WO2012160804A1 - 発光分析装置 - Google Patents

発光分析装置 Download PDF

Info

Publication number
WO2012160804A1
WO2012160804A1 PCT/JP2012/003326 JP2012003326W WO2012160804A1 WO 2012160804 A1 WO2012160804 A1 WO 2012160804A1 JP 2012003326 W JP2012003326 W JP 2012003326W WO 2012160804 A1 WO2012160804 A1 WO 2012160804A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light intensity
spectrum
light
calculation unit
Prior art date
Application number
PCT/JP2012/003326
Other languages
English (en)
French (fr)
Inventor
真希 山下
啓美 水河
Original Assignee
株式会社クレブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレブ filed Critical 株式会社クレブ
Priority to CN201280024650.9A priority Critical patent/CN103562435B/zh
Priority to JP2013516207A priority patent/JP5422781B2/ja
Priority to US14/119,487 priority patent/US8781793B2/en
Publication of WO2012160804A1 publication Critical patent/WO2012160804A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0037Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • G01J2003/4435Measuring ratio of two lines, e.g. internal standard
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • the present invention relates to an optical emission analyzer, and more particularly to an optical emission analyzer that analyzes the light emission state in a container measured by a spectrometer.
  • the ratio of the emission intensity of Si * deposited on the substrate to the emission intensity of SiH *, which is related to the substrate temperature, is calculated (“*” is the valence of the atom).
  • the conventional plasma CVD apparatus controls the gas flow rate to the plasma CVD apparatus so that the calculated ratio becomes constant, thereby suppressing the generation of powder.
  • the emission intensity of the molecules or atoms of the thin film formed on the substrate (molecular spectrum Or it is difficult to observe only the atomic spectrum). For this reason, it is difficult to accurately calculate the emission intensity ratio of two specific molecules or atoms.
  • Such a problem is not limited to the plasma CVD apparatus, but is common to an apparatus that needs to calculate the emission intensity ratio of two types of molecules or atoms in a container such as a sputtering apparatus, an etching apparatus or a sterilization monitoring apparatus.
  • a sputtering apparatus an apparatus that needs to calculate the emission intensity ratio of two types of molecules or atoms in a container
  • a sterilization monitoring apparatus Exist.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an emission analysis device capable of accurately calculating the emission intensity ratio of a specific two molecules or atoms.
  • an optical emission analyzer including: And a light intensity calculated by the first light intensity calculation unit from the light intensity indicated by the spectral spectrum measured by the spectrometer for each wavelength.
  • the second light intensity calculator that calculates the light intensity corresponding to the bright line spectrum of the molecule or the atom by subtracting the second light intensity calculator, and using the light intensity calculated by the second light intensity calculator, the molecular spectrum of the first molecule
  • a ratio calculating unit that calculates a ratio of the peak value of the atomic spectrum of the first atom to the peak value of the molecular spectrum of the second molecule or the atomic spectrum of the second atom.
  • the light intensity for each wavelength is calculated by approximating the spectrum measured by the spectrometer with a polynomial.
  • This polynomial-approximated light intensity corresponds to the light intensity indicating thermal radiation as a continuous spectrum. Therefore, by subtracting the light intensity approximated by the polynomial from the light intensity indicated by the spectral spectrum, it is possible to accurately calculate the light intensity due to the light emission of the molecule or the atom. Thus, the emission intensity ratio of two specific molecules or atoms can be accurately calculated.
  • the first light intensity calculation unit approximates the spectrum, which indicates the light intensity for each wavelength in the container of the plasma CVD (Chemical Vapor Deposition) apparatus, which is measured by the spectrometer, by using a polynomial equation.
  • a light intensity for each wavelength of light emitted by plasma present in the plasma CVD apparatus is calculated, and the second light intensity calculation unit indicates, for each wavelength, the spectrum measured by the spectrometer.
  • the light intensity for each wavelength of light emitted by the plasma is calculated by approximating the spectrum measured by the spectrometer with a polynomial. Since plasma is light over a wide wavelength band, it can be approximated by a polynomial. Therefore, by subtracting the light intensity of the light emitted by the plasma approximated by the polynomial from the light intensity represented by the spectrum measured by the spectrometer, the molecules or atoms of the thin film formed on the substrate can be obtained. The light intensity due to the light emission can be accurately calculated. Thus, the emission intensity ratio of two specific molecules or atoms can be accurately calculated.
  • the above-mentioned emission analyzer further includes a first wavelength, a second wavelength larger than the first wavelength, a third wavelength larger than the second wavelength, and a fourth wavelength larger than the third wavelength.
  • the first light intensity calculation unit is (a) a wavelength band from the first wavelength to the second wavelength in the spectrum measured by the spectrometer.
  • a spectrum included in a second wavelength band that is a wavelength band from the third wavelength to the fourth wavelength among the spectrum included in a first wavelength band and the spectrum measured by the spectrometer
  • a third wavelength band which is a wavelength band from a first predetermined wavelength included in the first wavelength band to a second predetermined wavelength included in the second wavelength band.
  • Calculating the light intensity, (b) the third wave And the light intensity which is calculated in the band, and the spectrum in the wavelength band other than the third wavelength band, by approximating a polynomial may be calculated light intensity for each wavelength in the container.
  • the spectrum measured by the spectrometer includes a spectrum showing thermal radiation as a continuous spectrum and a bright line spectrum of a molecule or atom. For this reason, the spectrum measured by the spectrometer has a large light intensity at the wavelength corresponding to the bright line spectrum. Therefore, when the spectrum measured by the spectrometer is approximated by a polynomial, it may be affected by the value of the bright line spectrum, and it may not be possible to accurately calculate the light intensity for each wavelength indicating thermal radiation as a continuous spectrum. Therefore, by calculating the light intensity of the light of the third wavelength band from the light intensities of the first wavelength band and the second wavelength band located before and after the wavelength band, a spectrum showing heat radiation as a continuous spectrum is obtained. It can be calculated accurately. Therefore, the light intensity due to the emission of the molecule or atom corresponding to the bright line spectrum can be accurately calculated, and thus the emission intensity ratio of two specific molecules or atoms can be accurately calculated.
  • the first light intensity calculator further excludes a predetermined ratio of light intensities of light intensities of respective wavelengths from those having a large difference with the approximated polynomial, and then again the first light intensity calculator.
  • the calculated light intensities in the three wavelength bands and the spectral spectra in wavelength bands other than the third wavelength band are approximated by polynomials.
  • the above-mentioned emission analyzer further includes a first wavelength, a second wavelength larger than the first wavelength, a third wavelength larger than the second wavelength, and a fourth wavelength larger than the third wavelength.
  • the first light intensity calculation unit is a wavelength band from the first wavelength to the second wavelength in the spectrum measured by the spectrometer. It is predetermined to a spectrum included in a wavelength band and a spectrum included in a second wavelength band which is a wavelength band from the third wavelength to the fourth wavelength among the spectrum measured by the spectrometer.
  • the light intensity of the light of the third wavelength band which is a wavelength band from the first predetermined wavelength included in the first wavelength band to the second predetermined wavelength included in the second wavelength band, is applied by applying the function of Calculating the second light intensity calculation unit In the third wavelength band, by subtracting the light intensity calculated by the first light intensity calculation unit from the light intensity indicated by the spectral spectrum measured by the spectrometer for each wavelength, molecules or atoms
  • the light intensity corresponding to the bright line spectrum may be calculated.
  • the spectrum measured by the spectrometer includes a spectrum showing thermal radiation as a continuous spectrum and a bright line spectrum of a molecule or atom. For this reason, the spectrum measured by the spectrometer has a large light intensity at the wavelength corresponding to the bright line spectrum. Therefore, when the spectrum measured by the spectrometer is approximated by a polynomial, it may be affected by the value of the bright line spectrum, and it may not be possible to accurately calculate the light intensity for each wavelength indicating thermal radiation as a continuous spectrum. Therefore, by calculating the light intensity of the light of the third wavelength band from the light intensities of the first wavelength band and the second wavelength band located before and after the wavelength band, a spectrum showing heat radiation as a continuous spectrum is obtained. It can be calculated accurately. Therefore, the light intensity due to the emission of the molecule or atom corresponding to the bright line spectrum can be accurately calculated, and thus the emission intensity ratio of two specific molecules or atoms can be accurately calculated.
  • the first light intensity calculation unit is included in a first wavelength band, which is a wavelength band from the first wavelength to the second wavelength, in the spectral spectrum measured by the spectrometer.
  • a first straight line is calculated by fitting a straight line to a spectral spectrum, and the first straight line is included in a second wavelength band which is a wavelength band from the third wavelength to the fourth wavelength among the spectral spectrum measured by the spectrometer.
  • a second straight line is calculated by fitting a straight line to the spectrum to be measured, and the point of the first predetermined wavelength on the first straight line is connected by a straight line with the point of the second predetermined wavelength on the second straight line
  • the light intensity of the light in the third wavelength band may be calculated.
  • the first predetermined wavelength is (the first wavelength + the second wavelength) / 2
  • the second predetermined wavelength is (the third wavelength + the fourth wavelength) / 2. Also good.
  • the first predetermined wavelength may be a second wavelength
  • the second predetermined wavelength may be a third wavelength
  • the present invention can not only be realized as an emission analysis apparatus provided with such a characteristic processing unit, but also has an emission analysis method using a process executed by a characteristic processing unit included in the emission analysis apparatus as a step.
  • a program for causing a computer to function as a characteristic processing unit included in the light emission analysis apparatus or a program for causing a computer to execute characteristic steps included in a light emission analysis method can also be realized. It goes without saying that such a program can be distributed via a computer readable non-temporary recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet. .
  • an emission analyzer capable of accurately calculating the emission intensity ratio of two specific molecules or atoms.
  • FIG. 1 is a block diagram showing a functional configuration of a plasma CVD system according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the operation of the plasma emission analyzer.
  • FIG. 3 is a diagram showing an example of an image displayed on the display device.
  • FIG. 4 is a graph showing the temporal transition of the light intensity due to the emission of SiH *.
  • FIG. 5 is a view showing various analysis results by the plasma emission analyzer.
  • FIG. 6 is a block diagram showing a functional configuration of a plasma CVD system according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart showing the operation of the plasma emission analyzer.
  • FIG. 8 is a graph of the spectral spectrum.
  • FIG. 1 is a block diagram showing a functional configuration of a plasma CVD system according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the operation of the plasma emission analyzer.
  • FIG. 3 is
  • FIG. 9 is a detailed flowchart of plasma light intensity calculation processing (S14 of FIG. 7).
  • FIG. 10 is a graph for explaining the polynomial approximation process (S24 in FIG. 9).
  • FIG. 11 is a diagram for explaining the operation of the plasma emission analysis device in the modification of the second embodiment of the present invention.
  • FIG. 12 is a diagram for describing a feedback process of the analysis result of the plasma emission analysis device to the plasma CVD device.
  • Embodiment 1 The plasma CVD system according to the first embodiment of the present invention will be described below.
  • FIG. 1 is a block diagram showing a functional configuration of a plasma CVD system according to Embodiment 1 of the present invention.
  • the plasma CVD system is a system for forming a thin film on a substrate, and includes a plasma CVD apparatus 210, a spectrometer 200, a plasma emission analyzer 100, and a display apparatus 300.
  • the plasma CVD apparatus 210 forms a thin film on a substrate after plasmatizing a source gas. That is, the plasma CVD apparatus 210 converts the source gas into a plasma state in the container, generates active excited molecules, radicals, and ions, and promotes a chemical reaction to form a thin film on the substrate.
  • the spectrometer 200 measures a spectrum indicating the light intensity for each wavelength in the plasma CVD apparatus 210.
  • the plasma emission analysis device 100 is an example of a light emission analysis device that analyzes the light emission state in the container, and is a device that analyzes the light emission state of plasma in the container of the plasma CVD device 210.
  • the display device 300 is a device that displays the spectrum measured by the spectrometer 200 or the analysis result analyzed by the plasma emission analysis device 100.
  • the plasma CVD apparatus 210, the spectrometer 200, and the display device 300 can be configured using known techniques, and thus the detailed description thereof is omitted.
  • the plasma emission analyzer 100 includes a plasma light intensity calculation unit 120, a molecular light intensity calculation unit 130, and a ratio calculation unit 140.
  • the plasma light intensity calculation unit 120 is an example of a first light intensity calculation unit, and by approximating a spectral spectrum indicating the light intensity for each wavelength in the container measured by the spectrometer 200 with a polynomial, the inside of the container can be obtained. Calculate the light intensity for each wavelength. For example, the plasma light intensity calculation unit 120 approximates the spectrum indicating the light intensity for each wavelength in the plasma CVD apparatus 210 measured by the spectrometer 200 by using a polynomial as a continuous spectrum continuous in the wavelength direction. The light intensity indicating thermal radiation, that is, the light intensity for each wavelength of light emitted by the plasma present in the plasma CVD apparatus 210 is calculated.
  • the molecular light intensity calculation unit 130 is an example of a second light intensity calculation unit, and for each wavelength, a molecule or molecule is calculated by subtracting the light intensity calculated by the plasma light intensity calculation unit 120 from the light intensity indicated by the spectral spectrum. The light intensity corresponding to the bright line spectrum of the atom is calculated.
  • the molecular light intensity calculation unit 130 is formed on the substrate by subtracting the light intensity of the light emitted by the plasma calculated by the plasma light intensity calculation unit 120 from the light intensity indicated by the spectrum for each wavelength. The light intensity due to the light emission of the thin film molecules is calculated.
  • the ratio calculation unit 140 calculates the ratio of the peak value of the molecular spectrum of the first molecule to the peak value of the molecular spectrum of the second molecule using the light intensity calculated by the molecular light intensity calculation unit 130.
  • the ratio calculated by the ratio calculation unit 140 is a ratio of molecular spectra.
  • the ratio calculated by the ratio calculation unit 140 is not limited to the ratio of molecular spectra.
  • the ratio calculator 140 may calculate a ratio of an atomic spectrum to a molecular spectrum, or may calculate a ratio of atomic spectra.
  • FIG. 2 is a flowchart showing the operation of the plasma emission analyzer 100.
  • the plasma light intensity calculation unit 120 releases the plasma existing in the plasma CVD apparatus 210 by approximating the spectrum indicating the light intensity for each wavelength in the plasma CVD apparatus 210 measured by the spectrometer 200 with a polynomial.
  • the light intensity of each wavelength of the light to be emitted is calculated (S2).
  • the light emitted by this plasma exhibits thermal radiation as a continuous spectrum.
  • FIG. 3 is a view showing an example of an image displayed on the display device 300.
  • the horizontal axis shows the wavelength
  • the vertical axis shows the light intensity.
  • the plasma light intensity calculation unit 120 applies, for example, a nine-dimensional polynomial to the spectrum 400 measured by the spectrometer 200 using the least squares method.
  • a waveform 402 is obtained.
  • a waveform 402 represents the light intensity of thermal radiation as a continuous spectrum, that is, the light intensity of each wavelength of light emitted by plasma present in the plasma CVD apparatus 210.
  • the light emitted by the plasma is light emitted when the source gas is in the plasma state.
  • SiH 4 is a molecule of thin film formed on the substrate is separated into atoms, light emitted when recombined, and, the free electrons from SiH 4 hits the SiH 4 Sometimes there is the possibility of light emitting, either or both.
  • the molecular light intensity calculation unit 130 forms a film on the substrate by subtracting the light intensity of the light emitted by the plasma calculated by the plasma light intensity calculation unit 120 from the light intensity indicated by the spectrum for each wavelength.
  • the light intensity due to the light emission of the molecules of the thin film is calculated (S4). This light intensity corresponds to the emission line spectrum of the molecule or atom.
  • the molecular light intensity calculation unit 130 obtains the waveform 404 by subtracting the light intensity indicated by the waveform 402 from the light intensity indicated by the spectral spectrum 400 for each wavelength.
  • the waveform 404 indicates the light intensity due to the light emission of the molecules of the thin film deposited on the substrate for each wavelength.
  • SiH * has a peak in light intensity at a wavelength of 414.23 nm, in which case the light intensity is about 43.
  • FIG. 4 is a graph showing the temporal transition of light intensity due to the emission of SiH *, where the horizontal axis shows time and the vertical axis shows light intensity.
  • the ratio calculation unit 140 calculates the ratio of the peak value of the molecular spectrum of the first molecule to the peak value of the molecular spectrum of the second molecule using the light intensity calculated by the molecular light intensity calculation unit 130. (S6).
  • the ratio calculator 140 calculates the ratio of the light intensity of SiH * to the light intensity of H ⁇ .
  • the light intensity of H ⁇ refers to the light intensity of the H ⁇ line having a wavelength of 656.28 nm in the line spectrum of hydrogen atoms.
  • FIG. 5 is a view showing various analysis results by the plasma emission analysis device 100.
  • FIG. 5 (f) is a graph showing the time change of the ratio of the light intensity of SiH * to the light intensity of H ⁇ , where the horizontal axis shows time and the vertical axis shows the above ratio.
  • FIG. 5F also shows that the current ratio value is 0.080 and the average ratio value is 0.069.
  • 5 (a) and 5 (b) are graphs similar to those shown in FIGS.
  • 5 (c), 5 (d) and 5 (e) are graphs showing temporal changes in the light intensity of H ⁇ , the light intensity of Si * and the light intensity of H ⁇ , and the horizontal axis represents The time is shown, and the vertical axis is the light intensity.
  • the light intensity of H ⁇ refers to the light intensity of H ⁇ rays having a wavelength of 486.13 nm in the line spectrum of hydrogen atoms.
  • the light intensity for each wavelength of light emitted by plasma is approximated by approximating the spectrum measured by spectrometer 200 with a polynomial. It is calculated.
  • Plasma exhibits thermal radiation as a continuous spectrum, and since it is light over a broad wavelength band, it can be approximated by a polynomial. Therefore, by subtracting the light intensity of the light emitted by the plasma approximated by the polynomial from the light intensity indicated by the spectrum, the light intensity due to the light emission of the molecules or atoms of the thin film formed on the substrate is accurately calculated. can do. Therefore, the emission intensity ratio of two specific molecules can be accurately calculated. Thereby, the gas flow rate into the plasma CVD apparatus 210 can be controlled to suppress the generation of powder.
  • the plasma CVD system according to the second embodiment is characterized in that the light intensity in a predetermined wavelength band is excluded from the spectrum in the plasma CVD apparatus 210 measured by the spectrometer 200 and the spectrum is approximated by a polynomial. This differs from the plasma CVD system according to the first embodiment. Hereinafter, differences from the first embodiment will be mainly described.
  • FIG. 6 is a block diagram showing a functional configuration of a plasma CVD system according to Embodiment 2 of the present invention.
  • the same components as those of the plasma CVD system of the first embodiment are denoted by the same reference numerals. Since the names and functions are also the same, the detailed description thereof will not be repeated here.
  • the plasma CVD system is a system for forming a thin film on a substrate, and includes a plasma CVD apparatus 210, a spectrometer 200, a plasma emission analyzer 100A, and a display 300.
  • the plasma emission analysis apparatus 100A is an apparatus for analyzing the light emission state of plasma in the plasma CVD apparatus 210, and the wavelength acquisition unit 110, the plasma light intensity calculation unit 120A, the molecular light intensity calculation unit 130, and the ratio calculation unit 140 And.
  • the wavelength acquisition unit 110 acquires a first wavelength, a second wavelength larger than the first wavelength, a third wavelength larger than the second wavelength, and a fourth wavelength larger than the third wavelength.
  • the wavelength acquisition unit 110 may acquire the value of each wavelength input by the user using the keyboard, or acquire the value of each wavelength from a storage device in which the value of each wavelength is stored in advance. You may
  • the plasma light intensity calculator 120A is an example of a first light intensity calculator.
  • the plasma light intensity calculation unit 120A includes (a) a spectrum included in a first wavelength band, which is a wavelength band from the first wavelength to the second wavelength, of the spectrum measured by the spectrometer 200, and It is included in the first wavelength band by applying a predetermined function to the spectrum included in the second wavelength band which is the wavelength band from the third wavelength to the fourth wavelength among the spectrum measured by the The light intensity of the light of the third wavelength band, which is the wavelength band from the first predetermined wavelength to the second predetermined wavelength included in the second wavelength band, is calculated.
  • the plasma light intensity calculation unit 120 ⁇ / b> A approximates the calculated light intensity in the third wavelength band (b) with the spectral spectrum in wavelength bands other than the third wavelength band by using a polynomial equation to obtain the inside of the plasma CVD apparatus 210.
  • the light intensity for each wavelength of the light emitted by the plasma present in the Specifically, the plasma light intensity calculation unit 120A is a straight line in the spectrum included in the first wavelength band, which is the wavelength band from the first wavelength to the second wavelength, of the spectrum measured by the spectrometer 200.
  • the first straight line is calculated by fitting the straight line to the spectral spectrum included in the second wavelength band which is the wavelength band from the third wavelength to the fourth wavelength among the spectral spectra measured by the spectrometer 200.
  • the light intensity of the light of the third wavelength band calculates the first predetermined wavelength is (first wavelength + second wavelength) / 2, and the second predetermined wavelength is (third wavelength + fourth wavelength) / 2.
  • FIG. 7 is a flowchart showing the operation of the plasma emission analysis device 100A.
  • the wavelength acquisition unit 110 acquires the first wavelength, the second wavelength larger than the first wavelength, the third wavelength larger than the second wavelength, and the fourth wavelength larger than the third wavelength (S12). For example, in the graph of the spectrum shown in FIG. 8, it is assumed that the first wavelength X1, the second wavelength X2, the third wavelength X3, and the fourth wavelength X4 are acquired.
  • the plasma light intensity calculation unit 120A is a thermal radiation as a continuous spectrum continuous in the wavelength direction by approximating the spectrum indicating the light intensity for each wavelength in the plasma CVD apparatus 210 measured by the spectrometer 200 with a polynomial.
  • the light intensity for each wavelength of the light emitted by the plasma present in the plasma CVD apparatus 210 is calculated (S14).
  • FIG. 9 is a detailed flowchart of plasma light intensity calculation processing (S14 of FIG. 7).
  • the plasma light intensity calculation process (S14 in FIG. 7) will be described using a graph of the spectral spectrum shown in FIG. 8 and showing a specific example.
  • plasma light intensity calculation unit 120 ⁇ / b> A outputs spectral spectrum 804 included in the first wavelength band (wavelengths X1 to X2) and the second wavelength band in spectral spectrum 802 measured by spectrometer 200.
  • the light intensity of the light of the third wavelength band (wavelength (X1 + X2) / 2 to (X3 + X4) / 2) is calculated by applying the straight line 808 to the spectrum 806 included in (wavelengths X3 to X4) (S22) .
  • Straight line fitting is performed as follows.
  • the plasma light intensity calculation unit 120A applies a straight line to the spectral spectrum 804 included in the first wavelength band (wavelengths X1 to X2) using the least squares method, and the wavelength on the fitted straight line is (X1 + X2) / 2. Let the point be the first midpoint. Similarly, plasma light intensity calculation unit 120A applies a straight line to spectral spectrum 806 included in the second wavelength band (wavelengths X3 to X4) using the least squares method, and the wavelength on the fitted straight line is (X3 + X4) / 2. Of the second middle point.
  • the plasma light intensity calculation unit 120A is a straight line connecting the first middle point and the second middle point as a straight line indicating the light intensity of the light of the third wavelength band (wavelengths (X1 + X2) / 2 to (X3 + X4) / 2).
  • straight line fitting is not limited to this method, and for example, the least squares method may be used to minimize the sum of squares of the distances between the spectrums 804 and 806 and the straight line 808. It may be performed by applying a straight line 808 to 806.
  • the third wavelength band may be the wavelengths X2 to X3.
  • the third wavelength band is not limited to the above-described one, as long as it is a wavelength band from the first predetermined wavelength included in the first wavelength band to the second predetermined wavelength included in the second wavelength band.
  • Other wavelength bands may be used.
  • the plasma light intensity calculation unit 120A approximates the calculated light intensity in the third wavelength band with the spectral spectrum in a wavelength band other than the third wavelength band with a polynomial so that plasma existing in the plasma CVD apparatus 210 is present.
  • the light intensity for each wavelength of the light to be emitted is calculated (S24). That is, the plasma light intensity calculation unit 120A approximates the spectrum obtained by replacing the value of the third wavelength band (wavelength (X1 + X2) / 2 to (X3 + X4) / 2) in the spectrum 802 with the straight line 808 with a polynomial. Do.
  • FIG. 10 is a graph for explaining the polynomial approximation process (S24 in FIG. 9), the horizontal axis indicates the wavelength, and the vertical axis indicates the light intensity.
  • a plurality of third wavelength bands are provided, and a straight line 1004 which is the straight line 808 calculated in S22 is shown for the third wavelength band.
  • the plasma light intensity calculation unit 120A applies, for example, a nine-dimensional polynomial to the straight line 1004 in the third wavelength band and the spectral spectrum 400 in wavelength bands other than the third wavelength band, using the least squares method.
  • a waveform 1002 is obtained.
  • the plasma light intensity calculation unit 120A excludes light intensities of a predetermined ratio from those having a large difference from the approximated polynomial (S26).
  • plasma light intensity calculation unit 120A is a 9-dimensional polynomial approximated as an example among light intensities of respective wavelengths indicated by straight line 1004 in the third wavelength band and spectral spectrum 400 in wavelength bands other than the third wavelength band. 10% of the light intensity is excluded from the one with a large distance with.
  • the ratio of the light intensity to be excluded is not limited to 10%, and may be a ratio other than that.
  • the plasma light intensity calculation unit 120A again approximates, using polynomials, the light intensity calculated in the third wavelength band from which the light intensity is excluded in the process of S26 and the spectral spectrum in a wavelength band other than the third wavelength band. (S28). That is, the plasma light intensity calculation unit 120A detects the light intensity in the process of S26 among the light intensities of the respective wavelengths indicated by the straight line 1004 in the third wavelength band and the spectral spectrum 400 in the wavelength bands other than the third For example, a 9-dimensional polynomial is fitted to the excluded light intensity. The processes of S26 and S28 may not be performed.
  • the molecular light intensity calculation unit 130 subtracts the light intensity of the light emitted by the plasma calculated by the plasma light intensity calculation unit 120A from the light intensity indicated by the spectral spectrum for each wavelength.
  • the light intensity due to the light emission of the molecules of the thin film formed on the substrate is calculated (S4).
  • molecular light intensity calculation unit 130 obtains waveforms 1006 and 1008 by subtracting the light intensity indicated by waveform 1004 from the light intensity indicated by spectral spectrum 400 for each wavelength.
  • a waveform 1006 indicates the light intensity due to the emission of molecules of the thin film in wavelength bands other than the third wavelength band.
  • a waveform 1008 indicates the light intensity due to the light emission of the thin film molecule in the third wavelength band. In FIG. 10, the waveform 1008 is shown darker than the waveform 1006.
  • the ratio calculation unit 140 calculates the ratio of the peak value of the molecular spectrum of the first molecule to the peak value of the molecular spectrum of the second molecule using the light intensity calculated by the molecular light intensity calculation unit 130. (S6).
  • the ratio calculator 140 calculates the ratio of the light intensity of SiH * to the light intensity of H ⁇ .
  • the ratio to be calculated is not limited to this.
  • the ratio of the light intensity of SiH * to the light intensity of Si * may be calculated.
  • the plasma emission analyzer 100A according to the second embodiment described above has the following effects.
  • the spectrum measured by the spectrometer 200 includes a spectrum by plasma and a spectrum by molecules of a thin film formed on a substrate. Therefore, in the spectrum measured by the spectrometer 200, the light intensity becomes large at the wavelength corresponding to the molecules of the thin film formed on the substrate. Therefore, when the spectrum measured by the spectrometer 200 is approximated by a polynomial, it is influenced by the value of the spectrum by the molecules of the thin film formed on the substrate, and the light intensity of each wavelength of the light emitted by the plasma is accurately determined. Sometimes it can not be calculated.
  • the light intensity of the light of the third wavelength band is calculated from the light intensities of the first wavelength band and the second wavelength band located before and after the wavelength band. Therefore, the spectrum of plasma can be accurately calculated. Therefore, the light intensity due to the light emission of the molecules of the thin film formed on the substrate can be accurately calculated, and hence the light emission intensity ratio of two specific molecules can be accurately calculated.
  • the spectral spectrum of plasma can be accurately calculated after removing the influence of noise.
  • the molecular light intensity calculation unit 130 calculates the plasma light intensity calculation unit 120A indicated by the straight line 1004 from the light intensity indicated by the spectral spectrum 400 for each wavelength in the third wavelength band. By subtracting the light intensity of the light of the third wavelength band, the light intensity due to the light emission of the molecules of the thin film formed on the substrate may be calculated.
  • a waveform 1102 is a waveform obtained by subtracting the light intensity indicated by a straight line 1004 from the spectrum 400.
  • the flow rate of the source gas may be controlled by feeding back the ratio calculated by the plasma emission analysis apparatus 100 or 100A to the plasma CVD apparatus 210.
  • the plasma CVD apparatus 210 temporally changes the ratio of SiH 4 to H 2 as shown in FIG. 12A, and as shown in FIG. 12B, generates power for driving the plasma CVD apparatus 210. Change over time. That is, at the start of film formation on a substrate, the ratio of SiH 4 is gradually increased and the power is gradually increased. As a result, as shown in FIG. 12C, a high quality thin film 1202 is formed on the substrate 1201 at a low speed. Thereafter, the ratio of SiH 4 is kept constant at a high level, and the power is also kept constant at a high level.
  • a medium quality thin film 1203 is formed on the thin film 1202 at a high speed.
  • the ratio of SiH 4 is gradually reduced and the power is gradually reduced. Thereby, a high quality thin film 1204 is formed on the thin film 1203 at a low speed.
  • fitting of a spectral spectrum to a nine-dimensional polynomial is performed as an example when calculating the light intensity of each wavelength of light emitted by plasma.
  • the invention is not limited to the dimensional polynomials, and may be polynomials of other orders or functions other than polynomials.
  • the plasma emission analysis device 100 or 100A for calculating the emission intensity ratio of two types of molecules or atoms of a thin film formed on a substrate in the plasma CVD device 210 has been described.
  • the application of the present invention is not limited to the plasma CVD apparatus 210.
  • a device that needs to calculate the light emission intensity ratio of two types of molecules or atoms in a container such as a sputtering device, an etching device, or a sterilization monitoring device, also uses the same method as the plasma CVD device 210 performs.
  • the emission intensity ratio of two types of molecules or atoms in the container can be calculated.
  • the light intensity for each wavelength in the sterilization monitoring device is obtained by approximating the spectrum indicating the light intensity for each wavelength in the sterilization monitoring device measured by the spectrometer 200 with a polynomial, for example, the first light intensity calculation unit Calculate
  • the second light intensity calculation unit corresponds to the bright line spectrum of the molecule or the atom by subtracting the light intensity calculated by the first light intensity calculation unit from the light intensity indicated by the spectral spectrum for each wavelength. Calculate the light intensity.
  • the ratio calculation unit uses the peak value of the molecular spectrum of the first molecule or the atomic spectrum of the first atom, The ratio to the peak value of the molecular spectrum of the two molecules or the atomic spectrum of the second atom is calculated.
  • the emission intensity ratio of two types of molecules or atoms in the spectrometer 200 can be calculated.
  • plasma emission analysis apparatus 100 and plasma emission analysis apparatus 100A are specifically configured as a computer system configured with a microprocessor, ROM, RAM, hard disk drive, display unit, keyboard, mouse and the like. good.
  • a computer program is stored in the RAM or the hard disk drive. Each device achieves its function by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions to the computer in order to achieve a predetermined function.
  • the system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. . A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
  • IC card or module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or module may include the above-described ultra-multifunctional LSI.
  • the IC card or module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may be tamper resistant.
  • the present invention may be the method shown above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
  • the present invention is a non-transitory recording medium that can read the computer program or the digital signal from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD It may be recorded on a Blu-ray Disc (registered trademark), a semiconductor memory or the like.
  • the digital signal may be recorded on the non-temporary recording medium.
  • the computer program or the digital signal may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.
  • the present invention may be a computer system comprising a microprocessor and a memory, wherein the memory stores the computer program, and the microprocessor operates according to the computer program.
  • another computer is independent by recording and transferring the program or the digital signal on the non-temporary recording medium, or transferring the program or the digital signal via the network or the like. It may be implemented by a system.
  • the present invention can be applied to a plasma emission analysis apparatus, and in particular, the solar cell can be applied to a plasma emission analysis apparatus or the like that analyzes the light emission state of plasma in a plasma CVD apparatus that produces a semiconductor substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 発光分析装置は、分光計測器(200)で計測された容器内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、容器内の波長毎の光強度を算出する第1光強度算出部の一例であるプラズマ光強度算出部(120)と、波長毎に、前記分光計測器(200)で計測された分光スペクトルが示す光強度から、第1光強度算出部が算出した光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出する第2光強度算出部の一例である分子光強度算出部(130)と、第2光強度算出部が算出した光強度を用いて、第1分子の分子スペクトルまたは第1原子の原子スペクトルのピーク値と、第2分子の分子スペクトルまたは第2原子の原子スペクトルのピーク値との比を算出する比算出部(140)とを備える。

Description

発光分析装置
 本発明は、発光分析装置に関し、特に、分光計測器で計測された容器内の発光状態を分析する発光分析装置に関する。
 プラズマCVD装置を用いた成膜に際して、パウダーと呼ばれる微粒子の発生を抑制することが重要である(例えば、特開2004-296526号公報参照)。このパウダーの発生を抑制するために、基板温度を測定することが重要であるが、基板温度を直接測定することは困難である。このため、基板温度に関連する、基板に成膜されるSi*の発光強度とSiH*の発光強度との比が算出される(「*」は原子の価数)。従来のプラズマCVD装置は、算出した比が一定になるようにプラズマCVD装置へのガス流量を制御し、パウダーの発生を抑制している。
特開2004-296526号公報
 しかしながら、プラズマCVD装置内には、基板のみならず、プラズマ状態の原料ガスが存在し、その原料ガスが発光しているため、基板に成膜される薄膜の分子または原子の発光強度(分子スペクトルまたは原子スペクトル)のみを観測することは困難である。このため、特定の2つの分子または原子の発光強度比を正確に算出することが困難である。
 このような問題は、プラズマCVD装置に限定されるものではなく、スパッタリング装置、エッチング装置または滅菌監視装置などの容器内の2種類の分子または原子の発光強度比を算出する必要がある装置に共通して存在する。
 本発明は、上述の課題を解決するためになされたものであり、特定の2つの分子または原子の発光強度比を正確に算出することができる発光分析装置を提供することを目的とする。
 上記目的を達成するために、本発明のある局面に係る発光分析装置は、分光計測器で計測された容器内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、前記容器内の波長毎の光強度を算出する第1光強度算出部と、波長毎に、前記分光計測器で計測された前記分光スペクトルが示す光強度から、前記第1光強度算出部が算出した光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出する第2光強度算出部と、前記第2光強度算出部が算出した光強度を用いて、第1分子の分子スペクトルまたは第1原子の原子スペクトルのピーク値と、第2分子の分子スペクトルまたは第2原子の原子スペクトルのピーク値との比を算出する比算出部とを備える。
 この構成によると、分光計測器で計測された分光スペクトルを多項式で近似することにより、波長毎の光強度を算出している。この多項式近似された光強度は、連続スペクトルとしての熱放射を示す光強度に相当する。このため、分光スペクトルが示す光強度から、多項式で近似された光強度を減算することにより、分子または原子の発光による光強度を正確に算出することができる。よって、特定の2つの分子または原子の発光強度比を正確に算出することができる。
 例えば、前記第1光強度算出部は、前記分光計測器で計測された、プラズマCVD(Chemical Vapor Deposition)装置の前記容器内の波長毎の光強度を示す前記分光スペクトルを多項式で近似することにより、前記プラズマCVD装置内に存在するプラズマが放出する光の波長毎の光強度を算出し、前記第2光強度算出部は、波長毎に、前記分光計測器で計測された前記分光スペクトルが示す光強度から、前記第1光強度算出部が算出した前記プラズマが放出する光の光強度を減算することにより、分子または原子の輝線スペクトルに対応する、基板に成膜される薄膜の分子または原子の発光による光強度を算出しても良い。
 この構成によると、分光計測器で計測された分光スペクトルを多項式で近似することにより、プラズマが放出する光の波長毎の光強度を算出している。プラズマは、広波長帯に亘る光であるため、多項式で近似することができる。このため、前記分光計測器で計測された分光スペクトルが示す光強度から、多項式で近似されたプラズマが放出する光の光強度を減算することにより、基板に成膜される薄膜の分子または原子の発光による光強度を正確に算出することができる。よって、特定の2つの分子または原子の発光強度比を正確に算出することができる。
 また、上述の発光分析装置は、さらに、第1波長と、前記第1波長よりも大きい第2波長と、前記第2波長よりも大きい第3波長と、前記第3波長よりも大きい第4波長とを取得する波長取得部を備え、前記第1光強度算出部は、(a)前記分光計測器で計測された前記分光スペクトルのうち、前記第1波長から前記第2波長までの波長帯である第1波長帯に含まれる分光スペクトルと、前記分光計測器で計測された前記分光スペクトルのうち、前記第3波長から前記第4波長までの波長帯である第2波長帯に含まれる分光スペクトルとに所定の関数を当てはめることにより、前記第1波長帯に含まれる第1の所定波長から前記第2波長帯に含まれる第2の所定波長までの波長帯である第3波長帯の光の光強度を算出し、(b)前記第3波長帯における算出した光強度と、前記第3波長帯以外の波長帯における前記分光スペクトルとを、多項式で近似することにより、前記容器内の波長毎の光強度を算出しても良い。
 分光計測器で計測された分光スペクトルの中には、連続スペクトルとしての熱放射を示す分光スペクトルと、分子または原子の輝線スペクトルとが含まれる。このため、分光計測器で計測された分光スペクトルは、輝線スペクトルに対応する波長において光強度が大きくなる。よって、分光計測器で計測された分光スペクトルを多項式で近似すると、輝線スペクトルの値に影響され、正確に連続スペクトルとしての熱放射を示す波長毎の光強度を算出することができない場合がある。そこで、第3波長帯の光の光強度を、その波長帯の前後に位置する第1波長帯と第2波長帯の光強度から算出することにより、連続スペクトルとしての熱放射を示す分光スペクトルを正確に算出することができる。よって、輝線スペクトルに対応する分子または原子の発光による光強度を正確に算出することができ、延いては、特定の2つの分子または原子の発光強度比を正確に算出することができる。
 さらに好ましくは、前記第1光強度算出部は、さらに、各波長の光強度のうち、近似した前記多項式との差が大きいものから所定の割合の光強度を除外した上で、再度、前記第3波長帯における算出した光強度と、前記第3波長帯以外の波長帯における前記分光スペクトルとを、多項式で近似する。
 多項式との差が大きい光強度を除外することにより、ノイズの影響を除去した上で、連続スペクトルとしての熱放射を示す分光スペクトルを正確に算出することができる。
 また、上述の発光分析装置は、さらに、第1波長と、前記第1波長よりも大きい第2波長と、前記第2波長よりも大きい第3波長と、前記第3波長よりも大きい第4波長とを取得する波長取得部を備え、前記第1光強度算出部は、前記分光計測器で計測された前記分光スペクトルのうち、前記第1波長から前記第2波長までの波長帯である第1波長帯に含まれる分光スペクトルと、前記分光計測器で計測された前記分光スペクトルのうち、前記第3波長から前記第4波長までの波長帯である第2波長帯に含まれる分光スペクトルとに所定の関数を当てはめることにより、前記第1波長帯に含まれる第1の所定波長から前記第2波長帯に含まれる第2の所定波長までの波長帯である第3波長帯の光の光強度を算出し、前記第2光強度算出部は、前記第3波長帯において、波長毎に、前記分光計測器で計測された前記分光スペクトルが示す光強度から、前記第1光強度算出部が算出した光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出しても良い。
 分光計測器で計測された分光スペクトルの中には、連続スペクトルとしての熱放射を示す分光スペクトルと、分子または原子の輝線スペクトルとが含まれる。このため、分光計測器で計測された分光スペクトルは、輝線スペクトルに対応する波長において光強度が大きくなる。よって、分光計測器で計測された分光スペクトルを多項式で近似すると、輝線スペクトルの値に影響され、正確に連続スペクトルとしての熱放射を示す波長毎の光強度を算出することができない場合がある。そこで、第3波長帯の光の光強度を、その波長帯の前後に位置する第1波長帯と第2波長帯の光強度から算出することにより、連続スペクトルとしての熱放射を示す分光スペクトルを正確に算出することができる。よって、輝線スペクトルに対応する分子または原子の発光による光強度を正確に算出することができ、延いては、特定の2つの分子または原子の発光強度比を正確に算出することができる。
 具体的には、前記第1光強度算出部は、前記分光計測器で計測された前記分光スペクトルのうち、前記第1波長から前記第2波長までの波長帯である第1波長帯に含まれる分光スペクトルに直線を当てはめることにより第1直線を算出し、前記分光計測器で計測された前記分光スペクトルのうち、前記第3波長から前記第4波長までの波長帯である第2波長帯に含まれる分光スペクトルに直線を当てはめることにより第2直線を算出し、前記第1直線上の前記第1の所定波長の点と前記第2直線上の前記第2の所定波長の点とを直線で結ぶことにより第3波長帯の光の光強度を算出しても良い。
 また、前記第1の所定波長は、(前記第1波長+前記第2波長)/2であり、前記第2の所定波長は、(前記第3波長+前記第4波長)/2であっても良い。
 また、前記第1の所定波長は、第2波長であり、前記第2の所定波長は、第3波長であっても良い。
 なお、本発明は、このような特徴的な処理部を備える発光分析装置として実現することができるだけでなく、発光分析装置に含まれる特徴的な処理部が実行する処理をステップとする発光分析方法として実現することができる。また、発光分析装置に含まれる特徴的な処理部としてコンピュータを機能させるためのプログラムまたは発光分析方法に含まれる特徴的なステップをコンピュータに実行させるプログラムとして実現することもできる。そして、そのようなプログラムを、CD-ROM(Compact Disc-Read Only Memory)等のコンピュータ読取可能な非一時的な記録媒体やインターネット等の通信ネットワークを介して流通させることができるのは、言うまでもない。
 本発明によると、特定の2つの分子または原子の発光強度比を正確に算出することができる発光分析装置を提供することができる。
図1は、本発明の実施の形態1に係るプラズマCVDシステムの機能的な構成を示すブロック図である。 図2は、プラズマ発光分析装置の動作を示すフローチャートである。 図3は、表示装置に表示される画像の一例を示す図である。 図4は、SiH*の発光による光強度の時間的推移を示すグラフである。 図5は、プラズマ発光分析装置による各種分析結果を示す図である。 図6は、本発明の実施の形態2に係るプラズマCVDシステムの機能的な構成を示すブロック図である。 図7は、プラズマ発光分析装置の動作を示すフローチャートである。 図8は、分光スペクトルのグラフである。 図9は、プラズマ光強度算出処理(図7のS14)の詳細なフローチャートである。 図10は、多項式近似処理(図9のS24)を説明するためのグラフである。 図11は、本発明の実施の形態2の変形例におけるプラズマ発光分析装置の動作を説明するための図である。 図12は、プラズマ発光分析装置の分析結果のプラズマCVD装置へのフィードバック処理について説明するための図である。
 以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 以下、本発明の実施の形態1に係るプラズマCVDシステムについて説明する。
 図1は、本発明の実施の形態1に係るプラズマCVDシステムの機能的な構成を示すブロック図である。
 プラズマCVDシステムは、基板上に薄膜を成膜するシステムであり、プラズマCVD装置210と、分光計測器200と、プラズマ発光分析装置100と、表示装置300とを含む。
 プラズマCVD装置210は、原料ガスをプラズマ化させた上で、基板上に薄膜を成膜する。つまり、プラズマCVD装置210は、容器内で原料ガスをプラズマ状態にし、活性な励起分子、ラジカル、イオンを生成させ、化学反応を促進することにより、基板上に薄膜を成膜する。
 分光計測器200は、プラズマCVD装置210内の波長毎の光強度を示す分光スペクトルを計測する。
 プラズマ発光分析装置100は、容器内の発光状態を分析する発光分析装置の一例であり、プラズマCVD装置210の容器内のプラズマの発光状態を分析する装置である。
 表示装置300は、分光計測器200で計測された分光スペクトル、またはプラズマ発光分析装置100が分析した分析結果を表示する装置である。
 プラズマCVD装置210と、分光計測器200と、表示装置300とは、周知の技術を用いて構成することができるため、その詳細な説明を省略する。
 プラズマ発光分析装置100は、プラズマ光強度算出部120と、分子光強度算出部130と、比算出部140とを含む。
 プラズマ光強度算出部120は、第1光強度算出部の一例であり、分光計測器200で計測された容器内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、容器内の波長毎の光強度を算出する。例えば、プラズマ光強度算出部120は、分光計測器200で計測されたプラズマCVD装置210内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、波長方向に連続する連続スペクトルとしての熱放射を示す光強度、つまり、プラズマCVD装置210内に存在するプラズマが放出する光の波長毎の光強度を算出する。
 分子光強度算出部130は、第2光強度算出部の一例であり、波長毎に、分光スペクトルが示す光強度から、プラズマ光強度算出部120が算出した光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出する。例えば、分子光強度算出部130は、波長毎に、分光スペクトルが示す光強度から、プラズマ光強度算出部120が算出したプラズマが放出する光の光強度を減算することにより、基板に成膜される薄膜の分子の発光による光強度を算出する。
 比算出部140は、分子光強度算出部130が算出した光強度を用いて、第1分子の分子スペクトルのピーク値と、第2分子の分子スペクトルのピーク値との比を算出する。以下の説明では、比算出部140が算出する比は、分子スペクトル同士の比とする。ただし、比算出部140が算出する比は、分子スペクトル同士の比に限定されるものではない。例えば、比算出部140は、原子スペクトルと分子スペクトルとの比を算出するものであっても良いし、原子スペクトル同士の比を算出するものであっても良い。
 以下、具体例を示しながらプラズマ発光分析装置100の動作について説明する。
 図2は、プラズマ発光分析装置100の動作を示すフローチャートである。
 プラズマ光強度算出部120は、分光計測器200で計測されたプラズマCVD装置210内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、プラズマCVD装置210内に存在するプラズマが放出する光の波長毎の光強度を算出する(S2)。このプラズマが放出する光は、連続スペクトルとしての熱放射を示す。
 図3は、表示装置300に表示される画像の一例を示す図である。横軸は波長を示し、縦軸は光強度を示す。例えば、プラズマ光強度算出部120は、最小二乗法を用いて、分光計測器200で計測された分光スペクトル400に、例えば9次元多項式を当てはめる。当てはめた結果、波形402が得られる。波形402は、連続スペクトルとしての熱放射の光強度、つまり、プラズマCVD装置210内に存在するプラズマが放出する光の波長毎の光強度を示している。プラズマが放出する光は、原料ガスがプラズマ状態になることにより放出する光である。このような光は、例えば、基板に成膜される薄膜の分子であるSiHが原子に分離して、再結合するときに放出する光、および、SiHから遊離した電子がSiHにぶつかるときに放出する光の、いずれか若しくは両方の可能性がある。
 次に、分子光強度算出部130は、波長毎に、分光スペクトルが示す光強度から、プラズマ光強度算出部120が算出したプラズマが放出する光の光強度を減算することにより、基板に成膜される薄膜の分子の発光による光強度を算出する(S4)。この光強度は、分子または原子の輝線スペクトルに相当する。
 例えば、図3を参照して、分子光強度算出部130は、波長毎に、分光スペクトル400が示す光強度から、波形402が示す光強度を減算することにより、波形404を得る。この波形404は、波長毎の、基板に成膜される薄膜の分子の発光による光強度を示す。例えば、SiH*は波長414.23nmにおいて光強度がピークとなるが、その場合には光強度は約43である。図4は、SiH*の発光による光強度の時間的推移を示すグラフであり、横軸は時間を示し、縦軸は光強度を示す。
 最後に、比算出部140は、分子光強度算出部130が算出した光強度を用いて、第1分子の分子スペクトルのピーク値と、第2分子の分子スペクトルのピーク値との比を算出する(S6)。
 例えば、図3を参照して、比算出部140は、SiH*の光強度と、Hαの光強度との比を算出する。Hαの光強度とは、水素原子の線スペクトルのうちの波長が656.28nmのHα線の光強度を指す。図5は、プラズマ発光分析装置100による各種分析結果を示す図である。図5(f)は、SiH*の光強度と、Hαの光強度との比の時間変化を示すグラフであり、横軸は時間を、縦軸は上記比を示す。図5(f)には、現在の比の値が0.080であり、平均の比の値が0.069であることが併せて示されている。なお、図5(a)および図5(b)は、図3および図4にそれぞれ示したのと同様のグラフである。また、図5(c)、図5(d)および図5(e)は、Hβの光強度、Si*の光強度およびHαの光強度のそれぞれの時間変化を示すグラフであり、横軸は時間を示し、縦軸は光強度を示す。Hβの光強度とは、水素原子の線スペクトルのうちの波長が486.13nmのHβ線の光強度を指す。
 以上説明したように、実施の形態1に係るプラズマ発光分析装置100によると、分光計測器200で計測された分光スペクトルを多項式で近似することにより、プラズマが放出する光の波長毎の光強度を算出している。プラズマは、連続スペクトルとしての熱放射を示し、広波長帯に亘る光であるため、多項式で近似することができる。このため、分光スペクトルが示す光強度から、多項式で近似されたプラズマが放出する光の光強度を減算することにより、基板に成膜される薄膜の分子または原子の発光による光強度を正確に算出することができる。よって、特定の2つの分子の発光強度比を正確に算出することができる。これにより、プラズマCVD装置210内へのガス流量を制御し、パウダーの発生を抑制することができる。
 (実施の形態2)
 次に、本発明の実施の形態2に係るプラズマCVDシステムについて説明する。
 実施の形態2に係るプラズマCVDシステムは、分光計測器200で計測されたプラズマCVD装置210内の分光スペクトルのうち所定の波長帯の光強度を除外して、分光スペクトルを多項式で近似する点が実施の形態1に係るプラズマCVDシステムと異なる。以下、実施の形態1と異なる点を中心に説明する。
 図6は、本発明の実施の形態2に係るプラズマCVDシステムの機能的な構成を示すブロック図である。以下の説明では、実施の形態1のプラズマCVDシステムの構成要素と同じ構成要素には同じ参照符号を付す。その名称および機能も同一であるため、その詳細な説明はここでは繰り返さない。
 プラズマCVDシステムは、基板上に薄膜を成膜するシステムであり、プラズマCVD装置210と、分光計測器200と、プラズマ発光分析装置100Aと、表示装置300とを含む。
 プラズマ発光分析装置100Aは、プラズマCVD装置210内のプラズマの発光状態を分析する装置であり、波長取得部110と、プラズマ光強度算出部120Aと、分子光強度算出部130と、比算出部140とを含む。
 波長取得部110は、第1波長と、第1波長よりも大きい第2波長と、第2波長よりも大きい第3波長と、第3波長よりも大きい第4波長とを取得する。波長取得部110は、ユーザがキーボードを用いて入力した各波長の値を取得するようにしても良いし、予め各波長の値が記憶されている記憶装置から、各波長の値を取得するようにしても良い。
 プラズマ光強度算出部120Aは、第1光強度算出部の一例である。プラズマ光強度算出部120Aは、(a)分光計測器200で計測された分光スペクトルのうち、第1波長から第2波長までの波長帯である第1波長帯に含まれる分光スペクトルと、分光計測器200で計測された分光スペクトルのうち、第3波長から第4波長までの波長帯である第2波長帯に含まれる分光スペクトルとに所定の関数を当てはめることにより、第1波長帯に含まれる第1の所定波長から第2波長帯に含まれる第2の所定波長までの波長帯である第3波長帯の光の光強度を算出する。また、プラズマ光強度算出部120Aは、(b)第3波長帯における算出した光強度と、第3波長帯以外の波長帯における分光スペクトルとを、多項式で近似することにより、プラズマCVD装置210内に存在するプラズマが放出する光の波長毎の光強度を算出する。具体的には、プラズマ光強度算出部120Aは、分光計測器200で計測された分光スペクトルのうち、第1波長から第2波長までの波長帯である第1波長帯に含まれる分光スペクトルに直線を当てはめることにより第1直線を算出し、分光計測器200で計測された分光スペクトルのうち、第3波長から第4波長までの波長帯である第2波長帯に含まれる分光スペクトルに直線を当てはめることにより第2直線を算出し、第1直線上の第1の所定波長の点と第2直線上の第2の所定波長の点とを直線で結ぶことにより第3波長帯の光の光強度を算出する。ここで、第1の所定波長は、(第1波長+第2波長)/2であり、第2の所定波長は、(第3波長+第4波長)/2である。
 以下、具体例を示しながらプラズマ発光分析装置100Aの動作について説明する。
 図7は、プラズマ発光分析装置100Aの動作を示すフローチャートである。
 波長取得部110は、第1波長と、第1波長よりも大きい第2波長と、第2波長よりも大きい第3波長と、第3波長よりも大きい第4波長とを取得する(S12)。例えば、図8に示す分光スペクトルのグラフにおいて、第1の波長X1と、第2の波長X2と、第3の波長X3と、第4の波長X4とが取得されたものとする。
 プラズマ光強度算出部120Aは、分光計測器200で計測されたプラズマCVD装置210内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、波長方向に連続する連続スペクトルとしての熱放射を示す光強度、つまり、プラズマCVD装置210内に存在するプラズマが放出する光の波長毎の光強度を算出する(S14)。
 図9は、プラズマ光強度算出処理(図7のS14)の詳細なフローチャートである。以下、図8に示す分光スペクトルのグラフを用いて、具体例を示しながらプラズマ光強度算出処理(図7のS14)について説明する。
 図8を参照して、プラズマ光強度算出部120Aは、分光計測器200で計測された分光スペクトル802のうち、第1波長帯(波長X1~X2)に含まれる分光スペクトル804と第2波長帯(波長X3~X4)に含まれる分光スペクトル806とに直線808を当てはめることにより、第3波長帯(波長(X1+X2)/2~(X3+X4)/2)の光の光強度を算出する(S22)。直線の当てはめは以下のように行われる。つまり、プラズマ光強度算出部120Aは、第1波長帯(波長X1~X2)に含まれる分光スペクトル804に最小二乗法を用いて直線を当てはめ、当てはめた直線上の波長が(X1+X2)/2の点を第1中点とする。同様に、プラズマ光強度算出部120Aは、第2波長帯(波長X3~X4)に含まれる分光スペクトル806に最小二乗法を用いて直線を当てはめ、当てはめた直線上の波長が(X3+X4)/2の点を第2中点とする。プラズマ光強度算出部120Aは、第3波長帯(波長(X1+X2)/2~(X3+X4)/2)の光の光強度を示す直線として、第1中点と第2中点とを結ぶ直線808を算出する。なお、直線の当てはめは、この方法に限定されるものではなく、例えば、分光スペクトル804および806と直線808との距離の二乗和が最小になるように、最小二乗法を用いて分光スペクトル804および806に直線808を当てはめることにより行っても良い。この場合には、第3波長帯を波長X2~X3としても良い。
 なお、第3波長帯は上記したものに限定されるものではなく、第1波長帯に含まれる第1の所定波長から第2波長帯に含まれる第2の所定波長までの波長帯であれば、他の波長帯であっても良い。
 プラズマ光強度算出部120Aは、第3波長帯における算出した光強度と、第3波長帯以外の波長帯における分光スペクトルとを、多項式で近似することにより、プラズマCVD装置210内に存在するプラズマが放出する光の波長毎の光強度を算出する(S24)。つまり、プラズマ光強度算出部120Aは、分光スペクトル802において第3波長帯(波長(X1+X2)/2~(X3+X4)/2)の値を直線808で置き換えることにより得られる分光スペクトルを、多項式で近似する。
 図10は、多項式近似処理(図9のS24)を説明するためのグラフであり、横軸は波長を示し、縦軸は光強度を示す。図10に示すグラフでは、第3波長帯が複数設けられており、第3波長帯について、S22で算出した直線808である直線1004が示されている。例えば、プラズマ光強度算出部120Aは、最小二乗法を用いて、第3波長帯における直線1004と、第3波長帯以外の波長帯における分光スペクトル400とに、例えば9次元多項式を当てはめる。当てはめた結果、波形1002が得られる。
 次に、プラズマ光強度算出部120Aは、各波長の光強度のうち、近似した多項式との差が大きいものから所定の割合の光強度を除外する(S26)。例えば、プラズマ光強度算出部120Aは、第3波長帯における直線1004と、第3波長帯以外の波長帯における分光スペクトル400とで示される各波長の光強度のうち、一例として近似した9次元多項式との距離が大きいものから10%の光強度を除外する。なお、除外する光強度の割合は10%に限定されるものではなく、それ以外の割合であっても良い。
 プラズマ光強度算出部120Aは、S26の処理で光強度が除外された、第3波長帯における算出した光強度と、第3波長帯以外の波長帯における分光スペクトルとを、再度、多項式で近似する(S28)。つまり、プラズマ光強度算出部120Aは、第3波長帯における直線1004と、第3波長帯以外の波長帯における分光スペクトル400とで示される各波長の光強度のうち、S26の処理で光強度が除外された光強度に、例えば9次元多項式を当てはめる。なお、S26およびS28の処理は、実行されなくても良い。
 再度図7を参照して、分子光強度算出部130は、波長毎に、分光スペクトルが示す光強度から、プラズマ光強度算出部120Aが算出したプラズマが放出する光の光強度を減算することにより、基板に成膜される薄膜の分子の発光による光強度を算出する(S4)。
 例えば、図10を参照して、分子光強度算出部130は、波長毎に、分光スペクトル400が示す光強度から、波形1004が示す光強度を減算することにより、波形1006および1008を得る。波形1006は、第3波長帯以外の波長帯における、薄膜の分子の発光による光強度を示している。波形1008は、第3波長帯における、薄膜の分子の発光による光強度を示している。図10では、波形1008を波形1006よりも濃く示している。
 最後に、比算出部140は、分子光強度算出部130が算出した光強度を用いて、第1分子の分子スペクトルのピーク値と、第2分子の分子スペクトルのピーク値との比を算出する(S6)。例えば、実施の形態1と同様に、比算出部140は、SiH*の光強度と、Hαの光強度との比を算出する。なお、算出する比はこれに限定されるものではなく、例えば、SiH*の光強度とSi*の光強度との比を算出するようにしても良い。
 以上説明した実施の形態2に係るプラズマ発光分析装置100Aは、以下の効果を奏する。
 分光計測器200で計測された分光スペクトルの中には、プラズマによる分光スペクトルと、基板に成膜される薄膜の分子による分光スペクトルとが含まれる。このため、分光計測器200で計測された分光スペクトルは、基板に成膜される薄膜の分子に対応する波長において光強度が大きくなる。よって、分光計測器200で計測された分光スペクトルを多項式で近似すると、基板に成膜される薄膜の分子による分光スペクトルの値に影響され、正確にプラズマが放出する光の波長毎の光強度を算出することができない場合がある。しかし、実施の形態2に係るプラズマ発光分析装置100Aによると、第3波長帯の光の光強度を、その波長帯の前後に位置する第1波長帯と第2波長帯の光強度から算出しているため、プラズマの分光スペクトルを正確に算出することができる。よって、基板に成膜される薄膜の分子の発光による光強度を正確に算出することができ、延いては、特定の2つの分子の発光強度比を正確に算出することができる。
 また、多項式との差が大きい光強度を除外しているため、ノイズの影響を除去した上で、プラズマの分光スペクトルを正確に算出することができる。
 (実施の形態2の変形例)
 実施の形態2に係るプラズマ発光分析装置100Aでは、図10に示すように、第3波長帯における直線1004と、第3波長帯以外の波長帯における分光スペクトル400とを多項式近似することにより得られる波形1002と、分光スペクトル400との差を計算することにより、基板に成膜される薄膜の分子の発光による光強度を算出した。
 しかしながら、必ずしも波形1002を算出する必要はない。例えば、図11に示すように、分子光強度算出部130は、第3波長帯において、波長毎に、分光スペクトル400が示す光強度から、直線1004で示されるプラズマ光強度算出部120Aが算出した第3波長帯の光の光強度を減算することにより、基板に成膜される薄膜の分子の発光による光強度を算出するようにしても良い。波形1102は、分光スペクトル400から直線1004で示される光強度を減算することにより得られる波形である。
 以上、本発明の実施の形態に係るプラズマ発光分析システムについて説明したが、本発明は、この実施の形態に限定されるものではない。
 例えば、プラズマ発光分析装置100または100Aで算出された比をプラズマCVD装置210にフィードバックすることにより、原料ガスの流量を制御するようにしても良い。プラズマCVD装置210は、図12(a)に示すようにSiHとHとの比を時間的に変化させ、図12(b)に示すようにプラズマCVD装置210を駆動させるための電力を時間的に変化させる。つまり、基板への成膜開始時には、SiHの比率を徐々に増加させるとともに電力を徐々に増加させる。これにより、図12(c)に示すように基板1201上に高品質な薄膜1202が低速で成膜される。その後、SiHの比率を高い状態で一定に保つと共に、電力も高い状態で一定に保つ。その結果、薄膜1202の上に、中品質の薄膜1203が高速で成膜される。最後に、SiHの比率を徐々に減少させると共に電力を徐々に減少させる。これにより、薄膜1203の上に高品質な薄膜1204が低速で成膜される。
 なお、上述の実施の形態1および2では、プラズマが放出する光の波長毎の光強度を算出する際に、一例として、分光スペクトルの9次元多項式への当てはめを行ったが、当てはめる関数は9次元多項式に限定されるものではなく、その他の次数の多項式であってもよいし、多項式以外の関数であってもよい。
 また、上述の実施の形態1および2では、プラズマCVD装置210内における、基板に成膜される薄膜の2種類の分子または原子の発光強度比を算出するプラズマ発光分析装置100または100Aについて説明した。しかし、本発明の適用対象はプラズマCVD装置210に限定されるものではない。例えば、スパッタリング装置、エッチング装置または滅菌監視装置などの容器内の2種類の分子または原子の発光強度比を算出する必要がある装置についても、プラズマCVD装置210が行ったのと同様の方法により、容器内の2種類の分子または原子の発光強度比を算出することができる。
 例えば、第1光強度算出部が、分光計測器200で計測された滅菌監視装置内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、滅菌監視装置内の波長毎の光強度を算出する。次に、第2光強度算出部が、波長毎に、上記分光スペクトルが示す光強度から、第1光強度算出部が算出した光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出する。さらに、比算出部が、第2光強度算出部が算出した分子または原子の輝線スペクトルに対応する光強度を用いて、第1分子の分子スペクトルまたは第1原子の原子スペクトルのピーク値と、第2分子の分子スペクトルまたは第2原子の原子スペクトルのピーク値との比を算出する。このような処理により、分光計測器200内の2種類の分子または原子の発光強度比を算出することができる。
 また、上記のプラズマ発光分析装置100およびプラズマ発光分析装置100Aは、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクドライブ、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムとして構成されても良い。RAMまたはハードディスクドライブには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
 さらに、上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしても良い。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
 さらにまた、上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしても良い。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールは、上記の超多機能LSIを含むとしても良い。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしても良い。
 また、本発明は、上記に示す方法であるとしても良い。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしても良いし、前記コンピュータプログラムからなるデジタル信号であるとしても良い。
 さらに、本発明は、上記コンピュータプログラムまたは上記デジタル信号をコンピュータ読み取り可能な非一時的な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc(登録商標))、半導体メモリなどに記録したものとしても良い。また、これらの非一時的な記録媒体に記録されている上記デジタル信号であるとしても良い。
 また、本発明は、上記コンピュータプログラムまたは上記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしても良い。
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、上記メモリは、上記コンピュータプログラムを記憶しており、上記マイクロプロセッサは、上記コンピュータプログラムに従って動作するとしても良い。
 また、上記プログラムまたは上記デジタル信号を上記非一時的な記録媒体に記録して移送することにより、または上記プログラムまたは上記デジタル信号を上記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしても良い。
 さらに、上記実施の形態および上記変形例をそれぞれ組み合わせるとしても良い。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、プラズマ発光分析装置に適用でき、特に太陽電池は半導体基板を生産するプラズマCVD装置内のプラズマの発光状態を分析するプラズマ発光分析装置等に適用できる。
100、100A プラズマ発光分析装置
110 波長取得部
120、120A プラズマ光強度算出部
130 分子光強度算出部
140 比算出部
200 分光計測器
210 プラズマCVD装置
300 表示装置
400、802、804、806 分光スペクトル
402、404、1002、1006、1008、1102 波形
808、1004 直線

Claims (10)

  1.  分光計測器で計測された容器内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、前記容器内の波長毎の光強度を算出する第1光強度算出部と、
     波長毎に、前記分光計測器で計測された前記分光スペクトルが示す光強度から、前記第1光強度算出部が算出した光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出する第2光強度算出部と、
     前記第2光強度算出部が算出した光強度を用いて、第1分子の分子スペクトルまたは第1原子の原子スペクトルのピーク値と、第2分子の分子スペクトルまたは第2原子の原子スペクトルのピーク値との比を算出する比算出部と
     を備える発光分析装置。
  2.  前記第1光強度算出部は、前記分光計測器で計測された、プラズマCVD(Chemical Vapor Deposition)装置の前記容器内の波長毎の光強度を示す前記分光スペクトルを多項式で近似することにより、前記プラズマCVD装置内に存在するプラズマが放出する光の波長毎の光強度を算出し、
     前記第2光強度算出部は、波長毎に、前記分光計測器で計測された前記分光スペクトルが示す光強度から、前記第1光強度算出部が算出した前記プラズマが放出する光の光強度を減算することにより、分子または原子の輝線スペクトルに対応する、基板に成膜される薄膜の分子または原子の発光による光強度を算出する
     請求項1に記載の発光分析装置。
  3.  さらに、
     第1波長と、前記第1波長よりも大きい第2波長と、前記第2波長よりも大きい第3波長と、前記第3波長よりも大きい第4波長とを取得する波長取得部を備え、
     前記第1光強度算出部は、(a)前記分光計測器で計測された前記分光スペクトルのうち、前記第1波長から前記第2波長までの波長帯である第1波長帯に含まれる分光スペクトルと、前記分光計測器で計測された前記分光スペクトルのうち、前記第3波長から前記第4波長までの波長帯である第2波長帯に含まれる分光スペクトルとに所定の関数を当てはめることにより、前記第1波長帯に含まれる第1の所定波長から前記第2波長帯に含まれる第2の所定波長までの波長帯である第3波長帯の光の光強度を算出し、(b)前記第3波長帯における算出した光強度と、前記第3波長帯以外の波長帯における前記分光スペクトルとを、多項式で近似することにより、前記容器内の波長毎の光強度を算出する
     請求項1または2に記載の発光分析装置。
  4.  前記第1光強度算出部は、さらに、各波長の光強度のうち、近似した前記多項式との差が大きいものから所定の割合の光強度を除外した上で、再度、前記第3波長帯における算出した光強度と、前記第3波長帯以外の波長帯における前記分光スペクトルとを、多項式で近似する
     請求項3に記載の発光分析装置。
  5.  さらに、
     第1波長と、前記第1波長よりも大きい第2波長と、前記第2波長よりも大きい第3波長と、前記第3波長よりも大きい第4波長とを取得する波長取得部を備え、
     前記第1光強度算出部は、前記分光計測器で計測された前記分光スペクトルのうち、前記第1波長から前記第2波長までの波長帯である第1波長帯に含まれる分光スペクトルと、前記分光計測器で計測された前記分光スペクトルのうち、前記第3波長から前記第4波長までの波長帯である第2波長帯に含まれる分光スペクトルとに所定の関数を当てはめることにより、前記第1波長帯に含まれる第1の所定波長から前記第2波長帯に含まれる第2の所定波長までの波長帯である第3波長帯の光の光強度を算出し、
     前記第2光強度算出部は、前記第3波長帯において、波長毎に、前記分光計測器で計測された前記分光スペクトルが示す光強度から、前記第1光強度算出部が算出した光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出する
     請求項1または2に記載の発光分析装置。
  6.  前記第1光強度算出部は、前記分光計測器で計測された前記分光スペクトルのうち、前記第1波長から前記第2波長までの波長帯である第1波長帯に含まれる分光スペクトルに直線を当てはめることにより第1直線を算出し、前記分光計測器で計測された前記分光スペクトルのうち、前記第3波長から前記第4波長までの波長帯である第2波長帯に含まれる分光スペクトルに直線を当てはめることにより第2直線を算出し、前記第1直線上の前記第1の所定波長の点と前記第2直線上の前記第2の所定波長の点とを直線で結ぶことにより第3波長帯の光の光強度を算出する
     請求項3~5のいずれか1項に記載の発光分析装置。
  7.  前記第1の所定波長は、(前記第1波長+前記第2波長)/2であり、
     前記第2の所定波長は、(前記第3波長+前記第4波長)/2である
     請求項6に記載の発光分析装置。
  8.  前記第1の所定波長は、第2波長であり、
     前記第2の所定波長は、第3波長である
     請求項3~5のいずれか1項に記載の発光分析装置。
  9.  分光計測器で計測された容器内の波長毎の光強度を示す分光スペクトルを多項式で近似することにより、前記容器内の波長毎の光強度を算出する第1光強度算出ステップと、
     波長毎に、前記分光計測器で計測された前記分光スペクトルが示す光強度から、前記第1光強度算出ステップで算出された光強度を減算することにより、分子または原子の輝線スペクトルに対応する光強度を算出する第2光強度算出ステップと、
     前記第2光強度算出ステップで算出された光強度を用いて、第1分子の分子スペクトルまたは第1原子の原子スペクトルのピーク値と、第2分子の分子スペクトルまたは第2原子の原子スペクトルのピーク値との比を算出する比算出ステップと
     を含む発光分析方法。
  10.  請求項9に記載の発光分析方法に含まれる全てのステップをコンピュータに実行させるためのプログラム。
PCT/JP2012/003326 2011-05-25 2012-05-22 発光分析装置 WO2012160804A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280024650.9A CN103562435B (zh) 2011-05-25 2012-05-22 发光分析装置
JP2013516207A JP5422781B2 (ja) 2011-05-25 2012-05-22 発光分析装置
US14/119,487 US8781793B2 (en) 2011-05-25 2012-05-22 Light emission analyzing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011117461 2011-05-25
JP2011-117461 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012160804A1 true WO2012160804A1 (ja) 2012-11-29

Family

ID=47216896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003326 WO2012160804A1 (ja) 2011-05-25 2012-05-22 発光分析装置

Country Status (4)

Country Link
US (1) US8781793B2 (ja)
JP (1) JP5422781B2 (ja)
CN (1) CN103562435B (ja)
WO (1) WO2012160804A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502259A (ja) * 2013-11-01 2017-01-19 東京エレクトロン株式会社 プラズマ処理における空間分解発光分光分析

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079696A1 (en) * 2015-11-06 2017-05-11 California Institute Of Technology Devices and methods for direct visual detection and readout of single nucleic acid molecules
WO2019218158A1 (zh) * 2018-05-15 2019-11-21 深圳达闼科技控股有限公司 一种物质检测方法、系统、装置及计算机可读存储介质
WO2019222964A1 (zh) * 2018-05-24 2019-11-28 深圳达闼科技控股有限公司 一种确定检测设备的方法、检测装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331547A (ja) * 1993-05-19 1994-12-02 Nippon Seiko Kk 発光分光分析装置
JP2001059772A (ja) * 1999-08-25 2001-03-06 Jasco Corp ベースライン補正方法
WO2010024211A1 (ja) * 2008-08-29 2010-03-04 株式会社カネカ 薄膜光電変換装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020005159A1 (en) * 1997-06-30 2002-01-17 Masatoshi Kitagawa Method of producing thin semiconductor film and apparatus therefor
JP3459564B2 (ja) * 1998-03-11 2003-10-20 日本酸素株式会社 ガスの分光分析装置および分光分析方法
JP3837539B2 (ja) 2003-03-25 2006-10-25 独立行政法人産業技術総合研究所 プラズマcvd装置
JP5002221B2 (ja) * 2006-09-11 2012-08-15 キヤノン株式会社 マークの位置を検出する装置
CN201765187U (zh) * 2009-12-18 2011-03-16 烟台海岸带可持续发展研究所 一种基于叶绿素分析藻类分类和鉴别的仪器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331547A (ja) * 1993-05-19 1994-12-02 Nippon Seiko Kk 発光分光分析装置
JP2001059772A (ja) * 1999-08-25 2001-03-06 Jasco Corp ベースライン補正方法
WO2010024211A1 (ja) * 2008-08-29 2010-03-04 株式会社カネカ 薄膜光電変換装置およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIHISA MATSUDA ET AL.: "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. 78, 2003, pages 3 - 26 *
AKIHISA MATSUDA: "2. Dissociation Process of Source Gas Materials in Silane Plasmas", JOURNAL OF PLASMA AND FUSION RESEARCH, vol. 76, no. 8, August 2000 (2000-08-01), pages 760 - 765 *
AKIHISA MATSUDA: "Control of Plasma Deposition by the Observation of Plasma Spectrum", JOURNAL OF THE VACUUM SOCIETY OF JAPAN, vol. 23, no. 6, 1980, pages 277 - 282 *
LANXIANG SUN ET AL.: "Automatic estimation of varying continuum background emission in laser- induced breakdown spectroscopy", SPECTROCHIMICA ACTA PART B, vol. 64, 2009, pages 278 - 287 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502259A (ja) * 2013-11-01 2017-01-19 東京エレクトロン株式会社 プラズマ処理における空間分解発光分光分析

Also Published As

Publication number Publication date
CN103562435B (zh) 2014-07-30
JP5422781B2 (ja) 2014-02-19
JPWO2012160804A1 (ja) 2014-07-31
CN103562435A (zh) 2014-02-05
US8781793B2 (en) 2014-07-15
US20140107980A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
Devia et al. Methods employed in optical emission spectroscopy analysis: a review
WO2012160804A1 (ja) 発光分析装置
JP5663658B2 (ja) プラズマ評価方法、プラズマ処理方法及びプラズマ処理装置
US9791373B2 (en) Method for quantitative spectrometry, quantitative spectrometry apparatus, and program
JP6875224B2 (ja) プラズマ処理装置及び半導体装置製造システム
TW201133611A (en) Etching device, control simulator, and method of manufacturing semiconductor device
JP6250762B2 (ja) レーザ吸収分光計のレーザ動作点の最適化
KR20150010627A (ko) 플라즈마 처리 장치 및 플라즈마 처리 장치의 운전 방법
JP5199981B2 (ja) エッチング深さの検出方法並びにエッチングモニター装置及びエッチング装置
JP5367196B1 (ja) 測定装置及び成膜装置
Summers et al. Realizing attosecond core-level X-ray spectroscopy for the investigation of condensed matter systems
Oehlschlaeger et al. High-temperature UV absorption of methyl radicals behind shock waves
JP6329790B2 (ja) プラズマ処理装置
Takeda et al. Wide range applications of process plasma diagnostics using vacuum ultraviolet absorption spectroscopy
Djeniže et al. The first measured Mn II and Mn III Stark broadening parameters
US20190195785A1 (en) Optical concentration measuring device and control method for optical concentration measuring device
Hoshino et al. Rotationally resolved optical-optical double resonance study of the f′ 0+(1D2) ion-pair state of I35Cl
Exton et al. ArF laser excitation, collisional transfer, and quench-free fluorescence in I2/foreign gas mixtures
JP5359831B2 (ja) ガス中の水分測定装置
de Lima Batista et al. Ab initio study of the lowest-lying electronic states of the LiAs molecule
Locht et al. The vacuum UV photoabsorption spectroscopy of the geminal ethylene difluoride (1, 1-C2H2F2). The vibrational structure and its analysis
US20240030013A1 (en) Analysis device, analysis method, and analysis program
Hashimoto et al. Observation of single Ca+ ions for trace isotope analysis
Ashok et al. Hyperfine structure measurements on singly ionized atomic iodine (I II) using fourier transform spectroscopy
Kabir et al. Collisional relaxation of the Kr (4p55p) states in He, Ne, and Kr

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516207

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14119487

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790315

Country of ref document: EP

Kind code of ref document: A1