WO2010030102A2 - 열응력 감소를 위한 버퍼층을 포함하는 정전 척 - Google Patents

열응력 감소를 위한 버퍼층을 포함하는 정전 척 Download PDF

Info

Publication number
WO2010030102A2
WO2010030102A2 PCT/KR2009/005070 KR2009005070W WO2010030102A2 WO 2010030102 A2 WO2010030102 A2 WO 2010030102A2 KR 2009005070 W KR2009005070 W KR 2009005070W WO 2010030102 A2 WO2010030102 A2 WO 2010030102A2
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
terminal
electrostatic chuck
layer
thermal stress
Prior art date
Application number
PCT/KR2009/005070
Other languages
English (en)
French (fr)
Other versions
WO2010030102A3 (ko
Inventor
최진식
최정덕
Original Assignee
주식회사 코미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코미코 filed Critical 주식회사 코미코
Priority to CN200980135897.6A priority Critical patent/CN102150233B/zh
Publication of WO2010030102A2 publication Critical patent/WO2010030102A2/ko
Publication of WO2010030102A3 publication Critical patent/WO2010030102A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to an electrostatic chuck comprising a buffer layer to reduce thermal stress. More specifically, the present invention relates to an electrostatic chuck in which the thermal stress is absorbed by the buffer layer formed at the point where the thermal stress occurs in the electrostatic chuck, thereby minimizing the occurrence of cracks due to the thermal stress and extending its life.
  • a deposition process such as chemical vapor deposition (CVD) or an etching process such as reactive ion etching (RIE) is performed.
  • CVD chemical vapor deposition
  • RIE reactive ion etching
  • an electrostatic chuck (ESC) is included in the deposition chamber or the etching chamber to fix the substrate in place.
  • FIG. 1 is a cross-sectional view showing the configuration of a conventional electrostatic chuck.
  • the conventional electrostatic chuck 100 is embedded in an aluminum body 101 as a base substrate, a base portion 102 for fixing a substrate seated on an upper surface, and a base portion 102 to generate an electrostatic force.
  • the electrode 103 includes a terminal 103 for applying a high voltage to the electrode 103, and an insulating member 105 surrounding the outside of the terminal 104.
  • the electrostatic chuck 100 is operated by the electrode 103 generating a constant power when a high voltage from an external power source is transmitted to the electrode 103 through the terminal 104. In other words, the electrostatic force is transmitted to the upper surface of the base portion 102 so that the substrate can be fixed and held.
  • the base portion 102 receives heat by the plasma generated during the deposition process or the etching process, the temperature rises to generate a thermal stress (thermal stress due to plasma temperature) to shorten the life of the electrostatic chuck. Specifically, heat generated from the base 102 by the plasma is transferred to the aluminum body 101, thereby causing the aluminum body 101 to thermally expand. At this time, the thermal stress is generated by the difference in the coefficient of thermal expansion between the aluminum body 101, the base portion 102, and the insulating member 105, this thermal stress is insulated from the portion A, that is, the aluminum body 101 of FIG. Maximum at the end of the interface between the members 105.
  • One embodiment of the present invention for improving the problems related to the life shortening of the electrostatic chuck as described above provides a terminal portion for an electrostatic chuck having a buffer layer capable of absorbing thermal stress generated during operation of the electrostatic chuck and a method of manufacturing the same.
  • Another embodiment of the present invention provides an electrostatic chuck having the terminal portion and a method of manufacturing the same.
  • the electrostatic chuck is partially through the body portion having a through hole, the insertion hole disposed on the body portion and corresponding to the through hole and the insertion hole.
  • a terminal portion including an exposed electrode, a base portion for fixing an object by an electrostatic force of the electrode, a terminal portion having a connection terminal connected to the electrode through the through hole, and an insertion hole, and at least the connection terminal, the body portion, and the base portion. It is disposed on the interface with one and includes a buffer layer that can absorb the thermal stress of the body portion.
  • the body portion includes a conductive material
  • the terminal portion includes an insulating member disposed inside the through hole to electrically insulate the connection terminal from the conductive body portion
  • the buffer layer is insulated from the conductive body portion. It is arranged at the interface of the member.
  • the buffer layer may be further disposed on an interface between the insulating member and the base portion.
  • the base and the buffer layer include a ceramic material.
  • the porosity of the buffer layer is configured to be equal to or higher than the porosity of the base portion.
  • the porosity of the buffer layer is in the range of 2% to 10%.
  • the thickness of the buffer layer is in the range of 100 ⁇ m to 250 ⁇ m.
  • the surface roughness of the buffer layer has a range of 0.1 ⁇ m to 2 ⁇ m.
  • Terminal unit for the electrostatic chuck is a connection terminal for supplying power to an electrode which is electrically connected to an external power source and generates an electrostatic force, at least of the outer surface to insulate the connection terminal from the outside It includes an insulating member surrounding a portion and a buffer layer disposed on at least one outer surface of the connection terminal and the insulating member to absorb thermal stress from the outside.
  • the manufacturing method of the electrostatic chuck for achieving the above object, to prepare a body portion having a through hole, to correspond to the through hole and to absorb the thermal stress on the outer surface of the body portion A terminal portion having a buffer layer is prepared. Subsequently, the terminal part is inserted into the through hole so as to be exposed to the upper surface of the body part, and a lower base layer is formed to expose the upper surface of the terminal part on the body part.
  • the electrostatic chuck is completed by forming an electrode layer in contact with an upper surface of the terminal portion on the lower base layer and an upper base layer on the lower base layer and the electrode layer.
  • the manufacturing method of the terminal portion for the electrostatic chuck for achieving the above object, after preparing a terminal that is electrically connected to an external power source through a portion of the body portion of the electrostatic chuck, the terminal is inserted into the insulator to One end of the terminal forms an insulating terminal exposed to the outside of the insulator.
  • a buffer layer capable of absorbing stress applied from the outside is formed on a part of the outer side of the insulating terminal.
  • the buffer layer may be formed by partially removing the insulator from the outer side of the insulating terminal and coating the buffer layer with the buffer region. Coating the buffer layer is performed by an Atmospherically Plasma Spray (APS) method. After forming the buffer layer, the edge portion of the buffer layer may be polished to further chamfer.
  • APS Atmospherically Plasma Spray
  • the thermal stress is absorbed by the buffer layer included in the electrostatic chuck, thereby minimizing the occurrence of cracks due to the thermal stress, thereby extending the life of the electrostatic chuck.
  • FIG. 1 is a cross-sectional view showing the configuration of a conventional electrostatic chuck.
  • FIG. 2 is a cross-sectional view showing the configuration of an electrostatic chuck according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 2 is a cross-sectional view showing the configuration of an electrostatic chuck according to an embodiment of the present invention.
  • the electrostatic chuck 200 is formed on the body portion 201 and the body portion 201 as a base substrate, and is embedded therein while fixing and maintaining a processing object (not shown) such as a substrate.
  • a base plate 202 including an electrode layer 203 for generating electrostatic power, a terminal 204 for transmitting a high voltage applied from an external power source to the electrode layer 203, and an insulating member surrounding the outside of the terminal 204 ( And a buffer layer 206 disposed on an interface between at least a portion of the body portion 201 and the base portion and absorbing thermal stress of the body portion.
  • the body portion 201 is made of a conductive material such as aluminum, and functions as a base substrate of the electrostatic chuck 200.
  • a through hole 207 may be formed in the center portion of the body portion 201 so that the terminal 204 constituting the terminal portion and the insulating member 205 may be inserted therethrough.
  • the base portion 202 is a dielectric having a predetermined dielectric constant and may be formed on the body portion 201 by an Atmospherically Plasma Spray (APS) coating method.
  • Base 202 may comprise a ceramic.
  • the ceramics include Al 2 O 3 , Y 2 O 3 , Al 2 O 3 / Y 2 O 3 , ZrO 2 , AlC, TiN, AlN, TiC, MgO, CaO, CeO 2 , TiO 2 , B x C y , BN, SiO 2 , SiC, YAG, Mullite, AlF 3 and the like. At this time, these ceramics can be used individually or in combination.
  • the base 202 serves to fix and hold the substrate by using electrostatic force.
  • an electrode layer 203 for generating static electricity may be buried in the base 202.
  • the top surface of the base portion 202 is preferably horizontal to allow the substrate to be seated.
  • the electrode layer 203 may be formed to be substantially parallel to the top surface of the base portion 202.
  • An insertion groove 208 may be formed in the center portion of the base portion 202 so that the terminal 204 may be inserted to be connected to the electrode layer 203.
  • the terminal 204 may be inserted from the outside to be connected to the electrode layer 203 through the through hole 207 formed in the body portion 201 and the insertion groove 208 formed in the base portion 202.
  • the electrode layer 203 is embedded in the base 202, and receives a high voltage from the terminal 204 to generate an electrostatic force on the top surface of the base 202.
  • the substrate may be seated on the upper surface of the base 202 by the generated electrostatic force and may be fixed and maintained.
  • the electrode layer 203 is preferably made of a conductive material such as nickel.
  • the method of embedding the electrode layer 203 in the base portion 202 may be performed by first forming the lower base layer 202a by using the atmospheric plasma spray coating method, and then forming the electrode layer 203 by using the atmospheric plasma spray coating method thereon. It is preferable to form the upper base layer 202b on the secondary by using the atmospheric plasma spray coating method. At this time, the electrode layer 203 may be formed using a screen printing method as necessary.
  • the thickness of the lower base layer 202a is preferably 400 ⁇ m to 600 ⁇ m, the thickness of the electrode layer 203 is 5 ⁇ m to 65 ⁇ m, and the thickness of the upper base layer 202 b is adjusted within the range of 400 ⁇ m to 750 ⁇ m.
  • the terminal 204 is connected to the electrode layer 203 through the through hole 207 and the insertion groove 208, and transmits a high voltage to the electrode layer 203 from an external power source (not shown).
  • the terminal 204 is preferably made of a conductive material such as tungsten, molybdenum, titanium, or the like.
  • an insulating member 205 is formed between the body portion 201 and the terminal 204.
  • the insulating member 205 insulates the body portion 201 and the terminal 204.
  • the insulating member 205 is preferably made of a ceramic sintered body. Ceramic sintered body has the advantage that can maximize the insulation because there are few pores.
  • the thickness of the insulating member 205 is set to approximately 2,000 m.
  • the surface roughness of the insulating member 205 is preferably adjusted within the range of 0.1 to 2 ⁇ m in order to reduce the occurrence of arcing by lowering the surface resistance, it is more preferably adjusted to the range of 1 ⁇ m or less.
  • the buffer layer 206 is formed in a characteristic configuration.
  • the buffer layer 206 may include a ceramic. Examples of the ceramics include Al 2 O 3 , Y 2 O 3 , Al 2 O 3 / Y 2 O 3 , ZrO 2 , AlC, TiN, AlN, TiC, MgO, CaO, CeO 2 , TiO 2 , B x C y , BN, SiO 2 , SiC, YAG, Mullite, AlF 3 and the like. At this time, these ceramics can be used individually or in combination.
  • the buffer layer 206 is preferably formed using an Atmospherically Plasma Spray (APS) coating method.
  • APS Atmospherically Plasma Spray
  • the thickness of the buffer layer 206 is preferably adjusted within the range of 100 ⁇ m to 250 ⁇ m, but more preferably within the range of 150 ⁇ m to 200 ⁇ m. If the thickness of the buffer layer 206 is thicker than the thickness range, pores may be generated in the buffer layer 206 and cracks may occur. If the thickness of the buffer layer 206 is thinner than the thickness range, the buffer layer 206 may not serve as the buffer layer 206. There is.
  • the surface roughness of the buffer layer 206 is preferably adjusted within the range of 0.1 ⁇ m to 2 ⁇ m in order to reduce the occurrence of arcing by lowering the surface resistance, it is more preferably adjusted to the range of 1 ⁇ m or less.
  • the buffer layer 206 absorbs the thermal stress generated by the temperature rise of the electrostatic chuck 200 by the plasma generated inside the chamber during the deposition process or the etching process.
  • thermal stress is generated by the aluminum body 101 expanding due to the conduction of heat due to the temperature rise of the electrostatic chuck 100 due to the plasma temperature.
  • the thermal stress generated when the electrostatic chuck 200 receives heat and expands the body 201 is absorbed by the buffer layer 206 without being directly transmitted to the insulating member 205.
  • the buffer layer 206 absorbs the thermal stress at the point where the thermal stress is maximum (see part A in FIG. 1), the body portion 201 and the insulating member 205 are caused by thermal stress. The occurrence of cracks at the end of the interface between the liver can be suppressed and as a result the life of the electrostatic chuck 200 can be extended.
  • the porosity of the ceramic constituting the buffer layer 206 is the base portion 202, that is, The porosity of the lower base layer 202a or the upper base layer 202b may be equal to or greater than.
  • the porosity of the ceramic constituting the buffer layer 206 is preferably controlled in the range of 2% to 10%, more preferably in the range of 2% to 7%. If the porosity of the buffer layer 206 exceeds the porosity range, pores may increase in the buffer layer 206 to decrease the strength of the buffer layer 206 and even fall off the buffer layer 206 itself. If less than this, there is a risk that cracks occur in the buffer layer 206.
  • the edge portion of the buffer layer 206 has a round shape or a chamfer shape that is not sharp. This is because when the edge portion of the buffer layer 206 has a sharp shape, stress may be concentrated at the sharp portion, thereby increasing the probability of cracking.
  • the density of the lower base portion 202a of the A region on the inclined surface of the body portion 201 is lower than that of the B region on the body portion 201 excluding the inclined surface. It may be relatively lower than the density of the base layer 202a.
  • the thickness of the region A is greater than the thickness of the region B, current leakage through the pores included in the lower base layer 202a of the region A may be reduced. Therefore, the occurrence of arcing between the body portion 201 and the electrode layer 203 can be reduced.
  • the lower base layer 202a of the region A is relatively thick even if the density of the lower base layer 202a of the region A is relatively low, the lower base layer of the interface portion between the body portion 201 and the insulating member 205. Crack generation in 202a can be prevented. Therefore, the occurrence of arcing between the body 201 and the electrode layer 203 through the crack can be reduced.
  • an adhesive layer (not shown) may be further provided between the body portion 201 and the lower base layer 202a.
  • the adhesive layer bonds the body portion 201 and the lower base layer 202a.
  • the adhesive layer has a thermal expansion rate between the thermal expansion rate of the body portion 201 and the thermal expansion rate of the lower base layer 202a, and buffers between the body portion 201 and the lower base layer 202a having different thermal expansion rates.
  • the adhesive layer may include a metal alloy. Examples of the metal alloys include nickel-aluminum alloys.
  • the upper surface of the lower base layer 202a is higher than the upper surface of the terminal 204. It is desirable to. This causes the thickness of the upper base layer 202b in the C region located above the terminal 204 to be thicker than the thickness of the upper base layer 202b in the remaining D region, so that a high voltage power supply is applied to the electrode layer 203 through the terminal 204. This is to prevent the discharge phenomenon between the electrode layer 203 and the substrate to be supported on the upper base layer 202b even if it is applied to.
  • the terminal portion is inserted into the body portion 201.
  • the terminal portion is composed of a terminal 204, an insulating member 205, and a buffer layer 206.
  • the terminal 204 is connected to an external power source for applying power when the electrostatic chuck 200 is used in the future.
  • the insulating member 205 surrounds the terminal 204 so as to insulate between the body portion 201 and the terminal 204.
  • the buffer layer 206 is formed in a predetermined region on the insulating member 205 so as to suppress crack generation due to thermal stress in the electrostatic chuck 200.
  • the terminal portion is prepared by processing the terminal 204 and an insulator (not shown) having a predetermined shape and size, respectively, and then inserting the terminal 204 into the insulator, and having an insulating member 205 surrounding the periphery of the terminal.
  • the terminal is formed first.
  • a buffer layer 206 is formed in a portion of the outer portion of the insulating terminal.
  • the buffer layer 206 is formed in the buffer layer 206 by removing the insulating member 205 from the periphery of the insulating terminal by the thickness of the buffer layer 206 to form a buffer layer, the buffer layer 206 is formed in the buffer region. It is desirable to.
  • the edges of the terminal 204 and the insulating member 205 are preferably processed to have a round shape.
  • the base 202 in which the electrode layer 203 is embedded is stacked on the body 201 to finally complete the electrostatic chuck 200.
  • the base 202 in which the electrode layer 203 is embedded is formed by sequentially stacking the lower base layer 202a, the electrode layer 203, and the upper base layer 202b.
  • the surface of each layer is polished after being formed. It is preferable.
  • the lower base layer 202a is formed on the body portion 201, the lower base layer 202a is disposed so that the upper surface of the terminal 204 protruding through the body portion 201 is not covered by the lower base layer 202a. It is necessary to mask the upper surface of the terminal 204 before forming ().
  • the present invention is not necessarily limited to the above masking method, and after forming the lower base layer 202a on the body portion 201, a method of removing the lower base layer 202a of the corresponding portion so that the upper surface of the terminal 204 is exposed may be used. It may be.
  • the material and the forming method of each component constituting the electrostatic chuck are the same as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

열응력을 흡수하는 버퍼층을 포함하는 정전 척이 개시된다. 정전 척은 관통 홀을 구비하는 바디부, 상기 바디부의 상부에 배치되고 상기 관통 홀에 대응하는 삽입 홀 및 상기 삽입 홀을 통하여 부분적으로 노출되는 전극을 포함하여 상기 전극의 정전기력에 의해 대상체를 고정하는 기저부, 상기 관통 홀 및 삽입 홀을 통하여 상기 전극과 연결되는 접속단자를 구비하는 단자부 및 상기 접속단자와 상기 바디부 및 상기 기저부의 적어도 하나와의 경계면에 배치되어 상기 바디부의 열응력을 흡수할 수 있는 버퍼층을 포함한다. 본 발명에 따르면, 정전 척에 포함되는 버퍼층에 의해 열응력이 흡수됨으로써 열응력으로 인한 크랙 발생이 최소화되고 이에 따라 정전 척의 수명이 연장된다.

Description

열응력 감소를 위한 버퍼층을 포함하는 정전 척
본 발명은 열응력을 감소시키는 버퍼층을 포함하는 정전 척에 관한 것이다. 보다 상세하게는, 정전 척에 있어서 열응력이 발생하는 지점에 형성되는 버퍼층에 의해 열응력이 흡수됨으로써 열응력에 의한 크랙 발생이 최소화되고 그 수명이 연장될 수 있는 정전 척에 관한 것이다.
통상적으로 반도체 또는 LCD 등과 같은 평판 디스플레이의 제조 과정에서는 화학기상 증착(CVD; Chemical Vapor Deposition) 등의 증착 공정 또는 반응성 이온 식각(RIE; Reactive Ion Etching) 등의 식각 공정 등이 수행된다. 이 때, 공정의 신뢰성 확보를 위하여 증착 챔버 또는 식각 챔버 내의 소정의 위치 예를 들어 전극 상에 기판(실리콘 웨이퍼, 글래스 기판 등)을 고정시켜야 할 필요가 있다. 이를 위해, 증착 챔버 또는 식각 챔버 내에는 기판을 정 위치에 고정시키기 위한 정전 척(ESC; Electro-Static Chuck)이 포함된다.
도 1은 종래의 정전 척의 구성을 나타내는 단면도이다.
도 1에 도시되는 바와 같이, 종래의 정전 척(100)은 베이스 기재로서의 알루미늄 바디(101), 상면에 안착되는 기판을 고정시키는 기저부(102), 기저부(102)의 내부에 매설되어 정전기력을 발생시키는 전극(103), 전극(103)에 고전압을 인가하는 단자(104), 및 단자(104)의 외부를 감싸는 절연 부재(105)를 포함한다.
정전 척(100)은 외부 전원으로부터의 고전압이 단자(104)를 통해 전극(103)에 전달될 때 전극(103)이 정전력을 발생시킴으로써 동작된다. .즉, 정전기력이 기저부(102)의 상면에 전달됨으로써 기판이 고정 및 유지될 수 있다.
한편, 증착 과정 또는 식각 과정에서 발생하는 플라즈마에 의해 기저부(102)는 열을 받아 온도가 상승하여 정전 척의 수명을 단축시키게 되는 열응력(플라즈마 온도에 의한 열응력)이 발생한다. 구체적으로 설명하면, 플라즈마에 의하여 기저부(102)에서 발생하는 열은 알루미늄 바디(101)로 전달되며 그로 인해 알루미늄 바디(101)는 열 팽창하게 된다. 이때, 알루미늄 바디(101), 기저부(102), 및 절연 부재(105) 간의 열팽창 계수 차이에 의해 열응력이 발생하게 되는 것인데, 이러한 열응력은 도 1의 A 부분 즉 알루미늄 바디(101)와 절연 부재(105)간의 경계면의 단부에서 최대가 된다.
이러한 열응력은 상대적으로 강도가 약한 기저부(102) 쪽으로 전파되며, 이로 인해 기저부(102) 내부에서는 크랙이 발생하게 되고, 이는 2차 성장하여 기저부(102)의 상부로 전파된다. 이러한 이유로, 정전 척(100)의 동작이 반복되게 되면 기저부(102)의 크랙 정도가 점점 심해져 수명이 단축되는 문제점이 있었다.
따라서, 정전 척 내부 구성요소의 크랙 발생을 최소화시켜서 정전 척의 수명을 연장시킬 수 있는 기술에 대한 개발이 필요한 실정이다.
상기와 같은 정전 척의 수명단축에 관한 문제점을 개선하기 위한 본 발명의 일실시예는 정전 척의 동작시 발생하는 열응력을 흡수할 수 있는 버퍼층을 구비하는 정전 척용 단자부 및 이의 제조방법을 제공한다.
본 발명의 다른 실시예는 상기 단자부를 구비하는 정전 척 및 이의 제조방법을 제공한다.
상기의 목적을 달성하기 위하여, 본 발명의 일실시예에 따른 정전 척은 관통 홀을 구비하는 바디부, 상기 바디부의 상부에 배치되고 상기 관통 홀에 대응하는 삽입 홀 및 상기 삽입 홀을 통하여 부분적으로 노출되는 전극을 포함하여 상기 전극의 정전기력에 의해 대상체를 고정하는 기저부, 상기 관통 홀 및 삽입 홀을 통하여 상기 전극과 연결되는 접속단자를 구비하는 단자부 및 상기 접속단자와 상기 바디부 및 상기 기저부의 적어도 하나와의 경계면에 배치되어 상기 바디부의 열응력을 흡수할 수 있는 버퍼층을 포함한다.
일실시예로서, 상기 바디부는 도전성 물질을 포함하며 상기 단자부는 상기 관통 홀의 내부에 배치되어 상기 접속단자와 상기 도전성 바디부를 전기적으로 절연시키는 절연부재를 포함하고 상기 버퍼층은 상기 도전성 바디부와 상기 절연부재의 경계면에 배치된다. 상기 버퍼층은 상기 절연부재와 상기 기저부의 경계면 상에 더 배치될 수 있다. 이때, 상기 기저부 및 버퍼층은 세라믹 계열의 물질을 포함한다.
일실시예로서, 상기 버퍼층의 기공율은 상기 기저부의 기공율보다 같거나 높게 구성된다. 예를 들면, 상기 버퍼층의 기공율은 2% 내지 10%의 범위를 갖는다.또한, 상기 버퍼층의 두께는 100㎛ 내지 250㎛ 범위를 갖는다. 상기 버퍼층의 표면 조도는 0.1㎛ 내지 2㎛ 범위를 갖는다.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 의한 정전 척용 단자부는 외부 전원과 전기적으로 연결되며 정전기력을 생성하는 전극으로 전원을 공급하는 접속단자, 상기 접속단자를 외부와 절연하도록 외측면의 적어도 일부를 감싸는 절연부재 및 상기 접속단자와 상기 절연부재의 적어도 하나의 외측면에 배치되어 외부에서의 열응력을 흡수하는 버퍼층을 포함한다.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 의한 정전 척의 제조방법에 의하면, 관통 홀을 구비하는 바디부를 준비하고, 상기 관통 홀에 대응하며 외측면에 상기 바디부의 열응력을 흡수할 수 있는 버퍼층을 구비하는 단자부를 준비한다. 이어서, 상기 바디부의 상면으로 노출되도록 상기 단자부를 상기 관통 홀에 삽입하고 상기 바디부 상에 상기 단자부의 상면을 노출하도록 하부 기저층을 형성한다. 상기 하부 기저층 상에 상기 단자부의 상면과 접촉하는 전극층을 형성하고 상기 하부 기저층 및 상기 전극층 상에 상부 기저층을 형성함으로써 상기 정전 척을 완성한다.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 의한 정전 척용 단자부의 제조방법에 의하면, 정전 척의 바디부의 일부를 관통하여 외부 전원과 전기적으로 접속되는 단자를 준비한 후 상기 단자를 절연체에 삽입하여 상기 단자의 일 단부가 상기 절연체의 외부로 노출되는 절연 단자를 형성한다. 상기 절연단자의 외측부 일부에 외부로부터 인가되는 응력을 흡수할 수 있는 버퍼층을 형성한다.
일실시예로서, 상기 절연단자의 외측부에서 상기 절연체를 부분적으로 제거하여 버퍼 영역을 형성하고 상기 버퍼 영역으로 상기 버퍼층을 코팅하여 상기 버퍼층을 형성할 수 있다. 상기 버퍼층을 코팅하는 단계는 대기 플라즈마 용사(APS; Atmospherically Plasma Spray) 방식에 의해 수행된다. 상기 버퍼층을 형성한 후 상기 버퍼층의 에지부를 연마하여 모따기를 더 수행할 수 있다.
본 발명의 일실시예에 의하면, 정전 척에 포함되는 버퍼층에 의해 열 응력이 흡수됨으로써 열 응력으로 인한 크랙 발생이 최소화되고 이에 따라 정전 척의 수명이 연장될 수 있다.
도 1은 종래의 정전 척의 구성을 나타내는 단면도이다.
도 2는 본 발명의 일 실시예에 따른 정전 척의 구성을 나타내는 단면도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 정전 척 및 정전 척용 단자부 및 그 제조방법의 바람직한 실시예에 대하여 상세히 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 2는 본 발명의 일 실시예에 따른 정전 척의 구성을 나타내는 단면도이다.
도 2에 도시되는 바와 같이, 정전 척(200)은 베이스 기재로서의 바디부(201), 바디부(201) 상에 형성되며 기판과 같은 가공 대상체(미도시)를 고정시켜 유지하며 내부에 매립되어 정전력을 발생시키는 전극층(203)을 포함하는 기저부(base plate, 202), 외부 전원으로부터 인가되는 고전압을 전극층(203)에 전달하는 단자(204) 및 단자(204)의 외부를 감싸는 절연 부재(205)를 포함하는 단자부 및 상기 바디부(201)와 상기 기저부의 적어도 일부의 경계면에 배치되어 상기 바디부의 열응력을 흡수할 수 있는 버퍼층(206)을 포함한다.
바디부(201)는 알루미늄 등의 도전성 재질로 이루어지며, 정전 척(200)의 베이스 기재로서의 기능을 한다. 바디부(201)의 중앙부에는 단자부를 구성하는 단자(204)와 절연 부재(205)가 삽입되어 관통할 수 있도록 하는 관통 홀(207)이 형성될 수 있다.
기저부(202)는 소정 유전율을 갖는 유전체로서, 대기 플라즈마 용사(APS; Atmospherically Plasma Spray) 코팅 방식에 의해 바디부(201) 상에 형성될 수 있다. 기저부(202)는 세라믹을 포함할 수 있다. 상기 세라믹의 예로는 Al2O3, Y2O3, Al2O3/Y2O3, ZrO2, AlC, TiN, AlN, TiC, MgO, CaO, CeO2, TiO2, BxCy, BN, SiO2, SiC, YAG, Mullite, AlF3 등을 들 수 있다. 이때, 이들 세라믹을 단독 또는 복합적으로 사용할 수 있다.
기저부(202)는 정전기력을 이용하여 기판을 고정 및 유지시키는 역할을 수행한다. 이를 위해, 기저부(202)에는 정전기 발생을 위한 전극층(203)이 매설될 수 있다. 기저부(202)의 상면은 기판이 안착될 수 있도록 수평을 이루는 것이 바람직한데, 전극층(203)은 기저부(202)의 상면과 실질적으로 평행하게 형성될 수 있다.
기저부(202)의 중앙부에는 단자(204)가 삽입되어 전극층(203)과 연결될 수 있도록 하는 삽입 홈(208)이 형성될 수 있다. 바디부(201)에 형성되어 있는 관통 홀(207) 및 기저부(202)에 형성되어 있는 삽입 홈(208)을 통해 단자(204)가 외부로부터 삽입되어 전극층(203)과 연결될 수 있다.
전술한 바와 같이, 전극층(203)은 기저부(202)의 내부에 매설되며, 단자(204)로부터 고전압을 인가 받아서 기저부(202)의 상면에 정전기력을 발생시킨다. 이렇게 발생된 정전기력에 의해 기판이 기저부(202)의 상면에 안착되어 고정 및 유지될 수 있는 것이다.
전극층(203)은 니켈 등의 도전성 재질로 이루어지는 것이 바람직하다.
기저부(202) 내에 전극층(203)을 매설하는 방법은 1차로 대기 플라즈마 용사 코팅법을 이용하여 하부 기저층(202a)을 형성한 후 그 위에 대기 플라즈마 용사 코팅법으로 전극층(203)을 형성한 후 그 위에 2차로 대기 플라즈마 용사 코팅법을 이용하여 상부 기저층(202b)을 형성하는 것이 바람직하다. 이때, 필요에 따라서 전극층(203)은 스크린 인쇄법을 사용하여 형성할 수도 있다.
하부 기저층(202a)의 두께는 400㎛ 내지 600㎛, 전극층(203) 의 두께는 5㎛ 내지 65㎛, 및 상부 기저층(202b)의 두께는 400㎛ 내지 750㎛ 범위 내에서 조절되는 것이 바람직하다.
단자(204)는 관통 홀(207) 및 삽입 홈(208)을 통해 전극층(203)과 연결되며 외부 전원(미도시)으로부터 고전압을 전극층(203)에 전달하는 역할을 한다. 단자(204)는 텅스텐, 몰리브덴, 티탄 등의 도전성 재질로 이루어지는 것이 바람직하다.
한편, 바디부(201)와 단자(204) 사이에는 절연 부재(205)가 형성된다. 절연 부재(205)는 바디부(201)와 단자(204)를 절연시키는 역할을 수행한다. 절연 부재(205)는 세라믹 소결체로 제조하는 것이 바람직하다. 세라믹 소결체는 기공이 적기 때문에 절연성을 극대화시킬 수 있다는 장점이 있다.
이때, 절연 부재(205)의 두께는 대략 2,000㎛가 되도록 하는 것이 바람직하다. 또한, 절연 부재(205)의 표면 조도는 표면 저항을 낮게 함으로써 아킹 발생을 줄이기 위하여 0.1 내지 2㎛ 범위 내에서 조절되는 것이 바람직하나, 1㎛ 이하의 범위로 조절되는 것이 더 바람직하다.
본 발명에서는 정전 척(200)에 바디부(201)와 절연 부재(205)의 경계면 중 적어도 일부, 기저부(202)와 절연 부재(205)의 경계면 및 기저부(202)와 단자(204)의 경계면에 버퍼층(206)을 형성하는 것을 특징적 구성으로 한다. 버퍼층(206)은 세라믹을 포함할 수 있다. 상기 세라믹의 예로는 Al2O3, Y2O3, Al2O3/Y2O3, ZrO2, AlC, TiN, AlN, TiC, MgO, CaO, CeO2, TiO2, BxCy, BN, SiO2, SiC, YAG, Mullite, AlF3 등을 들 수 있다. 이때, 이들 세라믹을 단독 또는 복합적으로 사용할 수 있다. 버퍼층(206)은 대기 플라즈마 용사(APS; Atmospherically Plasma Spray) 코팅법을 이용하여 형성하는 것이 바람직하다.
버퍼층(206)의 두께는 100㎛ 내지 250㎛ 범위 내에서 조절되는 것이 바람직하나, 150㎛ 내지 200㎛ 범위 내인 것이 더 바람직하다. 버퍼층(206)의 두께가 상기 두께 범위 보다 두꺼운 경우에는 버퍼층(206) 내부에서 기공 등이 생성되어 크랙이 발생할 우려가 있고, 상기 두께 범위 보다 얇은 경우에는 버퍼층(206)의 역할을 수행하지 못할 우려가 있다.
또한, 버퍼층(206)의 표면 조도는 표면 저항을 낮게 함으로써 아킹 발생을 줄이기 위하여 0.1㎛ 내지 2㎛ 범위 내에서 조절되는 것이 바람직하나, 1㎛ 이하의 범위로 조절되는 것이 더 바람직하다.
본 발명에서 버퍼층(206)은 증착 과정 또는 식각 과정 중에 챔버 내부에서 발생하는 플라즈마에 의한 정전 척(200)의 온도 상승에 따라 생성되는 열응력을 흡수하는 역할을 한다. 전술한 바와 같이, 종래에는 플라즈마 온도 때문에 정전 척(100)의 온도 상승에 따른 열의 전도에 의해 알루미늄 바디(101)가 팽창함으로써 열응력이 생성되었다. 그러나, 본 발명에서는 정전 척(200)이 열을 받아 바디부(201)가 팽창하게 될 때 생성되는 열응력이 절연 부재(205)에 직접적으로 전달되지 않고 버퍼층(206)에 의해 흡수되게 된다. 이와 같이, 본 발명에서는 버퍼층(206)이 열응력이 최대인 지점(도 1의 A 부분 참조)에서 해당 열응력을 흡수해 주기 때문에, 열응력에 의하여 바디부(201)와 절연 부재(205)간의 경계면의 단부에서 크랙이 발생하는 것을 억제할 수 있으며 그 결과 정전 척(200)의 수명이 연장될 수 있다.
본 발명에서, 버퍼층(206)이 상술한 바와 같은 열 응력을 흡수하여 크랙 발생을 억제하는 역할을 최대한 효과적으로 수행할 수 있도록 하기 위하여, 버퍼층(206)을 이루는 세라믹의 기공률은 기저부(202), 즉 하부 기저층(202a) 또는 상부 기저층(202b)의 기공률과 같거나 그 이상인 것이 좋다. 예를 들어, 버퍼층(206)을 이루는 세라믹의 기공률은 2% 내지 10% 범위 내에서 조절되는 것이 바람직하며, 2% 내지 7% 범위 내인 것이 더 바람직하다. 버퍼층(206)의 기공률이 상기 기공률 범위를 초과하는 경우에는 버퍼층(206) 내부에 기공이 증가하여 버퍼층(206)의 강도가 떨어지고 심지어는 버퍼층(206) 자체가 떨어져 버릴 우려가 있고, 상기 기공률 범위에 미치지 못하는 경우에는 버퍼층(206)에 크랙이 발생할 우려가 있다.
또한, 본 발명에서, 버퍼층(206)의 에지부는 날카롭지(sharp) 않은 라운드 형상 또는 모서리를 깎아 낸(chamfer) 형상을 갖도록 하는 것이 바람직하다. 이는 버퍼층(206)의 에지부가 날카로운 형상을 가지게 되면 그 날카로운 부분에서 응력이 집중되어 크랙이 발생될 확률을 증가시킬 우려가 있기 때문이다.
한편, 도 2를 참조하면, 바디부(201)의 경사면으로 인하여 바디부(201)의 경사면 상의 A 영역의 하부 기저부(202a)의 밀도가 상기 경사면을 제외한 바디부(201) 상의 B 영역의 하부 기저층(202a)의 밀도보다 상대적으로 낮을 수 있다. 그러나, 상기 A 영역의 두께가 상기 B 영역의 두께보다 두껍기 때문에 상기 A 영역의 하부 기저층(202a)에 포함된 기공을 통한 전류 누설을 감소시킬 수 있다. 따라서, 바디부(201)와 전극층(203) 사이의 아킹(arcing) 발생을 줄일 수 있다.
또한, 상기 A 영역의 하부 기저층(202a)의 밀도가 상대적으로 낮더라도 상기 A 영역의 하부 기저층(202a)이 상대적으로 두꺼우므로, 바디부(201)와 절연 부재(205)의 경계면 부위의 하부 기저층(202a)에 크랙 발생이 방지될 수 있다. 따라서, 상기 크랙을 통한 바디부(201)와 전극층(203) 사이의 아킹(arcing) 발생을 줄일 수 있다.
또한, 바디부(201)와 하부 기저부층(202a) 사이에는 접착층(미도시)이 더 구비될 수 있다. 상기 접착층은 바디부(201)와 하부 기저층(202a)을 접착한다. 상기 접착층은 바디부(201)의 열팽창율과 하부 기저층(202a)의 열팽창율 사이의 열팽창율을 가지며, 서로 다른 열팽창율을 갖는 바디부(201)와 하부 기저층(202a) 사이를 완충한다. 상기 접착층은 금속 합금을 포함할 수 있다. 상기 금속 합금의 예로는 니켈-알루미늄 합금을 들 수 있다.
또한, 도 2를 참조하면, 하부 기저층(202a)이 바디부(201), 단자(204) 및 절연 부재(205)를 덮을 때 하부 기저층(202a)의 상부면은 단자(204)의 상부면보다 높게 하는 것이 바람직하다. 이는 단자(204) 상방에 위치하는 C 영역의 상부 기저층(202b)의 두께가 나머지 D 영역의 상부 기저층(202b)의 두께보다 두껍게 되어서, 단자(204)를 통하여 높은 전압의 전원이 전극층(203)으로 인가되더라도 전극층(203)과 상부 기저부층(202b) 상에 안착되어 지지되는 기판 사이의 방전 현상을 방지하기 위함이다.
이하에서는 도 2를 참조하여 본 발명에 따른 정전 척의 제조방법을 간단하게 설명하도록 한다.
먼저, 바디부(201)에 단자부를 삽입한다. 단자부는 단자(204), 절연 부재(205) 및 버퍼층(206)으로 구성된다. 단자(204)는 향후 정전 척(200) 사용시에 전원을 인가하는 외부 전원과 연결된다. 절연 부재(205)는 바디부(201)와 단자(204) 사이를 절연시킬 수 있도록 단자(204)를 둘러싸고 있다. 버퍼층(206)은 정전 척(200) 내에서 열응력에 의한 크랙 발생을 억제할 수 있도록 절연 부재(205) 상의 일정 영역에 형성된다.
단자부는 단자(204)와 일정한 형상과 크기를 갖는 절연체(미도시)를 각각 가공하여 제조한 후에 상기 절연체에 단자(204)를 삽입하여 상기 단자의 주변부를 감싸는 절연부재(205)를 구비하는 절연 단자를 먼저 형성한다. 이어서, 상기 절연 단자의 외측부 일부 영역에 버퍼층(206)을 형성한다. 이때, 상기 버퍼층(206)이 형성되는 영역은 버퍼층(206)의 두께만큼 상기 절연단자의 주변부로부터 상기 절연 부재(205)를 제거하여 버퍼영역을 형성하고, 상기 버퍼 영역에 버퍼층(206)을 형성하는 것이 바람직하다. 또한, 단자(204)와 절연 부재(205)의 에지부는 라운드 형상을 갖도록 가공되는 것이 바람직하다. 또한, 표면 조도를 낮추기 위하여 버퍼층(206)은 형성한 후에 그 표면을 연마하는 것이 바람직하다.
끝으로, 바디부(201) 상에 전극층(203)이 매설된 기저부(202)를 적층하여 정전 척(200)을 최종 완성한다. 전극층(203)이 매설된 기저부(202)는 하부 기저층(202a), 전극층(203) 및 상부 기저층(202b)을 순차적으로 적층하여 형성한다.
이때, 하부 기저층(202a), 전극층(203) 및 상부 기저층(202b)의 표면 조도를 낮추기 위하여(즉, 각 층의 표면 평탄도를 높이기 위하여) 각 층을 형성한 후에 각 층의 표면을 연마하는 것이 바람직하다.
한편, 바디부(201) 상에 하부 기저층(202a)을 형성할 때 바디부(201)를 관통하여 돌출되어 있는 단자(204)의 상부면이 하부 기저층(202a)에 덮이지 않도록 하부 기저층(202a)을 형성하기 전에 단자(204)의 상부면을 마스킹(masking) 할 필요가 있다. 하지만 반드시 상기 마스킹 방식에 한정되는 것은 아니고 바디부(201) 상에 하부 기저층(202a)을 형성한 후 단자(204)의 상부면이 노출되도록 해당 부위의 하부 기저층(202a)을 제거하는 방식을 사용할 수도 있다.
상술한 정전 척의 제조방법에 있어서 정전 척을 구성하는 각 구성요소의 재질 및 형성방법에 대해서는 전술한 바와 동일하다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명 이 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (14)

  1. 관통 홀을 구비하는 바디부;
    상기 바디부의 상부에 배치되고 상기 관통 홀에 대응하는 삽입 홀 및 상기 삽입 홀을 통하여 부분적으로 노출되는 전극을 포함하여 상기 전극의 정전기력에 의해 대상체를 고정하는 기저부;
    상기 관통 홀 및 삽입 홀을 통하여 상기 전극과 연결되는 접속단자를 구비하는 단자부; 및
    상기 접속단자와 상기 바디부 및 상기 기저부의 적어도 하나와의 경계면에 배치되어 상기 바디부의 열응력을 흡수할 수 있는 버퍼층을 포함하는 것을 특징으로 하는 정전 척.
  2. 제1항에 있어서, 상기 바디부는 도전성 물질을 포함하며 상기 단자부는 상기 관통 홀의 내부에 배치되어 상기 접속단자와 상기 도전성 바디부를 전기적으로 절연시키는 절연부재를 포함하고 상기 버퍼층은 상기 도전성 바디부와 상기 절연부재의 경계면에 배치되는 것을 특징으로 하는 정전 척.
  3. 제2항에 있어서, 상기 버퍼층은 상기 절연부재와 상기 기저부의 경계면 상에 더 배치되는 것을 특징으로 하는 정전 척.
  4. 제1항에 있어서, 상기 기저부 및 버퍼층은 세라믹 계열의 물질을 포함하는 것을 특징으로 하는 정전 척.
  5. 제4항에 있어서, 상기 버퍼층의 기공율은 상기 기저부의 기공율 보다 같거나 높은 것을 특징으로 하는 정전 척.
  6. 제5항에 있어서, 상기 버퍼층의 기공율은 2% 내지 10%인 것을 특징으로 하는 정전 척.
  7. 제1항에 있어서, 상기 버퍼층의 두께는 100㎛ 내지 250㎛ 범위 내인 것을 특징으로 하는 정전 척.
  8. 제1항에 있어서, 상기 버퍼층의 표면 조도는 0.1㎛ 내지 2㎛ 범위를 갖는 것을 특징으로 하는 정전 척.
  9. 외부 전원과 전기적으로 연결되며 정전기력을 생성하는 전극으로 전원을 공급하는 접속단자;
    상기 접속단자를 외부와 절연하도록 외측면의 적어도 일부를 감싸는 절연부재; 및
    상기 접속단자와 상기 절연부재의 적어도 하나의 외측면에 배치되어 외부로부터 인가되는 열응력을 흡수하는 버퍼층을 포함하는 것을 특징으로 하는 정전 척의 단자부.
  10. 관통 홀을 구비하는 바디부를 준비하는 단계;
    상기 관통 홀에 대응하며 외측면에 상기 바디부의 열응력을 흡수할 수 있는 버퍼층을 구비하는 단자부를 준비하는 단계;
    상기 바디부의 상면으로 노출되도록 상기 단자부를 상기 관통 홀에 삽입하는 단계;
    상기 바디부 상에 상기 단자부의 상면을 노출하도록 하부 기저층을 형성하는 단계;
    상기 하부 기저층 상에 상기 단자부의 상면과 접촉하는 전극층을 형성하는 단계; 및
    상기 하부 기저층 및 상기 전극층 상에 상부 기저층을 형성하는 단계를 포함하는 것을 특징으로 하는 정전 척의 제조방법.
  11. 정전 척의 바디부의 일부를 관통하여 외부 전원과 전기적으로 접속되는 단자를 준비하는 단계;
    상기 단자를 절연체에 삽입하여 상기 단자의 일 단부가 상기 절연체의 외부로 노출되는 절연 단자를 형성하는 단계; 및
    상기 절연단자의 외측부 일부에 외부로부터 인가되는 응력을 흡수할 수 있는 버퍼층을 형성하는 단계를 포함하는 것을 특징으로 하는 정전 척의 단자부 제조방법.
  12. 제11항에 있어서, 상기 버퍼층을 형성하는 단계는,
    상기 절연단자의 외측부에서 상기 절연체를 부분적으로 제거하여 버퍼층 영역을 형성하는 단계; 및
    상기 버퍼층 영역으로 상기 버퍼층을 코팅하는 단계를 포함하는 것을 특징으로 하는 정전 척용 단자부의 제조방법.
  13. 제 12 항에 있어서, 상기 버퍼층을 코팅하는 단계는 대기 플라즈마 용사(APS: Atmospherically Plamsa Spray) 방식에 의해 수행되는 것을 특징으로 하는 정전 척의 단자부 제조방법.
  14. 제11항에 있어서, 상기 버퍼층을 형성한 후 상기 버퍼층의 에지부를 연마하여 모따기를 수행하는 단계를 더 포함하는 것을 특징으로 하는 정전 척 단자부의 제조방법.
PCT/KR2009/005070 2008-09-09 2009-09-08 열응력 감소를 위한 버퍼층을 포함하는 정전 척 WO2010030102A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980135897.6A CN102150233B (zh) 2008-09-09 2009-09-08 包含有用于减小热应力的缓冲层的静电吸盘

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0088972 2008-09-09
KR1020080088972A KR100995250B1 (ko) 2008-09-09 2008-09-09 열 응력 감소를 위한 버퍼층을 포함하는 정전 척

Publications (2)

Publication Number Publication Date
WO2010030102A2 true WO2010030102A2 (ko) 2010-03-18
WO2010030102A3 WO2010030102A3 (ko) 2010-07-01

Family

ID=42005613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005070 WO2010030102A2 (ko) 2008-09-09 2009-09-08 열응력 감소를 위한 버퍼층을 포함하는 정전 척

Country Status (4)

Country Link
KR (1) KR100995250B1 (ko)
CN (2) CN102150233B (ko)
TW (1) TWI401768B (ko)
WO (1) WO2010030102A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610476B (zh) * 2012-03-12 2015-05-27 中微半导体设备(上海)有限公司 一种静电吸盘
KR101974386B1 (ko) * 2012-03-21 2019-05-03 주식회사 미코 정전척
KR102119867B1 (ko) * 2013-10-21 2020-06-09 주식회사 미코세라믹스 정전척
US11420278B2 (en) * 2018-06-28 2022-08-23 Spirit Aerosystems, Inc. System and method employing active thermal buffer element for improved joule heating
JP7162500B2 (ja) * 2018-11-09 2022-10-28 株式会社Kelk 温調装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899986B1 (en) * 1996-05-05 2004-11-24 Tateho Chemical Industries Co., Ltd. Electric heating element and electrostatic chuck using the same
JP4173212B2 (ja) * 1997-10-08 2008-10-29 東京エレクトロン株式会社 保持装置及び保持装置を装着した処理装置
JP3771722B2 (ja) * 1998-07-31 2006-04-26 京セラ株式会社 ウエハ支持部材
CN1207939C (zh) * 1999-09-29 2005-06-22 东京电子株式会社 多区电阻加热器
JP3859914B2 (ja) * 1999-10-08 2006-12-20 東芝セラミックス株式会社 金属端子を有するセラミック−金属複合部品、及びその製造方法
JP2001287130A (ja) * 2000-04-07 2001-10-16 Taiheiyo Cement Corp 静電チャック装置及びその製造方法
JP2001313331A (ja) * 2000-04-28 2001-11-09 Sumitomo Osaka Cement Co Ltd 静電吸着装置
JP4753460B2 (ja) * 2000-08-16 2011-08-24 株式会社クリエイティブ テクノロジー 静電チャック及びその製造方法
US7161121B1 (en) * 2001-04-30 2007-01-09 Lam Research Corporation Electrostatic chuck having radial temperature control capability
KR20030044499A (ko) * 2001-11-30 2003-06-09 삼성전자주식회사 정전척 및 이의 제조방법
JP4510745B2 (ja) * 2005-10-28 2010-07-28 日本碍子株式会社 セラミックス基材と電力供給用コネクタの接合構造
KR101066798B1 (ko) * 2006-03-14 2011-09-23 엘아이지에이디피 주식회사 정전척, 기판 지지대, 챔버 및 그 제조 방법
US7701693B2 (en) * 2006-09-13 2010-04-20 Ngk Insulators, Ltd. Electrostatic chuck with heater and manufacturing method thereof
WO2008035395A1 (fr) * 2006-09-19 2008-03-27 Creative Technology Corporation Structure d'alimentation d'un mandrin électrostatique, procédé de fabrication et procédé de regénération de la structure d'alimentation du mandrin électrostatique

Also Published As

Publication number Publication date
TWI401768B (zh) 2013-07-11
WO2010030102A3 (ko) 2010-07-01
KR20100030168A (ko) 2010-03-18
CN103227138A (zh) 2013-07-31
TW201021154A (en) 2010-06-01
KR100995250B1 (ko) 2010-11-18
CN102150233A (zh) 2011-08-10
CN102150233B (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
KR100997374B1 (ko) 정전척 및 이의 제조 방법
TWI785727B (zh) 用於高溫處理之具有金屬結合背板的靜電定位盤組件
JP4808258B2 (ja) 静電チャックの給電構造及びその製造方法並びに静電チャック給電構造の再生方法
WO2013032260A9 (ko) 정전 척
WO2010030102A2 (ko) 열응력 감소를 위한 버퍼층을 포함하는 정전 척
WO2014123323A1 (ko) 표면 처리 방법 및 이를 이용한 세라믹 구조물
KR101032663B1 (ko) 정전 척
KR20150096492A (ko) 정전척
KR101122709B1 (ko) 정전척
WO2022080522A1 (ko) 세라믹 히터
TWI336504B (ko)
WO2022145668A1 (ko) 세라믹 서셉터
WO2010030101A2 (ko) 열응력 감소를 위한 이중 버퍼층을 포함하는 정전 척
WO2011152620A2 (ko) 정전척 및 이를 포함하는 기판 처리 장치
JP2001007189A (ja) 静電チャック及びその製造方法
WO2022054989A1 (ko) 세라믹 히터
KR100964498B1 (ko) 정전척
KR102519486B1 (ko) 정전척
KR102759610B1 (ko) 코팅 타입 고온 정전척
WO2022231190A1 (ko) 코팅 타입 고온 정전척
TW202240757A (zh) 靜電夾盤及基板固定裝置
WO2023106445A1 (ko) 극저온 서셉터 및 그에 사용되는 전기적 커넥터 어셈블리
CN114597152A (zh) 一种静电卡盘的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135897.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813224

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813224

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.05.2011)