WO2010035757A1 - アフィニティークロマトグラフィー用充填剤 - Google Patents

アフィニティークロマトグラフィー用充填剤 Download PDF

Info

Publication number
WO2010035757A1
WO2010035757A1 PCT/JP2009/066554 JP2009066554W WO2010035757A1 WO 2010035757 A1 WO2010035757 A1 WO 2010035757A1 JP 2009066554 W JP2009066554 W JP 2009066554W WO 2010035757 A1 WO2010035757 A1 WO 2010035757A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
amino acid
protein
affinity chromatography
acid sequence
Prior art date
Application number
PCT/JP2009/066554
Other languages
English (en)
French (fr)
Inventor
田守 功二
哲夫 福田
宮路 正昭
勇 王
毅由 安陪
友亮 岡野
昌輝 籾山
孝広 河合
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to US13/121,124 priority Critical patent/US8846877B2/en
Priority to EP09816172.2A priority patent/EP2339339A4/en
Priority to CN200980137428.8A priority patent/CN102165312B/zh
Priority to JP2010530858A priority patent/JP5626526B2/ja
Publication of WO2010035757A1 publication Critical patent/WO2010035757A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof

Definitions

  • the present invention relates to a packing material for affinity chromatography.
  • the present invention relates to a packing material for affinity chromatography to which a specific ligand useful for antibody purification is bound.
  • Affinity chromatography is chromatography that uses a column packed with a ligand-immobilized carrier obtained by immobilizing a substance (ligand) that specifically binds to the substance intended for separation and purification on an insoluble carrier, For example, it is used for the separation and purification of biological materials such as proteins and nucleic acids (Japanese Patent Laid-Open No. 6-281638).
  • POROS trade name
  • This filler uses mother particles mainly composed of a hydrophobic styrene-divinylbenzene copolymer. In this filler, non-specific adsorption, which is considered to be mainly caused by the mother particles, may occur, and when used at a high flow rate, the binding capacity is reduced.
  • An object of the present invention is to provide a packing material for affinity chromatography that can maintain a high ligand binding capacity even when separation / purification is performed at a high flow rate that has never been achieved.
  • the packing material for affinity chromatography comprises: A porous mother particle containing a copolymer of a monomer mixture containing a crosslinkable vinyl monomer and an epoxy group-containing vinyl monomer, A ligand is bound to the porous mother particle, The porous mother particle has a ring-opened epoxy group obtained by ring-opening an epoxy group contained in the porous mother particle.
  • the ring-opening epoxy group can contain a substituted or unsubstituted 2,3-dihydroxypropyl group.
  • the ligand may be a protein containing an immunoglobulin binding domain of protein A.
  • the immunoglobulin binding domain of protein A may be at least one selected from the A domain, B domain, C domain, D domain, E domain, and Z domain.
  • the ligand may be an immunoglobulin binding protein represented by the following general formula (1).
  • RR 2 (1) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • R- can be a group represented by the following general formula (2).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.)
  • the ligand is one type in which at least one of the amino acid sequence represented by R and the amino acid sequence represented by R 2 in the general formula (1) is selected from lysine, arginine, and cysteine. And a domain t consisting of 1 to 50 amino acids including
  • the ligand may be an immunoglobulin binding protein represented by the following general formula (3).
  • R 2 -R (3) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • —R can be a group represented by the following general formula (4).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.)
  • the ligand is one type in which at least one of the amino acid sequence represented by R and the amino acid sequence represented by R 2 in the general formula (3) is selected from lysine, arginine, and cysteine. And a domain t consisting of 1 to 50 amino acids including
  • protein refers to any molecule having a peptide structural unit, for example, a concept including a partial fragment of a natural protein or a variant obtained by artificially modifying the amino acid sequence of a natural protein.
  • the “immunoglobulin binding domain” represents a functional unit of a polypeptide having immunoglobulin binding activity alone, and the “immunoglobulin binding protein” has a specific affinity for immunoglobulin, and Represents a protein comprising an “immunoglobulin binding domain”.
  • TEV domain refers to a site cleaved by TEV (Tobacco Etch Virus) protease.
  • porous mother particles containing a copolymer of a monomer mixture containing a crosslinkable vinyl monomer and an epoxy group-containing vinyl monomer
  • a ligand is bonded to the particle, and the porous mother particle has a ring-opened epoxy group obtained by ring-opening an epoxy group contained in the porous mother particle.
  • High ligand binding capacity can be maintained even during separation and purification at high flow rates.
  • FIG. 1 is a view showing the amino acid sequences of immunoglobulin binding proteins (SPAK, SPAC, SPAKK, SPATK) prepared in Synthesis Example 1 of the present invention.
  • FIG. 2 is a view showing amino acid sequences of immunoglobulin binding proteins (SPA2K, SPA3K, SPA-His-C, SPA-His-N) prepared in Synthesis Example 1 of the present invention.
  • FIG. 3 is a diagram for explaining the structure of a DNA fragment encoding the immunoglobulin binding protein according to Synthesis Example 1 of the present invention, which is inserted into each of three types of expression vectors (pETM-11, pETM-10 and pET29). is there.
  • a filler for affinity chromatography is a porous mother particle containing a copolymer of a monomer mixture containing a crosslinkable vinyl monomer and an epoxy group-containing vinyl monomer.
  • the ligand is bonded to the porous mother particle, and the porous mother particle has a ring-opened epoxy group obtained by ring-opening an epoxy group contained in the porous mother particle.
  • the filler for affinity chromatography (porous mother particles) according to this embodiment is mainly composed of a copolymer of a monomer mixture containing a crosslinkable vinyl monomer and an epoxy group-containing vinyl monomer. Is preferred.
  • cross-linkable vinyl monomer an aromatic polyvinyl monomer and an aliphatic polyvinyl monomer are suitable.
  • aromatic polyvinyl monomer divinylbenzene is used. Is preferably a polyvalent (meth) acrylate compound.
  • the above-mentioned epoxy group-containing vinyl monomer is a vinyl monomer containing an epoxy group in the molecule.
  • (meth) such as glycidyl (meth) acrylate and ⁇ - (meth) acryl- ⁇ -glycidyl polyethylene glycol Acrylic acid esters; aromatic vinyl compounds such as vinylbenzyl glycidyl ether and the like, and glycidyl methacrylate and vinylbenzyl glycidyl ether are particularly preferable.
  • the filler for affinity chromatography is preferably a porous material containing a copolymer of 20 to 50% by weight of a crosslinkable vinyl monomer and 50 to 80% by weight of an epoxy group-containing vinyl monomer. It is preferable to use porous organic polymer particles.
  • the crosslinkable vinyl monomer is less than 20% by weight of the total amount of the monomer, the strength of the filler is inferior, so the filler may be destroyed at a high flow rate, and the column pressure may increase.
  • the crosslinkable vinyl monomer exceeds 50% by weight of the total amount of the monomers, it is difficult to control the pore diameter and the binding capacity may be reduced.
  • the filler for affinity chromatography according to this embodiment may contain another vinyl monomer as a copolymer component, and the content of the other vinyl monomer is preferably 0 to 30% by weight. It is.
  • the filler for affinity chromatography preferably has a particle diameter (volume average particle diameter) of 20 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • the “particle diameter” in the present invention is a volume average particle diameter obtained by a laser diffraction / scattering particle size distribution measuring apparatus.
  • the packing material for affinity chromatography preferably has a specific surface area of 50 to 150 m 2 / g, more preferably 80 to 120 m 2 / g.
  • the specific surface area is less than 50 m 2 / g, the binding capacity may be inferior.
  • the specific surface area exceeds 150 m 2 / g, the strength of the filler is inferior and the filler is destroyed at a high flow rate. Column pressure may increase.
  • the “specific surface area” in the present invention is a value obtained by dividing the surface area of pores having a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter by the dry weight of the particles.
  • the filler for affinity chromatography preferably has a volume average pore diameter of 100 to 400 nm, more preferably 200 to 300 nm.
  • the “volume average pore diameter” in the present invention is a volume average pore diameter of pores having a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter.
  • the balance between the gaps between the particles to be the flow path of the solution to be purified and the relatively large pore size in the particle and the binding surface area of the molecule to be purified is optimal. And the binding capacity under high flow rate is maintained at a high level.
  • porous mother particles used as the affinity chromatography filler according to this embodiment include, for example, 20 to 50% by weight of a crosslinkable vinyl monomer and 50 to 80% by weight of an epoxy group.
  • the infiltration volume (pore volume) of pores having a pore diameter of 10 to 5000 nm when the affinity chromatography filler according to this embodiment is measured with a mercury porosimeter is preferably 1.3 to 2.5 mL / g.
  • the porous mother particles used as a filler for affinity chromatography according to the present embodiment can be produced, for example, by known seed polymerization, suspension polymerization, or the like.
  • seed polymerization method a two-stage swelling polymerization method described in JP-B-57-24369 is also preferably used.
  • water and porogen are essential components, and a polymerization initiator, a polymer dispersant, a surfactant, a salt, seed particles, and the like are used as necessary.
  • porogens include organic solvents such as aliphatic or aromatic hydrocarbons, esters, ketones, ethers, and alcohols.
  • organic solvents include toluene, ethylbenzene, cumene, n-propylbenzene, n-butylbenzene, t-butylbenzene, sec-butylbenzene, iso-butylbenzene, xylene, ethyltoluene, cymene, t- Butyl toluene, diisopropylbenzene, mesitylene, cyclohexane, octane, isooctane, butyl acetate, dimethyl phthalate, methyl ethyl ketone, 2-octanone, 3-octanone, 4-octanone, diisobutyl ketone, 2-nonanone, 3-nonanone, 4-nonanone,
  • polymerization initiator examples include peroxide initiators such as benzoyl peroxide, lauroyl peroxide, tertiary butyl peroxy 2-ethyl hexanate, 3,5,5-trimethyl hexanoyl peroxide, azobisisobutyronitrile, azobis An azo initiator such as isovaleronitrile is preferred.
  • peroxide initiators such as benzoyl peroxide, lauroyl peroxide, tertiary butyl peroxy 2-ethyl hexanate, 3,5,5-trimethyl hexanoyl peroxide, azobisisobutyronitrile, azobis An azo initiator such as isovaleronitrile is preferred.
  • water-soluble polymers such as polyvinyl alcohol and polyvinyl pyrrolidone having a saponification degree of 80 to 95% can be used.
  • surfactants anionic surfactants such as sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, polyoxyethylene dodecyl ether sulfate ester salts, nonionic surfactants such as polyoxyethylene alkyl ether, etc. should be used.
  • the salt sodium chloride, sodium sulfate and the like can be preferably used.
  • polystyrene particles having a molecular weight of about 1,000 to 100,000, polyalkyl (meth) acrylate particles, and the like can be used.
  • the particle size required for the filler of the present invention can be obtained by adjusting the size and amount of seed particles, the amount of monomer, and the amount of porogen.
  • the particle size required for the filler of the present invention is obtained by adjusting the type and amount of the polymer dispersant and the surfactant, the stirring speed, the shape and size of the stirring blade and the polymerization vessel. Can do.
  • Examples of the ligand binding method include (1) a method in which an epoxy group contained in a porous mother particle is directly used as a ligand binding site (for example, a method described in JP-T-2006-511935), and (2) porosity.
  • the alcoholic hydroxyl group generated by ring opening of the epoxy group contained in the mother particle is activated with a tosyl group or the like to bind the ligand, or the alcoholic hydroxyl group is oxidatively opened using an oxidizing agent and then the ligand.
  • a method for example, a method described in Japanese Patent Application Laid-Open No. 2007-211076 or Japanese Patent Application Laid-Open No.
  • the epoxy group on the surface is substantially ring-opened before being used as a packing material for affinity chromatography. That is, the filler for affinity chromatography according to the present embodiment has a ring-opened epoxy group.
  • the ring-opened epoxy group is obtained by opening the epoxy group contained in the porous mother particle before or after bonding the ligand to the porous mother particle.
  • the “ring-opening epoxy group” refers to a group in which an epoxy group is opened, and more specifically, for example, a nucleophilic group having a hydroxide ion, a chloride ion, a mercapto group, an amino group, or the like. A group in which an epoxy group is opened by reacting a compound or the like with an epoxy group.
  • the alcoholic hydroxyl group produced by the ring opening of the epoxy group makes the copolymer surface hydrophilic, prevents non-specific adsorption of proteins, etc., improves the toughness of the particles in water, and destroys particles at high flow rates. Play a role to prevent.
  • Examples of the ring-opening method of the epoxy in the porous mother particles include a method of heating or stirring at room temperature with an acid or alkali in an aqueous solvent.
  • the epoxy group may be ring-opened with a blocking agent having a mercapto group such as mercaptoethanol or a blocking agent having an amino group such as monoethanolamine.
  • the ring-opened epoxy group includes, for example, a group formed by opening an epoxy group, a group in which a ligand is bonded to the group formed by opening the ring, and It may be any group in which a ligand is bonded to the group generated by the ring opening via a linker, and is preferably at least one of these groups.
  • the porous mother particle is substituted or unsubstituted 2,3-dihydroxy as a ring-opened epoxy group in that the surface of the copolymer can be hydrophilized and nonspecific adsorption of proteins and the like can be more effectively prevented. It preferably contains a propyl group.
  • An unsubstituted 2,3-dihydroxypropyl group can be obtained, for example, by opening a glycidyl group by hydrolysis.
  • the substituted 2,3-dihydroxypropyl group can be obtained, for example, by opening the glycidyl group with a blocking agent having a mercapto group such as mercaptoethanol or a blocking agent having an amino group such as monoethanolamine.
  • Ligand The type of ligand is not particularly limited as long as it has affinity for the target.
  • proteins such as protein A, protein G, and avidin; peptides such as insulin; antibodies such as monoclonal antibodies Enzyme; hormone; DNA; RNA; carbohydrate such as heparin, Lewis X, ganglioside; iminodiacetic acid, synthetic dye, 2-aminophenylboronic acid, 4-aminobenzamidine, glutathione, biotin and derivatives thereof Compounds can be used.
  • the ligand illustrated above may use the whole, the fragment obtained by a recombinant, an enzyme treatment, etc. may be used. Further, it may be an artificially synthesized peptide or peptide derivative.
  • Preferred ligands for antibody purification are protein A and protein G, more preferably protein A immunoglobulin binding domain, most preferably 4 or more consecutive at the end of protein A immunoglobulin binding domain.
  • a protein containing a peptide containing a histidine unit examples include an immunoglobulin-binding protein represented by the following general formula (1) or (3).
  • Immunoglobulin binding protein (hereinafter also referred to as “protein 1”), which is an example of a preferred ligand, is represented by the following general formula (1).
  • RR 2 (1) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • the number of amino acids contained in the amino acid sequence represented by R is preferably 8 to 100, and the number of histidines at sites where histidines contained in R are continuous is 4 to 8 It is preferable that In the general formula (1), the number of amino acids contained in the amino acid sequence represented by R 2 is preferably 120 to 480.
  • R- is preferably a group represented by the following general formula (2).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.)
  • the number of amino acids contained in the amino acid sequence represented by R 1 is 4 to 25, the number of histidine site histidine continuous contained in R 1 is 4- The number is preferably 8.
  • the number of amino acids contained in the amino acid sequence represented by r is preferably 10-50.
  • protein 2 An immunoglobulin-binding protein (hereinafter also referred to as “protein 2”), which is another example of a preferable ligand, is represented by the following general formula (3).
  • R 2 -R (3) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • the number of amino acids contained in the amino acid sequence represented by R is preferably 8 to 100, and the number of histidines at sites where histidines contained in R are continuous is 4 to 8 It is preferable that In the general formula (1), the number of amino acids contained in the amino acid sequence represented by R 2 is preferably 120 to 480.
  • -R is preferably a group represented by the following general formula (4).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including 4 to 20 consecutive histidines (wherein, in R 1 , the end of the site where the histidine continues is bound to r) And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.
  • the number of amino acids contained in the amino acid sequence represented by R 1 is preferably 4 to 25, and the number of histidines at sites where histidines contained in r are continuous is 4 to 8
  • the number of amino acids contained in the amino acid sequence represented by r is preferably 10 to 50.
  • one amino acid at least one of the amino acid sequence represented by amino acid sequence and R 2 is represented by R is, selected lysine, arginine, and cysteine It preferably contains a domain t consisting of 1 to 50 amino acids including In this case, the same or different domain t may be contained in the amino acid sequence.
  • the amino acid sequence represented by r may contain a TEV domain. Since the TEV domain is contained in the amino acid sequence represented by r, it is possible to separate R and R 2 by cleavage with TEV protease, and the TEV domain has the effect of the present invention (immobilization on a carrier). This is a preferable sequence for realizing a large amount and increasing the ability of the carrier to retain immunoglobulin). Further, in the amino acid sequence represented by r, a TEV domain mutant (mutant) (regardless of whether or not it can be cleaved by the TEV protease, the amino acid sequence of the TEV domain is 70% or more, preferably 90% or more of homology. May be included).
  • the total number of amino acids constituting the protein 1 or 2 of the present invention is usually 70 to 1000, and preferably 80 to 600 when used for binding to particles.
  • the immunoglobulin binding domain of protein A is preferably at least one selected from the A domain, B domain, C domain, D domain, E domain, and Z domain.
  • the amino acid sequences of the domains of A domain, B domain, C domain, D domain, and E domain are, for example, Moks T, Abrahms L, et al., Staphylococcal protein A consists of five IgG-binding domains, Eur J Biochem. 1986, 156, 637-643, described in Fig. 1.
  • the document is included in the disclosure by this reference.
  • a protein comprising an amino acid sequence having 70% or more (preferably 90% or more) homology with the amino acid sequence of each domain described in the above document should also be used as an immunoglobulin binding domain of protein A in the present invention. Can do.
  • the immunoglobulin binding protein according to this embodiment may have a plurality of the same or different types of immunoglobulin binding domains.
  • the immunoglobulin binding domain of protein A is (D domain-A domain) n (where n is an integer of 1 or more (preferably 1 to 6), and any number between D domain and A domain)
  • the amino acid sequence of A domain and D domain may be included.
  • the immunoglobulin A binding domain of protein A may be a natural immunoglobulin binding domain or a recombinant immunoglobulin binding domain.
  • the recombinant immunoglobulin binding domain can be treated as equivalent to the immunoglobulin binding domain before modification in immunoglobulin binding activity.
  • the amino acid of the immunoglobulin binding domain of natural protein A It is preferable to maintain a homology of 70% or more (preferably 90% or more) with the sequence.
  • Specific examples include the Z domain described in Nilson B et al., Protein Engineering, 1987, Vol. 1, No. 2, pages 107-113, USA by Hober S et al. Examples include Z domain mutants having alkali resistance described in Patent Application 2006 / 0194955A1.
  • a protein comprising an amino acid sequence having 70% or more (preferably 90% or more) homology with the amino acid sequence of each domain described in the above document should also be used as an immunoglobulin binding domain of protein A in the present invention. Can do.
  • the protein 1 or 2 of the present invention can be obtained in large quantities and economically.
  • any known vector capable of replicating in bacteria can be used.
  • plasmids described in US Pat. No. 5,151,350, Molecular edited by Sambrook et al. Cloning (Cold Spring Harbor Laboratory Press, 3 rd edition, 2001) include plasmids such as those described in.
  • Any method known in the art may be used to transform a bacterium by introducing a nucleic acid into the bacterium, for example, Molecular Cloning (Cold Spring Harbor Laboratory Press, edited by Sambrook et al. 3 rd edition, 2001) can be utilized known methods described in the like. Methods for cultivating transformed bacteria and recovering the expressed protein are well known to those skilled in the art.
  • the nucleic acid according to another embodiment of the present invention encodes an immunoglobulin binding protein (protein 1 or 2) or an equivalent functional variant thereof.
  • “functional variant” of an immunoglobulin-binding protein is an immunoglobulin-binding protein that has been altered by partial amino acid addition, deletion, substitution, chemical modification of amino acid residues, or the like. And having at least 70%, preferably 90% or more homology with the amino acid sequence of the immunoglobulin binding protein before modification, and having the same immunoglobulin binding activity as that of the immunoglobulin binding protein before modification. It means something that can be handled.
  • one immunoglobulin binding domain of protein A is a small protein consisting of about 60 amino acids
  • DNA encoding a desired amino acid sequence is divided into synthetic oligonucleotides consisting of several tens of bases. Then, they are ligated by a ligation reaction with DNA ligase and inserted into a plasmid, whereby a target expression vector can be obtained.
  • a target expression vector can be obtained.
  • it is a method generally performed by those skilled in the art to employ a nucleic acid sequence using an optimal codon of Escherichia coli.
  • the protein 1 or 2 of the present invention may be a protein containing one or more immunoglobulin binding domains (preferably 2 to 12, more preferably 2 to 5).
  • a cDNA encoding such a protein can be easily prepared by linking a predetermined number of cDNAs (complementary DNAs) encoding one immunoglobulin binding domain in series. By inserting the cDNA thus prepared into an appropriate expression plasmid and using it, a protein containing one or more immunoglobulin binding domains can be easily produced.
  • a protein having the amino acid sequence of SEQ ID NOs: 1 to 8 shown in Examples described later, or an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NOs: 1 to 8, and A protein having immunoglobulin binding activity can be suitably used as the immunoglobulin binding protein of the present invention.
  • the packing material using the protein 1 or 2 of the present invention as a ligand has a larger amount of immunoglobulin-binding protein in affinity chromatography than the conventional packing material, and has an excellent ability to retain the protein. ing. Thereby, since the capture amount of the target protein can be increased, the binding capacity of the target protein (antibody) can be increased. As a result, a high-purity target protein can be purified efficiently, at low cost and in large quantities.
  • the binding capacity of the human IgG antibody at a linear flow rate of 300 cm / hr was measured using a column with an inner diameter of 0.5 cm and a height of 5 cm, using AKTAprime plus manufactured by GE Healthcare Bioscience.
  • a human IgG antibody manufactured by Lampire Biological Laboratories
  • diluted to 1 mg / mL with 25 mM citrate buffer (pH 6.0) was used, and the elution tip concentration was 10 w / v% with an absorbance monitor.
  • the binding capacity was determined from the amount of human IgG antibody adsorbed and the filler volume during breakthrough.
  • R and R 2 correspond to R and R 2 in the general formula (1) or the general formula (2) (R 1, R 2 and r are the general formula (2) or corresponds to R 1, R 2 and r in the general formula (4).), underlined in r indicates a TEV domain (TEV protease (peptide bond hydrolysis synthase) cleavage site), in R 2 The underlined portion indicates an interdomain linker or C-terminal linker (domain t), see Table 2.
  • TEV domain TEV protease (peptide bond hydrolysis synthase) cleavage site
  • DNA fragments encoding SPAK, SPAC, SPA2K, SPA3K, SPAKK, and SPATK were digested with restriction enzymes NcoI and HindIII (New-England Bio Bio Lab) to produce vector pETM-11. (See FIG. 3, obtained from kind giftof D. Shibly, EMBL Heidelberg, Heidelberg, yGermany).
  • the DNA fragment encoding SPA-His-N was digested with restriction enzymes NcoI and HindIII, and vector pETM-10 (see FIG. 3, kindkingift of D. Shibly, EMBL Heidelberg , Obtained from Heidelberg, Germany).
  • SPA-His-C which is an immunoglobulin binding protein having a histag (a peptide consisting of 6 histidine residues) at the C-terminus
  • the vector pET29 (see FIG. 3, see Novagen). Used).
  • the restriction enzymes used in this vector pET29 were NdeI (New-England Bio Bio Lab) and Xho I (New-England Bio Bio Lab).
  • All three types of expression vectors shown in FIG. 3 contain a kanamycin resistance gene as a selection marker.
  • Tev represents a TEV protease recognition site (amino acid sequence: ENLYFQG). TEV protease recognizes the amino acid sequence ENLYFQG and cleaves between Q and G.
  • the restriction enzyme was introduced by designing a pair of primers based on the SPAK insertion sequence. PCR amplification was performed using primers (SEQ ID NOs: 9 to 17) shown in Table 2.
  • the SPA-His-N DNA fragment can also be obtained directly by digesting a plasmid containing SPAK with a restriction enzyme (Table 1).
  • the DNA fragment of SPA-His-N was directly obtained by digesting a plasmid containing SPAK with a restriction enzyme (Table 1).
  • PCR amplification solution containing 0.5 ⁇ l of Straphylococcus aureus genomic DNA template (500 ng / ⁇ l), 5 pl of each primer, 5 ⁇ l of 10 ⁇ Pfu buffer (manufactured by Fermentas), and 1 ⁇ l of Pfu polymerase (manufactured by Fermentas) (5 units / ⁇ l) Sterile water was added to bring the final volume to 50 ⁇ l.
  • the conditions for PCR amplification are as follows: 94 ° C for 1 minute, then 94 ° C for 30 seconds, 56 ° C for 1 minute, 72 ° C for 1 minute 30 cycles, and finally 72 ° C for 10 minutes.
  • This PCR reaction was carried out with a PX2 Thermal Cycler PCR device (manufactured by Thermo-Electron Corporation).
  • Recombinant immunoglobulin binding protein is obtained from E. coli.
  • E. coli BL21 strain cells (manufactured by STRATAGENE)
  • 1 mM IPTG manufactured by Sigma-Aldrich
  • the cells were incubated at 37 ° C. until the absorbance (OD600) reached approximately 0.6.
  • the cells were collected and disrupted in Tris buffer at pH 8.0.
  • the obtained recombinant immunoglobulin binding protein was purified by Ni affinity chromatography (Ni-NTA (nitrilotriacetic acid) particles, manufactured by Qiagen).
  • Ni-NTA nitrilotriacetic acid
  • the purified immunoglobulin binding protein was further purified in an HEPES buffer at pH 7.5 by anion exchange chromatography (Q-Sepharose FF, manufactured by GE Bioscience).
  • PB Porous particles
  • SPAK glycidyl methacrylate / trimethylolpropane trimethacrylate copolymer
  • the average particle size of PB was 33 ⁇ m and the specific surface area was 83 m 2 / g.
  • SPAK digested with TEV protease was passed through a Ni-NAT column (volume: 4 mL) in 50 mM Tris-HCl, 0.5 mM EDTA, and 1 mM DTT buffer (pH 8.0) to cleave the his tag site of SPAK. Crude SPAKwoHis was recovered. This crude SPAKwoHis was dialyzed for 12 hours in 10 mM HEPES buffer (pH 7.5) to prepare SPAKwoHis for particle binding experiments.
  • the amino acid sequence of SPAKwoHis is as follows.
  • SPAKwohis total amino acid sequence (SEQ ID NO: 18) GAMAKADAQQNNFNKDQQSAFYEILNMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEGSK
  • SPAKwoHis-bound porous particles SPAKwoHis-PB
  • SPAKwoHis-PB SPAKwoHis-bound porous particles
  • Immobilization example 3 380 mg of SPATK-bound porous particles (SPATK-PB) were obtained in the same manner as in Immobilization Example 1 except that SPATK was used instead of SPAK in Immobilization Example 1. The amount of SPATK bound to the particles was 36 mg / g particles.
  • Test example (measurement of binding amount of immunoglobulin G (IgG)) 2.2.3.1. Measurement example 1 Using SPAK-PB, 2.1.3.1. When the binding capacity of the human IgG antibody of SPAK-PB was determined by the method described in the column of measurement method 1, it was 30 mg / mL.
  • the obtained aqueous solution was put into a 7 L separable flask, a thermometer, a stirring blade, and a cooling tube were attached, set in a hot water bath, and stirring was started at 825 rpm in a nitrogen atmosphere. Subsequently, the separable flask was heated with a hot water bath, and when the temperature of the aqueous solution reached 85 ° C., the organic monomer solution was added to the aqueous solution using a dropping funnel, and the mixture was stirred for 5 hours.
  • the reaction solution was transferred to a 5 L polypropylene bottle and allowed to stand until the particles floated, and excess water was sucked out from below and discarded. Further, acetone was added to the reaction solution to precipitate the particles. Next, the reaction solution was allowed to stand for 3 minutes, and acetone was removed by decantation. After repeating this operation twice, water was added to settle the particles. Furthermore, it was left still for 3 minutes and decanted. This operation was repeated twice to wash the particles. Further, the particle dispersion was replaced with acetone again and air-dried overnight, followed by drying in a vacuum drier to obtain porous mother particles 1 (86 g).
  • Ligand 1 Preparation of Ligand SPAK prepared in Synthesis Example 1 is hereinafter referred to as Ligand 1.
  • the particle diameter of the packing material 1 for affinity chromatography is 43 ⁇ m, the specific surface area is 64 m 2 / g, the volume average pore diameter is 235 nm, the pore diameter mode is 130 nm, and the volume average pore diameter / pore diameter mode value.
  • the binding capacity (calculated by the method described in the column of 2.1.3.2. Measurement method 2) was 26 mg / mL at a linear flow rate of 150 cm / hr, 23 mg / mL at 500 cm / hr, and 22 mg / mL at 1000 cm / hr. mL.
  • Synthesis example 4 In Synthesis Example 3, the same procedure as in Synthesis Example 3 was conducted except that 115 g of diisobutyl ketone and 45 g of acetophenone were used instead of 173 g of diisobutyl ketone and 67 g of acetophenone, and the reaction vessel was changed to a separable flask with a baffle instead of a separable flask. Thus, porous mother particles were synthesized, and a ligand was bound thereto to obtain a packing material 2 for affinity chromatography.
  • the particle size of the packing material 2 for affinity chromatography is 33 ⁇ m, the specific surface area is 83 m 2 / g, the volume average pore diameter is 146 nm, the pore diameter mode is 40 nm, and the volume average pore diameter / pore diameter mode is 3.7. Met.
  • the binding capacity (calculated by the method described in section 2.1.3.2. Measurement method 2) was 32 mg / mL at a linear flow rate of 150 cm / hr, 20 mg / mL at 500 cm / hr, and 14 mg / mL at 1000 cm / hr. mL.
  • Synthesis example 5 A filler 3 for affinity chromatography was obtained in the same manner as in Synthesis Example 3 except that (bonding of porous mother particles and ligand) in Synthesis Example 3 was changed to the following procedure.
  • the particle diameter of the packing material 3 for affinity chromatography is 43 ⁇ m, the specific surface area is 64 m 2 / g, the volume average pore diameter is 235 nm, the pore diameter mode is 130 nm, and the volume average pore diameter / pore diameter mode is Was 1.8.
  • the binding capacity (calculated by the method described in 2.1.3.2. Measurement method 2) was 25 mg / mL at a linear flow rate of 150 cm / hr, 21 mg / mL at 500 cm / hr, and 20 mg / mL at 1000 cm / hr. there were.
  • Synthesis Example 6 Porous mother particles were synthesized in the same manner as in Synthetic Example 3 except that cumene 140 g and acetophenone 20 g were used instead of 173 g of diisobutyl ketone and 67 g of acetophenone in Synthesis Example 3, and a ligand was bound to the porous mother particles. Thus, a filler 4 for affinity chromatography was obtained.
  • the particle size of the packing material 4 for affinity chromatography is 39 ⁇ m, the specific surface area is 91 m 2 / g, the volume average pore diameter is 128 nm, the pore diameter mode is 33 nm, and the volume average pore diameter / pore diameter mode is 3.9. Met.
  • the binding capacity (calculated by the method described in the column of 2.1.3.2. Measurement method 2) is 19 mg / mL at a linear flow rate of 150 cm / hr, 8 mg / mL at a linear flow rate of 500 cm / hr, and 1000 cm / hr. It was 6 mg / mL.
  • Synthesis example 7 Synthesis Example 3 except that 15 g of trimethylolpropane trimethacrylate and 25 g of ethylene glycol dimethacrylate were used instead of 40 g of trimethylolpropane trimethacrylate, and 115 g of diisobutylketone and 45 g of acetophenone were used instead of 173 g of diisobutylketone and 67 g of acetophenone.
  • porous mother particles were synthesized, and a ligand was bound to the porous mother particles to obtain a packing material 5 for affinity chromatography.
  • the particle size of the packing material 5 for affinity chromatography is 32 ⁇ m, the specific surface area is 38 m 2 / g, the volume average pore diameter is 329 nm, the pore diameter mode is 302 nm, and the volume average pore diameter / pore diameter mode is 1.1. Met.
  • the binding capacity (calculated by the method described in the column of 2.1.3.2. Measurement method 2) is 10 mg / mL at a linear flow rate of 150 cm / hr, 9 mg / mL at a linear flow rate of 500 cm / hr, and 1000 cm / hr. It was 8 mg / mL.
  • Synthesis example 8 A filler 6 for affinity chromatography was obtained in the same manner as in Synthesis Example 3 except that SPAKwoHis was used instead of Ligand 1 in Synthesis Example 3.
  • the particle size of the packing material 6 for affinity chromatography is 33 ⁇ m, the specific surface area is 83 m 2 / g, the volume average pore diameter is 146 nm, the pore diameter mode is 40 nm, and the volume average pore diameter / pore diameter mode is 3.7. Met.
  • the binding capacity (calculated by the method described in section 2.1.3.2. Measurement method 2) was 8 mg / mL at a linear flow rate of 150 cm / hr, 5 mg / mL at 500 cm / hr, and 4 mg / mL at 1000 cm / hr. mL.
  • Comparative Synthesis Example 1 A filler for affinity chromatography (trade name “MabSelect Xtra”, manufactured by GE Healthcare Biosciences) in which protein A was immobilized on crosslinked agarose not using vinyl monomer as a raw material was evaluated.
  • the binding capacity (calculated by the method described in the column of 2.1.3.2. Measurement method 2) was 25 mg / mL at a linear flow rate of 150 cm / hr and 12 mg / mL at 500 cm / hr. Although the linear flow rate was attempted to be 1000 cm / hr, the column pressure was high and the linear flow rate did not reach 1000 cm / hr.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the present invention also includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same purposes and results).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

アフィニティークロマトグラフィー用充填剤は、架橋性ビニル単量体およびエポキシ基含有ビニル単量体を含む単量体混合物の共重合体を含有する多孔性母粒子であって、前記多孔性母粒子にリガンドが結合しており、前記多孔性母粒子は、該多孔性母粒子に含まれるエポキシ基を開環させて得られる開環エポキシ基を有する。

Description

アフィニティークロマトグラフィー用充填剤
 本発明は、アフィニティークロマトグラフィー用充填剤に関する。特に、抗体精製に有用な特定のリガンドを結合したアフィニティークロマトグラフィー用充填剤に関する。
 アフィニティークロマトグラフィーとは、不溶性担体に、分離・精製を目的とする物質と特異的に結合する物質(リガンド)を固定化し、得られたリガンド固定化担体を充填したカラムを用いるクロマトグラフィーであり、例えばタンパク質、核酸などの生体関連物質の分離・精製に用いられている(特開平6-281638号公報)。
 アフィニティークロマトグラフィー用充填剤としては、アガロースゲルに代表される糖鎖の架橋粒子が広く使われているが、分離・精製対象分子を含む溶液を高速で流すと粒子が変形してカラム圧力が高くなり、分離・精製の時間効率に劣るという問題があった。
 一方、比較的高流速で使用できるアフィニティークロマトグラフィー用充填剤としては、アプライドバイオシステムズ社製POROS(商品名)がある。この充填剤は、疎水性のスチレン-ジビニルベンゼン共重合体を主成分とする母粒子を使用する。この充填剤では、主に母粒子に起因すると考えられる非特異吸着が生じる場合があり、また、高流速で使用すると結合容量が低下する問題があった。
 本発明は、これまでにない高流速下の分離・精製でも高いリガンド結合容量を維持できるアフィニティークロマトグラフィー用充填剤を提供することを目的とする。
 本発明の一態様に係るアフィニティークロマトグラフィー用充填剤は、
 架橋性ビニル単量体およびエポキシ基含有ビニル単量体を含む単量体混合物の共重合体を含有する多孔性母粒子であって、
 前記多孔性母粒子にリガンドが結合しており、
 前記多孔性母粒子は、該多孔性母粒子に含まれるエポキシ基を開環させて得られる開環エポキシ基を有する。
 上記アフィニティークロマトグラフィー用充填剤において、前記開環エポキシ基として置換または非置換の2,3-ジヒドロキシプロピル基を含むことができる。
 上記アフィニティークロマトグラフィー用充填剤において、前記リガンドが、プロテインAのイムノグロブリン結合ドメインを含むタンパク質であることができる。
 この場合、前記プロテインAのイムノグロブリン結合ドメインが、Aドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメイン、およびZドメインから選ばれる少なくとも1種であることができる。
 上記アフィニティークロマトグラフィー用充填剤において、前記リガンドが、下記一般式(1)で表されるイムノグロブリン結合タンパク質であることができる。
 R-R ・・・・・(1)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 この場合、上記一般式(1)において、R-は下記一般式(2)で表される基であることができる。
 R-r- ・・・・・(2)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 また、この場合、前記リガンドは、上記一般式(1)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものであることができる。
 また、上記アフィニティークロマトグラフィー用充填剤において、前記リガンドが、下記一般式(3)で表されるイムノグロブリン結合タンパク質であることができる。
 R-R ・・・・・(3)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 この場合、上記一般式(3)において、-Rは下記一般式(4)で表される基であることができる。
 -r-R ・・・・・(4)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 また、この場合、前記リガンドは、上記一般式(3)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものであることができる。
 本発明において、「タンパク質」とは、ペプチド構造単位を有するあらゆる分子をいい、例えば、天然型タンパク質の部分的断片や天然型タンパク質のアミノ酸配列を人為的に改変した変異体を含む概念である。また、「イムノグロブリン結合ドメイン」とは、単独でイムノグロブリン結合活性を有するポリペプチドの機能単位を表し、「イムノグロブリン結合タンパク質」とは、イムノグロブリンに特異的な親和性を有し、かつ、「イムノグロブリン結合ドメイン」を含むタンパク質を表す。
 また、本発明において、「TEVドメイン」とは、TEV(Tobacco Etch Virus)プロテアーゼによる切断部位をいう。
 上記アフィニティークロマトグラフィー用充填剤によれば、架橋性ビニル単量体およびエポキシ基含有ビニル単量体を含む単量体混合物の共重合体を含有する多孔性母粒子であって、前記多孔性母粒子にリガンドが結合しており、前記多孔性母粒子は、該多孔性母粒子に含まれるエポキシ基を開環させて得られる開環エポキシ基を有することにより、アフィニティークロマトグラフィーにおいて、これまでにない高流速下の分離・精製でも高いリガンド結合容量を維持することができる。
図1は、本発明の合成例1で調製されたイムノグロブリン結合タンパク質(SPAK、SPAC、SPAKK、SPATK)のアミノ酸配列を示す図である。 図2は、本発明の合成例1で調製されたイムノグロブリン結合タンパク質(SPA2K、SPA3K、SPA-His-C、SPA-His-N)のアミノ酸配列を示す図である。 図3は、3種類の発現ベクター(pETM-11、pETM-10およびpET29)にそれぞれ挿入された、本発明の合成例1に係るイムノグロブリン結合タンパク質をコードするDNAフラグメントの構成を説明する図である。
 本発明の一実施形態に係るアフィニティークロマトグラフィー用充填剤は、架橋性ビニル単量体およびエポキシ基含有ビニル単量体を含む単量体混合物の共重合体を含有する多孔性母粒子であって、多孔性母粒子にリガンドが結合しており、多孔性母粒子は、多孔性母粒子に含まれるエポキシ基を開環させて得られる開環エポキシ基を有する。
 1.アフィニティークロマトグラフィー用充填剤
 1.1.多孔性母粒子
 1.1.1.構成
 本実施形態に係るアフィニティークロマトグラフィー用充填剤(多孔性母粒子)は、架橋性ビニル単量体およびエポキシ基含有ビニル単量体を含む単量体混合物の共重合体から主に構成されるのが好ましい。
 上記架橋性ビニル単量体としては、芳香族ポリビニル単量体、脂肪族ポリビニル単量体が好適であり、芳香族ポリビニル単量体としては、ジビニルベンゼンが、また、脂肪族ポリビニル単量体としては多価(メタ)アクリレート化合物が好ましい。多価(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられ、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エチレングリコールジメタクリレート、エチレングリコールジアクリレートが特に好ましい。
 上記エポキシ基含有ビニル単量体は、分子中にエポキシ基を含有するビニル単量体であり、例えば、グリシジル(メタ)アクリレート、α-(メタ)アクリル-ω-グリシジルポリエチレングリコール等の(メタ)アクリル酸エステル類;ビニルベンジルグリシジルエーテル等の芳香族ビニル化合物等が挙げられ、グリシジルメタクリレート、ビニルベンジルグリシジルエーテルが特に好ましい。
 本実施形態に係るアフィニティークロマトグラフィー用充填剤として、好ましくは20~50重量%の架橋性ビニル単量体と50~80重量%のエポキシ基含有ビニル単量体との共重合体を含有する多孔質有機重合体粒子を用いることが好ましい。ここで、架橋性ビニル単量体が単量体総量の20重量%未満であると、充填剤の強度が劣るために高流速下で充填剤が破壊されて、カラム圧力が上昇する場合があり、一方、架橋性ビニル単量体が単量体総量の50重量%を超えると、細孔径の制御が困難となり、結合容量が低下する場合がある。
 本実施形態に係るアフィニティークロマトグラフィー用充填剤は、その他のビニル単量体を共重合体成分として含有していても良く、その他のビニル単量体の含有量は、好ましくは0~30重量%である。
 本実施形態に係るアフィニティークロマトグラフィー用充填剤は、好ましくは、20~80μm、より好ましくは、30~60μmの粒径(体積平均粒子径)を有する。粒径が20μm未満であると、高流速下でカラム圧力が高くなり、実用に耐えない。粒径が80μmを超えると、結合容量に劣る。なお、本発明における「粒径」とは、レーザ回折散乱式粒度分布測定装置により得られる体積平均粒径である。
 本実施形態に係るアフィニティークロマトグラフィー用充填剤は、好ましくは、50~150m/g、より好ましくは、80~120m/gの比表面積を有する。ここで、比表面積が50m/g未満であると、結合容量が劣る場合があり、一方、150m/gを超えると、充填剤の強度が劣るために高流速下で充填剤が破壊されて、カラム圧力が上昇する場合がある。本発明における「比表面積」とは、水銀ポロシメーターにより得られる細孔径10~5000nmの細孔の有する表面積を粒子の乾燥重量で除した値である。
 本実施形態に係るアフィニティークロマトグラフィー用充填剤は、好ましくは、100~400nm、より好ましくは、200~300nmの体積平均細孔径を有する。ここで、体積平均細孔径が100nm未満であると、高流速下の結合容量低下が顕著になる場合があり、一方、400nmを超えると、流速にかかわらず結合容量が低下する場合がある。本発明における「体積平均細孔径」とは、水銀ポロシメーターにより得られる細孔径10~5000nmの細孔の体積平均細孔径である。
 上記範囲の粒径、比表面積、および細孔径分布を満たす場合、精製対象溶液の流路となる粒子間の隙間および粒子内の比較的大きな細孔径と、精製対象分子の結合表面積のバランスが最適化され、高流速下の結合容量が高いレベルに維持される。
 本実施形態に係るアフィニティークロマトグラフィー用充填剤として使用される多孔性母粒子の一具体例としては、例えば、20~50重量%の架橋性ビニル単量体と50~80重量%のエポキシ基含有ビニル単量体との共重合体を含有し、粒径が20~80μmであり、比表面積が50~150m/gであり、体積平均細孔径が100~400nmである多孔性有機重合体粒子が挙げられる。
 なお、本実施形態に係るアフィニティークロマトグラフィー用充填剤を水銀ポロシメーターで測定した場合の細孔径10~5000nmの細孔の浸入体積(細孔体積)は、好ましくは、1.3~2.5mL/gである。
 1.1.2.製造
 本実施形態に係るアフィニティークロマトグラフィー用充填剤として使用される多孔性母粒子は、例えば公知のシード重合、懸濁重合などにより製造することができる。シード重合法として、特公昭57-24369号公報記載の二段膨潤重合法も好適に用いられる。重合に際しては、上記単量体の他、水、ポロジェンを必須成分とし、重合開始剤、高分子分散剤、界面活性剤、塩、シード粒子などを必要に応じて使用する。
 ポロジェンとしては、脂肪族あるいは芳香族炭化水素類、エステル類、ケトン類、エーテル類、アルコール類等の有機溶剤が挙げられる。このような有機溶剤としては、例えば、トルエン、エチルベンゼン、クメン、n-プロピルベンゼン、n-ブチルベンゼン、t-ブチルベンゼン、sec-ブチルベンゼン、iso-ブチルベンゼン、キシレン、エチルトルエン、シメン、t-ブチルトルエン、ジイソプロピルベンゼン、メシチレン、シクロヘキサン、オクタン、イソオクタン、酢酸ブチル、フタル酸ジメチル、メチルエチルケトン、2-オクタノン、3-オクタノン、4-オクタノン、ジイソブチルケトン、2-ノナノン、3-ノナノン、4-ノナノン、5-ノナノン、2-デカノン、3-デカノン、4-デカノン、5-デカノン、2-ウンデカノン、3-ウンデカノン、4-ウンデカノン、5-ウンデカノン、6-ウンデカノン、ホロン、イソホロン、アセトフェノン、ジブチルエーテル、1-ヘキサノール、2-オクタノール、デカノール、ラウリルアルコール、シクロヘキサノール等が挙げられ、好ましくは、炭素数2以上のアルキル基を有する芳香族炭化水素類を主成分とする溶剤、炭素数8以上のケトン類を主成分とする溶剤、最も好ましくは、クメンおよび/またはジイソブチルケトンを主成分とする溶剤である。単量体の組成に応じて、上記ポロジェンの量と種類を選定することにより、本実施形態に係る充填剤に必要な細孔径分布と比表面積を得ることができる。
 重合開始剤としては、ベンゾイルペルオキシド、ラウロイルペルオキシド、ターシャリーブチルペルオキシ2-エチルヘキサネート、3,5,5-トリメチルヘキサノイルペルオキシド等の過酸化物系開始剤、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等のアゾ系開始剤が好ましい。これら重合開始剤は、単量体混合物あるいはポロジェンに溶解して重合系に供される。
 高分子分散剤としては、ケン化度80~95%のポリビニルアルコール、ポリビニルピロリドンなどの水溶性ポリマーを使用することができる。界面活性剤としては、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンドデシルエーテル硫酸エステル塩などのアニオン性界面活性剤、ポリオキシエチレンアルキルエーテルなどの非イオン性界面活性剤などを使用することができる。塩としては、塩化ナトリウム、硫酸ナトリウムなどが好適に使用できる。シード粒子としては、分子量1,000~100,000程度のポリスチレン粒子、ポリアルキル(メタ)アクリレート粒子などを使用することができる。シード重合では、シード粒子の大きさと量、単量体の量、ポロジェンの量を調整することにより、本発明の充填剤に必要な粒径を得ることができる。懸濁重合では、高分子分散剤および界面活性剤の種類と量、攪拌速度、攪拌翼および重合容器の形状と大きさを調整することにより、本発明の充填剤に必要な粒径を得ることができる。
 重合完結後、シード粒子および/またはポロジェンの良溶媒を用いて洗浄することにより、所望の細孔径分布の多孔性母粒子が得られる。
 1.1.3.リガンドとの結合
 本実施形態に係るアフィニティークロマトグラフィー用充填剤には、リガンドが結合している。
 リガンドの結合方法としては、例えば、(1)多孔性母粒子に含まれるエポキシ基をそのままリガンドの結合サイトとして利用する方法(例えば特表2006-511935号に記載の方法)、(2)多孔性母粒子に含まれるエポキシ基を開環して生成するアルコール性水酸基を、トシル基などで活性化してからリガンドを結合したり、酸化剤を用いて該アルコール性水酸基を酸化的開列してからリガンドを結合したり方法(例えば特開2007-211076号、特開2008-032411号に記載の方法)、(3)多孔性母粒子に含まれるエポキシ基または、当該エポキシ基の開環により生成する基からさらにリンカーを伸ばしてから、当該リンカーを介して多孔性母粒子にリガンドを結合する方法(例えば特開2008-032411号、特開平10-195099号、特開2004-331953号に記載の方法)が挙げられる。
 いずれの結合法でも、アフィニティークロマトグラフィー用充填剤として使用する前に、表面のエポキシ基は実質的に開環している。すなわち、本実施形態に係るアフィニティークロマトグラフィー用充填剤は、開環エポキシ基を有する。この開環エポキシ基は上述したように、多孔性母粒子にリガンドを結合する前または後に、多孔性母粒子に含まれるエポキシ基を開環させて得られる。本発明において「開環エポキシ基」とは、エポキシ基を開環させた基をいい、より具体的には、例えば水酸化物イオン、塩化物イオン、メルカプト基またはアミノ基等を有する求核性化合物などをエポキシ基と反応させることにより、エポキシ基を開環させた基をいう。
 エポキシ基が開環して生成するアルコール性水酸基は、共重合体表面を親水化し、タンパクなどの非特異吸着を防止すると共に、水中で粒子の靱性を向上させ、高流速下の粒子の破壊を防止する役割を果たす。多孔性母粒子中のエポキシの開環方法としては、例えば、水溶媒中で、酸またはアルカリにより、加熱または室温で攪拌する方法を挙げることができる。また、メルカプトエタノールなどのメルカプト基を有するブロッキング剤やモノエタノールアミンなどのアミノ基を有するブロッキング剤で、エポキシ基を開環させても良い。
 上記(1)~(3)で説明したように、開環エポキシ基は、例えば、エポキシ基を開環して生成した基、当該開環して生成した基にリガンドを結合させた基、および当該開環して生成した基にリンカーを介してリガンドを結合させた基のいずれかであってもよく、これらの少なくとも1種であることが好ましい。この場合、共重合体表面を親水化し、タンパクなどの非特異吸着をより効果的に防止することができる点で、多孔性母粒子が開環エポキシ基として置換または非置換の2,3-ジヒドロキシプロピル基を含むことが好ましい。非置換の2,3-ジヒドロキシプロピル基は例えば、グリシジル基を加水分解によって開環することにより得ることができる。置換の2,3-ジヒドロキシプロピル基は例えば、グリシジル基をメルカプトエタノールなどのメルカプト基を有するブロッキング剤やモノエタノールアミンなどのアミノ基を有するブロッキング剤によって開環することにより得ることができる。
 1.2.リガンド
 リガンドとしては、標的物に対してアフィニティーを有するものであれば、その種類は特に限定されないが、例えば、プロテインA、プロテインG、アビジン等のタンパク質;インシュリン等のペプチド;モノクロナール抗体等の抗体;酵素;ホルモン;DNA;RNA;ヘパリン、ルイスX、ガングリオシド等の糖質;イミノジ酢酸、合成色素、2-アミノフェニル硼素酸、4-アミノベンズアミジン、グルタチオン、ビオチンやその誘導体のような低分子化合物を用いることができる。上記に例示したリガンドはその全体を用いてもよいが、リコンビナント、酵素処理等によって得られるそのフラグメントを用いてもよい。また、人工的に合成されたペプチドやペプチド誘導体であってもよい。
 抗体精製に好適なリガンドとしては、プロテインAおよびプロテインGであり、さらに好ましくはプロテインAのイムノグロブリン結合ドメインであり、最も好ましくは、プロテインAのイムノグロブリン結合ドメインの末端に、4個以上の連続するヒスチジン単位を含むペプチドを付加したタンパクであり、このようなタンパクとしては、例えば、後述する一般式(1)または(3)で表されるイムノグロブリン結合タンパク質が挙げられる。
 1.2.1.イムノグロブリン結合タンパク質
 好ましいリガンドの一例であるイムノグロブリン結合タンパク質(以下、「タンパク質1」ともいう。)は、下記一般式(1)で表される。
 R-R ・・・・・(1)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 上記一般式(1)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は8~100個であることが好ましく、Rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましい。また、上記一般式(1)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は120~480個であることが好ましい。
 また、上記一般式(1)において、R-は下記一般式(2)で表される基であることが好ましい。
 R-r- ・・・・・(2)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 上記一般式(2)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は4~25個であることが好ましく、Rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましく、rで表されるアミノ酸配列に含まれるアミノ酸の数は10~50個であることが好ましい。
 好ましいリガンドの他の一例であるイムノグロブリン結合タンパク質(以下、「タンパク質2」ともいう。)は、下記一般式(3)で表される。
 R-R ・・・・・(3)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 上記一般式(3)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は8~100個であることが好ましく、Rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましい。また、上記一般式(1)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は120~480個であることが好ましい。
 上記一般式(3)において、-Rは下記一般式(4)で表される基であることが好ましい。
 -r-R ・・・・・(4)
 (式中、Rは4~20個の連続したヒスチジンを含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 上記一般式(4)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は4~25個であることが好ましく、rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましく、rで表されるアミノ酸配列に含まれるアミノ酸の数は10~50個であることが好ましい。
 上記一般式(1)および上記一般式(3)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むことが好ましい。この場合、上記アミノ酸配列中に同一または異なるドメインtが複数含まれていてもよい。
 また、上記一般式(2)および上記一般式(4)に示されるように、rで表されるアミノ酸配列中にTEVドメインが含まれていてもよい。rで表されるアミノ酸配列中にTEVドメインが含まれていることにより、TEVプロテアーゼによる切断によってRとRとの分離が可能になるうえ、TEVドメインは、本発明の効果(担体への固定化量が多く、かつ、当該担体のイムノグロブリン保持能力を高めること)を実現するために好ましい配列である。また、rで表されるアミノ酸配列中に、TEVドメインの変異体(Mutant)(該TEVプロテアーゼで切断できるか否かと関係なく、TEVドメインのアミノ配列と70%以上、好ましくは90%以上の相同性を有する。)が含まれていてもよい。
 本発明のタンパク質1または2を構成するアミノ酸の総個数は通常70~1000であり、粒子に結合させる用途に使用する場合、80~600であるのが好ましい。
 1.2.1.1.イムノグロブリン結合ドメイン
 プロテインAのイムノグロブリン結合ドメインは、Aドメイン、Bドメイン、Cドメイン、Dドメイン、およびEドメイン、およびZドメインから選ばれる少なくとも1種であることが好ましい。Aドメイン、Bドメイン、Cドメイン、Dドメイン、およびEドメインのドメインのアミノ酸配列は例えば、Moks T, Abrahms L, et al.,Staphylococcal protein A consists of five IgG-binding domains, Eur J Biochem. 1986, 156, 637-643のFig.1に記載されている。該文献はこの参照により開示に含まれる。また、上記文献に記載された各ドメインのアミノ酸配列と70%以上(好ましくは90%以上)の相同性を有するアミノ酸配列からなるタンパク質も、本発明におけるプロテインAのイムノグロブリン結合ドメインとして使用することができる。
 本実施形態に係るイムノグロブリン結合タンパク質は、複数の同一または異なる種類のイムノグロブリン結合ドメインを有していてもよい。例えば、プロテインAのイムノグロブリン結合ドメインが、(Dドメイン-Aドメイン)n(ここで、nは1以上の整数(好ましくは1~6)を示し、DドメインとAドメインとの間には任意のアミノ酸配列が存在していてもよい。)、すなわち、AドメインおよびDドメインを含む繰り返し単位を含むものであってもよい。
 また、プロテインAのイムノグロブリン結合ドメインは、天然型のイムノグロブリン結合ドメインであってもよいし、または、組換え型のイムノグロブリン結合ドメインであってもよい。ここで、組換え型のイムノグロブリン結合ドメインは、イムノグロブリン結合活性において、改変前のイムノグロブリン結合ドメインと同等のものとして扱うことができ、例えば、天然型のプロテインAのイムノグロブリン結合ドメインのアミノ酸配列と70%以上(好ましくは90%以上)の相同性を保持することが好ましい。具体例としては、ニルソン・ビー(Nilsson B.)他、プロテイン・エンジニアリング(Protein engineering)、1987年、第1巻、2号、107-113頁に記載されているZドメイン、Hober Sらによる米国特許出願2006/0194955A1に記載されているアルカリ耐性を有するZドメインの変異体(mutant)が挙げられる。上記文献はこの参照により開示に含まれる。また、上記文献に記載された各ドメインのアミノ酸配列と70%以上(好ましくは90%以上)の相同性を有するアミノ酸配列からなるタンパク質も、本発明におけるプロテインAのイムノグロブリン結合ドメインとして使用することができる。
 1.2.1.2.タンパク質1または2の製造
 本発明のタンパク質1または2を製造するための標準技術としては、例えば、Frederick M. AusbelらによるCur rent Protocols In Molecular BiologyやSambrookら編集のMolecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されている公知の遺伝子組換え技術を利用することができる。例えば、本発明のタンパク質1または2は、米国特許第5,151,350号明細書に記載されている遺伝子組換え技術を用いて製造することができる。すなわち、目的の改変タンパク質(タンパク質1または2)をコードする核酸配列を含有させた発現ベクターを大腸菌などの宿主に形質転換し、当該細胞を適切な液体培地で培養することにより、培養後の細胞から、本発明のタンパク質1または2を大量かつ経済的に取得することができる。好ましい発現ベクターとしては、細菌内で複製可能な既知のベクターのいずれをも用いることができ、例えば、米国特許第5,151,350号明細書に記載されているプラスミドや、Sambrookら編集のMolecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されているプラスミドが挙げられる。また、細菌中に核酸を導入することにより細菌を形質転換させるためには、当該技術分野において知られるいずれの方法を用いてもよく、例えば、Sambrookら編集のMolecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されている公知の方法を利用することができる。形質転換した細菌を培養して、発現されたタンパク質を回収する方法は、当業者によく知られている。
 すなわち、本発明の他の一実施形態にかかる核酸は、イムノグロブリン結合タンパク質(タンパク質1または2)あるいはその等機能変異体をコードする。本発明において、イムノグロブリン結合タンパク質の「等機能変異体(functional variant)」とは、部分的なアミノ酸の付加、削除、置換、アミノ酸残基の化学的修飾等により改変されたイムノグロブリン結合タンパク質であって、改変前のイムノグロブリン結合タンパク質のアミノ酸配列と70%以上、好ましくは90%以上の相同性を保持し、かつ、イムノグロブリン結合活性において、改変前のイムノグロブリン結合タンパク質と同等のものとして扱うことができるものを意味する。
 具体的には、プロテインAの1個のイムノグロブリン結合ドメインは約60個のアミノ酸からなる小さなタンパク質であるため、例えば、所望のアミノ酸配列をコードするDNAを数十塩基からなる合成オリゴヌクレオチドに分割して合成し、それらをDNAリガーゼによるライゲーション反応によって繋げてプラスミドに挿入することにより、目的の発現ベクターを取得することができる。その際に、当該タンパク質を大腸菌で効率良く発現させる目的で、大腸菌の至適コドンを用いた核酸配列を採用することは、当業者によって一般的に行われる方法である。また、後述する本発明の実施例に示されるようにStraphylococcus aureusのゲノムDNAからPCR(Polymerase Chain Reaction)技術を用いて所望のアミノ酸配列をコードするDNA配列を構築することが可能である。
 また、上述したように、本発明のタンパク質1または2は、イムノグロブリン結合ドメインを1個以上(好ましくは2~12個、より好ましくは2~5個)を含むタンパク質であってもよい。この様なタンパク質をコードするcDNAは、1個のイムノグロブリン結合ドメインをコードするcDNA(相補的DNA)を所定の個数、直列に連結することにより、容易に作成することができる。こうして作成したcDNAを適切な発現プラスミドに挿入して利用することにより、イムノグロブリン結合ドメインを1個以上含むタンパク質を容易に製造することができる。
 例えば、後述する実施例において示される配列番号1~8のアミノ酸配列を有するタンパク質や、配列番号1~8において1個または数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、かつイムノグロブリン結合活性を有するタンパク質は、本発明のイムノグロブリン結合タンパク質として好適に使用することができる。
 1.2.1.3.作用効果
 本発明のタンパク質1または2をリガンドとして用いた充填剤は、アフィニティークロマトグラフィーにおいて、従来の充填剤と比較してイムノグロブリン結合タンパク質の保持量が多く、かつ、当該タンパク質の保持能に優れている。これにより、目的タンパク質の捕捉量を高めることができるため、目的タンパク質(抗体)の結合容量を増大させることができる。その結果、純度の高い目的タンパク質を効率良く、低コストでかつ大量に精製することができる。
 2.実施例
 以下、本実施形態にかかるアフィニティークロマトグラフィー用充填剤を、実施例を挙げてさらに具体的に説明する。また、以下の記載は本発明の態様を概括的に示すものであり、特に理由なく、かかる記載により本発明は限定されるものではない。
 2.1.評価方法
 2.1.1.粒径
 レーザ回折散乱式粒度分布測定装置(ベックマン・コールター社製 LS13320)により、粒子の体積平均粒径を測定した。
 2.1.2.比表面積、体積平均細孔径、細孔径最頻値
 後述する合成例4~8および比較合成例1でそれぞれ調製された、アフィニティークロマトグラフィー用充填剤を40℃で24時間真空乾燥させて乾燥粒子を得、水銀ポロシメーター(島津製作所社製 オートポアIV9520)にて乾燥粒子の比表面積、体積平均細孔径、および細孔径最頻値を求めた。測定範囲は細孔径範囲で10~5000nmとした。
 2.1.3.結合容量
 2.1.3.1.測定法1
 GEヘルスケアバイオサイエンス社製AKTAprime plusを用いて、線流速150cm/hrおよび500cm/hr、1000cm/hrにおけるヒトIgG抗体の結合容量を測定した。カラム容量は1mL、ヒトIgG抗体(ランパイアバイオロジカルラボラトリーズ(Lampire Biological Laboratories)社製)は25mMクエン酸緩衝液(pH6.0)で1mg/mLに希釈したものを使用し、吸光度モニターで溶出先端濃度5w/v%ブレークスルー(破過)のときのヒトIgG抗体吸着量と充填剤体積から結合容量を求めた。
 2.1.3.2.測定法2
 内径0.5cm、高さ5cmのカラムにて、GEヘルスケアバイオサイエンス社製AKTAprime plusを用いて、線流速300cm/hrにおけるヒトIgG抗体の結合容量を測定した。ヒトIgG抗体(ランパイアバイオロジカルラボラトリーズ(Lampire Biological Laboratories)社製)は25mMクエン酸緩衝液(pH6.0)で1mg/mLに希釈したものを使用し、吸光度モニターで溶出先端濃度10w/v%ブレークスルーのときのヒトIgG抗体吸着量と充填剤体積から結合容量を求めた。
 2.2.実験例
 2.2.1.合成例1(イムノグロブリン結合タンパク質の調製)
 後述する調製例1~4により、図1および図2に示されるアミノ酸配列を有するイムノグロブリン結合タンパク質(SPAK(配列番号1)、SPAC(配列番号2)、SPAKK(配列番号3)、SPATK(配列番号4)、SPA2K(配列番号5)、SPA3K(配列番号6)、SPA-His-C(配列番号7)、SPA-His-N(配列番号8))を調製した。
 なお、図1および図2において、RおよびRは上記一般式(1)または上記一般式(2)におけるRおよびRに対応し(R、Rおよびrは上記一般式(2)または上記一般式(4)におけるR、Rおよびrに対応する。)、r中の下線部はTEVドメイン(TEVプロテアーゼ(ペプチド結合加水分解合成酵素)切断部位)を示し、R中の下線部はインタードメインリンカーまたはC末端リンカー(ドメインt)、表2参照)を示す。
 これらのタンパク質は、MALDI-TOFマススペクトル分析により、それぞれアミノ酸配列が一致したことにより、図1および図2に示すアミノ酸配列を有することが確認された。
 2.2.1.1.調製例1(PCR増幅および制限酵素の消化)
 Straphylococcus aureus(ATCC, 10832)由来のプロテインA(Dドメイン+Aドメイン)のcDNAをPCRによって増幅した。プライマー(表2参照)は、後述するサブクローニングを補助するために対応する制限酵素部位を有するように設計された。
 表1に示されるように、SPAK、SPAC、SPA2K、SPA3K、SPAKK、およびSPATKをそれぞれコードするDNAフラグメントは、制限酵素NcoIおよびHindIII(New-England Bio Lab製)によって消化されて、ベクターpETM-11(図3参照、kind gift of D. Shibly, EMBL Heidelberg, Heidelberg, Germanyから入手)に挿入された。
 また、表1に示されるように、SPA-His-NをコードするDNAフラグメントは、制限酵素NcoIおよびHindIIIによって消化されて、ベクターpETM-10(図3参照、kind gift of D. Shibly, EMBL Heidelberg, Heidelberg, Germanyから入手)に挿入された。
 さらに、表1に示されるように、C末端にヒスタグ(ヒスチジン6残基からなるペプチド)を有するイムノグロブリン結合タンパク質であるSPA-His-Cを形成するために、ベクターpET29(図3参照、Novagen社製)が用いられた。このベクターpET29に用いられる制限酵素はNdeI(New-England Bio Lab製)およびXhoI(New-England Bio Lab製)であった。
 なお、図3に示される3種類の発現ベクターはすべて、選択マーカーとしてカナマイシン耐性遺伝子を含む。
 また、図3に示されるイムノグロブリン結合タンパク質のアミノ酸配列において、「Tev」はTEVプロテアーゼ認識部位(アミノ酸配列:ENLYFQG)を示す。TEVプロテアーゼはアミノ酸配列ENLYFQGを認識し、QとGの間を切断する。
 上記制限酵素は、SPAKの挿入配列に基づく1対のプライマーを設計することにより導入された。また、PCR増幅は、表2に示されるプライマー(配列番号9~17)を用いて行われた。
 なお、SPA-His-NのDNAフラグメントは、SPAKを含むプラスミドを制限酵素(表1)で消化することにより直接得ることもできる。本合成例では、SPA-His-NのDNAフラグメントは、SPAKを含むプラスミドを制限酵素(表1)で消化することにより直接得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 Straphylococcus aureusのgenomic DNAテンプレート(500ng/μl)0.5μl、各プライマー5pl、10×Pfu緩衝液(Fermentas製)5μl、およびPfuポリメラーゼ(Fermentas製)(5ユニット/μl)1μlを含むPCR増幅溶液に滅菌水を加えて、最終的な液の体積を50μlとした。PCR増幅の条件は以下の通りである:94℃で1分、次に94℃で30秒、56℃で1分、72℃で1分の30サイクル、最後に72℃で10分。このPCR反応をPX2 Thermal Cycler PCR装置(Thermo Electron Corporation製)にて行った。
 2.2.1.2.調製例2(ライゲーションおよび形質転換)
 制限酵素で消化されたDNAフラグメントのライゲーションは、T4DNAリガーゼ(New England Biolab製)100-200ユニット/mlおよび5×リガーゼ緩衝液(ニューイングランドバイオラボ(New England Biolab)社製)を用いて12℃で12-16時間行われた。プラスミドの形質転換のために、E.coliDH5-α株細胞(New England Biolab製)を使用した。
 2.2.1.3.調製例3(プラスミドDNAの調製および配列解析)
 陽性コロニーを選択し、ミニプレップキット(Mini Prep Kit)(キアゲン(Qiagen)社製)によってプラスミドDNAを抽出した。このプラスミドDNAについて、挿入されたDNAフラグメントが正しい配列であるかどうかを確認するために、3730 NDA Sequencer(Applied Biosystems製)で配列解析を行った。
 2.2.1.4.調製例4(イムノグロブリン結合タンパク質の発現および精製)
 組み換え型イムノグロブリン結合タンパク質を、E.coli(BL21株)細胞(STRATAGENE製)内にて18℃で1mMのIPTG(Sigma-Aldrich製)を添加し、15時間発現させた。誘導に先立って、吸光度(OD600)が約0.6に到達するまで上記細胞を37℃でインキュベートした。タンパク質発現後、細胞を回収し、pH8.0のトリス緩衝液中で破砕した。
 得られた組み換え型イムノグロブリン結合タンパク質は、Niアフィニティクロマトグラフィー(Ni-NTA(ニトリロトリ酢酸)粒子、キアゲン社製)によって精製された。精製されたイムノグロブリン結合タンパク質は陰イオン交換クロマトグラフィー(Q-セファロースFF、GEバイオサイエンス社製)によって、pH7.5のHEPES緩衝液中でさらに精製された。
 2.2.2.合成例2(イムノグロブリン結合タンパク質の粒子への固定化)
 2.2.2.1.固定化例1
 グリシジルメタクリレート・トリメチロールプロパントリメタクリレート共重合体からなる多孔質粒子(以下、PBと記す。)を懸濁重合により作製した。PBの平均粒径は33μm、比表面積は83m/gであった。400mgのPB、36mgのSPAKが16mLのホウ酸緩衝液(pH8.5)に分散した混合液を調製し、4℃で24時間転倒混和し、SPAKをPBに結合させた。次いで、10%メルカプトエタノール水溶液0.8mLを添加して4℃で6時間転倒混和し、残余のエポキシ基を開環、ブロッキングし、20%エタノール水溶液で洗浄して、380mgのSPAK結合多孔質粒子(SPAK-PB)を得た。Thermo Scientific Pierce BCA Protein Assay kitで定量測定を行ったところ、前記粒子に結合したSPAKの量は29mg/g粒子であった。
 2.2.2.2.固定化例2
 50mM トリス塩酸、0.5mM EDTA、および1mM DTTのバーファー(pH8.0)中、TEVプロテアーゼで消化されたSPAKをNi-NATカラム(容量:4mL)に通過させて、SPAKのヒスタグ部位が切断された粗SPAKwoHisを回収した。この粗SPAKwoHisを10mM HEPESバーファー(pH7.5)中で12時間透析して、粒子への結合実験用SPAKwoHisを調製した。SPAKwoHisのアミノ酸配列は以下の通りである。
SPAKwohis(全アミノ酸配列)(配列番号18)
GAMAKADAQQNNFNKDQQSAFYEILNMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEGSK
 次に、上記固定化例1で、SPAKの代わりにSPAKwoHisを使用した以外は、上記固定化例1と同様にして、380mgのSPAKwoHis結合多孔質粒子(SPAKwoHis-PB)を得た。前記粒子に結合したSPAKwoHisの量は6mg/g粒子であった。
 2.2.2.3.固定化例3
 上記固定化例1で、SPAKの代わりにSPATKを使用した以外は、上記固定化例1と同様にして、380mgのSPATK結合多孔質粒子(SPATK-PB)を得た。前記粒子に結合したSPATKの量は36mg/g粒子であった。
 2.2.3.試験例(イムノグロブリンG(IgG)結合量の測定)
 2.2.3.1.測定例1
 SPAK-PBを用いて、2.1.3.1.測定法1の欄に記載された方法にて、SPAK-PBのヒトIgG抗体の結合容量を求めたところ、30mg/mLであった。
 2.2.3.2.測定例2
 上記測定法1で、SPAK-PBの代わりにSPATK-PBを使用した以外は、上記測定法1と同様にして、SPATK-PBのヒトIgG抗体の結合容量(2.1.3.1.測定法1の欄に記載された方法で算出)を求めたところ、35mg/mLであった。
 2.2.3.3.測定例3
 上記測定法1で、SPAK-PBの代わりにSPAKwoHis-PBを使用した以外は、上記測定法1と同様にして、SPAKwoHis-PBのヒトIgG抗体の結合容量(2.1.3.1.測定法1の欄に記載された方法で算出)を求めたところ、6mg/mLであった。
 2.2.4.合成例3(アフィニティークロマトグラフィー用充填剤の調製)
 (i)多孔性母粒子の合成 グリシジルメタクリレート(三菱レーヨン社製)60gおよびトリメチロールプロパントリメタクリレート(サートマー社製)40gをジイソブチルケトン(三井化学社製)173gおよびアセトフェノン(和光純薬工業社製)67gに溶解させ、2、2’-アゾイソブチロニトリル(和光純薬工業社製)1gを添加し、有機モノマー溶液を調製した。
 次に、3000gの純水にポリビニルアルコール(クラレ社製 PVA-217)12g、ドデシル硫酸ナトリウム(花王社製 エマール10G)1gおよび塩化ナトリウム31gを添加し、一晩撹拌して水溶液を調製した。
 次いで、得られた水溶液を7Lセパラブルフラスコ内に投入し、温度計、攪拌翼、および冷却管を装着して、温水バスにセットし、窒素雰囲気下、825rpmで撹拌を開始した。続いて、セパラブルフラスコを温水バスにより加温し、水溶液の温度が85℃になったところで、この水溶液に滴下ロートを用いて上記有機モノマー溶液を添加し、5時間攪拌を行った。
 次いで、反応液を冷却したのち、かかる反応液を5Lのポリプロピレン製ビンに移し、粒子が浮遊するまで静置し、下方から余分な水を吸い出して廃棄した。さらに、この反応液にアセトンを加えて粒子を沈降させた。次に、反応液を3分間静置して、デカンテーションによりアセトンを除去した。この操作を2回繰り返したのち水を加えて、粒子を沈降させた。さらに、3分間静置してデカンテーションを行った。この操作を2回繰り返して粒子を洗浄した。さらに、粒子の分散液をアセトンで再び置換して、一晩風乾したのち、真空乾燥機にて乾燥を行い、多孔性母粒子1(86g)を得た。
 (ii)リガンドの作製
 上記合成例1で調製されたSPAKを、以下リガンド1とする。
 (iii)多孔性母粒子とリガンドとの結合
 350mgの多孔性母粒子1と、32mgのリガンド1とが18mLのホウ酸緩衝液(pH8.5)に分散した混合液を調製し、4℃で20時間転倒混和し、リガンド1を多孔性母粒子1に結合させた。次いで、0.5mol/Lメルカプトエタノールと0.5mol/L塩化ナトリウムとからなる水溶液20mLで2回洗浄した後、0.5mol/Lメルカプトエタノールと0.5mol/L塩化ナトリウムとからなるpH8.5の緩衝液20mL中、室温で4時間転倒混和し、残余のエポキシ基を開環、ブロッキングした。20%エタノール水溶液で洗浄して、320mgのアフィニティークロマトグラフィー用充填剤1を得た。
 (iv)評価
 アフィニティークロマトグラフィー用充填剤1の粒径は43μm、比表面積は64m2/g、体積平均細孔径は235nm、細孔径最頻値は130nm、体積平均細孔径/細孔径最頻値は1.8であった。結合容量(2.1.3.2.測定法2の欄に記載された方法で算出)は、線流速150cm/hrにおいて26mg/mL、500cm/hrにおいて23mg/mL、1000cm/hrにおいて22mg/mLであった。
 2.2.5.合成例4
 合成例3で、ジイソブチルケトン173gおよびアセトフェノン67gの代わりにジイソブチルケトン115gおよびアセトフェノン45gを使用し、反応容器をセパラブルフラスコの代わりにバッフル付きセパラブルフラスコに変更した以外は、合成例3と同様にして、多孔性母粒子を合成、リガンドを結合して、アフィニティークロマトグラフィー用充填剤2を得た。
 アフィニティークロマトグラフィー用充填剤2の粒径は33μm、比表面積は83m2/g、体積平均細孔径は146nm、細孔径最頻値は40nm、体積平均細孔径/細孔径最頻値は3.7であった。結合容量(2.1.3.2.測定法2の欄に記載された方法で算出)は、線流速150cm/hrにおいて32mg/mL、500cm/hrにおいて20mg/mL、1000cm/hrにおいて14mg/mLであった。
 2.2.6.合成例5
 合成例3における(多孔性母粒子とリガンドとの結合)を以下の手順に変更した以外は、合成例3と同様にして、アフィニティークロマトグラフィー用充填剤3を得た。
 (i)多孔性母粒子とリガンドとの結合
 10gの多孔性母粒子1を250mLポリ瓶にいれて、純水80gに分散させ、0.1M硫酸を10g添加した。この液を60℃で5時間転倒混和することにより、多孔性母粒子1のエポキシ基を開環した。次いで、桐山ロートでろ過した後、純水とアセトニトリルで洗浄し、アセトニトリル200gに分散した。これに1.3gのトシルクロライド、1.3gのトリプロピルアミン、0.8gのトリメチルアミン塩酸塩を加え、室温で5時間攪拌することにより、水酸基をトシル化した。次いで、これをろ過した後、アセトニトリルと水で洗浄し、pH9.5のホウ酸緩衝液90gに分散し、10gのトシル化多孔性母粒子1の分散液を得た。400mgのトシル化多孔性母粒子1と、36mgのリガンド1とが16mLのホウ酸緩衝液に分散した混合液を調製し、37℃で20時間転倒混和し、リガンド1をトシル化多孔性母粒子1に結合させた。次いで、10%モノエタノールアミン水溶液0.8mLを添加して37℃で6時間転倒混和し、残余のトシル基をブロッキングし、20%エタノール水溶液で洗浄して、380mgのアフィニティークロマトグラフィー用充填剤3を得た。
 (ii)評価
 アフィニティークロマトグラフィー用充填剤3の粒径は43μm、比表面積は64m2/g、体積平均細孔径は235nm、細孔径最頻値は130nm、体積平均細孔径/細孔径最頻値は1.8であった。結合容量(2.1.3.2.測定法2に記載された方法で算出)は、線流速150cm/hrにおいて25mg/mL、500cm/hrにおいて21mg/mL、1000cm/hrにおいて20mg/mLであった。
 2.2.7.合成例6
 合成例3で、ジイソブチルケトン173gおよびアセトフェノン67gの代わりにクメン140gおよびアセトフェノン20gを使用した以外は、合成例3と同様にして、多孔性母粒子を合成し、該多孔性母粒子にリガンドを結合して、アフィニティークロマトグラフィー用充填剤4を得た。
 アフィニティークロマトグラフィー用充填剤4の粒径は39μm、比表面積は91m2/g、体積平均細孔径は128nm、細孔径最頻値は33nm、体積平均細孔径/細孔径最頻値は3.9であった。結合容量(2.1.3.2.測定法2の欄に記載された方法で算出)は、線流速150cm/hrにおいて19mg/mL、線流速500cm/hrにおいて8mg/mL、1000cm/hrにおいて6mg/mLであった。
 2.2.8.合成例7
 合成例3で、トリメチロールプロパントリメタクリレート40gの代わりにトリメチロールプロパントリメタクリレート15gおよびエチレングリコールジメタクリレート25gを、ジイソブチルケトン173gおよびアセトフェノン67gの代わりにジイソブチルケトン115gおよびアセトフェノン45gを使用した以外は、合成例3と同様にして、多孔性母粒子を合成し、該多孔性母粒子にリガンドを結合して、アフィニティークロマトグラフィー用充填剤5を得た。
 アフィニティークロマトグラフィー用充填剤5の粒径は32μm、比表面積は38m2/g、体積平均細孔径は329nm、細孔径最頻値は302nm、体積平均細孔径/細孔径最頻値は1.1であった。結合容量(2.1.3.2.測定法2の欄に記載された方法で算出)は、線流速150cm/hrにおいて10mg/mL、線流速500cm/hrにおいて9mg/mL、1000cm/hrにおいて8mg/mLであった。
 2.2.9.合成例8
 合成例3で、リガンド1の代わりに、SPAKwoHisを用いた以外は、合成例3と同様にしてアフィニティークロマトグラフィー用充填剤6を得た。
 アフィニティークロマトグラフィー用充填剤6の粒径は33μm、比表面積は83m2/g、体積平均細孔径は146nm、細孔径最頻値は40nm、体積平均細孔径/細孔径最頻値は3.7であった。結合容量(2.1.3.2.測定法2の欄に記載された方法で算出)は、線流速150cm/hrにおいて8mg/mL、500cm/hrにおいて5mg/mL、1000cm/hrにおいて4mg/mLであった。
 2.2.10.比較合成例1
 ビニル単量体を原料としない架橋アガロースにプロテインAを固定したアフィニティークロマトグラフィー用充填剤(商品名「MabSelect Xtra」、GEヘルスケアバイオサイエンス社製)を評価した。結合容量(2.1.3.2.測定法2の欄に記載された方法で算出)は、線流速150cm/hrにおいて25mg/mL、500cm/hrにおいて12mg/mLであった。なお、線流速を1000cm/hrにしようとしたが、カラム圧力が高く、線流速は1000cm/hrに達しなかった。
 本実施形態に係る説明は以上である。本発明は、上述した実施形態に限定されるものではなく、さらなる種々の変形が可能である。また本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および結果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。

Claims (10)

  1.  架橋性ビニル単量体およびエポキシ基含有ビニル単量体を含む単量体混合物の共重合体を含有する多孔性母粒子であって、
     前記多孔性母粒子にリガンドが結合しており、
     前記多孔性母粒子は、該多孔性母粒子に含まれるエポキシ基を開環させて得られる開環エポキシ基を有する、アフィニティークロマトグラフィー用充填剤。
  2.  前記開環エポキシ基として置換または非置換の2,3-ジヒドロキシプロピル基を含む、請求項1に記載のアフィニティークロマトグラフィー用充填剤。
  3.  前記リガンドが、プロテインAのイムノグロブリン結合ドメインを含むタンパク質である、請求項1または2に記載のアフィニティークロマトグラフィー用充填剤。
  4.  前記プロテインAのイムノグロブリン結合ドメインが、Aドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメイン、およびZドメインから選ばれる少なくとも1種である、請求項3に記載のアフィニティークロマトグラフィー用充填剤。
  5.  前記リガンドが、下記一般式(1)で表されるイムノグロブリン結合タンパク質である、請求項1ないし4のいずれか1項に記載のアフィニティークロマトグラフィー用充填剤。
     R-R ・・・・・(1)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
  6.  上記一般式(1)において、R-は下記一般式(2)で表される基である、請求項5に記載のアフィニティークロマトグラフィー用充填剤。
     R-r- ・・・・・(2)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
  7.  前記リガンドは、上記一般式(1)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものである、請求項5または6に記載のアフィニティークロマトグラフィー用充填剤。
  8.  前記リガンドが、下記一般式(3)で表されるイムノグロブリン結合タンパク質である、請求項1ないし4のいずれか1項に記載のアフィニティークロマトグラフィー用充填剤。
     R-R ・・・・・(3)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
  9.  上記一般式(3)において、-Rは下記一般式(4)で表される基である、請求項8に記載のアフィニティークロマトグラフィー用充填剤。
     -r-R ・・・・・(4)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
  10.  前記リガンドは、上記一般式(3)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものである、請求項8または9に記載のアフィニティークロマトグラフィー用充填剤。
PCT/JP2009/066554 2008-09-25 2009-09-24 アフィニティークロマトグラフィー用充填剤 WO2010035757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/121,124 US8846877B2 (en) 2008-09-25 2009-09-24 Packing material for affinity chromatography
EP09816172.2A EP2339339A4 (en) 2008-09-25 2009-09-24 CHARGE FOR AFFINITY CHROMATOGRAPHY
CN200980137428.8A CN102165312B (zh) 2008-09-25 2009-09-24 亲合层析用填充剂
JP2010530858A JP5626526B2 (ja) 2008-09-25 2009-09-24 アフィニティークロマトグラフィー用充填剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-246154 2008-09-25
JP2008246154 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035757A1 true WO2010035757A1 (ja) 2010-04-01

Family

ID=42059755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066554 WO2010035757A1 (ja) 2008-09-25 2009-09-24 アフィニティークロマトグラフィー用充填剤

Country Status (5)

Country Link
US (1) US8846877B2 (ja)
EP (1) EP2339339A4 (ja)
JP (1) JP5626526B2 (ja)
CN (1) CN102165312B (ja)
WO (1) WO2010035757A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018135A (ja) * 2010-07-09 2012-01-26 Mitsubishi Chemicals Corp 分離剤
EP2574631A1 (en) * 2010-03-24 2013-04-03 JSR Corporation Filler for affinity chromatography and method for isolating immunoglobulin
WO2013133258A1 (ja) * 2012-03-06 2013-09-12 Jsr株式会社 抗体精製方法および抗体精製用の担体
JP2015520667A (ja) * 2012-04-23 2015-07-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung クロマトグラフィー法
JPWO2015199196A1 (ja) * 2014-06-27 2017-04-20 Jsr株式会社 アフィニティークロマトグラフィー用担体
JP2017125799A (ja) * 2016-01-15 2017-07-20 日立化成株式会社 分離材及びカラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936372A1 (en) 2006-12-14 2008-06-25 JSR Corporation Non-specific adsorption inhibitor, probe-bonded particles, and method for producing the same
JP5354094B2 (ja) 2010-03-31 2013-11-27 Jsr株式会社 アフィニティークロマトグラフィー用充填剤
WO2013089141A1 (ja) * 2011-12-15 2013-06-20 旭化成ケミカルズ株式会社 タンパク質吸着材
JP5963248B2 (ja) * 2012-06-14 2016-08-03 国立研究開発法人産業技術総合研究所 抗体精製用担体並びにその製造方法及びその用途
EP2938664A4 (en) * 2012-12-28 2016-08-24 Nathan T Starbard POROUS POLYMER PARTICLES AND METHOD FOR THE PRODUCTION AND USE THEREOF
JP6387015B2 (ja) * 2013-11-27 2018-09-05 Jsr株式会社 固相担体、固相担体の製造方法、アフィニティ精製用担体、アフィニティクロマトグラフィー用充填剤の製造方法、アフィニティクロマトグラフィー用充填剤、クロマトグラフィーカラムおよび精製方法
US11835501B2 (en) 2015-07-13 2023-12-05 Sartorius Stedim Chromatography Systems Ltd. Optimizing operating binding capacity for a multiple column chromatography process
EP3540427A4 (en) * 2016-11-11 2020-06-24 Sekisui Chemical Co., Ltd. COLUMN CHROMATOGRAPHY FILLER
CN113355313B (zh) * 2021-04-27 2022-05-24 浙江工业大学 一种聚合物微球及其制备与应用
CN115212857A (zh) * 2022-08-30 2022-10-21 北京石油化工学院 一种以肝素为配体的亲和层析介质及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724369B2 (ja) 1978-02-21 1982-05-24
US5151350A (en) 1982-10-27 1992-09-29 Repligen Corporation Cloned genes encoding recombinant protein a
JPH06281638A (ja) 1993-03-25 1994-10-07 Ngk Insulators Ltd アフィニティクロマトグラフィー用充填剤
JPH10195099A (ja) 1996-02-05 1998-07-28 Hiroshi Handa 薬剤固定化粒子及びタンパク精製法
JP2004331953A (ja) 2003-04-16 2004-11-25 Sekisui Chem Co Ltd 磁性体内包粒子、免疫測定用粒子及び免疫測定法
JP2006511935A (ja) 2002-12-11 2006-04-06 ダイナル バイオテック エイエスエイ 粒子
US20060194955A1 (en) 2002-03-25 2006-08-31 Sophia Hober Protein ligands
JP2006304633A (ja) * 2005-04-26 2006-11-09 Apro Life Science Institute Inc イムノグロブリン結合タンパク質
JP2007211076A (ja) 2006-02-08 2007-08-23 Jsr Corp 有機ポリマー粒子およびその製造方法、ならびにプローブ結合粒子
WO2007142331A1 (ja) * 2006-06-08 2007-12-13 Reverse Proteomics Research Institute Co., Ltd. アフィニティ担体及びその製造方法
JP2008032411A (ja) 2006-07-26 2008-02-14 Jsr Corp 磁性粒子およびその製造方法、ならびにプローブ結合粒子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724369A (en) 1980-07-19 1982-02-08 Tokyo Kinzoku Kogyo Kk Pyrimidine derivative and its preparation
US5059654A (en) * 1983-02-14 1991-10-22 Cuno Inc. Affinity matrices of modified polysaccharide supports
GB2184732B (en) 1985-12-26 1990-07-11 Showa Denko Kk Active support substance and adsorbent for chromatography
JPS63159756A (ja) 1986-12-24 1988-07-02 Showa Denko Kk クロマトグラフイ−用吸着担体
JPS63159754A (ja) * 1986-12-24 1988-07-02 Showa Denko Kk クロマトグラフイ−用吸着担体
JPS63159755A (ja) * 1986-12-24 1988-07-02 Showa Denko Kk クロマトグラフイ−用吸着担体
GB9823071D0 (en) * 1998-10-21 1998-12-16 Affibody Technology Ab A method
CA2374013A1 (en) * 1999-05-15 2000-11-23 University Of California, San Diego Protein a based binding domains with desirable activities
SE0200943D0 (sv) * 2002-03-25 2002-03-25 Amersham Biosciences Ab Mutant protein
GB0304576D0 (en) 2003-02-28 2003-04-02 Lonza Biologics Plc Protein a chromatography
KR20070057266A (ko) * 2004-10-01 2007-06-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 복합 여과 제품
WO2007097361A1 (ja) * 2006-02-21 2007-08-30 Protenova Co., Ltd. イムノグロブリン親和性リガンド
JP4716034B2 (ja) 2006-03-24 2011-07-06 Jsr株式会社 磁性粒子およびその製造方法
EP1936372A1 (en) 2006-12-14 2008-06-25 JSR Corporation Non-specific adsorption inhibitor, probe-bonded particles, and method for producing the same
NZ577933A (en) * 2007-01-22 2011-12-22 Genentech Inc Polyelectrolyte precipitation and purification of antibodies
JP5423965B2 (ja) 2007-05-30 2014-02-19 Jsr株式会社 非特異吸着防止剤
SG195555A1 (en) * 2008-12-24 2013-12-30 Emd Millipore Corp Caustic stable chromatography ligands

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724369B2 (ja) 1978-02-21 1982-05-24
US5151350A (en) 1982-10-27 1992-09-29 Repligen Corporation Cloned genes encoding recombinant protein a
JPH06281638A (ja) 1993-03-25 1994-10-07 Ngk Insulators Ltd アフィニティクロマトグラフィー用充填剤
JPH10195099A (ja) 1996-02-05 1998-07-28 Hiroshi Handa 薬剤固定化粒子及びタンパク精製法
US20060194955A1 (en) 2002-03-25 2006-08-31 Sophia Hober Protein ligands
JP2006511935A (ja) 2002-12-11 2006-04-06 ダイナル バイオテック エイエスエイ 粒子
JP2004331953A (ja) 2003-04-16 2004-11-25 Sekisui Chem Co Ltd 磁性体内包粒子、免疫測定用粒子及び免疫測定法
JP2006304633A (ja) * 2005-04-26 2006-11-09 Apro Life Science Institute Inc イムノグロブリン結合タンパク質
JP2007211076A (ja) 2006-02-08 2007-08-23 Jsr Corp 有機ポリマー粒子およびその製造方法、ならびにプローブ結合粒子
WO2007142331A1 (ja) * 2006-06-08 2007-12-13 Reverse Proteomics Research Institute Co., Ltd. アフィニティ担体及びその製造方法
JP2008032411A (ja) 2006-07-26 2008-02-14 Jsr Corp 磁性粒子およびその製造方法、ならびにプローブ結合粒子

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning", 2001, COLD SPRING HARBOR LABORATORY PRESS
FREDERICK M. AUSBEL ET AL.: "Current Protocols In Molecular Biology", 2001, COLD SPRING HARBOR LABORATORY PRESS
MAMORU HATAKEYAMA ET AL.: "Affinity Seiseiyo Tantai toshite no Kobunshi Biryushi", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 64, no. 1, 25 January 2007 (2007-01-25), pages 9 - 20, XP008145416 *
MOKS T, ABRAHMS L ET AL.: "Staphylococcal protein A consists of five IgG-binding domains", EUR J BIOCHEM., vol. 156, 1986, pages 637 - 643, XP008145392, DOI: doi:10.1111/j.1432-1033.1986.tb09625.x
NILSSON B. ET AL., PROTEIN ENGINEERING, vol. 1, no. 2, 1987, pages 107 - 113
See also references of EP2339339A4 *
TOMAS MOKS ET AL.: "Staphylococcal protein A consist of five IgG- binding domains", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 156, no. 3, May 1986 (1986-05-01), pages 637 - 643, XP008145392 *
Y.INOMATA ET AL.: "Purification of membrane receptors with peptide-carrying affinity latex particles", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 4, no. 4, 30 May 1998 (1998-05-30), pages 231 - 241, XP008145394 *
Z.BILICI ET AL.: "Activity behavior of a HPLC column including a-chymotrypsin immobilized monosized-porous particles", ANALYTICA CHIMICA ACTA, vol. 516, no. 1/2, 19 July 2004 (2004-07-19), pages 125 - 133, XP008145404 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574631A1 (en) * 2010-03-24 2013-04-03 JSR Corporation Filler for affinity chromatography and method for isolating immunoglobulin
EP2574631A4 (en) * 2010-03-24 2013-12-04 Jsr Corp FILLER FOR AFFINITY CHROMATOGRAPHY AND METHOD FOR ISOLATING IMMUNE LOBULIN
US9051355B2 (en) 2010-03-24 2015-06-09 Jsr Corporation Filler for affinity chromatography and method for isolating immunoglobulin
JP2012018135A (ja) * 2010-07-09 2012-01-26 Mitsubishi Chemicals Corp 分離剤
WO2013133258A1 (ja) * 2012-03-06 2013-09-12 Jsr株式会社 抗体精製方法および抗体精製用の担体
JP2015520667A (ja) * 2012-04-23 2015-07-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung クロマトグラフィー法
JPWO2015199196A1 (ja) * 2014-06-27 2017-04-20 Jsr株式会社 アフィニティークロマトグラフィー用担体
JP2017125799A (ja) * 2016-01-15 2017-07-20 日立化成株式会社 分離材及びカラム

Also Published As

Publication number Publication date
US20110262748A1 (en) 2011-10-27
CN102165312B (zh) 2015-04-22
US8846877B2 (en) 2014-09-30
CN102165312A (zh) 2011-08-24
EP2339339A1 (en) 2011-06-29
EP2339339A4 (en) 2016-10-12
JPWO2010035757A1 (ja) 2012-02-23
JP5626526B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5626526B2 (ja) アフィニティークロマトグラフィー用充填剤
JP5998050B2 (ja) アフィニティークロマトグラフィー用充填剤
KR102006097B1 (ko) 친화성 크로마토그래피용 충전제
EP2655404B1 (en) Novel alkali-resistant variants of protein a and their use in affinity chromatography
TWI709571B (zh) 免疫球蛋白結合蛋白質及使用此之親和性載體
JP6630036B2 (ja) 標的物の精製方法、及び、ミックスモード用担体
KR102410991B1 (ko) 친화성 크로마토그래피용 담체
US20130041135A1 (en) Filler for affinity chromatography and method for isolating immunoglobulin
JP2008214350A (ja) イムノグロブリン親和性リガンド
JP2007252368A (ja) イムノグロブリン親和性リガンド
JP2014500311A (ja) アフィニティークロマトグラフィーマトリックス
JP2010189290A (ja) リガンド結合担体およびその製造方法
WO2010035756A1 (ja) イムノグロブリン結合タンパク質
JP6722187B2 (ja) アフィニティー担体およびイムノグロブリンを単離する方法
JP2021098660A (ja) アフィニティ担体、クロマトグラフィーカラム、及び抗体又はその断片の単離方法
WO2017146225A1 (ja) アフィニティクロマトグラフィー用多孔質担体、リガンド結合多孔質担体、標的物の精製方法、及び抗体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137428.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010530858

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2077/CHENP/2011

Country of ref document: IN

Ref document number: 2009816172

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13121124

Country of ref document: US