WO2010026886A1 - 水酸化クロムの製造方法 - Google Patents

水酸化クロムの製造方法 Download PDF

Info

Publication number
WO2010026886A1
WO2010026886A1 PCT/JP2009/064726 JP2009064726W WO2010026886A1 WO 2010026886 A1 WO2010026886 A1 WO 2010026886A1 JP 2009064726 W JP2009064726 W JP 2009064726W WO 2010026886 A1 WO2010026886 A1 WO 2010026886A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
aqueous solution
hydroxide
chromium hydroxide
acid
Prior art date
Application number
PCT/JP2009/064726
Other languages
English (en)
French (fr)
Inventor
弘行 桑野
知宏 番田
保之 田中
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to US13/062,473 priority Critical patent/US20110162974A1/en
Priority to JP2010527754A priority patent/JPWO2010026886A1/ja
Priority to CN200980134663XA priority patent/CN102143916A/zh
Priority to EP09811413A priority patent/EP2322480A4/en
Publication of WO2010026886A1 publication Critical patent/WO2010026886A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Definitions

  • the present invention relates to a method for producing chromium hydroxide.
  • Chromium hydroxide produced according to the method of the present invention is useful for, for example, chromium plating, metal surface treatment or trivalent chromium chemical conversion treatment.
  • Chrome plating is used in many industrial fields for decorative and industrial purposes. Chrome plating is widely used as decorative plating because it does not corrode in the atmosphere and does not lose its luster. In addition, since it has a high hardness and a low coefficient of friction, it is widely used for machine parts that require wear resistance. A large amount of hexavalent chromium is used in the plating solution used for this plating. Since hexavalent chromium is concerned about the influence on the human body, it must be reduced to trivalent chromium under very severe conditions so that it is not released into the environment during the treatment of plating waste liquid. Therefore, it is desired to develop a plating solution using trivalent chromium, which is chromium with less toxicity, instead of hexavalent chromium.
  • Patent Document 1 describes a chromium plating solution using a trivalent chromium compound such as chromium chloride, chromium sulfate, chromium sulfamate as a plating solution for decorative plating. ing.
  • a trivalent chromium compound such as chromium chloride, chromium sulfate, chromium sulfamate
  • chromium source when trivalent chromium of inorganic salts such as chromium chloride and chromium sulfate is used as the chromium source, chromium is consumed by plating, whereas chloride ions and sulfate ions, which are counter-anions of chromium salts, are contained in the plating solution. Remain.
  • the plating solution needs to keep the solution composition constant, an amount of chromium source corresponding to the consumed chromium is appropriately added, so that chloride ions and sulfate ions are accumulated in the plating solution. It will follow. Therefore, eventually, the liquid composition cannot be kept constant, and the entire amount is replaced with a new plating solution, and the used plating solution is treated as a waste solution.
  • Patent Document 2 when performing trivalent chromium plating using a plating solution containing chromium chloride and ammonium chloride, a part of the plating solution is circulated in a cooling device, and the cooling device is used for chlorination.
  • a trivalent chromium plating method in which a part of ammonium is crystallized and removed to control the concentration of ammonium chloride in the plating solution.
  • chromium hydroxide which is a compound in which counter anions do not accumulate, in the state of its hydrogel as a trivalent chromium source
  • Patent Document 3 chromium hydroxide is generally insoluble in water and has low solubility in an acidic aqueous solution used as a normal plating solution. For this reason, the preparation of the plating solution requires long stirring under heating. Also, when replenishing the consumed chromium, it takes a long time to dissolve the replenished chromium hydroxide. For these reasons, the plating operation was interrupted during that time, and problems occurred in the preparation of the plating solution and the plating operation.
  • Method (1) A reducing agent is added in advance to an aqueous liquid containing chromate ions discharged from the chromium plating process, etc., to reduce the chromate ions in the liquid to trivalent chromium ions, and sodium hydroxide is added thereto.
  • This is a method for obtaining precipitation of chromium hydroxide (Patent Document 4).
  • Patent Document 4 chromium hydroxide obtained in this manner often has impurity ions such as sulfate ions attached thereto, and needs to be purified in order to be applied to various uses.
  • Patent Document 4 describes washing with water under a condition of pH 9.5 or higher.
  • Method (2) Urea is added to a sulfate aqueous solution containing trivalent chromium, and the solution is heated to a temperature in the range of about 90 ° C. to the boiling point of the aqueous solution to increase the pH of the solution by decomposition of urea and during this time the sulfuric acid in the aqueous solution
  • the basic chromium sulfate is precipitated and / or separated by maintaining the ion concentration below about 1 mol / liter.
  • the produced basic chromium sulfate is heated to the above temperature range together with urea or neutralized with an alkali metal, alkaline earth metal, ammonium hydroxide or carbonate to produce chromium hydroxide (Patent Document).
  • Patent Document 5 describes that when chromium hydroxide is produced by neutralization, a method starting from an aqueous solution of chromium chloride is easy. However, there is no description about the solubility of the obtained chromium hydroxide and the order of addition during neutralization.
  • Method (3) A trivalent chromium salt aqueous solution is neutralized with sodium hydroxide or aqueous ammonia. The precipitate is separated by filtration from the obtained chromium hydroxide slurry. The separated precipitate is suspended in water to form a slurry liquid. This slurry liquid is passed through an ion exchange resin and adsorbed and separated from water-soluble impurities (Patent Document 6).
  • Patent Document 6 the produced aqueous solution of chromium sulfate or chromium chloride is neutralized with sodium hydroxide or aqueous ammonia, and the precipitate is filtered and separated from the obtained slurry of chromium hydroxide, and then washed to remove impurities.
  • a method for removing ions is described.
  • actual production employs a method of adding sodium hydroxide to an aqueous chromium sulfate solution.
  • solubility of the obtained chromium hydroxide there is no description about the solubility of the obtained chromium hydroxide.
  • Patent Document 7 discloses a chromium (III) salt of various inorganic acids, but does not describe chromium hydroxide.
  • An object of the present invention is to provide a method for producing chromium hydroxide having high solubility.
  • the present invention is characterized in that an inorganic alkaline aqueous solution and an aqueous solution containing trivalent chromium are simultaneously added to an aqueous medium under the condition that the reaction liquid temperature is 0 ° C. or higher and lower than 50 ° C. to generate chromium hydroxide.
  • a method for producing chromium hydroxide is provided.
  • the present invention provides an inorganic acid chromium (III) aqueous solution or an organic acid chromium (in which the chromium hydroxide is dissolved in an inorganic acid aqueous solution or an organic acid aqueous solution after the chromium hydroxide is produced by the above method.
  • III A method for producing an aqueous solution is provided.
  • chromium hydroxide having higher solubility in an acidic aqueous solution than chromium hydroxide obtained by a conventional production method can be obtained.
  • the preparation time of the trivalent chromium plating solution can be shortened, and to the plating film caused by undissolved chromium hydroxide Can prevent adverse effects.
  • the trivalent chromium-containing liquid using chromium hydroxide produced by the method of the present invention is used for chromium plating or metal surface treatment or trivalent chromium conversion treatment, the counter anion of the trivalent chromium source is the plating solution. Since it does not accumulate in the medium, it is easy to keep the composition of the plating solution or the like constant. In addition, since the preparation time of the plating solution and the like is greatly shortened, the effect on related industries is great.
  • the production method of the present invention is characterized by simultaneous addition of an inorganic alkaline aqueous solution and an aqueous solution containing trivalent chromium.
  • the present inventors have surprisingly found that chromium hydroxide having high solubility in an acidic aqueous solution can be obtained by simultaneously adding these aqueous solutions to an aqueous medium.
  • the conventional chromium hydroxide production method for example, the production methods described in Patent Documents 4 and 6, do not employ simultaneous addition. Instead, sodium hydroxide is added to an aqueous solution containing trivalent chromium. Etc. are added to produce chromium hydroxide.
  • the chromium hydroxide obtained by this method is inferior in solubility in an acidic aqueous solution.
  • chromium refers to trivalent chromium.
  • An inorganic alkaline aqueous solution and an aqueous solution containing trivalent chromium are added to an aqueous medium substantially continuously.
  • substantially continuous means that the case where the addition is inevitably temporarily discontinuous due to a change in manufacturing conditions or the like is allowed.
  • both aqueous solutions are added substantially simultaneously at the start of the operation.
  • the addition of the inorganic alkaline aqueous solution may precede the addition of the aqueous solution containing trivalent chromium, or vice versa. This may precede the addition of the inorganic alkaline aqueous solution.
  • the same is true at the end of the operation, and the addition of both aqueous solutions is terminated substantially at the same time.
  • the end of the addition may be preceded, or conversely, the end of the addition of the aqueous solution containing trivalent chromium may precede the end of the addition of the inorganic alkaline aqueous solution.
  • the aqueous medium used in the present invention preferably has a pH in a neutral or alkaline range.
  • an acidic pH range it is advantageous to use an aqueous medium having a neutral or alkaline pH range in view of the good solubility of the resulting chromium hydroxide. is there.
  • aqueous medium having a neutral pH for example, water (pure water) or an aqueous solution of a neutral salt can be used.
  • a neutral salt sodium chloride etc. can be used, for example.
  • the concentration of the neutral salt is preferably up to about 1 mol / l.
  • ammonia water can be used as the aqueous medium having an alkaline pH.
  • the concentration of ammonia water is preferably about 0.01 mol / l.
  • the aqueous medium can also contain a water-soluble organic solvent such as a lower alcohol, if necessary, regardless of whether the pH is neutral or alkaline.
  • water (pure water) from the viewpoint of preventing the mixing of unnecessary chemical species in the preparation of a chromium plating solution or the like.
  • the solubility of the generated chromium hydroxide is influenced by the temperature of the reaction solution in addition to the simultaneous addition of the aqueous inorganic alkali solution and the aqueous solution containing trivalent chromium.
  • the reaction liquid referred to here is a liquid obtained by adding an aqueous inorganic alkali solution and an aqueous solution containing trivalent chromium to an aqueous medium.
  • the temperature of the reaction solution needs to be 0 ° C. or higher and lower than 50 ° C. If the temperature of the reaction solution is 50 ° C. or higher, the produced chromium hydroxide tends to be aggregates or lumps, so that highly soluble chromium hydroxide cannot be obtained.
  • the temperature of the reaction solution is less than 0 ° C., the trivalent chromium salt and / or inorganic alkali may be precipitated. It is preferable that the temperature of the reaction solution is 10 ° C. or more and less than 50 ° C., particularly 10 to 40 ° C., because highly soluble chromium hydroxide can be obtained more easily.
  • the reaction between the aqueous inorganic alkali solution and the aqueous solution containing trivalent chromium is a neutralization reaction
  • mixing both aqueous solutions in an aqueous medium provides chromium hydroxide having desired characteristics.
  • the state where the amount of trivalent chromium is locally excessive with respect to the amount of alkali means, for example, that an inorganic alkaline aqueous solution is added to an aqueous solution containing trivalent chromium as described in Patent Documents 4 and 6. Says the added state.
  • the concentration, addition rate, addition ratio, etc. of the aqueous solution containing inorganic alkali solution and trivalent chromium may be adjusted according to the ability of the stirrer and the production scale to prevent non-uniform mixing during the reaction It is preferable to adjust from the viewpoint of obtaining highly soluble chromium hydroxide.
  • the concentration of hydroxide ions in the inorganic alkaline aqueous solution is 1 to 50% by weight, particularly 5 to 30% by weight
  • the concentration of trivalent chromium in the aqueous solution containing trivalent chromium is 1 to 40% by weight. %, In particular 3 to 20% by weight.
  • the inorganic alkali aqueous solution is 2 to 150 ml / min, particularly 10 to 100 ml / min, provided that the concentration is in the above range.
  • the aqueous solution containing chromium is 5 to 300 ml / min, particularly 10 to 200 ml / min.
  • the ratio of addition that is, the ratio of the addition rate is such that the addition rate of the aqueous solution containing trivalent chromium is 0.1 to the addition rate of the inorganic alkaline aqueous solution, provided that the concentration and the addition rate are in the above-mentioned range. 20 times, especially 0.5 to 10 times.
  • the concentration, addition ratio, and addition rate of the inorganic alkali aqueous solution and the aqueous solution containing trivalent chromium were maintained at a pH of 7.0 to 12, particularly 7.5 to 10, during the addition of these aqueous solutions. It is preferable to adjust as described above. By maintaining the pH during the reaction within this range, chromium hydroxide having the desired solubility can be successfully produced.
  • a water-soluble salt of trivalent chromium can be used without particular limitation.
  • examples of such salts include chromium chloride, chromium sulfate, chromium ammonium sulfate, chromium potassium sulfate, chromium formate, chromium fluoride, chromium perchlorate, chromium sulfamate, chromium nitrate, and chromium acetate.
  • These salts can be used alone or in combination of two or more. These salts may be used in the form of an aqueous solution or in the form of a powder.
  • liquid chromium chloride 40% liquid chromium sulfate (product name) manufactured by Nippon Chemical Industry Co., Ltd., and commercially available chromium chloride (crystal product) can be used.
  • chromium chloride or chromium sulfate from the viewpoints that no organic matter remains, waste water treatment is easy, and economical efficiency.
  • aqueous solution containing trivalent chromium a solution obtained by reducing hexavalent chromium in an aqueous solution containing hexavalent chromium to trivalent can also be used.
  • an aqueous solution in which hexavalent chromium is reduced to trivalent chromium by passing sulfur dioxide into an aqueous solution of dichromate can be used.
  • an aqueous solution in which sulfuric acid is added to an aqueous solution of dichromic acid and hexavalent chromium is reduced to trivalent chromium with an organic substance can be used.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, ammonia, and the like can be used.
  • organic alkali forms a water-soluble complex salt with chromium, so that chromium may remain in the filtered waste liquid after the production of chromium hydroxide. Therefore, the use of organic alkalis should be avoided.
  • the slurry is filtered to separate the chromium hydroxide as a solid and washed.
  • a usual method can be used for filtration. For example, suction filtration using a Buchner funnel can be performed. Washing after filtration is performed using water. For example, washing can be performed by adding water to the cake on the Buchner funnel for repulping and further performing suction filtration. The washing is preferably performed until the conductivity of the filtrate is, for example, 5 mS / cm or less.
  • a high conductivity of the filtrate means that a large amount of by-product salt derived from the raw material remains in the washed chromium hydroxide.
  • Such by-product salts should be removed as much as possible because they accumulate in the plating solution when chromium hydroxide is used as the chromium source of the trivalent chromium plating solution. Therefore, it is preferable to perform washing until the filtrate has a conductivity of not more than the above value.
  • the filtration and washing are preferably performed at a low temperature of 0 to 50 ° C., more preferably 20 to 40 ° C. This is because it is possible to prevent the formation or formation of chromium and the formation of poorly soluble substances resulting therefrom.
  • the chromium hydroxide is dried to a powder state, or water is added to obtain a slurry with a predetermined concentration.
  • a reducing agent during the above reaction or after completion of the reaction. Accordingly, even when placed in an oxidizing atmosphere during the reaction or during storage (during storage in a slurry state), reoxidation can be prevented, so that hexavalent chromium can be prevented from being generated. In particular, it is preferable to add a reducing agent after completion of the reaction from the viewpoint of reliably preventing reoxidation.
  • an organic or inorganic reducing agent conventionally used in the technical field can be used without particular limitation.
  • the organic reducing agent for example, monohydric alcohols such as methyl alcohol and propyl alcohol, and dihydric alcohols such as ethylene glycol and propylene glycol are preferably used.
  • Other organic reducing agents include monosaccharides such as glucose, disaccharides such as maltose, polysaccharides such as starch, and the like. Examples of inorganic reducing agents include hydrazine and hydrogen peroxide.
  • Chromium hydroxide produced according to the method of the present invention (hereinafter also simply referred to as “chromium hydroxide of the present invention”) is insoluble or hardly soluble in pure water, but is an acidic aqueous solution (for example, having a pH of 3 or less). It is characterized by high solubility in acidic aqueous solutions. Chromium hydroxide having such characteristics is specified by its degree of aggregation and particle size. Specifically, the chromium hydroxide of the present invention is fine and has a low degree of aggregation. In the present invention, the degree of aggregation is defined by MV / D.
  • MV represents a volume average particle diameter measured by a particle size distribution measuring apparatus
  • D represents an average particle diameter measured from a scanning electron microscope (SEM) image.
  • SEM scanning electron microscope
  • the specific method for measuring the degree of aggregation is as follows. After the produced chromium hydroxide is sufficiently dispersed in water with a household mixer or the like, the volume average particle diameter (MV) is measured with a particle size distribution measuring apparatus of a laser diffraction scattering method. Moreover, the particle diameter of 200 primary particles of chromium hydroxide is measured with the SEM image, and the average value is defined as the average particle diameter D with the SEM image. When the primary particles are not spherical, the maximum length across the particles is taken as the particle diameter. The value obtained by dividing MV measured in this way by D is defined as the degree of aggregation.
  • the degree of aggregation calculated based on the above definition is preferably 10 or more and less than 70.
  • the solubility in an acidic aqueous solution tends to decrease.
  • the chromium hydroxide produced according to the method of the present invention has a higher solubility in an acidic aqueous solution as the degree of aggregation is lower. From this viewpoint, the smaller the value of the degree of aggregation of chromium hydroxide, the better.
  • the lower limit of the degree of aggregation of chromium hydroxide is defined as 10 in the present invention.
  • an aggregation degree of 10 to 60 is more preferable because change with time is reduced and better solubility can be maintained.
  • the chromium hydroxide of the present invention is a fine particle having an average primary particle diameter D of preferably 40 to 200 nm, more preferably 50 to 100 nm. Chromium hydroxide having such a particle size has improved solubility in an acidic aqueous solution by satisfying the above-mentioned degree of aggregation.
  • the average particle diameter D of the primary particles is less than 40 nm, the electrostatic attraction becomes strong, tends to aggregate, and the solubility becomes low.
  • the average particle diameter D of the primary particles exceeds 200 nm, the specific surface area becomes small and the number of reaction sites with the acid decreases, so that the solubility becomes low.
  • the particle shape of the chromium hydroxide of the present invention is not particularly limited, and may be, for example, a spherical shape or a lump shape.
  • the chromium hydroxide of the present invention is generally in a dry powder state or a slurry suspended in water. From the standpoint of increasing the solubility in an acidic aqueous solution, it is preferable that the slurry is continuously formed immediately after the production according to the method of the present invention.
  • Components other than chromium hydroxide may or may not be contained in the slurry.
  • examples of the component include Na, K, Cl, SO 4 , and NH 4 .
  • the slurry When the slurry is used as a replenisher such as a plating solution used for chromium plating or metal surface treatment or trivalent chromium conversion treatment, the slurry preferably does not substantially contain impurity ions. This is to prevent unnecessary ion accumulation caused by replenishment.
  • impurity ions refers to ions other than H + and OH ⁇ ions. “Substantially free” means that impurity ions are intentionally not added during the preparation of chromium hydroxide and the slurry using the same, and trace amounts of impurity ions inevitably mixed in are not included. This is an acceptable purpose. Therefore, water used for preparing chromium hydroxide and slurry using the same may be pure water, ion-exchanged water, tap water substantially free of impurity ions, industrial water, or the like. Absent.
  • the chromium hydroxide of the present invention has high solubility in an acidic aqueous solution (for example, an acidic aqueous solution having a pH of 3 or less). Moreover, even after long-term storage, its solubility is maintained.
  • an acidic aqueous solution for example, an acidic aqueous solution having a pH of 3 or less.
  • conventionally obtained chromium hydroxide is subject to change over time during long-term storage, and is liable to shift to an insoluble hydroxide in an acid or alkali aqueous solution. The cause of this is not clearly understood, but is thought to be due to the transition to a sparingly soluble form due to the chromization or oxidization of chromium. For this reason, when preparing the chromium plating solution, it was necessary to stir for a long time until the chromium hydroxide was completely dissolved.
  • high solubility means that when chromium hydroxide equivalent to 1 g of Cr is added to 1 liter of hydrochloric acid aqueous solution having a temperature of 25 ° C. and a pH of 0.2, the chromium hydroxide is added for 30 minutes. Means complete dissolution within. The presence or absence of dissolution of chromium hydroxide is judged visually. The dissolution time of chromium hydroxide is the time until the liquid becomes transparent.
  • an aqueous solution of an inorganic acid or an organic acid is used.
  • the inorganic acid aqueous solution include aqueous solutions of inorganic acids such as nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid, and hydrofluoric acid.
  • the organic acid aqueous solution include aqueous solutions of organic acids such as formic acid, acetic acid, glycolic acid, lactic acid, gluconic acid, oxalic acid, maleic acid, malonic acid, malic acid, tartaric acid, succinic acid, citric acid, fumaric acid, and butyric acid. It is done.
  • the chromium hydroxide produced according to the method of the present invention can be added and dissolved in an inorganic acid aqueous solution or an organic acid aqueous solution in a powder state or in a slurry state by adding water.
  • An aqueous solution of (III) or an organic acid chromium (III) is obtained.
  • concentration and amount of chromium hydroxide and inorganic acid aqueous solution or organic acid aqueous solution are appropriately determined according to the type of inorganic chromium or organic acid chromium (composition formula) and the target concentration in the final aqueous solution. be able to.
  • the inorganic acid aqueous solution or the organic acid aqueous solution preferably has a low pH.
  • the pH is preferably 2 or less, more preferably 1.5 or less.
  • the concentration of the inorganic acid or organic acid in the inorganic acid aqueous solution or organic acid aqueous solution is preferably in the range of 1 to 50% by weight, particularly 5 to 50% by weight.
  • chromium hydroxide inorganic acid aqueous solution or an organic acid aqueous solution at 25 to 90 ° C.
  • Examples of the inorganic acid chromium thus obtained include chromium hydrochloride, chromium nitrate, chromium phosphate, chromium sulfate, and chromium fluoride. These inorganic acid chromium may be a basic salt.
  • Cr (OH) x (NO 3 ) y a normal salt represented by Cr (NO 3 ) 3
  • Cr (OH) 0.5 (NO 3 ) 2.5 Cr (OH) (NO 3 ) 2
  • basic chromium nitrate which is a normal salt represented by Cr (NO 3 ) 3 , Cr (OH) 0.5 (NO 3 ) 2.5 , Cr (OH) (NO 3 ) 2 , Cr (OH) 2 (NO 3 )
  • basic chromium nitrate basic chromium nitrate.
  • Organic acid chromium is a compound represented by the general formula Cr m (A x ) n .
  • A shows the residue remove
  • A has a negative charge.
  • x represents the charge of A (negative charge).
  • the organic acid in the organic acid chromium is represented by R (COOH) y .
  • R represents an organic group, a hydrogen atom, a single bond or a double bond.
  • y represents the number of carboxyl groups in the organic acid and is an integer of 1 or more, preferably 1 to 3.
  • a in the above general formula is represented by R (COO ⁇ ) y .
  • R is an organic group
  • the organic group is preferably an aliphatic group having 1 to 10 carbon atoms, particularly 1 to 5 carbon atoms. This aliphatic group may be substituted with another functional group such as a hydroxyl group.
  • any of a saturated aliphatic group and an unsaturated aliphatic group can be used.
  • the chromium hydroxide produced according to the method of the present invention contains a chromium (III) source in a powder state or as a slurry state by adding water to be added to and dissolved in two or more acid aqueous solutions.
  • An aqueous solution can also be made.
  • concentration and amount of chromium hydroxide and acid aqueous solution, the combination of acids used, and the mixing ratio of each acid are appropriately determined according to the type of the desired chromium (III) source and the target concentration in the final aqueous solution. can do.
  • Examples of the acid aqueous solution that dissolves chromium hydroxide include a combination of organic acids, a combination of inorganic acids, or a combination of an organic acid and an inorganic acid.
  • Examples of the organic acid and inorganic acid that can be used include those described above.
  • the method for producing two or more acid aqueous solutions containing a chromium (III) source of the present invention may follow the above-described method for producing an inorganic acid chromium or organic acid chromium aqueous solution, detailed description thereof is omitted here.
  • the following methods 1) to 3) can be used for dissolving chromium hydroxide in an acid aqueous solution.
  • 1) A method in which an acid aqueous solution in which two or more desired acids are dissolved in advance is prepared, and chromium hydroxide is added thereto to dissolve the chromium hydroxide in the acid solution.
  • One component acid of the desired acids is appropriately selected in advance, and then the selected acid is dissolved in water to prepare an aqueous acid solution.
  • chromium hydroxide is added to the obtained acid aqueous solution to perform a primary dissolution treatment.
  • an acid aqueous solution in which a part of a necessary amount of two or more desired acids is dissolved in water in advance is prepared.
  • chromium hydroxide is added to the obtained acid aqueous solution to perform a primary dissolution treatment.
  • the chromium (III) source of the present invention thus obtained is a complex chromium (III) salt having two or more acid radicals bonded to chromium represented by the following formula.
  • bonded with chromium may be chosen from the combination of organic acids, the combination of inorganic acids, or both an organic acid and an inorganic acid.
  • chromium hydroxide produced according to the method of the present invention has high solubility in an acidic aqueous solution as described above, for example, chromium plating using trivalent chromium or a metal surface treatment solution or trivalent as described below. It is useful as a trivalent chromium source in a chromium chemical conversion treatment solution.
  • the chromium hydroxide of the present invention as a trivalent chromium source, it is possible to shorten the preparation time of the plating solution and the treatment solution.
  • a high-quality plating film or trivalent chromium chemical conversion film can be formed.
  • trivalent chromium chemical conversion treatment refers to a film containing a trivalent chromium that is chemically contacted with an aqueous solution containing a trivalent chromium salt as a main component. This is the process that generates
  • a trivalent chromium-containing liquid using the above-described highly soluble chromium hydroxide as a chromium source is also provided.
  • the trivalent chromium-containing liquid of the present invention is used for decorative final finishing and industrial trivalent chromium plating. Moreover, it is used for surface treatment of various metals, such as plating applied to the upper layer of nickel plating. Furthermore, it is used for trivalent chromium chemical conversion treatment such as zinc plating and tin plating. That is, the trivalent chromium-containing liquid of the present invention can be a trivalent chromium plating solution or a trivalent chromium chemical conversion treatment solution. In the following description, these solutions are collectively referred to as “plating solution etc.” unless otherwise specified.
  • the trivalent chromium plating solution contains other components including trivalent chromium and organic acids derived from the above-mentioned chromium hydroxide. Is included.
  • the treatment liquid uses the above-mentioned chromium hydroxide as a chromium source, and further includes a cobalt compound, a silicon compound, and a zinc compound.
  • Various organic acids can be included.
  • Examples of the cobalt compound used in the trivalent chromium chemical conversion treatment liquid include cobalt chloride, cobalt nitrate, cobalt sulfate, cobalt phosphate, and cobalt acetate. These can also be used 1 type or in mixture of 2 or more types.
  • Examples of the silicon compound include colloidal silica, sodium silicate, potassium silicate, and lithium silicate. These silicon compounds can be used alone or in combination of two or more.
  • Examples of the zinc compound include zinc chloride, zinc sulfate, zinc nitrate, zinc oxide, zinc carbonate, zinc phosphate, and zinc acetate. These zinc compounds can be used alone or in combination.
  • organic acid examples include oxalic acid, malonic acid, succinic acid, citric acid, adipic acid, tartaric acid, malic acid, glycine and the like. Since these show chelate action, it is considered that trivalent chromium can be held in a stable form in the plating solution.
  • the trivalent chromium chemical conversion treatment liquid preferably contains 0.005 to 1.0 mol / liter of chromium, for example.
  • the molar ratio of chromium to organic acid is preferably 1 to 5 moles per mole of chromium.
  • a replenishing solution such as a plating solution used for chromium plating or metal surface treatment or trivalent chromium chemical conversion treatment is also provided.
  • This replenisher consists of a slurry containing the above-mentioned chromium hydroxide. As described above, this slurry preferably does not contain impurity ions.
  • inorganic anions such as sulfate ions, nitrate ions, and chloride ions are not taken into the film and remain in the liquid.
  • plating solution that is replenished with the chromium source by the replenishing solution
  • a plating solution containing trivalent chromium that has been conventionally used can be used.
  • the replenisher of the present invention is added to the plating solution or the like in an appropriate amount according to the degree of consumption of chromium ions in the plating solution or the like during plating or trivalent chromium conversion treatment.
  • the addition may be continuous or intermittent.
  • % means “% by weight”.
  • Example 1 A 10% sodium hydroxide aqueous solution (140 g) and a 35% chromium chloride aqueous solution (manufactured by Nippon Chemical Industry Co., Ltd.) (55 g) were diluted by adding 220 g of water to prepare a 7% chromium chloride aqueous solution. Next, the sodium hydroxide aqueous solution was adjusted to 20 ° C., and the chromium chloride aqueous solution was adjusted to 20 ° C. An aqueous sodium hydroxide solution and an aqueous chromium chloride solution were simultaneously added to pure water adjusted to 20 ° C.
  • the addition rate was 2 ml / min for an aqueous sodium hydroxide solution and 4.5 ml / min for an aqueous chromium chloride solution.
  • the addition was performed continuously. The addition was performed for 60 minutes.
  • the pH of the reaction solution was maintained between 7.5 and 8.5.
  • the temperature of the reaction solution was maintained between 20 and 25 ° C.
  • the reaction solution was stirred (700 rpm) so that the amount of trivalent chromium was not locally excessive with respect to the amount of sodium hydroxide.
  • the precipitate produced by the reaction was washed with filtered water at 30 ° C. until the filtrate had a conductivity of 1 mS / cm to obtain chromium hydroxide.
  • This chromium hydroxide was suspended in pure water to obtain a slurry having a concentration of 8%.
  • Table 1 shows the MV and D and the degree of aggregation MV / D of the resulting chromium hydroxide.
  • Example 2 Instead of the 10% aqueous sodium hydroxide solution used in Example 1, 59 g of a 10% aqueous ammonia solution was used. The temperature of the aqueous ammonia solution was adjusted to 20 ° C. Other than that was carried out similarly to Example 1, and obtained chromium hydroxide. About the obtained chromium hydroxide, the same measurement as Example 1 was performed. The results are shown in Table 1 below.
  • Example 2 The produced precipitate was washed by filtration with water to obtain about 12 g of chromium hydroxide. Except this, the same operation as in Example 1 was performed to obtain a chromium hydroxide slurry. About the obtained chromium hydroxide, the same measurement as Example 1 was performed. The results are shown in Table 2 below. However, the solubility was measured only immediately after generation.
  • Example 3 In Example 1, except that the temperature of the reaction solution was set to 70 ° C., the same operation as in Example 1 was performed to obtain a chromium hydroxide slurry. About the obtained chromium hydroxide, the same measurement as Example 1 was performed. The results are shown in Table 2 below. However, the solubility was measured only immediately after generation.
  • the chromium hydroxide obtained by the method of the Examples has high solubility.
  • the chromium hydroxide is excellent even after long-term storage. It can be seen that good solubility is maintained.
  • the comparative chromium hydroxide prepared by adding an inorganic alkaline aqueous solution to an aqueous solution containing trivalent chromium has a lot of primary particle aggregation and low solubility. Even when an aqueous solution containing an inorganic alkali solution and an aqueous solution containing trivalent chromium is added at the same time to prepare chromium hydroxide, when the reaction temperature is high (Comparative Example 3), the primary particles easily aggregate and have solubility. Is low.
  • Example 3 In the same manner as in Example 1, chromium hydroxide was obtained. This chromium hydroxide was suspended in pure water to obtain a slurry having a concentration of 8%. Next, each of the obtained chromium hydroxide slurries was added to 1 liter of various inorganic acid aqueous solutions at a temperature of 25 ° C. or to 1 liter of various organic acid aqueous solutions at a temperature of 50 ° C. Then, an inorganic acid chromium aqueous solution or an organic acid chromium aqueous solution was obtained. Table 3 shows the time (unit: minute) required for dissolution.
  • Example 4 In the same manner as in Example 1, chromium hydroxide was obtained. This chromium hydroxide was suspended in pure water to obtain a slurry having a concentration of 8%. Next, an amount corresponding to 1 g of Cr was added to 1 liter of an aqueous solution containing two kinds of acids at a temperature of 25 ° C. and dissolved to obtain aqueous solutions containing a chromium (III) source. Table 4 shows the time (unit: minute) required for dissolution. In addition, the composition of the acid aqueous solution used in each Example is as follows.
  • Liquid A (pH 0.2); hydrochloric acid 2.6% by weight, nitric acid 5.2% by weight Liquid B (pH 0.4); phosphoric acid 3.3% by weight, sulfuric acid 2.5% by weight Liquid C (pH 0.3); hydrochloric acid 2.6% by weight, oxalic acid 2.2% by weight
  • a plating solution for trivalent chromium plating having the following composition was prepared in a square plating tank having an internal volume of 8 liters.
  • a mild steel round bar was used as an object to be plated, a carbon plate was used as an anode, and chromium plating was performed under conditions of a bath temperature of 50 ° C. and a current density of 40 A / dm 2 .
  • the amount of chromium consumed and the chromium concentration in the bath were calculated from the weight measurement before and after the plating of the round bar.
  • the chromium hydroxide slurry obtained in Example 1 was The amount corresponding to the electrodeposited metallic chromium was added to the plating solution, and the chromium plating was continued with sufficient stirring. As a result, good chromium plating was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 本発明の水酸化クロムの製造方法は、従来の製造方法で得られた水酸化クロムよりも酸性水溶液に対する溶解性が高い水酸化クロムを得ることができ、その方法は、反応液温が0℃以上50℃未満の条件下で、無機アルカリ水溶液と三価のクロムを含む水溶液とを、水性媒体へ同時に添加して水酸化クロムを生成させることを特徴とする。三価のクロムを含む水溶液及び無機アルカリ水溶液を添加している間の反応液のpHを7.0~12の範囲に維持することが好ましい。

Description

水酸化クロムの製造方法
 本発明は、水酸化クロムの製造方法に関する。本発明の方法に従い製造された水酸化クロムは、例えばクロムめっき又は金属の表面処理若しくは三価クロム化成処理に有用である。
 クロムめっきは、装飾用及び工業用として多くの産業分野で用いられている。クロムめっきは大気中で腐食せず光沢を失わないので、装飾めっきとして広く用いられている。また高い硬度と低い摩擦係数を有するので、耐摩耗性を要する機械部品等に広く用いられている。このめっきに用いられるめっき液には多量の六価のクロムが用いられている。六価のクロムは人体への影響が懸念されるので、めっき廃液の処理の際に環境中に放出されないよう非常に厳重な条件下で三価のクロムに還元しなければならない。したがって六価のクロムに代えて、毒性の少ないクロムである三価のクロムを用いためっき液の開発が望まれている。
 三価のクロムを用いためっき液として、例えば特許文献1には、装飾用めっきのめっき液として塩化クロム、硫酸クロム、スルファミン酸クロムなどの三価のクロム化合物を用いたクロムめっき液が記載されている。しかし塩化クロムや硫酸クロム等の無機塩の三価クロムをクロム源として用いた場合、クロムはめっきで消費されるのに対し、クロム塩の対アニオンである塩化物イオンや硫酸イオンはめっき液中に残存する。そして、めっき液はその液組成を一定に保つ必要性から、消費されるクロムに相当する量のクロム源を適宜追加して使用されるため、塩化物イオンや硫酸イオンがめっき液中に蓄積されていくことになる。したがって最終的には液組成を一定に保つことができなくなって全量を新規めっき液と交換し、使用済みめっき液は廃液として処理されることになる。
 この問題を解決する方法として、特許文献2では、塩化クロム及び塩化アンモニウムを含むめっき液を用いて三価クロムめっきを行うに際し、めっき液の一部を冷却装置に循環させ、この冷却装置で塩化アンモニウムの一部を晶析させて取り除くことにより、めっき液中の塩化アンモニウム濃度を制御しながらめっきする三価クロムめっき方法が提案されている。
 また三価クロム源として、対アニオンが蓄積しない化合物である水酸化クロムをその含水ゲルの状態で用いてこの問題を解決することも提案されている(特許文献3参照)。しかし水酸化クロムは一般的に水に不溶性で、通常のめっき液として用いられる酸性水溶液に対しても溶解性が低い。このため、めっき液の調製に加温下で長時間の攪拌を要する。また消費されたクロムを補充する際にも補充した水酸化クロムを溶解するのに長時間を要する。これらの理由により、その間めっき作業が中断され、めっき液の調製及びめっき作業において問題が生じていた。
 従来の水酸化クロムの製造方法としては、次の(1)-(3)方法が知られている(特許文献4~6参照)。
方法(1):
 クロムめっき工程などから排出されるクロム酸イオンを含有する水性液体に、予め還元剤を添加して該液体中のクロム酸イオンを三価のクロムイオンに還元し、これに水酸化ナトリウムを添加して水酸化クロムの沈殿を得る方法である(特許文献4)。しかしこのようにして得られた水酸化クロムは、硫酸イオン等の不純物イオンが付着していることが多く、種々の用途に適用するためには精製することが必要である。特許文献4にはpH9.5以上の条件下で水洗することが記載されている。
方法(2):
 三価クロムを含有する硫酸塩水溶液に尿素を添加し、この溶液を約90℃ないし該水溶液の沸点の範囲の温度に加熱して尿素の分解により液のpHを高め且つこの間該水溶液中の硫酸イオン濃度を約1モル/リットル以下に保持することによって塩基性硫酸クロムを析出及び/又は分離する。次に、生成した塩基性硫酸クロムを尿素と共に前記温度範囲に加熱するか又はアルカリ金属、アルカリ土類金属若しくはアンモニウムの水酸化物若しくは炭酸塩で中和して水酸化クロムを製造する(特許文献5)。特許文献5には、中和によって水酸化クロムを製造する場合には、クロムの塩化物水溶液から出発する方法が容易である旨が記載されている。しかし得られた水酸化クロムの溶解性及び中和の際の添加順序については記載がない。
方法(3):
 三価のクロム塩水溶液を水酸化ナトリウム若しくはアンモニア水にて中和する。得られた水酸化クロムのスラリー液から沈殿物を濾過分離する。分離した沈殿物を水に懸濁させてスラリー液とする。このスラリー液をイオン交換樹脂に通液して水可溶性の不純物と吸着分離する(特許文献6)。特許文献6には、生成された硫酸クロム若しくは塩化クロムの水溶液を水酸化ナトリウム若しくはアンモニア水で中和し、得られた水酸化クロムのスラリー液から沈殿物を濾過分離した後、洗浄して不純物イオンを除去する方法が記載されている。しかし実際の製造は、硫酸クロム水溶液に水酸化ナトリウムを添加する方法を採用している。また得られた水酸化クロムの溶解性についての記載はない。
 以上の製造方法とは別に、特許文献7には、種々の無機酸のクロム(III)塩についての開示があるものの、水酸化クロムに関する記載はない。
特開平9-95793号公報(第2頁) 特開2002-322599号公報(特許請求の範囲) 特開2006-249518号公報 特開昭52-35794号公報(特許請求の範囲、第1頁及び第2頁) 特開昭53-132499号公報(特許請求の範囲、第1頁及び第2頁) 特開平2-92828号公報(特許請求の範囲、第1頁及び第2頁) 国際公開第2005/056478号パンフレット
 本発明の目的は、溶解性の高い水酸化クロムの製造方法を提供することにある。
 本発明は、反応液温が0℃以上50℃未満の条件下で、無機アルカリ水溶液と三価のクロムを含む水溶液とを、水性媒体へ同時に添加して水酸化クロムを生成させることを特徴とする水酸化クロムの製造方法を提供するものである。
 また本発明は、前記の方法で水酸化クロムを生成させた後、該水酸化クロムを無機酸水溶液又は有機酸水溶液に溶解することを特徴とする無機酸クロム(III)水溶液又は有機酸クロム(III)水溶液の製造方法を提供するものである。
 本発明によれば、従来の製造方法で得られた水酸化クロムよりも酸性水溶液に対する溶解性が高い水酸化クロムを得ることができる。三価のクロム源として本発明の方法で製造された水酸化クロムを用いることで、三価クロムめっき液の調製時間を短縮することができ、また未溶解の水酸化クロムに起因するめっき皮膜への悪影響を防ぐことができる。また、本発明の方法で製造された水酸化クロムを用いた三価クロム含有液を、クロムめっき又は金属の表面処理若しくは三価クロム化成処理に用いると、三価クロム源の対アニオンがめっき液等中に蓄積しないことから、めっき液等の組成を一定に保つことが容易となる。まためっき液等の調製時間が大幅に短縮されるので、関連産業に及ぼす効果は大きいものである。
 本発明の製造方法は、無機アルカリ水溶液と三価のクロムを含む水溶液との同時添加に特徴の一つを有する。これらの水溶液を、水性媒体へ同時添加することで、意外にも、酸性水溶液に対する溶解性の高い水酸化クロムを得ることができることを本発明者らは知見した。これに対して、従来の水酸化クロムの製造方法、例えば特許文献4及び6に記載の製造方法では同時添加は採用しておらず、その代わりに、三価のクロムを含む水溶液に水酸化ナトリウム等のアルカリを添加して水酸化クロムを生成させている。この方法で得られる水酸化クロムは、酸性水溶液に対する溶解性に劣るものである。なお以下の説明では、特に断らない限りクロムというときには、三価のクロムを意味する。
 無機アルカリ水溶液及び三価のクロムを含む水溶液は、これらを実質的に連続的に水性媒体へ添加する。実質的に連続的にとは、製造上の条件の変動等に起因して、添加が不可避的に一時的に不連続になる場合を許容する趣旨である。
 無機アルカリ水溶液及び三価のクロムを含む水溶液の同時添加においては、操作開始時に、両水溶液を実質的に同時に添加する。尤も、本発明の効果を損なわない限度において、無機アルカリ水溶液の添加の方が、三価のクロムを含む水溶液の添加に先んじてもよく、あるいはその反対に、三価のクロムを含む水溶液の添加の方が、無機アルカリ水溶液の添加に先んじてもよい。操作終了時においても同様であり、両水溶液の添加は実質的に同時に終了させるが、本発明の効果を損なわない限度において、無機アルカリ水溶液の添加終了の方が、三価のクロムを含む水溶液の添加終了に先んじてもよく、あるいはその反対に、三価のクロムを含む水溶液の添加終了の方が、無機アルカリ水溶液の添加終了に先んじてもよい。
 無機アルカリ水溶液及び三価のクロムを含む水溶液は、水性媒体へ同時添加される。本発明において用いられる水性媒体は、好ましくはpHが中性域ないしアルカリ域のものである。pHが酸性域のものを用いることも可能ではあるが、生成する水酸化クロムの溶解性が良好になる点にかんがみると、pHが中性域ないしアルカリ域の水性媒体を用いることが有利である。
 pHが中性域の水性媒体としては、例えば水(純水)や中性塩の水溶液を用いることができる。中性塩としては、例えば塩化ナトリウム等を用いることができる。中性塩の濃度は一般に1mol/l程度までとすることが好ましい。pHがアルカリ域の水性媒体としては例えばアンモニア水を用いることができる。アンモニア水の濃度は一般に0.01mol/l程度までとすることが好ましい。また、水性媒体は、そのpHが中性域かアルカリ域かを問わず、必要に応じ、低級アルコール等の水溶性有機溶剤を含有することもできる。これらの水性媒体のうち、クロムめっき液等の調製において不要な化学種の混入を防止し得る点から、水(純水)を用いることが好ましい。
 生成する水酸化クロムの溶解性は、無機アルカリ水溶液及び三価のクロムを含む水溶液を同時添加することに加えて、反応液の温度にも影響される。ここで言う反応液とは、無機アルカリ水溶液及び三価のクロムを含む水溶液が、水性媒体に添加されてなる液のことである。反応液の温度は0℃以上50℃未満とすることが必要である。反応液の温度が50℃以上であると、生成する水酸化クロムが凝集体又は塊状になり易いことから、溶解性の高い水酸化クロムが得られない。反応液の温度が0℃未満であると、三価クロム塩及び/又は無機アルカリの析出のおそれがある。反応液の温度が10℃以上50℃未満、特に10~40℃であると、溶解性の高い水酸化クロムが一層容易に得られるので好ましい。
 無機アルカリ水溶液と三価のクロムを含む水溶液との反応は中和反応であるので、両水溶液を水性媒体中で混合することで、所望の特性を有する水酸化クロムが得られる。同時添加による反応中は、反応液を攪拌して反応を均一に行わせかつ反応を促進させることが好ましい。攪拌が不十分な場合には、反応液において局所的にアルカリの量に対して三価のクロムの量が過剰な状態になることがある。このような状態下に生成する水酸化クロムは、酸性水溶液に対する溶解性に劣るものである。したがって、三価のクロムを含む水溶液の添加を、アルカリの量に対して三価のクロムの量が局所的に過剰にならないように行うことが重要である。この観点から、攪拌条件を、局所的な停滞部分の発生を避け、均一混合ができるように調整することが好ましい。アルカリの量に対して三価のクロムの量が局所的に過剰になる状態とは、例えば、特許文献4及び6に記載されているように、三価のクロムを含む水溶液に無機アルカリ水溶液を添加した状態を言う。
 無機アルカリ水溶液及び三価のクロムを含む水溶液の濃度、添加速度、添加比率等に特に制限はないが、反応中に不均一な混合が起きないよう撹拌機の能力や製造スケールに応じてこれらを調整することが、溶解性の高い水酸化クロムを得る点から好ましい。好ましい濃度としては、無機アルカリ水溶液における水酸化物イオンの濃度は1~50重量%、特に5~30重量%であり、三価のクロムを含む水溶液における三価のクロムの濃度は1~40重量%、特に3~20重量%である。好ましい添加速度は、水性媒体を例えば1リットル用いる場合には、濃度が上述の範囲であることを条件として、無機アルカリ水溶液が2~150ml/分、特に10~100ml/分であり、三価のクロムを含む水溶液が5~300ml/分、特に10~200ml/分である。添加比率、すなわち添加速度の比は、濃度及び添加速度が上述の範囲であることを条件として、無機アルカリ水溶液の添加速度に対して、三価のクロムを含む水溶液の添加速度が0.1~20倍、特に0.5~10倍である。
 無機アルカリ水溶液及び三価のクロムを含む水溶液の濃度、添加比率や添加速度は、これらの水溶液を添加している間の反応液のpHが7.0~12、特に7.5~10に維持されるように調整することが好ましい。反応中のpHをこの範囲内に維持することで、目的する溶解性を有する水酸化クロムを首尾良く製造することができる。
 三価のクロムを含む水溶液におけるクロム源としては、三価のクロムの水溶性塩を特に制限なく用いることができる。そのような塩としては、例えば塩化クロム、硫酸クロム、硫酸クロムアンモニウム、硫酸クロムカリウム、ギ酸クロム、フッ化クロム、過塩素酸クロム、スルファミン酸クロム、硝酸クロム、酢酸クロムなどが挙げられる。これらの塩は一種又は二種以上を組み合わせて用いることができる。これらの塩は、水溶液の状態で用いてもよく、あるいは粉末の状態で用いても良い。例えば日本化学工業社製「35%液体塩化クロム」、「40%液体硫酸クロム」(製品名)や市販の塩化クロム(結晶品)を用いることができる。これらの塩のうち、塩化クロム、硫酸クロムを用いることが、有機物が残存しない点、排水処理が容易である点及び経済性の点から好ましい。
 三価のクロムを含む水溶液としては、六価のクロムを含む水溶液における六価のクロムを三価に還元したものを用いることもできる。例えば重クロム酸塩の水溶液に亜硫酸ガスを通して六価のクロムを三価のクロムに還元した水溶液を用いることができる。あるいは、重クロム酸の水溶液に硫酸を加え、有機物で六価のクロムを三価のクロムに還元した水溶液を用いることもできる。
 三価のクロムを含む水溶液と同時に添加される無機アルカリ水溶液に用いられる無機アルカリとしては、水酸化ナトリウムや水酸化カリウムなどのアルカリ金属の水酸化物、アンモニア等を用いることができる。無機アルカリに代えて有機アルカリを用いると、有機アルカリがクロムと水溶性の錯塩を形成することに起因して、水酸化クロム生成後の濾過廃液中にクロムが残留するおそれがある。したがって有機アルカリの使用は避けるべきである。上述した無機アルカリのうち、特にアルカリ金属の水酸化物を用いると、酸性水溶液に対する水酸化クロムの良好な溶解性が長期間にわたって維持されるので好ましい。
 三価のクロムを含む水溶液と無機アルカリ水溶液とを同時添加して水酸化クロムが生成したら、スラリーを濾過して固形物としての水酸化クロムを分離し、これを洗浄する。濾過には通常の方法を用いることができる。例えばブフナー漏斗を用いた吸引濾過を行うことができる。濾過後の洗浄は水を用いて行う。例えばブフナー漏斗上のケーキに水を加えてリパルプし、更に吸引濾過を行う等して洗浄を行うことができる。洗浄は、濾液の導電率が例えば5mS/cm以下となるまで行うことが好ましい。濾液の導電率が高いことは、洗浄後の水酸化クロムに原料に由来する副生塩が多く残存していることを意味する。かかる副生塩は、水酸化クロムを三価クロムめっき液のクロム源として用いた場合に、めっき液中に蓄積されてしまうので極力除去されるべきものである。したがって濾液の導電率が前記の値以下となるまで洗浄を行うことが好ましい。また、濾過及び洗浄は、好ましくは0~50℃、更に好ましくは20~40℃の低温で行うことが好ましい。クロムのオール化やオクソ化及びそれに起因する難溶性物の生成を防止することができるからである。
 洗浄後、水酸化クロムを乾燥させて粉末状態とするか、あるいは水を加えて所定濃度のスラリーとする。
 前記の反応中に、又は反応終了後に、還元剤を添加することが好ましい。これによって反応中に、又は保存中に(スラリー状態での保存中に)、酸化雰囲気下に置かれた場合でも、再酸化を防止できることから、六価のクロムが生成することを防止できる。特に、反応終了後に還元剤を添加することが、再酸化を確実に防止できる観点から好ましい。還元剤としては、当該技術分野において従来用いられている有機系又は無機系の還元剤を特に制限なく用いることができる。有機系の還元剤としては、例えばメチルアルコール、プロピルアルコール等の一価アルコール、エチレングリコール、プロピレングリコール等の二価アルコールが好適に使用される。他の有機系の還元剤としては、グルコースなどの単糖類、マルトースなどの二糖類、でんぷんなどの多糖類等が挙げられる。無機系の還元剤としては、例えばヒドラジン、過酸化水素等が挙げられる。
 本発明の方法に従い製造された水酸化クロム(以下、単に「本発明の水酸化クロム」とも言う。)は、純水に対しては不溶性又は難溶性であるが、酸性水溶液(例えばpH3以下の酸性水溶液)に対しては溶解性が高いことを特徴とするものである。かかる特徴を有する水酸化クロムは、その凝集度及び粒子径で特定される。具体的には、本発明の水酸化クロムは微粒子であり、その凝集度が低いものである。本発明において凝集度は、MV/Dで定義される。MVは、粒度分布測定装置により測定された体積平均粒子径を表し、Dは、走査型電子顕微鏡(SEM)像から測定された平均粒子径を表す。この定義によれば、凝集度の値が大きいほど凝集性が高い(つまり粒子が凝集している)ことを意味する。
 凝集度の具体的な測定法は次のとおりである。生成した水酸化クロムを家庭用ミキサー等で水中に十分分散した後、レーザー回折散乱法式の粒度分布測定装置で体積平均粒子径(MV)を測定する。またSEM像で水酸化クロムの一次粒子200個の粒子径を測定し、その平均値をSEM像による平均粒子径Dとする。一次粒子が球形でない場合には、粒子を横切る最大長さを粒子径とする。このようにして測定されたMVをDで除した値を凝集度とする。
 本発明の水酸化クロムは、前記の定義に基づき算出された凝集度が好ましくは10以上70未満である。水酸化クロムの凝集度が70を超えると、酸性水溶液に対する溶解性が低下する傾向にある。本発明の方法に従い製造された水酸化クロムは、その凝集度が低いほど酸性水溶液に対する溶解性が高まる。この観点からは、水酸化クロムの凝集度の値は小さいほど好ましい。本発明の製造方法で到達可能な凝集度の下限値には限界があることから、本発明においては水酸化クロムの凝集度の下限値を10と規定した。特に凝集度が10~60であると、経時変化が少なくなり、一層良好な溶解性が保てることから更に好ましい。
 本発明の水酸化クロムは、一次粒子の平均粒径Dが好ましくは40~200nm、更に好ましくは50~100nmという微粒のものである。かかる粒径を有する水酸化クロムは、上述の凝集度を満足することで、酸性水溶液に対する溶解性が向上したものとなる。一次粒子の平均粒径Dが40nm未満では、静電引力が強くなり、凝集しやすく、溶解性が低くなってしまう。一次粒子の平均粒径Dが200nm超では、比表面積が小さくなり、酸との反応箇所が少なくなるため、溶解性が低くとなってしまう。
 本発明の水酸化クロムの粒子形状に特に制限はなく、例えば球状や塊状などの形状であり得る。
 本発明の水酸化クロムは、一般に乾燥した粉末状態であるか、又は水に懸濁したスラリーの状態になっている。酸性水溶液に対する溶解性を高める観点からは、本発明の方法に従い製造した直後から引き続いてスラリーの状態としておくことが好ましい。スラリー中には水酸化クロム以外の成分が含まれていてもよく、あるいは含まれていなくてもよい。スラリー中に水酸化クロム以外の成分が含まれている場合、該成分としてはNa、K、Cl、SO4、NH4等が挙げられる。該スラリーを、クロムめっき又は金属の表面処理若しくは三価クロム化成処理に用いられるめっき液等の補充液として用いる場合には、該スラリーは不純物イオンを実質的に含まないことが好ましい。補充に起因する不要なイオンの蓄積を防止するためである。本明細書に言う「不純物イオン」とは、H+及びOH-イオン以外のイオンを意味する。「実質的に含まない」とは、水酸化クロムの調製及びそれを用いたスラリーの調製の間に、意図的に不純物イオンを添加しないことを意味し、不可避的に混入する微量の不純物イオンは許容する趣旨である。したがって、水酸化クロムの調製及びそれを用いたスラリーの調製に使用する水としては、純水、イオン交換水の他、不純物イオンを実質的に含まない水道水、工業用水等を用いても差し支えない。
 既に述べたとおり、本発明の水酸化クロムは、酸性水溶液(例えばpH3以下の酸性水溶液)に対する溶解性が高いものである。しかも長期保存した後であっても、その溶解性が維持される。これに対して従来得られていた水酸化クロムは、長期保存中に経時変化を起こし、酸又はアルカリの水溶液に対して難溶性の水酸化物に移行し易い。この原因ははっきりとはわからないが、クロムのオール化やオクソ化により、難溶性の形態に移行するためと考えられる。このため、クロムめっき液を調製するときには、水酸化クロムが完全に溶解するまで長時間攪拌を行わなければならなかった。
 本明細書において溶解性が高いとは、温度25℃でpHが0.2の塩酸水溶液1リットルに、Crとして1g含有に相当する水酸化クロムを加えたときに、その水酸化クロムが30分以内に完全溶解することを意味する。水酸化クロムの溶解の有無は目視で判断する。水酸化クロムの溶解時間は、液が透明になるまでの時間である。
 前記の酸性水溶液としては、無機酸又は有機酸の水溶液が用いられる。無機酸水溶液としては、例えば硝酸、リン酸、塩酸、硫酸、フッ化水素酸等の無機酸の水溶液が挙げられる。有機酸水溶液としては、ギ酸、酢酸、グリコール酸、乳酸、グルコン酸、シュウ酸、マレイン酸、マロン酸、リンゴ酸、酒石酸、コハク酸、クエン酸、フマル酸、酪酸等の有機酸の水溶液が挙げられる。
 本発明の方法に従い製造された水酸化クロムは、粉末状態のまま、又は水を加えてスラリーの状態として、無機酸水溶液又は有機酸水溶液に添加して溶解させることができ、それによって無機酸クロム(III)又は有機酸クロム(III)の水溶液が得られる。水酸化クロム及び無機酸水溶液又は有機酸水溶液の濃度及び使用量は、目的とする無機酸クロム又は有機酸クロムの種類(組成式)及びその最終水溶液中での目的濃度に応じて、適宜決定することができる。
 水酸化クロムを容易にかつ確実に溶解する観点からは、無機酸水溶液又は有機酸水溶液はpHが低いことが好ましい。具体的には好ましくはpH2以下、更に好ましくはpH1.5以下である。無機酸水溶液又は有機酸水溶液における無機酸又は有機酸の濃度としては1~50重量%、特に5~50重量%の範囲であることが好ましい。また、容易にかつ確実に溶解させる観点からは、無機酸水溶液又は有機酸水溶液1リットルに対し、Crとして1g以下に相当する水酸化クロムを使用することが好ましい。
 無機酸水溶液又は有機酸水溶液への水酸化クロムの溶解は、25~90℃で行うことが好ましい。
 このようにして得られた無機酸クロムとしては、塩酸クロム、硝酸クロム、リン酸クロム、硫酸クロム、フッ化クロム等が挙げられる。これらの無機酸クロムは、塩基性塩であってもよい。例えば硝酸クロムは、組成式Cr(OH)x(NO3)y(式中、0≦x≦2、1≦y≦3、x+y=3)で表される化合物であり、該化合物には、Cr(NO33で表される正塩である硝酸クロムの他に、Cr(OH)0.5(NO32.5、Cr(OH)(NO32、Cr(OH)2(NO3)等の塩基性硝酸クロムも含まれる。
 また有機酸クロムは、一般式Crm(Axnで表される化合物である。前記の一般式中、Aは有機酸からプロトンを除いた残基を示す。Aは負の電荷を有している。xはAの電荷(負電荷)を表す。m及びnは3m+xn=0を満たす整数をそれぞれ表す。
 有機酸クロムにおける有機酸は、R(COOH)yで表される。式中、Rは有機基、水素原子又は単結合若しくは二重結合を表す。yは有機酸におけるカルボキシル基の数を表し、1以上の整数であるが、好ましくは1ないし3である。前記の一般式におけるAはR(COO-yで表される。Rが有機基である場合、該有機基としては炭素数1~10、特に1~5の脂肪族基が好ましい。この脂肪族基は、他の官能基、例えば水酸基で置換されていてもよい。脂肪族基としては、飽和脂肪族基及び不飽和脂肪族基のいずれも用いることができる。
 また、本発明の方法に従い製造された水酸化クロムは、粉末状態のまま、又は水を加えてスラリーの状態として、2種以上の酸水溶液に添加して溶解し、クロム(III)源を含む水溶液をすることもできる。水酸化クロム及び酸水溶液の濃度及び使用量、使用する酸の組み合わせ、各酸の配合割合は、目的とするクロム(III)源の種類及びその最終水溶液中での目的濃度に応じて、適宜決定することができる。
 水酸化クロムを溶解する酸水溶液の種類は、有機酸同士の組み合わせ、無機酸同士の組み合わせ、あるいは有機酸と無機酸との組み合わせが挙げられる。使用できる有機酸及び無機酸としては、先に述べたものと同様のものが挙げられる。
 本発明のクロム(III)源を含む2種以上の酸水溶液の製造方法は、上述した無機酸クロム又は有機酸クロム水溶液の製造方法に従えばよいので、ここではその詳細な説明を省略する。概略を観点に説明すると、水酸化クロムの酸水溶液への溶解には、例えば次の1)~3)の方法を用いることができる。しかし、これらの方法に制限されるものではない。
 1)所望の2種以上の酸を予め溶解した酸水溶液を調製し、これに水酸化クロムを添加して水酸化クロムを酸溶液に溶解処理する方法。
 2)所望の酸のうちの1成分の酸を予め適宜選択し、次にこの選択した酸を水に溶解し酸水溶液を調製する。次に得られた酸水溶液に水酸化クロムを添加し1次溶解処理をする。これに残りの成分の酸を添加して第2次溶解処理をする方法。
 3)あるいは所望の2種以上の酸の必要量の一部を予め水に溶解した酸水溶液を調製する。次に得られた酸水溶液に水酸化クロムを添加し1次溶解処理をする。これに残量の酸を添加して2次溶解処理し水酸化クロムを溶解する方法。
かくして得られる本発明のクロム(III)源としては、以下の式で表される、クロムと結合する酸根が2種以上の複合クロム(III)塩である。なお、クロムと結合する酸の種類は、有機酸同士の組み合わせ、無機酸同士の組み合わせ、あるいは有機酸と無機酸の両方から選ばれるものであってもよい。
Figure JPOXMLDOC01-appb-C000001
 前記の式において、酸としてリン酸を用いた場合の前記H2PO4 -とHPO4 2-の存在割合は、反応条件や原料系等で任意に変化する。
 本発明の方法に従い製造された水酸化クロムは、上述のとおり酸性水溶液に溶解性が高いので、以下に述べるように、例えば三価のクロムを用いたクロムめっき又は金属の表面処理液若しくは三価クロム化成処理液における三価クロム源として有用である。本発明の水酸化クロムを三価クロム源として用いることで、めっき液や処理液の調製時間を短縮化することが可能となる。また、めっき液や処理液中に未溶解の水酸化クロムが存在しないので、良質なめっき皮膜や三価クロム化成皮膜を形成することができる。なお、本明細書における「三価クロム化成処理」とは、三価クロム塩を主成分とする水溶液に被処理物を接触させ、該被処理物に、化学的に三価のクロムを含む皮膜を生成させる処理のことをいう。
 本発明によれば、上述した溶解性の高い水酸化クロムをクロム源として用いた三価クロム含有液も提供される。本発明の三価クロム含有液は、装飾用の最終仕上げ及び工業用の三価クロムめっきに用いられる。また、ニッケルめっきの上層に施されるめっき等の各種金属の表面処理に用いられる。更に亜鉛めっきやすずめっき等の三価クロム化成処理に用いられる。即ち、本発明の三価クロム含有液は、三価クロムめっき液や三価クロムの化成処理液であり得る。以下の説明では、特に断らない限り、これらの液を総称して「めっき液等」という。
 本発明の三価クロム含有液を三価クロムめっき液として用いる場合、該三価クロムめっき液は、上述の水酸化クロムに由来する三価のクロム及び有機酸等をはじめとする他の成分を含むものである。また本発明の三価クロム含有液を三価クロム化成処理用の処理液として用いる場合には、該処理液は、クロム源として上述の水酸化クロムを用い、更にコバルト化合物、珪素化合物、亜鉛化合物、種々の有機酸等を含むことができる。
 前記の三価クロム化成処理液に用いられるコバルト化合物としては、塩化コバルト、硝酸コバルト、硫酸コバルト、リン酸コバルト、酢酸コバルト等が挙げられる。これらは1種又は2種以上を混合して用いることもできる。珪素化合物としては、コロイダルシリカ、珪酸ソーダ、珪酸カリ、珪酸リチウムが挙げられる。これらの珪素化合物は1種又は2種以上を混合して用いることもできる。亜鉛化合物としては、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、酸化亜鉛、炭酸亜鉛、リン酸亜鉛、酢酸亜鉛等が挙げられる。これらの亜鉛化合物は1種又は2種以上を混合して用いることもできる。有機酸としては、シュウ酸、マロン酸、コハク酸、クエン酸、アジピン酸、酒石酸、リンゴ酸、グリシン等が挙げられる。これらはキレート作用を示すことから、めっき液中で三価のクロムを安定な形に保持することができると考えられる。
 前記の三価クロム化成処理液は、クロムを例えば0.005~1.0モル/リットル含むことが好ましい。クロムと有機酸のモル比は、クロム1モルに対して1~5モルであることが好ましい。
 本発明によれば、上述のめっき液等に加えて、クロムめっき又は金属の表面処理若しくは三価クロム化成処理に用いられるめっき液等の補充液も提供される。この補充液は、上述の水酸化クロムを含むスラリーからなる。このスラリーには、上述のとおり不純物イオンが含まれていないことが好ましい。金属の表面処理や三価クロム化成処理等においては、無機アニオン、例えば硫酸イオン、硝酸イオン、塩化物イオンなどは、皮膜中に取り込まれず液中に残存したままになる。したがって、めっき液等にクロム源を注ぎ足すと、そのクロム源の対アニオンである無機アニオンがめっき液等中に次第に蓄積していき、めっき液等の組成が変化してしまう。これに対して、上述の水酸化クロムを含むスラリーからなる補充液は、これらのアニオンを含まないので、該補充液をクロム供給源としてめっき液等に注ぎ足しても、めっき液等の組成の変化が少ない。その結果、めっき液等を頻繁に更新することなく、長期にわたりめっき液等を用いることができる。
 前記の補充液によってクロム源が補充されるめっき液等の種類に特に制限はなく、従来用いられてきた三価のクロムを含有するめっき液等を用いることができる。
 本発明の補充液は、めっきや三価クロム化成処理を行っている間、めっき液等中のクロムイオンの消耗の程度に応じて該めっき液等中に適量添加される。添加は連続的でもよく、あるいは断続的でもよい。
 以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されず、当該技術分野に属する通常の知識を有する者の常識の範囲内において種々の改変を行うことは何ら妨げられない。またそのような改変は本発明の範囲内のものである。
 以下に実施例を挙げて本発明を具体的に説明する。特に断らない限り「%」は「重量%」を意味する。
  〔実施例1〕
 10%水酸化ナトリウム水溶液140gと、35%塩化クロム水溶液(日本化学工業株式会社製)55gに水を220g加えて希釈した7%塩化クロム水溶液とをそれぞれ容器に入れ準備した。次に水酸化ナトリウム水溶液を20℃に調整し、また塩化クロム水溶液を20℃に調整した。20℃に調整した純水中に、水酸化ナトリウム水溶液と塩化クロム水溶液を同時添加した。添加速度は、水酸化ナトリウム水溶液が2ml/分、塩化クロム水溶液が4.5ml/分であった。添加は連続的に行った。添加は60分間行った。添加の間、反応液のpHは7.5~8.5の間に維持されていた。また、添加の間、反応液の温度は20~25℃の間に維持されていた。また、添加の間、反応液を攪拌(700rpm)して、水酸化ナトリウムの量に対して三価のクロムの量が局所的に過剰にならないようにした。反応によって生成した沈殿を、濾液の導電率が1mS/cmになるまで30℃で濾過水洗し、水酸化クロムを得た。この水酸化クロムを純水に懸濁させて濃度8%のスラリーを得た。得られた水酸化クロムのMV及びD並びに凝集度MV/Dは表1に示すとおりであった。また、温度25℃でpHが0.2の塩酸水溶液1リットルに、Crとして1g含有に相当する水酸化クロムを加えたときの溶解性(水酸化クロムの生成直後及び水酸化クロムのスラリーを30日保存した後)は、以下の表1に示すとおりであった。
  〔実施例2〕
 実施例1において用いた10%水酸化ナトリウム水溶液に代えて、10%アンモニア水溶液59gを用いた。アンモニア水溶液の温度は20℃に調整した。それ以外は実施例1と同様にして水酸化クロムを得た。得られた水酸化クロムについて、実施例1と同様の測定を行った。その結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000002
  〔比較例1及び2〕
 20%水酸化ナトリウム水溶液70gと、35%塩化クロム水溶液(日本化学工業株式会社製)52gに水を208g加えて希釈した7%塩化クロム水溶液とをそれぞれ容器に入れ準備した。次に水酸化ナトリウム水溶液及び塩化クロム水溶液を表2に示す反応温度に調整した。実施例1及び2とは異なり、塩化クロム水溶液を撹拌しながら、そこへ水酸化ナトリウム水溶液を表2に示す速度で添加した。生成した沈殿を水で濾過洗浄し、水酸化クロム約12gを得た。これ以外は実施例1と同様の操作を行い、水酸化クロムのスラリーを得た。得られた水酸化クロムについて、実施例1と同様の測定を行った。その結果を、以下の表2に示す。ただし、溶解性については生成直後のみ測定した。
  〔比較例3〕
 実施例1において、反応液の温度を70℃とする以外は実施例1と同様の操作を行い、水酸化クロムのスラリーを得た。得られた水酸化クロムについて、実施例1と同様の測定を行った。その結果を、以下の表2に示す。ただし、溶解性については生成直後のみ測定した。
Figure JPOXMLDOC01-appb-T000003
 以上の実施例及び比較例の結果から、実施例の方法で得られた水酸化クロムは、溶解性が高いことが判る。特に、実施例1と実施例2との対比から明らかなように、水酸化クロムの調製の際に用いる無機アルカリとしてアルカリ金属の水酸化物を用いると、長期保存後においても水酸化クロムの良好な溶解性が維持されていることが判る。
 これに対して、三価のクロムを含む水溶液に無機アルカリ水溶液を添加して調製された比較例の水酸化クロムは、一次粒子の凝集が多く、溶解性が低いことが判る。無機アルカリ水溶液及び三価のクロムを含む水溶液を同時添加して水酸化クロムを調製したときであっても、反応温度が高い場合(比較例3)には、一次粒子が凝集し易く、溶解性が低いことが判る。
  〔実施例3〕
 実施例1と同様にして水酸化クロムを得た。この水酸化クロムを純水に懸濁させて濃度8%のスラリーを得た。次いで、得られたそれぞれの水酸化クロムのスラリーを、温度25℃で各種の無機酸水溶液1リットルに、又は温度50℃で各種の有機酸水溶液1リットルに、Crとして1g含有に相当する量添加し溶解させて、無機酸クロム水溶液又は有機酸クロム水溶液をそれぞれ得た。溶解に要した時間(単位:分)を表3に示す。
Figure JPOXMLDOC01-appb-T000004
  〔実施例4~6〕
 実施例1と同様にして水酸化クロムを得た。この水酸化クロムを純水に懸濁させて濃度8%のスラリーを得た。次いで、温度25℃で2種の酸を含む水溶液1リットルに、Crとして1g含有に相当する量添加し溶解させて、クロム(III)源を含む水溶液をそれぞれ得た。溶解に要した時間(単位:分)を表4に示す。なお、各実施例で使用した酸水溶液の組成は以下のとおりである。
A液(pH0.2);塩酸 2.6重量%、硝酸 5.2重量%
B液(pH0.4);リン酸 3.3重量%、硫酸 2.5重量%
C液(pH0.3);塩酸 2.6重量%、シュウ酸2.2重量%
Figure JPOXMLDOC01-appb-T000005
  〔使用例1〕
 内容積8リットルの角型めっき槽に、以下の組成を有する三価クロムめっき用めっき液を調製した。被めっき物として軟鋼丸棒を用い、また陽極として炭素板を用い、浴温50℃、電流密度40A/dm2の条件でクロムめっきを行った。丸棒のめっき前後の重量測定から消費クロム量及び浴のクロム濃度を算出し、めっき液中のクロム濃度が1~2g/リットル低下したら、実施例1で得られた水酸化クロムのスラリーを、電析した金属クロムに相当する分だけめっき液に添加し、充分に攪拌しながらクロムめっきを継続して行った。その結果、良好なクロムめっきが得られた。
  (めっき液の組成)
塩化クロム六水和物    300g/L
ホウ酸           30g/L
グリシン          50g/L
塩化アンモニウム     130g/L
塩化アルミニウム六水和物  50g/L

Claims (8)

  1.  反応液温が0℃以上50℃未満の条件下で、無機アルカリ水溶液と三価のクロムを含む水溶液とを、水性媒体へ同時に添加して水酸化クロムを生成させることを特徴とする水酸化クロムの製造方法。
  2.  三価のクロムを含む水溶液の添加を、アルカリの量に対して三価のクロムの量が局所的に過剰にならないように行う請求項1記載の製造方法。
  3.  三価のクロムを含む水溶液及び無機アルカリ水溶液を添加している間の反応液のpHを7.0~12の範囲に維持する請求項1又は2記載の製造方法。
  4.  水性媒体として、水、中性塩の水溶液又はアンモニア水を用いる請求項1ないし3のいずれかに記載の製造方法。
  5.  水酸化クロムの生成後に濾過を行い、濾液の導電率が5mS/cm以下となるまで水洗する請求項1ないし4のいずれかに記載の製造方法。
  6.  請求項1に記載の方法で水酸化クロムを生成させた後、該水酸化クロムを無機酸水溶液又は有機酸水溶液に溶解することを特徴とする無機酸クロム(III)水溶液又は有機酸クロム(III)水溶液の製造方法。
  7.  請求項1に記載の方法で水酸化クロムを生成させた後、該水酸化クロムを2種以上の酸水溶液に溶解することを特徴とするクロム(III)源を含む水溶液の製造方法。
  8.  請求項6又は7に記載の製造方法により得られるクロム(III)源を含む水溶液であって、金属の表面処理又は三価クロム化成処理に用いるクロム(III)源を含む水溶液。
PCT/JP2009/064726 2008-09-05 2009-08-24 水酸化クロムの製造方法 WO2010026886A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/062,473 US20110162974A1 (en) 2008-09-05 2009-08-24 Method for manufacturing chromium hydroxide
JP2010527754A JPWO2010026886A1 (ja) 2008-09-05 2009-08-24 水酸化クロムの製造方法
CN200980134663XA CN102143916A (zh) 2008-09-05 2009-08-24 氢氧化铬的制造方法
EP09811413A EP2322480A4 (en) 2008-09-05 2009-08-24 PROCESS FOR PRODUCING CHROMIUM HYDROXIDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-228262 2008-09-05
JP2008228262 2008-09-05

Publications (1)

Publication Number Publication Date
WO2010026886A1 true WO2010026886A1 (ja) 2010-03-11

Family

ID=41797056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064726 WO2010026886A1 (ja) 2008-09-05 2009-08-24 水酸化クロムの製造方法

Country Status (6)

Country Link
US (1) US20110162974A1 (ja)
EP (1) EP2322480A4 (ja)
JP (1) JPWO2010026886A1 (ja)
KR (1) KR20110052733A (ja)
CN (1) CN102143916A (ja)
WO (1) WO2010026886A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863512A (zh) * 2010-04-15 2010-10-20 彭运林 一种含铬铝泥酸法回收利用工艺
CN101891251A (zh) * 2010-04-15 2010-11-24 彭运林 一种含铬铝泥碱法回收利用工艺
WO2017073591A1 (ja) * 2015-10-27 2017-05-04 山本 修 クロム修飾型インプラント及びその製造方法
CN113772730A (zh) * 2021-10-08 2021-12-10 上海良仁化工有限公司 含铬污泥制备硫酸铬钾的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735172B (zh) * 2021-10-08 2023-04-07 上海良仁化工有限公司 含铬污泥制备细颗粒氢氧化铬的方法
CN114195190B (zh) * 2021-12-30 2023-09-15 斯瑞尔环境科技股份有限公司 一种易溶于酸的氢氧化铬的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235794A (en) 1975-09-16 1977-03-18 Tokico Ltd Purifying method for crude chromium hydroxide
JPS53132499A (en) 1977-04-26 1978-11-18 Showa Denko Kk Production of chromium hydroxide
JPS56149327A (en) * 1980-04-18 1981-11-19 Nippon Chem Ind Co Ltd:The Manufacture of fine chromium oxide
JPH0292828A (ja) 1988-09-29 1990-04-03 Nippon Denko Kk 高純度水酸化クロムの製造方法
JPH0995793A (ja) 1995-09-29 1997-04-08 Shigeo Hoshino 熱硬化性を有するクロムめっきを析出する3価クロムめっき浴
JP2002322599A (ja) 2001-04-23 2002-11-08 Shigeo Hoshino 3価クロムめっき方法
WO2005056478A1 (ja) 2003-12-10 2005-06-23 Nippon Chemical Industrial Co., Ltd. クロム塩水溶液及びその製造方法
JP2006212580A (ja) * 2005-02-04 2006-08-17 Nippon Steel Corp 鉄とクロムを含む酸性廃液の処理方法
JP2006249518A (ja) 2005-03-11 2006-09-21 Koka Chrom Kogyo Kk 3価クロムめっき浴へのクロムイオン補給方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2710175C2 (de) * 1977-03-09 1986-08-28 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Chromgerbstoff und Glaubersalz
IT1130595B (it) * 1980-05-12 1986-06-18 Stoppani Luigi Spa Procedimento continuo per l'eleminazione di cromo da acque di rifiuto e la valrizzazione del cromo ricuperato
IT1156297B (it) * 1982-12-30 1987-01-28 Giovanni Tibaldi Metodo ed impianto automatico continuo per il recupero del cromo dalle acque reflue di conceria
CA1242307A (en) * 1986-05-21 1988-09-27 Superior Plus Inc. / Superieur Plus Inc. Removal of chromium from cell liquor
CA1314688C (en) * 1987-09-14 1993-03-23 Ian Harry Warren Stripping and recovery of dichromate in electrolytic chlorate systems
JPH028373A (ja) * 1988-06-25 1990-01-11 Toshio Hanya クロメート処理液およびその調合方法並びにクロメート処理法
US5002645A (en) * 1989-07-27 1991-03-26 Saginaw Valley State University Process of separating and recovering metal values from a waste stream
US5354458A (en) * 1990-07-11 1994-10-11 International Environmental Systems, Inc., Usa Sequencing batch liquid treatment
DE4209892A1 (de) * 1991-04-26 1992-10-29 Occidental Chem Co Verfahren zum entfernen von vanadium aus einem waessrigen strom und verwendung des verfahrens bei der herstellung von natriumbichromat
JP3295960B2 (ja) * 1992-05-12 2002-06-24 三菱化学株式会社 アルデヒド類の製造方法
EP1539347B1 (en) * 2002-08-22 2012-06-27 E.I. Du Pont De Nemours And Company Cobalt substituted chromium oxide compositions, their preparation and their use as catalysts and catalyst precursors
WO2004018095A1 (en) * 2002-08-22 2004-03-04 E.I. Du Pont De Nemours And Company Nickel-substituted and mixed nickel-and-cobalt-substituted chromium oxide compositions, their preparation, and their use as catalysts and catalyst precursors
EP1530558A1 (en) * 2002-08-22 2005-05-18 E.I. Du Pont De Nemours And Company Process for the preparation of 1,1,1,2,2-pentafluoroethane
US7220394B2 (en) * 2002-10-30 2007-05-22 Council Of Scientific And Industrial Research Process for simultaneous recovery of chromium and iron from chromite ore processing residue
WO2008136223A1 (ja) * 2007-04-27 2008-11-13 Nippon Chemical Industrial Co., Ltd. 水酸化クロム、その製造方法、それを用いた三価クロム含有液及びクロムめっき方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235794A (en) 1975-09-16 1977-03-18 Tokico Ltd Purifying method for crude chromium hydroxide
JPS53132499A (en) 1977-04-26 1978-11-18 Showa Denko Kk Production of chromium hydroxide
JPS56149327A (en) * 1980-04-18 1981-11-19 Nippon Chem Ind Co Ltd:The Manufacture of fine chromium oxide
JPH0292828A (ja) 1988-09-29 1990-04-03 Nippon Denko Kk 高純度水酸化クロムの製造方法
JPH0995793A (ja) 1995-09-29 1997-04-08 Shigeo Hoshino 熱硬化性を有するクロムめっきを析出する3価クロムめっき浴
JP2002322599A (ja) 2001-04-23 2002-11-08 Shigeo Hoshino 3価クロムめっき方法
WO2005056478A1 (ja) 2003-12-10 2005-06-23 Nippon Chemical Industrial Co., Ltd. クロム塩水溶液及びその製造方法
JP2006212580A (ja) * 2005-02-04 2006-08-17 Nippon Steel Corp 鉄とクロムを含む酸性廃液の処理方法
JP2006249518A (ja) 2005-03-11 2006-09-21 Koka Chrom Kogyo Kk 3価クロムめっき浴へのクロムイオン補給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2322480A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863512A (zh) * 2010-04-15 2010-10-20 彭运林 一种含铬铝泥酸法回收利用工艺
CN101891251A (zh) * 2010-04-15 2010-11-24 彭运林 一种含铬铝泥碱法回收利用工艺
CN101891251B (zh) * 2010-04-15 2011-12-28 彭运林 一种含铬铝泥碱法回收利用工艺
WO2017073591A1 (ja) * 2015-10-27 2017-05-04 山本 修 クロム修飾型インプラント及びその製造方法
JP6185679B1 (ja) * 2015-10-27 2017-08-23 山本 修 クロム修飾型インプラント及びその製造方法
CN113772730A (zh) * 2021-10-08 2021-12-10 上海良仁化工有限公司 含铬污泥制备硫酸铬钾的方法
CN113772730B (zh) * 2021-10-08 2023-03-10 上海良仁化工有限公司 含铬污泥制备硫酸铬钾的方法

Also Published As

Publication number Publication date
JPWO2010026886A1 (ja) 2012-02-02
US20110162974A1 (en) 2011-07-07
CN102143916A (zh) 2011-08-03
EP2322480A1 (en) 2011-05-18
KR20110052733A (ko) 2011-05-18
EP2322480A4 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4576456B2 (ja) 水酸化クロム、その製造方法、それを用いた三価クロム含有液及びクロムめっき方法
JP5529024B2 (ja) 炭酸クロム(iii)及びその製造方法
WO2010026886A1 (ja) 水酸化クロムの製造方法
CN101668881B (zh) 在金属表面形成防蚀层的试剂
KR101386300B1 (ko) 유기산 크롬 (iii) 수용액 및 그의 제조 방법
US20090035577A1 (en) Surface-conditioning composition, method for production thereof, and surface conditioning method
WO2010026884A1 (ja) クロム(iii)源を含む水溶液の製造方法
JP6163079B2 (ja) 炭酸クロム(iii)及びその製造方法
JP3111614B2 (ja) 無電解ニッケルめっき浴の再生方法
JP2011184256A (ja) 水酸化クロムスラリー及びその製造方法
JP6469504B2 (ja) フッ化クロム(iii)水和物及びその製造方法
KR100665093B1 (ko) 표면처리용 액상 표면 조정제 및 그 제조방법
JP4659855B2 (ja) リン酸クロム水溶液
KR20100029638A (ko) 액상 표면 조정제
JP2004176093A (ja) リン酸塩化成処理用促進剤およびその製造方法、亜硝酸金属塩溶液およびその製造方法
JP2005325384A (ja) リン酸クロム水溶液及びその製造方法
JP2008214765A (ja) リン酸クロム水溶液の製造方法
JP2006299379A (ja) 表面調整剤及び表面調整方法
JP2001049447A (ja) 高濃度次亜リン酸ニッケル水溶液および無電解ニッケルめっき方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134663.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527754

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009811413

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007800

Country of ref document: KR

Kind code of ref document: A