper and lower portions of the gun arm.
  • the stray inductance of the gun arm can be used as the current blocking inductance.
  • the high-frequency power source may be fed directly to the electrode side through a current blocking capacitor, or may be fed from the gun arm side root.
  • spot welding is performed according to the material of the metal material, and the nugget outer periphery formed by the spot welding of the metal material can be directly energized and heated by the high frequency power source efficiently and in a short time.
  • a metal material welding method is a metal material welding method in which a metal material is sandwiched between a pair of electrodes and energized to heat the metal material.
  • a second step of heating a region different from the first step by energization, and welding is performed by independently controlling the heating time of the first step and the second step.
  • the inside of the predetermined area of the metal material is heated by the first heating means
  • the vicinity of the predetermined area of the metal material is heated by the second heating means
  • the first heating means You may weld by controlling independently the heating by (2) and the heating by a 2nd heating means.
  • the predetermined area to be heated by the first heating means is a circular interior in which the axial cross section of the electrode is projected on the metal material, and the different area to be heated by the second heating means is projected on the metal material. It is a ring-shaped vicinity region along the circular shape, and the heating by the first heating means and the heating by the second heating means may be controlled independently.
  • the ring-shaped region can be subjected to resistance heating or resistance heating and high frequency induction heating.
  • the heating by the first heating means at a low frequency lower than the heating by the second heating means, the inside of the circle can be welded.
  • the metal material welding method of the present invention includes a step of sandwiching a metal material to be welded between a pair of electrodes, supplying welding power between the pair of electrodes, and spot welding the metal material; Supplying high frequency power to the pair of electrodes, and heating the welded region of the metal material or the region to be welded.
  • the metal material welding method of the present invention includes a welding step of sandwiching a metal material to be welded between a pair of electrodes, supplying power for welding between the pair of electrodes, and spot welding the metal material, and a pair of Supplying high-frequency power to the electrodes while controlling the supply time and supply amount, and heat-treating the spot-welded region of the metal material.
  • the supply of high-frequency power to the pair of electrodes in the heat treatment step may be started before the supply of welding power is completed.
  • the metal material welding method of the present invention includes a preheating step of sandwiching a metal material to be welded between a pair of electrodes, supplying high frequency power to the pair of electrodes, and preheating a region to be welded of the metal material, and a pair of electrodes A welding step of supplying welding power to the metal material and spot welding the metal material.
  • the preheating step the supply of welding power between the pair of electrodes in the welding step may be started before the supply of the high-frequency power is completed.
  • the method may include a step of supplying a high frequency power to the pair of electrodes by controlling a supply time and a supply amount, and heat-treating the spot welded region of the metal material.
  • the metal material welding method of the present invention sandwiches a metal material to be welded between a pair of electrodes, supplies welding power to the pair of electrodes, and controls the supply time and supply amount to supply high-frequency power to the pair of electrodes. Supply by overlapping.
  • each power can be supplied to the metal material by the welding power and the high frequency power, and the high frequency power can be applied to the metal material through the pair of electrodes for spot welding. It is possible to heat the metal material by directly energizing the vicinity. Furthermore, spot welding can be performed according to the material of the metal material, and direct energization heating can be efficiently performed in a short time with a high-frequency power source in the nugget outer peripheral region formed by spot welding of the metal material.
  • a high-frequency power source is connected to an electrode of a metal welding apparatus with a simple apparatus configuration, the outer periphery of the electrode can be heated via the same electrode, and the heat treatment of the spot-welded nugget periphery is performed. It is possible to provide a metal material welding apparatus capable of performing the above in a short time. Furthermore, free heat treatment can be performed by changing the frequency of the high frequency.
  • a high-frequency power source can be connected to an electrode for spot welding, and the metal material can be heated via the electrode. Heat treatment can be performed in a short time.
  • FIG. 1 is a cross-sectional view schematically showing a current distribution generated in a steel plate when power is simultaneously applied from two low-frequency power sources and a high-frequency power source to two superposed steel plates
  • B is a superposition of three steel plates. It is sectional drawing which shows the heating state by the high frequency current in a case. It is a figure which shows the heating state of a steel plate.
  • FIG. It is a figure which illustrates typically the electric power application from a low frequency power supply and a high frequency power supply. It is a figure which shows hardness distribution of the chromium molybdenum steel (SCM435) surface which the hardening process of Example 4 was carried out. It is a figure which shows the hardness distribution of the chromium molybdenum steel (SCM435) surface which performed the tempering process of Example 5.
  • FIG. It is sectional drawing which shows the spot welding of steel plates typically. It is a top view of the sample used for the tensile test for investigating the spot weld strength of a high-tensile steel plate, (A) shows the sample of a superposition joint, and (B) shows the sample of a cross joint.
  • FIG. 1 is a diagram schematically illustrating an example of a configuration of a metal welding apparatus 1 according to an embodiment of the present invention.
  • a metal welding apparatus 1 includes an electrode arm 2, an electrode support 3 having one end connected to the upper part 2 ⁇ / b> A and the lower part 2 ⁇ / b> B of the electrode arm 2, and a pair connected to the other end of each electrode support 3.
  • an energization control unit 10 that performs output control.
  • the metal welding apparatus 1 is a fixed base that supports the electrode arm 2, a drive mechanism that drives the electrode arm 2, and a pressing mechanism that pushes one electrode 4 out of the electrode support portion 3 (not shown). Etc.).
  • the pressing mechanism is used for pressurizing the metal material 9 to be a welded member, which will be described later, with the electrodes 4 and 4.
  • the electrode arm 2 includes an upper portion 2A and a lower portion 2B, and is connected to the electrodes 4 and 4 via the electrode support portions 3, respectively.
  • the electrode arm 2 is also called a gun arm.
  • the gun arm 2 shown in the figure has a so-called C-shape and is called a C-type gun arm.
  • an X type gun or the like is used in addition to the C type gun arm 2. Any shape of the electrode arm 2 can be applied, but in the following description, the C-type gun arm 2 is assumed.
  • the pair of electrodes 4 and 4 are opposed to each other with a gap, and two steel plates 9 are inserted as the metal material 9 into the gap.
  • the electrode 4 is made of, for example, a copper material, and has a circular or elliptical shape or a rod shape.
  • FIG. 2 is an electric circuit diagram of the metal material welding apparatus 1 shown in FIG.
  • the electric circuit of the metal material welding apparatus 1 includes a welding circuit portion 1A and a welding portion 1B surrounded by a dotted line.
  • the welding circuit unit 1 ⁇ / b> A includes a welding power source 6, a high frequency power source 8, an inductance 5, a capacitor 7, and an electric circuit such as an energization control unit 10 that performs output control of the welding power source 6 and the high frequency power source 8.
  • the welded portion 1B is a circuit that is electrically connected to the welding circuit portion 1A, and is a metal sandwiched between the gun arm 2, the pair of electrodes 4, 4 that are electrically connected to the gun arm 2, and the pair of electrodes 4, 4.
  • material 9 is an electric circuit diagram of the metal material welding apparatus 1 shown in FIG.
  • the electric circuit of the metal material welding apparatus 1 includes a welding circuit portion 1A and a welding portion 1B surrounded by a dotted line.
  • the welding power source 6 is a low-frequency power source.
  • the commercial power source 12 having an output frequency of 50 Hz or 60 Hz
  • the low-frequency power source control unit 14 connected to one end of the commercial power source 12, and the other end of the commercial power source 12 are low.
  • a welding transformer 16 connected to the output end of the frequency power supply control unit 14. Both ends of the secondary winding of the welding transformer 16 are connected to the left end of the upper part 2A and the left end of the lower part 2B of the C-type gun arm 2, respectively.
  • the low frequency power supply control unit 14 includes a power control semiconductor element such as a thyristor, a gate drive circuit, and the like, and performs energization control from the commercial power supply 12 to the electrode 4.
  • the bypass capacitor 11 is connected in parallel to the C-type gun arm 2 side of the welding transformer 16, that is, the secondary winding 16A.
  • the bypass capacitor 11 has a low capacitive impedance with respect to the frequency of the high frequency power supply 8. For this reason, the voltage by which the high frequency voltage from the high frequency power supply 8 is applied to the secondary winding 16A can be minimized, and the high frequency induced voltage to the primary side of the welding transformer 16 can be lowered.
  • the high-frequency power supply 8 includes an oscillator 18 and a matching transformer 20 connected to the output terminal of the oscillator 18.
  • One end of the matching transformer 20 is connected to the upper part 2 ⁇ / b> A of the C-type gun arm 2.
  • the other end of the matching transformer 20 is connected to the lower part 2 ⁇ / b> B of the C-type gun arm 2 via the capacitor 7.
  • the capacitor 7 can also serve as a matching capacitor for a series resonance circuit described later.
  • the capacitance value of the capacitor 7 depends on the oscillation frequency of the oscillator 18 and the stray inductance 5 of the C-type gun arm 2.
  • the oscillator 18 includes an inverter using various transistors, and controls the energization power of the high frequency power supply 8 to the electrode 4.
  • the path from the C-type gun arm 2 connected to the secondary winding of the welding transformer 16 to the electrodes 4 and 4 has an inductance 5.
  • the inductance 5 a stray inductance formed by the C-type gun arm 2 can be used.
  • a series resonance circuit may be configured by the matching capacitor 7 and the inductance 5.
  • FIG. 3 is an electric circuit diagram showing Modification 1 of the metal welding apparatus.
  • the high frequency power supply 8 is connected to the electrodes 4 and 4 via the C-type gun arm 2 in the electric circuit of the metal welding apparatus 1 shown in FIG. On the other hand, it is directly connected to the pair of electrodes 4 and 4 without using the C-type gun arm 2.
  • the high frequency power supply 8 may be connected to the base of the electrodes 4 and 4 via the capacitor 7.
  • the other circuit configuration is the same as that of the electric circuit shown in FIG.
  • FIG. 4 is an electric circuit diagram showing a second modification of the metal material welding apparatus.
  • the electric circuit of the metal material welding apparatus 30 shown in FIG. 4 is different from the metal material welding apparatus 1 shown in FIG. 2 in that a capacitor 32 for parallel resonance is connected in parallel between the pair of electrodes 4 and 4. Yes. That is, the capacitor 32 for parallel resonance is connected in parallel to the upper part 2A and the lower part 2B of the C-type gun arm 2. Accordingly, the parallel resonance capacitor 32 and the inductance 5 constitute a parallel resonance circuit.
  • the capacitor 7 has a function of blocking a low frequency current from the low frequency power source 6.
  • the other circuit configuration is the same as that of the circuit shown in FIG.
  • the capacitive reactance X C (X L 1 / (2 ⁇ f H C) of the high frequency (f H ), where f L is the high-frequency power source 8. Is a small value at high frequencies.
  • the capacitor 7 acts as a current blocking capacitor from the low frequency power supply 6 to the high frequency power supply 8
  • the inductance 5 is a current blocking inductance from the high frequency power supply 8 to the low frequency power supply 6. That is, it acts as a choke coil.
  • the C-type gun arm 2 has various shapes depending on the size of the steel plate 9 to be spot welded. Therefore, if the floating inductance 5 of the C-type gun arm 2 is not large, in the welding apparatus 1,25,30 of the metal material, for high-frequency current blocking to a predetermined inductive reactance X L at high frequency inductance 13 May be further added.
  • This external inductance 13 can be connected to the secondary winding side of the welding transformer 16 on the low frequency power source 6 side, for example.
  • the features of the metal welding apparatus 1, 25, 30 of the present invention are that the low frequency power supply 6 and the high frequency power supply 8 are separated by the inductance 5 and the capacitor 7, and the low frequency power supply 6 and the high frequency are provided on the electrode 4. Two power sources having different frequencies from the power source 8 can be simultaneously applied.
  • FIG. 5A is a cross-sectional view schematically showing a current distribution generated in the steel plate 9 when power is simultaneously applied from the low frequency power source 6 and the high frequency power source 8 to the two stacked steel plates 9. These are figures which show the heating state of the steel plate 9.
  • FIG. 5A the solid line indicates the high-frequency current 22 from the high-frequency power supply 8, and the dotted line indicates the low-frequency current 24 from the low-frequency power supply 6.
  • the electrode 4 is made of copper, has a diameter of 6 mm, and the frequency of the low frequency power supply 6 is 50 Hz.
  • the thickness of one steel plate 9 is 2 mm, and the frequency of the high-frequency power supply 8 is 40 kHz.
  • the low frequency current 24 flows through the entire inside of the electrodes 4 and 4, and the steel plate 9 is energized with a cross-sectional area width of approximately the nugget diameter.
  • FIG. 6A is a plan view showing a heating region of the steel plate 9 by only the low frequency current 24, and a circular interior 9A obtained by projecting the axial cross section of the electrode 4 onto the steel plate 9 is a main heating region.
  • FIG. 6B shows the temperature distribution in the XX direction of FIG. 6A.
  • the circular interior 9A obtained by projecting the axial cross section of the electrode 4 onto the steel plate 9 is intensively heated.
  • FIG. 6C is a plan view showing a heating region of the steel plate 9 by only the high-frequency current 22, and the outer circumference of the electrode 4 projected on the steel plate 9 and the vicinity of the outer circle, that is, a circular outer shape forming a ring shape.
  • the ring-shaped neighboring region 9B becomes the main heating region.
  • FIG. 6D shows the temperature distribution in the XX direction of FIG. 6C.
  • the heating by the high frequency current 22 includes a region where the adjacent steel plate 9 is induction heated by the high frequency current 22 flowing on the surface of the electrode 4.
  • This induction heating is different from normal induction heating using an induction heating coil.
  • the outer circumferential circle projected onto the steel plate 9 by the high-frequency current 22 and the ring-shaped region 9B in the vicinity of the outer circumferential circle are heated by resistance heating by the high-frequency current 22 or heating in which the high-frequency induction heating is superimposed with this resistance heating. Can do.
  • the width of the ring-shaped region 9B can be changed by further changing the operating frequency of the high-frequency power source 8.
  • the width of the high temperature region of the nugget outer peripheral region was changed when the operating frequency of the high frequency power source 8 was changed.
  • the outer circumferential circle projected onto the steel plate 9 by the high-frequency current 22 and the ring-shaped region 9B in the vicinity of the outer circumferential circle are heated by resistance heating by the high-frequency current 22 or heating in which the high-frequency induction heating is superimposed with this resistance heating. Can do.
  • the heating region of the steel plate 9 is a passage region of the low frequency current 24 as shown in FIG.
  • the circular interior 9 ⁇ / b> A and the ring-shaped region 9 ⁇ / b> B that becomes the region through which the high-frequency current 22 passes are superimposed.
  • the temperature distribution of the steel sheet 9 generated by these currents 22 and 24 is as follows. As shown in FIG. 6F, the temperature distribution by the low-frequency current 24 (see FIG. 6B) and the temperature distribution by the high-frequency current 22 (see FIG. 6 (D)) is superimposed.
  • the skin thickness ( ⁇ ) is expressed by the following equation (1).
  • 503.3 ⁇ ( ⁇ / ( ⁇ ⁇ f)) 1/2 (m) (1)
  • is the resistivity ( ⁇ ⁇ m) of the material
  • is the relative permeability of the material
  • f is the frequency (Hz).
  • the skin thickness changes with the power of 1/2 of the frequency. Therefore, the lower the frequency, the thicker the material, and the thinner the higher the frequency.
  • the power source for spot welding is 50 Hz or 60 Hz, if the electrode has a diameter of about 6 mm, the current flows through the entire electrode.
  • the frequency of the high frequency power source 8 when heating only the surface of the steel plate 9 can be set so as to have a predetermined skin thickness according to the above equation (1). Therefore, the frequency may be set to select the heating width of the nugget outer peripheral region. That is, by changing the frequency of the high-frequency current 22, the heating width of the nugget outer peripheral region can be changed, and the ring-shaped region 9B can be subjected to a heat treatment such as tempering. Therefore, when a relatively soft material such as S20C annealed material is used as the steel plate 9, the ring-shaped region 9B can be softened.
  • the magnitude of the high-frequency current 22 at the depth of the skin thickness is 1 / e of the outermost surface (here, e is a natural logarithm), that is, about 1/3.
  • the skin thickness of the steel plate 9 is about 9.3 mm at a frequency of 50 Hz, and about 0.3 mm at a frequency of 40 kHz.
  • the frequency of the high-frequency power supply 8 is determined by the inductance 5 connected to the secondary winding side of the welding transformer 16, the inductance 13 further inserted as necessary, and the capacity of the matching capacitor 7.
  • the inductance 5 is determined by the shape of the gun arm 2. For this reason, the value of the matching capacitor 7 determines the frequency.
  • the frequency is increased, the heating pattern in the outer peripheral region becomes local due to the skin effect, and the heating width becomes narrower.
  • the inductance 5 ( ⁇ L) of the gun arm 2 is proportional to the frequency, the voltage of the matching capacitor 7 also increases.
  • a circuit in which the electrodes 4 and 4 are viewed from the high-frequency power supply 8 is a series resonance circuit.
  • the voltage of the inductance 5 and the voltage of the matching capacitor 7 are the same. Therefore, when the voltage of the matching capacitor 7 is increased, it is difficult to synthesize the two frequencies of the low frequency and the high frequency.
  • Inductance 13 is required.
  • the large current blocking inductances 5 and 13 also affect the low frequency current 24, and it is necessary to significantly increase the secondary voltage of the conventional spot welder.
  • the series resonance frequency when the series resonance frequency is lowered, the heating pattern of the nugget outer peripheral region becomes wider, but the voltage of the matching capacitor 7 becomes lower, so that the two-frequency synthesis becomes easy.
  • the weight of the welding transformer 16 is the heaviest.
  • the weight of the welding transformer 16 is inversely proportional to the frequency. Considering the above, the operating frequency is optimally 5 kHz to 40 kHz. However, this is not the case when the gun arm 2 is not mounted on a welding apparatus such as a welding robot. Further, the difference in frequency between the low frequency and the high frequency is preferably 10 times or more from the viewpoint of the two-frequency synthesis circuit.
  • the metal material 9 is welded by sandwiching the metal material 9 between the pair of electrodes 4 and 4 and heating the metal material 9 by energization.
  • the first step of heating a predetermined region of the metal material 9 by the first energization of the pair of electrodes 4 and 4 and the position of the pair of electrodes 4 and 4 sandwiching the metal material 9 are the same as the first step.
  • the second step of heating the region different from the first step by the second energization of the pair of electrodes 4 and 4 while maintaining the position may be provided.
  • the heating time of the first step and the second step can be controlled independently.
  • the predetermined heating region of the metal material 9 by the first energization is the circular interior 9A described above.
  • the predetermined heating region of the metal material 9 by the first energization is the ring-shaped region 9B described above.
  • FIG. 7 to 9 are diagrams schematically showing waveforms of currents flowing through the pair of electrodes 4 and 4. 7 to 9, the horizontal axis represents time (arbitrary scale), and the vertical axis represents current waveforms 22 and 24 (arbitrary scale) applied from the low-frequency power source 6 and the high-frequency power source 8.
  • FIG. 7 is a diagram showing a heating waveform when spot welding and heat treatment are simultaneously performed by the power from the low-frequency power source 6 and the power from the high-frequency power source 8. As shown in FIG. 7, the entire nugget formed by welding is heated by the electric power from the low-frequency power source 6, and the nugget outer peripheral region is simultaneously heated by the electric power from the high-frequency power source 8.
  • the whole nugget corresponds to a circular interior 9 ⁇ / b> A obtained by projecting the axial cross section of the electrode 4 onto the steel plate 9.
  • the nugget outer peripheral region corresponds to an outer peripheral circle obtained by projecting the axial cross section of the electrode 4 onto the steel plate 9 and a ring-shaped region 9B in the vicinity of the outer peripheral circle.
  • spot welding between steel plates 9 is performed by the low frequency power source 6 from the current distribution when the power from the low frequency power source 6 and the high frequency power source 8 are simultaneously applied.
  • the electrode outer peripheral surface of the region not in contact with the electrode 4 of the two steel plates 9 can be heated by the high frequency power source 8.
  • FIG. 8 is a diagram illustrating a heating waveform when power from the high-frequency power source 8 is applied after power from the low-frequency power source 6 is applied.
  • the steel plates 9 are brought together by applying power from the low frequency / BR> G power source 6. Spot welded.
  • region of the two steel plates 9 is heated by the electric power application from the high frequency power supply 8 after that.
  • Heat treatment of the outer peripheral region (sometimes referred to as annealing) can be performed. By adjusting the temperature and heating time of this heat treatment, it can be applied to a heat treatment such as a tempering treatment of the steel plate 9 or the like.
  • FIG. 9 is a diagram showing a heating waveform in the case of performing preheating using the high frequency power supply 8 before applying power from the low frequency power supply 6.
  • the surface of the region where the steel plates 9 are not spot-welded first that is, the copper electrode 4 is contacted.
  • a nearby region that is not heated is heated.
  • Two steel plates 9 are spot-welded by applying electric power from the low-frequency power source 6 after this preheating.
  • the metal material welding apparatus 1, 25, 30 of the present invention by applying power from the high frequency power source 8 and then applying power from the low frequency power source 6, the vicinity of the region to be spot welded Can also be preheated before being welded. By adjusting the preheating temperature and heating time, quenching caused by spot welding can be prevented.
  • FIG. 5B is a cross-sectional view showing a heating state by the high-frequency current 22 when three steel plates 9 are overlapped. As shown in FIG. 5 (B), when three steel plates 9 are overlapped, four locations consisting of two ring-shaped regions B and end portions C of the joining surfaces of the two steel plates 9 are provided. The ring-shaped region is heated by the high frequency current 22. (Skin thickness) The skin thickness when low-frequency or high-frequency power is applied to the steel plate 9 changes with the power of -1/2.
  • the frequency of the high-frequency power source 18 when heating only the surface of the steel plate 9 can be set so as to have a predetermined skin thickness. Therefore, the frequency may be set to select the heating width of the outer peripheral region. That is, by changing the frequency of the high-frequency current 22, the heating width of the outer peripheral region can be changed, and the ring-shaped region B can be softened by performing heat treatment such as tempering on the ring-shaped region B.
  • the magnitude of the high-frequency current 22 at the depth of the skin thickness is 1 / e of the outermost surface (where e is a natural logarithm), that is, about 1/3. It is.
  • the skin thickness of the steel plate 2 is about 9.3 mm at a frequency of 50 Hz, and about 0.3 mm at a frequency of 40 kHz.
  • FIG. 10 to FIG. 12 are diagrams showing examples of current waveforms that flow through a pair of electrodes.
  • the horizontal axis represents time (arbitrary scale), and the vertical axis represents current waveforms 22 and 24 (arbitrary scale) applied to the pair of electrodes from the low-frequency power source 6 and the high-frequency power source 8.
  • FIG. 10 is a diagram showing a heating waveform in the case where preheating using the high-frequency power supply 8, heating using the low-frequency power supply 6, and post-heating using the high-frequency power supply 8 are continuously performed.
  • the term afterheating is used to mean heating performed after preheating.
  • the post-heat indicates a heat treatment after the steel plate 9 is spot welded using the low frequency power source 6.
  • the surface of the region where the steel plates 9 are not spot welded is first heated.
  • the two steel plates 9 are spot welded by application of electric power from the low-frequency power source 6 after this preheating.
  • the heat treatment of the outer peripheral region of the nugget formed by spot welding can be performed by the post-heating by the electric power from the high frequency power source 8. By adjusting the temperature and heating time of this heat treatment, it can be applied to a heat treatment such as a tempering treatment of the steel plate 9 or the like.
  • FIG. 11 is a diagram showing a heating waveform in the case where preheating is performed using the high frequency power source 8 and partial simultaneous heating is performed using the high frequency power source 8 and the low frequency power source 6.
  • the power from the high frequency power supply 8 is applied for a preheating time and a predetermined time immediately after the application time of the power from the low frequency power supply 6. That is, power is superimposed from the high frequency power supply 8 only in the initial period of application of power from the low frequency power supply 6.
  • the effect of preheating is the same as that of the heating method of FIG.
  • the electric power from the low frequency power source 6 and the high frequency power source 8 is partially superimposed and applied to the steel plate 9, spot welding is performed in the same manner as in the simultaneous heating method of FIG.
  • the outer peripheral surface of the electrode 4 in a region not in contact with 4 can be heated by the electric power from the high frequency power supply 8.
  • FIG. 12 shows a heating waveform in the case where heating using the low frequency power source 6 and post-heating using the high frequency power source 8 are performed, and partial simultaneous heating is performed using the low frequency power source 6 and the high frequency power source 8.
  • FIG. 12 the power from the high frequency power supply 8 is applied for a predetermined time before the application of the low frequency power supply 6 is finished and for a time after heat. Since the power from the low-frequency power source 6 and the high-frequency power source 8 is partially superimposed, the electrode 4 in the region that is not in contact with the electrodes 4 of the two steel plates 9 while performing spot welding similarly to the heating waveform of FIG. Can be heated by a high-frequency power source 8.
  • the effect of post-heating is the same as that of the heating method of FIG.
  • the heating time of the steel plate 9 by the high-frequency power source 8 can be controlled by the energization control unit 10, it is possible to raise the temperature only at the spot welded portion of the steel plate 9 or the like to be spot-welded, thereby reducing the power consumption required for heating. be able to.
  • FIG. 13 is an electric circuit diagram showing a third modification of the metal material welding apparatus.
  • the metal welding apparatus 35 shown in FIG. 13 differs from the metal welding apparatus 1 shown in FIG. 2 in that a DC power source 36 is used as the spot welding power source 6 instead of a low frequency power source.
  • the DC power source 36 is constituted by a DC power source using an inverter or the like, and the magnitude of the DC current, the energization time, and the like are controlled by the energization control unit 10. Since the other structure is the same as that of the metal welding apparatus 1, description is abbreviate
  • FIG. 14 is an electric circuit diagram showing a fourth modification of the metal material welding apparatus.
  • the metal material welding apparatus 40 shown in FIG. 14 is different from the metal material welding apparatus 30 shown in FIG. 4 in that the low frequency power source 6 is a DC power source 36.
  • the DC power source 36 is constituted by a power source using an inverter or the like, and the magnitude of the DC current, the energization time, and the like are controlled by the energization control unit 10. Since the other structure is the same as that of the metal welding apparatus 30, description is abbreviate
  • the capacitor 7 acts as a current blocking capacitor from the DC power source 36 to the high frequency power source 8
  • the inductance 5 is a current blocking inductance from the high frequency power source 8 to the DC power source 36, that is, Acts as a choke coil.
  • spot welding is performed by applying a direct current to the electrodes 4 and 4, and unlike the case of using the low-frequency power source 6, there is no skin effect.
  • the size can be selected according to the workpiece 9.
  • FIG. 15 is a diagram illustrating a heating waveform of simultaneous heating using the DC power source 36 and the high frequency power source 8. The effect of simultaneous heating is the same as the effect of simultaneous heating using the low frequency power source 6 and the high frequency power source 8 shown in FIG.
  • FIG. 16 is a diagram showing a heating waveform in which the high-frequency power source 8 is used for after-heating.
  • the effect of after-heating using the high-frequency power source 8 is the same as the effect of after-heating using the high-frequency power source 8 shown in FIG.
  • FIG. 17 is a diagram showing a heating waveform in which the high-frequency power source 8 is used for preheating.
  • the effect of preheating of the high frequency power supply 8 is the same as the effect of preheating using the high frequency power supply 8 shown in FIG.
  • FIG. 18 is a diagram showing a heating waveform in the case where preheating using the high-frequency power supply 8, heating using the DC power supply 36, and post-heating using the high-frequency power supply 8 are continuously performed.
  • the heating effect in this case is the same as the effect of the heating method shown in FIG.
  • FIG. 19 is a diagram showing a heating waveform when preheating is performed by the high-frequency power source 8 and partial simultaneous heating is performed using the high-frequency power source 8 and the DC power source 36.
  • the high frequency power supply 8 is used for preheating, and the high frequency power supply 8 is applied for a predetermined time immediately after the application time of power from the DC power supply 36. That is, power is superimposed from the high frequency power supply 8 only in the initial period of application of power from the low frequency power supply 6.
  • the effect of preheating is the same as the heating method of FIG.
  • FIG. 20 is a diagram showing a heating waveform when partial heating is performed simultaneously using the high frequency power supply 8 and the DC power supply 36 and afterheating is performed by the high frequency power supply 8.
  • the high frequency power supply 8 is applied for a predetermined time immediately after the application of power from the DC power supply 36 is completed. That is, power is superimposed from the high frequency power supply 8 immediately before the application time of power from the low frequency power supply 6 ends.
  • the effect of preheating is the same as the heating method of FIG.
  • the heating time of the steel plate 9 by the high-frequency power source 8 can be controlled by the energization control unit 10, it is possible to raise the temperature only at the spot welded portion of the steel plate 9 or the like to be spot-welded, thereby reducing the power consumption required for heating. be able to.
  • partial heating is performed in the non-contacting region.
  • a method of performing high-frequency heating of the workpiece 9 before or after application of power from the low-frequency power source 6 or the DC power source 36 or simultaneously with application of the low-frequency power source 6 or the DC power source 36 can be selected.
  • the metal material welding devices 1, 25, 30, 35, and 40 are quenched into the steel plate 9 by rapid cooling after welding.
  • the cooling direction includes heat radiation from the horizontal direction on the steel plate 9 (see FIG. 7) and heat transfer from the vertical direction of the electrodes 4 and 4.
  • the heat transfer in the vertical direction from the electrodes 4 and 4 is significant because the electrodes 4 and 4 are water-cooled.
  • high-frequency energization is performed after spot welding, a heat storage is formed in the nugget outer peripheral region, and the nugget is cooled by heat transfer in the vertical direction of the electrodes 4 and 4.
  • the heat transfer in both the vertical and horizontal directions that occurs when high-frequency energization is not performed is only in the vertical direction, so that the structure formation during solidification of the steel sheet 9 can be controlled.
  • the temperature rise profile of the steel plate 9 is the highest in the region where the steel plates 9 overlap in the central region where the electrodes 4, 4 and the steel plate 9 are in contact with each other, and the nugget is formed in this high temperature region. Is done. That is, in the conventional spot welder, the region immediately below the electrodes 4 and 4 is heated. However, when the high-frequency current 22 is applied to the electrodes 4 and 4, the high-frequency current 22 is concentrated on the surfaces of the electrodes 4 and 4 due to the skin effect, and when the high-frequency current 22 contacts the steel plate 9, the surface of the steel plate 9 is affected by the skin effect. Flowing. By this current path, the region where the temperature of the steel plate 9 is highest is the outer periphery of the electrodes 4, 4, that is, the nugget outer periphery region.
  • partial heating of only the outer peripheral region of the nugget can be performed by energizing the electrodes 4 and 4 with the high-frequency current 22 supplied from the high-frequency power source 8, and this partial heating range is the range where the temperature is most increased. Moreover, it becomes a more efficient heating method than heating the whole directly under the electrodes 4 and 4 by restricting the partial heating range. Since the high-frequency current can be heated by the outer circumference of the electrodes 4 and 4, a well state can be formed thermally. Therefore, since it can melt and solidify in the state which suppressed the heat removal in the plate surface of the steel plate 9, welding is possible in a short time.
  • the electric power from the spot welding power source 6 is mainly used to form the melt-solidified portion of the steel sheet 9 by conducting two frequencies. Heating using the high-frequency power source 8 can be used to intensively heat the circular portion of the nugget outer peripheral region that determines the strength. For this reason, the welding location of the steel plate 9 can be intensively and independently heated, and desired spot welding quality can be obtained in an overwhelmingly short time that cannot be obtained by conventional spot welding.
  • the metal material 9 to be spot-welded is, for example, the steel plate 9, but any material may be used as long as the metal material 9 is used.
  • the shape of the work 9 is not limited to a plate, and may be any shape.
  • the steel plate 9 showed the example which carries out the spot welding of 2 sheets, the welding of a some board may be sufficient.
  • the metal material 9 to be spot welded may be spot welding of different metal materials.
  • FIG. 21 is a diagram schematically illustrating power application from the low frequency power supply 6 and the high frequency power supply 8. The conditions of the steel plate 9, the low frequency power supply 6, the high frequency power supply 8, etc. used are shown below.
  • Steel plate 9 thickness 2 mm, size 5 cm ⁇ 15 cm
  • Low frequency power supply 6 50 Hz
  • electrode 4 is made of copper and has a diameter of 6 mm
  • High-frequency power supply 8 30 kHz
  • the composition of the steel plate 9 contains 0.19 to 0.29% by weight of C (carbon) as a component other than iron.
  • preheating was performed for 0.3 seconds with electric power from the high-frequency power source 8.
  • the high frequency input power was changed from 4.9 kW to 37 kW.
  • power was applied from the low frequency power source 6 to perform welding.
  • the low-frequency power source 6 was turned on by two stages of energization of the first current and the second current.
  • the rise of the first current is one cycle
  • the first energization is two cycles
  • the first current value is 11 kA.
  • After cooling for one cycle set the second current value to 8.
  • a current was supplied for 16 cycles as kA.
  • the two-stage energization by the low-frequency power source 6 was 20 cycles including cooling, and the welding time was 0.4 seconds.
  • Example 2 the power from the high frequency power source 8 was applied for 0.3 seconds simultaneously with the power from the low frequency power source 6.
  • the high frequency input power was changed from 2.7 kW to 39.9 kW.
  • the energization of power from the low frequency power source 6 is the same as that in the first embodiment.
  • Example 3 the power from the high frequency power source 8 was applied for 0.3 seconds immediately after the end of energization of the power from the low frequency power source 6.
  • the high frequency input power was changed from 2.7 kW to 39.9 kW.
  • the energization of the low frequency power source 6 is the same as that in the first embodiment.
  • Table 1 shows the high-frequency energization pattern, the high-frequency input power, the breaking load, and the average breaking load of the welding samples of Examples and Comparative Examples.
  • Example 1 the number of samples of the weld specimen with the high frequency input power of 4.9 kW is three.
  • the fracture loads of the weld samples were 19.54 kN, 18.46 kN, and 20.28 kN, respectively.
  • the fracture loads of the weld samples with high-frequency input powers of 8.6 kW, 20.9 kW, 28.5 kW, and 37 kW were 21.26 kN, 19.59 kN, 17.98 kN, and 19.58 kN, respectively. From this, it was found that the average breaking load of the weld sample of Example 1 that was pre-heated by high-frequency energization and then spot-welded with the low-frequency power source 6 was 19.5 kN.
  • Example 2 the number of samples of the weld specimen in which the high frequency input power was 2.7 to 3.8 kW was two, and the rupture loads were 15.97 kN and 17.70 kN, respectively.
  • Example 3 the fracture loads of the weld samples with high frequency input powers of 4.2 kW, 8.6 kW, 30.8 kW, and 39.9 kW were 18.7 kN, 18.35 kN, 17.94 kN, and 19.73 kN, respectively. there were. From this, it was found that the average breaking load of the weld specimen of Example 3 to which high-frequency current was applied after welding using the low-frequency power source 6 was 18.7 kN.
  • the number of samples of the weld specimen of the comparative example was two, and the rupture loads were 12.47 kN and 12.88 kN, respectively. From this, it was found that the average breaking load of the welding sample subjected to the conventional spot welding by the two-stage energization of the comparative example was 12.7 kN.
  • the average breaking loads obtained from the weld samples subjected to the preheating in Example 1, the simultaneous heating in Example 2, and the post-heating in Example 3 are 1.54 times 1 for the average breaking load in the comparative example, respectively. .48 times and 1.47 times the size. Accordingly, it was found that the average breaking load obtained with the welding samples of Examples 1 to 3 was improved by about 50% compared to the spot welding with only the low frequency power source 6. In Examples 1 to 3, although high-frequency energization has a difference between preheating, simultaneous and afterheating, any heating method significantly increases the breaking load compared to spot welding using only the low-frequency power source 6 of the comparative example. I was able to. Note that when the carbon content of the steel sheet 9 was in the range of about 0.19 wt% to 0.26 wt%, the breaking load could be significantly increased as compared with the comparative example.
  • the chromium molybdenum steel 9 was quenched in order to confirm the heating effect of the high frequency power source 8 alone.
  • the used chromium molybdenum steel 9 is SCM435 and has the same dimensions as the steel plate of Example 1.
  • the energization for 0.3 second was performed from the high frequency power source 8 at the same frequency as in Example 1 to perform the quenching treatment.
  • FIG. 22 is a diagram showing the hardness distribution of the surface of the chromium molybdenum steel (SCM435) 9 subjected to the quenching process of Example 4.
  • the horizontal axis in the figure indicates the position of the electrode 4 on the surface of chromium molybdenum steel (SCM4359) in the axial cross-sectional direction, and also indicates the position of the electrode 4 and its outer diameter.
  • the vertical axis in the figure represents Vickers hardness (HV). As is apparent from FIG.
  • the hardness corresponding to the outermost periphery of the electrode 4 of the chromium molybdenum steel (SCM435) of Example 4 is the highest and is about 670 HV, and is about 370 HV which is the hardness of the unquenched region. It turned out that it was also high. Thus, it has been found that only the ring-shaped region in the outer peripheral region of the electrode 4 can be quenched in the chromium molybdenum steel (SCM435) by applying electric power from the high-frequency power source 8.
  • a chromium molybdenum steel (SCM435) which had been quenched in advance and having a hardness of about 620 HV, was heated using the same metal welding apparatus 1 as in Example 1 and tempered.
  • a tempering process was performed by energizing for 0.3 seconds from the high-frequency power source 8 at the same frequency as in Example 1.
  • FIG. 23 is a diagram showing the hardness distribution of the surface of chromium molybdenum steel (SCM435) 9 subjected to the tempering treatment of Example 5.
  • the horizontal and vertical axes in FIG. 23 are the same as those in FIG.
  • the hardness of the region corresponding to the outermost periphery of the electrode 4 of the chromium molybdenum steel (SCM435) 9 of Example 5 is about 550 HV, which is lower than the hardness before tempering (about 620 HV).
  • the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Absent.
  • the shape of the gun arm 2 and the electrode 4 and the values of the inductance 5 and the capacitor 7 in the above-described embodiment can be appropriately designed according to the type and shape of the work 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

スポット溶接において部分昇温による焼戻し処理等の加熱処理が可能になる、金属材の溶接装置を提供する。金属材(9)を一対の電極(4,4)にて挟み、一対の電極(4,4)の金属材(9)に対する位置を同一領域に維持した状態で通電し、金属材(9)の異なる領域を加熱する金属材の溶接装置(1)であって、一対の電極(4,4)に接続され金属材(9)へ低い第1の周波数の電力を印加して電極の軸断面を金属材に投影した円形内部を加熱して溶接する第1の加熱手段(6)と、第1の周波数より高い第2の周波数の電力を印加して上記円形に沿ったリング状をなす領域を加熱する第2の加熱手段(8)と、第1及び第2の加熱手段(6,8)を、それぞれ独立して制御する通電制御部(10)と、を備えている。

Description

金属材の溶接装置及び金属材の溶接方法
 本発明は金属材の溶接装置及び金属材の溶接方法に関する。さらに詳しくは、本発明は、金属材であるワークにスポット溶接用電源からの電力でナゲットを形成し、さらに高周波電源からの電力でワークの加熱を行う、金属材の溶接装置及び金属材の溶接方法に関する。
 スポット溶接装置は、重ね合わせた鋼板同士を溶接するために用いられている。図24は、鋼板50同士のスポット溶接を模式的に示す断面図である。図24に示すように、鋼板50同士のスポット溶接は、鋼板50同士の重ね合わせ部分を一対の電極52で挟み、この電極52に矢印方向に所定の力を作用させて鋼板50同士を加圧する。
 次に、加圧状態を保持しながら電極52へkAオーダーの大電流を通電し、鋼板50同士の圧着部分をジュール発熱にて瞬間溶融し、ナゲット54と呼ばれる所定径の溶融した塊を形成することにより行われる(例えば、非特許文献1参照)。
 ところで、近年、車両の生産ラインで使用されるスポット溶接では、車両の軽量化及び安全性の両立を図るため車体用素材として超高張力鋼板が用いられるようになってきた。
 図25は、高張力鋼板のスポット溶接強度を調べるための引張試験に用いられる試料の平面図であり、(A)が重ね合わせ継ぎ手の試料を、(B)が十字継ぎ手の試料を示している。図25(A)に示す重ね合わせ継ぎ手の試料では、2枚の長方形の鋼板50がその長手方向の端部で重ね合わせられ、端部でスポット溶接されている。図25(B)に示す十字継ぎの試料では、2枚の長方形の鋼板50を十字形状に交差させ、この交差する箇所がスポット溶接されている。点線で囲んだ略楕円状部が溶接で形成されたナゲット54であり、引張試験で印加される力56を矢印で示している。
 高張力鋼板のスポット溶接強度において、重ね合わせ継ぎ手は材料強度の増加に伴い、その引張り強度も向上するが、十字継ぎ手の剥離強度は材料強度の向上に伴い増加し難く、寧ろ安定した強度が得難くなることが報告されている。十字継ぎ手の剥離型の負荷で安定した引張り強度が得られない理由は、ナゲット54の円周上の応力集中の度合いが極めて高いこと、及び、母材の強度が高くなることで、ナゲット54の周囲の拘束力が増加することが同時に起きることに起因すると考えられている。このような事情により、溶接領域強度の靭性を確保する点から、実際の車体に強度の高い鋼板を適用するにあたっては、溶接領域が硬くなり過ぎないよう炭素量を一定水準以下とするなど、組成面で規制しているのが現状である。
 一方、高張力鋼板の使用は、効率的に車体を軽量化できる方法であり、さらに、強度と延性の双方を向上させた高張力鋼板が望まれている。車体用鋼板の強度をさらに向上させることにより、一層の軽量化が見込める。車体用鋼板の延性を向上させることによりプレス成形性や製品状態での衝突時の十分な変形能を確保することができる。通常、車体用鋼板は強度を上げると延性は低下する傾向を示す。車体用鋼板の強度と延性を同時に向上させる為には材料の炭素含有量を高めることは効果的であるが、スポット溶接領域が著しく硬く、脆くなるため安定した十分な強度を得難くなっていた。
 このようなスポット溶接部の強度を溶接工法で解決しようとする取り組みが、これまで種々なされてきている。例えば、溶融接合部を所定の大きさに形成した後、後通電で焼戻しを施すことが試みられている。しかしながら、車体組み立ての抵抗スポット溶接では、一打点あたりに要する工程時間は高々1秒以内で行うことが求められており、現状の溶接設備で後通電などで焼戻した場合、その焼戻し効果は極めて限定されたものとなる。あるいは、焼戻しで十分な効果を得ようとした場合、工程の要求時間を大幅に超える時間が必要となる。これは、ナゲット54が形成されてからは通電面積の増加により溶接部の電流密度も低下するため、短時間で効率的な発熱が得られないという抵抗溶接の基本的な問題に基づくものである。
 さらに、特許文献1には、高張力鋼板のスポット溶接部の疲労強度向上させるために、スポット溶接機と高周波誘導加熱手段とを備えたスポット溶接装置が開示されている。この高周波誘導加熱手段は、ワークの被溶接部分を誘導加熱する加熱コイルと加熱コイルへ高周波電力を供給する高周波電源とから構成されている。
特開2005-211934号公報
社団法人溶接学会編、「溶接・接合便覧」、丸善株式会社、平成2年9月30日、pp.392-398
 金属材に一対の電極を挟んで加熱すると共に溶接する装置において、加熱場所は電極の中心を頂点とする方法でしかなく温度プロファイルは単一的なものでしかなかった。例えば、特許文献1のスポット溶接装置では、ワークの被溶接部分を誘導加熱する加熱コイルを設置するための空間が必要となる。しかしながら、スポット溶接装置の電極の周囲は非常に狭いので、新たな加熱手段を別途設置することは困難である。つまり、加熱コイルがスポット溶接機の電極直径よりも大きくなる。このため、最も再加熱が必要であるナゲット54の外周のみを加熱することができないという課題がある。
 本発明の一目的は、上記課題に鑑み、スポット溶接において部分昇温による焼戻し処理等の加熱処理が可能になる、金属材の溶接装置を提供することにある。本発明の他の目的は、金属材の予熱やスポット溶接されたナゲット外周領域の加熱処理を短時間で行う溶接方法を提供することである。
 上記一目的を達成するため、本発明の金属材の溶接装置は、金属材を一対の電極にて挟み、金属材に対して一対の電極を同一位置に維持した状態で通電して金属材の異なる領域を加熱する金属材の溶接装置であって、一対の電極に接続され金属材へ第1の周波数の電力を印加して所定領域を加熱する第1の加熱手段と、一対の電極に接続され金属材へ第2の周波数の電力を印加して所定領域とは異なる領域を加熱する第2の加熱手段と、第1の加熱手段及び第2の加熱手段を、それぞれ独立して制御する通電制御部と、を備えたことを特徴とする。
 上記構成において、金属材の所定領域の内部が第1の加熱手段により加熱され、金属材の前記所定領域の近傍が第2の加熱手段により加熱され、第1の加熱手段による加熱と第2の加熱手段による加熱とが、通電制御部により独立して制御されてもよい。
 第1の加熱手段は、電極の軸断面を前記金属材に投影した領域の内部を加熱する加熱手段であり、第2の加熱手段は、前記電極の軸断面を金属材に投影した領域の輪郭に沿ってリング状をなす領域を加熱する加熱手段であり、第1の加熱手段による加熱と第2の加熱手段による加熱とが、通電制御部により独立して制御されてもよい。
 第1の周波数は第2の周波数よりも周波数が低く、金属材へ第1の周波数の電力を通電することで、円形内部が溶接されてもよい。第2の周波数は第1の周波数よりも周波数が高く、金属材へ第2の周波数の電力を通電することで、リング状をなす領域が抵抗加熱され、あるいは、抵抗加熱及び高周波誘導加熱されてもよい。
 上記目的を達成するため、本発明の金属材の溶接装置は、金属材を挟むように配置される一対の電極と、一対の電極に溶接用電力を供給する溶接用電源と、一対の電極に高周波電力を供給する高周波電源と、を備え、一対の電極に溶接用電源と高周波電源とがそれぞれ並列に接続され、溶接用電源と一対の電極との間に電流阻止用インダクタンスが接続され、高周波電源と一対の電極との間に電流阻止用コンデンサが接続され、電流阻止用インダクタンスは、高周波電源から一対の電極に供給される高周波電流が溶接用電源に流れ込まないように阻止し、電流阻止用コンデンサは、溶接用電源から一対の電極に供給される電流が高周波電源側に流れ込まないように阻止することを特徴とする。電流防止用インダクタンスはガンアームの浮遊インダクタンスを利用しても良い。
 上記構成によれば、電流阻止用インダクタンスを介して接続されたスポット溶接用電源と、電流阻止用コンデンサを介して一対の電極に接続された高周波電源とを有し、スポット溶接用電源と高周波電源とから金属材へそれぞれの電力を供給できる溶接装置が得られる。このため、スポット溶接をするための一対の電極を介して高周波電圧を印加することができ、電極外周の直接通電にて金属材を加熱することができる。
 さらに、金属材の溶接装置は、ガンアームを備え、スポット溶接用電源と高周波電源とが、ガンアームを介して一対の電極に接続されてもよい。溶接用電源と高周波電源に対し、それぞれ、出力時間及び出力電流を制御する通電制御部を備えてもよい。溶接用電源は低周波電源であってもよい。この低周波電源はトランスを介して一対の電極に接続され、トランスの一対の電極側の巻き線にバイパスコンデンサが並列接続されて構成することができる。
 溶接用電源は直流電源でもよい。電流阻止用コンデンサと電流阻止用インダクタンスとで直列共振回路を構成することができる。電流阻止用インダクタンスとガンアームの上部及び下部に接続される並列共振用コンデンサとで並列共振回路を構成してもよい。電流阻止用インダクタンスは、ガンアームの浮遊インダクタンスを用いることができる。高周波電源は、電流阻止用コンデンサを介して前記電極側に直接給電されてよく、ガンアーム側根元から給電してもよい。
 上記構成によれば、金属材の材質に応じてスポット溶接を行うと共に、金属材のスポット溶接で形成されたナゲット外周を高周波電源によって直接通電加熱を、効率良く短時間で行うことができる。
 上記他の目的を達成するため、本発明の金属材の溶接方法は、金属材を一対の電極で挟んで通電し金属材を加熱する金属材の溶接方法であって、一対の電極への第1の通電によって金属材の所定領域を加熱する第1ステップと、一対の電極で金属材を挟圧している位置を第1ステップと同じ位置に維持した状態で、一対の電極への第2の通電によって第1ステップとは異なる領域を加熱する第2ステップと、を備え、第1ステップと第2ステップとの加熱時間をそれぞれ独立して制御して溶接することを特徴とする。
 上記第1ステップにおいて、第1の加熱手段により金属材の所定領域の内部を加熱し、第2ステップにおいて、第2の加熱手段により金属材の所定領域の近傍を加熱し、第1の加熱手段による加熱と第2の加熱手段による加熱とを独立して制御することで溶接してもよい。
 第1の加熱手段で加熱する所定領域が、電極の軸断面を金属材に投影した円形の内部であり、第2の加熱手段で加熱する前記異なる領域が、電極の軸断面を金属材に投影した円形に沿ったリング状の近傍領域であり、第1の加熱手段による加熱と第2の加熱手段による加熱とを独立して制御してもよい。
 第2の加熱手段による加熱を第1の加熱手段による加熱よりも周波数の高い高周波で行うことで、リング状の領域を抵抗加熱しあるいは抵抗加熱及び高周波誘導加熱することができる。第1の加熱手段による加熱を第2の加熱手段による加熱よりも周波数の低い低周波で行うことで、円形内部を溶接することができる。
 上記他の目的を達成するため、本発明の金属材の溶接方法は、溶接する金属材を一対の電極で挟み、一対の電極間に溶接用電力を供給し、金属材をスポット溶接するステップと、一対の電極に高周波電力を供給し、金属材の溶接された領域又は溶接されるべき領域を加熱処理するステップと、を含む。
 本発明の金属材の溶接方法は、具体的には、溶接する金属材を一対の電極で挟み、一対の電極間に溶接用電力を供給し、金属材をスポット溶接する溶接ステップと、一対の電極に高周波電力を供給時間と供給量を制御して供給し、金属材のスポット溶接された領域を加熱処理するステップと、を含む。
 溶接ステップでは、溶接用電力の供給が終了する前に、加熱処理するステップにおける一対の電極への高周波電力の供給を開始してもよい。
 本発明の金属材の溶接方法は、溶接する金属材を一対の電極で挟み、当該一対の電極に高周波電力を供給し、金属材の溶接されるべき領域を予熱する予熱ステップと、一対の電極に溶接用電力を供給し、金属材をスポット溶接する溶接ステップとを含む。
 予熱ステップでは、高周波電力の供給が終了する前に、溶接ステップにおける一対の電極間への溶接用電力の供給を開始してもよい。溶接ステップに続き、供給時間及び供給量を制御して一対の電極に高周波電力を供給し、金属材のスポット溶接された領域を加熱処理するステップを含んでもよい。
 本発明の金属材の溶接方法は、溶接する金属材を一対の電極で挟み、一対の電極に溶接用電力を供給し、かつ供給時間及び供給量を制御してこの一対の電極に高周波電力を重畳して供給する。
 上記構成によれば、溶接用電力及び高周波電力によって金属材へそれぞれの電力を供給できると共に、スポット溶接をするための一対の電極を介して金属材へ高周波電力を印加することができ、電極外周付近に対して直接通電を行って金属材を加熱処理することができる。
 さらに、金属材の材質に応じてスポット溶接を行うと共に、金属材のスポット溶接で形成されたナゲット外周領域を高周波電源によって直接通電加熱を効率良く短時間で行うことができる。
 本発明によれば、簡単な装置構成で、金属材の溶接装置の電極に高周波電源が接続され、同じ電極を介して電極の外周の加熱を行うことができ、スポット溶接されたナゲット外周の熱処理を短時間で行うことができる金属材の溶接装置を提供することができる。さらに、高周波の周波数を変化させることにより自在な加熱処理を行うことができる。
 本発明の金属材の溶接方法によれば、スポット溶接用の電極に高周波電源を接続し、電極を介して金属材を加熱することができ、金属材の予熱やスポット溶接されたナゲット外周領域の加熱処理を短時間で行うことができる。
本発明の実施形態に係る金属材の溶接装置の構成の一例を模式的に示す図である。 図1に示す金属材の溶接装置の電気回路図である。 金属材の溶接装置の変形例1を示す電気回路図である。 金属材の溶接装置の変形例2を示す電気回路図である。 (A)は重ね合わせた2枚の鋼板へ低周波電源と高周波電源とから電力を同時に印加したとき鋼板に生じる電流分布を模式的に示す断面図、(B)は鋼板を3枚重ね合わせた場合の高周波電流による加熱状態を示す断面図である。 鋼板の加熱状態を示す図である。 低周波電源からの電力と高周波電源からの電力とによりスポット溶接と加熱処理とを同時に行う場合の加熱波形を示す図である。 低周波電源からの電力を印加した後に高周波電源からの電力を印加する場合の加熱波形を示す図である。 低周波電源から電力を印加する前に高周波電源を用いた予熱を行う場合の加熱波形を示す図である。 高周波電源を用いた予熱と低周波電源を用いた加熱と高周波電源を用いた後熱を連続して行う場合の加熱波形を示す図である。 高周波電源を用いて予熱を行うと共に、高周波電源と低周波電源とを用いて部分的に同時加熱を行う場合の加熱波形を示す図である。 低周波電源を用いた加熱と高周波電源を用いた後熱とを行い、さらに、低周波電源と高周波電源を用いて部分的に同時加熱を行う場合の加熱波形を示す図である。 金属材の溶接装置の変形例3を示す電気回路図である。 金属材の溶接装置の変形例4を示す電気回路図である。 直流電源と高周波電源とを用いた同時加熱の加熱波形を示す図である。 高周波電源を後熱のために用いた加熱波形を示す図である。 高周波電源を予熱のために用いた加熱波形を示す図である。 高周波電源を用いた予熱と直流電源を用いた加熱と高周波電源を用いた後熱を連続して行う場合の加熱波形を示す図である。 高周波電源によって予熱を行うと共に、高周波電源と直流電源とを用いて部分的に同時加熱を行う場合の加熱波形を示す図である。 高周波電源と直流電源とを用いて部分的に同時加熱を行い、高周波電源によって後熱を行う場合の加熱波形を示す図である。 低周波電源と高周波電源からの電力印加を模式的に説明する図である。 実施例4の焼入れ処理をしたクロムモリブデン鋼(SCM435)表面の硬さ分布を示す図である。 実施例5の焼戻し処理をしたクロムモリブデン鋼(SCM435)表面の硬さ分布を示す図である。 鋼板同士のスポット溶接を模式的に示す断面図である。 高張力鋼板のスポット溶接強度を調べるための引張試験に用いられる試料の平面図であり、(A)が重ね合わせ継ぎ手の試料を、(B)が十字継ぎ手の試料を示している。
1,25,30,35,40:金属材の溶接装置
1A,25A,30A,35A,40A:溶接装置の溶接用回路部
1B,25B,30B,35B,40B:溶接装置の溶接部
 2:ガンアーム
2A:ガンアームの上部
2B:ガンアームの上部
 3:電極支持部
 4:電極
 5:浮遊インダクタンス
 6:低周波電源
 7:整合コンデンサ
 8:高周波電源
 9:ワーク
9A:円形内部
9B:リング状領域
10:通電制御部
11:バイパスコンデンサ
12:商用電源
13:高周波電流阻止インダクタンス
14:低周波電源制御部
16:溶接トランス
18:発振器
20:整合トランス
22:高周波電流
24:低周波電流
26:直流電流
36:直流電源
 以下、図面を参照しながら本発明を実施形態に沿って説明する。
(金属材の溶接装置)
 図1は、本発明の実施形態に係る金属材の溶接装置1の構成の一例を模式的に示す図である。金属材の溶接装置1は、電極アーム2と、電極アーム2の上部2A、下部2Bにそれぞれ一端が接続されている電極支持部3と、各電極支持部3の他端にそれぞれ接続される一対の電極4と、電極アーム2にインダクタンス5を介して接続される溶接用電源6と、電極アーム2にコンデンサ7を介して接続される高周波電源8と、溶接用電源6及び高周波電源8の各出力制御を行う通電制御部10と、を含んで構成されている。
 なお、金属材の溶接装置1は、図示していないが、電極アーム2を支持する固定ベース、電極アーム2を駆動する駆動機構、電極支持部3から一方の電極4を押し出す押圧機構(図示せず)などをさらに備えている。押圧機構は、後述する被溶接部材となる金属材9を電極4,4で加圧するために使用される。
 電極アーム2は上部2Aと下部2Bとを備え、各電極支持部3を介して電極4,4にそれぞれ接続されている。電極アーム2はガンアームとも呼ばれている。図示するガンアーム2は、所謂C字形状を有しているので、C型ガンアームと呼ばれている。ポータブル型やロボット型等の溶接装置において、C型ガンアーム2以外にはX型ガン等も使用されている。電極アーム2の形状はどのようなものでも適用可能であるが、以下の説明においては、C型ガンアーム2を前提にして説明する。
 一対の電極4,4は隙間を有して対向しており、その隙間に金属材9として2枚の鋼板9が挿入される。電極4は例えば銅材で、円や楕円の形状やロッド状をなしている。
 図2は図1に示す金属材の溶接装置1の電気回路図である。図2に示すように、金属材の溶接装置1の電気回路は、点線で囲んだ溶接用回路部1Aと溶接部1Bとからなる。溶接用回路部1Aは、溶接用電源6と高周波電源8とインダクタンス5とコンデンサ7と溶接用電源6及び高周波電源8の各出力制御を行う通電制御部10等の電気回路とからなる。溶接部1Bは、溶接用回路部1Aに電気的に接続される回路であり、ガンアーム2とガンアーム2に電気的に接続される一対の電極4,4と一対の電極4,4に挟まれる金属材9とから構成される。
 溶接用電源6は低周波電源であり、例えば出力周波数が50Hz又は60Hzである商用電源12と、商用電源12の一端に接続される低周波電源制御部14と、商用電源12の他端と低周波電源制御部14の出力端に接続される溶接トランス16と、から構成されている。溶接トランス16の2次巻き線の両端が、それぞれ、C型ガンアーム2の上部2Aの左側端部及び下部2Bの左側端部に接続されている。低周波電源制御部14は、サイリスタなどの電力制御用半導体素子及びゲート駆動回路等から構成されており、商用電源12から電極4への通電制御などを行う。
 溶接トランス16のC型ガンアーム2側、即ち二次側巻き線16Aに並列にバイパスコンデンサ11が接続されている。バイパスコンデンサ11は、高周波電源8の周波数に対して低い容量性インピーダンスを有している。このため、高周波電源8からの高周波電圧が二次側巻き線16Aに印加される電圧を最小限にし、溶接トランス16の一次側への高周波誘起電圧を低くすることができる。
 高周波電源8は、発振器18と発振器18の出力端に接続される整合トランス20とから構成されている。整合トランス20の一端はC型ガンアーム2の上部2Aに接続されている。整合トランス20の他端は、コンデンサ7を介してC型ガンアーム2の下部2Bに接続されている。このコンデンサ7は、後述する直列共振回路の整合用コンデンサを兼ねることができる。コンデンサ7の容量値は、発振器18の発振周波数とC型ガンアーム2の浮遊インダクタンス5に依存する。発振器18は、各種のトランジスタを用いたインバータなどから構成されており、電極4への高周波電源8の通電電力等を制御する。
 図2に示すように、溶接トランス16の2次巻き線に接続されるC型ガンアーム2から電極4,4までの経路は、インダクタンス5を有している。インダクタンス5はC型ガンアーム2で形成される浮遊インダクタンスを利用することができる。
 コンデンサ7が整合用コンデンサを兼ねる場合には、この整合用コンデンサ7とインダクタンス5とによる直列共振回路を構成してもよい。
(金属材の溶接装置の変形例1)
 図3は金属材の溶接装置の変形例1を示す電気回路図である。図3に示す金属材の溶接装置25の電気回路は、図2に示す金属材の溶接装置1の電気回路では高周波電源8がC型ガンアーム2を介して電極4,4に接続されているのに対して、C型ガンアーム2を介さないで直接一対の電極4、4に接続されている。高周波電源8は、コンデンサ7を介して電極4、4の根本に接続されてもよい。他の回路構成は図2に示す電気回路と同じであるので、説明を省略する。
(金属材の溶接装置の変形例2)
 図4は金属材の溶接装置の変形例2を示す電気回路図である。図4に示す金属材の溶接装置30の電気回路は、一対の電極4、4の間に並列共振用のコンデンサ32を並列接続した点で、図2に示す金属材の溶接装置1と異なっている。即ち、並列共振用のコンデンサ32は、C型ガンアーム2の上部2Aと下部2Bに並列に接続されている。これにより、並列共振用のコンデンサ32とインダクタンス5とは並列共振回路を構成する。この場合、コンデンサ7は、低周波電源6からの低周波電流を阻止する作用を有している。他の回路構成は図2に示す回路と同じであるので、説明は省略する。
(低周波電源6と高周波電源8との分離)
 低周波電源6と高周波電源8との関係について説明する。
 低周波電源6と高周波電源8との間には、インダクタンス5とコンデンサ7とが接続されており、低周波数(f)におけるインダクタンス5(L)による誘導性リアクタンスX(X=2πfL、ここで、fは低周波電源6の周波数であり、Lはインダクタンス5の値である。)は低周波数では小さい。一方、コンデンサ7(C)による容量性リアクタンスX(X=1/(2πfC))は低周波数(f)では大きな値となる。このため、低周波電源6の高周波電源8への電流漏洩は、低周波数(f)におけるコンデンサ7の大きい容量性リアクタンスXで阻止される。つまり、コンデンサ7は低周波電流阻止用コンデンサとなる。
 高周波電源8から低周波電源6を見た場合のインピーダンスの内、高周波数(f)の容量性リアクタンスX(X=1/(2πfC)、ここで、fは高周波電源8の周波数である。)は高周波数では小さな値となる。
 一方、高周波数では、インダクタンス5による誘導性リアクタンスX(X=2πfL、ここで、fは高周波電源8の周波数である。)は大きな値となる。このため、高周波電源8の低周波電源6への電流漏洩は、高周波数(f)におけるインダクタンス5の大きい誘導性リアクタンスXで阻止される。つまり、インダクタンス5は、高周波電流阻止用インダクタンスとなる。
 金属材の溶接装置1,25,30において、コンデンサ7は低周波電源6から高周波電源8への電流阻止用コンデンサとして作用し、インダクタンス5は高周波電源8から低周波電源6への電流阻止用インダクタンス、つまりチョークコイルの作用をする。
 C型ガンアーム2はスポット溶接する鋼板9の大きさに応じて種々の形状のものが使用されている。したがって、C型ガンアーム2の浮遊インダクタンス5が大きくない場合には、金属材の溶接装置1,25,30において、高周波数で所定の誘導性リアクタンスXとなるように高周波電流阻止用のインダクタンス13をさらに追加してもよい。この外付けインダクタンス13は、例えば、低周波電源6側の溶接トランス16の2次巻き線側に接続することができる。
 本発明の金属材の溶接装置1,25,30の特徴は、低周波電源6と高周波電源8との分離をインダクタンス5及びコンデンサ7で行っている点と、電極4に低周波電源6と高周波電源8の周波数の異なる2周波数の電源を同時に印加できる点にある。
(鋼板に生じる電流分布)
 図5(A)は、重ね合わせた2枚の鋼板9へ低周波電源6と高周波電源8とから電力を同時に印加したとき鋼板9に生じる電流分布を模式的に示す断面図であり、図6は、鋼板9の加熱状態を示す図である。
 図5(A)において、実線は高周波電源8による高周波電流22を示し、点線は低周波電源6による低周波電流24を示している。電極4は銅からなり、直径は6mmであり、低周波電源6の周波数は50Hzである。1枚の鋼板9の厚さは2mmであり、高周波電源8の周波数は40kHzである。低周波電流24は電極4,4の内部全体を流れ、鋼板9は、おおよそナゲット径の断面積幅で通電される。
 図6(A)は、低周波電流24だけによる鋼板9の加熱領域を示す平面図で、電極4の軸断面を鋼板9に投影した円形内部9Aが主たる加熱領域となる。図6(B)は、図6(A)のX-X方向の温度分布であり、鋼板9において、電極4の軸断面を鋼板9に投影した円形内部9Aが集中的に加熱される。
 一方、高周波電流22は電極4の表面及びナゲット外周領域に電流が集中する。低周波電流24と高周波電流22の分布が異なるのは、所謂表皮厚さに関係している。
 図6(C)は、高周波電流22だけによる鋼板9の加熱領域を示す平面図であり、電極4の軸断面を鋼板9に投影した外周円及び外周円近傍、つまり、リング状をなす円形外部となるリング状の近傍領域9Bが主たる加熱領域となる。図6(D)は、図6(C)のX-X方向の温度分布であり、鋼板9において、電極4の軸断面を鋼板9に投影した外周円及び外周円近傍の略リング状領域9Bが抵抗加熱される。この場合、高周波電流22による加熱は、電極4の表面を流れる高周波電流22により近接する鋼板9が誘導加熱される領域も含まれる。この誘導加熱は、誘導加熱コイルを用いた通常の誘導加熱とは異なる。従って、高周波電流22による鋼板9に投影した外周円及び外周円近傍のリング状領域9Bの加熱は、高周波電流22による抵抗加熱、又は、この抵抗加熱と共に上記高周波誘導加熱が重畳した加熱によって行うことができる。
 図6(D)において、さらに高周波電源8の動作周波数を変化させることによって、リング状領域9Bの幅を変化させることができる。実際に、低周波電流24を通電してスポット溶接を行った場合、高周波電源8の動作周波数を変化させると、ナゲット外周領域の高温領域の幅が変化することも確認できた。従って、高周波電流22による鋼板9に投影した外周円及び外周円近傍のリング状領域9Bの加熱は、高周波電流22による抵抗加熱、又は、この抵抗加熱と共に上記高周波誘導加熱が重畳した加熱によって行うことができる。
 従って、重ね合わせた2枚の鋼板9へ低周波電源6と高周波電源8とから電力を同時に印加したとき鋼板9の加熱領域は、図6(E)に示すように低周波電流24の通過領域となる円形内部9Aと高周波電流22の通過領域となるリング状領域9Bを重畳したものとなる。さらに、これらの電流22,24で生じる鋼板9の温度分布は、図6(F)に示すように低周波電流24による温度分布(図6(B)参照)と高周波電流22による温度分布(図6(D)参照)を重畳したものとなる。つまり、鋼板9においては、電極4の軸断面を鋼板9に投影した円形内部9Aと、電極4の軸断面を鋼板9に投影した外周円及び外周円近傍のリング状領域9Bとが加熱される。
(表皮厚さ)
 表皮厚さ(δ)は、下記(1)式で表わされる。
    δ=503.3×(ρ/(μ×f))1/2 (m)    (1)
 ここで、ρは材料の抵抗率(Ω・m)、μは材料の比透磁率、fは周波数(Hz)である。
 表皮厚さは、周波数の1/2乗で変化するので、同じ材料であれば低周波数程厚くなり、高周波数になれば薄くなる。一般にスポット溶接用の電源は50Hz又は60Hzなので直径6mm程度の電極であれば、電流は電極全体に流れる。
 一方、鋼板9の表面だけを加熱する場合の高周波電源8の周波数は、上記(1)式により所定の表皮厚さとなるように周波数を設定することができる。よって、ナゲット外周領域の加熱幅を選択するには、周波数を設定すればよい。つまり、高周波電流22の周波数を変えることによって、ナゲット外周領域の加熱幅が変えられ、リング状領域9Bに焼戻し等の加熱処理をすることができる。従って、鋼板9として比較的柔らかい材料、例えばS20C焼鈍材等を用いた場合には、リング状領域9Bを軟化させることができる。
 なお、材料内部において、表皮厚さの深さにおける高周波電流22の大きさは、最表面の1/e(ここで、eは自然対数である。)、つまり約1/3程度である。鋼板9の表皮厚さは、周波数が50Hzで約9.3mmであり、周波数が40kHzで約0.3mmである。
(高周波電源の周波数選定)
 高周波電源8の周波数は、溶接トランス16の2次巻き線側に接続されるインダクタンス5と必要に応じてさらに挿入されるインダクタンス13と整合コンデンサ7の容量で決まる。ガンアーム2の浮遊インダクタンスをインダクタンス5として利用する場合、インダクタンス5はガンアーム2の形状で決まる。このため、周波数を決めるのは整合コンデンサ7の値となる。周波数を上げると表皮効果の影響で外周領域の昇温パターンは、加熱幅が狭くなり、局所的となる。しかし、ガンアーム2のインダクタンス5(ωL)は周波数に比例するので、整合コンデンサ7の電圧も上昇する。高周波電源8から電極4,4を見た回路は、直列共振回路である。直列共振周波数においては、インダクタンス5の電圧と整合コンデンサ7の電圧は同じとなるので整合コンデンサ7の電圧が上がると、低周波数と高周波数の2周波数合成が困難となり、大きな電流阻止用インダクタンス5やインダクタンス13が必要となる。大きな電流阻止用インダクタンス5,13は、低周波電流24にも影響を及ぼすこととなり、従来のスポット溶接機の2次電圧を大幅に上げる必要がある。
 逆に、直列共振周波数を下げると、ナゲット外周領域の昇温パターンは加熱幅が広くなるが、整合コンデンサ7の電圧が低くなるので2周波数合成は容易となる。また、ガンアーム2には溶接トランス16、バイパスコンデンサ11、必要に応じて電流阻止用インダクタンス13を搭載する必要がある。この中で、溶接トランス16の重量が最も重い。溶接トランス16の重量は周波数に反比例する。以上を勘案すると、動作周波数は5kHzから40kHzが最適である。但し、ガンアーム2を溶接ロボット等の溶接装置に搭載しない場合はこの限りではない。また、低周波数と高周波数との周波数の差は、2周波数合成回路の観点から10倍以上の差が好ましい。
(金属材の溶接装置を用いた加熱処理)
 本発明の金属材の溶接装置1,25,30によるスポット溶接及び加熱処理について説明する。
 金属材9の溶接は、金属材9を一対の電極4,4にて挟み通電して金属材9を加熱することによって行われる。一例として、一対の電4,4極への第1の通電によって金属材9の所定領域を加熱する第1ステップと、金属材9を挟む一対の電極4,4の位置を第1ステップと同一位置に維持した状態で、一対の電極4,4への第2の通電によって第1ステップとは異なる領域を加熱する第2ステップと、を備えていればよい。ここで、第1ステップと第2ステップとの加熱時間は、それぞれ独立して制御することができる。第1通電が低周波電源6からの通電である場合には、第1の通電による金属材9の所定の加熱領域は、上記した円形内部9Aである。第2の通電が高周波電源8からの通電である場合には、第1の通電による金属材9の所定の加熱領域は、上記したリング状領域9Bである。上記の第1ステップ及び第2ステップは組み合わせてもよい。
 図7~図9は、一対の電極4,4に流れる電流波形を模式的に示す図である。図7~図9において、横軸は時間(任意目盛)を示し、縦軸は低周波電源6及び高周波電源8から印加される電流波形22,24(任意目盛)を示している。
 図7は、低周波電源6からの電力と高周波電源8からの電力とによりスポット溶接と加熱処理とを同時に行う場合の加熱波形を示す図である。図7に示すように、溶接で形成されるナゲットは低周波電源6からの電力でその全体が加熱されると共に、ナゲット外周領域は高周波電源8からの電力によって同時に加熱される。ここで、ナゲット全体は、電極4の軸断面を鋼板9に投影した円形内部9Aに対応している。また、ナゲット外周領域は、電極4の軸断面を鋼板9に投影した外周円及び外周円近傍のリング状領域9Bに対応している。
 本発明の金属材の溶接装置1,25,30によれば、低周波電源6と高周波電源8とからの電力を同時印加したときの電流分布から、低周波電源6により鋼板9同士のスポット溶接を行う共に、2枚の鋼板9の電極4に接していない領域の電極外周面を高周波電源8によって加熱を行うことができる。
 図8は、低周波電源6からの電力を印加した後に高周波電源8からの電力を印加する場合の加熱波形を示す図である。図8に示すように、低周波電源6から電力を印加しこれを停止後に高周波電源8から電力を印加する場合には、低周・BR>G電源6からの電力印加によって、鋼板9同士がスポット溶接される。その後の高周波電源8からの電力印加によって、2枚の鋼板9のナゲット外周領域の電極4に接していない領域の表面が加熱される。
 これにより、本発明の金属材の溶接装置1,25,30によれば、低周波電源6からの電力印加の後に高周波電源8から電力を印加することによって、スポット溶接されて形成されたナゲットの外周領域の加熱処理(アニールとも呼ばれることがある。)を行うことができる。この加熱処理の温度と加熱時間を調整することで、鋼板9等の焼戻し処理等の加熱処理に適用することができる。
 図9は低周波電源6から電力を印加する前に高周波電源8を用いた予熱を行う場合の加熱波形を示す図である。図9に示すように、高周波電源8からの電力印加の後に低周波電源6から電力を印加する場合には、最初に鋼板9同士のスポット溶接されない領域の表面、つまり、銅電極4に接触していない近傍領域が加熱される。この予備加熱後に低周波電源6からの電力印加によって、2枚の鋼板9がスポット溶接される。
 このようにして、本発明の金属材の溶接装置1,25,30によれば、高周波電源8から電力を印加した後に低周波電源6から電力を印加することによって、スポット溶接される領域の近傍を、溶接される前に以前に予備加熱することもできる。予備加熱の温度と加熱時間を調整することで、スポット溶接で生じる焼入れを防止することができる。
 鋼板9を2枚重ねたときに鋼板9に生じる電流分布を説明したが、鋼板9を複数枚重ねたときに鋼板9に生じる電流分布について説明する。
 図5(B)は、鋼板9を3枚重ね合わせた場合の高周波電流22による加熱状態を示す断面図である。図5(B)に示すように、鋼板9を3枚重ね合わせた場合には、2箇所のリング状領域Bと、2箇所の鋼板9の接合面の端部Cと、からなる4箇所のリング状領域が高周波電流22によって加熱される。
(表皮厚さ)
 鋼板9へ低周波数又は高周波数の電力を印加した場合の表皮厚さは周波数の-1/2乗で変化するので、同じ材料であれば低周波数程厚くなり、高周波数になれば薄くなる。一般にスポット溶接用の電源は50Hz又は60Hzなので直径6mm程度の電極であれば電流は電極全体に流れる。
 一方、鋼板9の表面だけを加熱する場合の高周波電源18の周波数は、所定の表皮厚さとなるように周波数を設定することができる。よって、外周領域の加熱幅を選択するには、周波数を設定すればよい。つまり、高周波電流22の周波数を変えることによって、外周領域の加熱幅が変えられ、リング状領域Bに焼戻し等の加熱処理をして、リング状領域2Bを軟化させることができる。
 なお、鋼板9等の材料内部において、表皮厚さの深さにおける高周波電流22の大きさは、最表面の1/e(ここで、eは自然対数である。)、つまり約1/3程度である。鋼板2の表皮厚さは、周波数が50Hzで約9.3mmであり、周波数が40kHzで約0.3mmである。
(金属材の溶接装置を用いた加熱処理の変形例)
 金属材の溶接装置1によるさらに別の加熱方法を説明する。
 図10~図12は、一対の電極に流す電流波形の一例を示す図である。横軸は時間(任意目盛)を示し、縦軸は低周波電源6及び高周波電源8から一対の電極に印加される電流波形22,24(任意目盛)を示している。
 図10は、高周波電源8を用いた予熱と低周波電源6を用いた加熱と高周波電源8を用いた後熱を連続して行う場合の加熱波形を示す図である。後熱という用語は予熱の後で行う加熱の意味で用いている。つまり、後熱は、鋼板9を低周波電源6を用いてスポット溶接をした後の加熱処理を示している。
 高周波電源8からの電力の印加後に低周波電源6からの電力を印加する場合には、最初に鋼板9同士のスポット溶接されない領域の表面が加熱される。この予備加熱後の低周波電源6からの電力の印加によって、2枚の鋼板9がスポット溶接される。さらに、高周波電源8からの電力による後熱によりスポット溶接によって形成されたナゲットの外周領域の加熱処理を行うことができる。この加熱処理の温度と加熱時間を調整することで、鋼板9等の焼戻し処理等の熱処理に適用することができる。
 図11は、高周波電源8を用いて予熱を行うと共に、高周波電源8と低周波電源6とを用いて部分的に同時加熱を行う場合の加熱波形を示す図である。図11に示すように、高周波電源8からの電力は、予熱の時間と低周波電源6からの電力の印加時間直後の所定時間とに印加される。つまり、低周波電源6からの電力の印加時間の初期だけ、高周波電源8から電力が重畳される。予熱の効果は図6の加熱方法と同様な効果がある。また、低周波電源6及び高周波電源8からの電力が部分的に重畳されて鋼板9に印加されるので、図7の同時加熱方法と同様にスポット溶接を行うと共に、2枚の鋼板9の電極4に接していない領域の電極4の外周面を高周波電源8からの電力によって加熱することができる。
 図12は、低周波電源6を用いた加熱と高周波電源8を用いた後熱とを行い、さらに、低周波電源6と高周波電源8を用いて部分的に同時加熱を行う場合の加熱波形を示す図である。図12に示すように、高周波電源8からの電力は、低周波電源6の印加終了前の所定時間とその後の後熱の時間に印加される。低周波電源6及び高周波電源8からの電力が部分的に重畳されるので、図7の加熱波形と同様にスポット溶接を行う共に、2枚の鋼板9の電極4に接していない領域の電極4の外周面を高周波電源8によって加熱することができる。後熱の効果は図8の加熱方法と同様な効果がある。
 上記の高周波電源8による鋼板9の加熱時間は通電制御部10で制御することができるので、スポット溶接する鋼板9等のスポット溶接箇所だけの部分昇温ができ、加熱に要する電力消費を低減することができる。
(金属材の溶接装置の変形例3)
 次に、金属材の溶接装置の変形例3を示す。
 図13は、金属材の溶接装置の変形例3を示す電気回路図である。図13に示す金属材の溶接装置35が、図2に示す金属材の溶接装置1と異なるのは、スポット溶接用電源6として、低周波電源ではなく直流電源36を用いた点にある。直流電源36は、インバータ等を用いた直流電源から構成され、通電制御部10によって直流電流の大きさや通電時間等が制御される。他の構成は、金属材の溶接装置1と同様であるので説明は省略する。
(金属材の溶接装置の変形例4)
 次に、金属材の溶接装置の変形例4を示す。
 図14は金属材の溶接装置の変形例4を示す電気回路図である。図14に示す金属材の溶接装置40が図4の金属材の溶接装置30と異なるのは、低周波電源6を直流電源36とした点にある。直流電源36は、インバータ等を用いた電源から構成され、通電制御部10によって直流電流の大きさや通電時間等が制御される。他の構成は金属材の溶接装置30と同様であるので説明は省略する。
 金属材の溶接装置35,40においても、コンデンサ7は直流電源36から高周波電源8への電流阻止用コンデンサの作用をし、インダクタンス5は高周波電源8から直流電源36への電流阻止用インダクタンス、つまりチョークコイルの作用をする。
 金属材の溶接装置35,40によれば、電極4,4に直流を流してスポット溶接をするので、低周波電源6を用いた場合とは異なり、表皮効果がないから、電極4,4の大きさをワーク9に応じて選定することができる。
(溶接用電源として直流電源を用いた場合の加熱方法)
 溶接用電源6として直流電源36を用いた金属材の溶接装置35,40においても、金属材の溶接装置1,25,30と同様な加熱方法を採用することができる。
 図15~図19は、金属材の溶接装置35,40の加熱波形を示す図である。各図の横軸は時間(任意目盛)を示し、縦軸は直流電源36及び高周波電源8から印加される電流波形26,22(任意目盛)を示している。
 図15は、直流電源36と高周波電源8とを用いた同時加熱の加熱波形を示す図である。同時加熱の効果は、図7に示した低周波電源6と高周波電源8とを用いた同時加熱の効果と同じである。
 図16は、高周波電源8を後熱のために用いた加熱波形を示す図である。高周波電源8の後熱の効果は、図8に示した高周波電源8を用いた後熱の効果と同じである。
 図17は、高周波電源8を予熱のために用いた加熱波形を示す図である。高周波電源8の予熱の効果は、図9に示した高周波電源8を用いた予熱の効果と同じである。
 図18は、高周波電源8を用いた予熱と直流電源36を用いた加熱と高周波電源8を用いた後熱を連続して行う場合の加熱波形を示す図である。この場合の加熱効果は、図10に示した加熱方法の効果と同じである。
 図19は、高周波電源8によって予熱を行うと共に、高周波電源8と直流電源36とを用いて部分的に同時加熱を行う場合の加熱波形を示す図である。この場合、高周波電源8を用いて予熱をし、さらに、高周波電源8は、直流電源36からの電力の印加時間直後の所定時間に印加される。つまり、低周波電源6からの電力の印加時間の初期だけ、高周波電源8から電力が重畳される。予熱の効果は図11の加熱方法と同じである。
 図20は、高周波電源8と直流電源36とを用いて部分的に同時加熱を行い、高周波電源8によって後熱を行う場合の加熱波形を示す図である。この場合、高周波電源8は、直流電源36からの電力の印加終了直後の所定時間に印加される。つまり、低周波電源6からの電力の印加時間の終了直前に高周波電源8から電力が重畳される。予熱の効果は図12の加熱方法と同じである。
 上記の高周波電源8による鋼板9の加熱時間は通電制御部10で制御することができるので、スポット溶接する鋼板9等のスポット溶接箇所だけの部分昇温ができ、加熱に要する電力消費を低減することができる。
 本発明によれば、金属材の溶接装置1,25,30,35,40の電極4,4を介してワーク9に高周波電源8を接続することによって、接触しない近傍領域の部分加熱を行うことができる。ワーク9の高周波加熱は、低周波電源6又は直流電源36からの電力の印加の前又は後、或いは低周波電源6又は直流電源36の印加と同時に行う方法等を選定することができる。
 金属材の溶接装置1,25,30,35,40は、溶接後の急冷によって鋼板9に焼きが入る。この場合、冷却方向としては鋼板9上の横方向(図7参照)からの放熱と、電極4,4の縦方向からの熱移動がある。電極4,4からの縦方向の熱移動は、電極4,4を水冷しているために効果としては大きい。熱溜の具体例は、スポット溶接後、高周波通電を行い、ナゲット外周領域に熱溜を作り、ナゲットの冷却を電極4,4の縦方向への熱移動によって行う。これにより、高周波通電を行わない場合に生じる縦と横の両方向への熱移動が、縦方向だけになるので、鋼板9の凝固時の組織形成を制御することができる。
 従来式のスポット溶接機では、鋼板9の昇温プロファイルは、電極4,4と鋼板9が接する中央領域で鋼板9が重なりあった領域が最も高温となり、この高温となった領域にナゲットが形成される。つまり、従来式のスポット溶接機では電極4,4直下領域が加熱される。しかし、高周波電流22を電極4,4に通電すると、表皮効果のため高周波電流22は電極4,4の表面に集中し、この高周波電流22は鋼板9に接触すると表皮効果により鋼板9の表面を流れる。この電流経路によって、鋼板9が最も昇温される領域は電極4,4の外周、つまり、ナゲット外周領域となる。
 このように、高周波電源8から供給される高周波電流22を電極4,4に通電することによりナゲットの外周領域だけの部分加熱ができ、この部分加熱範囲は、最も昇温させた範囲となる。また、部分加熱範囲を絞ることにより電極4,4の直下全体を加熱するよりも効率のよい加熱方法となる。高周波通電は、電極4,4の外周円状で加熱できるため、熱的に井戸状態を形成できる。従って、鋼板9の板面内の抜熱を抑制した状態で溶融凝固させることができるため短時間で溶接が可能である。
 これにより、溶接領域強度を決定づけるナゲット外周領域を選択的に高周波通電により加熱処理することによって、鋼板の炭素含有量が高くても十分に強度があるスポット溶接接合部を短時間で作ることができる。
 金属材の溶接装置1,25,30,35,40によれば、2周波数の通電を行うことで、スポット溶接用電源6からの電力は主として鋼板9の溶融凝固部を形成するのに用い、高周波電源8を用いた加熱は強度を決定づけるナゲット外周領域の円部を集中的に加熱処理するために用いることができる。このため、鋼板9の溶接箇所を集中的に独立して加熱することができ、従来のスポット溶接では得られない圧倒的に短い時間で、所望のスポット溶接品質を得ることができる。
 従来式のサイリスタ位相制御方式を用いたスポット溶接では、電流が途切れる部分があり溶接品質上好ましくないが、金属材の溶接装置1,25,30,35,40によれば、高周波電流22の振幅制御を行っているので、高周波電流22が途切れることがなくなり、鋼板9のスポット溶接の品質を向上させることができる。
(本発明に使用できるワーク)
 上記説明においては、スポット溶接される金属材9が例えば鋼板9である場合を示したが、金属材9であれば如何なる材料でもよい。また、ワーク9の形状は板に限らず如何なる形状でもよい。また、鋼板9は2枚をスポット溶接する例を示したが、複数の板の溶接であってもよい。
 さらに、スポット溶接される金属材9は、互いに異なる金属材同士のスポット溶接でもよい。
(本発明に使用できる電極)
 上記説明において、電極4の軸断面を鋼板9に投影した領域の形状が円形である場合を例示したが、電極4の軸断面の形状は円形に限らず、楕円、角が丸い四角や三角などの多角形状であってもよい。
 以下、本発明の金属材の溶接装置1によって鋼板9をスポット溶接する具体例について詳細に説明する。
 2枚の鋼板9のスポット溶接を行った。図21は、低周波電源6と高周波電源8からの電力印加を模式的に説明する図である。用いた鋼板9、低周波電源6、高周波電源8等の条件を以下に示す。
 鋼板9:厚さ2mm,大きさ5cm×15cm
 低周波電源6:50Hz,電極4は銅製で直径が6mm、電源容量50kVA
 低周波電源6の通電時間:0.3~0.5秒
 高周波電源8:30kHz,50kW出力
 高周波電源8の通電時間:0.3~0.6秒
 鋼板9の組成は、鉄以外の成分として、C(炭素)が0.19~0.29重量%含有されている。
 最初に、図21に示すように、高周波電源8からの電力によって予熱を0.3秒間行った。高周波の投入電力は4.9kWから37kWまで変化させた。
 次に、低周波電源6からの電力を印加して溶接を行った。低周波電源6の投入は、図18に示すように、第1電流及び第2電流の2段階の通電で行った。第1電流の立ち上がりを1サイクルとし、第1通電を2サイクルとし、第1電流値は11kAである。1サイクルの冷却をした後、第2電流値を8.kAとして16サイクル通電した。低周波電源6による2段階の通電は冷却等も含めて20サイクルであり、溶接時間は0.4秒であった。
 実施例2においては、高周波電源8からの電力を低周波電源6からの電力と同時に0.3秒間印加した。高周波の投入電力は2.7kWから39.9kWまで変化させた。低周波電源6からの電力の通電は実施例1と同じである。
 実施例3においては、高周波電源8からの電力を低周波電源6からの電力の通電終了直後に0.3秒間印加した。高周波の投入電力は2.7kWから39.9kWまで変化させた。低周波電源6の通電は実施例1と同じである。
(比較例)
 実施例1~3に対する比較例として、高周波電源8を印加せず、低周波電源6の通電によって溶接をした。つまり、通常のスポット溶接を行った。
 実施例及び比較例の溶接試料の十字引張試験を行い、破断荷重を求めた。表1は、実施例及び比較例の溶接試料の高周波通電パターンと高周波投入電力と破断荷重と平均破断荷重を示している。
Figure JPOXMLDOC01-appb-T000001
 実施例1で高周波投入電力を4.9kWとした溶接試料のサンプル数は3つである。各溶接試料の破断荷重は、それぞれ、19.54kN,18.46kN,20.28kNであった。高周波投入電力を8.6kW,20.9kW,28.5kW,37kWとした溶接試料の破断荷重は、それぞれ、21.26kN,19.59kN,17.98kN,19.58kNであった。これから、高周波通電によって予熱をしてから低周波電源6でスポット溶接をした実施例1の溶接試料の平均破断荷重は、19.5kNであることが分かった。
 実施例2で高周波投入電力を2.7~3.8kWとした溶接試料のサンプル数は2つであり、破断荷重は、それぞれ、15.97kN,17.70kNであった。高周波投入電力を22.8~25kW,33.3~39.9kWとした溶接試料の破断荷重は、それぞれ、20.5kN,21.05kNであった。これから、低周波電源6を用い、同時に高周波通電をしながらスポット溶接をした実施例2の溶接試料の平均破断荷重は、18.8kNであることが分かった。
 実施例3で高周波投入電力を4.2kW,8.6kW,30.8kW,39.9kWとした溶接試料の破断荷重は、それぞれ、18.7kN,18.35kN,17.94kN,19.73kNであった。これから、低周波電源6を用いた溶接の後で、高周波通電をした実施例3の溶接試料の平均破断荷重は、18.7kNであることが分かった。
 比較例の溶接試料のサンプル数は2つで、破断荷重は、それぞれ、12.47kN,12.88kNであった。これから、比較例の2段階通電による従来のスポット溶接をした溶接試料の平均破断荷重は、12.7kNであることが分かった。
 実施例1の予熱、実施例2の同時加熱及び実施例3の後熱を行った溶接試料で得た平均破断荷重は、比較例の平均破断荷重に対して、それぞれ、1.54倍,1.48倍,1.47倍の大きさである。従って、実施例1~3の溶接試料で得た平均破断荷重は、低周波電源6だけのスポット溶接の場合に比較して、約50%向上していることが判明した。実施例1~3においては、高周波通電が予熱、同時、後熱の違いはあるが、何れの加熱方法でも比較例の低周波電源6だけによるスポット溶接に比較して、破断荷重を著しく高めることができた。
 なお、鋼板9の炭素含有量が0.19重量%~0.26重量%程度の範囲内であれば、比較例よりも破断荷重を著しく高めることができた。
 実施例1と同じ金属材の溶接装置1を用い、高周波電源8単独の加熱効果を確認するためにクロムモリブデン鋼9の焼入れ処理を行った。用いたクロムモリブデン鋼9はSCM435であり、実施例1の鋼板と同じ寸法である。実施例1と同じ周波数で高周波電源8から0.3秒間の通電を行い、焼入れ処理を行った。
 図22は、実施例4の焼入れ処理をしたクロムモリブデン鋼(SCM435)9表面の硬さ分布を示す図である。図の横軸はクロムモリブデン鋼(SCM4359)の表面における電極4の軸断面方向の位置を示しており、電極4の位置及びその外径寸法も示している。図の縦軸はビッカース硬度(HV)である。
 図22から明らかなように、実施例4のクロムモリブデン鋼(SCM435)の電極4の最外周に相当する領域の硬度が最も高く約670HVであり、焼入れされていない領域の硬度である約370HVよりも高くなっていることが分かった。これにより、高周波電源8からの電力印加でクロムモリブデン鋼(SCM435)において電極4の外周領域のリング状領域だけを焼入れできることが判明した。
 予め焼入れ処理がされ、硬度が約620HVのクロムモリブデン鋼(SCM435)を、実施例1と同じ金属材の溶接装置1を用いて加熱し、焼戻し処理を行った。実施例1と同じ周波数で高周波電源8から0.3秒間の通電を行い、焼戻し処理を行った。
 図23は、実施例5の焼戻し処理をしたクロムモリブデン鋼(SCM435)9表面の硬さ分布を示す図である。図23の横軸及び縦軸は、図23と同じである。図23から明らかなように、実施例5のクロムモリブデン鋼(SCM435)9の電極4の最外周に相当する領域の硬度が最も低く約550HVであり、焼戻し前の硬度(約620HV)よりも低くなっていることが分かった。これにより、高周波電源8からの電力印加でクロムモリブデン鋼(SCM435)9において電極4の外周領域のリング状領域だけを焼戻しできることが判明した。
 本発明は、上記実施の形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。上述した実施形態における、ガンアーム2や電極4の形状、インダクタンス5やコンデンサ7の値などは、ワーク9の種類や形状に応じて適宜に設計することが可能である。

Claims (14)

  1.  金属材を一対の電極にて挟み、金属材に対して該一対の電極を同一位置に維持した状態で通電して上記金属材の異なる領域を加熱する金属材の溶接装置であって、
     上記一対の電極に接続され上記金属材へ第1の周波数の電力を印加して所定領域を加熱する第1の加熱手段と、
     上記一対の電極に接続され上記金属材へ第2の周波数の電力を印加して上記所定領域とは異なる領域を加熱する第2の加熱手段と、
     上記第1の加熱手段及び上記第2の加熱手段を、それぞれ独立して制御する通電制御部と、
    を備えたことを特徴とする、金属材の溶接装置。
  2.  前記金属材の前記所定領域の内部が、前記第1の加熱手段により加熱され、
     前記金属材の前記所定領域の近傍が、前記第2の加熱手段により加熱され、
     前記第1の加熱手段による加熱と前記第2の加熱手段による加熱とが、前記通電制御部により独立して制御されることを特徴とする、請求項1に記載の金属材の溶接装置。
  3.  前記第1の加熱手段は、前記電極の軸断面を前記金属材に投影した領域の内部を加熱する加熱手段であり、
     前記第2の加熱手段は、前記電極の軸断面を前記金属材に投影した領域の輪郭に沿ってリング状をなす領域を加熱する加熱手段であり、
     前記第1の加熱手段による加熱と前記第2の加熱手段による加熱とが、前記通電制御部により独立して制御されることを特徴とする、請求項2に記載の金属材の溶接装置。
  4.  前記第1周波数は前記第2周波数よりも周波数が低く、前記金属材へ該第1周波数の電力を通電することで、前記円形内部が溶接されることを特徴とする、請求項3に記載の金属材の溶接装置。
  5.  前記第2周波数は前記第1周波数よりも周波数が高く、前記金属材へ該第2周波数の電力を通電することで、前記リング状をなす領域が抵抗加熱され、あるいは、抵抗加熱及び誘導加熱されることを特徴とする、請求項3に記載の金属材の溶接装置。
  6.  前記第1の加熱手段は、前記一対の電極に電力を供給する溶接用電源であり、
     前記第2の加熱手段は、前記一対の電極に高周波電力を供給する高周波電源であり、
     前記一対の電極に上記溶接用電源と上記高周波電源とがそれぞれ並列に接続され、
     上記溶接用電源と前記一対の電極との間に電流阻止用インダクタンスが接続され、
     上記高周波電源と前記一対の電極との間に電流阻止用コンデンサが接続され、
     上記電流阻止用インダクタンスが、上記高周波電源から前記一対の電極に供給される高周波電流が上記溶接用電源に流れ込まないように阻止し、
     上記電流阻止用コンデンサが、上記溶接用電源から前記一対の電極に供給される電流が上記高周波電源側に流れ込まないように阻止することを特徴とする、請求項1に記載の金属材の溶接装置。
  7.  さらに、ガンアームを備えており、前記スポット溶接用電源と前記高周波電源とが、該ガンアームを介して前記1対の電極に接続されることを特徴とする、請求項6に記載の金属材の溶接装置。
  8.  前記溶接用電源は低周波電源または直流電源であることを特徴とする、請求項6又は7に記載の金属材の溶接装置。
  9.  前記低周波電源はトランスを介して前記一対の電極に接続され、該トランスの前記一対の電極側の巻き線にバイパスコンデンサが並列接続されていることを特徴とする、請求項8に記載の金属材の溶接装置。
  10.  金属材を一対の電極にて挟み通電して金属材を加熱する金属材の溶接方法であって、
     上記一対の電極への第1の通電によって上記金属材の所定領域を加熱する第1ステップと、
     上記金属材を挟む上記一対の電極を上記第1ステップと同一位置に維持した状態で、上記一対の電極への第2の通電によって上記第1ステップとは異なる領域を加熱する第2ステップと、を、備え、
     上記第1ステップと上記第2ステップとの加熱時間を、それぞれ独立して制御することを特徴とする、金属材の溶接方法。
  11.  前記第1ステップにおいて、第1の加熱手段により前記金属材の前記所定領域の内部を加熱し、
     前記第2ステップにおいて、第2の加熱手段により前記金属材の前記所定領域の近傍を加熱し、
     上記第1の加熱手段による加熱と上記第の2加熱手段による加熱とを、独立して制御することを特徴とする、請求項10に記載の金属板の溶接方法。
  12.  前記第1の加熱手段で加熱する前記所定領域が、前記電極の軸断面を前記金属材に投影した円形の内部領域であり、
     前記第2の加熱手段で加熱する前記異なる領域が、前記電極の軸断面を前記金属材に投影した円形に沿ったリング状の近傍領域であり、
     前記第1の加熱手段による加熱と前記第2の加熱手段による加熱とを、独立して制御することを特徴とする、請求項11に記載の金属板の溶接方法。
  13.  前記第1の加熱手段による加熱を前記第2の加熱手段による加熱よりも周波数の低い低周波で行うことで、前記円形内部を溶接することを特徴とする、請求項12に記載の金属板の溶接方法。
  14.  前記第2の加熱手段による加熱を前記第1の加熱手段による加熱よりも周波数の高い高周波で行うことで、前記リング状をなす円形外部を、抵抗加熱し、あるいは抵抗加熱及び誘導加熱することを特徴とする、請求項12に記載の金属板の溶接方法。
PCT/JP2009/067032 2008-09-30 2009-09-30 金属材の溶接装置及び金属材の溶接方法 WO2010038779A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2009801479472A CN102227283B (zh) 2008-09-30 2009-09-30 金属构件的焊接装置以及金属构件的焊接方法
US13/121,408 US9079266B2 (en) 2008-09-30 2009-09-30 Welding equipment for metallic materials and method for welding metallic materials
KR1020117009214A KR101289370B1 (ko) 2008-09-30 2009-09-30 금속재의 용접 장치 및 금속재의 용접 방법
EP09817811.4A EP2351628B1 (en) 2008-09-30 2009-09-30 Welding device for metal and welding method for metal
US14/738,364 US10189112B2 (en) 2008-09-30 2015-06-12 Welding equipment for metallic materials and method for welding metallic materials
US16/207,007 US20190099829A1 (en) 2008-09-30 2018-11-30 Welding equipment for metallic materials and method for welding metallic materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-255777 2008-09-30
JP2008255776A JP5305194B2 (ja) 2008-09-30 2008-09-30 金属材の溶接装置
JP2008-255776 2008-09-30
JP2008255777A JP5305195B2 (ja) 2008-09-30 2008-09-30 金属材の溶接方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/121,408 A-371-Of-International US9079266B2 (en) 2008-09-30 2009-09-30 Welding equipment for metallic materials and method for welding metallic materials
US14/738,364 Division US10189112B2 (en) 2008-09-30 2015-06-12 Welding equipment for metallic materials and method for welding metallic materials

Publications (1)

Publication Number Publication Date
WO2010038779A1 true WO2010038779A1 (ja) 2010-04-08

Family

ID=42073538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067032 WO2010038779A1 (ja) 2008-09-30 2009-09-30 金属材の溶接装置及び金属材の溶接方法

Country Status (5)

Country Link
US (3) US9079266B2 (ja)
EP (1) EP2351628B1 (ja)
KR (1) KR101289370B1 (ja)
CN (1) CN102227283B (ja)
WO (1) WO2010038779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013793A1 (ja) * 2009-07-31 2011-02-03 高周波熱錬株式会社 溶接構造部材及び溶接方法
WO2020184728A1 (ja) * 2019-03-14 2020-09-17 日本製鉄株式会社 溶接継手の製造方法、溶接継手、焼き戻し装置及び溶接装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500901B (zh) * 2011-11-16 2014-04-16 上海交通大学 复合脉冲点焊工艺及系统
CN103128466B (zh) * 2011-12-02 2015-11-11 昆山万盛电子有限公司 一种点焊机热风循环系统
JP5880032B2 (ja) * 2011-12-27 2016-03-08 トヨタ自動車株式会社 レーザー溶接方法
JP5932431B2 (ja) * 2012-03-28 2016-06-08 中央発條株式会社 加熱装置及び加熱方法
KR101406547B1 (ko) * 2012-08-22 2014-06-11 주식회사 포스코 용접장치 및 용접전극
CN103831520A (zh) * 2012-11-23 2014-06-04 天津市亿博制钢有限公司 一种冷轧钢带焊接工艺方法
JP6438880B2 (ja) * 2013-06-27 2018-12-19 高周波熱錬株式会社 溶接構造部材及び溶接方法
KR101892828B1 (ko) * 2013-07-11 2018-08-28 신닛테츠스미킨 카부시키카이샤 저항 스폿 용접 방법
ES2741739T3 (es) * 2014-01-31 2020-02-12 Nippon Steel Corp Unión soldada por puntos y método de soldadura por puntos
US20150314363A1 (en) * 2014-04-30 2015-11-05 GM Global Technology Operations LLC Method of forming a vehicle body structure from a pre-welded blank assembly
JP2016055337A (ja) * 2014-09-11 2016-04-21 高周波熱錬株式会社 溶接方法及び溶接構造物
DE102014117923A1 (de) * 2014-12-04 2016-06-09 Thyssenkrupp Ag Verfahren und Vorrichtung zum Widerstandsschweißen von Sandwichblechen
BR112017012031A2 (pt) * 2014-12-12 2017-12-26 Nippon Steel & Sumitomo Metal Corp dispositivo de fonte de alimentação, sistema de união e método de processamento condutor
DE102015100849B4 (de) * 2015-01-21 2017-01-05 Thyssenkrupp Ag Verfahren und Vorrichtung zum Widerstandsschweißen eines Sandwichblechs
KR101675005B1 (ko) * 2015-02-16 2016-11-10 부경대학교 산학협력단 고주파 유도가열 장치 및 이를 이용한 방법
KR102056264B1 (ko) * 2015-03-05 2019-12-16 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 방법
EP3266554B1 (en) 2015-03-05 2021-08-11 JFE Steel Corporation Resistance spot welding device
US10272515B2 (en) * 2015-09-15 2019-04-30 GM Global Technology Operations LLC Power pulse method for controlling resistance weld nugget growth and properties during steel spot welding
KR102646688B1 (ko) * 2015-12-22 2024-03-12 써머툴 코포레이션 워크피스 가열을 위한 엄격하게 통제된 출력을 갖는 고주파수 파워 서플라이 시스템
JP6055154B1 (ja) 2016-08-29 2016-12-27 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
US11179776B2 (en) * 2017-06-28 2021-11-23 Rolls-Royce Corporation Joining metal or alloy components using electric current
FR3086671B1 (fr) 2018-09-27 2021-05-28 Psa Automobiles Sa Procede de traitement thermique de recuit ou de revenu de points de soudure par chauffage par induction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104742A (ja) * 1974-01-25 1975-08-19
JPS6224877A (ja) * 1985-07-24 1987-02-02 Miyachi Denshi Kk コンデンサ式スポツト溶接機
JPH09271962A (ja) * 1996-04-04 1997-10-21 Hitachi Ltd 被覆ワイヤ接合方法および装置
JP2001105155A (ja) * 1999-10-01 2001-04-17 Dengensha Mfg Co Ltd インバータ交流式抵抗溶接方法と制御装置
JP2002321068A (ja) * 2001-04-27 2002-11-05 Miyachi Technos Corp 被覆線用抵抗溶接装置
JP2005169429A (ja) * 2003-12-09 2005-06-30 Hidehiko Sugimoto 抵抗溶接方法及び抵抗溶接電源装置
JP2005211934A (ja) 2004-01-29 2005-08-11 Fuji Heavy Ind Ltd スポット溶接装置

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1933045A (en) * 1931-12-23 1933-10-31 James V Caputo Frequency control system for electric welders
US2021477A (en) * 1933-08-05 1935-11-19 Aluminum Co Of America Resistance welding
US2301424A (en) * 1936-05-19 1942-11-10 List Heinrich Apparatus for generating extremely large short-duration energy impulses
US2233526A (en) * 1937-10-09 1941-03-04 Bernhard Berghaus Apparatus for double spot or seam welding
US2262705A (en) * 1939-08-07 1941-11-11 Rustless Iron & Steel Corp Electric welding
US2287544A (en) * 1941-02-25 1942-06-23 Clayton Mark & Company Electric welding of metals and the uniting of dissimilar metals
US2609482A (en) * 1946-07-23 1952-09-02 Padevco Inc Means for welding thermoplastic sheets
US2969453A (en) * 1958-08-11 1961-01-24 Pa Co Inc Du Welding
DE1473400A1 (de) * 1962-05-23 1969-01-09 Deutsch Pruef Messgeraete Verfahren und Vorrichtung zur zerstoerungsfreien Pruefung von Punkt- und anderen Pressschweissungen
GB1069511A (en) * 1962-08-01 1967-05-17 British Welding Res Ass Improvements relating to arcs
US3245408A (en) * 1964-04-08 1966-04-12 Donald I Gonser Electrotherapy apparatus
US3492512A (en) * 1966-03-08 1970-01-27 Square D Co Pulse generating firing and safety circuit for phase controlled silicon controlled rectifiers
US3538301A (en) * 1967-03-10 1970-11-03 Anaconda American Brass Co Gas shield,non-consumable-electrode pulse arc welding
GB1256096A (en) * 1968-07-08 1971-12-08 Solartron Electronic Group Improvements in or relating to welding control
US3576422A (en) * 1969-07-11 1971-04-27 North American Rockwell Preionizing welding apparatus
SE348665B (ja) * 1970-01-14 1972-09-11 Elektriska Svetsnings Ab
US4025864A (en) * 1972-02-22 1977-05-24 Inductotherm Corporation Direct current modulator for providing variable double frequency electrical power to a load
DE2841284C2 (de) * 1978-09-22 1982-04-15 H.A. Schlatter AG, Schlieren, Zürich Vorrichtung zum Programmieren eines Handhabungsgeräts
ATE15617T1 (de) * 1981-05-13 1985-10-15 Schuler Gmbh L Elektrische energiequelle fuer eine widerstandsschweissmaschine.
JPS58188087A (ja) * 1982-04-28 1983-11-02 松下電器産業株式会社 誘導加熱調理器
JPS6163381A (ja) * 1984-09-03 1986-04-01 Mitsubishi Electric Corp フラツシユバツト溶接装置
US4785149A (en) * 1985-10-25 1988-11-15 Gilliland Malcolm T Distributed station welding system
CH670591A5 (ja) * 1986-03-07 1989-06-30 Castolin Sa
US4804819A (en) * 1986-12-08 1989-02-14 Medar, Inc. Structure and method for resistance welding with an inductively coupled power source
US5229567A (en) * 1988-11-17 1993-07-20 Honda Giken Kogyo Kabushiki Kaisha Switching control system for controlling an inverter of a spot resistance welding apparatus
US5315089A (en) * 1992-03-02 1994-05-24 Westinghouse Electric Corporation System and method for converting an AGTAW welder into an AGMAW welder
DE69509428T2 (de) * 1994-03-24 1999-09-30 Fuji Electric Co Ltd Struktur einer Parallelschaltverbindung für flache Halbleiterschalter
MX9504535A (es) * 1995-07-19 1997-01-31 Inland Steel Co Metodo para soldadura de resistencia con metal de dilucion y producto del mismo.
US5889262A (en) * 1997-05-15 1999-03-30 Seah Steel Corporation System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine
JPH11129077A (ja) * 1997-10-29 1999-05-18 Miyachi Technos Corp 抵抗溶接電源装置
US6255635B1 (en) * 1998-07-10 2001-07-03 Ameritherm, Inc. System and method for providing RF power to a load
JP3396636B2 (ja) * 1998-10-26 2003-04-14 松下電器産業株式会社 抵抗溶接機の制御方法
US6207929B1 (en) * 1999-06-21 2001-03-27 Lincoln Global, Inc. Tandem electrode welder and method of welding with two electrodes
EP1103331A3 (en) * 1999-08-23 2003-07-16 Miyachi Technos Corporation Joining apparatus
JP4420520B2 (ja) * 2000-03-23 2010-02-24 ミヤチテクノス株式会社 抵抗溶接電源装置
EP1307824A4 (en) * 2000-06-02 2008-03-26 Richard L Thelen GAP WELDING
AT412076B (de) * 2000-12-15 2004-09-27 Fronius Schweissmasch Prod Verfahren zum verbinden mehrerer schweissgeräte sowie schweissgerät hierfür
DE10114323A1 (de) * 2001-03-25 2002-09-26 Matuschek Mestechnik Gmbh Vorrichtung zum Widerstandsschweißen
US6472634B1 (en) * 2001-04-17 2002-10-29 Lincoln Global, Inc. Electric arc welding system
US6515259B1 (en) * 2001-05-29 2003-02-04 Lincoln Global, Inc. Electric arc welder using high frequency pulses
US7540402B2 (en) * 2001-06-29 2009-06-02 Kva, Inc. Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
US7618503B2 (en) * 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
US6815640B1 (en) * 2002-07-09 2004-11-09 Lincoln Global, Inc. Apparatus, system and method to facilitate reconfigurable welding power supply
US6847008B2 (en) * 2003-01-17 2005-01-25 Lincoln Global, Inc. Electric arc welding system
JP2005081387A (ja) * 2003-09-09 2005-03-31 Ishikawajima Harima Heavy Ind Co Ltd Tig溶接装置及び方法
US7183516B2 (en) * 2004-05-24 2007-02-27 Lincoln Global, Inc. System and method for welding with multiple arcs
JP2005334903A (ja) * 2004-05-25 2005-12-08 Daihen Corp 抵抗溶接制御方法
US7220940B2 (en) * 2004-12-16 2007-05-22 Lincoln Global, Inc. System for welding with multiple arcs
NL1028829C2 (nl) * 2005-04-20 2006-10-23 Fontijne Grotnes B V Werkwijze en systeem voor het aan elkaar lassen van delen.
DE102005036806A1 (de) * 2005-08-02 2007-02-08 Lorch Schweißtechnik GmbH Elektrische Stromquelle, insbesondere Schweißstromquelle
JP5142068B2 (ja) * 2006-05-17 2013-02-13 日産自動車株式会社 抵抗スポット溶接用高張力鋼板及びその接合方法
KR100752125B1 (ko) * 2006-07-31 2007-08-27 주식회사 포스코 크롬 프리 표면처리 강판과 페라이트계 스테인리스강의저항 스폿 용접 방법
US20080061045A1 (en) * 2006-09-11 2008-03-13 The Esab Group, Inc. Systems And Methods For Providing Paralleling Power Sources For Arc Cutting And Welding
JP5342280B2 (ja) * 2009-03-16 2013-11-13 株式会社神戸製鋼所 タンデムパルスアーク溶接制御装置、及び、そのシステム
EP2474381B8 (en) * 2009-08-31 2019-07-24 Nippon Steel Corporation Spot-welded joint and spot welding method
US8207798B1 (en) * 2009-09-09 2012-06-26 Triquint Semiconductor, Inc. Matching network with switchable capacitor bank

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104742A (ja) * 1974-01-25 1975-08-19
JPS6224877A (ja) * 1985-07-24 1987-02-02 Miyachi Denshi Kk コンデンサ式スポツト溶接機
JPH09271962A (ja) * 1996-04-04 1997-10-21 Hitachi Ltd 被覆ワイヤ接合方法および装置
JP2001105155A (ja) * 1999-10-01 2001-04-17 Dengensha Mfg Co Ltd インバータ交流式抵抗溶接方法と制御装置
JP2002321068A (ja) * 2001-04-27 2002-11-05 Miyachi Technos Corp 被覆線用抵抗溶接装置
JP2005169429A (ja) * 2003-12-09 2005-06-30 Hidehiko Sugimoto 抵抗溶接方法及び抵抗溶接電源装置
JP2005211934A (ja) 2004-01-29 2005-08-11 Fuji Heavy Ind Ltd スポット溶接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Welding/jointing guidebook", 30 September 1990, MARUZEN, pages: 392 - 398

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013793A1 (ja) * 2009-07-31 2011-02-03 高周波熱錬株式会社 溶接構造部材及び溶接方法
JP5467480B2 (ja) * 2009-07-31 2014-04-09 高周波熱錬株式会社 溶接構造部材及び溶接方法
US9498840B2 (en) 2009-07-31 2016-11-22 Neturen Co., Ltd. Welding structural part and welding method of the same
WO2020184728A1 (ja) * 2019-03-14 2020-09-17 日本製鉄株式会社 溶接継手の製造方法、溶接継手、焼き戻し装置及び溶接装置
JP6769584B1 (ja) * 2019-03-14 2020-10-14 日本製鉄株式会社 溶接継手の製造方法、溶接継手、焼き戻し装置及び溶接装置

Also Published As

Publication number Publication date
CN102227283B (zh) 2013-11-13
US20110303655A1 (en) 2011-12-15
CN102227283A (zh) 2011-10-26
US20190099829A1 (en) 2019-04-04
KR20110059655A (ko) 2011-06-02
EP2351628A4 (en) 2017-04-05
KR101289370B1 (ko) 2013-07-29
US10189112B2 (en) 2019-01-29
EP2351628B1 (en) 2018-06-13
US9079266B2 (en) 2015-07-14
US20150306696A1 (en) 2015-10-29
EP2351628A1 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
WO2010038779A1 (ja) 金属材の溶接装置及び金属材の溶接方法
JP5305194B2 (ja) 金属材の溶接装置
JP5467480B2 (ja) 溶接構造部材及び溶接方法
JP6438880B2 (ja) 溶接構造部材及び溶接方法
KR101860128B1 (ko) 경화가능한 강으로 만들어진 하나 이상의 피용접재를 맞대기 이음으로 레이저 용접하기 위한 방법
KR101906084B1 (ko) 저항 스폿 용접 방법
JP5713147B2 (ja) 重ね合せ溶接部材、自動車用部品、重ね合せ部の溶接方法、及び、重ね合せ溶接部材の製造方法
JP5305195B2 (ja) 金属材の溶接方法
KR20150095649A (ko) 경화가능한 강의 하나 이상의 피용접재를 필러 와이어를 사용하는 맞대기 이음으로 레이저 용접하기 위한 방법
EP3441178A1 (en) A method for joining two blanks
CN107848062A (zh) 电阻点焊方法
CN106363288A (zh) 一种提高双相钢焊点质量的电阻点焊工艺
EP2126145A1 (en) Method for improving the performance of seam-welded joints using post-weld heat treatment
US20130105046A1 (en) System and method for generating a welded assembly
KR20220127335A (ko) 저항 스폿 용접 방법 및 저항 스폿 용접 이음매의 제조 방법
WO2019160141A1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6225717B2 (ja) 溶接継手の形成方法
CN107848061A (zh) 电阻点焊方法
KR101739947B1 (ko) 점용접 제어방법
CN116586732A (zh) 一种三层钢板电阻点焊工艺及所用电极

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147947.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117009214

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009817811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13121408

Country of ref document: US