WO2010035532A1 - 撹拌装置、撹拌方法及び自動分析装置 - Google Patents

撹拌装置、撹拌方法及び自動分析装置 Download PDF

Info

Publication number
WO2010035532A1
WO2010035532A1 PCT/JP2009/055607 JP2009055607W WO2010035532A1 WO 2010035532 A1 WO2010035532 A1 WO 2010035532A1 JP 2009055607 W JP2009055607 W JP 2009055607W WO 2010035532 A1 WO2010035532 A1 WO 2010035532A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
speed
low
rotation
reagent
Prior art date
Application number
PCT/JP2009/055607
Other languages
English (en)
French (fr)
Inventor
和紀 梅原
麻衣 河野
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2010035532A1 publication Critical patent/WO2010035532A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1142Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections of the corkscrew type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/805Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis wherein the stirrers or the receptacles are moved in order to bring them into operative position; Means for fixing the receptacle
    • B01F27/806Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis wherein the stirrers or the receptacles are moved in order to bring them into operative position; Means for fixing the receptacle with vertical displacement of the stirrer, e.g. in combination with means for pivoting the stirrer about a vertical axis in order to co-operate with different receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/323Driving arrangements for vertical stirrer shafts
    • B01F35/3231Driving several stirrer shafts, e.g. about the same axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/33Transmissions; Means for modifying the speed or direction of rotation
    • B01F35/331Transmissions; Means for modifying the speed or direction of rotation alternately changing the speed of rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer

Definitions

  • the present invention relates to a stirring device, a stirring method, and an automatic analyzer.
  • an automatic analyzer analyzes the amount of a specific component in a sample by reacting a reagent with the sample and measuring the optical characteristics of the reaction solution.
  • the automatic analyzer includes a stirrer that stirs the reagent and the sample with a stir bar so that the reaction proceeds appropriately (see, for example, Patent Document 1).
  • the conventional stirring device is stirring by rotating the stirring rod at a constant speed regardless of the liquidity (physical characteristics) such as viscosity and specific gravity of the stirring target.
  • liquidity physical characteristics
  • reagents and specimens have a wide range of liquidity (physical characteristics) they are made liquid (physical characteristics), for example, when a high viscosity reagent and a low viscosity specimen are stirred. If there is a difference, stirring may be insufficient, and improvement in stirring efficiency has been desired.
  • the present invention has been made in view of the above, and an object thereof is to provide a stirring device, a stirring method, and an automatic analyzer that can easily improve the stirring efficiency regardless of the liquid property of the stirring target.
  • the stirring device of the present invention is a stirring device that rotates a stirring rod to stir a liquid, and after the stirring rod is rotated at a low speed, the low speed Rotation control means for rotating at a high speed exceeding the above is provided.
  • the stirring device of the present invention is characterized in that, in the above invention, the rotation control means stops the low-speed rotation of the stirring rod for a predetermined time and then rotates the stirring rod at a high speed.
  • the rotation control unit controls the rotation of the stirring rod so that the high-speed rotation time is longer than the low-speed rotation time.
  • the stirring device is characterized in that, in the above invention, the rotation control means holds the stirring rod at a constant rotation number during the low-speed rotation and the high-speed rotation.
  • the stirring method of the present invention is a stirring method for rotating a stirring bar to stir a liquid, and the low-speed rotation step of rotating the stirring bar at a low speed And a high-speed rotation step of rotating the stirring rod at a high speed exceeding the low speed.
  • the stirring method of the present invention is characterized in that, in the above-mentioned invention, the high-speed rotation step rotates the stirring rod at a high speed after stopping the low-speed rotation of the stirring rod for a predetermined time.
  • the stirring method of the present invention is characterized in that, in the above invention, the high-speed rotation process takes longer than the low-speed rotation process.
  • the stirring method of the present invention is characterized in that, in the above-mentioned invention, the low-speed rotation step and the high-speed rotation step each hold the stirring rod at a constant rotational speed.
  • the automatic analyzer of the present invention is an automatic analyzer that analyzes a reaction liquid by stirring and reacting a liquid sample containing a specimen and a reagent.
  • the stirring device is provided.
  • the stirring device since the stirring rod is rotated at a high speed after the stirring rod is rotated at a low speed, the stirring device, the stirring method, and the automatic analysis capable of easily improving the stirring efficiency regardless of the liquid property of the stirring target An apparatus can be provided.
  • FIG. 1 is a schematic configuration diagram of the automatic analyzer according to the first embodiment.
  • FIG. 2 is a front view showing the first stirring device.
  • FIG. 3 is a time chart showing an example of the rotation speed of the stirring rod in the stirring method of the present invention.
  • FIG. 4 is a time chart showing an example of the rotation speed of the stirring rod in the conventional stirring method.
  • FIG. 1 is a schematic configuration diagram of the automatic analyzer according to the first embodiment.
  • FIG. 2 is a front view showing the first stirring device.
  • the automatic analyzer 1 includes reagent tables 2 and 3, a cuvette wheel 4, a specimen container transfer mechanism 8, an analysis optical system 11, a cleaning mechanism 12, a first stirring device 13, a second stirring device 14, and A control unit 15 is provided.
  • each of the reagent tables 2 and 3 includes a plurality of reagent containers 2a for the first reagent and a plurality of reagent containers 3a for the second reagent arranged in the circumferential direction.
  • the reagent containers 2a and 3a are rotated by driving means. Transport in the circumferential direction.
  • Each of the plurality of reagent containers 2a and 3a is filled with a predetermined reagent corresponding to the inspection item, and an identification code label (not shown) for displaying information such as the type, lot, and expiration date of the stored reagent on the outer surface. It is affixed.
  • a reading device (not shown) for reading the reagent information recorded on the identification code label attached to the reagent containers 2a and 3a and outputting it to the control unit 15 is installed. Yes.
  • the cuvette wheel 4 has a plurality of reaction vessels 5 arranged in the circumferential direction, and is rotated in a direction indicated by an arrow by a driving means such as a motor. Thereby, the cuvette wheel 4 moves the reaction vessel 5 in the circumferential direction.
  • the cuvette wheel 4 has a holding portion 4a that holds the reaction vessel 5, and an optical path 4b that includes a circular opening that guides the light beam emitted from the light source 11a to the optical sensor 11c.
  • the holding portions 4a are arranged on the outer periphery of the cuvette wheel 4 at predetermined intervals along the circumferential direction, and an optical path 4b extending in the radial direction is formed on the inner peripheral side of the holding portion 4a.
  • the cuvette wheel 4 is rotated by the control unit 15 that controls the driving of the driving means, and accordingly, the conveyance and stopping of the reaction vessel 5 are controlled.
  • the reaction vessel 5 is a cuvette formed into a rectangular tube shape from an optically transparent material that transmits at least 80% of the analysis light emitted from the analysis optical system 11, for example, glass containing heat-resistant glass, cyclic olefin, polystyrene, or the like. It is.
  • the reagent is dispensed from the reagent containers 2a and 3a of the reagent tables 2 and 3 by the reagent dispensing mechanisms 6 and 7 provided in the vicinity.
  • the reagent dispensing mechanisms 6 and 7 are provided with probes 6b and 7b for dispensing reagents on arms 6a and 7a that rotate in the direction of the arrow in the horizontal plane, respectively, and a cleaning means for cleaning the probes 6b and 7b with cleaning water ( (Not shown).
  • the reagent dispensing mechanism 6 is used for dispensing the first reagent
  • the reagent dispensing mechanism 7 is used for dispensing the second reagent.
  • the specimen container transfer mechanism 8 transfers the plurality of arranged racks 9 while stepping one by one along the arrow direction.
  • the rack 9 holds a plurality of sample containers 9a that store samples.
  • the sample container 9a receives the sample by the sample dispensing mechanism 10 having the arm 10a and the probe 10b that rotate in the horizontal direction. Dispense into each reaction vessel 5.
  • the specimen dispensing mechanism 10 has a cleaning means (not shown) for cleaning the probe 10b with cleaning water.
  • the analysis optical system 11 is an optical system that transmits the analysis light to the liquid sample in the reaction vessel 5 in which the reagent and the sample have reacted. As shown in FIGS. 1 and 2, the light source 11a, the lens 11b, and the optical sensor 11c. have. The analysis optical system 11 repeats photometry for the reaction container 5 a predetermined number of times until the reaction between the sample and the reagent is completed, starting with an empty state before the first reagent is dispensed into the reaction container 5.
  • the cleaning mechanism 12 sucks and discharges the liquid sample in the reaction vessel 5 by the nozzle 12a, and then repeatedly injects and sucks a cleaning liquid such as detergent and cleaning water by the nozzle 12a, thereby performing analysis by the analysis optical system 11.
  • the reaction vessel 5 that has been completed is washed.
  • the first stirrer 13 is a device that stirs the specimen and reagent dispensed in the reaction vessel 5 and has the same configuration as the second stirrer 14, so the first stirrer 13 will be described.
  • the second stirring device 14 will be described with reference numerals corresponding to corresponding components.
  • the first stirring device 13 has a support member 13b installed on an upper part of a rotatable shaft 13a, and a stirring bar 13c is detachably attached to the support member 13b.
  • the stirring bar 13c is rotated around its axis by driving means such as a pulse motor, and stirs the liquid in the reaction vessel 5.
  • the control unit 15 uses a microcomputer having a calculation function, a storage function, a control function, a timekeeping function, and the like, and includes reagent tables 2 and 3, reagent dispensing mechanisms 6 and 7, sample container transfer mechanism 8, sample dispensing.
  • the mechanism 10, the analysis optical system 11, the cleaning mechanism 12, the stirring devices 13 and 14, the input unit 16 and the display unit 17 are connected to control these operations.
  • the control unit 15 when controlling the operation of the first stirring devices 13 and 14, the control unit 15 rotates the stirring rods 13c and 14c at a low speed and then rotates at a high speed (see FIG. 1). It has. Further, the control unit 15 obtains the absorbance for each wavelength of the liquid sample in each reaction vessel 5 based on the light amount signal for each wavelength input from the analysis optical system 11, and analyzes the component concentration and the like of the specimen. Furthermore, the control unit 15 automatically analyzes based on the information read from the record of the identification code label affixed to the reagent containers 2a and 3a so as to stop the analysis work when the reagent lot is different or when the expiration date is out of date. Control device 1 or issue alarm to operator.
  • the rotation control unit 15a rotates the stirring rods 13c and 14c at a low speed by controlling driving means such as a pulse motor, temporarily stops, and then rotates the stirring rods 13c and 14c at a high speed. Further, the rotation control unit 15a holds the stirring rods 13c and 14c at a constant rotation number during low-speed rotation and high-speed rotation.
  • the input unit 16 is a part that performs an operation of inputting an inspection item or the like to the control unit 15, and for example, a keyboard or a mouse is used.
  • the display unit 17 displays analysis contents, analysis results, alarms, or the like, and a display panel or the like is used.
  • the reagent dispensing mechanism 6 sequentially dispenses the first reagent from the reagent container 2a to the plurality of reaction containers 5 conveyed along the circumferential direction by the rotating cuvette wheel 4.
  • the specimen is sequentially dispensed from the plurality of specimen containers 9 a held in the rack 9 by the specimen dispensing mechanism 10.
  • the reaction container 5 into which the sample has been dispensed is stirred by the first stirring device 13 each time the cuvette wheel 4 is stopped, and the first reagent reacts with the sample.
  • the reaction container 5 in which the first reagent and the sample are stirred is sequentially stirred by the second stirring device 14 when the cuvette wheel 4 is stopped after the second reagent is sequentially dispensed from the reagent container 3a by the reagent dispensing mechanism 7. Further reaction is promoted.
  • the automatic analyzer 1 measures the amount of light transmitted through the reaction vessel 5 when the cuvette wheel 4 rotates and the reaction vessel 5 passes through the analysis optical system 11.
  • the control part 15 calculates
  • the control unit 15 stores the analysis result such as the component concentration of the analyzed sample, and displays the analysis result on the display unit 17 based on the input information from the input unit 16.
  • the reaction vessel 5 is washed by the washing mechanism 12 and then used again for analyzing the specimen.
  • the rotation control unit 15a controls the first stirring device 13 as follows to rotate the stirring rod 13c and stir the liquid in the reaction vessel 5. That is, the stirring method of the present invention includes a low-speed rotation process for rotating the stirring bar 13c at a low speed and a high-speed rotation process for rotating the stirring bar 13c at a high speed after the low-speed rotation process.
  • the rotation control unit 15a sets a high-speed time Tf (> Ts) that rotates at a constant high speed with a stop time Tsp after a low-speed time Ts that rotates at a constant low speed. ) Is controlled to set the rotation of the stirring bar 13c.
  • the vertical axis indicates the number of pulses per second (pps) of the pulse motor that drives the stirring bar 13c as the rotation speed of the stirring bar 13c
  • the horizontal axis indicates time (seconds). Yes.
  • Tmix indicates one stirring time.
  • the rotation speed of the low-speed rotation of the stirring bar 13c is set to about 1 ⁇ 2 of the rotation speed of the stirring bar used in the conventional stirring, and the rotational speed of the high-speed rotation is used in the conventional stirring.
  • the rotation speed is about the same as that of the stirring rod.
  • the rotation control unit 15a sets an acceleration time Tas and a deceleration time Tdf before and after the low speed time Ts, and an acceleration time Taf and a deceleration time Tdf before and after the high speed time Tf.
  • the same effect can be obtained even if Tas ⁇ Tds and Taf ⁇ Tdf.
  • the stirring rod 13c when the stirring rod 13c is rotated at a low speed, the first reagent and the sample are in a state of being familiar with the whole, although the stirring is uneven due to the low speed.
  • the rotation stop time Tsp when the rotation stop time Tsp is set, the stirring flow generated by the low-speed rotation collides with the stirring rod 13c to cause a vertical flow, and the stirring of the first reagent and the specimen further proceeds. Then, the first reagent and the specimen are stirred at a stretch by rotating the stirring rod 13c at a high speed. For this reason, even if there is a difference in liquid property (physical characteristics) of the stirring target, the stirring target can be sufficiently stirred.
  • the clear reagent and the dye solution were combined at 12 mixing ratios M1 to M12 shown in Table 1, and measurement was performed 10 times for each combination.
  • the rotation control part 15a rotated the stirring rod 13c clockwise both in the case of low speed rotation and high speed rotation, and controlled the stop time in two ways.
  • ⁇ 1.0% is used as a reference value for percentage (%), and if all the calculated percentages (%) are within the reference value, the stirring state is good ( ⁇ ), and all 10 times.
  • the stirring state was judged as poor ( ⁇ ), and when the reference value was exceeded three times or more out of all 10 times, the stirring state was judged as rejected (x).
  • the determination results are shown in Tables 2 and 3 together with the average value, maximum value, minimum value, and standard deviation of the percentage (%) change in absorbance.
  • the stirring bar 13c is rotated in the clockwise direction in both the low-speed rotation and the high-speed rotation, but the rotation direction may be reversed between the low-speed rotation and the high-speed rotation.
  • the liquid property to be stirred includes, for example, specific gravity, and the method of the present invention can also be applied when stirring liquid samples having different specific gravity.
  • the stirring device, the stirring method, and the automatic analyzer of the present invention are useful for easily improving the stirring efficiency regardless of the liquid property of the stirring target.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

 撹拌棒を回転させて液体を撹拌する撹拌装置(13,14)、撹拌方法及び自動分析装置(1)。撹拌装置(13,14)は、撹拌棒(13c,14c)を低速で回転させた後、低速を越える高速で回転させる回転制御部(15a)を備えている。好ましくは、回転制御部は、撹拌棒の低速回転を所定時間停止させた後、撹拌棒を高速回転させる。撹拌方法は、撹拌棒を低速で回転させる低速回転工程と、低速を越える高速で撹拌棒を回転させる高速回転工程とを含んでいる。好ましくは、高速回転工程は、撹拌棒の低速回転を所定時間停止させた後、撹拌棒を高速回転させる。

Description

撹拌装置、撹拌方法及び自動分析装置
 本発明は、撹拌装置、撹拌方法及び自動分析装置に関するものである。
 従来、自動分析装置は、試薬と検体とを反応させ、反応液の光学的特性を測定することによって検体中の特定成分の量等を分析している。このため、自動分析装置は、反応が適切に進行するように試薬と検体とを撹拌棒によって撹拌させる撹拌装置を備えている(例えば、特許文献1参照)。
特開2007-315831号公報
 ところで、従来の撹拌装置は、撹拌対象の粘度や比重等の液性(物理的特性)に拘わらず撹拌棒を一定の速度で回転させて撹拌している。但し、試薬や検体は、それぞれ液性(物理的特性)が広範に亘ることから、例えば、高粘度の試薬と低粘度の検体等を撹拌した場合等のように液性(物理的特性)に差があると、撹拌が不十分となる場合があり、撹拌効率の向上が望まれていた。
 本発明は、上記に鑑みてなされたものであって、撹拌対象の液性に関係なく簡易に撹拌効率の向上が可能な撹拌装置、撹拌方法及び自動分析装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の撹拌装置は、撹拌棒を回転させて液体を撹拌する撹拌装置であって、前記撹拌棒を低速で回転させた後、前記低速を越える高速で回転させる回転制御手段を備えたことを特徴とする。
 また、本発明の撹拌装置は、上記の発明において、前記回転制御手段は、前記撹拌棒の低速回転を所定時間停止させた後、前記撹拌棒を高速回転させることを特徴とする。
 また、本発明の撹拌装置は、上記の発明において、前記回転制御手段は、前記高速回転の時間が前記低速回転の時間よりも長くなるように前記撹拌棒の回転を制御することを特徴とする。
 また、本発明の撹拌装置は、上記の発明において、前記回転制御手段は、前記低速回転及び前記高速回転の際に前記撹拌棒をそれぞれ一定の回転数に保持することを特徴とする。
 また、上述した課題を解決し、目的を達成するために、本発明の撹拌方法は、撹拌棒を回転させて液体を撹拌する撹拌方法であって、前記撹拌棒を低速で回転させる低速回転工程と、前記低速を越える高速で前記撹拌棒を回転させる高速回転工程と、を含むことを特徴とする。
 また、本発明の撹拌方法は、上記の発明において、前記高速回転工程は、前記撹拌棒の低速回転を所定時間停止させた後、前記撹拌棒を高速回転させることを特徴とする。
 また、本発明の撹拌方法は、上記の発明において、前記高速回転工程は、前記低速回転工程よりも時間が長いことを特徴とする。
 また、本発明の撹拌方法は、上記の発明において、前記低速回転工程及び前記高速回転工程は、前記撹拌棒をそれぞれ一定の回転数に保持することを特徴とする。
 また、上述した課題を解決し、目的を達成するために、本発明の自動分析装置は、検体と試薬とを含む液体試料を撹拌して反応させ、反応液を分析する自動分析装置であって、前記撹拌装置を備えることを特徴とする。
 本発明によれば、撹拌棒を低速で回転させた後、撹拌棒を高速で回転させるので、撹拌対象の液性に関係なく簡易に撹拌効率の向上が可能な撹拌装置、撹拌方法及び自動分析装置を提供することができる。
図1は、実施の形態1の自動分析装置の概略構成図である。 図2は、第一撹拌装置を示す正面図である。 図3は、本発明の撹拌方法における撹拌棒の回転速度の一例を示すタイムチャートである。 図4は、従来の撹拌方法における撹拌棒の回転速度の一例を示すタイムチャートである。
符号の説明
 1 自動分析装置
 2,3 試薬テーブル
 4 キュベットホイール
 5 反応容器
 6,7 試薬分注機構
 8 検体容器移送機構
 9 ラック
 10 検体分注機構
 11 分析光学系
 12 洗浄機構
 13 第一撹拌装置
 13c 撹拌棒
 14 第二撹拌装置
 14c 撹拌棒
 15 制御部
 15a 回転制御部
 16 入力部
 17 表示部
 以下、本発明の撹拌装置、撹拌方法及び自動分析装置にかかる実施の形態について、図面を参照して詳細に説明する。図1は、実施の形態1の自動分析装置の概略構成図である。図2は、第一撹拌装置を示す正面図である。
 自動分析装置1は、図1に示すように、試薬テーブル2,3、キュベットホイール4、検体容器移送機構8、分析光学系11、洗浄機構12、第一撹拌装置13、第二撹拌装置14及び制御部15を備えている。
 試薬テーブル2,3は、図1に示すように、それぞれ第一試薬の試薬容器2aと第二試薬の試薬容器3aが周方向に複数配置され、駆動手段に回転されて試薬容器2a,3aを周方向に搬送する。複数の試薬容器2a,3aは、それぞれ検査項目に応じた所定の試薬が満たされ、外面には収容した試薬の種類,ロット及び有効期限等の情報を表示する識別コードラベル(図示せず)が貼付されている。ここで、試薬テーブル2,3の外周には、試薬容器2a,3aに貼付した識別コードラベルに記録された試薬情報を読み取り、制御部15へ出力する読取装置(図示せず)が設置されている。
 キュベットホイール4は、図1に示すように、複数の反応容器5が周方向に沿って配列され、モータ等の駆動手段によって矢印で示す方向に回転される。これにより、キュベットホイール4は、反応容器5を周方向に移動させる。キュベットホイール4は、反応容器5を保持する保持部4aと、光源11aが出射した光束を光センサ11cへ導く円形の開口からなる光路4bとを有している。保持部4aは、キュベットホイール4の外周に周方向に沿って所定間隔で配置され、保持部4aの内周側に半径方向に延びる光路4bが形成されている。キュベットホイール4は、前記駆動手段の駆動を制御する制御部15によって回転、従って反応容器5の搬送と停止が制御されている。
 反応容器5は、分析光学系11が出射した分析光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等によって四角筒状に成形されたキュベットである。反応容器5は、近傍に設けた試薬分注機構6,7によって試薬テーブル2,3の試薬容器2a,3aから試薬が分注される。
 試薬分注機構6,7は、それぞれ水平面内を矢印方向に回動するアーム6a,7aに試薬を分注するプローブ6b,7bが設けられ、洗浄水によってプローブ6b,7bを洗浄する洗浄手段(図示せず)を有している。ここで、試薬分注機構6は第一試薬の分注に使用され、試薬分注機構7は第二試薬の分注に使用される。
 検体容器移送機構8は、図1に示すように、配列された複数のラック9を矢印方向に沿って1つずつ歩進させながら移送する。ラック9は、検体を収容した複数の検体容器9aを保持している。ここで、検体容器9aは、検体容器移送機構8によって移送されるラック9の歩進が停止するごとに、水平方向に回動するアーム10aとプローブ10bとを有する検体分注機構10によって検体が各反応容器5へ分注される。このため、検体分注機構10は、洗浄水によってプローブ10bを洗浄する洗浄手段(図示せず)を有している。
 分析光学系11は、試薬と検体とが反応した反応容器5内の液体試料に分析光を透過させる光学系であり、図1及び図2に示すように、光源11a、レンズ11b及び光センサ11cを有している。分析光学系11は、反応容器5に第一試薬が分注される前の空の状態を初めとして、検体と試薬の反応が終了するまで反応容器5について所定の回数測光を繰り返す。
 洗浄機構12は、ノズル12aによって反応容器5内の液体試料を吸引して排出した後、ノズル12aによって洗剤や洗浄水等の洗浄液等を繰り返し注入し、吸引することにより、分析光学系11による分析が終了した反応容器5を洗浄する。
 第一撹拌装置13は、反応容器5に分注された検体と試薬とを撹拌する装置であり、第二撹拌装置14と構成が同じであるのであるので、第一撹拌装置13について説明し、第二撹拌装置14については対応する構成要素に対応する符合を付して説明する。
 第一撹拌装置13は、図2に示すように、昇降自在な回転軸13aの上部に支持部材13bが設置されており、支持部材13bに撹拌棒13cが着脱自在に取り付けられている。撹拌棒13cは、パルスモータ等の駆動手段によって軸廻りに回転され、反応容器5内の液体を撹拌する。
 制御部15は、演算機能,記憶機能,制御機能及び計時機能等を備えたマイクロコンピュータ等が使用され、試薬テーブル2,3、試薬分注機構6,7、検体容器移送機構8、検体分注機構10、分析光学系11、洗浄機構12、撹拌装置13,14、入力部16及び表示部17等と接続されてこれらの作動を制御する。
 ここで、制御部15は、第一撹拌装置13,14の作動を制御する際、撹拌棒13c,14cを低速回転で回転させた後、高速回転で回転させる回転制御部15a(図1参照)を備えている。また、制御部15は、分析光学系11から入力される波長ごとの光量信号をもとに各反応容器5内の液体試料の波長ごとの吸光度を求め、検体の成分濃度等を分析する。更に、制御部15は、試薬容器2a,3aに貼付した識別コードラベルの記録から読み取った情報に基づき、試薬のロットが異なる場合や有効期限外等の場合に分析作業を停止するように自動分析装置1を制御し、或いはオペレータに警報を発する。
 一方、回転制御部15aは、パルスモータ等の駆動手段を制御することによって撹拌棒13c,14cを低速回転し、一旦停止させた後、撹拌棒13c,14cを高速回転させる。また、回転制御部15aは、低速回転及び高速回転の際に撹拌棒13c,14cをそれぞれ一定の回転数に保持する。
 入力部16は、制御部15へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。表示部17は、分析内容,分析結果或いは警報等を表示するもので、ディスプレイパネル等が使用される。
 以上のように構成される自動分析装置1は、回転するキュベットホイール4によって周方向に沿って搬送されてくる複数の反応容器5に試薬分注機構6が試薬容器2aから第一試薬を順次分注する。第一試薬が分注された反応容器5は、検体分注機構10によってラック9に保持された複数の検体容器9aから検体が順次分注される。検体が分注された反応容器5は、キュベットホイール4が停止する都度、第一撹拌装置13によって撹拌されて第一試薬と検体が反応する。第一試薬と検体が撹拌された反応容器5は、試薬分注機構7によって試薬容器3aから第二試薬が順次分注された後、キュベットホイール4の停止時に第二撹拌装置14によって撹拌され、更なる反応が促進される。
 その後、自動分析装置1は、キュベットホイール4が回転し、反応容器5が分析光学系11を通過する際に反応容器5を透過した光量が測定される。そして、制御部15は、分析光学系11から入力される波長ごとの光量信号をもとに各反応容器5内の液体試料の波長ごとの吸光度を求め、検体の成分濃度等を分析する。このとき、制御部15は、分析した検体の成分濃度等の分析結果を記憶し、入力部16からの入力情報によって分析結果を表示部17に表示する。このようにして、分析が終了した反応容器5は、洗浄機構12によって洗浄された後、再度検体の分析に使用される。
 このとき、回転制御部15aは、第一撹拌装置13を以下のように制御して撹拌棒13cを回転させ、反応容器5内の液体を撹拌する。即ち、本発明の撹拌方法は、撹拌棒13cを低速で回転させる低速回転工程と、低速回転工程の後に撹拌棒13cを高速で回転させる高速回転工程とを含んでいる。
 この撹拌方法を実現するため、回転制御部15aは、図3に示すように、一定の低速で回転する低速時間Tsの後に停止時間Tspを置いて一定の高速で回転する高速時間Tf(>Ts)を設定するように撹拌棒13cの回転を制御している。ここで、図3は、縦軸が撹拌棒13cの回転数として撹拌棒13cを駆動するパルスモータの1秒当たりのパルス数(pps)を示しており、横軸は時間(秒)を示している。また、図中、Tmixは、1回の撹拌時間を示している。
 この場合、撹拌棒13cの低速回転の回転速度は、従来の撹拌で使用されている撹拌棒の回転速度の1/2程度に設定し、高速回転の回転速度を従来の撹拌で使用されている撹拌棒の回転速度程度とする。
 また、回転制御部15aは、低速時間Tsの前後に加速時間Tasと減速時間Tds及び高速時間Tfの前後に加速時間Tafと減速時間Tdfを設定している。但し、これらの加速時間及び減速時間は、一般に撹拌棒13cの回転数を制御する際に設定され、Tas=Tds,Taf=Tdf,Tas/Ts=Tds/Ts,Taf/Tf=Tdf/Tfに設定されている。但し、Tas≠Tds,Taf≠Tdfに設定しても同様の効果が得られる。
 このように、先ず、低速で撹拌棒13cを回転すると、低速のため撹拌にムラはあるが、第一試薬と検体とが全体に馴染んだ状態になる。次に、回転停止時間Tspを置くと、低速回転によって生じた撹拌流が撹拌棒13cに衝突して上下方向の流れが惹起され、より第一試薬と検体との撹拌が進行する。そして、高速で撹拌棒13cを回転することによって、第一試薬と検体が一気に撹拌される。このため、撹拌対象の液性(物理的特性)に差があっても、撹拌対象を十分に撹拌することができる。
 但し、撹拌対象の液性(物理的特性)、例えば、粘度に差がある場合、従来の回転速度で撹拌棒13cを回転させて撹拌すると、粘度の高い液体が反応容器5の側壁部へ跳ね飛ばされるうえ、液体中に発生する撹拌流が撹拌棒13cを中心として発生し、反応容器5の側壁側に届き難いため、第一試薬と検体との間に撹拌ムラが発生してしまう。
(実施例1,2)
 ここで、自動分析装置1を使用し、第一試薬と検体に代えて、粘度の異なる液体試料を用いて本発明方法で撹拌した場合における吸光度を測定し、測定値をもとに吸光度変化の百分率(%)を算出した。
 このとき、液体試料は、第一試薬に代えて粘度が1mPa・sと4mPa・s粘度調整用の透明試薬を使用し、検体に代えて吸光度が8と75、粘度が1,1.7及び3mPa・sの色素液を使用した。そして、所定回数の測光点のうち、透明試薬に色素液を分注して撹拌した直後の測光点Paの吸光度ODaと最終測光点Pzの吸光度ODzを測定し、吸光度変化の百分率Rc(=(ODz-ODa)/ODa)を算出した。また、透明試薬と色素液とは、表1に示すM1~M12の12通りの混合比に組み合わせ、各組み合わせ当たり10回ずつ測定を行った。なお、回転制御部15aは、撹拌棒13cを低速回転の場合も高速回転の場合も時計方向に回転させ、停止時間を2通りに制御した。
Figure JPOXMLDOC01-appb-T000001
 そして、±1.0%を百分率(%)の基準値とし、算出した全10回のうちの総ての百分率(%)が基準値以内であれば撹拌状態が良(○)、全10回のうち1回又は2回基準値を超えていれば撹拌状態が不良(△)、全10回のうち3回以上基準値を超えていれば撹拌状態が不合格(×)と判定した。その判定結果を、吸光度変化の百分率(%)の平均値、最大値、最小値及び標準偏差と共に表2,3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ここで、実施例1は、停止時間Tsp=0.2秒、Tas/Ts=Tds/Ts=1/6、Taf/Tf=Tdf/Tf=1/12にそれぞれ設定した。また、表3に示した実施例2は、停止時間Tsp=0.1秒、Tas/Ts=Tds/Ts=1/6、Taf/Tf=Tdf/Tf=1/12にそれぞれ設定した。
(比較例)
 比較のため、従来方法で撹拌した場合の測定値から、同様にして吸光度変化の百分率(%)を算出した(比較例)。比較例は、図4に示すように、高速時間Tcfの前後に加速時間Tcafと減速時間Tcdfを設定すると共に、Tcaf=Tcdf,Tcaf/Tcf=Tcdf/Tcf=1/22に設定し、1回の撹拌時間Tmix(=Tcaf+Tcf+Tcdf)は、実施例1と等しく設定している。比較例の結果を実施例1,2と同様に、吸光度変化の百分率(%)の平均値、最大値、最小値及び標準偏差と共に表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表2,3及び表4に示す結果から明らかなように、使用する透明試薬と色素液の粘度の差が大きい程、吸光度変化の百分率がばらつく傾向が見られる。但し、本発明は、撹拌棒を低速で回転させた後、高速で回転させて撹拌するので、透明試薬と色素液の粘度に差があっても、吸光度変化の百分率のばらつきが抑えられ、均一に撹拌できることが分かる。従って、本発明によれば、撹拌対象の液性に関係なく簡易に撹拌効率を向上させることができる。
 尚、撹拌棒13cは、低速回転の場合も高速回転の場合も時計方向に回転させたが、低速回転の場合と高速回転の場合で、回転方向を逆にしてもよい。
 また、撹拌対象の液性としては、上述の粘度の他に、例えば、比重等があり、本発明方法は、比重の異なる液体試料を撹拌する場合にも適用することができる。
 以上のように、本発明の撹拌装置、撹拌方法及び自動分析装置は、撹拌対象の液性に関係なく簡易に撹拌効率を向上させるのに有用である。

Claims (9)

  1.  撹拌棒を回転させて液体を撹拌する撹拌装置であって、
     前記撹拌棒を低速で回転させた後、前記低速を越える高速で回転させる回転制御手段を備えたことを特徴とする撹拌装置。
  2.  前記回転制御手段は、前記撹拌棒の低速回転を所定時間停止させた後、前記撹拌棒を高速回転させることを特徴とする請求項1に記載の撹拌装置。
  3.  前記回転制御手段は、前記高速回転の時間が前記低速回転の時間よりも長くなるように前記撹拌棒の回転を制御することを特徴とする請求項2に記載の撹拌装置。
  4.  前記回転制御手段は、前記低速回転及び前記高速回転の際に前記撹拌棒をそれぞれ一定の回転数に保持することを特徴とする請求項3に記載の撹拌装置。
  5.  撹拌棒を回転させて液体を撹拌する撹拌方法であって、
     前記撹拌棒を低速で回転させる低速回転工程と、
     前記低速を越える高速で前記撹拌棒を回転させる高速回転工程と、
     を含むことを特徴とする撹拌方法。
  6.  前記高速回転工程は、前記撹拌棒の低速回転を所定時間停止させた後、前記撹拌棒を高速回転させることを特徴とする請求項5に記載の撹拌方法。
  7.  前記高速回転工程は、前記低速回転工程よりも時間が長いことを特徴とする請求項6に記載の撹拌方法。
  8.  前記低速回転工程及び前記高速回転工程は、前記撹拌棒をそれぞれ一定の回転数に保持することを特徴とする請求項7に記載の撹拌方法。
  9.  検体と試薬とを含む液体試料を撹拌して反応させ、反応液を分析する分析装置であって、請求項1~4のいずれか一つに記載の撹拌装置を備えることを特徴とする自動分析装置。
PCT/JP2009/055607 2008-09-24 2009-03-23 撹拌装置、撹拌方法及び自動分析装置 WO2010035532A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008244740A JP2010078372A (ja) 2008-09-24 2008-09-24 撹拌装置、撹拌方法及び自動分析装置
JP2008-244740 2008-09-24

Publications (1)

Publication Number Publication Date
WO2010035532A1 true WO2010035532A1 (ja) 2010-04-01

Family

ID=42059542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055607 WO2010035532A1 (ja) 2008-09-24 2009-03-23 撹拌装置、撹拌方法及び自動分析装置

Country Status (2)

Country Link
JP (1) JP2010078372A (ja)
WO (1) WO2010035532A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517807B2 (ja) * 2010-07-20 2014-06-11 株式会社日立ハイテクノロジーズ 分析装置
JP6754358B2 (ja) * 2015-05-29 2020-09-09 株式会社ヤクルト本社 撹拌装置
JP6773408B2 (ja) * 2015-11-13 2020-10-21 古野電気株式会社 攪拌装置および分析装置
WO2023032280A1 (ja) * 2021-08-31 2023-03-09 株式会社島津製作所 サンプリング装置およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799326A (en) * 1980-12-05 1982-06-21 Kanebo Ltd Stirring and mixing method for liquids differing in viscosity
JPH02201164A (ja) * 1989-01-30 1990-08-09 Shimadzu Corp 自動生化学分析装置
JPH06102280A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 自動分析装置
JPH06142479A (ja) * 1992-11-10 1994-05-24 Shinko Pantec Co Ltd 攪拌機及びこれを使用した攪拌方法
JPH09145718A (ja) * 1995-11-22 1997-06-06 A & T:Kk 分析検査装置における攪拌装置の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799326A (en) * 1980-12-05 1982-06-21 Kanebo Ltd Stirring and mixing method for liquids differing in viscosity
JPH02201164A (ja) * 1989-01-30 1990-08-09 Shimadzu Corp 自動生化学分析装置
JPH06102280A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 自動分析装置
JPH06142479A (ja) * 1992-11-10 1994-05-24 Shinko Pantec Co Ltd 攪拌機及びこれを使用した攪拌方法
JPH09145718A (ja) * 1995-11-22 1997-06-06 A & T:Kk 分析検査装置における攪拌装置の制御装置

Also Published As

Publication number Publication date
JP2010078372A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4812352B2 (ja) 自動分析装置及びその分注方法
US9347966B2 (en) Automatic analyzer
US20090196793A1 (en) Automatic analyzing apparatus
WO2010035532A1 (ja) 撹拌装置、撹拌方法及び自動分析装置
JP4891749B2 (ja) 自動分析装置
JP2008003057A (ja) 分析装置と分析方法
WO2011001645A1 (ja) 自動分析装置
JP5161592B2 (ja) 自動分析装置及びその保守方法
JP2007322246A (ja) 自動分析装置
JP2010169581A (ja) 自動分析装置
JP2012225879A (ja) 生化学分析装置
JP2011227092A (ja) 自動分析装置
JP7520613B2 (ja) 自動分析装置
JPWO2008139978A1 (ja) 自動分析装置の測光方法及び自動分析装置
JP6012367B2 (ja) 自動分析装置
JP2007017412A (ja) 自動分析装置
JP5506189B2 (ja) 自動分析装置
JP6675226B2 (ja) 自動分析装置
JP7475953B2 (ja) 自動分析装置
JP2007285920A (ja) 分析装置
JP6611569B2 (ja) 自動分析装置
JP6537895B2 (ja) 自動分析装置
JP5808473B2 (ja) 自動分析装置
JP2007316011A (ja) 分注装置と分析装置
JP2007315972A (ja) 攪拌装置、攪拌方法及び分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815951

Country of ref document: EP

Kind code of ref document: A1