WO2019218158A1 - 一种物质检测方法、系统、装置及计算机可读存储介质 - Google Patents

一种物质检测方法、系统、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2019218158A1
WO2019218158A1 PCT/CN2018/086888 CN2018086888W WO2019218158A1 WO 2019218158 A1 WO2019218158 A1 WO 2019218158A1 CN 2018086888 W CN2018086888 W CN 2018086888W WO 2019218158 A1 WO2019218158 A1 WO 2019218158A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
detected
information
spectrum
atom
Prior art date
Application number
PCT/CN2018/086888
Other languages
English (en)
French (fr)
Inventor
骆磊
牟涛涛
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to PCT/CN2018/086888 priority Critical patent/WO2019218158A1/zh
Priority to CN201880001176.5A priority patent/CN108780046B/zh
Publication of WO2019218158A1 publication Critical patent/WO2019218158A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Definitions

  • the present application relates to the field of detection, and in particular, to a substance detecting method, system, device, and computer readable storage medium.
  • a Raman detecting terminal currently on the market can obtain a spectrum of a substance to be detected by irradiating a substance to be detected by a laser focus. By analyzing the spectrum of the substance to be detected, the molecular structure of the substance to be detected is determined, thereby determining what the substance to be detected is.
  • One technical problem to be solved by some embodiments of the present application is how to improve the accuracy of the detection terminal.
  • An embodiment of the present application provides a substance detecting method, comprising: acquiring a first spectrum of a substance to be detected and a second spectrum, the first spectrum is used to characterize the atomic composition of the substance to be detected, and the second spectrum is used to Characterizing the molecular composition of the detected substance; determining atomic composition information of the detected substance according to the first spectrum, and determining a first database according to atomic composition information of the detected substance; determining a known sample in the first database that matches the second spectrum Information; determine test results based on information from known known samples
  • An embodiment of the present application further provides a substance detecting system, including: a first detecting device, a second detecting device, and a control device; the first detecting device is configured to acquire a first spectrum of the detected substance, the first Light The spectrum is used to characterize the atomic composition of the substance being tested.
  • the second detecting means is for acquiring a second spectrum of the substance to be detected, and the second spectrum is for characterizing the molecular composition of the substance to be detected.
  • the control device is configured to determine atomic composition information of the detected substance according to the first spectrum, and determine a first database according to atomic composition information of the detected substance; and determine information of a known sample in the first database that matches the second spectrum; Match the information of known samples to determine the test results.
  • An embodiment of the present application further provides a substance detecting apparatus including at least one processor; and a memory communicably coupled to the at least one processor; wherein the memory stores instructions executable by the at least one processor The instructions are executed by at least one processor to enable the at least one processor to perform the substance detection method as mentioned in the above embodiments.
  • An embodiment of the present application further provides a computer readable storage medium storing a computer program, and when the computer program is executed by the processor, implements the substance detecting method mentioned in the foregoing embodiment.
  • Embodiments of the present application relative to the prior art, determine the first database based on the atomic composition information of the detected substance, which is sufficient to filter the information of the known sample, and reduce the information of the known sample for matching.
  • the quantity has improved the detection efficiency and accuracy of the substance detection system.
  • FIG. 1 is a flow chart of a substance detecting method according to a first embodiment of the present application
  • FIG. 2 is a flow chart of a substance detecting method according to a second embodiment of the present application.
  • FIG. 3 is a flow chart of a method of testing a matched known sample in accordance with a second embodiment of the present application.
  • FIG. 4 is a schematic structural view of a substance detecting system according to a third embodiment of the present application.
  • FIG. 5 is a schematic structural view of a substance detecting device according to a fourth embodiment of the present application.
  • the first spectrum is exemplified by a Laser-Induced Breakdown Spectroscopy (Lbs) spectrum
  • the second spectrum is exemplified by a Raman spectrum.
  • the first spectrum may also be another spectrum capable of characterizing the atomic composition of the substance to be detected
  • the second spectrum may also be another spectrum capable of characterizing the molecular composition of the substance to be detected
  • the corresponding substance detection method may refer to the present application. Description of various embodiments.
  • a first embodiment of the present application relates to a substance detecting method applied to a substance detecting system.
  • the specific process of the substance detection method is shown in Figure 1, and includes the following steps:
  • Step 101 Acquire a first spectrum and a second spectrum of the detected substance.
  • the first spectrum is used to characterize the atomic composition of the substance to be detected
  • the second spectrum is used to characterize the molecular composition of the substance to be detected.
  • the substance detection system includes a Libs detection terminal and a Raman detection terminal.
  • the Libs detection terminal is used to obtain the Libs spectrum of the substance to be detected.
  • the Raman detection terminal is used to obtain a Raman spectrum of the substance to be detected.
  • the combination of the Libs detection terminal and the Raman detection terminal includes but is not limited to the following two types:
  • Combination form 1 The Raman detection terminal and the Libs detection terminal are combined in the form of a confocal point.
  • the substance detection system performs a single detection on the substance to be detected, and obtains a Raman spectrum and a Libs spectrum of the substance to be detected.
  • Combination form 2 The Raman detection terminal and the Libs detection terminal are combined in a non-focal point form.
  • the substance detection system performs two tests on the substance to be detected, and obtains a Raman spectrum and a Libs spectrum of the substance to be detected.
  • the two detection spectra of the substance detection system correspond to the same substance to be detected by means of manual input of instructions or internal communication.
  • Step 102 Determine atomic composition information of the detected substance according to the first spectrum, and determine the first database according to the atomic composition information of the detected substance.
  • the information of all known samples is stored in the second database of the substance detection system.
  • the information of the known sample includes the name of the known sample, the spectral information of the known sample, and the atomic composition information of the known sample.
  • the substance detection system analyzes the Libs spectrum to obtain the atomic composition of the detected substance. Interest.
  • the substance detection system first backs up the second database, and then compares the atomic composition information of the detected substance with the atomic composition information in all known sample information stored in the second database, and includes the atoms other than the detected substance.
  • the information of the known sample of the atom is deleted, and the first database is obtained.
  • the atomic composition information of the substance to be detected characterizes the substance to be detected, including carbon atoms, hydrogen atoms and oxygen atoms
  • the information of known samples containing other atoms such as potassium nitrate, lithium iron phosphate, etc. is deleted to obtain the first database.
  • the information of the known sample may further include the hazard level of the known sample, the detailed information of the known sample (such as the common name of the known sample, etc.) and other information, which are not enumerated here.
  • One skilled in the art can add or delete information about known samples as needed.
  • the information of the known sample in the substance detection system is stored in the memory in the form of Table 1.
  • the peak width of the Libs spectrum is extremely narrow, the probability of overlap is low, and the types of elements in the world are limited. Therefore, the accuracy of the Libs detection terminal is nearly 100%, which is significantly higher than that of the Raman detection terminal.
  • the Libs detection terminal is used to determine the atomic composition information of the detected substance, the information of the known sample containing other elements is removed, and the known sample for matching is reduced. The amount of information increases the efficiency and accuracy of the detection of the substance detection system.
  • the embodiment can improve the matching efficiency and accuracy of the Raman detection terminal without adding other hardware.
  • determining that at least one atom in the atom of the detected substance can constitute a molecule alone, or can be combined with other atoms in the detected substance.
  • the constituent molecules that is, the substance to be detected is determined to be a molecular substance.
  • the substance detecting system may use the atomic composition information of the substance to be detected as a detection result, and may continue to execute the present. Other steps of the substance detection method referred to in the examples. Where N is a positive integer.
  • the material detection system seeks to waste system resources due to the information of known samples that match the second spectrum.
  • Step 103 Determine information of a known sample in the first database that matches the second spectrum.
  • Step 104 Determine the detection result according to the information of the matched known samples.
  • the method for determining the detection result by the substance detection system includes but is not limited to the following two types:
  • Method A The substance detecting system uses the information of the matched known sample, or / and the atomic composition information of the detected substance as the detection result.
  • Method B The substance detection system analyzes the information of the matched known samples, and if it is determined that the matching is correct, the information of the matched known samples is used as the detection result, and if it is determined that there may be an error in the matching, the prompt information is used as the detection information. Test results. The prompt information is used to prompt the user that a matching error may occur.
  • the prompt information may further include other information such as atomic composition information of the detected substance, a correct operation method of the substance detecting system, and the like.
  • the substance detecting method provided in the embodiment determines the first database according to the atomic composition information of the detected substance, can filter the information of the known sample, and reduces the known sample for matching. The amount of information that improves the detection efficiency and accuracy of the substance detection system.
  • a second embodiment of the present application relates to a substance detecting method, which is a further refinement of the first embodiment, and specifically illustrates step 104.
  • the embodiment includes steps 201 to 204.
  • Step 201, step 202, and step 203 are substantially the same as step 101, step 102, and step 103 in the first embodiment, and are not described in detail herein. The differences are mainly described below:
  • Step 201 to step 203 are performed.
  • Step 204 According to the proportion of each atom of the detected substance in the detected substance, and matching The proportion of each atom of the known sample in the matched known samples is determined to determine the detection result.
  • the atomic composition information of the substance to be detected includes the proportion of each atom constituting the substance to be detected in the substance to be detected.
  • the information of the matched known samples includes the proportion of each atom of the known sample that matches the known sample in the known sample. After determining the information of the matched known samples, the substance detection system will check the information of the matched known samples to further improve the accuracy of the substance detection system.
  • the matched known samples may be known samples with the highest degree of matching with the second spectrum, or may be information including all known samples that match the second spectrum.
  • the method for checking the matching known samples is as follows:
  • the matched known samples are known samples with the highest degree of matching with the second spectrum.
  • the substance detection system performs the following operations for each of the atoms constituting the substance to be detected: The difference between the proportion of the atom in the substance to be detected and the proportion of the atom in the matched known sample is determined. The substance detection system determines the detection result based on the respective difference of each atom of the substance to be detected.
  • the substance detecting system determines whether each of the respective corresponding values of the atoms of the detected substance are less than a threshold. If it is determined that the respective difference of each atom of the substance to be detected is smaller than the threshold value, the substance detecting system uses the information of the matched known sample as the detection result. If it is determined that the respective differences of each atom of the substance to be detected are not less than the threshold value, the substance detecting system will present the prompt information as the detection result.
  • the threshold can be set to 0.02, 0.04 and other values.
  • the substance detection system can determine that the carbon content of the substance to be detected accounts for 2/9 of the detected substance and the matched known sample, and the difference is 0; the hydrogen element is in the detected substance and the matched The ratio of the sample is 2/3, and the difference is 0. The oxygen content is 1/9 of the detected substance and the matched known sample, and the difference is 0.
  • the substance detection system determines that the difference between the carbon element, the oxygen element and the hydrogen element is less than 0.02, so the information of the ethanol is used as the detection result.
  • the information of the matched known samples includes information of all known samples that match the second spectrum, and the method of testing the matched known samples is shown in FIG.
  • Step 301 According to the matching degree of each matched known sample and the second spectrum, according to the matching degree from high to In a low order, sort all matching known samples.
  • Step 303 For the information of the nth matched known sample, for each atom constituting the detected substance, respectively perform the following operations: determining the proportion of the atom in the detected substance and the atom in the current The difference in the proportion of the known samples that match.
  • Step 304 Determine whether each of the corresponding values of each atom is less than a threshold.
  • step 307 if it is determined that the difference corresponding to each atom is less than the threshold, step 307 is performed; if the corresponding difference value of each atom is not less than the threshold, step 305 is performed.
  • Step 305 Determine whether all the information of the matched known samples is detected.
  • step 306 is performed; if it is determined that all of the matched known samples are detected, step 308 is performed.
  • Step 307 The current matched information of the known sample is taken as the detection result. The process of ending the substance testing method.
  • Step 308 The prompt information is used as the detection result.
  • the substance detecting method provided in the embodiment determines the first database according to the atomic composition information of the detected substance, can filter the information of the known sample, and reduces the known sample for matching. The amount of information that improves the detection efficiency and accuracy of the substance detection system. In addition, the information of the matched known samples is tested to further improve the accuracy of the substance detection system.
  • a third embodiment of the present application relates to a substance detection system, as shown in FIG.
  • the substance detecting system includes a first detecting device 401, a second detecting device 402, and a control device 403.
  • the first detecting device 401 is configured to acquire a first spectrum of the detected substance, and the first spectrum is used to characterize the atomic composition of the detected substance.
  • the second detecting means 402 is for acquiring a second spectrum of the substance to be detected, and the second spectrum is for characterizing the molecular composition of the substance to be detected.
  • the control device 403 is configured to determine atomic composition information of the detected substance according to the first spectrum, and determine a first database according to atomic composition information of the detected substance; and determine information of a known sample in the first database that matches the second spectrum; Based on matching known samples Information, determine the test results.
  • the first detecting device 401 is a Libs detecting terminal
  • the second detecting device 402 is a Raman detecting terminal
  • the control device 403 is a device having a control function respectively connected to the Libs detecting terminal and the Raman detecting terminal.
  • the first detecting device 401 is a Libs detecting terminal
  • the second detecting terminal 402 and the controlling device 403 are combined in the Raman detecting terminal.
  • this embodiment is a system embodiment corresponding to the first embodiment, and this embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still effective in this embodiment, and in order to reduce the repetition, no further details will be described herein. Accordingly, the related art details mentioned in this embodiment can also be applied to the first embodiment.
  • a fourth embodiment of the present application relates to a detecting terminal, as shown in FIG. 5, including at least one processor 501; and a memory 502 communicably coupled to at least one processor 501, wherein the memory 502 is stored with a memory 502
  • the instructions executed by the at least one processor 501 are executed by the at least one processor 501 to enable the at least one processor 501 to perform the substance detection method described above.
  • the processor 501 is a central processing unit (CPU), and the memory 502 is a random access memory (RAM).
  • the processor 501 and the memory 502 can be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 502 is used as a non-volatile computer readable storage medium for storing non-volatile software programs, non-volatile computer-executable programs, and modules, and information of samples known in the embodiments of the present application is stored in In the memory 502.
  • the processor 501 performs various functional applications and data processing of the device by executing non-volatile software programs, instructions, and modules stored in the memory 502, i.e., implements the above-described substance detecting method.
  • the memory 502 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store a list of options, and the like.
  • memory 502 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 502 can optionally include memory remotely located relative to the processor, which can be connected to the external device over a network. Examples of the above networks include, but are not limited to, the Internet, within the enterprise Ministry network, local area network, mobile communication network and their combination.
  • One or more modules are stored in the memory, and when executed by one or more processors, perform the substance detection method in any of the above method embodiments.
  • a fifth embodiment of the present application is directed to a computer readable storage medium storing a computer program.
  • the method of detecting a substance as described in any of the above method embodiments is implemented when the computer program is executed by the processor.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM, a random access memory), a magnetic disk, or an optical disk, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种物质检测方法,包括:获取被检测物质的第一光谱以及第二光谱(101),第一光谱用于表征被检测物质的原子组成,第二光谱用于表征被检测物质的分子组成;根据第一光谱确定被检测物质的原子组成信息,并根据被检测物质的原子组成信息确定第一数据库(102);确定第一数据库中与第二光谱相匹配的已知样品的信息(103);根据相匹配的已知样品的信息,确定检测结果(104)。

Description

一种物质捡测方法、 系统、 装置及计算机可读存储介质 技术领域
[0001] 本申请涉及检测领域, 尤其涉及一种物质检测方法、 系统、 装置及计算机可读 存储介质。
背景技术
[0002] 当前市面上的拉曼检测终端可通过激光焦点照射被检测物质的方式, 获得被检 测物质的光谱。 通过分析被检测物质的光谱, 确定被检测物质的分子结构, 从 而确定被检测物质是什么。
发明概述
技术问题
[0003] 发明人在研究现有技术过程中发现, 由于现存的分子种类很多, 拉曼检测终端 的算法能力有限, 导致拉曼检测终端的准确率不高。 尤其是针对混合物质, 拉 曼检测终端的准确率更低。 对于依赖于拉曼检测终端的场景, 这将极大的影响 用户的判定和后续处理, 甚至产生严重的后果。
[0004] 可见, 如何提高检测终端的准确性, 是需要解决的问题。
问题的解决方案
技术解决方案
[0005] 本申请部分实施例所要解决的一个技术问题在于如何提高检测终端的准确性。
[0006] 本申请的一个实施例提供了一种物质检测方法, 包括: 获取被检测物质的第一 光谱以及第二光谱, 第一光谱用于表征被检测物质的原子组成, 第二光谱用于 表征被检测物质的分子组成; 根据第一光谱确定被检测物质的原子组成信息, 并根据被检测物质的原子组成信息确定第一数据库; 确定第一数据库中与第二 光谱相匹配的已知样品的信息; 根据相匹配的已知样品的信息, 确定检测结果
[0007] 本申请的一个实施例还提供了一种物质检测系统, 包括: 第一检测装置、 第二 检测装置和控制装置; 第一检测装置用于获取被检测物质的第一光谱, 第一光 谱用于表征被检测物质的原子组成。 第二检测装置用于获取被检测物质的第二 光谱, 第二光谱用于表征被检测物质的分子组成。 控制装置用于根据第一光谱 确定被检测物质的原子组成信息, 并根据被检测物质的原子组成信息确定第一 数据库; 确定第一数据库中与第二光谱相匹配的已知样品的信息; 根据相匹配 的已知样品的信息, 确定检测结果。
[0008] 本申请的一个实施例还提供了一种物质检测装置, 包括至少一个处理器; 以及 , 与至少一个处理器通信连接的存储器; 其中, 存储器存储有可被至少一个处 理器执行的指令, 指令被至少一个处理器执行, 以使至少一个处理器能够执行 如上述实施例提及的物质检测方法。
[0009] 本申请的一个实施例还提供了一种计算机可读存储介质, 存储有计算机程序, 计算机程序被处理器执行时实现上述实施例提及的物质检测方法。
发明的有益效果
有益效果
[0010] 本申请的实施例相对于现有技术而言, 根据被检测物质的原子组成信息确定第 一数据库, 會 g够过滤已知样品的信息, 减少了用于匹配的已知样品的信息的数 量, 提高了物质检测系统的检测效率和准确性。
对附图的简要说明
附图说明
[0011] 一个或多个实施例通过与之对应的附图中的图片进行示例性说明, 这些示例性 说明并不构成对实施例的限定, 附图中具有相同参考数字标号的元件表示为类 似的元件, 除非有特别申明, 附图中的图不构成比例限制。
[0012] 图 1是本申请第一实施例的物质检测方法的流程图;
[0013] 图 2是本申请第二实施例的物质检测方法的流程图;
[0014] 图 3是本申请第二实施例的检验相匹配的已知样品的方法的流程图;
[0015] 图 4是本申请第三实施例的物质检测系统的结构示意图;
[0016] 图 5是本申请第四实施例的物质检测装置的结构示意图。
发明实施例 本发明的实施方式
[0017] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本申请部分实施例进行进一步详细说明。 应当理解, 此处所描述的具体实 施例仅用以解释本申请, 并不用于限定本申请。
[0018] 需要说明的是, 本申请的各实施例中, 第一光谱以激光诱导击穿光谱学 (Laser -Induced Breakdown Spectroscopy , 简称 Libs) 光谱为例, 第二光谱以拉曼光谱为 例。 实际应用中, 第一光谱也可以是其他能够表征被检测物质的原子组成的光 谱, 第二光谱也可以是其他能够表征被检测物质的分子组成的光谱, 对应的物 质检测方法可以参考本申请的各实施例的描述。
[0019] 本申请的第一实施例涉及一种物质检测方法, 应用于物质检测系统。 该物质检 测方法的具体流程如图 1所示, 包括以下步骤:
[0020] 步骤 101 : 获取被检测物质的第一光谱以及第二光谱。
[0021] 具体地说, 第一光谱用于表征被检测物质的原子组成, 第二光谱用于表征被检 测物质的分子组成。 物质检测系统包括 Libs检测终端和拉曼检测终端。 Libs检测 终端用于获得被检测物质的 Libs光谱。 拉曼检测终端用于获得被检测物质的拉曼 光谱。 Libs检测终端和拉曼检测终端的组合形式包括但不限于以下两种:
[0022] 组合形式 1 : 拉曼检测终端和 Libs检测终端以共焦点的形式组合。 物质检测系 统对被检测物质进行单次检测, 得到被检测物质的拉曼光谱和 Libs光谱。
[0023] 组合形式 2: 拉曼检测终端和 Libs检测终端以非共焦点的形式组合。 物质检测 系统对被检测物质进行两次检测, 得到被检测物质的拉曼光谱和 Libs光谱。 通过 手动输入指令或内部通信等方式, 告知物质检测系统两个光谱对应同一被检测 物质。
[0024] 步骤 102: 根据第一光谱确定被检测物质的原子组成信息, 并根据被检测物质 的原子组成信息确定第一数据库。
[0025] 具体地说, 第一数据库中的每种已知样品的元素中仅包括被检测物质的原子。
[0026] 具体实现中, 物质检测系统的第二数据库中存储有所有已知样品的信息。 其中 , 已知样品的信息包括已知样品的名称、 已知样品的光谱信息和已知样品的原 子组成信息。 物质检测系统对 Libs光谱进行分析, 得到被检测物质的原子组成信 息。 物质检测系统先对第二数据库进行备份, 然后将被检测物质的原子组成信 息与第二数据库中存储的所有已知样品信息中的原子组成信息进行对比, 将包 括除被检测物质的原子以外的原子的已知样品的信息删除, 得到第一数据库。 例如, 被检测物质的原子组成信息表征被检测物质包括碳原子、 氢原子和氧原 子, 则将包含其他原子的已知样品的信息 (如硝酸钾、 磷酸铁锂等) 删除, 得 到第一数据库。
[0027] 需要说明的是, 已知样品的信息还可以包括已知样品的危险等级、 已知样品的 详细信息 (如已知样品的俗称等) 等其他信息, 此处不一一列举, 本领域技术 人员可根据需要添加或删除已知样品的信息。
[0028] 具体实现中, 物质检测系统中的已知样品的信息以表 1的形式存储于存储器中
[0029] 表 1
[] [表 1]
Figure imgf000006_0001
[0030] 值得一提的是, Libs光谱的波峰宽度极窄, 重叠概率低, 且世界上元素的种类 有限, 故 Libs检测终端的准确度近乎于 100%, 明显高于拉曼检测终端。 在使用 拉曼检测终端对被检测物质进行匹配前, 使用 Libs检测终端确定该被检测物质的 原子组成信息, 去除包含了其他元素的已知样品的信息, 减少了用于匹配的已 知样品的信息的数量, 提高了物质检测系统的检测效率和准确性。
[0031] 值得一提的是, 当 Libs检测终端与拉曼检测终端之间通信连接时, 本实施例可 以在不增加其他硬件的情况下, 提高拉曼检测终端的匹配效率和准确性。
[0032] 具体实现中, 在根据被检测物质的原子组成信息确定第一数据库之前, 确定被 检测物质的原子中至少存在 1种原子能够单独构成分子, 或, 能够与被检测物质 中的其他原子构成分子, 即确定被检测物质是分子类物质。 [0033] 需要说明的是, 实际应用中, 在被检测物质中的任意 N种原子中都无法构成分 子时, 物质检测系统可以将被检测物质的原子组成信息作为检测结果, 也可以 继续执行本实施例提及的物质检测方法的其他步骤。 其中, N为正整数。
[0034] 值得一提的是, 由于被检测物质中不包含分子类物质时, 第二光谱为非正常光 谱, 在确定第一数据库之前, 确定被检测物质中包含分子类物质, 可以避免第 二光谱为非正常光谱时, 物质检测系统寻找与第二光谱匹配的已知样品的信息 而造成的系统资源浪费。
[0035] 步骤 103: 确定第一数据库中与第二光谱相匹配的已知样品的信息。
[0036] 步骤 104: 根据相匹配的已知样品的信息, 确定检测结果。
[0037] 需要说明的是, 实际应用中, 物质检测系统确定检测结果的方法包括但不限于 以下两种:
[0038] 方法 A: 物质检测系统将相匹配的已知样品的信息, 或 /和, 被检测物质的原子 组成信息作为检测结果。
[0039] 方法 B: 物质检测系统对相匹配的已知样品的信息进行分析, 若确定匹配正确 , 将相匹配的已知样品的信息作为检测结果, 若确定匹配可能存在错误, 将提 示信息作为检测结果。 其中, 提示信息用于提示用户可能出现匹配错误。
[0040] 具体实现中, 提示信息还可以包括被检测物质的原子组成信息、 物质检测系统 的正确操作方法等其他信息。
[0041] 与现有技术相比, 本实施例中提供的物质检测方法, 根据被检测物质的原子组 成信息确定第一数据库, 能够过滤已知样品的信息, 减少了用于匹配的已知样 品的信息的数量, 提高了物质检测系统的检测效率和准确性。
[0042] 本申请的第二实施例涉及一种物质检测方法, 本实施例是对第一实施例的进一 步细化, 具体说明了步骤 104。
[0043] 如图 2所示, 本实施例包括步骤 201至步骤 204。 其中, 步骤 201、 步骤 202、 步 骤 203分别与第一实施例中的步骤 101、 步骤 102和步骤 103大致相同, 此处不再 详述, 下面主要介绍不同之处:
[0044] 执行步骤 201至步骤 203。
[0045] 步骤 204: 根据被检测物质的各原子分别在被检测物质中的占比, 以及相匹配 的已知样品的各原子分别在相匹配的已知样品中的占比, 确定检测结果。
[0046] 具体地说, 被检测物质的原子组成信息中, 包括组成被检测物质的各原子分别 在被检测物质中的占比。 相匹配的已知样品的信息包括组成相匹配的已知样品 的各原子分别在已知样品中的占比。 物质检测系统在确定相匹配的已知样品的 信息后, 会对相匹配的已知样品的信息进行检验, 进一步提高物质检测系统的 准确性。
[0047] 实际应用中, 相匹配的已知样品可以是与第二光谱的匹配度最高的已知样品, 也可以是包括所有与第二光谱相匹配的已知样品的信息。 针对这两种情况, 检 验相匹配的已知样品的方法如下:
[0048] 第一种情况, 相匹配的已知样品为与第二光谱的匹配度最高的已知样品。 物质 检测系统针对组成被检测物质的每一种原子, 分别进行以下操作: 确定该原子 在被检测物质中的占比与该原子在相匹配的已知样品中的占比的差值。 物质检 测系统根据被检测物质的每一种原子各自对应的差值, 确定检测结果。
[0049] 具体实现中, 物质检测系统判断被检测物质的每一种原子各自对应的差值是否 都小于阈值。 若确定被检测物质的每一种原子各自对应的差值都小于阈值, 物 质检测系统将相匹配的已知样品的信息作为检测结果。 若确定被检测物质的每 一种原子各自对应的差值不是都小于阈值, 物质检测系统将提示信息作为检测 结果。 其中, 阈值可以设置为 0.02、 0.04等数值。
[0050] 假设, 被检测物质的原子组成信息表示: 被检测物质的碳元素: 氢元素: 氧元 素 =2:6: 1, 相匹配的已知样品的信息表示: 相匹配的已知样品为乙醇, 化学式为 C 2H 5OH 阈值为 0.02。 物质检测系统可以确定, 被检测物质中的碳元素在被检 测物质和相匹配的已知样品中的占比均为 2/9, 差值为 0; 氢元素在被检测物质和 相匹配的已知样品中的占比均为 2/3, 差值为 0; 氧元素在被检测物质和相匹配的 已知样品中的占比均为 1/9 , 差值为 0。 物质检测系统确定碳元素、 氧元素和氢元 素各自对应的差值都小于 0.02, 故将乙醇的信息作为检测结果。
[0051] 第二种情况, 相匹配的已知样品的信息包括所有与第二光谱相匹配的已知样品 的信息, 检验相匹配的已知样品的方法如图 3所示。
[0052] 步骤 301 : 根据每种相匹配的已知样品与第二光谱的匹配度, 按匹配度从高到 低的顺序, 对所有相匹配的已知样品进行排序。
[0053] 步骤 302: n=l。
[0054] 步骤 303: 对于第 n个相匹配的已知样品的信息, 针对组成被检测物质的每一种 原子, 分别进行以下操作: 确定原子在被检测物质中的占比与原子在当前的相 匹配的已知样品中的占比的差值。
[0055] 步骤 304: 判断每一种原子各自对应的差值是否都小于阈值。
[0056] 具体地说, 若确定每一种原子各自对应的差值都小于阈值, 执行步骤 307 ; 若 每一种原子各自对应的差值不是都小于阈值, 执行步骤 305。
[0057] 步骤 305: 判断是否检测完所有的相匹配的已知样品的信息。
[0058] 具体地说, 若确定未检测完所有的相匹配的已知样品的信息, 执行步骤 306; 若确定检测完所有的相匹配的已知样品的信息, 执行步骤 308。
[0059] 步骤 306: n=n+l。 之后执行步骤 303。
[0060] 步骤 307: 将当前的相匹配的已知样品的信息作为检测结果。 结束该物质检测 方法的流程。
[0061] 步骤 308: 将提示信息作为检测结果。
[0062] 值得一提的是, 对相匹配的已知样品进行检验, 进一步提高了物质检测系统的 准确性。
[0063] 与现有技术相比, 本实施例中提供的物质检测方法, 根据被检测物质的原子组 成信息确定第一数据库, 能够过滤已知样品的信息, 减少了用于匹配的已知样 品的信息的数量, 提高了物质检测系统的检测效率和准确性。 除此之外, 对相 匹配的已知样品的信息进行检验, 进一步提高了物质检测系统的准确性。
[0064] 本申请的第三实施例涉及一种物质检测系统, 如图 4所示。 该物质检测系统包 括第一检测装置 401、 第二检测装置 402和控制装置 403。
[0065] 第一检测装置 401用于获取被检测物质的第一光谱, 第一光谱用于表征被检测 物质的原子组成。 第二检测装置 402用于获取被检测物质的第二光谱, 第二光谱 用于表征被检测物质的分子组成。 控制装置 403用于根据第一光谱确定被检测物 质的原子组成信息, 并根据被检测物质的原子组成信息确定第一数据库; 确定 第一数据库中与第二光谱相匹配的已知样品的信息; 根据相匹配的已知样品的 信息, 确定检测结果。
[0066] 具体实现中, 第一检测装置 401为 Libs检测终端, 第二检测装置 402为拉曼检测 终端, 控制装置 403为与 Libs检测终端和拉曼检测终端分别连接的具有控制功能 的装置。
[0067] 另一具体实现中, 第一检测装置 401为 Libs检测终端, 第二检测终端 402和控制 装置 403组合于拉曼检测终端中。
[0068] 不难发现, 本实施例为与第一实施例相对应的系统实施例, 本实施例可与第一 实施例互相配合实施。 第一实施例中提到的相关技术细节在本实施例中依然有 效, 为了减少重复, 这里不再赘述。 相应地, 本实施例中提到的相关技术细节 也可应用在第一实施例中。
[0069] 本申请的第四实施例涉及一种检测终端, 如图 5所示, 包括至少一个处理器 501 ; 以及, 与至少一个处理器 501通信连接的存储器 502 其中, 存储器 502存储有 可被至少一个处理器 501执行的指令, 指令被至少一个处理器 501执行, 以使至 少一个处理器 501能够执行上述物质检测方法。
[0070] 本实施例中, 处理器 501以中央处理器 (Central Processing Unit, CPU) 为例, 存储器 502以可读写存储器 (Random Access Memory , RAM) 为例。 处理器 501 、 存储器 502可以通过总线或者其他方式连接, 图 5中以通过总线连接为例。 存 储器 502作为一种非易失性计算机可读存储介质, 可用于存储非易失性软件程序 、 非易失性计算机可执行程序以及模块, 如本申请实施例中已知样品的信息就 存储于存储器 502中。 处理器 501通过运行存储在存储器 502中的非易失性软件程 序、 指令以及模块, 从而执行设备的各种功能应用以及数据处理, 即实现上述 物质检测方法。
[0071] 存储器 502可以包括存储程序区和存储数据区, 其中, 存储程序区可存储操作 系统、 至少一个功能所需要的应用程序; 存储数据区可存储选项列表等。 此外 , 存储器 502可以包括高速随机存取存储器, 还可以包括非易失性存储器, 例如 至少一个磁盘存储器件、 闪存器件、 或其他非易失性固态存储器件。 在一些实 施例中, 存储器 502可选包括相对于处理器远程设置的存储器, 这些远程存储器 可以通过网络连接至外接设备。 上述网络的实例包括但不限于互联网、 企业内 部网、 局域网、 移动通信网及其组合。
[0072] 一个或者多个模块存储在存储器中, 当被一个或者多个处理器执行时, 执行上 述任意方法实施例中的物质检测方法。
[0073] 上述产品可执行本申请实施例所提供的方法, 具备执行方法相应的功能模块和 有益效果, 未在本实施例中详尽描述的技术细节, 可参见本申请实施例所提供 的方法。
[0074] 本申请的第五实施例涉及一种计算机可读存储介质, 存储有计算机程序。 计算 机程序被处理器执行时实现以上任意方法实施例所描述的物质检测方法。
[0075] 即, 本领域技术人员可以理解, 实现上述实施例方法中的全部或部分步骤是可 以通过程序来指令相关的硬件来完成, 该程序存储在一个存储介质中, 包括若 干指令用以使得一个设备 (可以是单片机, 芯片等) 或处理器 (processor) 执行 本申请各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory) 、 随机存取存储器 (RAM , Random Access Memory) 、 磁碟或者光盘等各种可以存储程序代码的介质。
[0076] 本领域的普通技术人员可以理解, 上述各实施例是实现本申请的具体实施例, 而在实际应用中, 可以在形式上和细节上对其作各种改变, 而不偏离本申请的 精神和范围。

Claims

权利要求书
[权利要求 1] 一种物质检测方法, 其中, 包括:
获取被检测物质的第一光谱以及第二光谱, 所述第一光谱用于表征所 述被检测物质的原子组成, 所述第二光谱用于表征所述被检测物质的 分子组成;
根据所述第一光谱确定所述被检测物质的原子组成信息, 并根据所述 被检测物质的原子组成信息确定第一数据库;
确定所述第一数据库中与所述第二光谱相匹配的已知样品的信息; 根据所述相匹配的已知样品的信息, 确定检测结果。
[权利要求 2] 根据权利要求 1所述的物质检测方法, 其中, 所述第一数据库中的每 种已知样品的元素中仅包括所述被检测物质的原子。
[权利要求 3] 根据权利要求 1或 2所述的物质检测方法, 其中, 所述被检测物质的原 子组成信息包括组成所述被检测物质的各原子分别在所述被检测物质 中的占比; 所述相匹配的已知样品的信息包括组成所述相匹配的已知 样品的各原子分别在所述已知样品中的占比;
所述根据所述相匹配的已知样品的信息, 确定检测结果, 具体包括: 根据所述被检测物质的各原子分别在所述被检测物质中的占比, 以及 所述相匹配的已知样品的各原子分别在所述相匹配的已知样品中的占 比, 确定所述检测结果。
[权利要求 4] 根据权利要求 3所述的物质检测方法, 其中, 所述相匹配的已知样品 为与所述第二光谱的匹配度最高的已知样品;
所述根据所述被检测物质的各原子分别在所述被检测物质中的占比, 以及所述相匹配的已知样品的各原子分别在所述相匹配的已知样品中 的占比, 确定所述检测结果, 具体包括:
针对组成所述被检测物质的每一种原子, 分别进行以下操作: 确定所 述原子在所述被检测物质中的占比与所述原子在所述相匹配的已知样 品中的占比的差值;
根据所述被检测物质的每一种原子各自对应的差值, 确定所述检测结 果。
[权利要求 5] 根据权利要求 4所述的物质检测方法, 其中, 所述根据所述被检测物 质的每一种原子各自对应的差值, 确定所述检测结果, 具体包括: 判断所述被检测物质的每一种原子各自对应的差值是否都小于阈值; 若确定所述被检测物质的每一种原子各自对应的差值都小于所述阈值 , 将所述相匹配的已知样品的信息作为所述检测结果;
若确定所述被检测物质的每一种原子各自对应的差值不是都小于所述 阈值, 将提示信息作为所述检测结果, 其中, 所述提示信息用于提示 用户可能出现匹配错误。
[权利要求 6] 根据权利要求 3所述的物质检测方法, 其中, 所述相匹配的已知样品 的信息包括所有与所述第二光谱相匹配的已知样品的信息; 所述根据所述被检测物质的各原子分别在所述被检测物质中的占比, 以及所述相匹配的已知样品的各原子分别在所述相匹配的已知样品中 的占比, 确定所述检测结果, 具体包括:
根据每种所述相匹配的已知样品与所述第二光谱的匹配度, 按匹配度 从高到低的顺序, 对所有的所述相匹配的已知样品进行排序; 从排序后的第一个所述相匹配的已知样品开始, 针对组成所述被检测 物质的每一种原子, 分别进行以下操作: 确定所述原子在所述被检测 物质中的占比与所述原子在当前的所述相匹配的已知样品中的占比的 差值;
直至所述被检测物质的每一种原子各自对应的差值都小于阈值, 或检 测完所有的所述相匹配的已知样品;
若确定所述被检测物质的每一种原子各自对应的差值都小于所述阈值 , 将当前的所述相匹配的已知样品的信息作为所述检测结果; 若确定所述被检测物质的每一种原子的差值不是都小于所述阈值, 且 确定已检测完所有的所述相匹配的已知样品信息后, 将提示信息作为 所述检测结果, 其中, 所述提示信息用于提示用户可能出现匹配错误
[权利要求 7] 根据权利要求 1至 6中任一项所述的物质检测方法, 其中, 所述根据所 述被检测物质的原子组成信息确定第一数据库, 具体包括: 将第二数据库中包含除所述被检测物质的原子以外的原子的已知样品 的信息删除, 并将第二数据库中不包含所述被检测物质的所有原子的 已知样品的信息删除, 得到所述第一数据库。
[权利要求 8] 根据权利要求 1至 7中任一项所述的物质检测方法, 其中, 在所述根据 所述被检测物质的原子组成信息确定第一数据库之前, 所述物质检测 方法还包括:
确定所述被检测物质的原子中至少存在 1种原子能够单独构成分子, 或, 能够与所述被检测物质中的其他原子构成分子。
[权利要求 9] 一种物质检测系统, 其中, 包括: 第一检测装置、 第二检测装置和控 制装置;
所述第一检测装置用于获取被检测物质的第一光谱, 所述第一光谱用 于表征所述被检测物质的原子组成;
所述第二检测装置用于获取所述被检测物质的第二光谱, 所述第二光 谱用于表征所述被检测物质的分子组成;
所述控制装置用于根据所述第一光谱确定所述被检测物质的原子组成 信息, 并根据所述被检测物质的原子组成信息确定第一数据库; 确定 所述第一数据库中与所述第二光谱相匹配的已知样品的信息; 根据所 述相匹配的已知样品的信息, 确定检测结果。
[权利要求 10] 根据权利要求 9所述的物质检测系统, 其中, 所述第一检测装置为激 光诱导击穿光谱学 Libs检测终端, 所述第二检测装置为拉曼检测终端
[权利要求 11] 一种物质检测装置, 其中, 包括至少一个处理器; 以及,
与所述至少一个处理器通信连接的存储器; 其中, 所述存储器存储有 可被所述至少一个处理器执行的指令, 所述指令被所述至少一个处理 器执行, 以使所述至少一个处理器能够执行如权利要求 1至 8任一项所 述的物质检测方法。 [权利要求 12] 一种计算机可读存储介质, 存储有计算机程序, 其中, 所述计算机程 序被处理器执行时实现权利要求 1至 8任一项所述的物质检测方法。
PCT/CN2018/086888 2018-05-15 2018-05-15 一种物质检测方法、系统、装置及计算机可读存储介质 WO2019218158A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/086888 WO2019218158A1 (zh) 2018-05-15 2018-05-15 一种物质检测方法、系统、装置及计算机可读存储介质
CN201880001176.5A CN108780046B (zh) 2018-05-15 2018-05-15 一种物质检测方法、系统、装置及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086888 WO2019218158A1 (zh) 2018-05-15 2018-05-15 一种物质检测方法、系统、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019218158A1 true WO2019218158A1 (zh) 2019-11-21

Family

ID=64029062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086888 WO2019218158A1 (zh) 2018-05-15 2018-05-15 一种物质检测方法、系统、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN108780046B (zh)
WO (1) WO2019218158A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780046B (zh) * 2018-05-15 2021-01-29 深圳达闼科技控股有限公司 一种物质检测方法、系统、装置及计算机可读存储介质
CN109668852B (zh) * 2018-12-25 2021-11-02 Oppo广东移动通信有限公司 电子设备、信息推送方法及相关产品
CN109916989B (zh) * 2019-04-01 2021-12-10 山东博戎伝创信息科技有限公司 一种基于人工智能的有机物检测方法、装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062874A1 (en) * 2005-07-14 2012-03-15 Chemimage Corporation System and Method for Combined Raman and LIBS Detection with Targeting
CN102609246A (zh) * 2011-01-21 2012-07-25 中国科学院计算机网络信息中心 基于网格的计算化学应用整合系统
US20140022532A1 (en) * 2012-07-17 2014-01-23 Donald W. Sackett Dual Source Analyzer with Single Detector
CN104596997A (zh) * 2015-01-19 2015-05-06 四川大学 一种激光诱导击穿-脉冲拉曼光谱联用系统及使用方法
CN104730044A (zh) * 2015-03-10 2015-06-24 北京农业智能装备技术研究中心 一种原子与分子光谱的同步获取装置及方法
CN104750761A (zh) * 2013-12-31 2015-07-01 上海致化化学科技有限公司 分子结构数据库的建立方法及搜索方法
CN108780046A (zh) * 2018-05-15 2018-11-09 深圳达闼科技控股有限公司 一种物质检测方法、系统、装置及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8781793B2 (en) * 2011-05-25 2014-07-15 Crev Inc. Light emission analyzing device
CN103076310B (zh) * 2012-12-28 2015-01-07 深圳大学 用于物质成份分析的光谱探测系统及其探测方法
CN203224448U (zh) * 2012-12-28 2013-10-02 深圳大学 用于物质成分分析的光谱探测系统
CN103884649B (zh) * 2014-03-21 2016-05-04 大连理工大学 一种双脉冲激光诱导击穿光谱分析装置及方法
CN106841171B (zh) * 2017-01-06 2019-05-24 中国科学院上海技术物理研究所 用于大宗及贵重货品进出口检测的联合光谱检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062874A1 (en) * 2005-07-14 2012-03-15 Chemimage Corporation System and Method for Combined Raman and LIBS Detection with Targeting
CN102609246A (zh) * 2011-01-21 2012-07-25 中国科学院计算机网络信息中心 基于网格的计算化学应用整合系统
US20140022532A1 (en) * 2012-07-17 2014-01-23 Donald W. Sackett Dual Source Analyzer with Single Detector
CN104750761A (zh) * 2013-12-31 2015-07-01 上海致化化学科技有限公司 分子结构数据库的建立方法及搜索方法
CN104596997A (zh) * 2015-01-19 2015-05-06 四川大学 一种激光诱导击穿-脉冲拉曼光谱联用系统及使用方法
CN104730044A (zh) * 2015-03-10 2015-06-24 北京农业智能装备技术研究中心 一种原子与分子光谱的同步获取装置及方法
CN108780046A (zh) * 2018-05-15 2018-11-09 深圳达闼科技控股有限公司 一种物质检测方法、系统、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN108780046A (zh) 2018-11-09
CN108780046B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2019218158A1 (zh) 一种物质检测方法、系统、装置及计算机可读存储介质
Lam et al. Building consensus spectral libraries for peptide identification in proteomics
Lam et al. Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics
WO2019222964A1 (zh) 一种确定检测设备的方法、检测装置及可读存储介质
US10801951B2 (en) Mixture detection method and device
Park et al. Census for proteome quantification
CN111124486A (zh) 发现安卓应用引用第三方工具的方法、系统及存储介质
CN110020665B (zh) 一种兼容不同飞行质谱仪的微生物质谱数据分析方法
CN109073537A (zh) 一种物质检测的方法、装置、终端和可读存储介质
Matzinger et al. Mimicked synthetic ribosomal protein complex for benchmarking crosslinking mass spectrometry workflows
Solov'Ev et al. Classification of metal binders by naïve bayes classifier on the base of molecular fragment descriptors and ensemble modeling
CN111737349B (zh) 数据一致性校验方法及装置
Wen et al. The OMSSAP ercolator: A n automated tool to validate OMSSA results
US20190018890A9 (en) Extensible search solution for asset information
US9990369B2 (en) Method and apparatus for scanning files
CN114577743B (zh) 样本中的干扰物确定方法及装置、设备及存储介质
Sisco et al. Beyond Fentanyl Test Strips: Investigating Other Urine Drug Test Strips for Drug Checking Applications
US11131623B2 (en) Mixture detection method and device
CN111290940A (zh) 针对app的自动化测试方法、装置、设备和介质
Park et al. Development and Validation of Mass Spectrometry‐Based Targeted Analysis for Amyloid Proteins
CN113449804A (zh) 血液类别的确定方法及相关设备
WO2016004598A1 (zh) 产品抽样检验方法、装置及系统
WO2020024167A1 (zh) 一种物质检测数据库的数据添加方法、装置和检测设备
CN109284609B (zh) 一种用于病毒检测的方法、装置及计算机设备
Johnson et al. Infrared spectroscopy for the quality analysis of Tebuthiuron powder and Regain granules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919310

Country of ref document: EP

Kind code of ref document: A1