WO2010035756A1 - イムノグロブリン結合タンパク質 - Google Patents

イムノグロブリン結合タンパク質 Download PDF

Info

Publication number
WO2010035756A1
WO2010035756A1 PCT/JP2009/066553 JP2009066553W WO2010035756A1 WO 2010035756 A1 WO2010035756 A1 WO 2010035756A1 JP 2009066553 W JP2009066553 W JP 2009066553W WO 2010035756 A1 WO2010035756 A1 WO 2010035756A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
amino acid
immunoglobulin binding
acid sequence
protein
Prior art date
Application number
PCT/JP2009/066553
Other languages
English (en)
French (fr)
Inventor
スンチェン リ シャン
グラサス テオファニス
リ シン
勇 王
孝広 河合
哲夫 福田
功二 田守
Original Assignee
Jsr株式会社
ザ ユニバーシティ オブ ウエスタン オンタリオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社, ザ ユニバーシティ オブ ウエスタン オンタリオ filed Critical Jsr株式会社
Publication of WO2010035756A1 publication Critical patent/WO2010035756A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)

Definitions

  • the present invention relates to an immunoglobulin binding protein.
  • affinity chromatography One method for producing a highly pure protein is affinity chromatography.
  • a target protein is separated from contaminants by adsorbing the target protein on a target substance-capturing support in which a molecule having specific and reversible affinity for the target protein is bound as a ligand.
  • Proteins are often used as ligands at that time.
  • An example of a protein used as a ligand is protein A.
  • Protein A is a protein derived from Staphylococcus aureus and has a repeating structure of five immunoglobulin binding domains having homology called A domain, B domain, C domain, D domain, and E domain.
  • the immunoglobulin binding domain of protein A is known to bind to immunoglobulin with only one domain (Nilsson B. et al., Protein Engineering, 1987, 1st Vol. 2, No. 107-113).
  • protein A for example, genetic recombination has been attempted in order to facilitate production and to allow modification of the amino acid sequence (US Pat. No. 5,151,350).
  • recombinant protein A containing an immunoglobulin binding domain whose amino acid sequence is partially modified is widely used as a ligand for affinity chromatography.
  • the present invention relates to an immunoglobulin binding that functions as a ligand in a carrier for capturing a target substance for affinity chromatography, for example, so that the amount immobilized on the carrier is large and the immunoglobulin retention ability of the carrier can be enhanced.
  • the immunoglobulin binding protein according to one embodiment of the present invention is represented by the following general formula (1).
  • RR 2 (1) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • the immunoglobulin binding protein can be a group represented by the following general formula (2) in the general formula (1).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.)
  • the immunoglobulin binding protein is one type in which at least one of the amino acid sequence represented by R and the amino acid sequence represented by R 2 in the general formula (1) is selected from lysine, arginine, and cysteine. And a domain t consisting of 1 to 50 amino acids including
  • the immunoglobulin binding protein according to another embodiment of the present invention is represented by the following general formula (3).
  • R 2 -R (3) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • the immunoglobulin binding protein may be a group represented by the following general formula (4) in the general formula (3).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.)
  • the immunoglobulin binding protein is one type in which at least one of the amino acid sequence represented by R and the amino acid sequence represented by R 2 in the general formula (3) is selected from lysine, arginine, and cysteine. And a domain t consisting of 1 to 50 amino acids including
  • the left end indicates the N-terminal and the right end indicates the C-terminal.
  • the immunoglobulin binding domain of the protein A is an A domain, a B domain, a C domain, a D domain, an E domain, and a Z domain. It can be at least one selected from In this case, the immunoglobulin binding domain of the protein A may be (D domain-A domain) n (n represents an integer of 1 or more).
  • the nucleic acid according to another embodiment of the present invention encodes the immunoglobulin binding protein or an equivalent functional variant thereof.
  • a gene expression system according to another embodiment of the present invention includes the nucleic acid.
  • protein refers to any molecule having a peptide structural unit, for example, a concept including a partial fragment of a natural protein or a variant obtained by artificially modifying the amino acid sequence of a natural protein.
  • the “immunoglobulin binding domain” represents a functional unit of a polypeptide having immunoglobulin binding activity alone, and the “immunoglobulin binding protein” has a specific affinity for immunoglobulin, and Represents a protein comprising an “immunoglobulin binding domain”.
  • TEV domain refers to a site cleaved by TEV (Tobacco Etch Virus) protease.
  • the immunoglobulin binding protein can function as a ligand in a carrier for capturing a target substance for affinity chromatography, for example, by being represented by the general formula (1) or the general formula (3). That is, by using the immunoglobulin binding protein as a ligand in the carrier, the amount immobilized on the carrier can be increased, and the immunoglobulin retaining ability of the carrier can be enhanced. Thereby, since the capture amount of the target substance can be increased, the binding capacity of the target substance can be increased.
  • FIG. 1 is a view showing the amino acid sequences of immunoglobulin binding proteins (SPAK, SPAC, SPAKK, SPATK) prepared in Synthesis Example 1 of the present invention.
  • FIG. 2 is a view showing amino acid sequences of immunoglobulin binding proteins (SPA2K, SPA3K, SPA-His-C, SPA-His-N) prepared in Synthesis Example 1 of the present invention.
  • FIG. 3 is a diagram for explaining the structure of a DNA fragment encoding the immunoglobulin binding protein according to Synthesis Example 1 of the present invention, which is inserted into each of three types of expression vectors (pETM-11, pETM-10 and pET29). is there.
  • Immunoglobulin binding protein The immunoglobulin binding protein (hereinafter also referred to as “protein 1”) according to one embodiment of the present invention is represented by the following general formula (1).
  • RR 2 (1) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • the number of amino acids contained in the amino acid sequence represented by R is preferably 8 to 100, and the number of histidines at sites where histidines contained in R are continuous is 4 to 8 It is preferable that In the general formula (1), the number of amino acids contained in the amino acid sequence represented by R 2 is preferably 120 to 480.
  • R- is preferably a group represented by the following general formula (2).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.)
  • the number of amino acids contained in the amino acid sequence represented by R 1 is 4 to 25, the number of histidine site histidine continuous contained in R 1 is 4- The number is preferably 8.
  • the number of amino acids contained in the amino acid sequence represented by r is preferably 10-50.
  • protein 2 An immunoglobulin binding protein (hereinafter also referred to as “protein 2”) according to another embodiment of the present invention is represented by the following general formula (3).
  • R 2 -R (3) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the terminal of the immunoglobulin binding domain).
  • the number of amino acids contained in the amino acid sequence represented by R is preferably 8 to 100, and the number of histidines at sites where histidines contained in R are continuous is 4 to 8 It is preferable that In the general formula (1), the number of amino acids contained in the amino acid sequence represented by R 2 is preferably 120 to 480.
  • -R is preferably a group represented by the following general formula (4).
  • R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including 4 to 20 consecutive histidines (wherein, in R 1 , the end of the site where the histidine continues is bound to r) And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids including the TEV domain.
  • the number of amino acids contained in the amino acid sequence represented by R 1 is preferably 4 to 25, and the number of histidines at sites where histidines contained in r are continuous is 4 to 8
  • the number of amino acids contained in the amino acid sequence represented by r is preferably 10 to 50.
  • one amino acid at least one of the amino acid sequence represented by amino acid sequence and R 2 is represented by R is, selected lysine, arginine, and cysteine It preferably contains a domain t consisting of 1 to 50 amino acids including In this case, the same or different domain t may be contained in the amino acid sequence.
  • the amino acid sequence represented by r may contain a TEV domain. Since the TEV domain is contained in the amino acid sequence represented by r, it is possible to separate R and R 2 by cleavage with TEV protease, and the TEV domain has the effect of the present invention (immobilization on a carrier). This is a preferable sequence for realizing a large amount and increasing the ability of the carrier to retain immunoglobulin).
  • a TEV domain mutant (mutant) (regardless of whether the mutant can be cleaved by TEV protease or not, it is 70% or more, preferably 90% Having the above-mentioned homology).
  • the total number of amino acids constituting the immunoglobulin binding protein according to this embodiment is usually 70 to 1000, and preferably 80 to 600 when used for binding to particles.
  • the immunoglobulin binding domain of protein A is preferably at least one selected from the A domain, B domain, C domain, D domain, E domain, and Z domain.
  • amino acid sequences of A domain, B domain, C domain, D domain, and E domain are, for example, Moks T, Abrahms L, et al., Staphylococcal protein A consists of five IgG-binding domains, Eur J Biochem. 1986, 156, It is described in Fig. 1 of 637-643.
  • the document is included in the disclosure by this reference.
  • a protein comprising an amino acid sequence having 70% or more (preferably 90% or more) homology with the amino acid sequence of each domain described in the above document should also be used as an immunoglobulin binding domain of protein A in the present invention. Can do.
  • the immunoglobulin binding protein according to this embodiment may have a plurality of the same or different types of immunoglobulin binding domains.
  • the immunoglobulin binding domain of protein A is (D domain-A domain) n (where n is an integer of 1 or more (preferably 1 to 6), and any number between D domain and A domain)
  • the amino acid sequence of A domain and D domain may be included.
  • the immunoglobulin A binding domain of protein A may be a natural immunoglobulin binding domain or a recombinant immunoglobulin binding domain.
  • the recombinant immunoglobulin binding domain can be treated as equivalent to the immunoglobulin binding domain before modification in immunoglobulin binding activity.
  • the amino acid of the immunoglobulin binding domain of natural protein A It is preferable to maintain a homology of 70% or more (preferably 90% or more) with the sequence.
  • Specific examples include the Z domain described in Nilson B. et al., Protein Engineering, 1987, Vol. 1, No. 2, pages 107-113, USA by Hober S et al. Examples include Z domain mutants having alkali resistance described in Patent Application 2006 / 0194955A1.
  • a protein comprising an amino acid sequence having 70% or more (preferably 90% or more) homology with the amino acid sequence of each domain described in the above document should also be used as an immunoglobulin binding domain of protein A in the present invention. Can do.
  • the immunoglobulin binding protein according to this embodiment can be produced using a gene recombination technique described in US Pat. No. 5,151,350. That is, by transforming an expression vector containing a nucleic acid sequence encoding a target modified protein into a host such as E. coli and culturing the cell in an appropriate liquid medium, the cultured cell is transformed into the present embodiment.
  • Such immunoglobulin binding proteins can be obtained in large quantities and economically.
  • one immunoglobulin binding domain of protein A is a small protein consisting of about 60 amino acids
  • DNA encoding a desired amino acid sequence is divided into synthetic oligonucleotides consisting of several tens of bases. Then, they are ligated by a ligation reaction with DNA ligase and inserted into a plasmid, whereby a target expression vector can be obtained.
  • a target expression vector can be obtained.
  • it is a method generally performed by those skilled in the art to employ a nucleic acid sequence using an optimal codon of Escherichia coli.
  • the immunoglobulin binding protein according to the present embodiment may be a protein containing one or more immunoglobulin binding domains (preferably 2 to 12, more preferably 2 to 5).
  • a cDNA encoding such a protein can be easily prepared by linking a predetermined number of cDNAs (complementary DNAs) encoding one immunoglobulin binding domain in series. By inserting the cDNA thus prepared into an appropriate expression plasmid and using it, a protein containing one or more immunoglobulin binding domains can be easily produced.
  • a protein having the amino acid sequence of SEQ ID NOs: 1 to 8 shown in Examples described later, or an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NOs: 1 to 8, and A protein having immunoglobulin binding activity can be suitably used as the immunoglobulin binding protein of the present invention.
  • a ligand for purifying a target protein by binding it to a carrier in affinity chromatography can be mentioned.
  • ligand refers to a protein that specifically and reversibly binds to a target protein in affinity chromatography.
  • the carrier using the immunoglobulin-binding protein according to the present embodiment as a ligand has a larger amount of immunoglobulin-binding protein compared to the conventional carrier in affinity chromatography, and has the ability to retain the protein.
  • the capture amount of the target protein can be increased, the binding capacity of the target protein (antibody) can be increased.
  • a high-purity target protein can be purified efficiently, at low cost and in large quantities.
  • nucleic acid encodes the immunoglobulin binding protein or an equivalent functional variant thereof.
  • “functional variant” of an immunoglobulin-binding protein is an immunoglobulin-binding protein that has been altered by partial amino acid addition, deletion, substitution, chemical modification of amino acid residues, or the like. And having at least 70%, preferably 90% or more homology with the amino acid sequence of the immunoglobulin binding protein before modification, and having the same immunoglobulin binding activity as that of the immunoglobulin binding protein before modification. It means something that can be handled.
  • a gene expression system according to another embodiment of the present invention includes a nucleic acid encoding the immunoglobulin binding protein or an equivalent functional variant thereof.
  • any known vector that can replicate in bacteria can be used.
  • Preferred expression vectors for example, a plasmid that is described in U.S. Patent No. 5,151,350, as described in, Molecular Cloning of Sambrook et al., Eds. (Cold Spring Harbor Laboratory Press, 3 rd edition, 2001) Plasmids.
  • Any method known in the art may be used to transform a bacterium by introducing a nucleic acid into the bacterium, for example, Molecular Cloning (Cold Spring Harbor Laboratory Press, edited by Sambrook et al. 3 rd edition, 2001) can be utilized known methods described in the like. Methods for cultivating transformed bacteria and recovering the expressed protein are well known to those skilled in the art.
  • R and R 2 correspond to R and R 2 in the general formula (1) or the general formula (2) (R 1, R 2 and r are the general formula (2) or corresponds to R 1, R 2 and r in the general formula (4).), underlined in r indicates a TEV domain (TEV protease (peptide bond hydrolysis synthase) cleavage site), in R 2 The underlined portion indicates an interdomain linker or C-terminal linker (domain t), see Table 2.
  • TEV domain TEV protease (peptide bond hydrolysis synthase) cleavage site
  • DNA fragments encoding SPAK, SPAC, SPA2K, SPA3K, SPAKK, and SPATK were digested with restriction enzymes NcoI and HindIII (New-England Bio Bio Lab) to produce vector pETM-11. (See FIG. 3, obtained from kind giftof D. Shibly, EMBL Heidelberg, Heidelberg, yGermany).
  • the DNA fragment encoding SPA-His-N was digested with restriction enzymes NcoI and HindIII, and vector pETM-10 (see FIG. 3, kindkingift of D. Shibly, EMBL Heidelberg , Obtained from Heidelberg, Germany).
  • SPA-His-C which is an immunoglobulin binding protein having a histag (a peptide consisting of 6 histidine residues) at the C-terminus
  • the vector pET29 (see FIG. 3, see Novagen). Used).
  • the restriction enzymes used in this vector pET29 were NdeI (New-England Bio Bio Lab) and Xho I (New-England Bio Bio Lab).
  • All three types of expression vectors shown in FIG. 3 contain a kanamycin resistance gene as a selection marker.
  • Tev represents a TEV protease recognition site (amino acid sequence: ENLYFQG). TEV protease recognizes the amino acid sequence ENLYFQG and cleaves between Q and G.
  • the restriction enzyme was introduced by designing a pair of primers based on the SPAK insertion sequence. PCR amplification was performed using primers (SEQ ID NOs: 9 to 17) shown in Table 2.
  • the SPA-His-N DNA fragment can also be obtained directly by digesting a plasmid containing SPAK with a restriction enzyme (Table 1).
  • the SPA-His-N DNA fragment was obtained directly by digesting the plasmid containing SPAK with restriction enzymes (Table 1).
  • PCR amplification solution containing 0.5 ⁇ l of Straphylococcus aureus genomic DNA template (500 ng / ⁇ l), 5 pl of each primer, 5 ⁇ l of 10 ⁇ Pfu buffer (manufactured by Fermentas), and 1 ⁇ l of Pfu polymerase (manufactured by Fermentas) (5 units / ⁇ l) Sterile water was added to bring the final volume to 50 ⁇ l.
  • the conditions for PCR amplification are as follows: 94 ° C for 1 minute, then 94 ° C for 30 seconds, 56 ° C for 1 minute, 72 ° C for 1 minute 30 cycles, and finally 72 ° C for 10 minutes.
  • This PCR reaction was carried out with a PX2 Thermal Cycler PCR device (manufactured by Thermo-Electron Corporation).
  • Recombinant immunoglobulin binding protein is obtained from E. coli.
  • E. coli BL21 strain cells (manufactured by STRATAGENE)
  • 1 mM IPTG manufactured by Sigma-Aldrich
  • the cells Prior to induction, the cells were incubated at 37 ° C. until the absorbance (OD600) reached approximately 0.6. After protein expression, the cells were collected and disrupted in Tris buffer at pH 8.0.
  • the obtained recombinant immunoglobulin binding protein was purified by Ni affinity chromatography (Ni-NTA (nitrilotriacetic acid) particles, manufactured by Qiagen).
  • Ni-NTA nitrilotriacetic acid
  • the purified immunoglobulin binding protein was further purified in an HEPES buffer at pH 7.5 by anion exchange chromatography (Q-Sepharose FF, manufactured by GE Bioscience).
  • SPAK digested with TEV protease was passed through a Ni-NAT column (volume: 4 mL) in 50 mM Tris-HCl, 0.5 mM EDTA, and 1 mM DTT buffer (pH 8.0) to cleave the his tag site of SPAK. Crude SPAKwoHis was recovered. This crude SPAKwoHis was dialyzed for 12 hours in 10 mM HEPES buffer (pH 7.5) to prepare SPAKwoHis for particle binding experiments.
  • the amino acid sequence of SPAKwoHis is as follows.
  • SPAKwohis total amino acid sequence (SEQ ID NO: 18) GAMAKADAQQNNFNKDQQSAFYEILNMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEGSK
  • SPAKwoHis-bound porous particles SPAKwoHis-PB
  • SPAKwoHis-PB SPAKwoHis-bound porous particles
  • Immobilization example 3 380 mg of SPATK-bound porous particles (SPATK-PB) were obtained in the same manner as in Immobilization Example 1 except that SPATK was used instead of SPAK in Immobilization Example 1. The amount of SPATK bound to the particles was 36 mg / g particles.
  • Test example (measurement of binding amount of immunoglobulin G (IgG)) 4.2.1. Measurement example 1 SPAK-PB was packed in a column having an inner diameter of 0.5 cm and a height of 5 cm, and the binding capacity of human IgG antibody at a linear flow rate of 300 cm / hr was measured using AKTAprime plus manufactured by GE Healthcare Bioscience. Human IgG antibody (manufactured by Lampire Biological Laboratories) diluted to 1 mg / mL with 25 mM citrate buffer (pH 6.0) was used, and the elution tip concentration was 10 w / v% break on the absorbance monitor. The binding capacity was determined from the amount of human IgG antibody adsorbed and the volume of SPAK-PB at the time of through (breakthrough), and found to be 30 mg / mL.
  • IgG immunoglobulin G
  • Measurement example 2 The binding capacity of SPATK-PB human IgG antibody was determined in the same manner as in Measurement Example 1 except that SPATK-PB was used in place of SPAK-PB in Measurement Example 1. The result was 35 mg / mL. It was.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the present invention also includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same purposes and results).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

イムノグロブリン結合タンパク質は下記一般式(1)または(3)で表される。 R-R・・・・・(1) (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。) R-R・・・・・(3) (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)

Description

イムノグロブリン結合タンパク質
 本発明は、イムノグロブリン結合タンパク質に関する。
 近年、医学、薬学、生物学などの分野において、純度が高いタンパク質試薬が求められている。また、抗体医薬などバイオ医薬の開発の活況に伴い、純度が高いタンパク質を効率良く、低コストでかつ大量に得る方法が求められている。
 純度の高いタンパク質を製造する方法の一つとして、アフィニティクロマトグラフィーが挙げられる。アフィニティクロマトグラフィーでは、目的タンパク質に特異的かつ可逆的な親和性を示す分子をリガンドとして結合させた目的物質捕捉用担体に目的タンパク質を吸着させることにより、目的タンパク質を夾雑物から分離させる。その際のリガンドとしてタンパク質が用いられることが多い。リガンドとして用いられるタンパク質としては、例えばプロテインAが挙げられる。
 プロテインAは黄色ブドウ球菌(Staphylococcus aureus)由来のタンパク質であり、Aドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメインと呼ばれる相同性を有する5つのイムノグロブリン結合ドメインの繰り返し構造を有する。
 プロテインAのイムノグロブリン結合ドメインは、1個のドメインのみでイムノグロブリンに結合することが知られている(ニルソン・ビー(Nilsson B.)他、プロテイン・エンジニアリング(Protein engineering)、1987年、第1巻、2号、107-113頁)。プロテインAについては、例えば、生産しやすくするために、またアミノ酸配列の改変ができるようにするために、遺伝子組み換えが試みられている(米国特許第5151350号明細書)。天然型のプロテインAだけでなく、アミノ酸配列が部分的に改変されたイムノグロブリン結合ドメインを含む組換え型のプロテインAも、アフィニティクロマトグラフィー用のリガンドとして広く利用されている。
 上述したように、近年、純度の高いタンパク質を効率良く、低コストでかつ大量に精製することが求められている。
 本発明は、例えばアフィニティクロマトグラフィー用の目的物質捕捉用担体におけるリガンドとして機能することにより、当該担体への固定化量が多く、かつ、当該担体のイムノグロブリン保持能力を高めることができるイムノグロブリン結合タンパク質を提供する。
 本発明の一態様にかかるイムノグロブリン結合タンパク質は、下記一般式(1)で表される。
 R-R ・・・・・(1)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 上記イムノグロブリン結合タンパク質は、上記一般式(1)において、R-は下記一般式(2)で表される基であることができる。
 R-r- ・・・・・(2)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 また、上記イムノグロブリン結合タンパク質は、上記一般式(1)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものであることができる。
 本発明の他の一態様にかかるイムノグロブリン結合タンパク質は、下記一般式(3)で表される。
 R-R ・・・・・(3)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 上記イムノグロブリン結合タンパク質は、上記一般式(3)において、-Rは下記一般式(4)で表される基であることができる。
 -r-R ・・・・・(4)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 また、上記イムノグロブリン結合タンパク質は、上記一般式(3)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものであることができる。
 なお、上記一般式(1)および一般式(3)において、左端がN末端を示し、右端がC末端を示すものとする。
 上記一般式(1)および一般式(3)で表されるイムノグロブリン結合タンパク質において、前記プロテインAのイムノグロブリン結合ドメインが、Aドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメイン、およびZドメインから選ばれる少なくとも1種であることができる。この場合、前記プロテインAのイムノグロブリン結合ドメインが、(Dドメイン-Aドメイン)n(nは1以上の整数を示す。)であることができる。
 本発明の他の一態様にかかる核酸は、上記イムノグロブリン結合タンパク質またはその等機能変異体をコードする。
 本発明の他の一態様にかかる遺伝子発現系は、上記核酸を含む。
 本発明において、「タンパク質」とは、ペプチド構造単位を有するあらゆる分子をいい、例えば、天然型タンパク質の部分的断片や天然型タンパク質のアミノ酸配列を人為的に改変した変異体を含む概念である。また、「イムノグロブリン結合ドメイン」とは、単独でイムノグロブリン結合活性を有するポリペプチドの機能単位を表し、「イムノグロブリン結合タンパク質」とは、イムノグロブリンに特異的な親和性を有し、かつ、「イムノグロブリン結合ドメイン」を含むタンパク質を表す。
 また、本発明において、「TEVドメイン」とは、TEV(Tobacco Etch Virus)プロテアーゼによる切断部位をいう。
 上記イムノグロブリン結合タンパク質は、上記一般式(1)または上記一般式(3)で表されることにより、例えばアフィニティクロマトグラフィー用の目的物質捕捉用担体におけるリガンドとして機能することができる。すなわち、上記イムノグロブリン結合タンパク質を当該担体におけるリガンドとして使用することにより、当該担体への固定化量が多く、かつ、当該担体のイムノグロブリン保持能力を高めることができる。これにより、目的物質の捕捉量を高めることができるため、目的物質の結合容量を高めることができる。
図1は、本発明の合成例1で調製されたイムノグロブリン結合タンパク質(SPAK、SPAC、SPAKK、SPATK)のアミノ酸配列を示す図である。 図2は、本発明の合成例1で調製されたイムノグロブリン結合タンパク質(SPA2K、SPA3K、SPA-His-C、SPA-His-N)のアミノ酸配列を示す図である。 図3は、3種類の発現ベクター(pETM-11、pETM-10およびpET29)にそれぞれ挿入された、本発明の合成例1に係るイムノグロブリン結合タンパク質をコードするDNAフラグメントの構成を説明する図である。
 以下、本発明の一実施形態に係るイムノグロブリン結合タンパク質、核酸、および遺伝子発現系について具体的に説明する。
 1.イムノグロブリン結合タンパク質
 本発明の一実施形態にかかるイムノグロブリン結合タンパク質(以下、「タンパク質1」ともいう。)は、下記一般式(1)で表される。
 R-R ・・・・・(1)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 上記一般式(1)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は8~100個であることが好ましく、Rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましい。また、上記一般式(1)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は120~480個であることが好ましい。
 また、上記一般式(1)において、R-は下記一般式(2)で表される基であることが好ましい。
 R-r- ・・・・・(2)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 上記一般式(2)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は4~25個であることが好ましく、Rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましく、rで表されるアミノ酸配列に含まれるアミノ酸の数は10~50個であることが好ましい。
 本発明の他の一実施形態にかかるイムノグロブリン結合タンパク質(以下、「タンパク質2」ともいう。)は、下記一般式(3)で表される。
 R-R ・・・・・(3)
 (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
 上記一般式(3)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は8~100個であることが好ましく、Rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましい。また、上記一般式(1)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は120~480個であることが好ましい。
 また、上記一般式(3)において、-Rは下記一般式(4)で表される基であることが好ましい。
 -r-R ・・・・・(4)
 (式中、Rは4~20個の連続したヒスチジンを含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
 上記一般式(4)において、Rで表されるアミノ酸配列に含まれるアミノ酸の数は4~25個であることが好ましく、rに含まれるヒスチジンが連続した部位のヒスチジンの数は4~8個であることが好ましく、rで表されるアミノ酸配列に含まれるアミノ酸の数は10~50個であることが好ましい。
 上記一般式(1)および上記一般式(3)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むことが好ましい。この場合、上記アミノ酸配列中に同一または異なるドメインtが複数含まれていてもよい。
 また、上記一般式(2)および上記一般式(4)に示されるように、rで表されるアミノ酸配列中にTEVドメインが含まれていてもよい。rで表されるアミノ酸配列中にTEVドメインが含まれていることにより、TEVプロテアーゼによる切断によってRとRとの分離が可能になるうえ、TEVドメインは、本発明の効果(担体への固定化量が多く、かつ、当該担体のイムノグロブリン保持能力を高めること)を実現するために好ましい配列である。また、rで表されるアミノ酸配列中に、TEVドメインの変異体(Mutant)(該変異体は、TEVプロテアーゼで切断できるか否かと関係なくTEVドメインのアミノ配列と70%以上、好ましくは90%以上の相同性を有する。)が含まれていてもよい。
 本実施形態にかかるイムノグロブリン結合タンパク質を構成するアミノ酸の総個数は通常70~1000であり、粒子に結合させる用途に使用する場合、80~600であるのが好ましい。
 1.1.イムノグロブリン結合ドメイン
 プロテインAのイムノグロブリン結合ドメインは、Aドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメイン、およびZドメインから選ばれる少なくとも1種であることが好ましい。
 Aドメイン、Bドメイン、Cドメイン、Dドメイン、およびEドメインのアミノ酸配列は例えば、Moks T, Abrahms L, et al.,Staphylococcal protein A consists of five IgG-binding domains, Eur J Biochem. 1986, 156, 637-643のFig.1に記載されている。該文献はこの参照により開示に含まれる。また、上記文献に記載された各ドメインのアミノ酸配列と70%以上(好ましくは90%以上)の相同性を有するアミノ酸配列からなるタンパク質も、本発明におけるプロテインAのイムノグロブリン結合ドメインとして使用することができる。
 本実施形態に係るイムノグロブリン結合タンパク質は、複数の同一または異なる種類のイムノグロブリン結合ドメインを有していてもよい。例えば、プロテインAのイムノグロブリン結合ドメインが、(Dドメイン-Aドメイン)n(ここで、nは1以上の整数(好ましくは1~6)を示し、DドメインとAドメインとの間には任意のアミノ酸配列が存在していてもよい。)、すなわち、AドメインおよびDドメインを含む繰り返し単位を含むものであってもよい。
 また、プロテインAのイムノグロブリン結合ドメインは、天然型のイムノグロブリン結合ドメインであってもよいし、または、組換え型のイムノグロブリン結合ドメインであってもよい。ここで、組換え型のイムノグロブリン結合ドメインは、イムノグロブリン結合活性において、改変前のイムノグロブリン結合ドメインと同等のものとして扱うことができ、例えば、天然型のプロテインAのイムノグロブリン結合ドメインのアミノ酸配列と70%以上(好ましくは90%以上)の相同性を保持することが好ましい。具体例としては、ニルソン・ビー(Nilsson B.)他、プロテイン・エンジニアリング(Protein engineering)、1987年、第1巻、2号、107-113頁に記載されているZドメイン、Hober Sらによる米国特許出願2006/0194955A1に記載されているアルカリ耐性を有するZドメインの変異体(mutant)が挙げられる。上記文献はこの参照により開示に含まれる。また、上記文献に記載された各ドメインのアミノ酸配列と70%以上(好ましくは90%以上)の相同性を有するアミノ酸配列からなるタンパク質も、本発明におけるプロテインAのイムノグロブリン結合ドメインとして使用することができる。
 1.2.製造
 本実施形態に係るイムノグロブリン結合タンパク質を製造するための標準技術としては、例えば、Frederick M. AusbelらによるCurrent Protocols In Molecular BiologyやSambrookら編集のMolecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されている公知の遺伝子組換え技術を利用することができる。例えば、本実施形態に係るイムノグロブリン結合タンパク質は、米国特許第5,151,350号明細書に記載されている遺伝子組換え技術を用いて製造することができる。すなわち、目的の改変タンパク質をコードする核酸配列を含有させた発現ベクターを大腸菌などの宿主に形質転換し、当該細胞を適切な液体培地で培養することにより、培養後の細胞から、本実施形態に係るイムノグロブリン結合タンパク質を大量かつ経済的に取得することができる。
 具体的には、プロテインAの1個のイムノグロブリン結合ドメインは約60個のアミノ酸からなる小さなタンパク質であるため、例えば、所望のアミノ酸配列をコードするDNAを数十塩基からなる合成オリゴヌクレオチドに分割して合成し、それらをDNAリガーゼによるライゲーション反応によって繋げてプラスミドに挿入することにより、目的の発現ベクターを取得することができる。その際に、当該タンパク質を大腸菌で効率良く発現させる目的で、大腸菌の至適コドンを用いた核酸配列を採用することは、当業者によって一般的に行われる方法である。また、後述する本発明の実施例に示されるようにStraphylococcus aureusのゲノムDNAからPCR(Polymerase Chain Reaction)技術を用いて所望のアミノ酸配列をコードするDNA配列を構築することが可能である。
 また、上述したように、本実施形態にかかるイムノグロブリン結合タンパク質は、イムノグロブリン結合ドメインを1個以上(好ましくは2~12個、より好ましくは2~5個)を含むタンパク質であってもよい。この様なタンパク質をコードするcDNAは、1個のイムノグロブリン結合ドメインをコードするcDNA(相補的DNA)を所定の個数、直列に連結することにより、容易に作成することができる。こうして作成したcDNAを適切な発現プラスミドに挿入して利用することにより、イムノグロブリン結合ドメインを1個以上含むタンパク質を容易に製造することができる。
 例えば、後述する実施例において示される配列番号1~8のアミノ酸配列を有するタンパク質や、配列番号1~8において1個または数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、かつイムノグロブリン結合活性を有するタンパク質は、本発明のイムノグロブリン結合タンパク質として好適に使用することができる。
 1.3.用途
 本実施形態に係るイムノグロブリン結合タンパク質の用途の一例としては、例えば、アフィニティクロマトグラフィーにおいて、目的タンパク質を担体に結合させて精製するためのリガンドが挙げられる。本発明において、「リガンド」とは、アフィニティクロマトグラフィーにおいて、目的タンパク質に特異的にかつ可逆的に結合するタンパク質をいう。ここで、本実施形態に係るイムノグロブリン結合タンパク質をリガンドとして用いた担体は、アフィニティクロマトグラフィーにおいて、従来の担体と比較してイムノグロブリン結合タンパク質の保持量が多く、かつ、当該タンパク質の保持能に優れている。これにより、目的タンパク質の捕捉量を高めることができるため、目的タンパク質(抗体)の結合容量を増大させることができる。その結果、純度の高い目的タンパク質を効率良く、低コストでかつ大量に精製することができる。
 2.核酸
 本発明の他の一実施形態にかかる核酸は、上記イムノグロブリン結合タンパク質またはその等機能変異体をコードする。
 本発明において、イムノグロブリン結合タンパク質の「等機能変異体(functional variant)」とは、部分的なアミノ酸の付加、削除、置換、アミノ酸残基の化学的修飾等により改変されたイムノグロブリン結合タンパク質であって、改変前のイムノグロブリン結合タンパク質のアミノ酸配列と70%以上、好ましくは90%以上の相同性を保持し、かつ、イムノグロブリン結合活性において、改変前のイムノグロブリン結合タンパク質と同等のものとして扱うことができるものを意味する。
 3.遺伝子発現系
 本発明の他の一実施形態にかかる遺伝子発現系は、上記イムノグロブリン結合タンパク質またはその等機能変異体をコードする核酸を含む。本実施形態にかかる遺伝子発現系として、例えば、細菌内で複製可能な既知のベクターのいずれをも用いることができる。好ましい発現ベクターとしては、例えば、米国特許第5,151,350号明細書に記載されているプラスミドや、Sambrookら編集のMolecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されているプラスミドが挙げられる。また、細菌中に核酸を導入することにより細菌を形質転換させるためには、当該技術分野において知られるいずれの方法を用いてもよく、例えば、Sambrookら編集のMolecular Cloning (Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されている公知の方法を利用することができる。形質転換した細菌を培養して、発現されたタンパク質を回収する方法は、当業者によく知られている。
 4.実施例
 以下、本発明を、実施例を挙げてさらに具体的に説明する。本発明は、以下の実施例に限定されるものではない。なお、実施例および比較例中の「%」および「部」は特記しない限り、それぞれ質量%および質量部であることを示している。
 4.1.実験例
 4.1.1.合成例1(イムノグロブリン結合タンパク質の調製)
 後述する調製例1~4により、図1および図2に示されるアミノ酸配列を有するイムノグロブリン結合タンパク質(SPAK(配列番号1)、SPAC(配列番号2)、SPAKK(配列番号3)、SPATK(配列番号4)、SPA2K(配列番号5)、SPA3K(配列番号6)、SPA-His-C(配列番号7)、SPA-His-N(配列番号8))を調製した。
 なお、図1および図2において、RおよびRは上記一般式(1)または上記一般式(2)におけるRおよびRに対応し(R、Rおよびrは上記一般式(2)または上記一般式(4)におけるR、Rおよびrに対応する。)、r中の下線部はTEVドメイン(TEVプロテアーゼ(ペプチド結合加水分解合成酵素)切断部位)を示し、R中の下線部はインタードメインリンカーまたはC末端リンカー(ドメインt)、表2参照)を示す。
 これらのタンパク質は、MALDI-TOFマススペクトル分析により、それぞれアミノ酸配列が一致したことにより、図1および図2に示すアミノ酸配列を有することが確認された。
 4.1.1.1.調製例1(PCR増幅および制限酵素の消化)
 Straphylococcus aureus(ATCC, 10832)由来のプロテインA(Dドメイン+Aドメイン)のcDNAをPCRによって増幅した。プライマー(表2参照)は、後述するサブクローニングを補助するために対応する制限酵素部位を有するように設計された。
 表1に示されるように、SPAK、SPAC、SPA2K、SPA3K、SPAKK、およびSPATKをそれぞれコードするDNAフラグメントは、制限酵素NcoIおよびHindIII(New-England Bio Lab製)によって消化されて、ベクターpETM-11(図3参照、kind gift of D. Shibly, EMBL Heidelberg, Heidelberg, Germanyから入手)に挿入された。
 また、表1に示されるように、SPA-His-NをコードするDNAフラグメントは、制限酵素NcoIおよびHindIIIによって消化されて、ベクターpETM-10(図3参照、kind gift of D. Shibly, EMBL Heidelberg, Heidelberg, Germanyから入手)に挿入された。
 さらに、表1に示されるように、C末端にヒスタグ(ヒスチジン6残基からなるペプチド)を有するイムノグロブリン結合タンパク質であるSPA-His-Cを形成するために、ベクターpET29(図3参照、Novagen社製)が用いられた。このベクターpET29に用いられる制限酵素はNdeI(New-England Bio Lab製)およびXhoI(New-England Bio Lab製)であった。
 なお、図3に示される3種類の発現ベクターはすべて、選択マーカーとしてカナマイシン耐性遺伝子を含む。
 また、図3に示されるイムノグロブリン結合タンパク質のアミノ酸配列において、「Tev」はTEVプロテアーゼ認識部位(アミノ酸配列:ENLYFQG)を示す。TEVプロテアーゼはアミノ酸配列ENLYFQGを認識し、QとGの間を切断する。
 上記制限酵素は、SPAKの挿入配列に基づく1対のプライマーを設計することにより導入された。また、PCR増幅は、表2に示されるプライマー(配列番号9~17)を用いて行われた。
 なお、SPA-His-NのDNAフラグメントは、SPAKを含むプラスミドを制限酵素(表1)で消化することにより直接得ることもできる。本実施例では、SPA-His-NのDNAフラグメントは、SPAKを含むプラスミドを制限酵素(表1)で消化することにより直接得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 Straphylococcus aureusのgenomic DNAテンプレート(500ng/μl)0.5μl、各プライマー5pl、10×Pfu緩衝液(Fermentas製)5μl、およびPfuポリメラーゼ(Fermentas製)(5ユニット/μl)1μlを含むPCR増幅溶液に滅菌水を加えて、最終的な液の体積を50μlとした。PCR増幅の条件は以下の通りである:94℃で1分、次に94℃で30秒、56℃で1分、72℃で1分の30サイクル、最後に72℃で10分。このPCR反応をPX2 Thermal Cycler PCR装置(Thermo Electron Corporation製)にて行った。
 4.1.1.2.調製例2(ライゲーションおよび形質転換)
 制限酵素で消化されたDNAフラグメントのライゲーションは、T4DNAリガーゼ(New England Biolab製)100-200ユニット/mlおよび5×リガーゼ緩衝液(ニューイングランドバイオラボ(New England Biolab)社製)を用いて12℃で12-16時間行われた。プラスミドの形質転換のために、E.coliDH5-α株細胞(New England Biolab製)を使用した。
 4.1.1.3.調製例3(プラスミドDNAの調製および配列解析)
 陽性コロニーを選択し、ミニプレップキット(Mini Prep Kit)(キアゲン(Qiagen)社製)によってプラスミドDNAを抽出した。このプラスミドDNAについて、挿入されたDNAフラグメントが正しい配列であるかどうかを確認するために、3730 NDA Sequencer(Applied Biosystems製)で配列解析を行った。
 4.1.1.4.調製例4(イムノグロブリン結合タンパク質の発現および精製)
 組み換え型イムノグロブリン結合タンパク質を、E.coli(BL21株)細胞(STRATAGENE製)内にて18℃で1mMのIPTG(Sigma-Aldrich製)を添加し、15時間発現させた。誘導に先立って、吸光度(OD600)が約0.6に到達するまで上記細胞を37℃でインキュベートした。タンパク質発現後、細胞を回収し、pH8.0のトリス緩衝液中で破砕した。
 得られた組み換え型イムノグロブリン結合タンパク質は、Niアフィニティクロマトグラフィー(Ni-NTA(ニトリロトリ酢酸)粒子、キアゲン社製)によって精製された。精製されたイムノグロブリン結合タンパク質は陰イオン交換クロマトグラフィー(Q-セファロースFF、GEバイオサイエンス社製)によって、pH7.5のHEPES緩衝液中でさらに精製された。
 4.1.2.合成例2(イムノグロブリン結合タンパク質の粒子への固定化)
 4.1.2.1.固定化例1
 グリシジルメタクリレート・トリメチロールプロパントリメタクリレート共重合体からなる多孔質粒子(以下、PBと記す。)を懸濁重合により作製した。PBの平均粒径は33μm、比表面積は83m/gであった。400mgのPB、36mgのSPAKが16mLのホウ酸バッファー(pH8.5)に分散した混合液を調製し、4℃で24時間転倒混和し、SPAKをPBに結合させた。次いで、10%メルカプトエタノール水溶液0.8mLを添加して4℃で6時間転倒混和し、残余のエポキシ基をブロッキングし、20%エタノール水溶液で洗浄して、380mgのSPAK結合多孔質粒子(SPAK-PB)を得た。Thermo Scientific Pierce BCA Protein Assay kitで定量測定を行ったところ、前記粒子に結合したSPAKの量は29mg/g粒子であった。
 4.1.2.2.固定化例2
 50mM トリス塩酸、0.5mM EDTA、および1mM DTTのバーファー(pH8.0)中、TEVプロテアーゼで消化されたSPAKをNi-NATカラム(容量:4mL)に通過させて、SPAKのヒスタグ部位が切断された粗SPAKwoHisを回収した。この粗SPAKwoHisを10mM HEPESバーファー(pH7.5)中で12時間透析して、粒子への結合実験用SPAKwoHisを調製した。SPAKwoHisのアミノ酸配列は以下の通りである。
SPAKwohis(全アミノ酸配列)(配列番号18)
GAMAKADAQQNNFNKDQQSAFYEILNMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEGSK
 次に、上記固定化例1で、SPAKの代わりにSPAKwoHisを使用した以外は、上記固定化例1と同様にして、380mgのSPAKwoHis結合多孔質粒子(SPAKwoHis-PB)を得た。前記粒子に結合したSPAKwoHisの量は6mg/g粒子であった。
 4.1.2.3.固定化例3
 上記固定化例1で、SPAKの代わりにSPATKを使用した以外は、上記固定化例1と同様にして、380mgのSPATK結合多孔質粒子(SPATK-PB)を得た。前記粒子に結合したSPATKの量は36mg/g粒子であった。
 4.2.試験例(イムノグロブリンG(IgG)結合量の測定)
 4.2.1.測定例1
 SPAK-PBを内径0.5cm、高さ5cmのカラムに充填し、GEヘルスケアバイオサイエンス社製AKTAprime plusを用いて、線流速300cm/hrにおけるヒトIgG抗体の結合容量を測定した。ヒトIgG抗体(ランパイアバイオロジカルラボラトリーズ(Lampire Biological Laboratories)社製)は25mMクエン酸バッファー(pH6.0)で1mg/mLに希釈したものを使用し、吸光度モニターで溶出先端濃度10w/v%ブレークスルー(破過)のときのヒトIgG抗体吸着量およびSPAK-PB体積から結合容量を求めたところ、30mg/mLであった。
 4.2.2.測定例2
 上記測定例1で、SPAK-PBの代わりにSPATK-PBを使用した以外は、上記測定例1と同様にして、SPATK-PBのヒトIgG抗体の結合容量を求めたところ、35mg/mLであった。
 4.2.3.測定例3
 上記測定例1で、SPAK-PBの代わりにSPAKwoHis-PBを使用した以外は、上記測定例1と同様にして、SPAKwoHis-PBのヒトIgG抗体の結合容量を求めたところ、6mg/mLであった。
 本実施形態に係る説明は以上である。本発明は、上述した実施形態に限定されるものではなく、さらなる種々の変形が可能である。また本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および結果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。

Claims (10)

  1.  下記一般式(1)で表されるイムノグロブリン結合タンパク質。
     R-R ・・・・・(1)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
  2.  上記一般式(1)において、R-は下記一般式(2)で表される基である、請求項1に記載のイムノグロブリン結合タンパク質。
     R-r- ・・・・・(2)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
  3.  上記一般式(1)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものである、請求項1または2に記載のイムノグロブリン結合タンパク質。
  4.  下記一般式(3)で表されるイムノグロブリン結合タンパク質。
     R-R ・・・・・(3)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、RはプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、RがRに結合する末端はイムノグロブリン結合ドメインの末端である。)。)
  5.  上記一般式(3)において、-Rは下記一般式(4)で表される基である、請求項4に記載のイムノグロブリン結合タンパク質。
     -r-R ・・・・・(4)
     (式中、Rは4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、Rにおいて、前記ヒスチジンが連続した部位の末端がrと結合する。)、rはTEVドメインを含む7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
  6.  上記一般式(3)において、Rで表されるアミノ酸配列およびRで表されるアミノ酸配列のうち少なくとも一方が、リジン、アルギニン、およびシステインから選ばれる1種のアミノ酸を含む1~50個のアミノ酸からなるドメインtを含むものである、請求項4または5に記載のイムノグロブリン結合タンパク質。
  7.  前記プロテインAのイムノグロブリン結合ドメインが、Aドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメイン、およびZドメインから選ばれる少なくとも1種である、請求項1~6のいずれか1項に記載のイムノグロブリン結合タンパク質。
  8.  前記プロテインAのイムノグロブリン結合ドメインが、(Dドメイン-Aドメイン)n(nは1以上の整数を示す。)である、請求項7に記載のイムノグロブリン結合タンパク質。
  9.  請求項1~8のいずれか1項に記載のイムノグロブリン結合タンパク質またはその等機能変異体をコードする核酸。
  10.  請求項9に記載の核酸を含む遺伝子発現系。
PCT/JP2009/066553 2008-09-25 2009-09-24 イムノグロブリン結合タンパク質 WO2010035756A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008246184A JP2011135777A (ja) 2008-09-25 2008-09-25 イムノグロブリン結合タンパク質
JP2008-246184 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035756A1 true WO2010035756A1 (ja) 2010-04-01

Family

ID=42059754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066553 WO2010035756A1 (ja) 2008-09-25 2009-09-24 イムノグロブリン結合タンパク質

Country Status (2)

Country Link
JP (1) JP2011135777A (ja)
WO (1) WO2010035756A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086660A1 (ja) * 2010-12-21 2012-06-28 Jsr株式会社 アフィニティークロマトグラフィー用担体およびイムノグロブリンを単離する方法
EP2574631A1 (en) * 2010-03-24 2013-04-03 JSR Corporation Filler for affinity chromatography and method for isolating immunoglobulin
US9051375B2 (en) 2010-12-21 2015-06-09 The University Of Western Ontario Alkali-resistant variants of protein A and their use in affinity chromatography

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN C. ET AL.: "Immobilized protein ZZ, an affinity tool for immunoglobulin isolation and immunological experimentation.", BIOTECHNOL. APPL. BIOCHEM., vol. 45, 2006, pages 87 - 92 *
HARUYAMA T. ET AL.: "Protein layer coating method on metal surface by electrochemical process through genetical introduced tag.", BIOMATERIALS, vol. 26, 2005, pages 4944 - 4947 *
HOBER S. ET AL.: "Protein A chromatography for antibody purification.", J. CHROMATOGR. B ANALYT. TECHNOL. BIOMED. LIFE SCI., vol. 848, 2007, pages 40 - 47 *
MOKS T. ET AL.: "Staphylococcal protein A consists of five IgG-binding domains.", EUR. J. BIOCHEM., vol. 156, 1986, pages 637 - 643 *
ROCCO C.J. ET AL.: "Construction and use of new cloning vectors for the rapid isolation of recombinant proteins from Escherichia coli.", PLASMID, vol. 59, May 2008 (2008-05-01), pages 231 - 237 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574631A1 (en) * 2010-03-24 2013-04-03 JSR Corporation Filler for affinity chromatography and method for isolating immunoglobulin
EP2574631A4 (en) * 2010-03-24 2013-12-04 Jsr Corp FILLER FOR AFFINITY CHROMATOGRAPHY AND METHOD FOR ISOLATING IMMUNE LOBULIN
US9051355B2 (en) 2010-03-24 2015-06-09 Jsr Corporation Filler for affinity chromatography and method for isolating immunoglobulin
WO2012086660A1 (ja) * 2010-12-21 2012-06-28 Jsr株式会社 アフィニティークロマトグラフィー用担体およびイムノグロブリンを単離する方法
JP5298242B2 (ja) * 2010-12-21 2013-09-25 Jsr株式会社 アフィニティークロマトグラフィー用担体およびイムノグロブリンを単離する方法
US9040661B2 (en) 2010-12-21 2015-05-26 Jsr Corporation Support for affinity chromatography and method for isolating immunoglobulin
US9051375B2 (en) 2010-12-21 2015-06-09 The University Of Western Ontario Alkali-resistant variants of protein A and their use in affinity chromatography

Also Published As

Publication number Publication date
JP2011135777A (ja) 2011-07-14

Similar Documents

Publication Publication Date Title
JP4179517B2 (ja) イムノグロブリン親和性リガンド
JP5913202B2 (ja) 改善された特異性を有する新規免疫グロブリン結合タンパク質
JP5298242B2 (ja) アフィニティークロマトグラフィー用担体およびイムノグロブリンを単離する方法
EP1992692B1 (en) Immunoglobulin affinity ligand
US9051375B2 (en) Alkali-resistant variants of protein A and their use in affinity chromatography
JP5626526B2 (ja) アフィニティークロマトグラフィー用充填剤
JP2006304633A (ja) イムノグロブリン結合タンパク質
WO2011118599A1 (ja) アフィニティークロマトグラフィー用充填剤およびイムノグロブリンを単離する方法
JP6805831B2 (ja) 免疫グロブリンに親和性を有するタンパク質、およびそれを用いたアフィニティ分離剤、液体クロマトグラフィー用カラム
US10766933B2 (en) Mutated immunoglobulin-binding protein having increased alkaline tolerance
WO2016152946A1 (ja) イムノグロブリン結合タンパク質およびそれを用いたアフィニティー担体
JP5055541B2 (ja) Ss25ペプチド、ss25’ペプチド、および/またはクッションタンパク質を含む、クッション性吸着剤
WO2015050153A1 (ja) 免疫グロブリンG(IgG)のFc部分を有するタンパク質に対するアフィニティを有する複数のドメイン間をリンカーで結合させて成るタンパク質
WO2010035756A1 (ja) イムノグロブリン結合タンパク質
JP2010037222A (ja) タンパク質の精製方法
JP2010189290A (ja) リガンド結合担体およびその製造方法
CN116041451B (zh) 一种内含肽变体及其在生物法制备蓝铜胜肽中的应用
TWI712691B (zh) 葡聚醣親和性標籤及其應用
KR102637595B1 (ko) 알칼리내성이 증가된 면역글로불린-결합 단백질 변이체 및 이의 용도
WO2017018437A1 (ja) アフィニティー担体およびイムノグロブリンを単離する方法
CN112689674A (zh) 葡聚糖亲和性标签及其应用
WO2023205601A2 (en) Methods and compositions relating to a group ii intron reverse transcriptase
JP2022067620A (ja) 熱安定性が向上したフコース結合性タンパク質、およびその製造方法
JP2009183250A (ja) 血液凝固第viii因子c2ドメインタンパク質の製造方法
JP2005213166A (ja) 機能性ポリペプチドとそれを用いた蛋白質の多量体形成法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09816171

Country of ref document: EP

Kind code of ref document: A1