WO2010032568A1 - 新規な活性白土及び動植物の油脂類もしくは鉱物油の脱色剤 - Google Patents

新規な活性白土及び動植物の油脂類もしくは鉱物油の脱色剤 Download PDF

Info

Publication number
WO2010032568A1
WO2010032568A1 PCT/JP2009/064194 JP2009064194W WO2010032568A1 WO 2010032568 A1 WO2010032568 A1 WO 2010032568A1 JP 2009064194 W JP2009064194 W JP 2009064194W WO 2010032568 A1 WO2010032568 A1 WO 2010032568A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated clay
acid
pore volume
oil
oils
Prior art date
Application number
PCT/JP2009/064194
Other languages
English (en)
French (fr)
Inventor
正志 羽田野
満 出村
理寛 山▲崎▼
Original Assignee
水澤化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水澤化学工業株式会社 filed Critical 水澤化学工業株式会社
Priority to EP09814413A priority Critical patent/EP2325142A4/en
Publication of WO2010032568A1 publication Critical patent/WO2010032568A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/10Refining fats or fatty oils by adsorption

Definitions

  • the present invention relates to a bleaching agent for animal or plant oils or mineral oils having a novel structure, and more particularly to a bleaching agent comprising activated clay.
  • activated clay that has been activated by increasing the specific surface area by acid treatment of clays mainly composed of dioctahedral smectite as a decolorizer for animal and plant oils and mineral oils.
  • an activated clay obtained by acid treatment of a dioctahedral smectite clay mineral and having a crystallite diameter adjusted to a predetermined range is used as a bleaching agent for animal and plant oils and mineral oils.
  • a dioctahedral smectite clay mineral and having a crystallite diameter adjusted to a predetermined range is used as a bleaching agent for animal and plant oils and mineral oils.
  • Patent Document 2 discloses that most of pores obtained by acid treatment of montmorillonite clay mineral belonging to dioctahedral smectite clay mineral have a pore diameter of 30 to 50 mm (3.0 to 5.0 nm). An inorganic porous body having a sharp pore distribution is disclosed.
  • an object of the present invention is to provide a novel activated clay having an excellent decolorization performance as compared with conventionally known activated clay, and a bleaching agent for animal or plant fats and oils or mineral oil comprising the activated clay.
  • the present inventors can obtain a novel activated clay with significantly improved decolorization performance by subjecting it to an appropriate alkali treatment followed by acid washing. As a result, the present invention has been completed.
  • the pore volume at a pore diameter of 1.7 to 100 nm is in the range of 0.40 to 0.60 cm 3 / g as measured by the nitrogen adsorption method, and 1.7 to 11.
  • the pore volume ratio (B / A) between the pore volume (A) at a pore diameter of 5 nm and the pore volume (B) at a pore diameter of more than 11.5 nm and not more than 100 nm is 0.75 to 1.5
  • an activated clay is provided in which the solid acid amount of Ho ⁇ ⁇ 3.0 is in the range of 0.15 to 0.40 mmol / g.
  • a decolorizing agent for animal and plant oils or mineral oils comprising activated clay.
  • the pH (25 ° C.) in a 5% by weight aqueous suspension is in the range of 2.5 to 5.0, (2) having a BET specific surface area of 150 to 300 m 2 / g, Is preferred.
  • the activated clay of the present invention has a pore volume in the range of 0.40 to 0.60 cm 3 / g at a pore diameter (pore diameter) of 1.7 to 100 nm, and has such a pore volume.
  • the activated clay is known from the past.
  • the present invention has such a pore volume and at the same time has a pore volume (A) with a pore diameter of 1.7 to 11.5 nm and a fine volume of more than 11.5 nm and less than 100 nm.
  • the pore volume ratio (B / A) to the pore volume (B) in the pore diameter is in the range of 0.75 to 1.5, and the solid acid amount of Ho ⁇ ⁇ 3.0 is 0.15 to 0.00. It has a remarkable feature in that it is in the range of 40 mmol / g.
  • the activated clay of the present invention has a large pore volume like the conventionally known activated clay, but contains many pores having a larger diameter than the conventionally known activated clay, In addition, since it contains a lot of relatively strong solid acid, both the physical adsorption performance by the pores and the chemical adsorption performance by the solid acid are enhanced with respect to the dye. As shown in Fig. 5, the color removal performance is remarkably superior to that of conventionally known activated clay.
  • conventionally known activated clay simply increases the pore volume by acid treatment, resulting in a decrease in the amount of solid acid.
  • the pore volume ratio (B / Even if A) is satisfied, the amount of solid acid is lower than that of the activated clay of the present invention. Therefore, even if the dye adsorption performance by the pores is enhanced, the dye adsorption performance by the solid acid is lowered. Therefore, it does not show the excellent decolorization performance as in the present invention.
  • the activated clay of the present invention has a markedly improved decolorization performance, and is therefore suitably used as a decolorizing agent for fats and oils and mineral oils.
  • the activated clay of the present invention uses an acid-treated clay (corresponding to a conventionally known activated clay) mainly composed of dioctahedral smectite as a starting material, which is alkali-treated and then adhered by acid washing. Is obtained.
  • An acid-treated product of clay used as a raw material is produced by acid-treating the clay under known conditions.
  • Clay mainly composed of the above-mentioned dioctahedral smectite, volcanic rock and lava, etc. are believed to have modified under the influence of sea water, from SiO 4 tetrahedral sheets -AlO 6 octahedral sheet -SiO 4 tetrahedral sheet
  • This unit layer is the basic structure. Since a part of Al in the octahedron sheet of the basic structure is replaced with Mg or Fe (II) and a part of Si in the tetrahedron sheet is isomorphously replaced with Al, the unit layer has a negative charge.
  • the negative charges are neutralized by metal cations such as Ca, K, Na, and hydrogen ions existing between the stacked layers of the unit layer.
  • metal cations such as Ca, K, Na, and hydrogen ions existing between the stacked layers of the unit layer.
  • Such smectite clays include acid clay, bentonite, fuller's earth, and the like, and exhibit different characteristics depending on the kind and amount of cations existing between the layers and the amount of hydrogen ions.
  • bentonite has a large amount of Na ions present between the basic layers, and therefore, the pH of the dispersion suspended in water is high, generally on the high alkali side, and exhibits high swellability with respect to water. Furthermore, it exhibits the property of gelling and solidifying.
  • the amount of hydrogen ions existing between the laminated layers of the unit layer is large, and therefore the pH of the dispersion suspended in water is low, generally on the acidic side, and also swellable to water.
  • the swelling property is generally low and gelation does not occur.
  • Various mineral acids can be used for the acid treatment of the above-mentioned dioctahedral smectite clay, but it is easy to obtain, and the acid treatment can be performed quickly without applying a load to the equipment such as acid corrosion. Sulfuric acid is preferred from the standpoint that it can be carried out.
  • the obtained acid-treated product is filtered, washed with water, dried if necessary, and then used as a starting material for the activated clay of the present invention.
  • the activated clay of the present invention is obtained by alkali treatment and acid cleaning of an acid-treated product of smectite clay as described above (that is, equivalent to a conventionally known activated clay).
  • the pore volume in the pore diameter (pore diameter) at 1.7 to 100 nm is 0.40 to 0.60 cm 3 / g, and the solid of Ho ⁇ ⁇ 3.0 What is acid-treated so that the acid amount is in the range of 0.15 to 0.40 mmol / g is used. That is, the alkali treatment and the acid cleaning described above are treatments for increasing the pores having a large diameter without reducing the solid acid amount, and basically increase the pore volume and increase the solid acid amount. It is not a thing.
  • the acid-treated product having the pore volume and the solid acid amount as described above has an effect of increasing the pore volume and decreasing the solid acid amount by the acid treatment, and depending on the composition of the raw clay, It can be obtained by adjusting acid treatment conditions (for example, acid concentration, acid treatment time, etc.).
  • the acid treatment as described above causes an increase in the BET specific surface area.
  • the BET specific surface area of the acid-treated product as described above is generally in the range of 250 m 2 / g or more.
  • the pore volume and the pore volume with a pore diameter of 1.7 to 11.5 nm are generated by the acid treatment for obtaining the pore volume and the solid acid amount as described above.
  • the pore volume ratio (B / A) between (A) and the pore volume (B) at a pore diameter greater than 11.5 nm and less than 100 nm is in the range of 0.70 or less, and there are many small pores Is generated.
  • the alkali treatment of the acid-treated product is a treatment for increasing pores having a large diameter. That is, the alkali treatment hardly changes the pore volume at 1.7 to 100 nm of the acid-treated product described above, but the amorphous silica contained in the acid-treated product (clay particles by acid-treating the raw clay) Among the silica generated on the surface), the silica constituting the smaller pores dissolves to increase the amount of large-diameter pores and simultaneously close the small pores. As a result, the pore volume ratio ( The value of B / A) increases. Further, due to dissolution and desorption of silica existing on the surface, the irregularities on the particle surface are flattened, and the specific surface area is reduced.
  • the solid acid contained in the acid-treated product is neutralized by the alkali treatment. Therefore, by performing acid washing after the alkali treatment and removing the alkali neutralizing the solid acid, the solid acid amount is restored to the same level as the raw smectite-treated product.
  • the alkali treatment is performed by using an aqueous alkali solution such as sodium hydroxide, potassium hydroxide, or calcium hydroxide and mixing and stirring the aqueous alkali solution and the smectite-treated product. If the treatment is excessively performed, amorphous silica is eluted more than necessary, and if all of the amorphous silica is detached, it returns to the smectite clay used for the acid treatment, and the pores disappear. End up. Therefore, this alkali treatment needs to be performed moderately, and is performed to such an extent that the above pore volume ratio (B / A) is achieved while maintaining the pore volume of the acid-treated product within the above-mentioned range. .
  • an aqueous alkali solution such as sodium hydroxide, potassium hydroxide, or calcium hydroxide
  • the specific conditions vary depending on the composition of the acid-treated product to be used (for example, the degree of acid treatment) and cannot be generally specified, but generally the suspension concentration is about 10 to 25% by weight.
  • An aqueous alkali solution may be added to and mixed with an aqueous suspension of the acid-treated product, followed by heat treatment, and an alkali treatment may be performed so that the pH is about 7 to 11.
  • the acid cleaning performed after the alkali treatment is such that the alkali neutralizing the solid acid can be removed, for example, by showering with about 0.1 to 1.0% by weight of dilute sulfuric acid. This is performed by washing the alkali-treated product.
  • the target activated clay of the present invention can be obtained by acid washing, water washing and drying, and if necessary, firing and particle size adjustment.
  • the activated clay obtained as described above is obtained from an acid-treated product of smectite clay, it generally has the following composition in terms of oxide. SiO 2 ; 65 to 85% by weight Al 2 O 3 ; 6 to 12% by weight Fe 2 O 3 ; 1 to 8% by weight MgO: 1 to 3% by weight CaO; 0.1 to 2% by weight Na 2 O; 0.1 to 1% by weight K 2 O; 0.1 to 1% by weight Other oxides (such as TiO 2); 1 wt% or less Ig-loss (1050 °C); 4 to 8 wt%
  • the pore volume in the pore diameter (pore diameter) at 1.7 to 100 nm is in the range of 0.40 to 0.60 cm 3 / g as measured by the nitrogen adsorption method.
  • the same as the acid-treated product of smectite clay, and the solid acid amount of Ho ⁇ ⁇ 3.0 is 0.15 to 0.40 mmol / g, preferably 0.18 to 0.35 mmol / g. This is also in the same range as the acid-treated product of smectite clay used as a raw material.
  • the pore volume ratio (B / A) to the pore volume (B) in the pore diameter is in the range of 0.75 to 1.5, preferably 0.8 to 1.4.
  • the BET specific surface area is reduced by alkali treatment as compared with the acid-treated product of the raw smectite clay.
  • the BET specific surface area is 150 to 300 m 2 / g, preferably 150 to 250 m 2 / g. Is in range.
  • the alkali treatment described above is performed at least so that the BET specific surface area is maintained in the above range. This is because if the BET specific surface area is lower than the above range, the field required for adsorption is reduced, so that the adsorption performance with respect to the dye molecules is lowered and the decolorization performance may be lowered.
  • the activated clay obtained as described above has a pH (25 ° C.) of 2% by weight aqueous suspension since the alkali content neutralizing the solid acid is removed by acid washing. It is in the range of 5 to 5.0.
  • the activated clay of the present invention has a remarkably improved adsorptivity with respect to giant pigment molecules as compared with conventionally known activated clay, and is therefore suitably used as a decolorizer for animal and plant oils and mineral oils. .
  • oils and fats of animals and plants to be decolorized include at least one of vegetable oils, animal fats and mineral oils.
  • Oils and fats of raw materials are widely present in the natural animal and plant kingdoms, and are mainly composed of esters of fatty acids and glycerin, such as safflower oil, soybean oil, rapeseed oil, palm oil, palm kernel oil, beni flower oil, Vegetable oil such as cottonseed oil, coconut oil, rice bran oil, sesame oil, castor oil, linseed oil, olive oil, tung oil, coconut oil, peanut oil, kapok oil, cacao oil, wood wax, sunflower oil, corn oil and sardine oil, herring oil, Examples thereof include fish oils such as squid oil and saury oil, liver oil, whale oil, beef tallow, beef tallow, horse oil, pork tallow, sheep fat and other animal oils alone or in combination.
  • various lubricating oils such as spindle oil, refrigerating machine oil, dynamo oil, turbine oil, machine oil, marine internal combustion engine lubricating oil, gasoline engine lubricating oil, diesel engine lubricating oil, cylinder oil, marine engine oil, Gear oil, cutting oil, insulating oil, automatic transmission oil, compressor oil, hydraulic fluid, rolling oil and the like can be mentioned.
  • the activity of the present invention is adjusted to a suitable particle size (generally a median diameter of about 18 to 30 ⁇ m on a volume basis measured by a laser diffraction method) to the fat or mineral oil to be decolorized.
  • a suitable particle size generally a median diameter of about 18 to 30 ⁇ m on a volume basis measured by a laser diffraction method
  • Decolorization is carried out by adding a white clay powder and stirring them uniformly to adsorb colored components and impurity components contained in the oil or mineral oil into the white clay particles.
  • the decolorization treatment of animal and plant fats and oils or mineral oils is a per se known condition.
  • a decoloring agent of 5% or less is added on a weight basis per fat or oil or mineral oil, and a temperature of 90 to 150 ° C. is 5 to 30.
  • the decolorization process can be completed by stirring both compositions for a minute.
  • the mixture after the decolorization treatment is supplied to an arbitrary filter such as a filter press, a belt filter, an olive filter, an American filter, a centrifugal filter, or a reduced pressure or pressure filter to remove the decolored oil or fat or It is separated into mineral oil and so-called waste clay that is a used decoloring agent.
  • a filter press such as a filter press, a belt filter, an olive filter, an American filter, a centrifugal filter, or a reduced pressure or pressure filter to remove the decolored oil or fat or It is separated into mineral oil and so-called waste clay that is a used decoloring agent.
  • the activated clay of the present invention can be used not only for defatting agents for animal and plant oils or mineral oils, but also for purification of aromatic hydrocarbons such as BTX (benzene, toluene, xylene).
  • aromatic hydrocarbons such as BTX (benzene, toluene, xylene).
  • aluminum sulfate, aluminum chloride or the like can be added to the activated clay of the present invention.
  • Solid acid amount (A) The solid acid amount of Ho ⁇ ⁇ 3.0 was measured by n-butylamine titration method. The sample was measured in advance for one dried at 150 ° C. for 3 hours. [Reference: "Catalyst” Vol.11, No6, P210-216 (1969)]
  • Pore volume and pore volume ratio Measured by nitrogen adsorption method using Tri Star 3000 manufactured by Micromeritics, and obtained pore volume of pore diameter from 1.7 to 100 nm by BJH method from adsorption data. It was. Further, the ratio (B / A) of the pore volume (A) at a pore diameter of 1.7 to 11.5 nm and the pore volume (B) at a pore diameter larger than 11.5 nm and not larger than 100 nm is smaller than (B / A). The pore volume ratio was determined.
  • Pore distribution Measurement was performed by a nitrogen adsorption method using Tri Star 3000 manufactured by Micromeritics, and the pore distribution was determined by BJH method from the adsorption data.
  • Decoloring test method For the test of the performance of the decoloring agent, a decoloring tester shown in the figure of the clay handbook 2nd edition, Japan Clay Society (Gihodo Publishing) p917 was used. In this decoloring tester, eight large glass test tubes (capacity 200 ml) can be set in an oil bath. Each test tube has a corrugated stir bar with a rounded lower end, and the lower end is adjusted with a rubber tube so that it always contacts the bottom of the test tube. Since the eight stirring rods are rotated by the child gear separated from the central parent gear, the rotation speeds are kept exactly the same. A stirring blade for stirring the oil bath is attached under the central master gear, and the temperature in the oil bath is kept uniform.
  • a maximum of 8 decolorization tests can be performed. Collect 50 g of deoxidized rapeseed oil in each test tube, add 0.75 g of each decolorizing agent sample (1.5% to the oil) and mix well with a stir bar for decolorization test. Each test tube is set in the above-mentioned decoloring test machine maintained at 110 ° C., stirred for 20 minutes, then taken out from the decoloring test machine, and filtered to remove the mixed suspension of oil and decoloring agent. obtain. The white light transmittance (relative value when the transmittance of distilled water is 100%) of each decolorizing oil was measured with a photoelectric colorimeter 2C type manufactured by Hirama Rika Laboratory Co., Ltd. Decolorization performance. The higher the numerical value of the transmittance, the higher the decoloring performance of the used decoloring agent.
  • Example 1 The acid-treated product (water-containing product before drying) after completion of water washing in Comparative Example 1 was used as a raw material. Water was added to the acid-treated product and pulverized with a household mixer to obtain an aqueous suspension having a solid content of 20% by weight. To 1250 g of this suspension, 66 g of a 7.5 wt% NaOH aqueous solution was added, and the mixture was stirred at 90 ° C. for 5 hours for alkali treatment. This suspension was filtered, the filter cake was dispersed in 1% by weight dilute sulfuric acid, acid washed by a decantation method, and then washed with water.
  • the suspension after washing with water was filtered, and the filter cake was dried, pulverized and classified at 110 ° C. to obtain an activated clay powder.
  • the obtained activated clay powder was measured for various physical properties, and the results are shown in Table 1.
  • the pore distribution of the sample is shown in FIG. 1 in comparison with the sample of Comparative Example 1.
  • FIG. 1 shows that pores having a pore diameter of about 5 nm are changed to pores having a large diameter of 10 nm or more by alkali treatment.
  • Example 2 An activated clay powder was obtained in the same manner as in Example 1 except that 50 g of 7.5 wt% NaOH aqueous solution was used instead of 66 g of 7.5 wt% NaOH aqueous solution in Example 1. The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 1.
  • Example 4 An active clay powder was prepared in the same manner as in Example 1 except that 66 g of 7.0 wt% Ca (OH) 2 suspension was used instead of 66 g of 7.5 wt% NaOH aqueous solution in Example 1. Obtained. The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 1.
  • Example 5 The activated clay powder obtained in Comparative Example 1 was used as a raw material. 250 g of this powder was dispersed in 1000 g of a 0.5 wt% NaOH aqueous solution and stirred at 90 ° C. for 5 hours for alkali treatment. Thereafter, acid washing, water washing and filtration were carried out in the same manner as in Example 1, and the filter cake was dried at 110 ° C. to obtain an activated clay powder. The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 1.
  • Comparative Example 2 An activated clay powder was obtained in the same manner as in Comparative Example 1 except that the acid treatment was performed at 90 ° C. for 5 hours in place of the 35 wt% sulfuric acid aqueous solution in place of the 35 wt% sulfuric acid aqueous solution. The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 2.
  • Example 6 An activated clay powder was obtained in the same manner as in Example 1 except that the acid-treated product (hydrated product before drying) after completion of washing in Comparative Example 2 was used as a raw material. The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 1.
  • Comparative Example 4 The same smectite clay as in Comparative Example 1 was dispersed in water, coarse particles were removed with a water tank, filtered, and dried at 110 ° C. Into a beaker, 920 g of a 15 wt% sulfuric acid aqueous solution was taken, 360 g of this dry clay was added, and acid treatment was performed at 70 ° C. for 12 hours while stirring on a heater. After completion of the acid treatment, water was added to the acid-treated product, washed by a decantation method, and filtered. The filter cake was dried, pulverized and classified at 110 ° C. to obtain an activated clay powder. The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 2.
  • Example 5 Alkali treatment was performed in the same manner as in Example 1. The suspension after alkali treatment was filtered, and the filter cake was dispersed in water and washed with water by a decantation method (acid washing with 1% sulfuric acid in Example 1 was omitted). Thereafter, an activated clay powder was obtained in the same manner as in Example 1. The obtained activated clay powder was measured for various physical properties, and the results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Fats And Perfumes (AREA)

Abstract

本発明の活性白土は、窒素吸着法で測定して、1.7乃至100nmでの細孔径における細孔容積が0.40乃至0.60cm/gの範囲にあり、且つ1.7乃至11.5nmの細孔径での細孔容積(A)と11.5nmより大で100nm以下の細孔径における細孔容積(B)との細孔容積比(B/A)が0.75乃至1.5の範囲にあるとともに、H≦-3.0の固体酸量が0.15乃至0.40mmol/gの範囲にあることを特徴とする。 本発明によれば、従来公知の活性白土に比して優れた脱色性能を有する新規な活性白土、及び該活性白土からなる動植物の油脂類もしくは鉱物油の脱色剤が提供される。

Description

新規な活性白土及び動植物の油脂類もしくは鉱物油の脱色剤
 本発明は、新規な構造を有する動植物の油脂類もしくは鉱物油の脱色剤に関するものであり、より詳細には、活性白土からなる脱色剤に関する。
 ジオクタヘドラル型スメクタイトを主成分とする粘土が脱色性能を有していることは古くから知られており、英国ではフラーズアース或いはブリーチングアースとも呼ばれている。
 このようなジオクタヘドラル型スメクタイトを主成分とする粘土を酸処理することにより比表面積等を増大して活性化した活性白土を、動植物の油脂類や鉱物油の脱色剤として使用することも知られており、例えば、特許文献1には、ジオクタヘドラル型スメクタイト粘土鉱物を酸処理して得られ、結晶子径が所定の範囲に調整された活性白土を動植物の油脂類や鉱物油の脱色剤として用いることが提案されている。
 また、特許文献2には、ジオクタヘドラル型スメクタイト粘土鉱物に属するモンモリロナイト系粘土鉱物を酸処理することにより得られた、細孔の大半が細孔径30~50Å(3.0~5.0nm)の範囲にあるシャープな細孔分布を有する無機質多孔体が開示されている。
 一方、本発明者等は先に、17~3000Å(1.7~300nm)での細孔径における細孔容積が0.35乃至0.40cm/gの範囲にある活性白土からなる脱色剤を提案した(特許文献3)。
特開平11-157829号公報 特開平6-340413号公報 特開2008-31411号公報
 ジオクタヘドラル型スメクタイトを主成分とする粘土を酸処理して得られた活性白土が動植物の油脂類や鉱物油に対する脱色性能に優れているのは、酸処理によって、粘土中のAl分やFe分などが溶出し、細孔容積や比表面積が増大し、この結果、クロロフィルなどの色素成分に対する物理的吸着性能が増大するためである。特に大きな細孔の細孔容積の増大は脱色性能の向上に大きく寄与する。
 また、脱色性能を示す要因としては、細孔容積や比表面積以外に、固体酸量があり、この固体酸量が多いほど、色素成分に対する反応性が向上し、化学的吸着性能が高くなり、脱色性能が向上する。
 しかしながら、上記のような酸処理により得られる活性白土においては、酸処理の進行に伴ってAl分やFe分が溶出して除かれるため、細孔容積やBET比表面積は増大するものの、固体酸量の減少を伴う。このため、特許文献1~3のように、酸処理による細孔容積等の増大のみで脱色性能を向上させるには限界があり、脱色性能の観点から、大きな径の細孔の容積が多く、しかも固体酸量の多い活性白土が求められているが、このような特性を有する活性白土は知られていない。
 従って、本発明の目的は、従来公知の活性白土に比して、優れた脱色性能を有する新規な活性白土及び該活性白土からなる動植物の油脂類もしくは鉱物油の脱色剤を提供することにある。
 本発明者等は、活性白土の脱色性能について多くの実験を行った結果、これを適度にアルカリ処理し、続いて酸洗浄することにより、脱色性能が著しく向上した新規な活性白土が得られることを見出し、本発明を完成させるに至った。
 本発明によれば、窒素吸着法で測定して、1.7乃至100nmでの細孔径における細孔容積が0.40乃至0.60cm/gの範囲にあり、且つ1.7乃至11.5nmの細孔径での細孔容積(A)と11.5nmより大で100nm以下の細孔径における細孔容積(B)との細孔容積比(B/A)が0.75乃至1.5の範囲にあるとともに、Ho≦-3.0の固体酸量が0.15乃至0.40mmol/gの範囲にあることを特徴とする活性白土が提供される。
 本発明によれば、さらに、活性白土からなる動植物の油脂類もしくは鉱物油の脱色剤が提供される。
 本発明の活性白土においては、
(1)5重量%水性懸濁液でのpH(25℃)が2.5乃至5.0の範囲にあること、
(2)150乃至300m/gのBET比表面積を有していること、
が好適である。
 本発明の活性白土は、1.7乃至100nmでの細孔径(細孔直径)における細孔容積が0.40乃至0.60cm/gの範囲にあり、このような細孔容積を有している活性白土は、従来から知られている。しかるに、本発明においては、このような細孔容積を有していると同時に、1.7乃至11.5nmの細孔径での細孔容積(A)と11.5nmより大で100nm以下の細孔径における細孔容積(B)との細孔容積比(B/A)が0.75乃至1.5の範囲にあり、しかもHo≦-3.0の固体酸量が0.15乃至0.40mmol/gの範囲にある点に顕著な特徴を有している。
 即ち、細孔容積比(B/A)が上記範囲内にあることは、大きな径の細孔を多く含んでいることを意味し、また、上記の固体酸量は、比較的強い固体酸を多く含んでいることを意味している。このことから理解されるように、本発明の活性白土は、従来公知の活性白土と同様に大きな細孔容積を有しているが、従来公知の活性白土より大きな径の細孔を多く含み、且つ、比較的強い固体酸を多く含んでいることから、色素に対して細孔による物理的吸着性能と固体酸による化学的吸着性能の何れもが高められており、この結果、後述する実施例にも示されているように、従来公知の活性白土に比して、著しく優れた脱色性能を示す。
 例えば、従来公知の活性白土は、単に酸処理により細孔容積の増大化を図っているに過ぎないため、固体酸量の減少が生じており、仮に上記のような細孔容積比(B/A)を満足していたとしても、固体酸量は、本発明の活性白土に比して低く、従って、細孔による色素吸着性能は高められていたとしても、固体酸による色素吸着性能が低下しており、本発明のような優れた脱色性能を示すことはない。
 このように、本発明の活性白土は、脱色性能が著しく向上しているため、油脂や鉱油に対する脱色剤として好適に使用される。
本発明の活性白土(実施例1)及び従来の活性白土(比較例1)の細孔分布を示す図である。
<活性白土の製造>
 本発明の活性白土は、ジオクタヘドラル型スメクタイトを主成分とする粘土の酸処理物(従来公知の活性白土に相当)を出発原料とし、これを、アルカリ処理し、次いで酸洗浄により付着しているアルカリを除去することにより得られる。
 原料として用いる粘土の酸処理物は、該粘土をそれ自体公知の条件で酸処理することにより製造される。
 上記のジオクタヘドラル型スメクタイトを主成分とする粘土は、火山岩や溶岩等が海水の影響下で変成したものと考えられており、SiO四面体シート-AlO八面体シート-SiO四面体シートからなる単位層を基本構造としている。基本構造の八面体シート中のAlの一部がMgやFe(II)に置換し、四面体シート中のSiの一部がAlに同型置換しているため、単位層はマイナスの電荷を有しており、このマイナスの電荷が単位層の積層層間に存在するCa,K,Na等の金属陽イオンや水素イオンにより中和されている。このようなスメクタイト系粘土には、酸性白土、ベントナイト、フラーズアースなどがあり、層間に存在する陽イオンの種類や量、及び水素イオン量などによってそれぞれ異なる特性を示す。例えば、ベントナイトでは、基本層間に存在するNaイオン量が多く、このため、水に懸濁させた分散液のpHが高く、一般に高アルカリサイドにあり、また、水に対して高い膨潤性を示し、さらにはゲル化して固結するという性質を示す。一方、酸性白土では、単位層の積層層間に存在する水素イオン量が多く、このため、水に懸濁させた分散液のpHが低く、一般に酸性サイドにあり、また、水に対して膨潤性を示すものの、ベントナイトと比較すると、その膨潤性は総じて低く、ゲル化には至らない。
 上記のようなジオクタヘドラル型スメクタイト系粘土の酸処理には種々の鉱酸を使用することができるが、入手が容易であり、しかも酸による腐食などの装置に対する負荷をかけることなく、迅速に酸処理を行うことができるという観点から、硫酸が好適である。
 このような酸処理により、粘土中のAl成分やFe成分の一部が除去され、この除去に伴って非晶質のシリカが生成すると同時に、細孔容積や比表面積の増大がもたらされ、さらに固体酸量は減少していく。
 得られる酸処理物は、ろ過、水洗され、必要により乾燥された後、本発明の活性白土の出発原料として供される。
 本発明の活性白土は、上記のようなスメクタイト系粘土の酸処理物(即ち、従来公知の活性白土に相当)をアルカリ処理及び酸洗浄により得られるものであるが、特に原料として用いる酸処理物としては、窒素吸着法で測定して、1.7乃至100nmでの細孔径(細孔直径)における細孔容積が0.40乃至0.60cm/gとなり、Ho≦-3.0の固体酸量が0.15乃至0.40mmol/gの範囲となるように酸処理されているものが使用される。即ち、上記のアルカリ処理及び酸洗浄は、固体酸量を減少させずに、大きな径の細孔を増大させるための処理であり、基本的に細孔容積の増大や固体酸量の増大をもたらすものではないからである。
 尚、上記のような細孔容積及び固体酸量を有する酸処理物は、酸処理によって細孔容積の増大と固体酸量の減少をもたらすことを利用して、原料粘土の組成に応じて、酸処理条件(例えば、酸濃度や酸処理時間など)を調整することにより得られる。
 また、上記のような酸処理によってBET比表面積の増大がもたらされる。このため、上記のような酸処理物のBET比表面積は、一般に、250m/g以上の範囲にある。
 さらに、上記のような細孔容積及び固体酸量を得るための酸処理によって小さな径の細孔と大きな径の細孔が生成し、1.7乃至11.5nmの細孔径での細孔容積(A)と11.5nmより大で100nm以下の細孔径における細孔容積(B)との細孔容積比(B/A)が0.70以下の範囲にあり、小さな径の細孔が多く生成している。
 ところで、脱色性能を考慮すると、例えばクロロフィルのように大きな色素分子の吸着には、大きな径の細孔が寄与する。従って、大きな径の細孔が少ない上記の酸処理物(即ち、従来の活性白土)では、脱色性能が未だ不十分である。従って、本発明では、以下に述べるアルカリ処理と酸洗浄とによって、固体酸量を減少させることなく、大きな径の細孔を増大させるわけである。
 本発明においては上記の酸処理物のアルカリ処理は、大きな径の細孔を増大させるための処理である。即ち、このアルカリ処理によって、前述した酸処理物の1.7乃至100nmにおける細孔容積はほとんど変動しないが、酸処理物中に含まれる非晶質シリカ(原料粘土を酸処理することにより粘土粒子表面に生成したシリカ)のうち、より小さな細孔を構成するシリカが溶解することによって大きな径の細孔の量が増大すると同時に小さな細孔が閉じられ、この結果、上記の細孔容積比(B/A)の値は大きくなる。また、表面に存在するシリカの溶解脱離により、粒子表面の凹凸が平坦化され、比表面積は小さくなる。
 また、上記のアルカリ処理によって酸処理物に含まれる固体酸は、中和される。従って、上記のアルカリ処理後に酸洗浄を行い、固体酸を中和しているアルカリを除去することにより、固体酸量が、原料のスメクタイト酸処理物と同程度に復活されることとなる。
 本発明において、上記のアルカリ処理は、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ水溶液を用い、このようなアルカリ水溶液とスメクタイト酸処理物とを混合攪拌することにより行われるが、アルカリ処理を過度に行うと、非晶質シリカが必要以上に溶出してしまい、非晶質シリカが全て脱離してしまうと、酸処理に用いたスメクタイト粘土に戻ってしまい、細孔が消失してしまう。従って、このアルカリ処理は、適度に行うことが必要であり、酸処理物の細孔容積を前述した範囲内に維持しながら、上記の細孔容積比(B/A)がもたらされる程度に行なう。その具体的な条件は、用いる酸処理物の組成(例えば酸処理の程度等)によっても異なり、一概に規定することはできないが、一般的には、懸濁液濃度が10乃至25重量%程度の酸処理物の水性懸濁液にアルカリ水溶液を添加混合して加熱処理し、pHが7乃至11程度となるようにアルカリ処理を行えばよい。
 さらに、アルカリ処理後に行われる酸洗浄は、固体酸を中和しているアルカリを除去できる程度のものであり、例えば0.1乃至1.0重量%程度の希硫酸を用いてのシャワー等によってアルカリ処理物を洗浄することにより行なわれる。
 酸洗浄後、水洗及び乾燥し、必要により焼成や粒度調整を行なうことにより、目的とする本発明の活性白土が得られる。
<活性白土>
 上記のようにして得られる活性白土は、スメクタイト粘土の酸処理物から得られることから、一般的には、酸化物換算で以下のような組成を有している。
  SiO;65乃至85重量%
  Al;6乃至12重量%
  Fe;1乃至8重量%
  MgO;1乃至3重量%
  CaO;0.1乃至2重量%
  NaO;0.1乃至1重量%
  KO;0.1乃至1重量%
  その他の酸化物(TiOなど);1重量%以下
  Ig-loss(1050℃);4乃至8重量%
 さらに、窒素吸着法で測定して、1.7乃至100nmでの細孔径(細孔直径)における細孔容積が0.40乃至0.60cm/gの範囲にあり、これは、原料として用いたスメクタイト系粘土の酸処理物と同程度であり、また、Ho≦-3.0の固体酸量が0.15乃至0.40mmol/g、好ましくは、0.18乃至0.35mmol/gの範囲にあり、これも、原料として用いたスメクタイト粘土の酸処理物と同程度である。
 また、前述したアルカリ処理により、大きな径の細孔が増大しており、この結果、1.7乃至11.5nmの細孔径での細孔容積(A)と11.5nmより大で100nm以下の細孔径における細孔容積(B)との細孔容積比(B/A)が0.75乃至1.5、好ましくは、0.8乃至1.4の範囲にある。
 即ち、上記のような細孔容積比(B/A)を有しており、大きな径の細孔が増大していると同時に、上記のような固体酸量を有しているため、細孔による吸着性能と固体酸による吸着性能が向上しており、クロロフィル等の巨大な色素分子に対しての吸着性能が高く、動植物の油脂類や鉱物油に対する脱色剤として、極めて好適な特性を示すのである。
 さらに、アルカリ処理によって原料のスメクタイト系粘土の酸処理物に比してBET比表面積は低下しており、例えば、そのBET比表面積は150乃至300m/g、好ましくは150乃至250m/gの範囲にある。この場合、前述したアルカリ処理は、少なくともBET比表面積が上記範囲に維持される程度で行なわれることが好適である。BET比表面積が上記範囲よりも低下してしまうと、吸着に必要な場が少なくなるため、色素分子に対する吸着性能が低下し、脱色性能が低下してしまうおそれがあるからである。
 また、上記のようにして得られる活性白土は、酸洗浄によって固体酸を中和しているアルカリ分が除去されているため、5重量%水性懸濁液でのpH(25℃)が2.5乃至5.0の範囲にある。
 このように、本発明の活性白土は、巨大色素分子に対する吸着性が従来公知の活性白土に比して著しく向上しているため、動植物の油脂類や鉱物油の脱色剤として好適に使用される。
 脱色処理する動植物の油脂類としては、植物油脂、動物油脂及び鉱物油の少なくとも1種が挙げられる。原料の油脂は、天然の動植物界に広く存在し、脂肪酸とグリセリンとのエステルを主成分とするものであり、例えばサフラワー油、大豆油、菜種油、パーム油、パーム核油、ベニ花油、綿実油、ヤシ油、米糠油、ゴマ油、ヒマシ油、亜麻仁油、オリーブ油、桐油、椿油、落花生油、カポック油、カカオ油、木蝋、ヒマワリ油、コーン油などの植物性油脂及びイワシ油、ニシン油、イカ油、サンマ油などの魚油、肝油、鯨油、牛脂、牛酪脂、馬油、豚脂、羊脂などの動物性油脂の単独またはそれらを組み合わせたものが挙げられる。
 一方、鉱物油としては、各種潤滑油、例えばスピンドル油、冷凍機油、ダイナモ油、タービン油、マシン油、船用内燃機関潤滑油、ガソリンエンジン潤滑油、ディーゼルエンジン潤滑油、シリンダー油、マリンエンジン油、ギヤー油、切削油、絶縁油、自動変速機油、圧縮機油、油圧作動油、圧延油等が挙げられる。
 脱色処理に際しては、脱色すべき油脂或いは鉱物油に、適当な粒度(一般的には、レーザ回折法により測定した体積基準での中位径が18乃至30μm程度)に調整された本発明の活性白土の粉末を添加し、両者を均一に撹拌することにより、油脂或いは鉱物油中に含有される着色成分や不純物成分を白土粒子中に吸着させることにより、脱色が行なわれる。
 動植物の油脂類或いは鉱物油類の脱色処理は、それ自体公知の条件であり、例えば油脂或いは鉱物油当たり重量基準で5%以下の脱色剤を添加し、90乃至150℃の温度で5乃至30分間、両者の組成物を攪拌することにより、脱色処理を完了することができる。
 脱色処理を終えた混合物は、これを任意の濾過機、例えばフィルタープレス、ベルトフィルター、オリバフィルター、アメリカンフィルター、遠心濾過機等の減圧乃至は加圧式濾過機に供給して、脱色された油脂或いは鉱物油と使用済みの脱色剤である所謂廃白土とに分離される。
 また、本発明の活性白土は、動植物の油脂類もしくは鉱物油の脱色剤だけでなく、BTX(ベンゼン、トルエン、キシレン)等の芳香族炭化水素の精製処理に使用することもできる。さらに本発明の活性白土に、硫酸アルミニウム、塩化アルミニウムなどを添着することも出来る。
 本発明を、次の実施例で説明する。なお、実施例における測定方法は、以下の通りである。
(1)固体酸量(A)
 n-ブチルアミン滴定法にてHo≦-3.0の固体酸量を測定した。試料は、予め、150℃で3時間乾燥したものについて測定を行った。
[参考文献:「触媒」Vol.11,No6,P210-216(1969)]
(2)細孔容積及び細孔容積比
 Micromeritics社製Tri Star 3000を用いて窒素吸着法により測定を行い、吸着データから、BJH法により細孔直径1.7~100nmまでの細孔容積を求めた。
 また、1.7~11.5nmの細孔直径における細孔容積(A)と11.5nmより大で100nm以下の細孔直径における細孔容積(B)の比(B/A)より、細孔容積比を求めた。
(3)細孔分布
 Micromeritics社製Tri Star 3000を用いて窒素吸着法により測定を行い、吸着データから、BJH法により細孔分布を求めた。
(4)BET比表面積
 Micromeritics社製Tri Star 3000を用いて窒素吸着法により測定を行い、BET法により解析した。
(5)中位径(D50
 Malvern社製Mastersizer2000を使用し、溶媒に水を用いてレーザ回折散乱法で体積基準での中位径(D50)を測定した。
(6)pH
 JIS K 5101-17-1:2004に準拠して調製した5重量%水性懸濁液のpH値を測定した。
(7)脱色試験法
 脱色剤の性能を試験には、粘土ハンドブック第二版 日本粘土学会編(技報堂出版)p917の図に示す脱色試験機を用いた。
 この脱色試験機には8本の硬質ガラス製大型試験管(容量200ml)が油浴にセットできる。各試験管には、下端が丸くなった波形の撹拌棒を入れ、その下端は試験管の底部に常に接触するようにゴム管で調節する。8本の撹拌棒は中央の親歯車から分かれた子歯車によって回転するので、その回転速度は全く等しく保たれる。中央の親歯車の下には油浴を撹拌する撹拌羽根がついていて、油浴内の温度を均一に保っている。脱色試験は最大8個まで、任意の数で試験できる。各試験管に脱酸処理済みの菜種油を50gずつ採取し、各脱色剤サンプルを0.75gずつ(油に対して1.5%)加えて脱色試験用の撹拌棒でよく混ぜる。各試験管を110℃に保たれた前記の脱色試験機にセットし、20分間撹拌を行った後脱色試験機から取り出し、油と脱色剤の混合懸濁液をろ過することにより各脱色油を得る。
 各脱色油の白色光線透過率(蒸留水の透過率を100%としたときの相対値)を(株)平間理化研究所製光電比色計2C型で測定し、その数値をもって各脱色剤の脱色性能とする。透過率の数値が高いほど用いた脱色剤の脱色性能も高いことを表している。
(比較例1)
 新潟県胎内市産のスメクタイト系粘土を原料として用い、この原料を粗砕、混練し5mm径に造粒した。得られた造粒物の水分は37%であった。
 この造粒物1500gを処理槽に充填し、そこに35重量%硫酸水溶液2000mlを循環させ酸処理を行った。その時の処理温度は90℃、処理時間は7時間であった。酸処理終了後、酸処理物に洗浄水を循環して水洗を行った後110℃で乾燥、粉砕、分級して活性白土粉末を得た。
 得られた活性白土粉末について、各種物性測定を行い、その結果を表2に示した。
(実施例1)
 比較例1における水洗終了後の酸処理物(乾燥前の含水物)を原料として用いた。この酸処理物に水を加え、家庭用ミキサーで解砕することにより、固形分濃度20重量%の水性懸濁液を得た。
 この懸濁液1250gに7.5重量%のNaOH水溶液66gを加え、90℃で5時間攪拌することによりアルカリ処理を行った。この懸濁液をろ過し、ろ過ケーキを1重量%の希硫酸に分散させ、デカンテーション法により酸洗浄を行った後、水洗した。
 水洗後の懸濁液をろ過し、ろ過ケーキを110℃で乾燥、粉砕、分級して活性白土粉末を得た。
 得られた活性白土粉末について、各種物性測定を行い、その結果を表1に示した。
 なお、サンプルの細孔分布を比較例1のサンプルと対比して図1に示した。図1より、細孔直径5nm前後の細孔がアルカリ処理により10nm以上の大きな径の細孔に変化しているのがわかる。
(実施例2)
 実施例1において7.5重量%のNaOH水溶液66gに変えて、7.5重量%のNaOH水溶液50gを使用した他は、実施例1と同様にして行い活性白土粉末を得た。得られた活性白土粉末について各種物性測定を行い、その結果を表1に示した。
(実施例3)
 実施例1において7.5重量%のNaOH水溶液66gに変えて、7.5重量%のNaOH水溶液98gを使用した他は、実施例1と同様にして行い活性白土粉末を得た。得られた活性白土粉末について各種物性測定を行い、その結果を表1に示した。
(実施例4)
 実施例1において7.5重量%のNaOH水溶液66gに変えて、7.0重量%のCa(OH)懸濁液66gを使用した他は、実施例1と同様にして行い活性白土粉末を得た。得られた活性白土粉末について各種物性測定を行い、その結果を表1に示した。
(実施例5)
 比較例1で得られた活性白土粉末を原料として用いた。この粉末250gを0.5重量%のNaOH水溶液1000g中に分散させ、90℃で5時間攪拌することによりアルカリ処理を行った。以下、実施例1と同様にして酸洗浄、水洗、ろ過を行い、ろ過ケーキを110℃で乾燥して活性白土粉末を得た。
 得られた活性白土粉末について各種物性測定を行い、その結果を表1に示した。
(比較例2)
 比較例1において35重量%硫酸水溶液に変えて、30重量%硫酸水溶液を用い、90℃で5時間酸処理した他は、比較例1と同様にして行い活性白土粉末を得た。
 得られた活性白土粉末について各種物性測定を行い、その結果を表2に示した。
(実施例6)
 比較例2における水洗終了後の酸処理物(乾燥前の含水物)を原料として用いた他は、実施例1と同様にして行い活性白土粉末を得た。
 得られた活性白土粉末について各種物性測定を行い、その結果を表1に示した。
(比較例3)
 比較例1において35重量%硫酸水溶液に変えて、45重量%硫酸水溶液を用い、90℃で12時間酸処理した他は、比較例1と同様にして行い活性白土粉末を得た。
 得られた活性白土粉末について各種物性測定を行い、その結果を表2に示した。
(比較例4)
 比較例1と同様のスメクタイト系粘土を水に分散させ、水簸により粗粒分を除去した後ろ過し、110℃で乾燥した。ビーカーに15重量%硫酸水溶液920gを採り、この乾燥粘土360gを加え、ヒーター上で攪拌しながら70℃で12時間酸処理を行った。
 酸処理終了後、酸処理物に水を加えてデカンテーション法により洗浄した後ろ過し、ろ過ケーキを110℃で乾燥、粉砕、分級して活性白土粉末を得た。
 得られた活性白土粉末について各種物性測定を行い、その結果を表2に示した。
(比較例5)
 実施例1と同様にしてアルカリ処理を行った。アルカリ処理後の懸濁液をろ過し、ろ過ケーキを水に分散させてデカンテーション法により水洗を行った(実施例1における1%硫酸による酸洗浄を省いた)。以下、実施例1と同様にして活性白土粉末を得た。
 得られた活性白土粉末について各種物性測定を行い、その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  窒素吸着法で測定して、1.7乃至100nmでの細孔径における細孔容積が0.40乃至0.60cm/gの範囲にあり、且つ1.7乃至11.5nmの細孔径での細孔容積(A)と11.5nmより大で100nm以下の細孔径における細孔容積(B)との細孔容積比(B/A)が0.75乃至1.5の範囲にあるとともに、Ho≦-3.0の固体酸量が0.15乃至0.40mmol/gの範囲にあることを特徴とする活性白土。
  2.  5重量%水性懸濁液でのpH(25℃)が2.5乃至5.0の範囲にある請求項1に記載の活性白土。
  3.  150乃至300m/gのBET比表面積を有している請求項1に記載の活性白土。
  4.  請求項1に記載の活性白土からなる動植物の油脂類もしくは鉱物油の脱色剤。
PCT/JP2009/064194 2008-09-18 2009-08-11 新規な活性白土及び動植物の油脂類もしくは鉱物油の脱色剤 WO2010032568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09814413A EP2325142A4 (en) 2008-09-18 2009-08-11 NOVEL ACTIVATED SOUND AND BLEACHING AGENT FOR ANIMAL OR VEGETABLE FATS OR OILS OR MINERAL OILS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008239302 2008-09-18
JP2008-239302 2008-09-18

Publications (1)

Publication Number Publication Date
WO2010032568A1 true WO2010032568A1 (ja) 2010-03-25

Family

ID=41591534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064194 WO2010032568A1 (ja) 2008-09-18 2009-08-11 新規な活性白土及び動植物の油脂類もしくは鉱物油の脱色剤

Country Status (7)

Country Link
US (1) US20110166011A1 (ja)
EP (1) EP2325142A4 (ja)
JP (1) JP4393579B1 (ja)
KR (1) KR101633528B1 (ja)
MY (1) MY153771A (ja)
TW (1) TW201012753A (ja)
WO (1) WO2010032568A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898027B2 (ja) * 2011-09-28 2016-04-06 水澤化学工業株式会社 ベントナイト−非晶質シリカ複合体
JP5837467B2 (ja) * 2012-08-23 2015-12-24 水澤化学工業株式会社 芳香族炭化水素処理用活性白土
CN103521171B (zh) * 2013-10-10 2015-11-18 湖南省地质科学研究院 一种镉污染复合岩矿修复剂及其制备方法
JP6473661B2 (ja) * 2014-08-12 2019-02-20 水澤化学工業株式会社 Rbdパーム油の脱色方法
JP6664191B2 (ja) * 2015-11-02 2020-03-13 水澤化学工業株式会社 脱色剤及び脱色剤の製造方法
JP7076276B2 (ja) * 2017-07-31 2022-05-27 水澤化学工業株式会社 テアニン吸着剤
JP7273529B2 (ja) * 2018-04-25 2023-05-15 水澤化学工業株式会社 テアニン捕集剤
JP2022051551A (ja) * 2020-09-18 2022-03-31 日本ポリプロ株式会社 イオン交換性層状珪酸塩粒子、オレフィン重合用触媒成分、オレフィン重合用触媒、オレフィン重合用触媒の製造方法およびそれを用いたオレフィン重合体の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340413A (ja) 1993-05-28 1994-12-13 Nittetsu Mining Co Ltd 無機質多孔体及びその製造方法
JPH09299789A (ja) * 1996-05-10 1997-11-25 Mizusawa Ind Chem Ltd 油水系における油の吸着剤及びそれを含む吸着剤組成物
JPH11157829A (ja) 1997-12-02 1999-06-15 Mizusawa Ind Chem Ltd 活性白土、その製造方法及びその用途
JPH11179202A (ja) * 1997-12-25 1999-07-06 Mizusawa Ind Chem Ltd 芳香族炭化水素処理用活性白土
JP2000219510A (ja) * 1999-01-28 2000-08-08 Kunimine Industries Co Ltd 粘土鉱物−ケイ酸カルシウム複合体及びその製造方法
JP2000344513A (ja) * 1999-06-01 2000-12-12 Mizusawa Ind Chem Ltd 活性白土定形粒子、その製造方法及びその用途
JP2006241245A (ja) * 2005-03-01 2006-09-14 Daiki Axis:Kk 使用済食用油脂の再生処理方法及びその処理剤
WO2006131136A1 (de) * 2005-06-08 2006-12-14 Süd-Chemie AG Oberflächenreiche tone zur herstellung von bleicherden sowie aktivierungsverfahren dieser tone
JP2008031411A (ja) 2006-06-28 2008-02-14 Mizusawa Ind Chem Ltd 油脂類もしくは鉱油類の脱色剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008226A (en) * 1989-05-16 1991-04-16 Engelhard Corporation Process for making acid activated bleaching earth using high susceptibility source clay and novel bleaching earth product
US5252762A (en) * 1991-04-03 1993-10-12 W. R. Grace & Co.-Conn. Use of base-treated inorganic porous adsorbents for removal of contaminants
JPH0640714A (ja) * 1992-07-21 1994-02-15 Shionogi & Co Ltd 高吸油性多孔質シリカ及びその製造方法並びに担体
BR9810572A (pt) * 1997-07-07 2000-09-19 Oil Dri Corp Of America Argila de branqueamento e método de fabricação.
CA2418443C (en) * 2002-02-05 2007-04-24 Kabushiki Kaisha Toshiba Method of treating fats and oils
DE102005062955A1 (de) * 2005-12-29 2007-07-12 Süd-Chemie AG Natürliches Verfahren zum Bleichen von Ölen
EP1920829A1 (en) * 2006-11-07 2008-05-14 Süd-Chemie Ag Amorphous adsorbent, method of obtaining the same and its use in the bleaching of fats and/or oils

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340413A (ja) 1993-05-28 1994-12-13 Nittetsu Mining Co Ltd 無機質多孔体及びその製造方法
JPH09299789A (ja) * 1996-05-10 1997-11-25 Mizusawa Ind Chem Ltd 油水系における油の吸着剤及びそれを含む吸着剤組成物
JPH11157829A (ja) 1997-12-02 1999-06-15 Mizusawa Ind Chem Ltd 活性白土、その製造方法及びその用途
JPH11179202A (ja) * 1997-12-25 1999-07-06 Mizusawa Ind Chem Ltd 芳香族炭化水素処理用活性白土
JP2000219510A (ja) * 1999-01-28 2000-08-08 Kunimine Industries Co Ltd 粘土鉱物−ケイ酸カルシウム複合体及びその製造方法
JP2000344513A (ja) * 1999-06-01 2000-12-12 Mizusawa Ind Chem Ltd 活性白土定形粒子、その製造方法及びその用途
JP2006241245A (ja) * 2005-03-01 2006-09-14 Daiki Axis:Kk 使用済食用油脂の再生処理方法及びその処理剤
WO2006131136A1 (de) * 2005-06-08 2006-12-14 Süd-Chemie AG Oberflächenreiche tone zur herstellung von bleicherden sowie aktivierungsverfahren dieser tone
JP2008031411A (ja) 2006-06-28 2008-02-14 Mizusawa Ind Chem Ltd 油脂類もしくは鉱油類の脱色剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Clay Handbook", GIHODO PUBLISHING CO., pages: 917
See also references of EP2325142A4 *

Also Published As

Publication number Publication date
TW201012753A (en) 2010-04-01
EP2325142A1 (en) 2011-05-25
JP4393579B1 (ja) 2010-01-06
KR101633528B1 (ko) 2016-06-24
US20110166011A1 (en) 2011-07-07
KR20110073458A (ko) 2011-06-29
JP2010095436A (ja) 2010-04-30
EP2325142A4 (en) 2012-10-03
MY153771A (en) 2015-03-13

Similar Documents

Publication Publication Date Title
JP4393579B1 (ja) 新規な活性白土及び動植物の油脂類もしくは鉱物油の脱色剤
JP4404991B2 (ja) 活性白土定形粒子、その製造方法及びその用途
JP6473661B2 (ja) Rbdパーム油の脱色方法
JP4912168B2 (ja) 油脂類もしくは鉱油類の脱色剤
EP2841411B1 (en) Purification of unrefined edible oils and fats with magnesium silicate and organic acids
WO2010013363A1 (ja) エステル交換油の精製方法
EP1670882A2 (en) Purification of biodiesel with adsorbent materials
JP6664191B2 (ja) 脱色剤及び脱色剤の製造方法
Salawudeen et al. Clay characterization and optimisation of bleaching parameters for palm kernel oil using alkaline activated clays
US3787330A (en) Refining agent for oily substances
US5264597A (en) Process for refining glyceride oil using precipitated silica
DE1949590A1 (de) Reinigungs- oder Raffinierungsmittel fuer oelige Substanzen und Verfahren zu dessen Herstellung
JP3787023B2 (ja) 油脂類用脱色剤及びその製造方法
AU628084B2 (en) Process for refining glyceride oil
JPH09299789A (ja) 油水系における油の吸着剤及びそれを含む吸着剤組成物
JP6618769B2 (ja) 活性白土粒子
JP6608293B2 (ja) 油脂用脱色剤
WO2011038903A1 (de) Verwendung von alumosilikat-basierten adsorbentien zur aufreinigung von triglyceriden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009814413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1687/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117006357

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE