WO2010024211A1 - 薄膜光電変換装置およびその製造方法 - Google Patents

薄膜光電変換装置およびその製造方法 Download PDF

Info

Publication number
WO2010024211A1
WO2010024211A1 PCT/JP2009/064697 JP2009064697W WO2010024211A1 WO 2010024211 A1 WO2010024211 A1 WO 2010024211A1 JP 2009064697 W JP2009064697 W JP 2009064697W WO 2010024211 A1 WO2010024211 A1 WO 2010024211A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
thin film
conversion device
crystalline germanium
layer
Prior art date
Application number
PCT/JP2009/064697
Other languages
English (en)
French (fr)
Inventor
佐々木 敏明
直樹 門田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN200980133876.0A priority Critical patent/CN102138221B/zh
Priority to US13/061,036 priority patent/US8933327B2/en
Priority to EP09809862A priority patent/EP2330632A1/en
Priority to JP2010526689A priority patent/JP5379801B2/ja
Publication of WO2010024211A1 publication Critical patent/WO2010024211A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an improvement in a thin film photoelectric conversion device, and more particularly, to an improvement in utilization efficiency of long wavelength light using a crystalline germanium semiconductor.
  • crystalline and “microcrystal” in the present specification are also used in the case of partially containing amorphous, as used in this technical field.
  • photoelectric conversion devices that convert light into electricity using the photoelectric effect inside semiconductors have attracted attention and development has been vigorously conducted.
  • silicon-based thin film photoelectric conversion devices are large at low temperatures. Since it can be formed on a glass substrate or a stainless steel substrate having an area, cost reduction can be expected.
  • Such a silicon-based thin film photoelectric conversion device generally includes a transparent electrode layer, one or more photoelectric conversion units, and a back electrode layer that are sequentially stacked on a transparent insulating substrate.
  • the photoelectric conversion unit generally has a p-type layer, an i-type layer, and an n-type layer laminated in this order or vice versa, and the i-type photoelectric conversion layer occupying the main part is amorphous. Is called an amorphous photoelectric conversion unit, and those having an i-type layer crystalline are called crystalline photoelectric conversion units.
  • the photoelectric conversion layer is a layer that absorbs light and generates electron-hole pairs.
  • an i-type layer of a pin junction is a photoelectric conversion layer.
  • the i-type layer which is a photoelectric conversion layer occupies the main film thickness of the photoelectric conversion unit.
  • the i-type layer is an intrinsic semiconductor layer that ideally does not contain conductivity-type determining impurities. However, even if a small amount of impurities is included, if the Fermi level is at the approximate center of the forbidden band, it functions as a pin junction i-type layer, which is substantially called an i-type layer. Generally, a substantially i-type layer is produced without adding a conductivity determining impurity to a source gas. In this case, a conductivity determining impurity may be included in an allowable range that functions as an i-type layer. Further, the substantially i-type layer may be formed by intentionally adding a small amount of conductivity-type determining impurities in order to remove the influence of impurities caused by the atmosphere or the underlayer on the Fermi level.
  • a photoelectric conversion device employing a structure called a stacked type in which two or more photoelectric conversion units are stacked is known.
  • a front photoelectric conversion unit including a photoelectric conversion layer having a large optical forbidden band width is disposed on the light incident side of the photoelectric conversion device, and subsequently has a small optical forbidden band width (for example, Si ⁇
  • a rear photoelectric conversion unit including a photoelectric conversion layer such as a Ge alloy
  • the wavelength of light that can be photoelectrically converted by i-type amorphous silicon (a-Si) is although it is up to about 700 nm on the long wavelength side, i-type crystalline silicon can photoelectrically convert light having a longer wavelength of about 1100 nm.
  • a-Si i-type amorphous silicon
  • a thickness of about 0.3 ⁇ m is sufficient for light absorption sufficient for photoelectric conversion.
  • the crystalline silicon photoelectric conversion layer made of crystalline silicon having a small absorption coefficient preferably has a thickness of about 2 to 3 ⁇ m or more in order to sufficiently absorb long wavelength light. That is, the crystalline silicon photoelectric conversion layer usually needs to be about 10 times as thick as the amorphous silicon photoelectric conversion layer.
  • the photoelectric conversion unit on the light incident side is referred to as the top cell
  • the photoelectric conversion unit on the rear side is referred to as the bottom cell.
  • a three-junction thin film photoelectric conversion device including three photoelectric conversion units is also used.
  • the photoelectric conversion units of the three-junction thin film photoelectric conversion device are referred to as a top cell, a middle cell, and a bottom cell in order from the light incident side.
  • the open-circuit voltage (Voc) is high
  • the short-circuit current density (Jsc) is low
  • the amorphous silicon photoelectric conversion layer of the top cell is lower than in the case of two junctions.
  • the film thickness can be reduced. For this reason, the optical deterioration of the top cell can be suppressed.
  • the band gap of the photoelectric conversion layer of the middle cell narrower than that of the top cell and wider than that of the bottom cell, incident light can be used more effectively.
  • Thin film photoelectric conversion devices stacked in the order of photoelectric conversion units, or thin film photoelectric conversion devices stacked in the order of a-Si photoelectric conversion unit / a-SiGe photoelectric conversion unit / crystalline silicon photoelectric conversion unit can be given.
  • the band gap of i-type a-SiGe in the photoelectric conversion layer of the middle cell can be controlled to a value between the top cell and the bottom cell.
  • the Ge concentration of the bottom cell is set higher than that of the middle cell.
  • a-SiGe which is an alloy layer
  • a-SiGe which is an alloy layer
  • a three-junction stacked thin-film photoelectric conversion device using a-SiGe as a middle-cell or bottom-cell photoelectric conversion layer is not sufficiently improved in efficiency as compared with a two-junction thin-film photoelectric conversion device.
  • the photodegradation of a-SiGe is large, there is a problem that the photodegradation is not sufficiently suppressed even though a three-junction stacked thin film photoelectric conversion device is used.
  • the wavelength of light that can be photoelectrically converted is up to about 900 nm on the long wavelength side, and when the crystalline silicon photoelectric conversion unit is used for the bottom cell, the wavelength of light that can be photoelectrically converted is long.
  • the wavelength limit on the long wavelength side up to about 1100 nm on the wavelength side is not improved at the same wavelength as the two-junction thin film photoelectric conversion device, and the conversion efficiency of the three-junction thin film photoelectric conversion device is not sufficiently improved There is.
  • Non-Patent Document 1 discloses a single-junction thin-film photoelectric conversion device using weak n-type microcrystalline germanium for a photoelectric conversion layer.
  • the structure of the thin film photoelectric conversion device is stainless steel substrate / n-type amorphous silicon / i-type amorphous silicon / microcrystalline silicon germanium composition gradient layer / weak n-type microcrystalline germanium photoelectric conversion layer / microcrystalline silicon germanium composition. It is a structure in which an inclined layer / p-type microcrystalline silicon layer / ITO are sequentially laminated.
  • the microcrystalline germanium photoelectric conversion layer is formed by an ECR remote plasma CVD method using microwave discharge.
  • Non-Patent Document 2 discloses a single-junction thin-film photoelectric conversion device using microcrystalline silicon germanium having a Ge composition of 0% to a maximum of 35% for a photoelectric conversion layer.
  • the structure of the thin film photoelectric conversion device is that a glass substrate / uneven ZnO / p-type microcrystalline silicon / i-type microcrystalline silicon germanium photoelectric conversion layer / n-type microcrystalline silicon layer / ZnO / Ag is sequentially laminated. This is the structure.
  • the Ge composition in the film is increased to 20% or more, all of Voc, Jsc, and FF are lowered and Eff is lowered.
  • the Ge concentration in the film is 30% or more, the FF is remarkably lowered.
  • the FF is about 0.4 and the Eff is about 2%.
  • the wavelength at which the quantum efficiency is 10% is about 1050 nm even when the Ge concentration is 35% at the maximum.
  • the upper limit of the wavelength that can be used on the long wavelength side is 900.
  • the wavelength that can be used on the long wavelength side is 900.
  • ⁇ 1100 nm there is a problem that long wavelength light is not sufficiently utilized and conversion efficiency is not sufficiently improved.
  • the thin film photoelectric conversion device using microcrystalline Ge for the photoelectric conversion layer has a problem that the FF is low and the conversion efficiency is low. Further, there is a problem that sufficient improvement cannot be obtained when the upper limit of the wavelength of the long-wavelength light capable of photoelectric conversion is about 1080 nm.
  • the thin-film photoelectric conversion device using microcrystalline SiGe for the photoelectric conversion layer has a problem that when the Ge concentration in the film is increased to 20% or more, Voc, Jsc, and FF decrease, and Eff rapidly decreases.
  • microcrystalline silicon germanium having a Ge concentration of up to 35% in the film there is a problem that the upper limit of the wavelength of long-wavelength light capable of photoelectric conversion is about 1050 nm and sufficient improvement cannot be obtained.
  • an object of the present invention is to provide a thin film photoelectric conversion device having high characteristics that can use long wavelength light of 1100 nm or more.
  • a thin film photoelectric conversion device is a thin film photoelectric conversion device including one or more photoelectric conversion units each including a photoelectric conversion layer between a p-type semiconductor layer and an n-type semiconductor layer, wherein the photoelectric conversion of at least one photoelectric conversion unit is performed.
  • converting layer comprises a crystalline germanium semiconductor intrinsic or weak n-type, and the absorption coefficient of the infrared absorption peak of the crystalline germanium semiconductor of 935 ⁇ 5 cm -1 is equal to or less than 6000 cm -1 Solve the problem.
  • the absorption coefficient of the infrared absorption peak at a wave number of 960 ⁇ 5 cm ⁇ 1 of the crystalline germanium semiconductor is preferably less than 3500 cm ⁇ 1 .
  • the origin of the infrared absorption peak at 960 ⁇ 5 cm ⁇ 1 has not been identified, it is thought to be derived from polymer or clustered germanium hydride or germanium oxide as described above, and this infrared absorption peak should be kept small. It is considered that dense crystalline germanium is formed by the above, and the characteristics of the thin film photoelectric conversion device are improved.
  • the crystalline germanium semiconductor preferably has an intensity ratio of (220) peak to (111) peak of 2 or more as measured by X-ray diffraction.
  • (220) The crystalline germanium forms columnar crystals in the direction perpendicular to the substrate due to the strengthening of the (220) orientation, the crystal size in the film thickness direction increases, and the photoelectric conversion current easily flows, so that the thin film photoelectric conversion device Improved characteristics.
  • the photoelectric conversion layer may have a structure in which a substantially genuine crystalline silicon semiconductor and the crystalline germanium semiconductor are stacked.
  • a crystalline silicon semiconductor serves as a base layer, improves the crystallinity of the crystalline germanium semiconductor stacked thereon, and / or reduces defects at the interface between the conductive type layer and the crystalline germanium semiconductor, thereby reducing the thickness of the thin film.
  • the characteristics of the photoelectric conversion device are improved.
  • by forming a crystalline silicon semiconductor over a crystalline germanium semiconductor defects at the interface with the reverse conductivity type layer formed thereon are reduced, and the characteristics of the thin film photoelectric conversion device are improved.
  • three photoelectric conversion units are provided, a first photoelectric conversion unit using an amorphous silicon semiconductor for the photoelectric conversion layer in order from the light incident side, a second photoelectric conversion unit using a crystalline silicon semiconductor for the photoelectric conversion layer, A three-junction stacked thin film photoelectric conversion device in which the third photoelectric conversion units including the crystalline germanium semiconductor are sequentially arranged in the photoelectric conversion layer may be formed. With such a configuration, it is possible to improve the characteristics of the thin film photoelectric conversion device by using sunlight in a wide wavelength range and realizing a high Voc.
  • the thin film photoelectric conversion device of the present invention can be manufactured by forming a crystalline germanium semiconductor by a high frequency discharge plasma CVD method having a frequency of 10 to 100 MHz.
  • the crystalline germanium semiconductor is desirably formed at a substrate temperature of 250 ° C. or higher.
  • the crystalline germanium semiconductor is preferably formed with a high frequency power density of 550 mW / cm 2 or more.
  • the high-frequency plasma CVD apparatus for forming a crystalline germanium semiconductor a plasma CVD apparatus including a substrate-side electrode on which a substrate is disposed and a high-frequency electrode can be used.
  • the distance (ES) between the high frequency electrode and the substrate is desirably 12 mm or less.
  • the high-frequency electrode is preferably a hollow cathode type electrode.
  • the high-frequency plasma forming the crystalline germanium semiconductor does not detect a Ge atom emission peak having a peak at a wavelength of 265 nm ⁇ 2 nm and a Ge atom emission peak having a peak at 304 nm ⁇ 2 nm in the emission spectrum.
  • the crystalline germanium semiconductor of the thin film photoelectric conversion device of the present invention preferably has a refractive index with respect to light having a wavelength of 600 nm of 4.0 or more, more preferably 4.7 or more, and even more preferably 4.9 or more.
  • the crystalline germanium semiconductor has a refractive index with respect to a wavelength of 600 nm of 4.0 or more, preferably 4.7 or more, and more preferably 4.9 or more, so that dense crystalline germanium is formed and a thin film photoelectric conversion device is formed.
  • the long wavelength light exceeding 1100 nm can be used, FF is improved, and the characteristics of the thin film photoelectric conversion device are improved.
  • FIG. 1 is a schematic cross-sectional view of a single-junction thin-film photoelectric conversion device according to one embodiment of the present invention.
  • the typical sectional view of the single junction thin film photoelectric conversion device concerning another embodiment of the present invention.
  • the typical sectional view of the 3 junction thin film photoelectric conversion device concerning another embodiment of the present invention.
  • Crystalline germanium photoelectric conversion layer wavenumber 755 cm -1 was measured by FTIR relative to a substrate temperature during film formation of, 860cm -1, 935cm -1, the absorption coefficient of the peak of 960 cm -1.
  • the emission spectral spectrum at the time of forming the crystalline germanium photoelectric conversion layer of Examples 12, 13, and 14 of the present invention The emission spectral spectrum at the time of forming the crystalline germanium photoelectric conversion layer of Examples 12, 13, and 14 of the present invention.
  • FIG. 27 shows a standard sunlight spectrum of air mass 1.5.
  • the irradiation intensity of sunlight has a maximum value near the wavelength of 550 nm, and the intensity decreases as the wavelength increases. At that time, the irradiation intensity does not decrease monotonously, but a minimum value appears near wavelengths of 900 nm, 1100 nm, and 1400 nm due to the influence of oxygen and water vapor in the atmosphere.
  • microcrystalline silicon germanium also referred to as ⁇ c-SiGe
  • ⁇ c-SiGe increases the Ge concentration in the film and rapidly deteriorates the characteristics of the thin film photoelectric conversion device. This is presumably because defects increase with the Ge concentration in the ⁇ c-SiGe film.
  • a 13.56 MHz high-frequency plasma CVD apparatus is used, SiH 4 and GeH 4 are used as a source gas, H 2 is used as a dilution gas, and a ⁇ c-SiGe semiconductor thin film and a crystalline germanium semiconductor thin film are formed on a glass substrate.
  • H 2 dilution ratio H 2 / (SiH 4 + GeH 4 ) 2000 times constant, GeH 4 flow rate ratio GeH 4 / (GeH 4 + SiH 4 ) changed by 30% to 100% to produce semiconductor thin film on glass substrate Membrane was performed.
  • FIG. 28 shows the Raman scattering spectrum.
  • FIG. 29 shows the absorption coefficient at a wavelength of 1300 nm with respect to the GeH 4 gas ratio GeH 4 / (GeH 4 + SiH 4 ) of the ⁇ c-SiGe semiconductor thin film and the crystalline germanium semiconductor thin film of Reference Experimental Example 1.
  • GeH 4 / (GeH 4 + SiH 4 ) 30 to 70%
  • the absorption coefficient is almost constant despite increasing the proportion of Ge.
  • crystalline germanium with GeH 4 / (GeH 4 + SiH 4 ) 100% shows a high absorption coefficient exceeding 6000 cm ⁇ 1 with an abrupt increase in absorption coefficient. This is due to the high crystallinity of crystalline germanium.
  • the FF of the thin film photoelectric conversion device is as very low as 0.36, and the conversion efficiency is as low as 2.0%.
  • the quantum efficiency is 10% at a wavelength of 1080 nm. At a wavelength of 1300 nm, the quantum efficiency is 0.5%, and the use of long wavelength light is not sufficient.
  • the absorption coefficient of the infrared absorption peak of 935 ⁇ 5 cm -1 can be solved the problem by and less than 6000 cm -1 It was.
  • the origin of the infrared absorption peak at 935 ⁇ 5 cm ⁇ 1 has not been identified, it is thought to be derived from polymer or cluster-like germanium hydride or germanium oxide. It is presumed that the quality of the thin film photoelectric conversion device is improved by the formation of porous germanium.
  • the absorption coefficient of the infrared absorption peak at 960 ⁇ 5 cm ⁇ 1 is preferably less than 3500 cm ⁇ 1 .
  • Non-Patent Document 3 G. Lucovsky, SSChao, J. Yang, JETylor, RCRoss and W. Czubatyj, “Chemical bonding of hydorogen and oxygen in glow-discharge-deposited thin films of a-Ge: H and a-Ge (H, O), Phys. Rev. B, vol.31, No.4, pp.2190-2197,1985) and are.
  • Non-Patent Document 1 of Prior Example 1 there is no description of an infrared absorption peak of microcrystalline germanium.
  • the microwave plasma CVD method is used for forming the microcrystalline germanium, and it is considered that oxygen is contained as an impurity in the film. It is well known to those skilled in the art that when the microwave plasma CVD method is used, oxygen easily enters an amorphous silicon or microcrystalline silicon film as an impurity. This is because the microwave plasma CVD method uses (1) a quartz tube for microwave introduction, and the quartz surface is exposed to plasma and etched, and oxygen derived from quartz tends to enter the film as impurities.
  • Non-Patent Document 1 of Prior Example 1 has a description that “the microcrystalline germanium is n-type is presumed to be because oxygen is doped as an impurity in the microcrystalline germanium”.
  • the microcrystalline germanium of the first example is considered to have a GeO bond formed by oxygen impurities, 935 ⁇ 5 cm, which is probably due to oxygen doping from residual gases in the reactor.
  • absorption coefficient of the infrared absorption peak of -1 6000 cm -1 or more, the absorption coefficient of the infrared absorption peak of 960 ⁇ 5 cm -1 is estimated to be 3500 cm -1 or more.
  • FIG. 1 is a schematic cross-sectional view of a single junction thin film photoelectric conversion device according to an example of an embodiment of the present invention.
  • the transparent electrode layer 2 On the transparent substrate 1, the transparent electrode layer 2, the crystalline germanium photoelectric conversion unit 3, and the back electrode layer 6 are arranged in this order.
  • a plate-like member or a sheet-like member made of glass, transparent resin or the like is used for the transparent substrate 1 used in a photoelectric conversion device of a type in which light enters from the substrate side.
  • a glass plate it is preferable to use a glass plate as the transparent substrate 1 because it has a high transmittance and is inexpensive.
  • the transparent substrate 1 since the transparent substrate 1 is located on the light incident side of the thin film photoelectric conversion device, it is preferable that the transparent substrate 1 be as transparent as possible so that more sunlight is transmitted and absorbed by the photoelectric conversion unit. From the same intention, it is preferable to provide a non-reflective coating on the light incident surface of the transparent substrate 1 in order to reduce the light reflection loss on the sunlight incident surface.
  • the transparent electrode layer 2 is preferably made of a conductive metal oxide such as SnO 2 or ZnO, and is preferably formed using a method such as CVD, sputtering, or vapor deposition.
  • the transparent electrode layer 2 desirably has the effect of increasing the scattering of incident light by having fine irregularities on its surface.
  • the crystalline germanium photoelectric conversion unit 3 is formed by laminating, for example, a p-type layer, a photoelectric conversion layer, and an n-type layer in this order by a plasma CVD method. Specifically, for example, p-type microcrystalline silicon layer 31 doped with 0.01 atomic% or more of boron, substantially i-type or weak n-type crystalline germanium photoelectric conversion layer 32, and phosphorus is 0.01 An n-type microcrystalline silicon layer 33 doped with at least atomic percent is deposited in this order.
  • the crystalline germanium photoelectric conversion layer 32 is an intrinsic type or a weak n-type.
  • a gas containing a conductivity determining impurity element is not used.
  • crystalline germanium may be weak n-type, and it can be said that crystalline germanium easily incorporates atmospheric impurities such as oxygen into the film.
  • the carrier concentration of crystalline germanium obtained by Hall effect measurement is preferably 10 17 cm ⁇ 3 or less, and the mobility is preferably 1 cm 2 / (V ⁇ s) or more. If the carrier concentration is too high, the dark current of the photoelectric conversion device increases, the leakage current increases, and the FF of the photoelectric conversion device decreases.
  • Crystalline germanium photoelectric conversion layer 32 it is important that the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 is less than 0 cm -1 or more 6000 cm -1, preferably less than 0 cm -1 or more 5000 cm -1 There, more preferably less than 10 cm -1 or more 2500 cm -1. Although the origin of the infrared absorption peak with a wave number of 935 ⁇ 5 cm ⁇ 1 has not been identified, it is thought to be derived from polymer or cluster-like germanium hydride or germanium oxide. It is estimated that crystalline germanium is formed and the characteristics of the thin film photoelectric conversion device are improved. As described in FIG.
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 5000 cm -1, more preferable because Eff exceeds 3.5%.
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 10 cm -1 or more 2500 cm -1, further preferably so Eff exceeds 4.5%.
  • the absorption coefficient of the infrared absorption peak at a wave number of 935 ⁇ 5 cm ⁇ 1 is preferably 0 cm ⁇ 1 .
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 is preferably not less than 10 cm -1.
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 960 ⁇ 5 cm -1 is less than 0 cm -1 or more 3500 cm -1, more preferably less than 0 cm -1 or more 3000 cm -1, 10 cm -1 or more More preferably, it is less than 1300 cm ⁇ 1 .
  • the origin of the infrared absorption peak at 960 ⁇ 5 cm ⁇ 1 has not been identified, it is thought to be derived from polymer or clustered germanium hydride or germanium oxide as described above, and this infrared absorption peak should be kept small. Thus, it can be said that dense crystalline germanium is formed, and the characteristics of the thin film photoelectric conversion device are improved.
  • the absorption coefficient of the infrared absorption peak at a wave number of 960 ⁇ 5 cm ⁇ 1 is less than 3500 cm ⁇ 1
  • the short-circuit current density (Jsc) and the quantum efficiency at a wavelength of 1300 nm rapidly increase.
  • Jsc shows a high value of 30 mA / cm 2 or more
  • quantum efficiency shows a value of 5% or more.
  • the conversion efficiency (Eff) is less than 1% when the absorption coefficient is 3500 cm ⁇ 1 or more, whereas when the absorption coefficient is less than 3500 cm ⁇ 1 , Eff increases rapidly and a high Eff of 3% or more. Indicates.
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 3000 cm -1, more preferable because Eff exceeds 3.5%.
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 1300 cm -1, more preferable because Eff exceeds 4.5%.
  • the absorption coefficient of the infrared absorption peak at a wave number of 960 ⁇ 5 cm ⁇ 1 is preferably 0 cm ⁇ 1 .
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 960 ⁇ 5 cm -1 is preferably not less than 10 cm -1.
  • the infrared absorption spectrum can be measured by FTIR (Fourier Transform Infrared Spectroscopy).
  • FTIR Fastier Transform Infrared Spectroscopy
  • an infrared absorption spectrum can be obtained by the following procedure. (1) A film is formed on a crystalline silicon substrate having a high resistance of 1 ⁇ ⁇ cm or more under the same film forming conditions as the photoelectric conversion layer, and an infrared transmission spectrum is measured. (2) Divide the transmittance of the sample by the transmittance of the crystalline silicon substrate without the film to obtain the transmission spectrum of only the crystalline germanium film. (3) Since the transmission spectrum obtained in (2) includes the influence of interference and offset, the base line is drawn by connecting non-absorption areas, and divided by the base line transmittance. (4) Finally, the absorption coefficient ⁇ is obtained by the following equation.
  • d is the film thickness
  • T s is the transmissivity of the crystalline silicon substrate
  • ⁇ T is the transmissivity of the film obtained in the above (3). If an ATR crystal is used, an infrared absorption spectrum of a crystalline germanium film formed on a glass substrate, a transparent electrode layer, or a metal electrode layer can be obtained. If the transmission spectrum of the film on the crystalline silicon substrate and the calibration curve of the spectrum using the ATR crystal are obtained in advance, the infrared absorption coefficient can be obtained from the spectrum measured using the ATR crystal.
  • the crystalline germanium photoelectric conversion layer 32 preferably has an intensity ratio of (220) peak to (111) peak measured by X-ray diffraction of 2 or more.
  • (220) The crystalline germanium forms columnar crystals in the direction perpendicular to the substrate due to the strengthening of the (220) orientation, the crystal size in the film thickness direction increases, and the photoelectric conversion current easily flows, so that the thin film photoelectric conversion device Improved characteristics.
  • the (220) / (111) peak intensity ratio is less than 2 and Eff is less than 1%
  • the (220) / (111) peak intensity ratio is 2 or more. Eff increases rapidly and shows a high Eff of 4% or more.
  • the (220) / (111) peak intensity ratio is desirably 70 or less.
  • the germanium photoelectric conversion layer 32 desirably has a refractive index of 4.0 or more for light having a wavelength of 600 nm.
  • the refractive index of the crystalline germanium photoelectric conversion layer is increased, the quantum efficiency ( ⁇ @ 1300) at a wavelength of 1300 nm and the short-circuit current density (Jsc) are increased, and the refractive index is increased to 4.0 or more.
  • ⁇ @ 1300 increases to 5% or more, and long wavelength light up to 1100 nm can be used for power generation.
  • a high value of 30 mA / cm 2 or more can be obtained as the short-circuit current density (Jsc).
  • a refractive index of 4.9 or more is preferable because Jsc is 35 mA / cm 2 or more, which is even higher.
  • the refractive index is 4.0 or more, dense crystalline germanium is formed, and it becomes possible to use long wavelength light exceeding 1100 nm.
  • Eff becomes 3.0% or more when the refractive index is 4.0 or more.
  • the refractive index is increased to 4.7, Eff increases abruptly, and Eff increases slowly with a refractive index higher than that. Therefore, it is more desirable to set the refractive index to 4.7 or more, and by making the refractive index 4.7 or more, Eff is stably increased. In this case, Eff of 5.7% or more is obtained.
  • a crystalline germanium semiconductor has a characteristic peak of refractive index in the vicinity of a wavelength of 600 nm. Therefore, the difference in film characteristics can be determined with high sensitivity by using the refractive index of this wavelength.
  • Figure 41 a single-junction using the crystalline germanium photoelectric conversion layer for Eff of the photoelectric conversion device, the absorption coefficient of 935cm -1 due to the FTIR of the crystalline germanium photoelectric conversion layer ( ⁇ @ 935cm -1), and the wavelength of 600nm
  • the refractive index (n) with respect to light is shown.
  • ⁇ @ 935 cm ⁇ 1 decreases with increasing Eff.
  • alpha at Eff of about 3.7% or more @ 935cm -1 are variations, a clear correlation with the Eff eliminated at 0 ⁇ 3000 cm -1.
  • the absorption coefficient at 960 cm ⁇ 1 has a similar tendency, and the Eff decreased to about 3.7%, and the variation became larger at Eff beyond that.
  • the rough determination whether Eff is 3.7% or less is preferable to determine the absorption coefficient of 935cm -1 or 960 cm -1 by FTIR.
  • the refractive index for light with a wavelength of 600 nm is 5.6 in the case of single crystal germanium.
  • a refractive index of 5.6 or less is preferable because it is smaller than that of single crystal germanium, and it can be determined that impurity contamination of heavy elements such as heavy metals is suppressed.
  • the refractive index for light with a wavelength of 600 nm can be measured by using spectroscopic ellipsometry.
  • a crystalline germanium semiconductor under the same conditions as the photoelectric conversion device can be formed on a glass or crystalline silicon wafer, and the refractive index can be measured by spectroscopic ellipsometry.
  • the photoelectric conversion device can be measured by spectroscopic ellipsometry after removing the back electrode by wet etching, plasma etching, or the like. In this case, it is desirable to further measure and measure with the crystalline germanium semiconductor exposed on the outermost surface in order to improve accuracy.
  • the crystalline germanium photoelectric conversion layer is desirably formed by a high frequency plasma CVD method using, for example, GeH 4 or H 2 as a reactive gas.
  • a high frequency plasma CVD method using, for example, GeH 4 or H 2 as a reactive gas.
  • a capacitively coupled parallel plate electrode is used rather than a microwave frequency such as 2.45 GHz, and a frequency of 10 to 100 MHz. It is desirable to use In particular, it is preferable to use 13.56 MHz, 27.12 Mz, and 40 MHz that are approved for industrial use.
  • the high frequency power density is desirably 200 mW / cm 2 or more in order to promote crystallization. Since the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 can be easily less than 6000 cm -1, the high-frequency power density may be more desirable to 550 mW / cm 2 or more.
  • FIG. 30 shows a conceptual diagram of an example of a plasma CVD apparatus.
  • the vacuum chamber 10 includes a high-frequency electrode 11 and a substrate-side power supply 12 that faces the high-frequency electrode 11, and generates a plasma 14 between the electrodes to form a film.
  • the substrate-side electrode 12 on which the substrate 13 is disposed is preferably provided with a heater inside so that the substrate 13 can be heated.
  • High-frequency power is applied to the high-frequency electrode 11 by a high-frequency power source 18 and a gas introduction pipe 15 that also serves as an electrical connection.
  • the gas introduction pipe 15 is insulated from the wall surface of the vacuum chamber 10 by an insulating material 16. It is desirable that the high-frequency electrode 11 also serves as a so-called shower plate that uniformly supplies gas from a large number of holes opened like a shower. At this time, the distance (ES) between the high frequency electrode and the substrate is desirably 12 mm or less. By setting ES to 12 mm or less, as will be described later, the refractive index of the crystalline germanium semiconductor increases, a dense film is obtained, and the characteristics of the thin film photoelectric conversion device are improved. The gas in the vacuum chamber is exhausted through the exhaust pipe 14.
  • the high-frequency electrode is preferably a hollow cathode type electrode.
  • FIG. 31 shows a conceptual diagram of an example of a plasma CVD apparatus using a hollow cathode electrode 19 as a high-frequency electrode.
  • the high-frequency electrode is a normal flat electrode, if ES is reduced to 12 mm or less, plasma is hardly generated between the electrodes, and in an extreme case, no film is attached to the substrate.
  • the high-frequency electrode is a hollow cathode electrode, even if ES is 12 mm or less, plasma is stably generated between the electrodes, and a dense crystalline germanium semiconductor can be formed with good uniformity. .
  • the refractive index of the crystalline germanium semiconductor is higher than that of the flat electrode, and a denser crystalline germanium semiconductor can be formed.
  • the hollow cathode electrode is an electrode having a cylindrical or rectangular parallelepiped depression on the surface.
  • the size of the recess is an aspect ratio in which the diameter (a) is 0.1 mm to 10 mm, the depth (b) is 0.1 mm to several tens of mm, and the ratio of depth to diameter (b / a). Is preferably 0.2 to 5, and more preferably 0.5 to 2.
  • one side of the recess is 0.1 mm to 10 mm
  • the depth (b) is 0.1 mm to several tens of mm
  • the aspect ratio is the ratio of one side to the depth of 0.2 to 5.
  • 0.5 to 2 is more desirable.
  • the pit has a relatively large aspect ratio of 0.2 to 5, the electron density of the plasma is increased in the dent, and plasma is likely to be generated. The plasma is stable even when the ES is 12 mm or less. Occur between.
  • the aspect ratio is more preferably 2 or less, and more preferably 0.5 or more in order to increase the electron density.
  • a plurality of hollows of hollow cathode type electrodes are arranged uniformly over almost the entire surface of the high-frequency electrode facing the substrate.
  • the hollow cathode electrode also serves as a shower plate
  • there may be a gas supply hole in the hollow of the hollow cathode or there may be a gas supply hole at a position different from the hollow of the hollow cathode. . It is desirable to dispose the gas supply hole in the hollow of the hollow cathode because it is easy to process and the number of the recesses and gas supply holes per unit area can be increased.
  • the high-frequency plasma forming the crystalline germanium semiconductor has a Ge atomic emission peak having a peak at a wavelength of 265 nm ⁇ 2 nm and a peak at 304 nm ⁇ 2 nm due to excited germanium atoms (Ge *) in its emission spectrum. Desirably none of the peaks are detected. It is considered that Ge atoms, which are active species having high reactivity, cause a chain reaction as shown in Formula (2) with GeH 4 as a source gas in plasma to generate a polymer or cluster containing a plurality of Ge atoms.
  • FIG. 32 shows a conceptual diagram of an example of an apparatus for measuring an emission spectrum.
  • a quartz glass window 20 is attached to the above-described plasma CVD apparatus, plasma emission is condensed by a quartz lens 21, guided to an optical fiber 22, and an emission spectrum is obtained by a spectrometer 23. Since the emission peak of Ge atoms is the wavelength of ultraviolet light, it is desirable that the window 20, the lens 21 and the optical fiber 22 are made of quartz so as to transmit ultraviolet light.
  • a fiber multichannel spectroscope USB4000 manufactured by Ocean Optics was used as the spectroscope 23.
  • the measurable wavelength range is 200 to 850 nm.
  • FIG. 33 and 34 show emission spectra when a Ge atom emission peak is detected (Example 12 described later) and when a Ge atom emission peak is not detected (Examples 13 and 14 described later).
  • FIG. 33 shows the spectrum of the entire wavelength region (200 to 850 nm) measured. In each of Examples 12, 13, and 14, a peak of H ⁇ due to a hydrogen atom is visible. In addition, many peaks due to hydrogen molecules are observed. Only in Example 12, a Ge atom emission peak is observed at a position indicated as Ge *.
  • FIG. 34 shows a spectrum obtained by enlarging the wavelength near the Ge atomic emission peak and further subtracting the baseline. The base line used was a straight line connecting the wavelength 255 nm as the start point and 315 nm as the end point.
  • Example 12 Ge atomic emission peaks are clearly recognized at wavelengths of 265 nm and 304 nm. In either case, the half width is about 2.5 nm. In contrast, in Examples 13 and 14, no Ge atomic emission peak was detected.
  • the fact that the Ge atomic emission peak defined in the present application is not detected means that no signal other than the noise level is detected in the spectrum obtained by subtracting the baseline at any wavelength of 265 nm ⁇ 2 nm and 304 nm ⁇ 2 nm. .
  • the present application indicates that only a peak having a half-value width of 1 nm or less is detected at any wavelength of 265 nm ⁇ 2 nm and 304 nm ⁇ 2 nm.
  • the substrate temperature when forming the crystalline germanium photoelectric conversion layer is preferably 200 ° C. or higher in order to suppress the generation of powder during film formation. Since the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 can be easily less than 6000 cm -1, the substrate temperature may be more desirable than 250 ° C.. In order to suppress the diffusion of impurities from the conductive layer to the photoelectric conversion layer, the substrate temperature is desirably 500 ° C. or less, and more desirably 400 ° C. or less.
  • the pressure at the time of forming the crystalline germanium photoelectric conversion layer is preferably 40 Pa or more and 2000 Pa or less because of good crystallinity. Moreover, 200 Pa or more and 1500 Pa or less are more preferable in order to improve the uniformity of a large area. Furthermore, 800 Pa or more and 1330 Pa or less is more preferable for achieving both crystallinity and a high film forming speed. As shown in FIGS. 37 and 38, which will be described later, it is preferable because Jsc of the photoelectric conversion device is a high value of 35 mA / cm 2 or more at 800 Pa or more. Since Eff shows a high value of 5.8% or more, 800 Pa or more and 1330 Pa or less is more preferable. Since Eff is 6% or more, 850 Pa or more and 1000 Pa or less is more preferable.
  • the back electrode layer 6 it is preferable to form at least one metal layer made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Between the photoelectric conversion unit and the metal layer, ITO, may be formed a layer made of SnO 2, conductive oxides such as ZnO (not shown).
  • FIG. 3 is a cross-sectional view schematically showing a three-junction thin film photoelectric conversion device according to another embodiment of the present invention.
  • an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit are sequentially arranged between the transparent electrode layer 2 and the crystalline germanium photoelectric conversion unit 3 of the single junction thin film photoelectric conversion device of FIG. It has a structure. That is, in order from the light incident side, the amorphous silicon photoelectric conversion unit corresponds to the top cell, the crystalline silicon photoelectric conversion unit corresponds to the middle cell, and the crystalline germanium photoelectric conversion unit corresponds to the bottom cell.
  • the substrate, the transparent electrode layer, the crystalline germanium photoelectric conversion unit as the bottom cell, and the back electrode layer can be formed by the same configuration and manufacturing method as in FIG.
  • the amorphous silicon photoelectric conversion unit 4 which is a top cell is formed by laminating, for example, a p-type layer, an i-type layer, and an n-type layer in this order by a plasma CVD method. Specifically, p-type amorphous silicon carbide layer 41 doped with 0.01 atomic% or more of boron, photoelectric conversion layer 42 of substantially i-type amorphous silicon, and 0.01 atomic% of phosphorus. The n-type microcrystalline silicon layer 43 thus doped is deposited in this order.
  • the crystalline silicon photoelectric conversion unit 5 which is a middle cell is formed by stacking, for example, a p-type layer, an i-type layer, and an n-type layer in this order by a plasma CVD method. Specifically, p-type microcrystalline silicon layer 51 doped with boron by 0.01 atomic% or more, substantially i-type crystalline silicon photoelectric conversion layer 52, and phosphorus doped by 0.01 atomic% or more. An n-type microcrystalline silicon layer 53 is deposited in this order.
  • FIG. 3 shows a three-junction thin film photoelectric conversion device, if a crystalline germanium photoelectric conversion unit is arranged in the photoelectric conversion unit farthest from the light incident side, two or more junction photoelectric conversion units are stacked. Needless to say, the thin film photoelectric conversion device may be used.
  • FIG. 1 shows a thin film photoelectric conversion device in which light is incident from the substrate side
  • the present invention is also effective in a thin film photoelectric conversion device in which light is incident from the opposite side of the substrate.
  • the substrate, the back electrode layer, the crystalline germanium photoelectric conversion unit, and the transparent electrode layer may be stacked in this order.
  • the crystalline germanium photoelectric conversion unit is preferably laminated in the order of the n-type layer, the crystalline germanium photoelectric conversion layer, and the p-type layer.
  • the present invention is also effective in an integrated thin film photoelectric conversion device in which a series connection structure is formed on the same substrate using laser patterning.
  • laser patterning can be easily performed. Therefore, a structure in which light is incident from the substrate side as shown in FIG. 1 is desirable.
  • Example 1 As Example 1, a single-junction thin-film photoelectric conversion device 7 having the structure shown in FIG. As the transparent substrate 1, a glass substrate having a thickness of 0.7 mm was used. On the transparent substrate 1, a SnO 2 film including minute pyramidal surface irregularities and having an average thickness of 700 nm was formed by a thermal CVD method. Further, an Al-doped ZnO film having a thickness of 20 nm was formed by sputtering to produce a transparent electrode layer 2 in which SnO 2 and ZnO were laminated. The sheet resistance of the obtained transparent electrode layer 2 was about 9 ⁇ / ⁇ . The haze ratio measured with a C light source was 12%, and the average height difference d of the surface irregularities was about 100 nm. The haze ratio was measured based on JISK7136.
  • a crystalline germanium photoelectric conversion unit 3 was produced on the transparent electrode layer 2 using a capacitively coupled high-frequency plasma CVD apparatus having parallel plate electrodes having a frequency of 13.56 MHz, whose conceptual diagram is shown in FIG. .
  • SiH 4 , H 2, and B 2 H 6 are introduced as reaction gases to form a p-type microcrystalline silicon layer 31 having a thickness of 10 nm
  • GeH 4 and H 2 are introduced as reaction gases to form a crystalline germanium photoelectric conversion layer 32 having a thickness of 2.0 ⁇ m.
  • the flow rate ratio of H 2 / GeH 4 was 2000 times, the substrate temperature was 300 ° C., the pressure was 800 Pa, and the high frequency power density was 300 mW / cm 2 .
  • the electrode spacing (ES) was 12 mm. Thereafter, SiH 4 , H 2 and PH 3 were introduced as reaction gases to form an n-type microcrystalline silicon layer 53 having a thickness of 15 nm, thereby forming a crystalline germanium photoelectric conversion unit 3.
  • a crystalline germanium layer was formed on the glass substrate under the same conditions as described above, and the absorption coefficient at a wavelength of 1300 nm measured from a transmission spectrum and a reflection spectrum was 8300 cm ⁇ 1 , indicating a high absorption coefficient for long-wavelength light. Further, an X-ray diffraction spectrum measured by the ⁇ -2 ⁇ method is shown in FIG. Sharp peaks of (111), (220), (311) orientation are observed and it can be seen that they are crystallized. The (220) peak intensity was the strongest, and the peak intensity ratio of (220) / (111) was 13. The crystal grain size determined from the (220) half width of the peak was 63 nm. The Raman scattering spectrum is shown in FIG.
  • a sharp peak of the TO mode of crystalline Ge—Ge bond is observed in the vicinity of 300 cm ⁇ 1, indicating that it is crystallized.
  • the Hall effect was measured, the crystalline germanium layer was weak n-type, the carrier density was 1.9 ⁇ 10 16 cm ⁇ 3 , and the mobility was 3.0 cm 2 / (V ⁇ s). .
  • the refractive index with respect to light having a wavelength of 600 nm measured by spectroscopic ellipsometry was 4.62.
  • FIG. 6 shows an infrared absorption spectrum measured by FTIR after forming a crystalline germanium layer on the crystalline silicon substrate under the same conditions as the above thin film photoelectric conversion device.
  • 560cm -1, 755cm -1, 860cm -1 , 935cm -1 is observed peak or shoulder of absorption to 960cm -1.
  • 560 cm -1 is Ge-H bonds
  • 860 cm -1 is derived from (Ge-O-Ge) n bond.
  • 755cm -1, 935cm -1 the absorption peak of 960 cm -1 has not been identified.
  • 935cm -1 respective absorption coefficient absorption peak at 960 cm -1 is 2000 cm -1, it was 1250 cm -1.
  • an Al-doped ZnO film having a thickness of 30 nm and an Ag film having a thickness of 300 nm were sequentially formed by a sputtering method.
  • the film formed on the SnO 2 film 2 is partially removed by laser scribing and separated into a size of 1 cm 2 , and a single junction thin film photoelectric conversion device 7 (light receiving area) 1 cm 2 ) was produced.
  • the output characteristics were measured by irradiating the single-junction thin-film photoelectric conversion device 7 (light-receiving area 1 cm 2 ) obtained as described above with light of AM 1.5 at a light amount of 100 mW / cm 2 , the implementation shown in Table 1 was performed.
  • the open circuit voltage (Voc) is 0.270 V
  • the short circuit current density (Jsc) is 34.4 mA / cm 2
  • the fill factor (FF) is 0.58
  • the conversion efficiency (Eff) is 5. 4%.
  • the quantum efficiency at a wavelength of 1300 nm was 10%.
  • Comparative Example 1 As Comparative Example 1, a single-junction thin film photoelectric conversion device similar to Example 1 was produced. Comparative Example 1 was produced in the same manner as Example 1 except that the crystalline germanium photoelectric conversion layer of FIG. 1 was formed at 200 ° C.
  • the absorption coefficient at a wavelength of 1300 nm measured in the same manner as in Example 1 was 5000 cm ⁇ 1 , indicating a high absorption coefficient for long wavelength light. Further, an X-ray diffraction spectrum measured by the ⁇ -2 ⁇ method is shown in FIG. Peaks of (111), (220), and (311) orientations are observed, indicating that crystallization has occurred. In Comparative Example 1, the difference in intensity between the peaks was small, and the peak intensity ratio of (220) / (111) was 1.8. The crystal grain size determined from the (220) peak half width was 41 nm. The Raman scattering spectrum is shown in FIG.
  • a sharp peak of the TO mode of crystalline Ge—Ge bond is observed in the vicinity of 300 cm ⁇ 1, indicating that it is crystallized.
  • the crystalline germanium layer was weak n-type, the carrier density was 3.2 ⁇ 10 16 cm ⁇ 3 , and the mobility was 1.3 cm 2 / (V ⁇ s). .
  • the refractive index for light having a wavelength of 600 nm measured by spectroscopic ellipsometry was 3.67.
  • FIG. 7 shows an infrared absorption spectrum measured by FTIR after forming a crystalline germanium layer on the crystalline silicon substrate under the same conditions as the above thin film photoelectric conversion device.
  • Wave number of 560cm -1, 755cm -1, 860cm -1 , 935cm -1 is observed peak of absorption to 960cm -1.
  • Wavenumber 935cm -1 the absorption peak of each absorption coefficient of 960 cm -1 was 8400cm -1, 5130cm -1.
  • Example 1 is improved in all parameters, and in particular, Jsc shows a large value exceeding 30 mA / cm 2 . Moreover, it is shown that the quantum efficiency with respect to 1300 nm long wavelength light of Example 1 reaches 10%, and the use of long wavelength light is possible.
  • the crystalline germanium layers of Comparative Example 1 and Example 1 do not show a large difference in Raman scattering spectra. However, of the infrared absorption peaks, the peaks at 935 cm ⁇ 1 and 960 cm ⁇ 1 are smaller than half in Example 1 compared to Comparative Example 1.
  • Example 1 has suppressed the generation of clusters, polymers, or germanium oxide, and the characteristics of the thin film photoelectric conversion device have been improved. Further, the X-ray diffraction spectrum of Example 1 shows a large value in which the (220) / (111) beak intensity ratio exceeds 10, and it can be said that large crystal grains have grown in the film thickness direction. It is considered that Jsc showed a high value exceeding 30 mA / cm 2 .
  • Example 2 As Example 2, a single-junction thin film photoelectric conversion device similar to Example 1 was produced. Example 2 was produced in the same manner as in Example 1 except that the crystalline germanium photoelectric conversion layer of FIG. 1 was formed at 400 ° C.
  • the absorption coefficient at a wavelength of 1300 nm measured in the same manner as in Example 1 was 16200 cm ⁇ 1 , indicating a high absorption coefficient for long wavelength light.
  • An X-ray diffraction spectrum is shown in FIG. In the X-ray diffraction spectrum, a particularly strong peak was observed in the (220) orientation, indicating that it was crystallized. The peak intensity ratio of (220) / (111) was 91. The crystal grain size determined from the (220) peak half width was 51 nm.
  • the Raman scattering spectrum is shown in FIG. A sharp peak of the TO mode of crystalline Ge—Ge bond is observed in the vicinity of 300 cm ⁇ 1, indicating that it is crystallized.
  • Example 2 (Summary of Examples 1 and 2 and Comparative Example 1)
  • the infrared absorption peaks of 935 cm ⁇ 1 and 960 cm ⁇ 1 were not observed, the long-wavelength quantum efficiency showed a high value exceeding 10%, and Jsc showed a high value exceeding 30 mA / cm 2 .
  • the reason why Eff is slightly lower than that in Example 1 is considered to be that impurities are diffused between the p-type layer and the crystalline germanium layer due to a decrease in Voc and FF due to a high film-forming temperature.
  • the Raman scattering spectra of the crystalline germanium layer are crystallized in Examples 1 and 2 and Comparative Example 1, and no significant difference is observed.
  • Example 3 As Example 3, a single-junction thin film photoelectric conversion device similar to Example 1 was produced.
  • the crystalline germanium photoelectric conversion layer of FIG. 1 was (1) formed at 200 ° C., (2) the H 2 / GeH 4 flow rate ratio was 500 times, and (3) high frequency power density was It was produced in the same manner as in Example 1 except for 3 points of 1100 mW / cm 2 .
  • the absorption coefficient at a wavelength of 1300 nm measured in the same manner as in Example 1 was 8700 cm ⁇ 1 , indicating a high absorption coefficient for long wavelength light.
  • peaks of (111), (220), and (311) orientation were observed, and it was found that crystallization occurred.
  • the peak intensity ratio of (220) / (111) was 2.5.
  • the crystal grain size determined from the (220) peak half width was 40 nm.
  • a sharp peak of TO mode of crystalline Ge—Ge bond was observed near 300 cm ⁇ 1 , indicating that it was crystallized.
  • Comparative Example 2 As Comparative Example 2, a single-junction thin-film photoelectric conversion device similar to Example 3 was produced. Comparative Example 2 was produced in the same manner as Example 3 except that the crystalline germanium photoelectric conversion layer in FIG. 1 was set to a high frequency power density of 300 mW / cm 2 .
  • the absorption coefficient at a wavelength of 1300 nm measured in the same manner as in Example 1 was 640 cm ⁇ 1 , and the absorption coefficient of long wavelength light in Comparative Example 2 was lower by one digit or more than that in Example 3.
  • the peaks (111), (220), and (311) were observed, indicating that the film was amorphous.
  • the peak intensity ratio of (220) / (111) could not be measured.
  • a gentle peak of the TO mode of amorphous Ge—Ge bond was observed in the vicinity of 280 cm ⁇ 1 , indicating that it was amorphous.
  • Example 3 (Summary of Example 3 and Comparative Example 2)
  • the absorption coefficient of the infrared absorption peak at a wave number of 935 cm ⁇ 1 was obtained by increasing the high frequency power density to 1100 mW / cm 2.
  • the quantum efficiency at a wavelength of 1300 nm was 8.5%, which enabled the use of long wavelength light, and Jsc showed a high value exceeding 30 mA / cm 2 .
  • Example 4 and 5 As Examples 4 and 5, single-junction thin film photoelectric conversion devices similar to Example 1 were produced.
  • the crystalline germanium photoelectric conversion layer shown in FIG. 1 was prepared in the same manner as in Example 1 except that Example 4 was formed at 250 ° C. and Example 5 was formed at 350 ° C.
  • the crystalline germanium layer was formed on the crystalline silicon substrate on the same conditions as the photoelectric converting layer of a thin film photoelectric conversion apparatus similarly to Example 1, and the infrared absorption spectrum was measured by FTIR.
  • Example 1 shows the absorption coefficient of the infrared absorption peak with respect to the film formation temperature of the crystalline germanium photoelectric conversion layer and the characteristics of the photoelectric conversion device.
  • the crystalline germanium photoelectric conversion layer wavenumber 755 cm -1 was measured by FTIR relative to a substrate temperature during film formation of, 860cm -1, 935cm -1, indicating the absorption coefficient of the peak of 960 cm -1.
  • Wave number 755 cm -1 with increasing substrate temperature the absorption coefficient of the peak of 935cm -1, 960cm -1 monotonically decreases, less than 500 cm -1 at 350 ° C. or higher.
  • the absorption coefficient of the peak of 935cm -1 becomes less than 6000 cm -1
  • the absorption coefficient of the peak of 960 cm -1 becomes less than 4000 cm -1
  • the absorption coefficient of the peak of 755 cm -1 is less than 1500 cm -1 It becomes.
  • the absorption coefficient of the peak at 860 cm ⁇ 1 has a minimum value at 250 ° C., a maximum value at 300 ° C., and less than 500 cm ⁇ 1 at 350 ° C. or higher, as the substrate temperature increases.
  • FIG. 12 shows the Jsc of the thin film photoelectric conversion device and the quantum efficiency at a wavelength of 1300 nm with respect to the substrate temperature when forming the crystalline germanium photoelectric conversion layer.
  • Jsc and quantum efficiency increase rapidly from a substrate temperature of 200 ° C. to 250 ° C., and show a saturation tendency at a temperature higher than that.
  • Jsc is 30 mA / cm 2 or more at a substrate temperature of 250 ° C. or higher, and the quantum efficiency at a wavelength of 1300 nm is a high value exceeding 5%.
  • FIG. 13 shows the Eff of the thin film photoelectric conversion device with respect to the substrate temperature when forming the crystalline germanium photoelectric conversion layer. Eff shows a value of 3% or more at 250 ° C. or higher, and is maximum at 300 ° C.
  • FIG. 14 shows the FF of the thin film photoelectric conversion device with respect to the substrate temperature when forming the crystalline germanium photoelectric conversion layer.
  • the FF increases rapidly from the substrate temperature of 200 ° C. to 250 ° C., and shows a saturation tendency at a temperature higher than that.
  • FIG. 15 shows Voc of the thin film photoelectric conversion device with respect to the substrate temperature at the time of forming the crystalline germanium photoelectric conversion layer. Voc becomes maximum at 300 ° C. with respect to the substrate temperature.
  • the absorption coefficient of the infrared absorption peak at 935 cm ⁇ 1 at a substrate temperature of 250 ° C. or higher is less than 6000 cm ⁇ 1
  • the Jsc is 30 mA / cm 2 or more
  • the quantum efficiency at a wavelength of 1300 nm exceeds 5%. It can be seen that long-wavelength light can be used and the characteristics of the thin film photoelectric conversion device are improved.
  • Example 6 As Examples 6, 7, and 8, single-junction thin film photoelectric conversion devices similar to Example 3 were produced.
  • the crystalline germanium layer was formed on the crystalline silicon substrate on the same conditions as the photoelectric converting layer of a thin film photoelectric conversion apparatus similarly to Example 3, and the infrared absorption spectrum was measured by FTIR.
  • Example 2 shows the absorption coefficient of the infrared absorption peak with respect to the high frequency power density of the crystalline germanium photoelectric conversion layer and the characteristics of the photoelectric conversion device.
  • Figure 16 shows the absorption coefficient of the peak of the crystalline wavenumber 755 cm -1 was measured by FTIR the germanium photoelectric conversion layer relative to the RF power density during deposition, 860cm -1, 935cm -1, 960cm -1.
  • the absorption coefficients of the peaks at wave numbers 755 cm ⁇ 1 , 935 cm ⁇ 1 , and 960 cm ⁇ 1 monotonously decrease as the high frequency power density increases.
  • the absorption coefficient of the peak of 935cm -1 becomes less than 6000 cm -1
  • the absorption coefficient of the peak of 960 cm -1 becomes less than 4000 cm -1
  • the absorption coefficient of the peak of 755 cm -1 is 1500cm Less than -1 .
  • the absorption coefficient of the peak at 860 cm ⁇ 1 has a maximum value at 550 mW / cm 2 with respect to the increase in high frequency power density.
  • FIG. 17 shows the Jsc of the thin film photoelectric conversion device and the quantum efficiency at a wavelength of 1300 nm with respect to the high frequency power density when forming the crystalline germanium photoelectric conversion layer.
  • the high-frequency power density increased from 300mW / cm 2 550mW / cm 2 increase Jsc and quantum efficiency abruptly when subjected, gradually increases at higher RF power density.
  • a high frequency power density of 550 mW / cm 2 or higher indicates that Jsc is 30 mA / cm 2 or higher, and a quantum efficiency at a wavelength of 1300 nm exceeds 5%.
  • FIG. 18 shows the Eff of the thin film photoelectric conversion device with respect to the high frequency power density when the crystalline germanium photoelectric conversion layer is formed. Eff shows a value of 3% or more at 550 mW / cm 2 or more, and becomes maximum at 1100 mW / cm 2 .
  • FIG. 19 shows an FF of a thin film photoelectric conversion device with respect to a high frequency power density when a crystalline germanium photoelectric conversion layer is formed. FF increases rapidly over a high-frequency power density from 300 mW / cm 2 to 550 mW / cm 2, indicating a saturation tendency at higher RF power density.
  • FIG. 20 shows Voc of the thin film photoelectric conversion device with respect to the high frequency power density at the time of forming the crystalline germanium photoelectric conversion layer. Voc is maximum at 1100 mW / cm 2 with respect to the high frequency power density.
  • the absorption coefficient of the infrared absorption peak at 935 cm ⁇ 1 at a high frequency power density of 550 mW / cm 2 or less is less than 6000 cm ⁇ 1.
  • the Jsc is 30 mA / cm 2 or more and the quantum efficiency at a wavelength of 1300 nm is 5% or more, so that long wavelength light can be used and the characteristics of the thin film photoelectric conversion device are improved.
  • FIG. 21 shows the Jsc of the thin film photoelectric conversion device and the quantum efficiency at a wavelength of 1300 nm with respect to the absorption coefficient of the infrared absorption peak at a wave number of 935 cm ⁇ 1 .
  • FIG. 22 shows the Eff of the thin film photoelectric conversion device with respect to the absorption coefficient of the infrared absorption peak at a wave number of 935 cm ⁇ 1 .
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 5000 cm -1, more preferable because Eff exceeds 3.5%.
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 10 cm -1 or more 2500 cm -1, further preferably so Eff exceeds 4.5%.
  • FIG. 23 shows the Jsc of the thin film photoelectric conversion device and the quantum efficiency at a wavelength of 1300 nm with respect to the absorption coefficient of the infrared absorption peak at a wave number of 960 cm ⁇ 1 .
  • FIG. 24 shows the Eff of the thin film photoelectric conversion device with respect to the absorption coefficient of the infrared absorption peak at a wave number of 960 cm ⁇ 1 .
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 3000 cm -1, more preferable because Eff exceeds 3.5%.
  • the absorption coefficient of the infrared absorption peak at a wavenumber of 935 ⁇ 5 cm -1 becomes less than 1300 cm -1, more preferable because Eff exceeds 4.5%.
  • Examples 1 to 3 and Comparative Example 1 show photoelectric conversion characteristics of a thin film photoelectric conversion device with respect to a (220) / (111) peak intensity ratio measured by X-ray diffraction of a crystalline germanium photoelectric conversion layer.
  • FIG. 25 shows the Jsc of the thin film photoelectric conversion device and the quantum efficiency at a wavelength of 1300 nm with respect to the (220) / (111) peak intensity ratio.
  • the (220) / (111) peak intensity ratio is 2 or more
  • Jsc shows a high value of 30 mA / cm 2 or more
  • the quantum efficiency at a wavelength of 1300 nm shows a high value of 5% or more.
  • FIG. 26 shows the Eff of the thin film photoelectric conversion device with respect to the (220) / (111) peak intensity ratio.
  • the (220) / (111) peak intensity ratio is 2 or more, Eff shows a high value of 3% or more. It is more preferable that the (220) / (111) peak intensity ratio is 2.1 or more and 70 or less because Eff shows a high value of 4% or more.
  • Example 9 As Example 9, a single-junction thin-film photoelectric conversion device 8 similar to Example 1 was produced.
  • Example 9 is the same as Example 1 except that a substantially genuine crystalline silicon layer 34 is disposed between the p-type microcrystalline silicon layer 31 and the crystalline germanium photoelectric conversion layer 32 as shown in FIG. It produced similarly.
  • the genuine crystalline silicon layer 34 was formed to a thickness of 100 nm by a high frequency plasma CVD method using SiH 4 and H 2 as reaction gases.
  • Voc and FF are increased, and Eff is a high value of 6.0%. showed that. This is presumably because the crystallinity of the crystalline germanium photoelectric conversion layer was improved and / or defects at the interface between the p-type layer and the photoelectric conversion layer were reduced.
  • Example 10 As Example 10, a single-junction thin film photoelectric conversion device similar to Example 9 was produced. Example 10 was produced in the same manner as Example 9 except that a substantially genuine crystalline silicon layer 35 was disposed between the crystalline germanium photoelectric conversion layer 32 and the n-type microcrystalline silicon layer 33. The genuine crystalline silicon layer 35 was formed to a thickness of 100 nm by a high frequency plasma CVD method using SiH 4 and H 2 as reaction gases.
  • Example 11 As Example 11, a three-junction thin film photoelectric conversion device 9 shown in FIG. In Example 11, (1) an amorphous silicon photoelectric conversion unit 4 and a crystalline silicon photoelectric conversion unit 5 were sequentially disposed between the transparent electrode layer 2 and the crystalline germanium photoelectric conversion unit 3 of Example 1, ( 2) The crystalline germanium photoelectric conversion layer 32 was prepared in the same manner as in Example 1, except that the film thickness was 2.5 ⁇ m and (3) the transparent electrode layer 2 was composed of only SnO 2 . .
  • An amorphous silicon photoelectric conversion unit 4 was produced on the transparent electrode layer 2 using a plasma CVD apparatus. SiH 4 , H 2 , CH 4 and B 2 H 6 are introduced as a reaction gas to form a p-type amorphous silicon carbide layer 41 having a thickness of 15 nm, and SiH 4 is introduced as a reaction gas to form an amorphous silicon photoelectric conversion layer 42.
  • the amorphous silicon photoelectric conversion unit 3 was formed by forming 80 nm, and then introducing SiH 4 , H 2 and PH 3 as reaction gases to form an n-type microcrystalline silicon layer 43 having a thickness of 10 nm.
  • SiH 4 , H 2 and B 2 H 6 are introduced as reaction gases to form a p-type microcrystalline silicon layer 51 having a thickness of 10 nm, and then SiH 4 and H 2 are introduced as reaction gases.
  • the crystalline silicon photoelectric conversion layer 52 is formed to a thickness of 1.5 ⁇ m, and then SiH 4 , H 2 and PH 3 are introduced as reaction gases to form an n-type microcrystalline silicon layer 53 having a thickness of 15 nm. Formed.
  • the crystalline germanium photoelectric conversion unit 3 and the back electrode layer 6 were sequentially formed.
  • the open circuit voltage (Voc) was measured.
  • the short circuit current density (Jsc) was 11.5 mA / cm 2
  • the fill factor (FF) was 0.71
  • the conversion efficiency (Eff) was 14.0%.
  • the quantum efficiency at a wavelength of 1300 nm was 10.1%.
  • Example 12 When the crystalline germanium photoelectric conversion layer of Example 12 was formed, an emission spectrum was measured with a measuring apparatus shown in FIG. 33 and 34 show the emission spectrum. Ge atomic emission peaks were clearly observed at wavelengths of 265 nm and 304 nm.
  • Example 13 As Example 13, a single-junction thin film photoelectric conversion device similar to Example 12 was produced. Example 13 was produced in the same manner as Example 12 except that when the crystalline germanium photoelectric conversion layer was formed, the electrode spacing ES was 12 mm. Further, the infrared absorption coefficient and refractive index are shown in Table 3 as in Example 12.
  • Example 13 emission spectral spectra measured in the same manner as in Example 12 are shown in FIGS.
  • Example 13 unlike Example 12, only noise level peaks were measured at wavelengths of 265 nm and 304 nm, and no Ge atomic emission peak was detected.
  • Example 14 emission spectral spectra measured in the same manner as in Example 12 are shown in FIGS.
  • the emission spectroscopy is measured after changing ES to 15 mm.
  • Example 14 unlike Example 12, only noise level peaks were measured at wavelengths of 265 nm and 304 nm, and no Ge atomic emission peak was detected.
  • Example 12 (Summary of Examples 12, 13, and 14) In Example 12, a Ge atomic emission peak was detected, the quantum efficiency of long-wavelength light was 9.5%, and Jsc was 33.5 mA / cm 2 . In contrast, in Example 13, no Ge atomic emission peak was detected, the quantum efficiency of long-wavelength light was improved to 11%, and Jsc was improved to 34.9 mA / cm 2 . In Example 13, since the Ge atom emission peak was not detected, it can be seen that the density of highly reactive Ge atoms is low. Therefore, it can be said that the chain reaction as shown in Formula 2 hardly occurs and the generation of polymers and clusters is suppressed, and a dense crystalline germanium semiconductor is formed and the characteristics of the thin film photoelectric conversion device are improved.
  • Example 14 The film forming conditions of Examples 12 and 13 are different for ES of 15 mm and 12 mm, respectively.
  • Example 15 As Examples 15, 16, and 17, single junction thin film photoelectric conversion devices similar to Example 12 were produced.
  • the crystalline germanium photoelectric conversion layer of FIG. 1 was formed in the same manner as in Example 12 except that the ES was 9 mm in Example 15, 7.5 mm in Example 16, and 6.5 mm in Example 17. It was prepared. Further, the infrared absorption coefficient, refractive index, and characteristics of the thin film photoelectric conversion device are shown in Table 3 as in Example 12.
  • Table 3 shows the absorption coefficient of the infrared absorption peak with respect to ES of the crystalline germanium photoelectric conversion layer, the refractive index at a wavelength of 600 nm, and the characteristics of the photoelectric conversion device.
  • FIG. 35 shows the Jsc of a thin film photoelectric conversion device and the quantum efficiency at a wavelength of 1300 nm with respect to ES when a crystalline germanium photoelectric conversion layer is formed.
  • ES is decreased from 15 mm to 6.5 mm, Jsc and quantum efficiency increase monotonously.
  • ES is 12 mm or less, Jsc is about 35 mA / cm 2 or more, and the quantum efficiency at a wavelength of 1300 nm exceeds 10%.
  • the quantum efficiency at a wavelength of 1300 nm increases rapidly.
  • FIG. 36 shows Eff of the thin film photoelectric conversion device with respect to ES at the time of forming the crystalline germanium photoelectric conversion layer. Eff increases with decreasing ES, and Eff shows a value of 5.5% or more when ES is 12 m or less. Further, when ES is 7.5 mm or less, Eff further increases.
  • Example 18 As Example 18, a single-junction thin film photoelectric conversion device similar to Example 16 was produced. Example 18 was produced in the same manner as in Example 16 except that a plasma CVD apparatus provided with a hollow cathode electrode shown in FIG. 31 was used when the crystalline germanium photoelectric conversion layer was formed.
  • the hollow of the hollow cathode had a diameter of 3 mm ⁇ , a depth of 3 mm, and a plurality of depressions with a pitch of 5 mm.
  • a gas introduction hole was provided at the center of the recess.
  • the infrared absorption coefficient, refractive index, and characteristics of the thin film photoelectric conversion device are shown in Table 3 as in Example 12.
  • Example 18 As shown in Table 3, the infrared absorption coefficient of Example 18 was not much different from that of Example 16. On the other hand, the refractive index of Example 18 is as high as 5.38 compared with 5.01 of Example 16. The uniformity of the film thickness distribution was ⁇ 7% in Example 16, whereas it was ⁇ 4% in Example 18.
  • Example 19 to 23 As Examples 19 to 23, single-junction thin film photoelectric conversion devices similar to Example 16 were produced.
  • the crystalline germanium photoelectric conversion layer of FIG. 1 was formed at a pressure of 670 Pa in Example 19, 850 Pa in Example 20, 930 Pa in Example 21, 1000 Pa in Example 22, and 1330 Pa in Example 23. Except for, it was produced in the same manner as in Example 16.
  • Table 4 shows the infrared absorption coefficient, refractive index, and characteristics of the thin film photoelectric conversion device.
  • FIG. 37 shows the Jsc of the thin film photoelectric conversion device and the quantum efficiency at a wavelength of 1300 nm with respect to the pressure at the time of forming the crystalline germanium photoelectric conversion layer.
  • Jsc increases and is almost saturated at a pressure of 800 Pa or higher.
  • the quantum efficiency also increases with increasing pressure and then saturates.
  • Jsc is 35 mA / cm 2 or more at a pressure of 800 Pa, and the quantum efficiency at a wavelength of 1300 nm is more than 10%.
  • FIG. 38 shows Eff of the thin film photoelectric conversion device with respect to the pressure at the time of forming the crystalline germanium photoelectric conversion layer. As the pressure increases, Eff increases, shows a maximum value at 850 Pa, and then gradually decreases. Eff shows a high value of 5.9% or more in a pressure range of 800 Pa to 1330 Pa, and Eff shows a high value of 6.1% at a pressure of 850 Pa.
  • the pressure during film formation of the crystalline germanium photoelectric conversion layer is preferably 800 Pa or more from FIGS.
  • the upper limit of the pressure is desirably 2000 Pa or less for increasing the crystallinity, more desirably 1500 Pa or less for increasing the uniformity, and more desirably 1330 Pa or less from FIGS.
  • Example 24 As Example 24, a single-junction thin film photoelectric conversion device similar to Example 1 was produced, and the characteristics of the thin film photoelectric conversion device with respect to the refractive index at a wavelength of 600 nm were examined.
  • the crystalline germanium photoelectric conversion layer shown in FIG. 1 is formed under the following conditions: substrate temperature 200 to 300 ° C., high frequency power density 300 to 1400 mW / cm 2 , H 2 / GeH 4 flow rate ratio 500 to 2000 times, ES
  • a large number of thin-film photoelectric conversion devices having a thickness of 6.5 to 15 mm and a pressure of 670 to 1330 Pa were manufactured. Any of the photoelectric conversion device also infrared absorption coefficient of the peak of 935cm -1 is less than 6000 cm -1, infrared absorption coefficient of the peak of 960 cm -1 is less than 4000 cm -1.
  • FIG. 39 shows the Jsc of the thin film photoelectric conversion device and the quantum efficiency of 1300 nm wavelength with respect to the refractive index of 600 nm wavelength of the crystalline germanium photoelectric conversion layer.
  • the data of Comparative Examples 1 and 2 are also shown as comparative examples in the figure.
  • the quantum efficiency of long-wavelength light which was 1% or less, is increased to 5% or more when the refractive index is 4.0 or more.
  • Jsc also increases.
  • Jsc shows a high value of 30 mA / cm 2 or higher.
  • Jsc is 35 mA / cm 2 . An even higher value is shown.
  • FIG. 40 shows the Eff of the thin film photoelectric conversion device with respect to the refractive index of the crystalline germanium photoelectric conversion layer having a wavelength of 600 nm.
  • the data of Comparative Examples 1 and 2 are also shown as comparative examples in the figure.
  • Eff increases.
  • Eff shows a value of 3.0% or more.
  • Eff shows a saturation tendency by setting the refractive index to 4.7 or more.
  • Eff is stable and shows a high value of 5.5% or more.
  • Figure 41 a single-junction using the crystalline germanium photoelectric conversion layer for Eff of the photoelectric conversion device, the absorption coefficient of 935cm -1 due to the FTIR of the crystalline germanium photoelectric conversion layer ( ⁇ @ 935cm -1), and the wavelength of 600nm
  • the refractive index (n) with respect to light is shown.
  • the infrared absorption spectrum has a large variation and it is difficult to judge the quality.
  • the refractive index has a good correlation, and the quality of the crystalline germanium semiconductor is judged. It turns out that it is suitable as a parameter
  • the refractive index is preferably 4.0 or more, more preferably 4.7 or more, and further preferably 4.9 or more. However, if the refractive index exceeds 5.6, the refractive index is higher than that of single crystal germanium, and there is a concern about impurity contamination by heavy metals. Therefore, the refractive index is preferably 5.6 or less.

Abstract

 従来の非晶質ゲルマニウムまたは結晶質シリコンを光電変換層に用いた薄膜光電変換装置では、1100nm以上の長波長光を光電変換に利用できず、変換効率の向上が不十分な課題がある。本発明は、p形半導体層とn型半導体層の間に光電変換層を備えた光電変換ユニットを1以上含む薄膜光電変換装置であって、少なくとも1つの光電変換ユニットの光電変換層が真性または弱n形の結晶質ゲルマニウム半導体を含み、かつ前記結晶質ゲルマニウム半導体の波数935±5cm-1の赤外吸収ピークの吸収係数が6000cm-1未満であることを特徴とする薄膜光電変換装置によって課題を解決する。また前記結晶質ゲルマニウム半導体の波数960±5cm-1の赤外吸収ピークの吸収係数が3500cm-1未満であることを特徴とする薄膜光電変換装置によって解決する。

Description

薄膜光電変換装置およびその製造方法
 本発明は、薄膜光電変換装置の改善に関し、特に結晶質ゲルマニウム半導体を用いた長波長光の利用効率の改善に関する。なお、本願明細書における「結晶質」および「微結晶」の用語は、当該技術分野において用いられているように、部分的に非晶質を含む場合にも用いられている。
 近年、半導体内部の光電効果を用いて光を電気に変換する光電変換装置が注目され、開発が精力的行われているが、その光電変換装置の中でもシリコン系薄膜光電変換装置は、低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が期待できる。
 このようなシリコン系薄膜光電変換装置は、一般に透明絶縁基板上に順に積層された透明電極層と、1つ以上の光電変換ユニットと、及び裏面電極層とを含んでいる。ここで、光電変換ユニットは一般にp型層、i型層、及びn型層がこの順、またはその逆順に積層されてなり、その主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットと呼ばれ、i型層が結晶質のものは結晶質光電変換ユニットと呼ばれている。
 光電変換層は、光を吸収して電子・正孔対を発生させる層である。一般に、シリコン系薄膜光電変換装置では、pin接合のうちi型層が光電変換層である。光電変換層であるi型層が、光電変換ユニットの主要な膜厚を占める。
 i型層は、理想的には導電型決定不純物を含まない真性の半導体層である。しかし、微量の不純物を含んでいても、フェルミ準位が禁制帯のほぼ中央にあれば、pin接合のi型層として機能するので、これを実質的にi型の層と呼ぶ。一般に、実質的にi型の層は、導電型決定不純物を原料ガスに添加せずに作製する。この場合、i型層として機能する許容範囲で導電型決定不純物を含んでも良い。また、実質的にi型の層は、大気や下地層に起因する不純物がフェルミ準位に与える影響を取り除くために、微量の導電型決定不純物を意図的に添加して作製しても良い。
 また、光電変換装置の変換効率を向上させる方法として、2つ以上の光電変換ユニットを積層した、積層型と呼ばれる構造を採用した光電変換装置が知られている。この方法においては、光電変換装置の光入射側に大きな光学的禁制帯幅を有する光電変換層を含む前方光電変換ユニットを配置し、その後ろに順に小さな光学的禁制帯幅を有する(たとえばSi-Ge合金などの)光電変換層を含む後方光電変換ユニットを配置することにより、入射光の広い波長範囲にわたる光電変換を可能にし、入射する光を有効利用することにより装置全体としての変換効率の向上が図られている。
 たとえば非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットとを積層した2接合型薄膜光電変換装置の場合、i型の非晶質シリコン(a-Si)が光電変換し得る光の波長は長波長側において700nm程度までであるが、i型の結晶質シリコンはそれより長い約1100nm程度の波長の光までを光電変換することができる。ここで、光吸収係数の大きな非晶質シリコンからなる非晶質シリコン光電変換層では光電変換に充分な光吸収のためには0.3μm程度の厚さでも十分であるが、比較して光吸収係数の小さな結晶質シリコンからなる結晶質シリコン光電変換層では長波長の光をも十分に吸収するためには2~3μm程度以上の厚さを有することが好ましい。すなわち、結晶質シリコン光電変換層は、通常は、非晶質シリコン光電変換層に比べて10倍程度の大きな厚さが必要となる。なお、この2接合型薄膜光電変換装置の場合、光入射側にある光電変換ユニットをトップセル、後方にある光電変換ユニットをボトムセルと呼ぶ事とする。
 さらに光電変換ユニット3つ備える3接合型薄膜光電変換装置も用いられる。本明細書では、3接合型薄膜光電変換装置の光電変換ユニットを光入射側から順にトップセル、ミドルセル、ボトムセルと呼ぶ事とする。3接合の積層型薄膜光電変換装置にすることによって、開放電圧(Voc)が高く、短絡電流密度(Jsc)が低くなり、2接合の場合に比べてトップセルの非晶質シリコン光電変換層の膜厚を薄くできる。このため、トップセルの光劣化を抑制することができる。また、ミドルセルの光電変換層のバンドギャップをトップセルより狭く、ボトムセルより広くすることによって、入射した光をより有効に利用することができる。
 3接合の積層型薄膜光電変換装置の例として、ミドルセルの光電変換層に非晶質シリコンゲルマニウム(a-SiGe)を用いた、a-Si光電変換ユニット/a-SiGe光電変換ユニット/a-SiGe光電変換ユニットの順に積層した薄膜光電変換装置、あるいはa-Si光電変換ユニット/a-SiGe光電変換ユニット/結晶質シリコン光電変換ユニットの順に積層した薄膜光電変換装置が挙げられる。a-SiGeの膜中のGe濃度を適宜調整することによって、ミドルセルの光電変換層のi型a-SiGeのバンドギャップをトップセルとボトムセルの間の値に制御することができる。また、ミドルセルとボトムセルの両方にa-SiGe光電変換層を用いた場合、ミドルセルよりボトムセルのGe濃度が高くなるようにする。
 しかし、a-Siに比べて、合金層であるa-SiGeは欠陥密度が高くて半導体特性が劣っており、また、光照射による欠陥密度の増加が大きいことがわかっている。このため、a-SiGeをミドルセルまたはボトムセルの光電変換層に用いた3接合の積層型薄膜光電変換装置は2接合の薄膜光電変換装置に比べて効率の向上が十分でない。また、a-SiGeの光劣化が大きいため、3接合の積層型薄膜光電変換装置にしたにもかかわらず、光劣化の抑制が十分でない問題がある。
 ボトムセルにa-SiGe光電変換ユニットを用いた場合は光電変換し得る光の波長は長波長側において900nm程度まで、ボトムセルに結晶質シリコン光電変換ユニットを用いた場合光電変換し得る光の波長は長波長側において1100nm程度までで、長波長側の利用できる波長の限界は2接合の薄膜光電変換装置と同様の波長で改善されず、3接合の薄膜光電変換装置の変換効率の向上が十分でない課題がある。
 (先行例1)
 非特許文献1に、光電変換層に弱n型微結晶ゲルマニウムを用いた単接合の薄膜光電変換装置が開示されている。薄膜光電変換装置の構造は、ステンレス基板/n型非晶質シリコン/i型非晶質シリコン/微結晶シリコンゲルマニウムの組成傾斜層/弱n型微結晶ゲルマニウム光電変換層/微結晶シリコンゲルマニウムの組成傾斜層/p型微結晶シリコン層/ITOを順次積層した構造である。薄膜光電変換装置の特性は開放電圧Voc=0.22V、短絡電流密度Jsc=25mA/cm、曲線因子FF=0.36、変換効率Eff=2.0%、長波長側で量子効率が10%となる波長は約1080nm、量子効率が5%となる波長は1130nmである。微結晶ゲルマニウム光電変換層はマイクロ波放電を用いたECRリモートプラズマCVD法で形成している。
 (先行例2)
 非特許文献2に、光電変換層にGe組成0%から最大35%までの微結晶シリコンゲルマニウムを用いた単接合の薄膜光電変換装置が開示されている。具体的には、薄膜光電変換装置の構造は、ガラス基板/凹凸ZnO/p型微結晶シリコン/i型微結晶シリコンゲルマニウムの光電変換層/n型微結晶シリコン層/ZnO/Agを順次積層したの構造である。薄膜光電変換装置の特性は、微結晶シリコンゲルマニウムの膜中Ge濃度20%でJsc、Effが最大となり、Voc=0.427V、Jsc=24.1mA/cm、FF=0.616、Eff=6.33%を示す。膜中Ge組成を20%以上に増加するとVoc、Jsc、FFがいずれも低下してEffが低下する。特に膜中Ge濃度を30%以上にするとFFが著しく低下し、Ge濃度35%ではFFが約0.4となり、Effが約2%と低くなる。また、量子効率が10%となる波長はGe濃度が最大の35%の場合でも約1050nmである。
Xuejun Niu, Jeremy Booher and Vikran L. Dalal, "Nanocrystalline Germanium and Germanium Carbide Films and Devices", Materials Research Society Symposium Proceedings, Vol.862, A10.2 (2005). Takuya Matsui, Chia-Wen Chang, Tomoyuki Takada, Masao Isomura, Hiroyuki Fujiwara and Michio Kondo, "Microcrystalline Si1-xGex Solar Cells Exhibiting Enhanced Infrared Response with Reduced Absorber Thickness", Japanese Applied Physics Express, vol.1, 032501-1~3、2008.
 2接合または3接合の積層型薄膜光電変換装置のボトムセルにa-SiGe光電変換ユニット、または結晶質シリコン光電変換ユニットを用いた薄膜光電変換装置の場合、長波長側で利用できる波長の上限は900~1100nmで、長波長光の利用が十分でなく変換効率の向上が不十分な課題がある。
 また、微結晶Geを光電変換層に用いた薄膜光電変換装置はFFが低く、変換効率が低い課題がある。また、光電変換可能な長波長光の波長の上限が約1080nmで十分な向上が得られない問題がある。
 さらに、微結晶SiGeを光電変換層に用いた薄膜光電変換装置は膜中Ge濃度を20%以上にするとVoc、Jsc、FFいずれも低下してEffが急減する課題があった。また、膜中Ge濃度35%までの微結晶シリコンゲルマニウムを用いた場合の光電変換可能な長波長光の波長の上限が約1050nmで十分な向上が得られない問題がある。
 上記を鑑み、本発明は1100nm以上の長波長光を利用可能な特性の高い薄膜光電変換装置を提供することを目的とする。
 本発明による薄膜光電変換装置は、p型半導体層とn型半導体層の間に光電変換層を備えた光電変換ユニットを1以上含む薄膜光電変換装置であって、少なくとも1つの光電変換ユニットの光電変換層が真性または弱n形の結晶質ゲルマニウム半導体を含み、かつ前記結晶質ゲルマニウム半導体の935±5cm-1の赤外吸収ピークの吸収係数が6000cm-1未満であることを特徴とすることによって課題を解決する。波数935±5cm-1の赤外吸収ピークの起源は同定されていないが、ポリマーまたはクラスター状の水素化ゲルマニウム、あるいは酸化ゲルマニウムに由来すると考えられ、この赤外吸収ピークを小さく抑えることによって緻密な結晶質ゲルマニウムが形成されて、薄膜光電変換装置の特性が向上すると推定される。
 また、本発明の薄膜光電変換装置は、結晶質ゲルマニウム半導体の波数960±5cm-1の赤外吸収ピークの吸収係数が3500cm-1未満であることが好ましい。960±5cm-1の赤外吸収ピークの起源も同定されていないが、上述と同様にポリマーまたはクラスター状の水素化ゲルマニウム、あるいは酸化ゲルマニウムに由来すると考えられ、この赤外吸収ピークを小さく抑えることによって緻密な結晶質ゲルマニウムが形成されて、薄膜光電変換装置の特性が向上すると考えている。
 結晶質ゲルマニウム半導体はX線回折で測定した(220)ピークと(111)ピークの強度比が2以上であることが好ましい。(220)配向が強くなることによって、結晶質ゲルマニウムが基板に垂直方向に柱状の結晶を形成して、膜厚方向の結晶サイズが大きくなって、光電変換電流が流れやすくなって薄膜光電変換装置の特性が向上する。
 光電変換層が実質的に真正な結晶質シリコン半導体と前記結晶質ゲルマニウム半導体を積層した構造であってもよい。結晶質シリコン半導体が下地層となって、その上に積層した結晶質ゲルマニウム半導体の結晶性を向上して、および/または導電型層と結晶質ゲルマニウム半導体との界面の欠陥が減少して、薄膜光電変換装置の特性が向上する。あるいは結晶質ゲルマニウム半導体の上に結晶質シリコン半導体を形成することにより、その上に形成する逆導電型層との界面の欠陥が減少して、薄膜光電変換装置の特性が向上する。
 また、光電変換ユニットを3つ備え、光入射側から順に光電変換層に非晶質シリコン半導体を用いた第一光電変換ユニット、光電変換層に結晶質シリコン半導体を用いた第二光電変換ユニット、光電変換層に前記結晶質ゲルマニウム半導体を含む第三光電変換ユニットを順次配置した3接合の積層型薄膜光電変換装置を形成してもよい。このような構成にすることにより、広い波長範囲の太陽光を利用し、かつ高いVocを実現して薄膜光電変換装置の特性を向上できる。
 本発明の薄膜光電変換装置は、結晶質ゲルマニウム半導体を10~100MHzの周波数の高周波放電プラズマCVD法で形成することによって製造することができる。結晶質ゲルマニウム半導体は基板温度250℃以上で形成することが望ましい。また、結晶質ゲルマニウム半導体は高周波パワー密度550mW/cm以上で形成することが望ましい。
 具体的に、結晶質ゲルマニウム半導体を形成する高周波プラズマCVD装置は、基板を配置した基板側電極と高周波電極とを備えるプラズマCVD装置を用いることができる。このとき、高周波電極と基板間の距離(ES)が、12mm以下であることが望ましい。また、高周波電極がホローカソード形の電極であることが望ましい。
 結晶質ゲルマニウム半導体を形成する高周波プラズマは、その発光スペクトルに、波長265nm±2nmにピークを持つGe原子発光ピーク、および304nm±2nmにピークを持つGe原子発光ピークがいずれも検出されないことが望ましい。
 また、結晶質ゲルマニウム半導体の製膜時の圧力は800Pa以上で作製することが望ましい。 
 本発明の薄膜光電変換装置の結晶質ゲルマニウム半導体は、波長600nmの光に対する屈折率が、4.0以上が望ましく、4.7以上がより望ましく、4.9以上がさらに望ましい。
 光電変換層の結晶質ゲルマニウム半導体の935±5cm-1の赤外吸収ピークの吸収係数を6000cm-1未満とすることによって、ポリマーまたはクラスター状の水素化ゲルマニウム、あるいは酸化ゲルマニウムの形成が抑制されると考えられ、緻密な結晶質ゲルマニウムが形成されて、薄膜光電変換装置の1100nmを超える長波長光の利用が可能になるとともに、FFが向上して、薄膜光電変換装置の特性が向上する。
 また、結晶質ゲルマニウム半導体の波長600nmに対する屈折率が4.0以上、望ましくは4.7以上、さらに望ましくは4.9以上であることによって、緻密な結晶質ゲルマニウムが形成されて薄膜光電変換装置の1100nmを超える長波長光の利用が可能になるとともに、FFが向上して、薄膜光電変換装置の特性が向上する。
本発明の1つの実施形態に係る単接合の薄膜光電変換装置の模式的断面図。 本発明の別の実施形態に係る単接合の薄膜光電変換装置の模式的断面図。 本発明のさらに別の実施形態に係る3接合の薄膜光電変換装置の模式的断面図。 実施例1、2、比較例1の結晶質ゲルマニウム光電変換層のX線回折スペクトル。 実施例1、2、比較例1の結晶質ゲルマニウム光電変換層のラマン散乱スペクトル。 実施例1の結晶質ゲルマニウム光電変換層の赤外線吸収スペクトル。 比較例1の結晶質ゲルマニウム光電変換層の赤外線吸収スペクトル。 実施例2の結晶質ゲルマニウム光電変換層の赤外線吸収スペクトル。 実施例3の結晶質ゲルマニウム光電変換層の赤外線吸収スペクトル。 比較例2の結晶質ゲルマニウム光電変換層の赤外線吸収スペクトル。 結晶質ゲルマニウム光電変換層を製膜時の基板温度に対するFTIRで測定した波数755cm-1、860cm-1、935cm-1、960cm-1のピークの吸収係数。 結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置の変換効率Eff。 結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置の曲線因子FF。 結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置の開放電圧Voc。 結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対するFTIRで測定した波数755cm-1、860cm-1、935cm-1、960cm-1のピークの吸収係数。 結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置の変換効率Eff。 結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置の曲線因子FF。 結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置の開放電圧Voc。 結晶質ゲルマニウム光電変換層の波数935cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層の波数935cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置の変換効率Eff。 結晶質ゲルマニウム光電変換層の波数960cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層の波数960cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置の変換効率Eff。 結晶質ゲルマニウム光電変換層のX線回折で測定した(220)/(111)ピーク強度比に対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層のX線回折で測定した(220)/(111)ピーク強度比に対する薄膜光電変換装置の変換効率Eff。 エアマス1.5の標準太陽光スペクトル。 参考実験例1のラマン散乱スペクトル。 結晶質シリコンゲルマニウム半導体薄膜および結晶質ゲルマニウム半導体薄膜のGeHガス比GeH/(GeH+SiH)に対する波長1300nmにおける吸収係数。 本発明の製造に係るプラズマCVD装置の概念図。 本発明の製造に係るホローカソード形電極を備えるプラズマCVD装置の概念図。 本発明の製造に係る発光分光の測定装置の概念図。 本発明の実施例12、13、14の結晶質ゲルマニウム光電変換層を形成時の発光分光スペクトル。 本発明の実施例12、13、14の結晶質ゲルマニウム光電変換層を形成時の発光分光スペクトル。 結晶質ゲルマニウム光電変換層を製膜時の電極間隔ESに対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層を製膜時の電極間隔ESに対する薄膜光電変換装置の変換効率Eff。 結晶質ゲルマニウム光電変換層を製膜時の圧力に対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層を製膜時の圧力に対する薄膜光電変換装置の変換効率Eff。 結晶質ゲルマニウム光電変換層の波長600nmの屈折率に対する薄膜光電変換装置の短絡電流密度Jscおよび波長1300nmの量子効率。 結晶質ゲルマニウム光電変換層の波長600nmの屈折率に対する薄膜光電変換装置の変換効率Eff。 結晶質ゲルマニウム光電変換層を用いた単接合の光電変換装置のEffに対する、結晶質ゲルマニウム光電変換層のFTIRによる935cm-1の吸収係数(α@935cm-1)、および波長600nmの光に対する屈折率(n)
 以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。
 本発明者は、薄膜光電変換装置の変換効率を向上するために、従来のシリコン系薄膜光電変換装置では利用できなかった1100nmを超える長波長の光を光電変換に利用する検討を行ってきた。図27に、エアマス1.5の標準太陽光スペクトルを示す。太陽光の照射強度は波長550nm付近に最大値をもち、波長が長くなるにしたがって強度が減少する。そのとき、照射強度は単調に減少するのではなく大気中の酸素や水蒸気の影響で、波長900nm付近、1100nm付近、1400nm付近に極小値が現れる。このため薄膜光電変換装置の量子効率の波長の上限を1100nmから数十nm長波長側に伸ばしても太陽光の照射強度の極小値があるために、薄膜光電変換装置の発電電流の増加は少ないことがわかった。
 そこで、1300nm付近まで光吸収があり、良好な発電特性を示す光電変換層材料を鋭意検討した。その結果、結晶質ゲルマニウム半導体で935±5cm-1の赤外吸収ピークの吸収係数が6000cm-1未満であることによって、1100nmを超える長波長光を利用可能な良好な光電変換層を実現できることを見出した。
 先行例2に示したように微結晶シリコンゲルマニウム(μc-SiGeともいう)は、膜中Ge濃度を増加するとともに薄膜光電変換装置の特性が急激に低下する。これは、μc-SiGeの膜中Ge濃度とともに欠陥が増加するためと考えられる。
 また、同じく先行例2に示されるように膜中Ge濃度を増加してもあまり長波長側の量子効率は改善されない。μc-SiGeは膜中Ge濃度の増加とともに結晶化が困難になることが知られており、このためGe濃度が高いと結晶化率が低下して非晶質部分が増加してバンドギャップが増加して、長波長の吸収係数が減少するためといえる。
 参考実験例1として、13.56MHzの高周波プラズマCVD装置を用い、原料ガスにSiH、GeHを用い、希釈ガスにHを用い、μc-SiGe半導体薄膜および結晶質ゲルマニウム半導体薄膜をガラス基板上に作製した。H希釈倍率H/(SiH+GeH)=2000倍で一定にし、GeH流量比GeH/(GeH+SiH)を30%~100%変化させてガラス基板上に半導体薄膜の製膜を行った。図28は、ラマン散乱スペクトルを示す。この結果、GeH/(GeH+SiH)=30~70%の結晶質シリコンゲルマニウムのラマンスペクトルの結晶Ge-Geあるいは結晶Si-Geに由来するピークが弱いのに対して、GeH/(GeH+SiH)=100%の結晶質ゲルマニウムにおいて結晶Ge-Geピーク強度が4~5倍に強くなっている。すなわち、これまでの常識ではμc-SiGeの膜中Ge濃度を増加するほど結晶性が低下するので薄膜のゲルマニウムの結晶化は困難と思われたが、予想に反してGeH/(GeH+SiH)=100%の結晶質ゲルマニウムで結晶性がよいことが見出された。
 図29に参考実験例1のμc-SiGe半導体薄膜および結晶質ゲルマニウム半導体薄膜のGeHガス比GeH/(GeH+SiH)に対する波長1300nmにおける吸収係数を示す。GeH/(GeH+SiH)=30~70%ではGeの割合を増加しているにもかかわらず吸収係数はほぼ一定である。これに対してGeH/(GeH+SiH)=100%の結晶質ゲルマニウムは急激に吸収係数が増加して、6000cm-1を超える高い吸収係数を示している。これは結晶質ゲルマニウムの結晶性が高いことによる。
 以上の検討からμc-SiGeではなく結晶質ゲルマニウムが1300nmまでの長波長光を有効利用する際に、好適な吸収係数が得られることがわかる。
 これまで、微結晶ゲルマニウムを光電変換層に適用した例として、先行例1に示す非特許文献が挙げられる。しかしながら、薄膜光電変換装置のFFが0.36と非常に低く、変換効率は2.0%と低い。また、量子効率が10%になるのは波長1080nmであり、波長1300nmにおいては量子効率0.5%と、長波長光の利用が十分ではない。
 そこで、結晶質ゲルマニウム半導体の特性改善を鋭意検討した結果、935±5cm-1の赤外吸収ピークの吸収係数が6000cm-1未満であることを特徴とすることによって課題を解決できることが見出された。935±5cm-1の赤外吸収ピークの起源は同定されていないが、ポリマーまたはクラスター状の水素化ゲルマニウム、あるいは酸化ゲルマニウムに由来すると考えられ、この赤外吸収ピークを小さく抑えることによって緻密な結晶質ゲルマニウムが形成されて、薄膜光電変換装置の特性が向上すると推定される。また、960±5cm-1の赤外吸収ピークの吸収係数が3500cm-1未満であることが好ましい。
 これまで、非晶質ゲルマニウム(a-Ge)の赤外線吸収ピークについて、たとえば非特許文献3(G.Lucovsky, S.S.Chao, J.Yang, J.E.Tylor, R.C.Ross and W.Czubatyj, “Chemical bonding of hydorogen and oxygen in glow-discharge-deposited thin films of a-Ge:H and a-Ge(H,O), Phys. Rev. B, vol.31, No.4, pp.2190-2197,1985)に詳細が報告されている。非特許文献3で同定されている赤外線吸収ピークは、Ge-H結合(1880cm-1、560cm-1)、(Ge-H2)結合(2000cm-1、825cm-1、765cm-1、560cm-1)、Ge-O-Ge結合(750cm-1、500cm-1、300cm-1)、(Ge-O-Ge)結合(860cm-1、560m-1、300cm-1)、H-Ge-O結合(670cm-1)が挙げられる。しかしながら、上記の波数935cm-1、波数960cm-1のピークについては報告されていない。
 先行例1の非特許文献1では、微結晶ゲルマニウムの赤外吸収ピークの記載はない。しかし、先行例1では、微結晶ゲルマニウムの製膜にマイクロ波プラズマCVD法を用いており、膜中に酸素が不純物として入っていると考えられる。マイクロ波プラズマCVD法を用いた場合、アモルファスシリコンあるいは微結晶シリコンの膜中に酸素が不純物として入りやすいことは、当業者に良く知られている。これは、マイクロ波プラズマCVD法では、(1)マイクロ波の導入に石英管を用いており、石英の表面がプラズマに曝されてエッチングされて石英に由来した酸素が不純物として膜に入りやすいため、あるいは(2)マイクロ波プラズマCVD法では低圧力で製膜するので(先行例1では0.665Pa)、残留ガスや壁面からの脱ガスによる影響を受けやすく、大気や水に由来する酸素が不純物として膜にはいりやすいため、と言われている。したがって、先行例1のマイクロ波プラズマCVD法による微結晶ゲルマニウムでも同様に膜中に酸素が不純物として入っていると考えられる。実際、先行例1の非特許文献1には、「微結晶ゲルマニウムがn型になったのは、微結晶ゲルマニウムに酸素が不純物としてドーピングされたためと推定される」との記載がある。"All the films as grown were n type, probably due to oxygen doping from residual gases in the reactor." したがって、先行例1の微結晶ゲルマニウムは酸素不純物によってGeO結合が形成されていると考えられ、935±5cm-1の赤外吸収ピークの吸収係数が6000cm-1以上、960±5cm-1の赤外吸収ピークの吸収係数が3500cm-1以上であると推定される。
 図1に、本発明の実施形態の一例による単接合の薄膜光電変換装置の模式的断面図を示す。透明基板1上に、透明電極層2、結晶質ゲルマニウム光電変換ユニット3および裏面電極層6の順に配置されている。
 基板側から光を入射するタイプの光電変換装置にて用いられる透明基板1には、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。特に、透明基板1としてガラス板を用いれば、それが高い透過率を有しかつ安価であるので好ましい。
 すなわち、透明基板1は薄膜光電変換装置の光入射側に位置するので、より多くの太陽光を透過させて光電変換ユニットに吸収させるために、できるだけ透明であることが好ましい。同様の意図から、太陽光の入射面における光反射ロスを低減させるために、透明基板1の光入射面上に無反射コーティングを設けることが好ましい。
 透明電極層2はSnO、ZnO等の導電性金属酸化物から成ることが好ましく、CVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明電極層2はその表面に微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。
 結晶質ゲルマニウム光電変換ユニット3は、プラズマCVD法によって、例えばp型層、光電変換層、およびn型層の順に積層して形成される。具体的には、例えば、ボロンが0.01原子%以上ドープされたp型微結晶シリコン層31、実質的にi型または弱n型の結晶質ゲルマニウム光電変換層32、およびリンが0.01原子%以上ドープされたn型微結晶シリコン層33がこの順に堆積される。
 結晶質ゲルマニウム光電変換層32は真性型または弱n型である。結晶質ゲルマニウム光電変換層を製膜時には、導電型決定不純物元素を含有するガスは用いない。それにもかかわらず、結晶質ゲルマニウムが弱n型になる場合があり、結晶質ゲルマニウムが酸素などの大気由来の不純物を膜中に取り込みやすいためといえる。光電変換層として利用可能な弱n型の指標としては、ホール効果測定で求めた結晶質ゲルマニウムのキャリア濃度が1017cm-3以下、移動度が1cm/(V・s)以上が望ましい。キャリア濃度が高すぎると光電変換装置の暗電流が増大してリーク電流が増えて、光電変換装置のFFが低下する。
 結晶質ゲルマニウム光電変換層32は波数935±5cm-1の赤外吸収ピークの吸収係数が0cm-1以上6000cm-1未満であることが重要であり、好ましくは0cm-1以上5000cm-1未満であり、さらに好ましくは10cm-1以上2500cm-1未満である。波数935±5cm-1の赤外吸収ピークの起源は同定されていないが、ポリマーまたはクラスター状の水素化ゲルマニウム、あるいは酸化ゲルマニウムに由来すると考えられ、この赤外吸収ピークを小さく抑えることによって緻密な結晶質ゲルマニウムが形成されて、薄膜光電変換装置の特性が向上すると推定される。後述する図22、23で説明するように、波数935±5cm-1の赤外吸収ピークの吸収係数が6000cm-1未満になると、短絡電流密度(Jsc)および波長1300nmの量子効率が急激に増加して改善し、Jscは30mA/cm以上の高い値、量子効率は5%以上の値を示すことができる。また、変換効率(Eff)が、吸収係数が6000cm-1以上では1%未満であるのに対して、吸収係数を6000cm-1未満にするとEffが急激に増加して、3%以上の高いEffを示す。また、波数935±5cm-1の赤外吸収ピークの吸収係数が5000cm-1未満になると、Effが3.5%を超えるのでより好ましい。波数935±5cm-1の赤外吸収ピークの吸収係数が10cm-1以上2500cm-1未満になると、Effが4.5%を超えるのでさらに好ましい。理想的には、波数935±5cm-1の赤外吸収ピークの吸収係数が0cm-1であることが好ましい。ただし、赤外の吸収係数を下げるために、結晶質ゲルマニウム半導体を製膜時の温度が高すぎると、電極層(透明電極層または裏面電極層)や導電型層(p型層またはn型層)からの不純物の拡散の影響が出る場合があるので、製膜時の温度を考慮すると、波数935±5cm-1の赤外吸収ピークの吸収係数は10cm-1以上が好ましい。
 また、波数960±5cm-1の赤外吸収ピークの吸収係数が0cm-1以上3500cm-1未満であることが好ましく、0cm-1以上3000cm-1未満であることがより好ましく、10cm-1以上1300cm-1未満であることがさらに好ましい。960±5cm-1の赤外吸収ピークの起源も同定されていないが、上述と同様にポリマーまたはクラスター状の水素化ゲルマニウム、あるいは酸化ゲルマニウムに由来すると考えられ、この赤外吸収ピークを小さく抑えることによって緻密な結晶質ゲルマニウムが形成されて、薄膜光電変換装置の特性が向上するといえる。後述する図22、23で説明するように、波数960±5cm-1の赤外吸収ピークの吸収係数が3500cm-1未満になると、短絡電流密度(Jsc)および波長1300nmの量子効率が急激に増加して改善し、Jscは30mA/cm以上の高い値、量子効率は5%以上の値を示す。また、変換効率(Eff)が、吸収係数が3500cm-1以上では1%未満であるのに対して、吸収係数を3500cm-1未満にするとEffが急激に増加して、3%以上の高いEffを示す。また、波数935±5cm-1の赤外吸収ピークの吸収係数が3000cm-1未満になると、Effが3.5%を超えるのでより好ましい。波数935±5cm-1の赤外吸収ピークの吸収係数が1300cm-1未満になると、Effが4.5%を超えるのでより好ましい。理想的には、波数960±5cm-1の赤外吸収ピークの吸収係数の0cm-1であることが好ましい。ただし、赤外の吸収係数を下げるために、結晶質ゲルマニウム半導体を製膜時の温度が高すぎると、電極層(透明電極層または裏面電極層)や導電型層(p型層またはn型層)からの不純物の拡散の影響が出る場合があるので、製膜時の温度を考慮すると、波数960±5cm-1の赤外吸収ピークの吸収係数は10cm-1以上が好ましい。
 赤外線の吸収スペクトルは、FTIR(Fourier Transform Infrared Spectroscopy)により測定することができる。たとえば、以下の手順で赤外線の吸収スペクトルを求めることができる。(1)光電変換層と同じ製膜条件で1Ω・cm以上の高抵抗の結晶シリコン基板上に製膜して、赤外線透過スペクトルを測定する。(2)サンプルの透過率を膜のついていない結晶シリコン基板の透過率で割って、結晶質ゲルマニウム膜のみの透過スペクトルを求める。(3)前記(2)で求めた透過スペクトルは干渉の影響やオフセットが載っているため、吸収のない領域を結んでベースラインを引き、ベースラインの透過率で割る。(4)最後に次式で吸収係数αを求める。
Figure JPOXMLDOC01-appb-M000001
 ここで、dは膜厚、Tは結晶シリコン基板の透過率で0.53、ΔTは前記(3)で求めた膜の透過率である。また、ATR結晶を用いれば、ガラス基板や透明電極層、あるいは金属電極層上に製膜した結晶質ゲルマニウム膜の赤外線吸収スペクトルが得られる。あらかじめ結晶シリコン基板上の膜の透過スペクトルと、ATR結晶を用いたスペクトルの校正曲線を求めておけば、ATR結晶を用いて測定したスペクトルから、赤外線吸収係数を求めることができる。
 結晶質ゲルマニウム光電変換層32はX線回折で測定した(220)ピークと(111)ピークの強度比が2以上であることが好ましい。(220)配向が強くなることによって、結晶質ゲルマニウムが基板に垂直方向に柱状の結晶を形成して、膜厚方向の結晶サイズが大きくなって、光電変換電流が流れやすくなって薄膜光電変換装置の特性が向上する。後述する図26で示すように、(220)/(111)ピーク強度比が2未満でEffが1%未満であるのに対して、(220)/(111)ピーク強度比が2以上になると急激にEffが増加して、4%以上の高いEffを示す。(220)/(111)ピーク強度比がさらに大きくなって70を超えると、Effが4%未満になるので、(220)/(111)ピーク強度比は70以下が望ましい。
 ゲルマニウム光電変換層32は波長600nmの光に対する屈折率が4.0以上であることが望ましい。図39に示すように、結晶質ゲルマニウム光電変換層の屈折率を増加すると、波長1300nmにおける量子効率(η@1300)、および短絡電流密度(Jsc)が増加し、屈折率が4.0以上になると、η@1300が5%以上に高くなり、1100nmまでの長波長光を発電に利用することができる。このとき、短絡電流密度(Jsc)は30mA/cm以上の高い値を得ることができる。屈折率を4.9以上にすると、Jscがさらに高い35mA/cm以上になり、好適である。屈折率が4.0以上であることによって、緻密な結晶質ゲルマニウムが形成され、1100nmを超える長波長光の利用が可能になる。図40に示すように、屈折率4.0以上でEffが3.0%以上になる。屈折率を4.7まで増加するとEffが急激に増加して、それ以上の屈折率で緩やかにEffが増加する。したがって、屈折率を4.7以上にすることがさらに望ましく、屈折率4.7以上にすることによってEffが安定して高くなる。この場合5.7%以上のEffが得られる。結晶質ゲルマニウム半導体は、波長600nm付近に屈折率が特徴的なピークを持つので、この波長の屈折率を用いると、膜特性の違いを感度よく判定することができる。
 図41に、結晶質ゲルマニウム光電変換層を用いた単接合の光電変換装置のEffに対する、結晶質ゲルマニウム光電変換層のFTIRによる935cm-1の吸収係数(α@935cm-1)、および波長600nmの光に対する屈折率(n)を示す。α@935cm-1は、Effの増加に対して減少する。しかし、Effが約3.7%以上でα@935cm-1は0~3000cm-1でばらつき、Effとの明確な相関がなくなる。960cm-1における吸収係数も同様の傾向で、Effが約3.7%までは減少し、それ以上のEffでばらつきが大きくなった。
 これに対して、波長600nmの光に対する屈折率(n)は、Effの増加に対して、nが単調に増加する。この傾向はEffが3.7%以上でも良好な相関を示す。
 したがって、結晶質ゲルマニウム半導体の良否を判定する場合、Effが3.7%以下かどうかという大まかな判断にはFTIRによる935cm-1または960cm-1の吸収係数で判定することが好適である。さらに高い変換効率が狙えるかどうか判断する場合は、波長600nmの光に対する屈折率を判定指標とすることが好ましい。
 波長600nmの光に対する屈折率は、単結晶ゲルマニウムの場合に5.6である。屈折率が5.6以下であることによって、単結晶ゲルマニウムの屈折より小さくなり、重金属などの重い元素の不純物汚染が抑制されていることが判定でき、好ましい。
 波長600nmの光に対する屈折率は、分光エリプソメトリーを用いることで測定することができる。光電変換装置と同一条件の結晶質ゲルマニウム半導体をガラスや結晶シリコンウエハに製膜して、分光エリプソメトリーによって、屈折率を測定できる。あるいは、光電変換装置をウェットエッチング、プラズマエッチングなどで裏面電極を除去して、分光エリプソメトリーで測定することができる。この場合、さらにエッチングして、最表面に結晶質ゲルマニウム半導体が露出した状態で測定することが、精度を向上させるために望ましい。
 結晶質ゲルマニウム光電変換層は、反応ガスとしてたとえばGeH4、H2を用い、高周波プラズマCVD法で形成することが望ましい。このとき、H2/GeH4比を200~5000の範囲にすることが望ましい。H2/GeH4比が200より小さいと結晶化率が低下して非晶質化して望ましくなく、逆にH2/GeH4比が5000より大きいと製膜速度が低下して生産性が低下する。良好な結晶性と工業的に許容できる製膜速度を得るためには、H2/GeH4比を500~2000の範囲にすることが望ましい。
 結晶質ゲルマニウム光電変換層を大面積に均一にプラズマCVD法で製膜するためには、2.45GHzなどのマイクロ波の周波数を用いるより、容量結合型平行平板電極を用い、10~100MHzの周波数を用いることが望ましい。特に工業的に使用が認められている13.56MHz、27.12Mz、40MHzを用いることが好適である。高周波パワー密度は結晶化を促進するために200mW/cm以上が望ましい。波数935±5cm-1の赤外吸収ピークの吸収係数を6000cm-1未満に容易にできるので、高周波パワー密度は550mW/cm以上にすることがより望ましい。
 具体的に、結晶質ゲルマニウム半導体を形成する高周波プラズマCVD装置は、基板を配置した基板側電極と高周波電極とを備えるプラズマCVD装置を用いることができる。図30に、プラズマCVD装置の例の概念図を示す。真空チャンバ10は、高周波電極11、それに対向する基板側電12を備え、電極間にプラズマ14を発生させて製膜を行う。基板13を配置する基板側電極12は、内部にヒータを備えて基板13を加熱可能であることが望ましい。高周波電極11は、高周波電源18、電気接続を兼ねるガス導入管15によって、高周波電力が印加される。ガス導入管15は、絶縁材16によって真空チャンバ10の壁面と絶縁されている。高周波電極11は、シャワー状に開いた多数の穴からガスを均一に供給するいわゆるシャワープレートを兼用することが望ましい。このとき、高周波電極と基板間の距離(ES)が、12mm以下であることが望ましい。ESを12mm以下にすることによって、後述するように結晶質ゲルマニウム半導体の屈折率が増加し、緻密な膜が得られて、薄膜光電変換装置の特性が向上する。真空チャンバ内のガスは、排気管14を通して、排気される。
 高周波電極はホローカソード形の電極であることが望ましい。図31に、高周波電極にホローカソード形電極19を用いたプラズマCVD装置の例の概念図を示す。高周波電極が通常の平板状の電極の場合、ESを12mm以下に減少にするとプラズマが電極間に発生しにくくなり、極端な場合は基板に膜が付かなくなる。これに対して、高周波電極をホローカソード形の電極にすると、ESを12mm以下にしてもプラズマが安定して電極間に発生して、均一性よく緻密な結晶質ゲルマニウム半導体を形成することができる。また、ホローカソード形電極を用いると、平板状の電極に比べて、結晶質ゲルマニウム半導体の屈折率が高くなり、より緻密な結晶質ゲルマニウム半導体を形成することができる。ここで、ホローカソード形電極とは、円筒形または直方体状の窪みを表面にもつ電極である。窪みの大きさは、円筒形の場合、直径(a)が0.1mm~10mm、深さ(b)が0.1mm~10数mm、深さと直径の比(b/a)であるアスペクト比が0.2~5であることが望ましく、0.5~2がさらに望ましい。直方体状の場合も同様に、窪みの一辺が0.1mm~10mm、深さ(b)が0.1mm~10数mm、深さといずれか一辺の比をアスペクト比として、0.2~5であることが望ましく、0.5~2がさらに望ましい。0.2~5とアスペクト比が比較的大きい窪みを持つため、窪みの中でプラズマの電子密度が高くなって、プラズマが発生しやすくなり、ESを12mm以下にしてもプラズマが安定して電極間に発生する。高周波電極の厚さを薄くし、かつ製作しやすいことから、アスペクト比は2以下がより望ましく、電子密度を高めるためには0.5以上がより望ましい。ホローカソード形の電極の窪みは、高周波電極の基板に対向する面のほぼ全面に均等に複数配置することが望ましい。
 ホローカソード形電極がシャワープレートを兼ねる場合、ホローカソードの窪みの中にガス供給用の穴があってもよいし、ホローカソードの窪みとは別の位置にガス供給用の穴があってもよい。加工が容易であること、窪みおよびガス供給用穴の単位面積当たりの数を増やせることから、ホローカソードの窪みの中にガス供給用の穴を配置することが望ましい。
 結晶質ゲルマニウム半導体を形成する高周波プラズマは、その発光スペクトルに、励起されたゲルマニウム原子(Ge*)による波長265nm±2nmにピークを持つGe原子発光ピーク、および304nm±2nmにピークを持つGe原子発光ピークがいずれも検出されないことが望ましい。反応性が高い活性種であるGe原子は、プラズマ中で原料ガスのGeHと式(2)に示すように連鎖反応をおこして、Ge原子を複数含むポリマーまたはクラスターを発生すると考えられる。
 Ge+GeH→Ge
         Ge+GeH→Ge
                   Ge+GeH→Ge
                            ・・・式(2)
Ge原子発光ピークが検出されないと、反応性が高い活性種であるGe原子が少ないことがわかり、プラズマ中でのポリマーやクラスターの発生が抑制されて、緻密な結晶質ゲルマニウム半導体が形成されて光電変換装置の特性が向上する。
 図32に発光スペクトルを測定する装置例の概念図を示す。前述のプラズマCVD装置に、石英ガラス製の窓20を取り付け、石英製のレンズ21でプラズマの発光を集光して、光ファイバ22に導き、分光器23で発光スペクトルを得る。Ge原子の発光ピークは紫外光の波長になるので、紫外光を透過するように、窓20、レンズ21、光ファイバ22は石英製であることが望ましい。本願の実施例の測定には、分光器23にオーシャン・オプティクス社製のファイバマルチチャンネル分光器USB4000を用いた。測定可能な波長範囲は200~850nmである。
 図33および図34に、Ge原子発光ピークが検出される場合(後述する実施例12)と、Ge原子発光ピークが検出されない場合(後述する実施例13、14)の発光スペクトルを示す。図33は測定した全波長領域(200~850nm)のスペクトルを示す。実施例12、13、14ともに水素原子によるHαのピークが見える。また、水素分子による多数のピークが認められる。実施例12のみGe*と表示した位置にGe原子発光ピークが観察される。図34はGe原子発光ピーク付近の波長を拡大し、さらにベースラインを差し引いたスペクトルを示している。ベースラインは波長255nmを始点、315nmを終点として結んだ直線を用いた。実施例12は波長265nmおよび304nmにGe原子発光ピークが明確に認められる。いずれも半値幅は約2.5nmである。これに対して、実施例13および14はGe原子発光ピークが検出されていない。ここで、本願で定義するGe原子発光ピークが検出されないとは、265nm±2nm、および304nm±2nmのいずれの波長においても、ベースラインを差し引いたスペクトルにノイズレベル以外の信号は検出されないことを指す。具体的には、265nm±2nm、および304nm±2nmのいずれの波長においても、半値幅が1nm以下のピークしか検出されないことを本願では指す。
 結晶質ゲルマニウム光電変換層を製膜時の基板温度は、製膜時の粉の発生を抑制するために200℃以上にすることが望ましい。波数935±5cm-1の赤外吸収ピークの吸収係数を6000cm-1未満に容易にできるので、基板温度は250℃以上にすることがより望ましい。導電型層から光電変換層への不純物の拡散を抑制するために、基板温度は500度以下が望ましく、400度以下がさらに望ましい。
 また、結晶質ゲルマニウム光電変換層を製膜時の圧力は40Pa以上2000Pa以下が良好な結晶性を持つために好ましい。また、200Pa以上1500Pa以下が大面積の均一性を向上するためにより好ましい。さらに、800Pa以上1330Pa以下が結晶性と高い製膜速度を両立する上でより好ましい。後述する図37、38で示すように、800Pa以上で光電変換装置のJscが35mA/cm以上の高い値を示すので好ましい。Effが5.8%以上の高い値を示すので800Pa以上1330Pa以下がより好ましい。Effが6%以上になるので、850Pa以上1000Pa以下がさらに好ましい。
 裏面電極層6としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニットと金属層との間に、ITO、SnO、ZnO等の導電性酸化物からなる層を形成しても構わない(図示せず)。
 図3は、本発明の他の実施形態による3接合の薄膜光電変換装置を概略的に示す断面図である。この薄膜光電変換装置は図1の単接合の薄膜光電変換装置の透明電極層2と結晶質ゲルマニウム光電変換ユニット3の間に、非晶質シリコン光電変換ユニットおよび結晶質シリコン光電変換ユニットを順次配置した構造になっている。すなわち、光入射側から順に非晶質シリコン光電変換ユニットがトップセル、結晶質シリコン光電変換ユニットがミドルセル、結晶質ゲルマニウム光電変換ユニットがボトムセルに相当する。
 基板、透明電極層、ボトムセルである結晶質ゲルマニム光電変換ユニット、裏面電極層は図1の場合と同様の構成、製造方法で形成することができる。
 トップセルである非晶質シリコン光電変換ユニット4は、プラズマCVD法によって、たとえばp型層、i型層、およびn型層の順に積層して形成される。具体的には、ボロンが0.01原子%以上ドープされたp型非晶質シリコンカーバイド層41、実質的にi型の非晶質シリコンの光電変換層42、およびリンが0.01原子%以上ドープされたn型微結晶シリコン層43がこの順に堆積される。
 ミドルセルである結晶質シリコン光電変換ユニット5は、プラズマCVD法によって、たとえばp型層、i型層、およびn型層の順に積層して形成される。具体的には、ボロンが0.01原子%以上ドープされたp型微結晶シリコン層51、実質的にi型の結晶質シリコン光電変換層52、およびリンが0.01原子%以上ドープされたn型微結晶シリコン層53がこの順に堆積される。
 なお、図3では3接合の薄膜光電変換装置を示したが、結晶質ゲルマニウム光電変換ユニットを光入射側から最も遠い光電変換ユニットに配置すれば、2接合あるいは4接合以上の光電変換ユニットが積層された薄膜光電変換装置であってもよいことは言うまでもない。
 また、図1では基板側から光を入射する薄膜光電変換装置を示したが、基板と反対側から光を入射する薄膜光電変換装置においても、本発明が有効であることは言うまでもない。基板と反対側から光を入射する場合、例えば、基板、裏面電極層、結晶質ゲルマニウム光電変換ユニット、透明電極層の順に積層すればよい。この場合、結晶質ゲルマニウム光電変換ユニットは、n型層、結晶質ゲルマニウム光電変換層、p型層の順に積層することが好ましい。
 本発明はレーザーパターニングを用いて同一の基板上に直列接続構造を形成した集積型薄膜光電変換装置においても有効であることは言うまでもない。集積型薄膜光電変換装置の場合、レーザーパターニングが容易にできるので図1に示すように基板側から光入射する構造が望ましい。
 以下、本発明による実施例と、従来技術による比較例に基づいて詳細に説明する。各図において同様の部材には同一の参照符号を付し、重複する説明は省略する。また、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。
 (実施例1)
 実施例1として、図1に示す構造の単接合の薄膜光電変換装置7を作製した。透明基板1は、厚さ0.7mmのガラス基板を用いた。透明基板1の上に、微小なピラミッド状の表面凹凸を含みかつ平均厚さ700nmのSnO2膜が熱CVD法にて形成された。さらにスパッタ法でAlドープされたZnO膜を20nm形成し、SnO2とZnOが積層した透明電極層2を作製した。得られた透明電極層2のシート抵抗は約9Ω/□であった。またC光源で測定したヘイズ率は12%であり、表面凹凸の平均高低差dは約100nmであった。ヘイズ率はJISK7136に基づき測定した。
 この透明電極層2の上に、図30に概念図を示す13.56MHzの周波数の平行平板電極を備えた容量結合型の高周波プラズマCVD装置を用いて、結晶質ゲルマニウム光電変換ユニット3を作製した。反応ガスとしてSiH4、H2及びBを導入しp型微結晶シリコン層31を10nm形成後、反応ガスとしてGeH4、H2を導入し結晶質ゲルマニウム光電変換層32を2.0μm形成した。このとき、H2/GeH4の流量比は2000倍とし、基板温度300℃、圧力800Pa、高周波パワー密度300mW/cmとした。電極間隔(ES)は12mmとした。その後反応ガスとしてSiH4、H2及びPHを導入しn型微結晶シリコン層53を15nm形成することで結晶質ゲルマニウム光電変換ユニット3を形成した。
 ガラス基板上に上記と同一の条件で結晶質ゲルマニウム層を形成し、透過スペクトルおよび反射スペクトルから測定した波長1300nmにおける吸収係数は8300cm-1であり、長波長光に対する高い吸収係数を示した。また、θ―2θ法で測定したX線回折スペクトルを図4に示す。(111)、(220)、(311)配向の鋭いピークが観察され、結晶化していることがわかる。また、(220)ピーク強度が最も強く、(220)/(111)のピーク強度比は13を示した。(220)ピークの半値幅から求めた結晶粒径は63nmであった。ラマン散乱スペクトルを図5に示す。300cm-1付近に結晶Ge-Ge結合のTOモードの鋭いピークが観察され、結晶化していることがわかる。また、ホール効果測定を行ったところ、結晶質ゲルマニウム層は弱n型を示し、キャリア密度が1.9×1016cm-3、移動度が3.0cm/(V・s)であった。分光エリプソメトリーで測定した波長600nmの光に対する屈折率は4.62であった。
 結晶シリコン基板上に上記の薄膜光電変換装置と同一の条件で結晶質ゲルマニウム層を形成し、FTIRにより測定した赤外線吸収スペクトルを図6に示す。560cm-1、755cm-1、860cm-1、935cm-1、960cm-1に吸収のピークまたはショルダーが認められる。560cm-1はGe-H結合、860cm-1は(Ge-O-Ge)n結合に由来する。755cm-1、935cm-1、960cm-1の吸収ピークは同定されていない。935cm-1、960cm-1の吸収ピークそれぞれの吸収係数は2000cm-1、1250cm-1であった。
 その後、裏面電極層6として、厚さ30nmのAlドープされたZnO膜と厚さ300nmのAg膜がスパッタ法にて順次形成された。
 裏面電極層6形成後、レーザースクライブ法によりSnO膜2の上に形成された膜を部分的に除去して、1cm2のサイズに分離を行い、単接合の薄膜光電変換装置7(受光面積1cm2)を作製した。
 以上のようにして得られた単接合の薄膜光電変換装置7(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、表1の実施例1に示すように、開放電圧(Voc)が0.270V、短絡電流密度(Jsc)が34.4mA/cm2、曲線因子(FF)が0.58、そして変換効率(Eff)が5.4%であった。また、波長1300nmにおける量子効率は10%であった。
Figure JPOXMLDOC01-appb-T000002
 (比較例1)
 比較例1として、実施例1に類似の単接合の薄膜光電変換装置を作製した。比較例1は、図1の結晶質ゲルマニウム光電変換層を200℃で形成したことを除いて、実施例1と同様に作製した。
 実施例1と同様に測定した波長1300nmにおける吸収係数は5000cm-1であり、長波長光に対する高い吸収係数を示した。また、θ―2θ法で測定したX線回折スペクトルを図4に示す。(111)、(220)、(311)配向のピークが観察され、結晶化していることがわかる。比較例1は各ピークの強度の差が小さく、(220)/(111)のピーク強度比は1.8であった。(220)ピークの半値幅から求めた結晶粒径は41nmであった。ラマン散乱スペクトルを図5に示す。300cm-1付近に結晶Ge-Ge結合のTOモードの鋭いピークが観察され、結晶化していることがわかる。また、ホール効果測定を行ったところ、結晶質ゲルマニウム層は弱n型を示し、キャリア密度が3.2×1016cm-3、移動度が1.3cm/(V・s)であった。分光エリプソメトリーで測定した波長600nmの光に対する屈折率は3.67であった。
 結晶シリコン基板上に上記の薄膜光電変換装置と同一の条件で結晶質ゲルマニウム層を形成し、FTIRにより測定した赤外線吸収スペクトルを図7に示す。波数560cm-1、755cm-1、860cm-1、935cm-1、960cm-1に吸収のピークが認められる。波数935cm-1、960cm-1の吸収ピークそれぞれの吸収係数は8400cm-1、5130cm-1であった。
 表1に示すように、比較例1の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.18V、Jsc=18.2mA/cm、FF=0.25、Eff=0.82%であった。また、波長1300nmにおける量子効率は0.8%であった。
 (実施例1、比較例1のまとめ)
 比較例1に対して、実施例1はすべてのパラメータで向上しており、特にJscは30mA/cmを超える大きな値を示している。また、実施例1の1300nmの長波長光に対する量子効率が10%に達し、長波長光の利用が可能であることが示されている。比較例1と実施例1の結晶質ゲルマニウム層は、ラマン散乱スペクトルに大きな差は見られない。しかし、赤外線吸収ピークのうち935cm-1と960cm-1のピークが、比較例1に比べて実施例1で半分以下に小さくなっている。このため、実施例1の結晶質ゲルマニウム光電変換層は、クラスターまたはポリマーあるいは酸化ゲルマニウムの発生が抑制されていると考えられ、薄膜光電変換装置の特性が向上したといえる。また、実施例1のX線回折スペクトルは(220)/(111)のビーク強度比が10を超える大きな値を示し、膜厚方向に柱状に大きな結晶粒が成長したといえ、発電電流が流れやすくなって、Jscが30mA/cmを超える高い値を示したと考えられる。
 (実施例2)
 実施例2として、実施例1に類似の単接合の薄膜光電変換装置を作製した。実施例2は、図1の結晶質ゲルマニウム光電変換層を400℃で形成したことを除いて、実施例1と同様に作製した。
 実施例1と同様に測定した波長1300nmにおける吸収係数は16200cm-1であり、長波長光に対する高い吸収係数を示した。X線回折スペクトルを図4に示す。X線回折スペクトルは、(220)配向に特に強いピークが観察され、結晶化していることがわかった。(220)/(111)のピーク強度比は91であった。(220)ピークの半値幅から求めた結晶粒径は51nmであった。ラマン散乱スペクトルを図5に示す。300cm-1付近に結晶Ge-Ge結合のTOモードの鋭いピークが観察され、結晶化していることがわかる。
 図8に示すように、実施例1と同様に赤外線吸収スペクトルを測定したが波数935cm-1、960cm-1に吸収ピークは観察されなかった。
 表1に示すように、実施例2の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.22V、Jsc=33.2mA/cm、FF=0.52、Eff=3.8%であった。また、波長1300nmにおける量子効率は10.5%であった。
 (実施例1、2、比較例1のまとめ)
 実施例2は赤外線の935cm-1および960cm-1の吸収ピークが観察されず、長波長の量子効率は10%を超える高い値を示し、Jscは30mA/cmを超える高い値を示した。実施例1よりEffがやや低いのはVoc、FFの減少により、高い製膜温度によってp型層と結晶質ゲルマニウム層との間で不純物の拡散が起こったためと考えられる。結晶質ゲルマニウム層のラマン散乱スペクトルは、実施例1、2、比較例1ともに結晶化しており、顕著な差は認められない。これに対して、935cm-1と960cm-1の赤外線吸収ピーク、X線回折の(220)/(111)ピーク強度比は顕著な差が見られ、結晶質ゲルマニウム半導体の良否の判定の指標として有効であることが見出された。また、結晶質ゲルマニウム半導体は形成温度が200℃である場合に比べて、300℃と400℃の場合に波数935cm-1と960cm-1の吸収係数が低くなり、薄膜光電変換装置の特性が高くなるといえる。
 (実施例3)
 実施例3として、実施例1に類似の単接合の薄膜光電変換装置を作製した。実施例3は、図1の結晶質ゲルマニウム光電変換層を(1)200℃で形成したこと、(2)H2/GeH4の流量比を500倍としたこと、(3)高周波パワー密度を1100mW/cmとしたことの3点を除いて、実施例1と同様に作製した。
 実施例1と同様に測定した波長1300nmにおける吸収係数は8700cm-1であり、長波長光に対する高い吸収係数を示した。X線回折スペクトルは、(111)、(220)、(311)配向のピークが観察され、結晶化していることがわかった。(220)/(111)のピーク強度比は2.5であった。(220)ピークの半値幅から求めた結晶粒径は40nmであった。ラマン散乱スペクトルで300cm-1付近に結晶Ge-Ge結合のTOモードの鋭いピークが観察され、結晶化していることがわかった。
 実施例1と同様に測定した赤外線吸収スペクトルを図9に示す。波数935cm-1、960cm-1の吸収ピークそれぞれの吸収係数は1460cm-1、720cm-1であった。
 表2に示すように、実施例3の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.26V、Jsc=33.7mA/cm、FF=0.55、Eff=4.8%であった。また、波長1300nmにおける量子効率は8.5%であった。
Figure JPOXMLDOC01-appb-T000003
 (比較例2)
 比較例2として、実施例3に類似の単接合の薄膜光電変換装置を作製した。比較例2は、図1の結晶質ゲルマニウム光電変換層を高周波パワー密度300mW/cmとしたことを除いて、実施例3と同様に作製した。
 実施例1と同様に測定した波長1300nmにおける吸収係数は640cm-1であり、比較例2は実施例3に比べて長波長光の吸収係数が1桁以上低くなった。X線回折スペクトルは、(111)、(220)、(311)いずれのピークも観察されず、非晶質化していることがわかった。(220)/(111)のピーク強度比は測定できなかった。ラマン散乱スペクトルは280cm-1付近に非晶質Ge-Ge結合のTOモードの緩やかなピークが観察され、非晶質化していることがわかった。
 実施例1と同様に測定した赤外線吸収スペクトルを図10に示す。波数935cm-1、960cm-1の吸収ピークそれぞれの吸収係数は6300cm-1、3700cm-1であった。
 表2に示すように、比較例2の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.18V、Jsc=20.3mA/cm、FF=0.15、Eff=0.55%であった。また、波長1300nmにおける量子効率は0.6%であった。
 (実施例3、比較例2のまとめ)
 実施例3は、結晶質ゲルマニウムを200℃の低い基板温度で作製しているにもかかわらず、高周波パワー密度を1100mW/cmと高くすることにより、波数935cm-1の赤外線吸収ピークの吸収係数が6000cm-1未満となり、薄膜光電変換装置の特性が高くなった。波長1300nmの量子効率は8.5%となり、長波長光の利用が可能となり、Jscは30mA/cmを超える高い値を示した。
 (実施例4、5)
 実施例4、5として、実施例1に類似の単接合の薄膜光電変換装置を作製した。図1の結晶質ゲルマニウム光電変換層を実施例4は250℃、実施例5は350℃で形成したことを除いて、実施例1と同様に作製した。また、実施例1と同様に薄膜光電変換装置の光電変換層と同一の条件で結晶シリコン基板上に結晶質ゲルマニウム層を形成し、FTIRにより赤外線吸収スペクトルを測定した。
 (実施例1、2、4、5、比較例1)
 実施例1、2、4、5、比較例1について、結晶質ゲルマニウム光電変換層の製膜温度に対する赤外吸収ピークの吸収係数および光電変換装置の特性を表1に示す。
 図11に、結晶質ゲルマニウム光電変換層を製膜時の基板温度に対するFTIRで測定した波数755cm-1、860cm-1、935cm-1、960cm-1のピークの吸収係数を示す。基板温度の増加に対して波数755cm-1、935cm-1、960cm-1のピークの吸収係数は、単調に減少し、350℃以上で500cm-1未満になる。基板温度250℃以上で、935cm-1のピークの吸収係数は6000cm-1未満となり、960cm-1のピークの吸収係数は4000cm-1未満となり、755cm-1のピークの吸収係数は1500cm-1未満となる。これに対して、860cm-1のピークの吸収係数は基板温度の増加に対して、250℃で極小値、300℃で極大値をもち、350℃以上で500cm-1未満になる。
 図12に結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。基板温度200℃から250℃にかけてJscと量子効率が急激に増加し、それ以上の温度で飽和傾向を示す。250℃以上の基板温度でJscが30mA/cm以上を示し、波長1300nmの量子効率が5%を上回る高い値を示す。
 図13に結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置のEffを示す。Effは250℃以上で3%以上の値を示し、300℃で最大となる。
 図14に結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置のFFを示す。基板温度200℃から250℃にかけてFFが急激に増加し、それ以上の温度で飽和傾向を示す。
 図15に結晶質ゲルマニウム光電変換層を製膜時の基板温度に対する薄膜光電変換装置のVocを示す。Vocは基板温度に対して300℃で最大となる。
 以上から250℃以上の基板温度で935cm-1の赤外線吸収ピークの吸収係数が6000cm-1未満になるとともに、Jscが30mA/cm以上、波長1300nmの量子効率が5%を上回る値を示し、長波長光の利用が可能になって薄膜光電変換装置の特性が改善することがわかる。
 (実施例6、7,8)
 実施例6、7、8として、実施例3に類似の単接合の薄膜光電変換装置を作製した。図1の結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度を実施例6は550mW/cm、実施例7は850mW/cm、実施例8は1400mW/cmで形成したことを除いて、実施例3と同様に作製した。また、実施例3と同様に薄膜光電変換装置の光電変換層と同一の条件で結晶シリコン基板上に結晶質ゲルマニウム層を形成し、FTIRにより赤外線吸収スペクトルを測定した。
 (実施例3、6、7,8、比較例2)
 実施例3、6、7,8、比較例2について、結晶質ゲルマニウム光電変換層の高周波パワー密度に対する赤外吸収ピークの吸収係数および光電変換装置の特性を表2に示す。
 図16に、結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対するFTIRで測定した波数755cm-1、860cm-1、935cm-1、960cm-1のピークの吸収係数を示す。高周波パワー密度の増加に対して波数755cm-1、935cm-1、960cm-1のピークの吸収係数は、単調に減少する。高周波パワー密度550mW/cm以上で、935cm-1のピークの吸収係数は6000cm-1未満となり、960cm-1のピークの吸収係数は4000cm-1未満となり、755cm-1のピークの吸収係数は1500cm-1未満となる。これに対して、860cm-1のピークの吸収係数は高周波パワー密度の増加に対して、550mW/cmで最大値を持つ。
 図17に結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。高周波パワー密度を300mW/cmから550mW/cmにかけて増加するとJscと量子効率が急激に増加し、それ以上の高周波パワー密度で緩やかに増加する。550mW/cm以上の高周波パワー密度でJscが30mA/cm以上を示し、波長1300nmの量子効率が5%を上回る値を示す。
 図18に結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置のEffを示す。Effは550mW/cm以上で3%以上の値を示し、1100mW/cmで最大となる。
 図19に結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置のFFを示す。高周波パワー密度を300mW/cmから550mW/cmにかけてFFが急激に増加し、それ以上の高周波パワー密度で飽和傾向を示す。
 図20に結晶質ゲルマニウム光電変換層を製膜時の高周波パワー密度に対する薄膜光電変換装置のVocを示す。Vocは高周波パワー密度に対して1100mW/cmで最大となる。
 以上から結晶質ゲルマニウム光電変換層の製膜時の基板温度が200℃と低くても、550mW/cm以上の高周波パワー密度で935cm-1の赤外線吸収ピークの吸収係数が6000cm-1未満になるとともに、Jscが30mA/cm以上、波長1300nmの量子効率が5%以上を示し、長波長光の利用が可能になって薄膜光電変換装置の特性が改善することがわかる。
 (実施例1~8、比較例1、2)
 実施例1~8、比較例1、2について、結晶質ゲルマニウム光電変換層の波数935cm-1の赤外吸収ピークの吸収係数に対する光電変換特性を示す。
 図21に、波数935cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。基板温度の変化、高周波パワー密度の変化にかかわらず、波数935cm-1の吸収係数が6000cm-1未満になると、Jscが30mA/cm以上の高い値を示し、波長1300nmの量子効率が5%以上の高い値を示す。
 図22に、波数935cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置のEffを示す。基板温度の変化、高周波パワー密度の変化にかかわらず、波数935cm-1の吸収係数が6000cm-1未満になると、Effが3%以上の高い値を示す。また、波数935±5cm-1の赤外吸収ピークの吸収係数が5000cm-1未満になると、Effが3.5%を超えるのでより好ましい。波数935±5cm-1の赤外吸収ピークの吸収係数が10cm-1以上2500cm-1未満になると、Effが4.5%を超えるのでさらに好ましい。
 図23に、波数960cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。基板温度の変化、高周波パワー密度の変化にかかわらず、波数960cm-1の吸収係数が3500cm-1未満になると、Jscが30mA/cm以上の高い値を示し、波長1300nmの量子効率が5%以上の高い値を示す。
 図24に、波数960cm-1の赤外吸収ピークの吸収係数に対する薄膜光電変換装置のEffを示す。基板温度の変化、高周波パワー密度の変化にかかわらず、波数960cm-1の吸収係数が3500cm-1未満になると、Effが3%以上の高い値を示す。また、波数935±5cm-1の赤外吸収ピークの吸収係数が3000cm-1未満になると、Effが3.5%を超えるのでより好ましい。波数935±5cm-1の赤外吸収ピークの吸収係数が1300cm-1未満になると、Effが4.5%を超えるのでより好ましい。
 (実施例1~3、比較例1)
 実施例1~3、比較例1について、結晶質ゲルマニウム光電変換層のX線回折で測定した(220)/(111)ピーク強度比に対する薄膜光電変換装置の光電変換特性を示す。
 図25に、(220)/(111)ピーク強度比に対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。(220)/(111)ピーク強度比が2以上になると、Jscが30mA/cm以上の高い値を示し、波長1300nmの量子効率が5%以上の高い値を示す。
 図26に、(220)/(111)ピーク強度比に対する薄膜光電変換装置のEffを示す。(220)/(111)ピーク強度比が2以上になると、Effが3%以上の高い値を示す。(220)/(111)ピーク強度比が2.1以上70以下になると、Effが4%以上の高い値を示すのでより好ましい。
 (実施例9)
 実施例9として、実施例1に類似の単接合の薄膜光電変換装置8を作製した。実施例9は、図2に示すようにp型微結晶シリコン層31と結晶質ゲルマニウム光電変換層32の間に実質的に真正な結晶質シリコン層34を配置したことを除いて、実施例1と同様に作製した。真正な結晶質シリコン層34は反応ガスとしてSiH4、H2を用いて、高周波プラズマCVD法で膜厚100nm形成した。
 実施例9の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.29V、Jsc=34.6mA/cm、FF=0.60、Eff=6.0%であった。また、波長1300nmにおける量子効率は9.8%であった。p型微結晶シリコン層31と結晶質ゲルマニウム光電変換層32の間に実質的に真正な結晶質シリコン層34を配置したことによって、Voc、FFが増加し、Effが6.0%の高い値を示した。これは、結晶質ゲルマニウム光電変換層の結晶性が向上したため、および/またはp型層と光電変換層との間の界面の欠陥が減少したためと考えられる。
 (実施例10)
 実施例10として、実施例9に類似の単接合の薄膜光電変換装置を作製した。実施例10は、結晶質ゲルマニウム光電変換層32とn型微結晶シリコン層33の間に実質的に真正な結晶質シリコン層35を配置したことを除いて、実施例9と同様に作製した。真正な結晶質シリコン層35は反応ガスとしてSiH4、H2を用いて、高周波プラズマCVD法で膜厚100nm形成した。
 実施例10の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.32V、Jsc=34.5mA/cm、FF=0.63、Eff=7.0%であった。また、波長1300nmにおける量子効率は9.9%であった。結晶質ゲルマニウム光電変換層32とn型微結晶シリコン層33の間に実質的に真正な結晶質シリコン層35を配置したことによって、Voc、FFがさらに増加し、Effが7.0%の高い値を示した。これは光電変換層とn型層との間の界面の欠陥が減少したためと考えられる。
 (実施例11)
 実施例11として、図3に示す3接合の薄膜光電変換装置9を作製した。実施例11は、(1)実施例1の透明電極層2と結晶質ゲルマニウム光電変換ユニット3の間に非晶質シリコン光電変換ユニット4と結晶質シリコン光電変換ユニット5を順次配置したこと、(2)結晶質ゲルマニウム光電変換層32の膜厚を2.5μmとしたこと、(3)透明電極層2をSnOだけから構成したことの3点を除いて、実施例1と同様に作製した。
 透明基板1の上に透明電極層2としてSnOだけを形成した。
 透明電極層2の上に、プラズマCVD装置を用いて、非晶質シリコン光電変換ユニット4を作製した。反応ガスとしてSiH4、H2、CH4及びBを導入しp型非晶質炭化シリコン層41を15nm形成後、反応ガスとしてSiH4を導入し非晶質シリコン光電変換層42を80nm形成し、その後反応ガスとしてSiH4、H2及びPHを導入しn型微結晶シリコン層43を10nm形成することで非晶質シリコン光電変換ユニット3を形成した。
 非晶質シリコン光電変換ユニット4形成後、反応ガスとしてSiH4、H2及びBを導入しp型微結晶シリコン層51を10nm形成後、反応ガスとしてSiH4とH2を導入し結晶質シリコン光電変換層52を1.5μm形成し、その後反応ガスとしてSiH4、H2及びPHを導入しn型微結晶シリコン層53を15nm形成することで結晶質シリコン光電変換ユニット5を形成した。
 結晶質シリコン光電変換ユニット5形成後、結晶質ゲルマニウム光電変換ユニット3、裏面電極層6を順次形成した。
 以上のようにして得られた3接合の薄膜光電変換装置9(受光面積1cm2)にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、開放電圧(Voc)が1.72V、短絡電流密度(Jsc)が11.5mA/cm2、曲線因子(FF)が0.71、そして変換効率(Eff)が14.0%であった。また、波長1300nmにおける量子効率は10.1%であった。
 (実施例12)
 実施例12として、実施例1に類似の単接合の薄膜光電変換装置を作製した。実施例12は、図1の結晶質ゲルマニウム光電変換層を(1)電極間隔ES=15mmで形成したこと、(2)高周波パワー密度を850mW/cmとしたことの2点を除いて、実施例1と同様に作製した。実施例1と同様に薄膜光電変換装置の光電変換層と同一の条件で結晶シリコン基板およびガラス基板上に結晶質ゲルマニウム層を形成し、FTIRにより赤外線吸収スペクトル、および分光エリプソメトリーによる屈折率を測定した。表3に波数935cm-1および960cm-1における赤外吸収ピークの吸収係数、および波長600nmにおける屈折率を示す。
 実施例12の結晶質ゲルマニウム光電変換層を製膜する際、図32に示す測定装置により、発光分光スペクトルを測定した。図33、図34に発光分光スペクトルを示す。波長265nmおよび304nmに、Ge原子発光ピークが明確に認められた。
 表3に示すように、実施例12の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.25V、Jsc=33.5mA/cm、FF=0.63、Eff=5.3%であった。また、波長1300nmにおける量子効率は9.5%であった。
 (実施例13)
 実施例13として、実施例12に類似の単接合の薄膜光電変換装置を作製した。実施例13は、結晶質ゲルマニウム光電変換層を製膜する際、電極間隔ES=12mmで形成したことを除いて、実施例12と同様に作製した。また、赤外吸収係数、屈折率を実施例12と同様に表3に示す。
 また、実施例12と同様に測定した発光分光スペクトルを図33、図34に示す。実施例13は、実施例12と異なり、波長265nmおよび304nmに、ノイズレベルのピークしか測定されず、Ge原子発光ピークが検出されなかった。
 表3に示すように、実施例13の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.26V、Jsc=34.9mA/cm、FF=0.63、Eff=5.7%であった。また、波長1300nmにおける量子効率は11%であった。
 (実施例14)
 実施例14として、実施例12に類似の単接合の薄膜光電変換装置を作製した。実施例14は、結晶質ゲルマニウム光電変換層を製膜する際、電極間隔ES=12mmでプラズマを開始し、プラズマを切らずにES=15mmとしたことを除いて、実施例12と同様に作製した。また、赤外吸収係数、屈折率を実施例12と同様に表3に示す。
 また、実施例12と同様に測定した発光分光スペクトルを図33、図34に示す。発光分光の測定は、ESを15mmに変更後に測定している。実施例14は、実施例12と異なり、波長265nmおよび304nmに、ノイズレベルのピークしか測定されず、Ge原子発光ピークが検出されなかった。
 表3に示すように、実施例14の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.27V、Jsc=34.9mA/cm、FF=0.60、Eff=5.7%であった。また、波長1300nmにおける量子効率は11%であった。
 (実施例12、13、14のまとめ)
 実施例12は、Ge原子発光ピークが検出され、長波長光の量子効率は9.5%、Jscは33.5mA/cmであった。これに対して、実施例13はGe原子発光ピークが検出されず、長波長光の量子効率は11%、Jscは34.9mA/cmと向上した。実施例13は、Ge原子発光ピークが検出されなかったことにより、反応性の高いGe原子の密度が低いことがわかる。従って、式2に示すような連鎖反応が起こりにくく、ポリマーやクラスターの発生が抑制されると考えられ、緻密な結晶質ゲルマニウム半導体が形成されて、薄膜光電変換装置の特性が向上したといえる。
 実施例12と13の製膜条件はESがそれぞれ15mmと12mmで異なる。実施例14はES=12mmでプラズマを発生させて、そのままプラズマを切らずにES=15mmにしている。製膜開始時を除いて、実施例14は実施例12と同様にES=15mmであるにもかかわらず、Ge原子発光ピークが検出されなかった。また、薄膜光電変換装置の特性は実施例13とほぼ同様で、Eff=5.7%を示した。このことから、ESが同じでも、製膜時のプラズマ状態が異なると、結晶質ゲルマニウム光電変換層の膜特性が異なるといえる。
 (実施例15、16、17)
 実施例15、16、17として、実施例12に類似の単接合の薄膜光電変換装置を作製した。図1の結晶質ゲルマニウム光電変換層を製膜時のESを実施例15は9mm、実施例16は7.5mm、実施例17は6.5mmで形成したことを除いて、実施例12と同様に作製した。また、赤外吸収係数、屈折率、および薄膜光電変換装置の特性を実施例12と同様に表3に示す。
 (実施例12、13、15、16、17)
 実施例12、13、15、16、17について、結晶質ゲルマニウム光電変換層のESに対する赤外吸収ピークの吸収係数、波長600nmの屈折率、および光電変換装置の特性を表3に示す。
 図35に結晶質ゲルマニウム光電変換層を製膜時のESに対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。ESを15mmから6.5mmにかけて減少するとJscと量子効率が単調に増加する。ESが12mm以下でJscが約35mA/cm以上を示し、波長1300nmの量子効率が10%を上回る値を示す。さらにESを7.5mm以下にすると波長1300nmの量子効率が急激に増加する。
 図36に結晶質ゲルマニウム光電変換層を製膜時のESに対する薄膜光電変換装置のEffを示す。ESの減少とともにEffが増加し、ESが12m以下でEffは5.5%以上の値を示す。さらに、ESを7.5mm以下にするとEffがさらに増加する。
 (実施例18)
 実施例18として、実施例16に類似の単接合の薄膜光電変換装置を作製した。実施例18は、結晶質ゲルマニウム光電変換層を製膜する際、図31に示すホローカソード形電極を備えるプラズマCVD装置を用いたことを除いて、実施例16と同様に作製した。ホローカソードの窪みは、直径3mmφ、深さ3mmで、ピッチ5mmで複数の窪みを設けた。また、窪みの中心に、ガス導入穴を設けた。赤外吸収係数、屈折率および薄膜光電変換装置の特性を実施例12と同様に表3に示す。
 表3に示すように、赤外吸収係数は、実施例16に比べて実施例18はあまり変わらなかった。これに対して、屈折率は、実施例16の5.01に比べて、実施例18の屈折率は5.38と高くなっている。膜厚分布の均一性は実施例16が±7%であったのに対して、実施例18は±4%であった。
 表3に示すように、実施例18の光電変換装置の出力特性を実施例1と同様に測定したところ、Voc=0.27V、Jsc=38.3mA/cm、FF=0.61、Eff=6.3%であった。また、波長1300nmにおける量子効率は16%であった。ホローカソード形電極を用いることにより、狭いESで均一性があがるだけでなく、結晶質ゲルマニウム光電変換層の特性が改善して、屈折率増加、Jsc、長波長光の量子効率、Effが向上した。均一性の改善は、これはホローカソードの窪みで電子密度が高くなり、プラズマの安定性がよくなったといえる。結晶質ゲルマニウム光電変換層の改善の理由は定かではないが、ホローカソード形電極を用いたプラズマが、製膜に有効なラジカルの発生の促進、ポリマーやクラスターの発生の抑制に好適な状態になったと考えられる。
 (実施例19~23)
 実施例19~23として、実施例16に類似の単接合の薄膜光電変換装置を作製した。図1の結晶質ゲルマニウム光電変換層を製膜時の圧力を実施例19は670Pa、実施例20は850Pa、実施例21は930Pa、実施例22は1000Pa、実施例23は1330Pa、で形成したことを除いて、実施例16と同様に作製した。また、赤外吸収係数、屈折率、および薄膜光電変換装置の特性を表4に示す。
 図37に結晶質ゲルマニウム光電変換層を製膜時の圧力に対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。圧力を670Paから増加するとJscが増加し、圧力800Pa以上でほぼ飽和する。また、量子効率も圧力の増加とともに増加したのち、飽和する。圧力800PaでJscが35mA/cm以上を示し、波長1300nmの量子効率が10%を上回る値を示す。
 図38に結晶質ゲルマニウム光電変換層を製膜時の圧力に対する薄膜光電変換装置のEffを示す。圧力の増加とともにEffが増加し、850Paで最大値を示し、その後緩やかに減少する。圧力800Paから1330Paの範囲で、Effが5.9%以上の高い値を示し、圧力850Paでは、Effが6.1%の高い値を示す。
 結晶ゲルマニウム光電変換層の製膜時の圧力は、図37及び38から800Pa以上が好適である。圧力の上限は、結晶性を高くするために2000Pa以下が望ましく、均一性をあげるために1500Pa以下がさらに望ましく、図37及び38から1330Pa以下がより望ましい。
 (実施例24)
 実施例24として、実施例1に類似の単接合の薄膜光電変換装置を作製し、波長600nmの屈折率に対する、薄膜光電変換装置の特性を調べた。図1の結晶質ゲルマニウム光電変換層を製膜時の条件を、基板温度200~300℃、高周波パワー密度300~1400mW/cm、H2/GeH4の流量比を500~2000倍、ESを6.5~15mm、圧力670~1330Paと変化させた多数の薄膜光電変換装置を作製した。いずれの光電変換装置も、935cm-1のピークの赤外吸収係数が6000cm-1未満、960cm-1のピークの赤外吸収係数が4000cm-1未満であった。
 図39に結晶質ゲルマニウム光電変換層の波長600nの屈折率に対する薄膜光電変換装置のJscおよび波長1300nmの量子効率を示す。参考に比較例1,2のデータも図中に比較例として示す。屈折率を増加すると、1%以下だった長波長光の量子効率が増加して、屈折率4.0以上で5%以上になる。屈折率の増加に対して、Jscも増加して、屈折率4.0以上で、Jscが30mA/cm以上の高い値を示し、屈折率4.9以上で、Jscが35mA/cmを超えるさらに高い値を示す。
 図40に結晶質ゲルマニウム光電変換層の波長600nmの屈折率に対する薄膜光電変換装置のEffを示す。参考に比較例1,2のデータも図中に比較例として示す。屈折率の増加とともにEffが増加し、屈折率が4.0以上でEffは3.0%以上の値を示す。さらに屈折率を4.7以上とすることにより、Effが飽和傾向を示す。屈折率を4.7以上とすることで、Effが安定して5.5%以上の高い値を示す。
 図41に、結晶質ゲルマニウム光電変換層を用いた単接合の光電変換装置のEffに対する、結晶質ゲルマニウム光電変換層のFTIRによる935cm-1の吸収係数(α@935cm-1)、および波長600nmの光に対する屈折率(n)を示す。Effが3.7%以上の特性が高い光電変換装置について、赤外吸収スペクトルではばらつきが大きく良否判定が困難になるが、屈折率は良い相関をEffともち、結晶質ゲルマニウム半導体の良否判定の指標として好適であることがわかる。
 図39~41より、屈折率は4.0以上が望ましく、4.7以上がさらに望ましく、4.9以上がさらに望ましい。ただし、屈折率が5.6を超えると単結晶ゲルマニウムの屈折率より大きくなり、重金属による不純物汚染が懸念されるため、屈折率は5.6以下が望ましい。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 1  透明基板
 2  透明電極層
 3  結晶質ゲルマニウム光電変換ユニット
 31 p型微結晶シリコン層
 32 結晶質ゲルマニウム光電変換層
 33 n型微結晶シリコン層
 34 実質的に真性な結晶質シリコン層
 35 実質的に真性な結晶質シリコン層
 4  非晶質シリコン光電変換ユニット
 41 p型非晶質炭化シリコン層
 42 実質的に真性な非晶質シリコン光電変換層
 43 n型微結晶シリコン層
 5  結晶質シリコン光電変換ユニット
 51 p型微結晶シリコン層
 52 実質的に真性な結晶質シリコン層の光電変換層
 53 n型微結晶シリコン層
 6  裏面電極層
 7  薄膜光電変換装置
 8  薄膜光電変換装置
 9  薄膜光電変換装置
 10 真空チャンバ
 11 高周波電極
 12 基板側電極
 13 基板
 14 プラズマ
 15 ガス導入管
 16 絶縁材
 17 排気管
 18 高周波電源
 19 ホローカソード形電極
 20 窓
 21 レンズ
 22 光ファイバ
 23 分光器

Claims (15)

  1.  p形半導体層とn型半導体層の間に光電変換層を備えた光電変換ユニットを1以上含む薄膜光電変換装置であって、少なくとも1つの光電変換ユニットの光電変換層が真性または弱n形の結晶質ゲルマニウム半導体を含み、かつ前記結晶質ゲルマニウム半導体の波数935±5cm-1の赤外吸収ピークの吸収係数が6000cm-1未満であることを特徴とする薄膜光電変換装置。
  2.  請求項1に記載の薄膜光電変換装置において、前記結晶質ゲルマニウム半導体の波数960±5cm-1の赤外吸収ピークの吸収係数が3500cm-1未満であることを特徴とする薄膜光電変換装置。
  3.  請求項1または2に記載の薄膜光電変換装置において、前記結晶質ゲルマニウム半導体はX線回折で測定した(220)ピークと(111)ピークの強度比が2以上であることを特徴とする薄膜光電変換装置。
  4.  請求項1乃至3のいずれかに記載の薄膜光電変換装置であって、光電変換層が実質的に真正な結晶質シリコン半導体と前記結晶質ゲルマニウム半導体を積層した構造であることを特徴とする薄膜光電変換装置。
  5.  請求項1乃至4のいずれかに記載の薄膜光電変換装置であって、光電変換ユニットを3つ備え、光入射側から順に光電変換層に非晶質シリコン半導体を用いた第一光電変換ユニット、光電変換層に結晶質シリコン半導体を用いた第二光電変換ユニット、光電変換層に前記結晶質ゲルマニウム半導体を含む第三光電変換ユニットを順次配置したことを特徴とする薄膜光電変換装置。
  6.  請求項1乃至5のいずれかに記載の薄膜光電変換装置の製造方法であって、前記結晶質ゲルマニウム半導体を10~100MHzの周波数の高周波放電プラズマCVD法で形成することを特徴とする薄膜光電変換装置の製造方法。
  7.  請求項6に記載の薄膜光電変換装置の製造方法であって、前記結晶質ゲルマニウム半導体を基板温度250℃以上で形成することを特徴とする薄膜光電変換装置の製造方法。
  8.  請求項6または7に記載の薄膜光電変換装置の製造方法であって、前記結晶質ゲルマニウム半導体を高周波パワー密度550mW/cm以上で形成することを特徴とする薄膜光電変換装置の製造方法。
  9.  請求項6乃至8のいずれかに記載の薄膜光電変換装置の製造方法であって、前記結晶質ゲルマニウム半導体を、基板を配置した基板側電極と高周波電極とを備えるプラズマCVD装置を用いて作製し、かつ高周波電極と基板間の距離(E/S)が、12mm以下であることを特徴とする薄膜光電変換装置の製造方法。
  10.  請求項6乃至9のいずれかに記載の薄膜光電変換装置の製造方法であって、前記結晶質ゲルマニウム半導体を、基板を配置した基板側電極と高周波電極とを備えるプラズマCVD装置を用いて作製し、かつ高周波電極がホローカソード形の電極であることを特徴とする薄膜光電変換装置の製造方法。
  11.  請求項6乃至10のいずれかに記載の薄膜光電変換装置の製造方法であって、前記結晶質ゲルマニウム半導体を作製するときの高周波放電プラズマの発光スペクトルに、波長265nm±2nmにピークを持つGe原子発光ピーク、および304nm±2nmにピークを持つGe原子発光ピークがいずれも検出されないことを特徴とする薄膜光電変換装置の製造方法。
  12.  請求項6乃至11のいずれかに記載の薄膜光電変換装置の製造方法であって、前記結晶質ゲルマニウム半導体を、製膜時の圧力が800Pa以上で作製することを特徴とする薄膜光電変換装置の製造方法。
  13.  請求項1乃至5のいずれかに記載の薄膜光電変換装置において、前記結晶質ゲルマニウム半導体の波長600nmの光に対する屈折率が4.0以上であることを特徴とする薄膜光電変換装置。
  14.  請求項1乃至5のいずれかに記載の薄膜光電変換装置において、前記結晶質ゲルマニウム半導体の波長600nmの光に対する屈折率が4.7以上であることを特徴とする薄膜光電変換装置。
  15.  請求項1乃至5のいずれかに記載の薄膜光電変換装置において、前記結晶質ゲルマニウム半導体の波長600nmの光に対する屈折率が4.9以上であることを特徴とする薄膜光電変換装置。
PCT/JP2009/064697 2008-08-29 2009-08-24 薄膜光電変換装置およびその製造方法 WO2010024211A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980133876.0A CN102138221B (zh) 2008-08-29 2009-08-24 薄膜光电转换装置及其制造方法
US13/061,036 US8933327B2 (en) 2008-08-29 2009-08-24 Thin-film photoelectric converter and fabrication method therefor
EP09809862A EP2330632A1 (en) 2008-08-29 2009-08-24 Thin-film photoelectric converter and fabrication method therefor
JP2010526689A JP5379801B2 (ja) 2008-08-29 2009-08-24 薄膜光電変換装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008222602 2008-08-29
JP2008-222602 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010024211A1 true WO2010024211A1 (ja) 2010-03-04

Family

ID=41721379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064697 WO2010024211A1 (ja) 2008-08-29 2009-08-24 薄膜光電変換装置およびその製造方法

Country Status (5)

Country Link
US (1) US8933327B2 (ja)
EP (1) EP2330632A1 (ja)
JP (1) JP5379801B2 (ja)
CN (1) CN102138221B (ja)
WO (1) WO2010024211A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055600A1 (ja) * 2009-11-05 2011-05-12 三菱電機株式会社 光起電力装置およびその製造方法
WO2012160804A1 (ja) * 2011-05-25 2012-11-29 株式会社クレブ 発光分析装置
CN102832117A (zh) * 2011-06-14 2012-12-19 国际商业机器公司 用于形成多结光生伏打结构的剥离方法和光生伏打器件
WO2013035686A1 (ja) 2011-09-07 2013-03-14 株式会社カネカ 薄膜光電変換装置およびその製造方法
US9121829B2 (en) 2011-03-04 2015-09-01 Joled Inc. Crystallinity evaluation method, crystallinity evaluation device, and computer software thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2956208B1 (fr) * 2010-02-05 2012-04-27 Centre Nat Rech Scient Methode de determination sans contact de caracteristiques d'un photoconvertisseur
EP2541614A4 (en) * 2010-02-24 2015-11-04 Kaneka Corp THIN-FILM PHOTOELECTRIC CONVERSION DEVICE AND METHOD FOR PRODUCING THE SAME
US9653639B2 (en) * 2012-02-07 2017-05-16 Apic Corporation Laser using locally strained germanium on silicon for opto-electronic applications
JP6045250B2 (ja) * 2012-08-10 2016-12-14 オリンパス株式会社 固体撮像装置および撮像装置
CN108963015B (zh) * 2017-05-17 2021-12-10 上海耕岩智能科技有限公司 一种光侦测薄膜、器件、显示装置、光敏二极管的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189632A (ja) * 1985-02-18 1986-08-23 Sanyo Electric Co Ltd 半導体薄膜の製造方法
JPH0888189A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd 薄膜多結晶半導体及びその製造方法並びに光起電力装置及びその製造方法
JP2001332503A (ja) * 2000-05-24 2001-11-30 Fuji Electric Co Ltd プラズマ放電による微結晶膜の製造方法
JP2004266111A (ja) * 2003-03-03 2004-09-24 Fuji Electric Holdings Co Ltd 微結晶膜および微結晶薄膜太陽電池の製造方法
JP2009141059A (ja) * 2007-12-05 2009-06-25 Kaneka Corp 薄膜光電変換装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116605B2 (ja) * 1988-03-25 1995-12-13 三洋電機株式会社 水素化アモルファスゲルマニウム膜、その膜の製造方法及びその膜を使用した電子デバイス又は電子装置
JPH02192771A (ja) * 1989-01-21 1990-07-30 Canon Inc 光起電力素子
JP3684041B2 (ja) * 1996-08-28 2005-08-17 キヤノン株式会社 光起電力素子
KR100251070B1 (ko) * 1996-08-28 2000-04-15 미다라이 후지오 광기전력 소자
JP4208281B2 (ja) * 1998-02-26 2009-01-14 キヤノン株式会社 積層型光起電力素子
CN1177375C (zh) * 2003-01-14 2004-11-24 河北科技大学 一种太阳能转换多结极联光电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189632A (ja) * 1985-02-18 1986-08-23 Sanyo Electric Co Ltd 半導体薄膜の製造方法
JPH0888189A (ja) * 1994-09-16 1996-04-02 Sanyo Electric Co Ltd 薄膜多結晶半導体及びその製造方法並びに光起電力装置及びその製造方法
JP2001332503A (ja) * 2000-05-24 2001-11-30 Fuji Electric Co Ltd プラズマ放電による微結晶膜の製造方法
JP2004266111A (ja) * 2003-03-03 2004-09-24 Fuji Electric Holdings Co Ltd 微結晶膜および微結晶薄膜太陽電池の製造方法
JP2009141059A (ja) * 2007-12-05 2009-06-25 Kaneka Corp 薄膜光電変換装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CONF. REC. 31ST IEEE PHOTOVOLTAIC SPEC. CONF., 2005", article XUEJUN NIU ET AL.: "Growth and properties of nanocrystalline germanium and germanium-carbide films and devices", pages: 1508 - 1511, XP010823045 *
XUEJUN NIU ET AL.: "Growth and properties of nanocrystalline germanium films", JOURNAL OF APPLIED PHYSICS, vol. 98, 2005, pages 096103 - 1-3, XP012078981 *
YASUTOSHI YASHIKI ET AL.: "Influence of plasma power and substratete mperature on structure of nanocrystalline germanium carbon thin films by VHF plasma CVD", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 354, no. 19-25, 1 May 2008 (2008-05-01), pages 2355 - 2358, XP022621479 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055600A1 (ja) * 2009-11-05 2011-05-12 三菱電機株式会社 光起電力装置およびその製造方法
JP5143289B2 (ja) * 2009-11-05 2013-02-13 三菱電機株式会社 光起電力装置およびその製造方法
US9121829B2 (en) 2011-03-04 2015-09-01 Joled Inc. Crystallinity evaluation method, crystallinity evaluation device, and computer software thereof
WO2012160804A1 (ja) * 2011-05-25 2012-11-29 株式会社クレブ 発光分析装置
CN103562435A (zh) * 2011-05-25 2014-02-05 株式会社Crev 发光分析装置
JP5422781B2 (ja) * 2011-05-25 2014-02-19 株式会社クレブ 発光分析装置
US8781793B2 (en) 2011-05-25 2014-07-15 Crev Inc. Light emission analyzing device
CN102832117A (zh) * 2011-06-14 2012-12-19 国际商业机器公司 用于形成多结光生伏打结构的剥离方法和光生伏打器件
US8927318B2 (en) 2011-06-14 2015-01-06 International Business Machines Corporation Spalling methods to form multi-junction photovoltaic structure
WO2013035686A1 (ja) 2011-09-07 2013-03-14 株式会社カネカ 薄膜光電変換装置およびその製造方法

Also Published As

Publication number Publication date
JP5379801B2 (ja) 2013-12-25
US20110146756A1 (en) 2011-06-23
CN102138221A (zh) 2011-07-27
CN102138221B (zh) 2015-03-04
US8933327B2 (en) 2015-01-13
EP2330632A1 (en) 2011-06-08
JPWO2010024211A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5379801B2 (ja) 薄膜光電変換装置およびその製造方法
JP5156379B2 (ja) シリコン系薄膜光電変換装置、及びその製造方法
JP2717583B2 (ja) 積層型光起電力素子
JPWO2005011002A1 (ja) シリコン系薄膜太陽電池
WO2007114432A1 (ja) 光電変換装置及びその製造方法
Becker et al. Microstructure and photovoltaic performance of polycrystalline silicon thin films on temperature-stable ZnO: Al layers
Matsui et al. Advanced materials processing for high-efficiency thin-film silicon solar cells
Shin et al. Optimization of intrinsic hydrogenated amorphous silicon deposited by very high-frequency plasma-enhanced chemical vapor deposition using the relationship between Urbach energy and silane depletion fraction for solar cell application
JP5222434B2 (ja) 薄膜光電変換装置およびその製造方法
JPH11251612A (ja) 光起電力素子の製造方法
JPH04266066A (ja) 光起電力素子
Dornstetter et al. Deposition of high-efficiency microcrystalline silicon solar cells using SiF 4/H 2/Ar mixtures
Schicho Amorphous and microcrystalline silicon applied in very thin tandem solar cells
JP6047494B2 (ja) 薄膜光電変換装置およびその製造方法
Sobajima et al. High-rate deposition of microcrystalline silicon photovoltaic active layers by plasma-enhanced chemical vapor deposition at kilo-pascal pressures
JP2005057251A (ja) 多接合型半導体素子及びこれを用いた太陽電池素子
JPH11214728A (ja) タンデム型シリコン系薄膜光電変換装置
Zhang et al. Decoupling crystalline volume fraction and VOC in microcrystalline silicon pin solar cells by using a µc‐Si: F: H intrinsic layer
JP2004146735A (ja) シリコン光起電力素子及びその製造方法
Kirner Development of wide band gap materials for thin film silicon solar cells
JP2011176164A (ja) 積層型薄膜光電変換装置
Salimi Analysis of boron doped hydrogenated amorphous silicon carbide thin film for silicon heterojunction solar cells
JP2011181852A (ja) 薄膜光電変換装置と薄膜光電変換装置の製造方法
WO2005093856A1 (ja) 薄膜光電変換装置の製造方法
WO2011016490A1 (ja) 積層型光起電力素子および積層型光起電力素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133876.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526689

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13061036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009809862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009809862

Country of ref document: EP